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Abstract 

 

The overall goal of this thesis research is to develop a spectral searching 

strategy capable of identifying peptide sequences from MS/MS spectra with high 

sensitivity and accuracy.  

 First, a shotgun proteome analysis method was developed and successfully 

applied to the identification of proteins from thousands of cancer cells. This work 

illustrated that proteome profiling of a small number of cells isolated from blood 

can be achieved. By comparing the obtained profile to a standard profile, cell 

typing might also be possible. This method may prove to be useful for cancer 

diagnosis or prognosis. From this study, we realized that sequence database 

searching strategy is one of the bottlenecks to achieve better sensitivity of protein 

identification for proteome profiling work.  

As a promising alternative, spectral searching strategy is believed to be able 

to provide more sensitive and accurate peptide and protein identification. In 

spectral searching strategy, there are two main components: spectral libraries and 

the searching algorithm.  

Since an accurate identification by spectral searching strategy is built on 

the premise of a reliable MS/MS spectral library, 
15

N-metabolic labeling and 
18

O-

labeling approaches were developed to experimentally validate all the peptide 

matches from sequence database search results.  



 
 

With those validated matches, the sensitivity and accuracy of commonly 

used search engines (Mascot and X!Tandem) and two popular statistical 

approaches (PeptideProphet and Percolator) were carefully examined. Moreover, 

two strategies were designed to identify single-hit protein identifications (proteins 

identified by only one peptide) with high reliability. In addition, Percolator was 

successfully interfaced with X!Tandem to enhance its performance. 

Finally, a spectral searching algorithm called SpecMatching was developed 

to utilize the experimentally validated spectral library. In analyzing a digest of an 

E. coli extract using both Mascot and SpecMatching, it was shown that 

SpecMatching provided better sensitivity and specificity even with this small-size 

spectral library.  
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Chapter 1  

Introduction 

 
 

1.1  Proteomics 

 Originating from the words protein and genome, the term “proteome” 

represents the total collection of proteins encoded by the genes in one organism.
1, 

2
 Proteomics, therefore, is defined as the study of the entire protein content, such 

as the understanding of the structure, interaction, and function of all the proteins 

within an organism.
3
 One of the major causes of diseases is defective proteins, in 

turn making proteins as useful indicators for the diagnosis of a particular disease. 

In addition, proteins are the primary targets of most drugs and thus are the main 

basis for the development of new drugs. Therefore, the study of proteome is 

important for understanding their role in the cause and control of diseases. At 

present, the aims of proteomics may be roughly categorized into four directions: 

(1) large-scale protein identification and their post-translational modifications 

(PTMs); (2) differential expression analysis of proteins in healthy and diseased 

states; (3) studies of protein interactions; and (4) studies of protein functions.
4
 In 

any of these scenarios, knowing the protein sequence is fundamental to 

understand the roles of proteins in biological processes on the molecular level.   



2 

 

1.2  Mass spectrometry Based Protein Sequencing 

 Due to recent advances in instrumental analysis and bioinformatics, mass 

spectrometry has become the leading technique to sequence proteins. It mainly 

involves four stages: protein sample preparation, ionization, mass spectrometric 

analysis and data interpretation.  

1.2.1  Sample Preparation 

 Most samples for proteomics experiments nowadays are derived from 

cellular samples (e.g., cultured cells and primary cells). In this case, protein 

extraction is often required. It involves disrupting the cellular membrane using a 

combination of physical actions (e.g., sonication or pressure) and extraction 

buffers capable of rupturing cellular structure (e.g., NP-40). Removal of lipids, 

surfactants and other small molecules is needed to avoid interference with 

downstream mass spectrometric analysis of proteins. This goal can be effectively 

achieved with solvent
5, 6

 or trichloroacetic acid (TCA) protein precipitation
7
. For 

instance, when acetone is added to an aqueous protein solution, the solubilized 

proteins are denatured and form precipitates.  

Once reasonably pure protein precipitates are obtained, complete 

solubilization of proteins is often required. It involves the use of a solvent or a 

series of solvents to disrupt the protein-protein interactions caused by van der 

Waals forces, electrostatic forces and hydrogen bonding. Many efforts have been 

devoted to the development of effective and efficient protein solubilization.
8
 A 
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variety of reagents, such as aqueous solution (e.g., ammonium bicarbonate), 

organic solvent (e.g., methanol), chaotropic agents (e.g., urea) and surfactants 

(e.g., SDS), have all been carefully studied for their protein solubilization 

capability.
9-11

  

Next, in order to reduce the complexity of protein mixture, protein 

separation is often performed. As the most widely used protein separation 

approach, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) separates proteins based on their molecular weight or size. SDS-PAGE is 

noted for its high resolution and fair loading capacity.
12

 However, the subsequent 

sample workup steps, such as protein extraction, purification and digestion within 

gel pieces, can be laborious and inefficient. Apart from the gel-based separation 

approach, solution based separation methods, such as protein reversed phase 

liquid chromatography (RPLC)
13

 and affinity chromatography
14

, operate in 

different manners. They offer the advantage that proteins stay in solution, thus 

making the subsequent sample workup procedures on both protein and peptide 

level less tedious.
15

 

 In bottom-up proteomics
16

 (analyzing peptides that result from protein 

digestion), protein samples are digested into smaller peptides using enzymes
15

 

(e.g., trypsin, chymotrypsin or pepsin) or chemical methods (e.g., cyanogen 

bromide
17

 and microwave-assisted acid hydrolysis
18

) before mass spectrometric 

analysis. Of all the digestion methods, the most common one utilizes trypsin. 

Trypsin cleaves proteins at the carboxyl side of lysine or arginine, except when 



4 

 

either is followed by proline. Its popularity can be attributed to three reasons. First, 

the high specificity of trypsin provides reproducible digestion results. Secondly, 

lysines and arginines are distributed along the protein sequence in spaces that, 

trypsin digestion results in peptides (tryptic peptides) that have molecular weights 

ranging from 600 to 3000 Da, which is ideal for mass spectrometric analysis. 

Finally, most tryptic peptides contain a basic amino acid, either lysine or arginine, 

at the C-terminus. It results in tryptic peptides that are readily protonated in 

electrospray ionization (ESI) or matrix-assisted laser desorption/ionization 

(MALDI) process (see section 1.2.2). Ionization efficiency of tryptic peptides is 

generally higher than peptides containing no lysine or arginine.   

 After digestion, the complex mixture of peptides can be further 

fractionated using various separation methods. Due to the compatibility of most 

mobile phase solvents and additives to electrospray ionization, reversed phase 

liquid chromatography (RPLC) is the most common and typically last dimension 

of separation that is coupled with a mass spectrometer.
15, 19

 In RPLC, the 

stationary phase surface contains a non-polar alkyl chain with a silane linkage to 

the stationary phase such as C18. Peptides can be retained on the stationary phase 

via hydrophobic forces. The elution of peptides is achieved by decreasing the 

polarity of solvent mixtures in the mobile phase (e.g., reducing the water content 

while increasing acetonitrile). Meanwhile, strong cation exchange (SCX) at low 

pH (i.e., pH < 3.0) is also commonly used for fractionation of tryptic peptides
19

, 

since the N-terminus amine or basic side chain of lysine or arginine ensures 

retention of most tryptic peptides. In SCX separation, the functional group of 
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stationary phase is anionic, such as the –SO3
-
 group.  At acidic conditions (i.e., pH 

< 3.0), most peptides in the solution will be positively charged and thus interact 

with the SCX stationary phase via ionic interaction. Peptide elution is performed 

by increasing the salt concentration in the mobile phase (e.g., increasing the 

concentration of KCl in the elution solution). 

In Chapter 2, RPLC on the peptide level was used to separate peptide 

mixtures before mass spectrometric analysis. In Chapter 3, an off-line SCX-RPLC 

configuration was adopted to simplify peptide mixtures. In Chapter 4, protein 

level RPLC fractionation was first applied to protein mixtures from human cells 

lysates. After digestion, RPLC-MS/MS was performed on the tryptic peptides. 

1.2.2  Ionization Methods 

 In order to perform mass spectrometric analysis on peptides or proteins, 

they must first be ionized. Since peptides or proteins are thermally unstable, a soft 

ionization technique is required. There are two major approaches for ionization of 

proteins and peptides, electrospray ionization (ESI) and matrix-assisted laser 

desorption/ionization (MALDI).  

Electrospray ionization
20

 begins when the LC eluent is sprayed through a 

conducting capillary under the influence of a high voltage, typically between 2 to 

5 kV. The schematic diagram of ESI process is described in Figure 1.1. Because 

of the high electric field at the capillary tip, cations concentrate at the capillary tip 

and anions migrate away from the tip. Thus, cations get enriched at the surface of 
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the liquid meniscus, forming a Taylor cone. Provided with a sufficiently high 

voltage, the tip of the cone becomes unstable and breaks into a fine jet, which 

contains numerous small charged droplets. The solvent of the charged droplets 

then evaporates, often aided by a heated source region and/or a flow of dry gas 

(e.g., N2). As the solvent evaporates, the excessive surface charges begin to repel 

the charged analytes on the droplet surface. Once the charge density exceeds the 

Rayleigh limit, the charged analytes reside on the surface of the droplet that then 

evaporate and escape into the atmosphere and become gas phase ions. 

Consequently, it stabilizes the charged droplet. As the solvent evaporates further, 

this process is repeated to produce more gas phase ions. This proposed 

mechanism is called ion evaporation model
21

.  

Alternatively, the charged residue model
22, 23

 predicts the formation of 

smaller fission droplets from the main droplet. Solvent evaporation of the main 

droplet leads to an increase in charge density. When the repulsive forces of the 

charges exceed the droplet surface tension, Coulomb fission happens, where the 

main droplet produces small charged progeny droplets. If there is an analyte 

molecule within this smaller droplet, continuing desolvation eventually leads to 

charge transfer to the analyte and formation of the gas phase ion.  

Depending on the type of analytes, it has been suggested that either model 

may be better at rationalizing the formation of gas phase ions. Since electrospray 

ionization is a competitive process, the chemical properties of the analyte (e.g., 

hydrophobicity and gas phase basicity) directly affect its chance of ionization. 
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The ion evaporation model well explains why having basic residue(s) in a peptide 

sequence is beneficial for mass spectrometric analysis. 

In MALDI
24

, the ionization of peptides/proteins has three steps. First, 

analytes are acidified to provide protonation. Second, a matrix is mixed with 

analytes at certain ratios (e.g., 1000 : 1). The commonly used matrices in MALDI 

are α-cyanohydroxycinnamic acid (CHCA) and 2, 5-dihydroxybenzoic acid 

(DHB). CHCA is a pale yellow solid that forms a uniformly flat sample spot, 

whereas DHB is white solid that forms small needle-like crystals on the target. 

Depending on the analytes, one matrix may give better signal response or cleaner 

spectra than the other. Since the ionization mechanism in MALDI has not been 

perfectly understood, the choice of matrix is generally determined empirically. 

Then upon shining of an UV laser beam at the sample spot, analyte molecules are 

lifted from the MALDI plate by matrix material into the gas phase and ionized. 

As an alternative ionization method for peptides and proteins, MALDI has some 

unique merits, such as higher tolerance to salt concentration and surfactants. 

However, the difficulty of interfacing with separation techniques (e.g., LC) makes 

it less popular than ESI in proteomic studies.   
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Figure 1.1 Schematic of the electrospray ionization process. 
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1.2.3  MS Instrumentation 

 After ionization, analyte ions are transported into a mass analyzer for MS 

and/or MS/MS analysis. There are a variety of mass analyzers available that can 

be used for proteomic studies, such as time-of-flight (TOF)
25

, Fourier-transform 

ion cyclotron resonance (FT-ICR)
26

 and Orbitrap
27

. The main instrument used for 

this thesis work was quadrupole time-of-flight mass spectrometer (Q-TOF), a 

hybrid mass spectrometer combined from quadrupole and TOF mass analyzers. Its 

instrumentation will be discussed in detail. 

The quadrupole
28

 mass analyzer is constructed from four parallel 

cylindrical metal rods (see Figure 1.2). Two diametrically opposed rods are paired 

up. A potential of (U + V cos (ωt)) is applied to one pair and a potential of - (U + 

V cos (ωt)) is applied to the other pair. The quadruple mass analyzer can play two 

different roles, an ion guide or mass filter, depending on the specific application 

of AC/DC on the rods. In the RF-only mode, the DC component is set to zero (U 

= 0) and ions of a large range of m/z values can be successfully transmitted 

through the quadrupole. In this mode, the quadrupole acts as an effective ion 

guide. When the DC component is not set to zero (U ≠ 0), by applying a specific 

DC and AC voltage, only ions of a certain m/z value have a stable trajectory. All 

the other ions are lost in the transition. In this mode, the quadruple acts as a 

narrow band mass filter. 
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Figure 1.2 Schematic diagram of a quadrupole mass analyzer. 



11 

 

 Because quadrupoles can be used as both ion guides and narrow band 

filters, they are commonly seen as a key component in hybrid mass spectrometers. 

Figure 1.3 displays the schematic of the Q-TOF premier systems from Waters. 

This system consists of an ESI source, a quadrupole unit, a collision cell and a 

TOF mass analyzer.  

 In the TOF mass analyzer, ions are pulsed in the direction of the flight 

path with minimum distance dispersion by an extraction voltage. The velocity of 

an ion (ν) can be defined as: 

   √
   

 
 

where V is the voltage, e is the charge of the ion, m is the mass of the ion. The 

velocity of an ion is inversely proportional to its m/z value. Therefore, lower m/z 

ions reach the detector earlier when traveling the same distance. The time an ion 

takes to reach the detector can be calculated by: 

   √
 

   
 

where L represents the length of the ion path. Thus, the measured arrival times of 

ions can be readily converted to m/z values, consequently constructing a mass 

spectrum.  

In a modern TOF mass spectrometer, a reflectron
25

 is used to compensate 

the initial spatial and kinetic energy dispersion of analyte ions to achieve better 
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resolution. The reflectron is usually placed at the end of the flight tube and 

consists of a series of grids and electrodes within which an electric field gradient 

is created. As ions with different kinetic energy enter the field, the ones with 

higher energy will penetrate deeper into the reflectron, increasing their flight path 

and observed flight time. As a result, ions with the same m/z value but slightly 

different initial kinetic energies will eventually arrive at the detector 

simultaneously. The net effect of the implementation of a reflectron is improved 

mass resolution (m/Δm = ~10,000). 

 The Q-TOF Premier system combines the merits from both the quadrupole 

and TOF mass analyzers, allowing automated accurate mass measurement of both 

precursor and fragment ions. Benefitting from the high ion transmission efficiency 

of ZSpray
TM

 source technology and real time mass calibration capability of 

NanoLockSpray
TM

 technology, the Q-TOF Premier system offers sensitive and 

accurate mass measurement. Mass accuracy of 30 ppm or less is routinely 

achieved. The Q-TOF premier system operates in three different modes: MS 

survey mode, MS/MS mode and data directed analysis (DDA) mode. In MS 

survey mode, the quadrupole unit works as an ion guide, allowing a wide range of 

ions to be transmitted. The m/z values and intensities of those ions are measured 

in the TOF analyzer to generate a mass spectrum. In MS/MS mode, resolving DC 

is applied on the quadrupole. The quadrupole unit operates as a narrow mass filter 

to isolate candidate ions for fragmentation. The selected ions are fragmented in 

the collision cell and all the fragment ions are transported to the TOF mass 

analyzer. An MS/MS spectrum is then recorded. In the DDA mode, the instrument 
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is set to automatically switch between MS and MS/MS modes depending on the 

ions detected during the MS survey mode.  

In this thesis work, the DDA mode was chosen for most of mass 

spectrometric analysis on peptides. It enables intelligent MS and MS/MS analyses 

to be performed automatically, maximizing the amount of real information 

acquired on components of interest. By using this mode, the mass spectrometric 

analysis can be targeted for analytes with specific charge state, m/z value etc., 

making the development precursor ion exclusion
29

 (PIE) and inclusion strategies 

possible (see Chapter 4). 
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Figure 1.3 Schematic of Waters Q-TOF premier system. 
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1.2.4  Tandem Mass Spectrometry 

 In the DDA mode of Waters Q-TOF premier system, a duty cycle during 

mass spectrometric analysis of peptides is initiated by the acquisition of an MS 

spectrum (MS survey scan). Signals are then quickly processed and the most 

intense peaks are selected for MS/MS fragmentation. Then the system is set to 

MS/MS mode to collect an MS/MS spectrum. The MS/MS spectral acquisition 

begins when precursor ions selected by the quadrupole enter the collision cell to 

be fragmented. The collision cell is a hexapole or octopole within a set of 

acceleration plates. In order to accelerate the ions through the cell, a slight voltage 

is applied across the plates. In the cell, collisions with a neutral, inert bath gas 

(e.g., nitrogen or argon) increases the internal energy within the ions, converting 

part of the kinetic energy into internal energy of the ions, thus resulting in bond 

fragmentation. This process is referred as collision-induced dissociation (CID). 

These resultant fragment ions are then measured by the TOF mass analyzer to 

record an MS/MS spectrum.  

In practice, CID can be performed with either high or low collision energy. 

Low energy CID (10-100 eV) is widely used in most mass spectrometric 

proteome analysis. During low energy CID, the fragment ions of a peptide 

precursor ion are mainly produced by the breakdown of the peptide backbone.
30

 

Along the peptide backbone there are several bonds that can be broken during 

fragmentation, rendering different types of fragment ions (see Figure 1.4). The 

most commonly observed fragment ions are b- (see Figure 1.5A) and y- ions (see 
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Figure 1.5B), which are formed from the cleavage of the C-N bond in the amide 

backbone with charge retention on the N- or C-terminus, respectively. 

Occasionally, a-ions (see Figure 1.5C) and immonium ions (see Figure 1.5D) are 

also observed in the low energy CID process. Neutral losses of water (-18.011 Da) 

can be observed for fragment ions containing threonine, serine, glutamic acid or 

aspartic acid. For fragment ions containing lysine, arginine, glutamine or 

asparagine, the neutral losses of ammonia (-17.027 Da) can sometimes be 

observed. 

This thesis work focused on the mass spectrometric analysis of tryptic 

peptides. They display a favorable fragmentation pattern in the CID process due 

to the present of a C-terminal basic amino acid residue (i.e., lysine or arginine). 

Dominant y- fragment ion series is commonly witnessed for most tryptic peptides, 

in comparison with the observation that non-tryptic peptides with random 

locations of basic amino acid residues give rise to a mixture of b- and y- 

fragments. By placing the basic residues at the C-terminus, peptides fragment in a 

favorable and more predictable manner throughout the entire sequence, which 

facilitates the elucidation of the sequence information.
31

 

With all the fragmentation rules available, one can start sequencing 

peptides or proteins based on the fragment ions recorded in the MS/MS spectra. 

This task can be done either manually or by software. In the next section, the 

interpretation of mass spectrometric data will be discussed in detail. 
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Figure 1.4 Product ion nomenclature. 

 

 

Figure 1.5 An example of (A) b ions, (B) y ions, (C) a ions and (D) immonium 

ions.   

H2N

R1

N
H

O R2

H
N

O R3

OH

OH+

a2
b2 c2

x1
y1 z1

N
H

O

H2N

R1

C

R2

O

N
H

O

H3N

R2

C

R3

OH

O

N

O

CH2N

R1

H

R2

H

C

HR1

NH2

(A) (B)

(C) (D)



18 

 

1.3  Data Interpretation 

 The two major mass spectrometric strategies of protein sequencing are (1) 

MS analysis of relatively short peptides obtained from the analyte proteins by 

enzymatic or chemical reactions (e.g., trypsin digestion or acid hydrolysis) and (2) 

sequencing by MS/MS analysis of selected precursor ions (peptides or proteins) 

and predictable fragmentation patterns associated with amino acid sequences. 

1.3.1  Peptide Mass Fingerprinting 

 A peptide mass fingerprint is the collective mass measurements of the 

peptides derived from a protein upon defined enzymatic or chemical cleavages 

(e.g., trypsin digestion). The concept of peptide mass fingerprinting (PMF) as a 

rapid and reliable approach for protein identification is based on the fact that the 

set of masses for peptides produced by residue specific enzymatic or chemical 

digestion is unique to any given protein.
32

 A typical workflow of PMF experiment 

is illustrated in Figure 1.6. In PMF, protein identification is accomplished by 

matching the observed peptide masses to the theoretical masses derived from the 

proteome database using a search engine. There are a variety of search engines 

available such as Mascot (http://www.matrix-science.com), MS-FIT 

(http://prospector.ucsf.edu/prospector/mshome.htm) and PeptideMapper 

(http://www.nwsr.manchester.ac.uk/mapper/). However, the presence of 

numerous proteins in a mixture can significantly complicate the identification 

process, rendering unreliable results. Therefore, in PMF, protein separation 

techniques (e.g., SDS-PAGE) are often required to simplify protein contents.
33, 34
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Figure 1.6  Peptide mass fingerprinting workflow. 
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1.3.2  Sequence Database Search 

 Unlike MS analysis, tandem mass spectrometric analysis of peptides can 

provide the information of molecular weights of peptides, as well as the amino 

acid arrangement within. It is all attributable to the predictable fragmentation 

pathways of peptides, which usually results in the production of characteristic 

amino- and carboxyl-terminus containing fragments (see Figure 1.4). Moreover, 

another advantage of the MS/MS analysis is that sequence information is often 

obtainable from highly complicated peptide mixtures because the individual 

precursor ions are isolated in the first stage of the tandem operation. Advanced 

instrumentation of modern mass spectrometers allows for acquisition of both MS 

and MS/MS data in the same analysis through data-directed switching (see section 

1.2.3). Thanks to these advantages, strategies based on MS/MS analysis, such as 

de novo sequencing
35

, sequence tag searching
36

 and sequence database 

searching
37-39

, have attracted much more attention. Of all those strategies, 

sequence database search is the method of choice for most proteomic studies due 

to its relatively fast speed and good accuracy. Sequence database search is used in 

this thesis work. 

In a typical sequence database search, m/z value of the precursor and its 

charge state are used to calculate the experimental mass of the peptide. Within a 

defined mass error tolerance, search engines find all possible peptide candidates 

with a similar peptide mass from a sequence database. Only those peptide 

candidates will be further compared with experimental data. Next, theoretical 
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fragmentation patterns are generated for each of these peptide candidates. By 

comparing the theoretical fragmentation pattern with the experimental MS/MS 

spectrum, peaks in the experimental spectrum can be annotated with different 

fragment ions. Each of the potential matches is then valued according to how well 

the theoretical fragmentation pattern accounts for peaks in the experimental 

MS/MS spectrum (see Figure 1.7).  

 

Figure 1.7 Peptide sequencing by annotating MS/MS spectra through database 

searching. 

Once the peptide sequences are identified, protein identifications can be 

inferred from peptide match information. Theoretically, a protein is considered 

identified when at least one of its associated peptides is found (assuming the same 

peptide sequence is not present elsewhere in the proteome). When complex 

protein mixtures are analyzed all together, the linkage between peptides and 



22 

 

proteins is lost, which makes the protein inference task challenging. Nonetheless, 

most search engines, such as Mascot and X!Tandem, are capable of intelligently 

grouping peptides to render protein identifications. Even though they differ in 

practice, all the algorithms aim at deriving the simplest list of proteins sufficient 

to explain the observed peptides (Occam’s razor).  

1.3.2.1 Mascot 

 Mascot
37

 (Matrix Science, London, UK) is a commercially available 

software that uses mass spectrometry data to identify proteins from primary 

sequence databases. In Mascot, a probability-based scoring scheme is adopted to 

evaluate how reliable peptide-spectrum matches (PSMs) are. It assumes that a 

match between the experimental data and each sequence entered in the database is 

a chance event. Therefore, the match with the lowest probability (p) of being a 

random occurrence is considered as the best fit. Then Mascot ion score is 

calculated as -10×log10(p). Moreover, in order to compensate the problem of 

multiple comparisons, Mascot identity threshold is implemented. In the definition 

of Mascot identity threshold, -10×log10(p/n), p is the defined error rate and n 

represents the number of candidate matches. The match with the Mascot ion score 

above the threshold is generally considered to be a significant peptide assignment. 

For example, if there are 500 candidate PSMs and one is comfortable with a 1 in 

20 chance of getting a false positive match (an error rate of 0.05), the Mascot 

identity threshold would be 40. A PSM with Mascot ion score above 40 will be 

considered a significant peptide assignment. Even though the detailed algorithm 
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of Mascot is not released, it is still considered one of most powerful search 

engines in the proteomic field.
40

  

1.3.2.2 X!Tandem 

X!Tandem
38

 is another popular search engine capable of matching MS/MS 

data with peptide sequences. Unlike Mascot, X!Tandem is an open source 

program. Instead of reporting a probability and identity threshold for each PSM, 

X!Tandem adopted the concept of reporting expectation values (E-values) of 

PSMs. In its algorithm, X!Tandem first measures the spectral similarity between 

the experimental spectrum and several candidate theoretical peptide fragmentation 

patterns, generates hyperscores (the sum of matched fragment ion intensities 

multiplied by the N factorial for the number of matched ions), plots a distribution 

of hyperscores for the spectral search and extrapolates an E-value to provide a 

statistical evaluation for each identification. E-value is defined as the number of 

random matches that would be expected to have the same or better scores. This 

X!Tandem scoring scheme is an empirical measure of whether the match is an 

outlier (see Figure 1.8). Mascot also implemented this idea in their later version of 

the software, called Mascot homology threshold. It is believed that this empirical 

scoring scheme might offer better sensitivity especially when searching a large 

space.
41

 However, due to the different ways of performing statistical analysis, 

expectation values (E-values) from X!Tandem are not directly comparable with 

the Mascot ion score. 
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Figure 1.8 Schematic representation of a stochastic score distribution. Any PSM 

with a score inside the body of the stochastic distribution is not seen 

as valid identification. A score higher than the right-hand boundary 

of the stochastic distribution may be assigned as potential valid, with 

an associated expectation value. Adapted from Fenyo and Beavis. 
38

 

1.3.2.3 Statistical Analysis 

Scores, either probabilities or expectation values, are always needed to 

evaluate the validity of peptide sequence matches in any search engine result. 

While it provides statistical assessment of individual PSM, it fails to compute 

error estimates for the collection of peptide identifications. During the past decade 

or so, the concept of global false-discovery rates (FDRs) has emerged, matured 

and been widely accepted in the field of proteomics.
42-44

 It is defined as the 

fraction of false positives in all the positive identifications. However, how to 

accurately estimate the global FDR for a search result remains to be a challenging 

problem. Numerous strategies, such as the target-decoy approach
45

, 

PeptideProphet
43

 and Percolator
46

, have been developed to solve this problem.  
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1.3.2.3.1  Target-Decoy Approach 

In 2007, Elias and Gygi
45

 developed a simple strategy called target-decoy 

approach to measure the error content in a search result. Its ease of use quickly 

gained popularity in the proteomics field. Figure 1.9 illustrates an workflow of the 

target-decoy approach. In the target-decoy approach, the target database is the 

normal proteome database, and the decoy database is a randomized version of the 

target database. Any PSM from the decoy search that passes the selected score 

threshold is deemed as a false positive. Based on the number of estimated false 

positives, the global FDR can be readily estimated using the equation in Figure 

1.9. Since the underlying assumption of this strategy is that the score distribution 

of incorrect matches to target sequences is identical to that of matches to decoy 

ones, the choice of a decoy database becomes critical to the accuracy of the FDR 

estimation. Several studies
45, 47-49

 have been done on this subject and the most 

common choice of a decoy database is the reversed version of the target database 

due to its unchanged amino acid composition and identical peptide length 

distribution. However, it is worth mentioning that target-decoy approach is not as 

universal as it seems. It imposes some restrictions on the MS/MS matching 

algorithms, such as whether the algorithm obtains target and decoy matches 

equally. Those related issues were well discussed in a recent report by Gupta et 

al.
47

 In Chapter 4 of this thesis work, we also attempted to examine the 

applicability of the target-decoy approach.   
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Figure 1.9  Exemplary workflow of using target-decoy approach to estimate FDRs of search results. In this example, the numbers of 

random and correct PSMs are 4 and 103, respectively. Therefore the estimated FDR is 3.9%. 
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1.3.2.3.2  PeptideProphet 

Before the emergence of the target-decoy strategy, Keller et al.
50

 had 

developed a sophisticated algorithm called PeptideProphet to re-evaluate match 

scores of search results and assign probabilities to PSMs. It takes advantage of the 

bimodal distribution formed by the discriminant scores of correct and incorrect 

PSMs in the histogram, uses an expectation-maximization algorithm to resolve the 

overlapped portion of the distribution and calculate probability of being correct 

for each PSM as well as the global FDR of the search result at a given threshold 

(see Figure 1.10). In the early version of PeptideProphet
50

, it classifies the correct 

and incorrect PSMs in an unsupervised fashion (i.e., without having either correct 

or incorrect PSMs as training sets). Later on, a semi-supervised version of 

PeptideProphet was developed with the advent of the target-decoy approach.
51

 It 

uses decoy PSMs as the negative training set to help locate the distribution of 

false PSMs in the target result and thus improve the accuracy of calculated 

probabilities. Furthermore, another improvement
52

 in the PeptideProphet 

algorithm was made to replace the fixed linear discriminant function with an 

adaptive one, allowing the algorithm to use more than one PSM for the 

identification of the best scoring peptide. It has been demonstrated multiple times 

that PeptideProphet (any version) can significantly improve the number of PSMs 

of the original search results (e.g., SEQUEST) while maintaining low global 

FDRs. By using PeptideProphet, not only can one estimate the global FDR of the 

search result, the probability of each individual PSM being correct is also 

assigned to measure its reliability. 
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Figure 1.10 Illustration of PeptideProphet strategy. The global FDR can be calculated according to the resolved bimodal distribution 

(FDR = B/A). The probability of a PSM being correct is defined as 1 – b/a. 
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1.3.2.3.3  Percolator 

Percolator
46

, on the other hand, adopts a different machine learning 

approach. It utilizes target-decoy search results by extracting a vector of features 

that are related to the quality of the match (e.g., mass error and PSM score) from 

both target and decoy PSMs. Next, by applying the target-decoy approach on the 

result, the global FDR is calculated and the target results are then filtered with a 

fixed FDR (e.g., 1%). This subset of the target results is deemed as the positive 

training set, while the entire decoy PSMs are treated as the negative training set. 

Those two data sets are then used for training a support vector machine (SVM), a 

classification algorithm that analyzes data and recognizes patterns. The learnt 

classifier is then applied to all the target/decoy PSMs, followed by a new round of 

FDR calculation, filtering and SVM training as before (Figure 1.11). After several 

iterations (e.g., 10), the system converges and generates a robust classifier capable 

of calculating both the probability of each PSM being random (posterior error 

probability, PEP value) and its associated q-value. Q-value can be understood as 

the minimum global FDR at which a PSM is accepted. It is basically an extension 

of global FDR to individual identifications. Studies have shown that the 

Percolator program can significantly improve the sensitivity of peptide and 

protein identification for original search engines (e.g., SEQUEST
46

 and Mascot
53

). 

It also showed superior performance than PeptideProphet in some cases.
46

 Matrix 

Science has officially adopted this strategy in its newer version of Mascot server. 

In Chapter 6, an attempt has been made to interface Percolator program with 

X!Tandem search engine to enhance the performance of X!Tandem. 
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Figure 1.11 Illustration of the Percolator workflow. Adapted from Brosch et al.
41
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With all the statistical evaluation strategies at hand, the proteomic field is 

still somewhat divided on the best way to provide statistical assessment for search 

results. Some prefer to compute the error estimates for the entire collection of 

PSMs (e.g., global FDR and q-value), while some prefer to measure the reliability 

of each individual PSM (e.g., Mascot ion score, X!Tandem E-value, 

PeptideProphet probability and Percolator PEP value). Arguments for either can 

surely be made. In this thesis work, statistical assessment on both individual and 

global levels is provided to ensure both the reliability of each PSM and low error 

content in the entire search result. 

1.3.3  Spectral Searching 

Sequence database searching strategy has provided the proteomics 

community a great service in terms of correlating MS/MS spectra with peptide 

sequences. Throughout the past decade or so, an enormous amount of PSMs have 

been collected. In order to make use of these data, a spectral searching strategy is 

introduced in the proteomics field. Unlike sequence database searching, where an 

experimental MS/MS spectrum is compared with a series of theoretical 

fragmentation patterns to find the best match, in spectral searching the 

comparison is restricted to pre-identified MS/MS spectra. It turns the peptide 

spectrum correlation problem into a spectral matching exercise. Due to the 

reduced search space and more accurate usage of fragment intensities in the 

spectrum, spectral searching strategy has been demonstrated with much faster 

speed and higher sensitivity.
54-57
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In fact, spectral searching is not a new concept in the mass spectrometry 

field. It was first implemented in the mass spectrometric analysis of small 

molecules.
58-60

 The widely used NIST/NIH/EPA mass spectral library developed 

by the National Institute of Standards and Technology (NIST), contains more than 

200,000 mass spectra of small organic molecules 

(http://www.nist.gov/srd/nist1a.cfm). The very first introduction of spectral 

searching strategy to proteomics community was in 1998, by Yates and 

colleagues.
61

 Since then, several algorithms have been developed (see Table 1.1) 

to measure the similarity between experimental spectra and library spectra. Even 

though they differ in details and score interpretation, most of those algorithms 

originate from spectral dot product equation, a widely used measurement of 

similarity between two vectors. However, no study has been carried out to 

demonstrate which algorithm has the highest sensitivity. It is ascribed to the fact 

that (1) most of them use custom-made spectral libraries and (2) no standardized 

statistical evaluation method has been developed for this strategy yet. Since 

spectral searching strategy is an emerging and promising approach, it is expected 

that more studies on these subjects will be done in the near future. 
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Table 1.1 The list of spectral searching programs. 

Search Engine Website 

X!Hunter Web server: http://xhunter.thegpm.org/ 

Program: ftp://ftp.thegpm.org/projects/xhunter/binaries 

Library: ftp://ftp.thegpm.org/projects/xhunter/libs 

Bibliospec Program: http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/bibliospec.php 

Library: http://proteome.gs.washington.edu/software/bibliospec/documentation/  

SpectraST Program: http://sourceforge.net/projects/sashimi/files/ 

Library : http://www.peptideatlas/speclib/ 

Web server: http://www.peptideatlas.org/spectrast/ 

NISTMS Search  http://peptide.nist.gov/ 

SpecMatching Upon request 
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1.4  Spectral Library Construction 

Besides a robust searching algorithm, the success of a spectral search also 

relies heavily on MS/MS libraries. In practice, the typical process of constructing 

a spectral library from experimental MS/MS raw spectra consists of five stages 

(see Figure 1.12). First, the spectra are correlated with peptide sequences by 

sequence search engines (e.g., Mascot). Second, validation (e.g., statistical 

validation) is performed to filter out unreliable identifications, thus ensuring the 

quality of spectral library in later stages. Third, the original MS/MS spectra and 

their corresponding identification information are linked together. By doing so, 

additional information such as the annotation of peaks in the spectra and 

experimental condition under which spectra were collected is meticulously 

preserved. Fourth, spectral processing procedures such as noise reduction and 

replicate spectra consolidation are needed to construct library spectra, since the 

sensitivity and speed of spectral search engines is closely related to the richness of 

spectral information (e.g., number of peaks in the library spectra) and redundancy 

of the spectral library. While some prefer to generate one “consensus” spectrum 

for each sequence from merging multiple replicate identifications
56

, some choose 

the best replicate spectral identification as the representative.
55

 The fifth and final 

step is compilation of all the processed spectral identifications into a usable 

library that meets the format requirement of the spectral search engines. All the 

related topics have been recently reviewed by Lam.
62
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Figure 1.12 The typical procedure of spectral library building, including (1) the 

collection of MS/MS spectra, (2) correlation of raw spectra with 

peptide sequences, (3) validation of identifications, (4) spectral 

processing and (5) compilation of reliable MS/MS libraries. 

 

1.5  Experimental Validation 

As mentioned in the previous section, a reliable spectral library is the 

foundation of spectral searching strategy. During the process of spectral library 

construction, validation is always needed to ensure that only confident 

identifications are compiled into the library. Nowadays, most validation methods 

used in this process are based on a specific statistical model, such as sequence 

search engine scores and PeptideProphet probability (see section 1.3.2.3). Because 
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using sequence database searching strategy to elucidate peptide sequences is far 

from perfect, some researchers sought to use stable isotope labeling to facilitate 

and validate the spectral interpretation.
63

 

Stable isotope labeling strategy introduces defined mass changes on 

labeled peptides or proteins that can be distinguished by a mass spectrometer. It is 

widely applied in quantitative proteomics. Three typical labeling strategies are 

illustrated in Figure 1.13, (1) chemical labeling by isotopically encoded reagents, 

which are usually a pair of reagents in light and heavy isotope form; (2) 

incorporation of 
18

O isotope via peptide bond hydrolysis in 
18

O enriched water; 

and (3) metabolic labeling. In the first strategy, labeling could be performed on 

either protein or peptide level, which results in chemical modification of 

functional groups on the amino acid residues. The 
18

O enzymatic labeling 

incorporates 
18

O isotope in the peptide sequence at the same time as the digestion, 

resulting in almost no chemical property change for the peptides. In the metabolic 

labeling strategy, proteins are metabolically labeled via cell culture in isotope 

enriched medium (e.g., 
13

C-enriched glucose). Because the peptide incorporated 

with heavy isotope(s) will have higher mass but nearly identical chemical 

behavior as the same sequence incorporated with light isotope(s), by comparing 

their intensity in the mass spectrometric analysis, relative quantitation can be 

achieved. During the past decade or so, numerous labeling methods have been 

developed and applied to various biological systems. A recent review has 

summarized and discussed the strength and weakness of all different kinds of 

stable isotope labeling methods for quantitative proteomic studies.
64
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Figure 1.13 Three stable isotope labeling strategies in comparative proteomics. 
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Several authors have recognized that stable isotope labeling could be also 

used to facilitate and validate the interpretation of MS/MS spectra for peptide 

identification.
63, 65-68

 The concept is fairly straightforward. When overlaying the 

MS/MS spectra of the same peptide sequence labeled with heavy and light 

isotope(s), true peptide fragment ions will show up as doublet peaks while 

background peaks or true peptide fragment ions not containing the isotopic group 

will remain singlet (see Figure 1.14). In both de novo sequencing
63, 69, 70

 and 

sequence database searching
65, 68

 studies, stable isotope labeling has been proven 

very effective in elucidation and validation of peptide sequence assignments. 

Specifically, metabolic and 
18

O-enzymatic labeling methods are often the method 

of choice. In both strategies, all the functional groups of amino acid residues in a 

peptide sequence remain unmodified after the labeling, which presents an 

opportunity to understand the fragmentation pathways of various peptides. 

 

Figure 1.14 Overlaid MS/MS spectrum of the same peptide sequence labeled 

heavy and light isotope(s). True peptide fragment ions show up as 

doublet peaks (red and green). Background peaks are shown as grey. 

Gu and co-workers
71

 introduced a metabolic labeling method by 

incorporating lysine-d4 (4 deuterium atoms) into proteins during cell culture. The 

lysine-d4 labeled protein then was digested by endoproteinase Lys-C, resulting in 
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all the peptides having a C-terminal lysine except for the ones from the original 

C-termini of proteins. By comparing the MS/MS spectra of the unlabeled and 

labeled peptide of the same sequence, in which the C-terminal fragment ions 

showed as doublets with 4.025-Da mass difference, the C-terminal fragment 

assignment was unambiguously validated. Hence it gave rise to highly confident 

peptide spectral identifications. 

Similarly, Zhong et al.
68

 used a 
15

N-metabolic labeling method to 

demonstrate that by simply overlaying the unlabeled and 
15

N-labeled MS/MS 

spectra of the same peptide sequence, experimental evidence can be provided to 

validate protein identification results generated by the sequence database search 

method. A unique aspect of 
15

N-labeling is that the fragment ions composed of 

different amino acid sequences have non-uniform mass shifts from their 

corresponding unlabeled fragment ions, facilitating the identification of correct 

assignment from other false matches. 

However, the metabolic labeling method has its drawbacks as well. It 

tends to be relatively costly as lengthy growth periods are required to ensure 

thorough isotope incorporation. Another major limitation of metabolic labeling 

methods is that samples need to be cultured on a specific isotope enriched 

medium. Therefore, not all biological systems are eligible for metabolic labeling. 

Samples such as human blood and plasma, or samples arising from other naturally 

occurring sources cannot be metabolically labeled. As a complementary approach 

to metabolic labeling, 
18

O-labeling is less expensive and applicable to almost all 
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biological systems.
72

 Therefore, it is also frequently applied to validate peptide-

sequence assignments.  

Various protocols
73-75

 have been developed to optimize the conditions for 

incorporating 
18

O and minimize H2
18

O consumption. Meanwhile, to minimize the 

back exchange of 
18

O to 
16

O after labeling, researchers have proposed numerous 

strategies, such as using prohibitors
76

 or heat
77

 to reduce the enzyme activity and 

using immobilized trypsin
76

 instead of solution based trypsin. 

In trypsin-mediated 
18

O-exchange, two 
18

O atoms are substituted for the 

two C-terminal 
16

O atoms for all the tryptic peptides containing C-terminal lysine 

or arginine. Comparison of the fragmentation patterns of 
18

O-labeled and 

unlabeled peptides of the same sequence (4.0085-Da mass difference) 

distinguishes b- and y- ions. The C-terminal fragments (y ions) appear as doublet 

peaks in the MS/MS spectrum, but the N-terminal fragments (b ions) display as 

singlet peaks. Because of the fragmentation preference of tryptic peptides, 

relatively higher basicity of lysine and arginine at the C-terminus of tryptic 

peptides gives rise to a dominant y- ion series in the MS/MS spectrum.  

This strategy has been productively applied to de novo sequencing
78-80

, 

successfully elucidating the sequence information and unambiguously annotating 

fragment ions in MS/MS spectra. In sequence database search, 
18

O-labeling has 

also been employed to validate peptide-spectrum assignments and even remove 

noise in MS/MS spectra.
81, 82

 In 2009, Volchenboum et al.
65

 created data sets by 

performing LC-MS/MS analysis on a mixture with 
18

O-labeled and unlabeled 
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peptides in equal amounts and subsequently developed a set of software tools to 

provide rapid and automatic validation of peptide assignments by Mascot. It 

successfully demonstrated that by employing the 
18

O-labeling strategy, many true 

identifications deemed as insignificant by Mascot can be re-captured, improving 

the sensitivity and specificity of the sequence database searching strategy. 

Compared to statistical validation, where probability of being correct or 

random is assigned to peptide-spectrum matches, experimental validation offers 

concrete evidence and definitive conclusions. However, extra steps in the sample 

preparation procedure make the experimental validation strategy more expensive, 

more time-consuming, less robust and consequently less popular. Nonetheless, its 

high accuracy of detecting true identifications can be still quite useful for 

constructing reliable MS/MS libraries and evaluating the performance of search 

engines. In this thesis work, both statistical evaluation and experimental 

validation were employed. 

 

1.6  Scope of the Thesis 

The main objective of this work was to develop a sensitive spectral 

searching strategy for shotgun proteomic studies. In Chapter 2, a mass 

spectrometric method was developed for the analysis of proteome from thousands 

of cancer cells. In Chapter 3, using E. coli K12 cell lysates as the model system 

and 
15

N-metabolic labeling as the experimental validation strategy, peptide-
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spectrum matches by Mascot were validated and further used to construct a 

reliable MS/MS spectral library for spectral searching strategy. A spectral 

searching algorithm was also developed to utilize the highly confident spectral 

library. In Chapter 4, in combination with the 
18

O-labeling method, an inclusion 

strategy was developed to experimentally validate the peptide matches from 

human cell lysates by sequence search engines. Using those experimentally 

validated matches, the performance of commonly used statistical tools was 

evaluated. In Chapter 5, by examining the validated matches from Chapter 4, 

strategies were proposed to detect single-hit proteins (proteins identified by only 

one peptide sequence) with high confidence. In Chapter 6, by using the 

experimentally validated data set from chapter 3, X!Tandem, an open source 

sequence search engine, was successfully coupled with Percolator,  one of the 

most powerful statistical validation tools, to provide sensitive and accurate 

peptide identifications. Finally, conclusions and future work involving 

construction of spectral libraries and application of spectral searching strategy are 

described in Chapter 7. 
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Chapter 2  

Development of a Shotgun Method Based on Liquid 

Chromatography Quadrupole Time-of-flight Mass Spectrometry 

for Proteome Analysis of 500 to 5000 Cancer Cells*
 

 

2.1  Introduction 

Current mass spectrometric technology can identify thousands of proteins 

from a proteome sample and has become a powerful and popular tool for mapping 

the entire proteome. This large scale proteome profiling work is generally carried 

out using hundreds of micrograms or milligrams of starting materials. To produce 

this quantity of sample, millions or even billions of cells are used. For cultured 

cells, the enormous demand of cells is usually not a major issue. However, in 

many other studies, the number of cells available for proteome analysis can be 

quite limited. For example, in a tissue sample containing both normal and 

transformed (e.g., cancer) cells, the number of cancerous cells may be very 

limited.
1
  This is particularly true for tissue samples from patients at an early stage 

of cancer development.
2, 3

 Another example is the characterization of the 

proteome from a small number of circulating cancerous cells in a blood sample of 

a patient with early sign of a tumor in a specific organ.
4
 

                                                 
* A version of this chapter has been published as Nan Wang, Mingguo Xu, Peng Wang and Liang 

Li, 2010, "Development of Mass Spectrometry-Based Shotgun Method for Proteome Analysis of 

500 to 5000 Cancer Cells", Anal. Chem. 82, 2262-2271. My contribution included sample 

preparation, method development and data analysis. 
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Our research goal is to develop new techniques that can generate as large a 

proteome coverage as possible from a small number of cells. Our initial target is 

to analyze the proteome of about 1000 cells. Adequate coverage of the proteome 

from this number of cells may lead to several important applications. For example, 

1000 cells may be collected from a patient blood containing rare circulating 

cancerous cells from an early stage of metastasis of a solid tumor.
5-9

 Analyzing 

the proteome of these cells may be used as a fingerprint for diagnosis or prognosis 

of a cancer. Another example is that about 1000 cells may be procured from a 

tissue section using laser capture microdissection (LCM) within a couple of hours. 

Analyzing these cells may assist in identifying specific protein markers for 

disease diagnosis. The ultimate goal of this research is to analyze the single cell 

proteome.
10

 Unfortunately, this is a huge challenge at this moment for mass 

spectrometry based technologies due to limited sensitivity. Developing and 

applying techniques for analyzing the proteome of thousands of cells is a more 

realistic goal. However, very few studies of proteome analysis from a few 

thousands of cells have been reported.
11-15

 

In this chapter, a shotgun proteome analysis method is described for 

analyzing proteomes of MCF-7 cells ranging from 500 to 5000 cells. MCF-7 cells, 

derived from breast cancer, are representative of many different types of 

cancerous cells in terms of size and proteome complexity. Thus, the method 

developed from analyzing MCF-7 cells should be applicable to other cancerous 

cells. The performance of this method in terms of the numbers of peptides and 

proteins identifiable from small numbers of cells is reported. This method is then 
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applied to a model system where a small number of MCF-7 cells are added to 

human blood to mimic a patient blood sample containing cancerous cells. These 

cells are captured by the combination of antibody attachment to the cells and flow 

cytometry for cell sorting. The captured cells are analyzed by the shotgun 

proteomic method. 

 

2.2 Experimental 

2.2.1 Chemicals and Reagents 

Dithiolthreitol (DTT), iodoacetamide (IAA), trifluoroacetic acid (TFA), 

sodium bicarbonate were purchased from Sigma-Aldrich Canada (Markham, ON, 

Canada). Sequencing grade modified trypsin, HPLC grade formic acid, LC-MS 

grade water, acetone, and acetonitrile (ACN) were purchased from Fisher 

Scientific Canada (Edmonton, Canada). The BCA assay kit was obtained from 

Pierce (Rockford, IL). 

2.2.2 Cell Preparation 

Figure 2.1 shows the overall workflow for the shotgun method used to 

analyze a small number of cells. The MCF-7 breast cancer cells (ATCC
®

 number: 

HTB-22
TM

) were cultured in 15 cm diameter plates at 37 ºC in DMEM Gibco 

medium supplemented with 10% fetal bovine serum. The plates were then washed 

twice with ice-cold 25 mL PBS
++ 

buffer (0.68 mM CaCl2, 0.5 mM MgCl2, 1.4 

mM KH2PO4, 4.3 mM Na2HPO4, 2.7 mM KCl, and 137 mM NaCl). The cells 
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were harvested by scraping from the plates into the PBS
++

 buffer and 

centrifugation at 100 g for 8 min at 4 ºC. The cell numbers were first roughly 

counted by an Axiovert 25 hemocytometer (Carl Zeiss, Inc. Minneapolis, MN). 

The fresh whole blood provided by a healthy donor was first diluted in 

PBS  buffer (1.4 mM NaCl, 0.27 mM KCl, 1 mM Na2HPO4, 0.18 mM KH2PO4, 

pH 7.4) in a 1:10 ratio (v:v). The MCF-7 human breast cancer cells (2 million) 

were then spiked into the diluted blood solution. Density separation was then 

conducted to remove red blood cells by using Ficoll-Hypaque (GE Healthcare) 

(See Figure 2.2). In brief, 10 mL diluted blood sample containing MCF-7 cells 

blood was slowly added into 4 mL Ficoll solution. The solution was spun down at 

2000 rpm, 4 ºC for 20 min. Considering the density of MCF-7 cells, the cancer 

cells preferentially aggregated with peripheral blood leukocytes (PBL) at the layer 

called buffy coat after centrifugation. The buffy coat was isolated, washed and re-

suspended in PBS buffer. Afterwards, the cell mixture, was incubated with a 

FITC–conjugated mouse anti–human HEA antibody (Miltenyi Biotec number: 

130-080-301) in a 1:100 (v:v) ratio on ice for 15 min. Therefore, most MCF-7 

cells were fluorescently stained, while PBL were not.  

Both the unstained MCF-7 cells and the stained cell mixtures were 

introduced into the flow cytometer (Beckman Coulter EPICS Altra) for counting, 

according to the cell size and their fluorescence response. Then 500, 1000, 2500 

or 5000 MCF-7 cells were collected into 0.6 mL low retention micro-centrifuge 

vials (Fisher Scientific).  
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2.2.3 Protein Extraction and Digestion 

The cells in each vial were mixed with 5 to 10 µL Nonidet-P40 (NP40) 

lysis buffer (1%) and sonicated in ice-water ultrasonic bath for 5 min. The protein 

solutions were then reduced with 20 mM (0.4 to 0.75 µL) dithiothreitol (DTT) 

and alkylated with the same volume of 40 mM iodoacetamide. Acetone 

(precooled to -80 
o
C) was added gradually (with intermittent vortexing) to the 

protein extract to a final concentration of 80% (v/v). The solution was then 

incubated at -20 ºC for 60 min and centrifuged at 14 000 rpm for 10 min. The 

supernatant was decanted. The pellet was carefully washed once using cold 

acetone to ensure the efficient removal of NP40 detergent (See Figure 2.1). The 

residual acetone was evaporated at ambient temperature. Then 50 mM ammonium 

bicarbonate was used to sufficiently re-dissolve the pellet in the vial. Trypsin 

digestion was then carried out in a final enzyme concentration of 8 ng/µl (5 to 20 

uL) at 37 
o
C for 4 hours. 

2.2.4 Peptide Desalting and Quantification by RPLC 

The desalting and quantification setup consisted of an Agilent 1100 HPLC 

system (Palo Alto, CA) with a UV detector. The desalting of tryptic peptides was 

performed on a 4.6 mm × 50 mm Polaris C18 A column with 3 µm particle and 

300 Å pore (Varian, CA). After loading all the digests of each sample, the column 

was flushed at 1 mL / min with 97.5% mobile phase A (0.1% TFA in water) for 3 

min and then 85% of mobile phase B (0.1% TFA in acetonitrile) for 5 min to 

ensure the complete elution of the peptide fractions from the column. 
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Figure 2.1 Workflow for both method development and application. 

 

Figure 2.2 Workflow for the enrichment of MCF-7 cells in a blood sample. 
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2.2.5 LC-ESI QTOF MS and MS/MS Analysis 

The desalted digests were analyzed using a QTOF Premier mass 

spectrometer (Waters, Manchester, U.K.) equipped with a nanoACQUITY Ultra 

Performance LC system (Waters, Milford, MA). In brief, the desalted and 

quantified digests were concentrated using a SpeedVac (Thermo Savant, Milford, 

MA) to ~1 µl and reconstituted to a specific concentration using 0.1% formic 

acid. Then the intended amount of digest solution was injected onto a 75 µm × 

100 mm Atlantis dC18 column (Waters, Milford, MA). For the digests from 500 

and 1000 cells, multiple injections were applied for each sample to make sure the 

maximum amount of peptides was loaded. Solvent A consisted of 0.1% formic 

acid in water, and Solvent B consisted of 0.1% formic acid in ACN. Peptides were 

separated using an optimal gradient elution ranging from 90 min to 270 min in 

length and electrosprayed into the mass spectrometer fitted with a nanoLockSpray 

source at a flow rate of 300 nL/min. A survey MS scan was acquired from m/z 

350-1600 for 0.8 s, followed by 4 data-dependent MS/MS scans from m/z 50-

1900 for 0.8 s each. A mixture of leucine enkephalin and (Glu1)-fibrinopeptide B, 

used as mass calibrants (i.e., lock-mass), was infused at a flow rate of 300 nL/min, 

and a 1 s MS scan was acquired every 1 min throughout the run.  

2.2.6 Protein Database Search 

Raw LC-ESI data were lock-mass corrected, deconvoluted, and converted 

to peak list files by using ProteinLynx Global Server 2.2.5 (Waters). Peptide 

sequences were identified via automated database searching of peak list files 
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using the Mascot search program (version 1.8). Database searching was restricted 

to Homo sapiens (human) in the SWISSPROT database (October 4, 2007) and 

17317 entries were searched. The following search parameters were selected for 

all database searching: enzyme, trypsin; missed cleavages, 1; peptide tolerance, 30 

ppm; MS/MS tolerance, 0.2 Da; peptide charge, (1+, 2+, and 3+); fixed 

modification, Carbamidomethyl (C); variable modifications, acetyl (Protein), 

oxidation (M), pyro-Glu (N-term Q) and pyro-Glu (N-term E). The search results, 

including protein names, access IDs, molecular mass, unique peptide sequences, 

ion score, Mascot threshold score for identity, calculated molecular mass of the 

peptide, and the difference between the experimental and calculated masses were 

extracted to Excel files using an in-house program. All the identified peptides 

with scores lower than the Mascot threshold score for identity at a confidence 

level of 95% were then removed from the protein list. The redundant peptides for 

different protein identities were deleted, and the redundant proteins identified 

under the same gene name but different access ID numbers were also removed 

from the list.  

Because of the small data set generated from the proteome analysis of a 

few cells, accurate analysis of the false discovery rate (FDR) is difficult. The 

commonly used target-decoy search strategy is best suited for analyzing a large 

data set.
16-18

 To ensure data quality, many of the matched MS/MS spectra with 

peptide sequences were manually validated. Specifically, peptide matches with a 

matching score less than 10 points above the Mascot identity threshold were 

manually analyzed. The peptide match was considered as positive identification if 
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the fragment ions contained more than five isotopically resolved y-, b-, or a-ions 

and the major fragment ion peaks with high intensity (i.e., peak intensity of >30% 

in a normalized spectrum). Most of the high intensity fragment ions (i.e., top 5) 

must also belong to y-, b-, or a-ions, not internal fragment ions. Peptide matches 

which failed to meet these criteria were removed from the protein lists. Typically, 

this manual validation process eliminated about 3% of the low score matches. A 

protein was considered to be identified even if a single peptide match was found.  

 

2.3  Results and Discussion 

Shotgun proteome analysis is a relatively sensitive technique, compared to 

other methods such as gel-based proteome analysis.
19

 For example, about 1 µg of 

a cell extract digest injected to LC-ESI MS/MS can result in the identification of 

about 300 to 800 proteins, depending on the complexity of the sample. In the 

shotgun method, the sample workup process includes cell lysis, protein extraction, 

protein digestion and injection of peptides into the LC-MS/MS system for 

analysis. Any one of the steps can potentially involve the loss of some proteins. In 

working with a large quantity of samples, this sample loss may not be very 

significant so long as the sample loss is not biased towards a particular group of 

proteins. If a bias (i.e., selective sample loss) does occur, that group of proteins 

will be under-represented in the final results. If the sample loss is un-biased, as 

long as there are sufficient amounts of peptides for LC-MS/MS analysis (e.g., 1 

µg per injection), the same proteome coverage would be expected. However, in 



 

58 

 

handling small numbers of cells, sample loss of any type can be detrimental to the 

proteome coverage. The reason is that the amount of sample generated from a 

small number of cells will be limited and it will often not meet the optimal sample 

amount required for peptide sequencing in LC-MS/MS (e.g., < 1 µg). In a recent 

report, Wang et al. have shown that the amount of sample injection is very 

important in determining the outcome of peptide and protein identification.
16

  

Injection of a smaller amount of sample results in a lower number of peptides and 

proteins identified. For the nano-LC QTOF MS platform used in this work, the 

optimal amount of peptides for injection is about 1 µg and exceeding this amount 

does not result in a significant increase in peptide and protein numbers.  

With the above considerations in mind, a sample analysis protocol was 

developed as shown in Figure 2.1. In our work, instead of taking an aliquot from a 

stock solution containing a large number of cells to make a sample of a small 

number of cells, the cultured MCF-7 cells were sorted into tubes containing 

different numbers of cells using a flow cytometer. In searching for a suitable 

sample preparation protocol to handle small numbers of cells, a LC-UV technique 

was used to measure the amount of peptides produced by individual protocols 

tested and to compare the peptide amounts to determine which protocol yielded 

the highest peptide amount. Three surfactant-based methods using sodium 

dodecyl sulfate (SDS), acid labile surfactant (ALS) from Waters or a cell lysis 

solution containing NP-40 detergent as well as two special reagents using Tris 

buffer or trifluoroethanol (TFE) were examined for their performance in cell lysis 

and downstream sample workup. The surfactant-based methods are widely used 
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for efficient cell lysis in the proteome analysis work involving large numbers of 

cells.
20, 21

 In the case of SDS, after cell lysis and trypsin digestion, SDS had to be 

removed by a strong cation exchange column to reduce its interference with LC-

ESI MS. For ALS, the tryptic digest was acidified to degrade ALS and the 

hydrophobic products were carefully removed, prior to MS analysis. The use of 

Tris buffer or NP-40 cell lysis solution was straightforward by mixing the solution 

with the sample with intermittent sonication, followed by trypsin digestion. TFE 

was used according to the reported protocol. Among the five protocols tested, 

using NP-40 lysis solution, the average amount (n=3) of peptides from the 5000-

cell sample was found to be the highest (1.40 ± 0.12 µg). However, one major 

problem initially encountered in using this polyethylene glycol based detergent 

for cell lysis was that, after acetone precipitation of proteins from the lysate, the 

pellet still contained a small amount of NP-40, causing severe interference in LC-

ESI MS analysis of the cell lysate protein digest. To eliminate this interference, 

the pellet was carefully washed with cold acetone. This simple step was found to 

be very effective in reducing the NP-40 content to a level that did not cause 

interference in LC-ESI MS. As Figure 2.1 shows, the cold-acetone washed pellet 

was dissolved in NH4HCO3, followed by trypsin digestion. The tryptic digest was 

desalted, quantified and then injected into the LC-ESI QTOF instrument for 

MS/MS sequencing of the peptides. 

The amount of peptides produced from a cell lysate was determined using 

the LC-UV system as described in the reference.
16

 The average amount (n=3) of 

peptides from the 5000-cell sample was found to be 1.40 ± 0.12 µg. And the 
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average amount of the 2500-cell sample was 0.83 ± 0.12 µg, which is not exactly 

half of the amount of peptides produced from the 5000-cell sample. But, within 

the experimental errors, the amount of peptides produced appears to 

proportionally decrease as the cell number decreases. If this proportionality held 

true for the 1000- or 500-cell sample, then the amount of peptides produced 

would be less than 0.28 µg for the 1000-cell sample and 0.14 µg for the 500-cell 

sample. The lower limit of the UV-LC system used to measure the peptide 

concentration is about 0.25 µg. An attempt was made to measure the peptide 

amounts for the 1000- and 500-cell samples and the results were not reliable as 

they generated UV signals with intensities similar to that of the blank. The failure 

to quantify the 1000-cell sample suggests that the amount of peptides produced 

from this sample must be less than 0.25 µg. Thus, sample loss may be more 

severe for these two samples, compared to the 2500- or 5000-cell sample. This is 

understandable as the same protocol was applied to these samples and the same 

amount loss (e.g., via adsorption to the container walls) would result in a greater 

percentage of sample loss for the 1000- or 500-cell samples. For future work, a 

simple and accurate quantification method to determine nano-grams of peptides or 

proteins in each step of the workflow shown in Figure 2.1 should facilitate the 

optimization process. One approach is to modify the current LC-UV system using 

a capillary column, instead of a 1 mm column, to shift the linear calibration curve 

to the nano-gram region. 

Besides sample preparation, optimization of the LC-ESI MS runs is also 

critical in analyzing samples of a few cells. In our work, a trap column was used 
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to facilitate the peptide loading to the nano-LC QTOF MS instrument. For sample 

injection, the minimum volume of residual sample required to be present in the 

sample vial is about 1 μL. In our experiment, after drying the desalted samples, 

each sample was redissolved to make 11 L of solution by adding 0.1% formic acid 

from which two injections with each 5 L were carried out. These two injections 

with 1 µL of sample remaining in the sample vial should, in theory, load about 91% 

of the sample to the column. 

After sample injection, peptides are separated by a solvent gradient 

optimized for chromatographic resolution. However, the gradient slope can 

significantly affect the detectability of peptides in LC-MS/MS. If a fast gradient is 

used, a peptide elutes quickly to form a fast rising peak in an ion chromatogram, 

resulting in intense signals in both MS and MS/MS spectra. But, in this case, only 

a few MS and MS/MS spectra can be acquired within the peak elution time. If a 

slow gradient is used, the same peptide would elute out more slowly to form a 

broader peak and the mass spectral signal of the peptide would be less intense. If a 

sufficient amount of sample is injected, the peptide signal intensity may be 

adequate to generate a database-searchable MS/MS spectrum. One major 

advantage of using a slow gradient for peptide elution is that a greater number of 

MS and MS/MS spectra can be acquired over this broad peak. For the analysis of 

a complex peptide sample, co-elution of different peptides cannot be avoided and 

one always tries to sequence as many co-eluting peptides as possible; a slow 

gradient provides this opportunity. However, if the amount of sample injected is 

small, the peptide signal may not be sufficiently intense to produce a database-
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searchable MS/MS spectrum. Thus, the gradient slope needs to be optimized 

according to the sample amount injected to the LC-MS/MS instrument.  

It was investigated how the gradient slope affects the number of peptides 

identified by LC-ESI MS/MS. It was found that the optimum gradient time 

increased as the number of cells in a sample increased. In addition, within a group 

of samples (e.g., the 500-cell samples), there was an optimal gradient time for 

detecting peptides. A gradient that was too long resulted in the identification of 

fewer peptides. Thus, the gradient time was adjusted according to the number of 

cells used for proteome analysis. Specifically, for the 500-cell samples, a 90-min 

gradient was used. The gradient time was increased to 150 min for the 1000-cell 

samples. The gradient time was 180 and 270 min for the 2500-cell and 5000-cell 

samples, respectively. Figure 2.3 shows the representative ion chromatograms 

generated from the trypsin digests of whole cell lysates of 500, 1000, 2500, and 

5000 cells.   
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Figure 2.3 Base peak chromatograms from nano-LC QTOF MS/MS analysis of 

the trypsin digests from cell lysates of different numbers of cells. 
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Table 2.1 summarizes the peptide and protein identification results from 

the 500-, 1000-, 2500- and 5000-cell samples. In each group, three replicate 

experiments were carried out. The numbers of peptides and proteins identified 

from these samples are plotted in Figure 2.4. As Table 2.1 and Figure 2.4 show, 

both the numbers of peptides and proteins increase as the cell number increases 

and the number change is not in linear proportion to cell numbers. An average of 

1891 ± 266 peptides or 619 ± 59 proteins (n=3) were identified from the 5000-cell 

sample. These numbers were compared favorably to 305, 211, 290, and 179 

peptides or 113, 85, 133, and 83 proteins identified in four replicate runs of 5000-

cell samples as reported by others.
22

 The significant difference can be attributed to 

several factors including differences in sample handling, LC-ESI MS 

instrumentation and MS running conditions. In the case of 500-cell samples, 381 

± 11 peptides or 167 ± 21 proteins were identified using our method. Although the 

cell number decreases by 10-fold, compared to the 5000-cell sample, the number 

of peptides and proteins identified decreases by only about 5.0- and 3.7-fold, 

respectively. However, the peptide/protein ratio decreases from 3.05 for the 5000-

cell sample to 2.14 for the 500-cell sample. These results indicate that an average 

of 167 proteins from 500 cells, 237 proteins from 1000 cells, 491 proteins from 

2500 cells, and 619 proteins from 5000 cells can be identified. In all cases, the 

run-to-run reproducibility was good, indicating that the experimental protocol 

used in this study can be used to generate reproducible results from as few as 500 

cells. 
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Table 2.1 Unique Proteins and Peptides Identified from Samples Containing 

Different Numbers of Cells. 

Number of cells Unique peptides Unique proteins 

500 

369 168 

386 187 

389 145 

1000 

574 271 

485 226 

481 215 

2500 

1036 422 

1531 546 

1358 504 

5000 

1630 552 

2161 665 

1883 640 

 

 

Figure 2.4 Protein and peptide identification results under optimized sample 

preparation and LC-MS/MS conditions. 
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While identification of one or more specific tumor biomarkers from small 

numbers of cells may prove to be useful for tumor diagnosis and progression 

monitoring, the clinical utility of proteome analysis from small numbers of cells 

may lie in the proteome profiling work. The ability to detect hundreds of proteins 

from as few as 500 cells using the current protocol opens the possibility of 

studying the proteome of a small number of cells such as CTCs isolated in blood 

of patients with cancer. Proteome profile may be used as a signature or fingerprint 

to identify a specific type of cancer cells in the human blood for detection, 

diagnosis and monitoring of cancer To mimic the scenario of analyzing CTCs in 

blood, a model system was used, where MCF-7 cells were spiked to fresh human 

blood, followed by isolation of these cells using density separation, antibody 

recognition and flow cytometry. 

In this work, the erythrocytes were removed from peripheral blood 

leukocytes (PBL) and MCF-7 cells by using the Ficoll-Hypaque technique. This is 

a commonly used centrifugation technique for separating lymphocytes from other 

components in the blood according to their density differences. Studies have 

shown that the MCF-7 cells preferentially sediment with the PBL at the plasma 

and Ficoll interface based on their density differences.
23, 24

 As a result, the spiked 

MCF-7 cells can be collected through the isolation of PBL from the interface after 

centrifugation. The buffy coat layer was then washed and re-suspended in a PBS 

buffer. The PBL cells are physically smaller than MCF-7 cells (averagely 8 µm 

comparing to 18 µm),
23

 and their cell contents are also less complex than the 

cancer cells. These physical differences should be adequate for the flow cytometer 
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to differentiate the MCF-7 cells from PBL in cell sorting. However, to enhance 

the confidence of collecting the MCF-7 cells, FITC conjugated mouse anti-human 

HEA, an antibody specific to a human epithelial marker, was used.
25

 In this case, 

the MCF-7 cells were stained with the fluorescent antibody whereas the PBL were 

not. Figure 2.5(A) shows the two-dimensional (2D) scatter plot of the flow 

cytometry analysis of the cell mixture. It clearly shows two populations. 

Population A represents the MCF-7 cells and population B represents PBL. To 

further guarantee only the cancer cells were collected, instead of the debris or 

aggregated cells, the gate for MCF-7 cell sorting was conservatively shrunk. 

Figure 2.5(B) presents the log scale fluorescence histogram of all the cells in the 

suspension. Given that only the MCF-7 cells are fluorescently labeled, population 

D should be the MCF-7 cells. A very small percentage of non-specific binding of 

the antibody to PBL was expected. However, with both gating strategies, shown 

in Figure 2.5(A) and (B), applied simultaneously during the flow cytometry 

analysis, the cancer cells were confidently sorted and collected. 
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Figure 2.5 Flow cytometry results of the MCF-7 cells labeled with anti-HEA-

FITC and the PBL cells. (A) 2D dot plot of MCF-7 and PBL 

mixtures where x-axis parameter (FSC) indicates the size of cells, 

and y axis (SSC) indicates granularity of cells. (B) the fluorescence 

response of both cells in the suspension where x-axis parameter 

(HEA-FITC) indicates intensity of FITC fluorescence in log scale. 

 

The proteome profile of the isolated cells was then generated by the 

method described above and compared to those of the MCF-7 cell lines. The 

entire workflow for the isolation of the MCF-7 cells in blood is shown in Figure 

2.2 and has been described in the Experimental section. Figure 2.6 shows the 

numbers of peptides and proteins identified from different numbers of cells 

isolated from the blood samples. The numbers are very similar to those obtained 

from the samples prepared directly from the cultured cells. Moreover, the 

proteome profiles are very similar, judging from the common proteins obtained 

from the two comparative samples (see Table 2.2). In Table 2.2, the results of 

intra- and inter-sample comparison (i.e., percentage of common proteins found in 

two samples) are listed. For example, in the case of 500 cells, three replicate 

experiments were carried for the 500-cell samples (Table 2.2 refers to them as A, 
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B, and C). Likewise, three replicate experiments were done for the 500-cell 

samples from blood spiked with MCF-7 cells (Table 2.2 refers to them as A’, B’ 

and C’). Within the dataset of A, B, and C, the average percent of common 

proteins found in two samples is 57% ± 10%. For the A’, B’ and C’ samples, the 

average is 65% ± 11%. The average common protein percentage from the 

comparison of A vs. A’, B vs. B’, and C vs. C’ is 60% ± 14%. The difference of 

these data is not significant. Thus, these proteome profiles are considered to be 

indistinguishable. This example illustrates that it is possible to generate a 

proteome profile from as few as 500 cells isolated from a blood sample and the 

proteome profile may be used for cell typing. 

  

Figure 2.6 Protein and peptide identification results of MCF-7 cells isolated 

from a blood sample. 
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Table 2.2 Summary of Protein Identification Results from Different Runs. 

 500 cells 1000 cells 2500 cells 5000 cells 

Sample 
Overlap 

(%)* 
Average 

Overlap 

(%)* 
Average 

Overlap 

(%)* 
Average 

Overlap 

(%)* 
Average 

A&B 64 58 

57 ± 10 

59 70 

63 ± 6 

72 78 

72 ± 7 

74 76 

71 ± 6 B&C 57 73 60 63 64 77 63 74 

C&A 41 48 56 70 60 78 64 77 

A'&B' 49 75 

65 ± 11 

69 58 

60 ± 5 

69 70 

69 ± 2 

72 75 

72 ± 3 B'&C' 73 67 54 61 71 70 72 76 

C'&A' 51 72 59 56 67 66 67 73 

A&A' 48 47 

60 ± 14 

51 66 

58 ± 5 

57 74 

68 ± 7 

66 72 

72 ± 4 B&B' 49 82 59 53 62 76 68 73 

C&C' 62 73 61 60 70 70 77 77 

*Percentage of common proteins found in two comparative runs. A, B, and C refer to the 

samples of three replicate experiments from the MCF-7 cells. A’, B’, C’ refer to the 

samples of three replicate experiments from the cells isolated from blood spiked with the 

MCF-7 cells.  

For the real world applications of this technique for generating proteome 

profiles of CTCs isolated from blood of patients with cancer, based on the study 

by Nagrath et al,
26

 the low limit of 500-cell would render the current technique 

useful for 71 out of 115 patients (62%) with 10-mL blood collection per patient. 

This level of applicability should be useful in clinical sittings such as in 

longitudinal monitoring of cancer during treatment. However, if the technique 

could become more sensitive to generate similar level of proteome coverage 

(~167 proteins) using 200 cells, it might be applied to 98 out of 115 patients 

(85%). An attempt was made to analyze 250 cells using the protocol described 

above and only about 50 proteins were identified, a dramatic reduction in protein 

number considering the trend of gradual protein number decrease from 5000 cells 

to 500 cells. Careful inspection of the MS/MS spectra generated from 250-cell 

samples revealed that many of the spectra had some characteristic fragment ions 
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similar to those shown in their corresponding MS/MS spectra collected from a 

larger number of cells. Unfortunately, their Mascot ion scores were below the 

identity threshold. Thus, MS/MS database search did not match with any peptides. 

Our future work on technical development will focus on the sensitivity 

improvement of the current method.  

 

2.4  Conclusions 

A shotgun proteome analysis method has been developed for protein 

identification from thousands of cells. This method is based on the use of a 

detergent (NP-40) to disrupt the cells, followed by acetone precipitation. After 

washing the pellet with cold acetone to remove any residual detergent, the pellet 

was dissolved in NH4HCO3 and the solubilized proteins were subjected to trypsin 

digestion. By optimizing the sample volume, about 91% of the digest solution was 

injected into a capillary LC-ESI QTOF system for analysis. The resultant MS/MS 

spectra were searched against a proteome database for protein identification. In 

analyzing the MCF-7 cells, this method was demonstrated to be capable of 

identifying an average of 167 ± 21, 237 ± 30, 491 ± 63, and 619 ± 59 proteins 

from 500, 1000, 2500, and 5000 cells, respectively. This method was then applied 

to the analysis of proteome profiles of small numbers of cells isolated from a 

blood sample spiked with the MCF-7 cells. It was shown that the proteome 

profiles generated from the cells isolated in the blood sample were similar to those 

of the MCF-7 cells. We envisage that this method will be useful in proteome 
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profiling of small numbers of cells for disease diagnosis and prognosis. In 

addition, further optimization in the sample preparation process to reduce sample 

loss may result in identification of even more proteins from thousands of cells.  
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Chapter 3  

Validation of Peptide MS/MS Spectra Using Metabolic Isotope 

Labeling for Spectral Searching-Based Shotgun Proteome 

Analysis 

 

3.1 Introduction 

In mass spectrometry-based shotgun proteomics, the correlation between a 

tandem mass spectrometry (MS/MS) spectrum and a peptide sequence is a crucial 

step. Several sophisticated database search engines, such as Mascot
1
, SEQUEST

2
 

and X!Tandem
3
, have been developed to find the best match by comparing the 

experimental spectrum with the theoretical fragmentation patterns of individual 

peptide sequences derived from the protein sequences in a proteome database. 

The resultant matches are often assessed using statistical tools, either individually 

or globally, to arrive at a final list of peptide sequences that are deemed to be 

correct identifications at a defined confidence level.
4
 While this strategy is widely 

used for proteome analysis, it has an inherent limitation: the intensity pattern of 

the fragment ion peaks in an MS/MS spectrum is difficult to predict and thus not 

fully utilized during the matching process. As an alternative, spectral library 

                                                 
A version of this chapter has been published as Mingguo Xu and Liang Li, 2011, "Validation of 

peptide MS/MS spectra using metabolic isotope labeling for spectral matching-based shotgun 

proteome analysis", J. Proteome Res. 10, 3632-3641. 
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searching shows great potential to address this problem. In this method, a spectral 

library is constructed by compiling the MS/MS spectra that have been identified 

and linked to specific peptide sequences. Unknown peptide identification is based 

on the comparison of its MS/MS spectrum with the library spectra. There are 

several reports of using this strategy for shotgun proteome analysis
5-14

 with 

demonstrated advantages over the sequence database searching approach in terms 

of sensitivity, specificity and speed. If a reliable spectral library and a robust 

matching algorithm are at hand, it might become a better tool to analyze the 

proteome of a small number cancer cells (see Chapter 2). However, the success of 

this method is very much dependent on the construction of a reliable spectral 

library.  

There are a few reported methods for compiling shotgun proteomics data 

to construct spectral libraries.
6, 7, 15

 For example, Frewen et al.
7
 used the 

SEQUEST search results of experimental MS/MS spectra with stringent scoring 

criteria to compile a list of high-score matches that were used to build the spectral 

library. For the redundant spectral identifications, spectral similarity was 

examined to select the most similar replicate spectrum as a library spectrum. 

Craig et al.
6
 reported the use of X!Tandem to identify peptide sequences that were 

compiled into a publicly available database: GPMDB. In their study, for the 

redundant spectral identifications, the best match (i.e., the one with lowest 

expectation value) assigned by X!Tandem was chosen as the representative 

spectral identification in the library. In addition, to minimize the library space and 

speed up the spectral searching calculation, only the 20 most intense peaks were 
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retained in a library spectrum. While both methods provided a straightforward 

way to construct the spectral library, the spectra or fragmentation patterns of the 

matched peptides were not validated. Thus, some of the best matches may not be 

correct. And the most similar replicate spectrum may not truly represent the 

fragmentation pattern of a matched peptide sequence.  

More recently, Lam et al.
12

 reported a software tool for construction of 

customized spectral libraries. In their approach, instead of choosing one of the 

replicate spectral identifications as the representative spectrum in the library, a 

consensus spectrum was created by combining the similar spectra that have the 

same peptide identification. It was demonstrated that the consensus spectrum was 

a superior and more truthful representation of the fragmentation pattern of the 

peptide ions than the most similar replicate. It reduced the chances of false 

positive spectra being included in the library by discarding dissimilar peak 

patterns and collecting most of the common fragmentation information in the 

spectra. Moreover, in their workflow, PeptideProphet
16

 was implemented to 

statistically validate the sequence-database search results before including them in 

the final spectral library. This provided an additional quality control to ensure 

only the most likely correct spectrum-to-sequence assignments were entered in 

the library. 

Considering the rapid advances in developing algorithms for assessing the 

sequence-database search results, there is no doubt that even more powerful 

statistical tools will likely be developed in the near future for constructing spectral 
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libraries. However, statistical tools do not provide validation of the spectrum-to-

sequence assignments. In this work, a strategy is reported that uses differential 

isotope labeling of proteins combined with trypsin digestion and two-dimensional 

liquid chromatography quadrupole time-of-flight mass spectrometry (2D-LC 

QTOF MS) to provide experimental evidence to validate the peptide-spectrum 

matches (PSMs) generated by sequence-database searching.   

In this study, metabolic labeling was introduced to culture the cells in 

normal or 
15

N-enriched media. This 
15

N-labeling method has been applied to 

detect differentially expressed proteins in various proteomic systems, including 

cells from plants
17

, cell lines
18

, C.elegans
19

, and even tissue of mammals
20

. The 

unlabeled and labeled peptides from the digests of the cellular protein extracts 

behave the same during the ionization and fragmentation process in a mass 

spectrometer. Previous study
21

 demonstrated that by simply overlaying the 

unlabeled and 
15

N-labeled MS/MS spectra of the same peptide sequence, 

experimental evidence can be provided to validate protein identification results 

generated by the sequence-database search method. A unique aspect of 
15

N-

labeling is that the fragment ions composed of different amino acid sequences 

have non-uniform mass shifts from their corresponding unlabeled fragment ions, 

facilitating the identification of correct assignment from other false matches. All 

amino acid residues contain nitrogen atoms, but not the same number. Thus, the 

fragment ions of two peptides of the same mass, but different sequences, will have 

different patterns of mass shifts in the overlaid spectral pairs. Background noise 

can be readily distinguished from the true peptide fragment ions as it would not 
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follow the same mass shift pattern (i.e., as a singlet). While this validation process 

is not the same as the direct comparison of an acquired spectrum with a spectrum 

generated from an authentic peptide standard, in the absence of a large number of 

peptide standards, the labeled peptides can be considered as the internal standards 

for spectral validation.   

Herein a method is devised to use 
15

N-labeling for validating the 

spectrum-to-sequence assignments generated from the sequence-database search 

using Mascot search engine to construct a more reliable MS/MS spectral library 

of a widely used model microorganism, E. coli K12. The experimental workflow 

and a data filtering strategy to construct the library are reported. The utility of this 

library for proteome analysis based on spectral search is demonstrated and the 

results are compared to the sequence-database search results.  

 

3.2 Experimental 

3.2.1 Chemicals and Reagents 

Dithiothreitol (DTT), iodoacetamide (IAA), trifluoroacetic acid (TFA), 

urea and sodium bicarbonate were purchased from Sigma-Aldrich Canada 

(Markham, ON, Canada). Sequencing grade modified trypsin, HPLC grade formic 

acid, LC-MS grade water, acetone, and acetonitrile (ACN) were obtained from 

Fisher Scientific Canada (Edmonton, Canada). The BCA assay kit was purchased 

from Pierce (Rockford, IL). 

3.2.2 Sample Preparation 
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E. coli K12 (E. coli, ATCC 47076) was from the American Type Culture 

Collection. A single E. coli K12 colony was used to inoculate 30 mL of LB broth 

(BBL, Becton Dickinson). The culture was incubated overnight with shaking at 37 

˚C. About 11 mL of this cell culture was centrifuged at 300 g for 15 min and the 

cell pellets were added to 1 L of labeled or unlabeled growth medium in a 4 L 

baffled Erlenmeyer flask. Bio-Express Cell Growth Media was purchased from 

Cambridge Isotope Laboratories (Andover, MA) and the isotope purity of the 

unlabeled and 
15

N-labeled media was 99%. Cells were harvested after 7 h of 

growth when the optical density at 600 nm was around 1.6 for both the unlabeled 

cells and 
15

N-labeled cells, respectively. The cells were centrifuged at 400 g for 

15 min and the cell pellets were resuspended in 45 mL of PBS buffer and passed 

twice through a minicell French press (Aminco, Rochester, NY) at 20,000 psi. 

About 5 mL of 10% Triton X-100 was added into the solution. After stirring for 

20 min at 4 ˚C, cell lysates were frozen and stored at -20 ˚C. BCA assay on each 

aliquot of the cell lysate solution was performed to determine the protein 

concentration. Proteins in the cell lysates were reduced with dithiothreitol (DTT) 

and alkylated with iodoacetamide (IAA). Acetone pre-cooled to -80 ˚C was added 

gradually to the cell lysates to a final concentration of 80% (v/v). The solution 

was then incubated at -20 ˚C overnight and centrifuged at 20,000 g for 15 min. 

The supernatant was decanted and the pellet was carefully washed once using 

cold acetone. The pellet was re-solubilized in 8 M urea. After 8-fold dilution to 

reduce the urea concentration to about 1 M, trypsin digestion was then carried out 

at protein to trypsin ratio of 50:1 at 37 ˚C for 48 h. 
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3.2.3 2D-LC MS/MS 

Peptide mixtures were fractionated by strong-cation exchange (SCX) 

chromatography on an Agilent 1100 HPLC system (Palo Alto, CA) using a 2.1 × 

150 mm PolySULFOETHYL A column with 5 µm diameter and 300 Å particle 

pore size (PolyLC, Columbia, MD). Desalting of each peptide fraction was 

performed on a 4.6 mm × 50 mm Polaris C18 A column with 3 µm particles and 

300 Å pore size (Varian, CA). The eluted peptides were monitored and quantified 

using a UV detector operated at 214 nm.
22

 The desalted digests were analyzed 

using a QTOF Premier mass spectrometer (Waters, Manchester, U.K.) equipped 

with a nanoACQUITY Ultra Performance LC system (Waters, Milford, MA). In 

brief, 1 µg of the digest was injected onto a 75 µm × 100 mm Atlantis dC18 

column with 3 µm particles and 100 Å pore size (Waters, Milford, MA) via a 

Symmetry C18 trap column (180 µm × 20 mm). For the chromatographic 

separation, solvent A consisted of 0.1% formic acid in water and solvent B 

consisted of 0.1% formic acid in ACN. Peptides were separated using a 120-min 

solvent gradient and introduced by electrospray into the mass spectrometer fitted 

with a nanoLockSpray source at a flow rate of 300 nL/min. A survey MS scan 

was acquired from m/z 350-1600 for 0.8 s, followed by 4 data-dependent MS/MS 

scans from m/z 50-1900 for 0.8 s each. A mixture of leucine enkephalin and 

(Glu1)-fibrinopeptide B, used as mass calibrants (i.e., lock-masses), was infused 

at a flow rate of 300 nL/min, and a 1-s MS scan was acquired every 1 min 

throughout the run. 

3.2.4 Mascot Search 
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Using Proteinlynx Global Server 2.3.0 (Waters) all raw LC-ESI data were 

lock-mass corrected, de-isotoped, and converted to peak list files with retention 

time information. All the peak list files were then submitted to Mascot search 

program (version 2.2.1). Database searching was restricted to E. coli K12 in the 

database. The search parameters for unlabeled samples were selected as follows: 

enzyme, trypsin; missed cleavages, 2; peptide tolerance, 30 ppm; MS/MS 

tolerance, 0.2 Da; fixed modification, carbamidomethyl (C); variable 

modifications, ammonia-loss (N-term C), N-Acetyl (protein), oxidation (M), 

carbamyl (N-term), carbamyl (K), pyro-Glu (N-term Q), and pyro-Glu (N-term E). 

The search parameters for the 
15

N-labeled samples were the same as the unlabeled 

samples except the isotopic mass of nitrogen in all amino acids was set to be 

15.0001. The search results, including original spectra, peptide sequences, 

retention time for each peptide identification, precursor m/z, ion score, Mascot 

threshold score for identity, rank in the result, calculated molecular mass of the 

peptide, corresponding protein names and access IDs were extracted to Excel files 

using an in-house program. 

3.2.5 Metabolic Labeling Validation 

Figure 3.1 shows the workflow for data processing to generate a list of 

validated spectra that were entered into the spectral library. Before going through 

the metabolic labeling validation step, intensity normalization was performed for 

all spectra by setting the intensity of the top 3 most intense peaks to 1 and 

rescaling the other peaks proportionally referenced to the intensity of the third 

most intense peak. The signal-to-noise (S/N) ratios of all the unlabeled spectra 
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were calculated by dividing the average intensity of the top ten most intense peaks 

by the median intensity of the spectrum. 

 

Figure 3.1 (A) Workflow of metabolic labeling validation of MS/MS spectra for 

constructing a spectral library. (B) Schematic of the process of 

overlaying an unlabeled peptide MS/MS spectrum with a labeled 

spectrum to determine the number of common fragment ions and 

similarity of the fragmentation patterns. 
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In the validation step the processed spectra from the unlabeled search 

results were overlaid with the 
15

N-spectra of the same sequence matches. In the 

overlaid spectral pair, the identified fragment ions by Mascot were paired up 

based on the ion types (an example is shown in Figure 3.2). For each pair of the 

overlaid spectra, the number of common fragment ions was calculated and the 

similarity of the fragmentation patterns was calculated according to equation 1 

(i.e., the spectral dot product of the fragment ion intensities). In equation (1), 

            
∑       

√∑  
  ∑  

 
                                       

Li and Ui are the relative intensity of the same fragment ion, i, in the labeled 

spectrum and the unlabeled spectrum, respectively. For each spectral 

identification, only the top match with the highest number of common fragment 

ions and the highest similarity score was kept. Finally, two quality-control filters 

were applied to exclude the spectral identifications with less than 5 paired-up 

common fragment ions and with the similarity score of less than 0.96 (see Results 

and Discussion). 

3.2.6 Replicate Spectra Consolidation 

After validation, all the validated unlabeled spectra underwent a replicate-

spectra consolidation process to construct a consensus spectrum for each peptide 

sequence assignment. Instead of simple averaging (arithmetic mean), the replicate 

spectral identifications (i.e., spectra with the same peptide assignment) were 

combined using weighted averaging (weighted mean). The weight for each 

spectrum was the calculated signal-to-noise (S/N) ratio itself. In this case, S/N 
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was calculated by dividing the average intensity of the top 10 most intense peaks 

in the spectrum by the median intensity of the spectrum. In this way, the better-

quality replicates contributed more in the consensus spectrum. 

 

 

Figure 3.2 (A) shows the plots of relative intensity as a function of ion types 

from two unlabeled spectra (replicate) matched to the same peptide 

(TVINQVTYLPIASEVTDVNR). As expected, since these two 

spectra were good quality replicates, the fragmentation patterns of 

the two spectra look very similar.  In fact, the spectral dot product 

calculated between the two spectra was 0.997.  By comparison, (B) 

shows the plots of relative intensity as a function of ion types from a 

pair of unlabeled and labeled spectra. The fragmentation patterns of 

the common ion series are very similar with a spectral dot product 

value of 0.995. This representative example illustrates that the 
15

N-

labeling strategy would not affect the fragmentation pattern of 

peptide ions. Therefore, the similarity of fragmentation pattern 

between labeled and unlabeled can also provide experimental 

evidence to gauge the quality of the validation process. 

y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 b2 b3 b5 b6 b8 b9 b12

Ion Type

R
e
la

ti
v
e
 I
n
te

n
s
it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Spectrum 1

Spectrum 2

(A)

y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 b2 b3 b5 b6 b8 b9

Ion Type

R
e
la

ti
v
e
 I
n
te

n
s
it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Labeled Ion Series

Unlabeled Ion Series

(B)



 

86 

 

3.2.7 Noise Reduction 

All the validated fragment ions were kept for each spectral identification 

entered into the spectral library. In addition, noise reduction was performed by 

removing the peaks with m/z higher than the MH
+
 peak (most likely to be mis-

deisotoped peaks and contaminant peaks). Finally, all the invalidated peaks, 

including unidentifiable ions and invalidated identifiable ions, were sorted by 

their intensities. In order to simplify the library spectra, the maximum peak 

number per spectrum was set to be 100. Most invalidated peaks with low 

intensities were rejected. 

3.2.8 Spectral Searching Algorithm 

A spectral searching algorithm (SpecMatching) was developed to match 

the measured MS/MS spectra in the validated consensus spectral library. After 

being processed by Proteinlynx Global Server (Waters), peak lists with retention 

time were obtained from the raw data files. During the spectral searching process, 

intensity normalization was first performed for all the unknown spectra by setting 

the intensity of the top 3 most intense peaks to 1 and rescaling the other peaks 

proportionally. To reduce the variation in intensity measurement, square-root 

transformation of intensity was applied to all the fragment ions.
23

  Next, the m/z 

value of the precursor ion was used to locate the library spectra with similar 

precursor m/z values for spectral similarity comparison. The peak list of a 

spectrum was divided into a consecutive sequence of 1 Th-wide bins on the m/z 

axis ranging from 50 Th to MH
+
, and slightly shifted peaks were binned into the 

adjacent bin. The vector of the spectrum was calculated by summing the weighted 
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intensities of the peaks in each bin. Invalidated peaks and validated peaks were 

assigned different weighing factors by multiplying their intensities by 1 and 2, 

respectively. In the algorithm, a modified spectral dot product was used to 

measure the spectral similarity as the equation (2) shown below: 

   
∑       

√∑  
  ∑  

 
                                               

 where Li and Mi are the weighted intensity of the i
th

 bin of the library spectrum 

and that of the matching bin (of the same m/z value) of the measured spectrum, 

respectively.  

3.2.9 Statistical Analysis 

In Mascot search results, target-decoy search strategy
24

 was applied by 

searching the MS/MS spectra against the forward and reverse E. coli K12 

proteome sequences to calculate the false discovery rate (FDR). For plotting 

receiver-operating characteristic (ROC) curve, a Perl script from Matrix Science 

website (http://www.matrixscience.com/help/decoy_help.html) was used to 

tabulate the FDR data.  

In the spectral searching results, since the negative and positive 

distributions were found to be properly fitted by a bi-normal distribution (see 

Results and Discussion), the number of true positive, true negative, false positive 

and false negative identifications could be estimated at a chosen score threshold. 

Using the equation (3) below, the FDR of the search results was calculated: 
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3.2.10 Software Development 

All in-house software was written in Perl 5.12 (http://www.perl.org). 

Statistical analysis was performed using both Microsoft Excel as well as R 

scripting. Charts and graphs were generated using R’s plotting packages 

(http://www.r-project.org/). Software was run on standard desktop and laptop 

computers running Windows 7 (Home Edition). 

 

3.3  Results and Discussion 

The main purpose of this study was to develop an experimental means to 

validate peptide identifications obtained from conventional sequence-database 

searching using MS/MS spectra in order to construct a more reliable peptide 

spectral library. The overall workflow is shown in Figure 3.1A. The peptide 

identifications were first generated using Mascot searches from two sets of 

samples, i.e., the proteome digests of proteins extracted from cells cultured in 
14

N- 

or 
15

N-metabolic media. A set of filtering criteria were applied to examine the two 

datasets, producing a list of spectra considered to be validated. The replicate 

spectra of the same sequence were consolidated to build a consensus spectrum. 

Both the individual spectrum from a single spectrum identification and the 

consensus spectrum from the redundant identifications were further processed to 
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exclude noise peaks. The final list of the validated unlabeled spectra was 

compiled to form the spectral library. The 
15

N-metabolic labeling method was 

chosen for validation of the Mascot search results. As shown in Figure 3.1B, by 

overlaying the two MS/MS spectra obtained from the unlabeled peptide and its 

corresponding 
15

N-labeled peptide, the number of common fragment ions (i.e., y- 

and b-ion series) and the intensity similarity between the common ions can be 

readily determined. 

3.3.1  Mascot Result Analysis 

Table 3.1 summarizes the results obtained from the 2D-LC separation and 

QTOF MS/MS analysis of the E. coli K12 samples. In total, 257,907 and 245,156 

spectra were collected from the unlabeled and 
15

N-labeled samples, respectively 

and 181,533 and 192,649 spectra were found to contain peptide identifications in 

the unlabeled and 
15

N-labeled dataset. By applying a confidence level of 99% to 

both datasets, 37,699 and 33,095 peptides were matched, corresponding to 10,414 

and 9,340 unique peptide sequences for unlabeled and labeled datasets, 

respectively. The estimated false-discovery rates (FDRs) were 1.12% for the 

unlabeled dataset and 2.21% for the labeled dataset.  
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Table 3.1 Summary of the Results Obtained from the Unlabeled and 
15

N-

labeled E. coli K12 Whole Cell Lysate Digests. 

 
Unlabeled dataset  

15
N-labeled dataset  

Total spectra  257,907  245,156  

Spectra with peptide matches  181,533  192,649  

All peptides (99% CL)*  37,699  33,095 

Unique peptides (99% CL)*  10,414  9,340 

Peptides matches (score>=13)  69,696  93,971  

False-discovery rate  1.12%  2.21% 

*confidence level (CL). 

Figure 3.3 shows the score distributions of all the possible peptide matches 

in the two datasets including those with one peptide-spectrum match (PSM). As 

shown in Figure 3.3A, the Mascot scores for the unlabeled dataset range from 0 to 

225, with a majority of matches having scores of lower than 10. Similar 

distribution can be seen for the 
15

N-labeled dataset (Figure 3.3B); the Mascot 

scores range from 0 to 246, with a majority of scores of lower than 10. If a global 

FDR of 1% was applied to construct a spectral library, which corresponded to a 

Mascot identity threshold of 32 in the unlabeled dataset, 81% of the peptide 

matches would be discarded. While such a high threshold filter can reject most 

incorrect PSMs, it can also potentially over-exclude many correct peptides, 

resulting in reduced sensitivity. Even with this stringent filtering, there is no 

guarantee that the retained spectra are assigned correctly to the peptide sequences. 

Global FDR is only a statistical estimation of the matching quality for the whole 

dataset, not an assessment of each PSM. In this approach, an experimental method 

was used to examine all the PSMs to determine the correct identifications. 
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Figure 3.3 Mascot score distributions of all the possible peptide matches in the 

datasets of (A) unlabeled sample and (B) labeled sample, including 

those with one peptide spectral match (PSM). The insets are the 

expanded regions showing the score distributions. 
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3.3.2  Data Filtering for Validation 

As indicated in Figure 3.1A, all the peptide identifications from the 

unlabeled and labeled datasets had undergone metabolic labeling validation. 

Briefly, if a spectrum from the unlabeled dataset had the same peptide 

identification and charge state as the one from the 
15

N-labeled dataset, they would 

be overlaid as illustrated in Figure 3.1B. The number of common fragment ions 

(i.e., b- and y- ions and their corresponding neutral loss ions) in the overlaid 

spectra was determined and the intensity similarity between these common ions 

was calculated. In total, 271,253 comparisons were done, including comparisons 

between redundant peptide identifications. Each comparison contained one 

overlaid spectral pair, such as the one depicted in Figure 3.1B. Theoretically, in an 

overlaid spectral pair the labeled and unlabeled spectra of the same peptide 

sequence would generate the same fragment ions because the isotope labeling 

does not alter the chemical property. Therefore, it is reasonable to state that, the 

higher the number of common ions (only b- and y-ion series are considered) 

shared by the labeled and unlabeled spectra, the higher the confidence of these 

spectral identifications. Thus, the first filter used to determine whether a matched 

spectrum is a correct one or not is to count the number of common ions between 

the two spectra in the overlaid spectral pair. 

Figure 3.4A shows a plot of the number of comparisons as a function of 

the number of common fragment ions found in the overlaid spectral pair. The 

number of common ions ranges from 0 to 35 and most of the overlapped 

identifications share 5 to 20 common fragment ions. Some of them have few 



 

93 

 

common ions (<5). There are two possible scenarios to have few common ions. 

The first possibility is that at least one of the identifications in a pair of spectra is 

false. The identified peaks in the spectrum are not from the real fragment ions, but 

noise peaks or fragment ions of other peptide ions with similar precursor ion 

masses. One unique feature of using differential 
14

N- and 
15

N-labeling is that the 

m/z shifts of the fragment ions between the two spectra are not uniform; the shift 

is dependent on the composition of the amino acids or nitrogen number in the 

fragment ion.
21, 25, 26

 Thus, coincidental m/z match(es) between the unlabeled and 

labeled peaks may arise from only a few ions. The second possibility is that both 

identifications are correct, but due to some reasons (e.g., difficult to dissociate, 

low peptide concentration, etc), one of the spectra or both spectra do not have 

many y- and b-ions to begin with. Since these low quality spectra cannot 

truthfully represent the fragmentation pattern of their corresponding peptides, they 

should not be kept in a validated spectral library for high confidence peptide 

identification. The confidence level clearly increases as the number of the 

common y- and b-ions in a pair of spectra increases. In order to set up the 

minimum number of common ions used to filter the Mascot search results, the 

relation between the number of matched ions and the Mascot score was 

investigated. 

Figure 3.4B shows the plot of the number of common fragment ions found 

in individual overlaid spectral pairs as a function of the average Mascot score of 

the corresponding peptide identifications ranging from 0 to 80. As expected, there 

is a strong positive correlation between the number of common ions and the 
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Mascot score. The curve can be fitted by a linear equation (y = 0.1019x + 3.4467) 

with the R
2
 value equals to 0.9899. The Mascot identity threshold score is 13 at a 

significance level of 0.05 (i.e., p=0.05) when searching the unlabelled dataset 

against the E. coli proteome sequence database. As Figure 3.4B shows, when the 

Mascot score is 13, there are, on average, 5 matched fragment ions. Therefore a 

cut-off threshold of 5 common ions was adopted in the validation process. In 

other words, if the overlaid spectral pair contains less than 5 common ions, the 

peptide identification and the spectra will not be entered into the final validated 

list. It should be noted that the use of 5 common ions as the cut-off does eliminate 

some high-score matches and some of them may well be correct matches, as can 

be seen from Figure 3.4B. But this compromise was taken, considering that an 

accepted library spectrum with a smaller number of fragment ions may not be 

very useful for a spectral match based on spectral similarity calculation (see 

below); decreasing the number of fragment ions used for matching increases the 

chance of a false match with noise or impurity peaks. 

As Figure 3.4B shows, the use of 5 common ions as the cut-off also 

includes some low-score ions. These matches as well as other high-score matches 

were examined by applying another filter which is based on the intensity 

similarity among the common fragment ions in the overlaid spectral pair. Since 

both unlabeled and 
15

N-labeled datasets were collected by using the same mass 

spectrometer with the same instrument settings, the unlabeled peptides should 

have nominally the same fragmentation behavior as their 
15

N-labeled counterparts, 

i.e., they should have the same fragment ions and similar intensity distribution 
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among these fragment ions. In this work, the similarity of fragmentation patterns 

is measured by calculating the spectral dot product of the common ions by 

equation (1) (see Section 3.2.5). Since the intensities of the fragment ions are all 

positive, one would expect the calculated scores to range from 0 to 1. A similarity 

score equal to 0 means that the two fragmentation patterns are unrelated, while a 

score of 1 means that the two fragmentation patterns are identical. An example of 

spectral similarity comparison is shown in Figure 3.5.  
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Figure 3.4 (A) Number of comparisons as a function of the number of common 

fragment ions found in the overlaid spectral pair. (B) Number of 

common fragment ions found in individual overlaid spectral pairs as 

a function of the average Mascot score of the  corresponding peptide 

identifications. 
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Figure 3.5 Relative intensity as a function of ion types from a pair of unlabeled 

and labeled spectra for the same peptide sequence 

ADDYTGPATDLLLK. Similarity score = 0.99. 

This filter was applied to all overlaid spectral pairs and the resultant 

distribution of the similarity scores is shown in Figure 3.6A. As Figure 3.6A 

illustrates, a high similarity score (larger than 0.95) is obtained in most cases, 

which means that the intensity pattern between the common ions in the unlabeled 

and 
15

N-labeled spectra is quite similar. They are from the correctly annotated 

ions, not random matches to noises or other ions. However, there are still some 

cases with relatively low scores which are more likely from random matches. To 

determine the similarity score threshold to be used as the second filter to exclude 

possible random matches, a control experiment was conducted to analyze the 

unlabeled sample in replicate and then the similarity of fragmentation patterns 

between the replicate identifications was examined using equation (1). Figure 

3.6B shows the distribution plot which is very similar to Figure 3.6A. The 

distribution shown in Figure 3.6B reveals that 95% of the cases have a similarity 

score of 0.96 or higher. Thus, a similarity cut-off score of 0.96 was used as the 
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second filter to reject the potentially false peptide matches during comparisons of 

unlabeled and labeled spectral pairs. 

In our work, all possible identifications were included in the validation 

process, regardless of their ranks in each spectral identification list in the Mascot 

search results. Thus, it was necessary to screen out some unreliable matches to 

make sure that only one peptide sequence was assigned to one spectrum. To do 

this, the number of common ions and the similarity score was used to make the 

judgment: only the match that had the highest common ion number and similarity 

score would be kept.  
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Figure 3.6 Number of comparisons as a function of similarity scores from (A) 

the comparison of unlabeled and labeled matches and (B) the 

comparison of the unlabeled matches from replicate runs. 
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spectrum was found to match with the peptide sequences of ALEEAGAEVEVK 

or VPPGVDEAAYVK in the Mascot search result (see Table 3.2). After 

determining the numbers of common ions and the similarity scores with the 

labeled spectrum, the second-ranked peptide match had a higher number of 

common fragment ions (12 vs. 10) and higher similarity score (0.9875 vs. 0.7772) 

than the top-ranked counterpart. In addition, the top-ranked identification had a 

precursor mass error of 0.016 Da, while the second-ranked identification had an 

error of 0.0007 Da. Taken together the second-ranked match was deemed to be 

more reliable than the top-ranked match and, therefore, should be kept in the 

validated peptide identification list. It should be noted that the majority of kept 

peptide identifications (99%) were the top-ranked peptide assignments. 

Nevertheless this example shows that the top-ranked peptide with a high Mascot 

score was not always the correct identification. 

Table 3.2 Summary of the Peptide Matches Obtained from Mascot Search of A 

MS/MS Spectrum and the Results Generated from the Validation 

Process. 

Sequence  Rank  Mascot  

Score  

Number of  

Common 

Ions  

Similarity 

Score  

Precursor 

Mass Error  

ALEEAGAEVEVK  1  43.76  10  0.7772  0.016 Da  

VPPGVDEAAYVK  2  33.63  12  0.9875  0.0007Da  

 

3.3.3  Validated Spectral Library 
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After applying two validation filters and rank comparison, 54,447 overlaid 

spectral pairs were removed. In order to construct a consensus spectrum for each 

peptide sequence assignment, the remaining 216,806 overlaid spectral pairs 

underwent replicate-spectra consolidation and noise reduction. These two steps 

are very similar to the way proposed by Lam et al. for constructing SpectraST.
8, 12

 

However, instead of a 5 fold boost of the intensities of the annotated peaks in the 

consensus spectra, the intensity distribution of all the fragment ions was not 

artificially altered. It is believed that in this way the fragmentation pattern of a 

peptide ion has been more truthfully preserved, especially for the peptide ions that 

fragment irregularly (e.g., when the dominant ions are not the usual b- or y-ions). 

In our work, noise reduction was performed by removing the peaks with m/z of 

higher than that of the MH
+
 peak. The high mass peaks are very likely to be mis-

deisotoped peaks and contaminant ion peaks. Finally, all the invalidated peaks, 

including unidentifiable ions and invalidated identifiable ions, were sorted by 

their intensities. In order to simplify the consensus spectra, the maximum number 

of peaks per spectrum was set to be 100. Most invalidated peaks with low 

intensities were rejected. Since these peaks contribute little when measuring 

similarity between the measured spectrum and the consensus library spectrum in 

the spectral searching algorithm, it is reasonable to remove them. 

After consolidation and noise reduction, an MS/MS spectral library of 

tryptic peptides was able to be constructed for E. coli K12. It constituted  9,302 

unique PSMs (unique sequence and charge state) and 7,763 unique peptide 

sequences. These spectra were compiled and re-searched using Mascot. At the 99% 
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confidence level, the estimated FDR for this validated dataset was found to be 

0.15%. Compared with the original result under the same condition (1.12% FDR), 

the FDR decreased dramatically. To keep the same global FDR for the 

experimental dataset without going through the metabolic labeling validation, the 

Mascot score threshold would need to increase to 43. With such a high threshold, 

only 6,722 unique peptide sequences would remain, i.e., 1,041 fewer than the 

unique peptide number obtained after undergoing the validation process. 

Moreover, by only applying the global FDR filter, the remaining PSMs would 

have no experimental support to validate their identifications. 

The peptide matches from the Mascot search was compared with the 

entries in the validated spectral library. There were 5,669 common peptides found 

in the two datasets with 1,053 peptides found only in the Mascot results and 2,094 

in the spectral library. The missing 2,094 peptides in the Mascot results were 

simply due to the false exclusion of the true positive identifications by setting a 

high Mascot score threshold. For instance, one spectrum was identified as 

ADDYTGPATDLLLK with a score equal to 31 by Mascot. It was rejected by the 

Mascot identity threshold filter. However, by going through our validation 

process, most of its assigned fragment ions in this spectrum, including 13 very 

intense y- and b-ions were able to be validated (see Figure 3.5). As shown in 

Figure 3,5, the fragmentation patterns between the unlabeled and 
15

N-labeled 

spectra are quite similar, indicated by the similarity score of 0.99. This example 

demonstrates that by using the validation process some false negative 
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identifications could be retrieved from the discarded identifications for entering 

into the spectral library. 

There are 1,053 peptide matches with high Mascot scores (higher than 43) 

that are not in the spectral library. Among them, 911 (87%) matches had only the 

unlabeled spectrum, missing the 
15

N-labeled counterpart. Therefore they could not 

go through the validation process. To increase the number of matched pairs, 

which should result in the increase of validated spectra, it is necessary to develop 

an optimal precursor ion inclusion strategy, similar to the precursor ion exclusion 

strategy
27

, where the precursor ion masses of the identified peptides from running 

the unlabeled sample will be used to direct the spectral collection of the same 

peptides in the labeled sample.   

For the rest of the 142 matches, there were several reasons that they failed 

the validation process. First of all, the spectral quality of the unlabeled and 
15

N-

labeled spectra was quite different, with the labeled one having significantly 

poorer quality. Three examples are shown in Table 3.3. For instance, the peptide, 

QVEALVEASKEEVK, was identified in the unlabeled dataset with a Mascot 

score of 83.05, while the Mascot score of its 
15

N-labeled counterpart was only 

15.72. During the validation process, only 3 common y- and b-ions were found 

and their intensity patterns were very different, having a similarity score of 0.7709. 

Thus this peptide would not be considered as a validated sequence despite its high 

Mascot score in one of the spectral pair. It was found that 109 out of the 142 

matches had low score counterparts and did not pass the validation process. Again, 

the use of a precursor ion inclusion strategy during the spectral collection of the 
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15
N-labeled sample may overcome this problem, as more time would be spent on 

generating the MS/MS spectra of the same peptides found in the unlabeled sample, 

thereby increasing the 
15

N-labeled spectral quality. 

 

Table 3.3 Examples of High-score Matches from the Unlabeled Peptides with 

Low-score Matches from the Labeled Peptides. 

Sequence 

Mascot  

Ion Score 

(Unlabeled) 

Mascot  

Ion Score  

(Labeled) 

Common 

Ions 

 Similarity  

Score  

EAIHMYGPDYGFDTTINK  144.14  14.32  1  N/A  

QVEALVEASKEEVK  83.05  15.72  3  0.7709  

VAFTALVEK  79.58  19.2  6  0.8127  

 

For the remaining cases, even though the unlabeled and 
15

N-labeled pairs 

had similar Mascot scores, they still failed the validation process. They either did 

not share enough common y- and b-ions (12 matches out of the 142 matches) or 

their fragmentation patterns differed too much (21 matches). 

From the above discussion, it can be concluded that the spectral library 

created using the proposed validation process can have more spectra entries than 

that created by the Mascot search. The missing spectra are mainly due to the 

absence of counterparts in the individual spectral pairs. Future work in reducing 

the number of such singlets, such as the use of precursor ion inclusion strategy, 

should overcome this problem. 

3.3.4  Spectral Searching for Peptide Identification 
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To utilize the validated spectral library for shotgun proteome analysis, a 

spectral searching algorithm called SpecMatching was developed. As indicated in 

the Experimental Section, an optimized spectral dot-product equation (equation 2) 

was implemented to measure the similarity between the measured spectrum and 

the library spectrum. To demonstrate the performance of this method, a mixture of 

tryptic peptides from E. coli whole cell lysates was prepared and analyzed by LC-

ESI-QTOF MS. All the generated spectra were searched using both Mascot and 

SpecMatching. 

In SpecMatching, the results table reports matches with similarity scores 

ranging from 0 to 1. All the calculated scores were collected, sorted from small to 

large, and plotted as the score distribution shown in Figure 3.7A. This figure 

shows clearly that there are two distinct score populations slightly overlapping 

with each other at the scores between 0.5 and 0.7. The well-separated two 

populations indicate great discriminatory power of SpecMatching to distinguish 

the correct and incorrect peptide matches. Therefore, a similar idea was applied to 

that used in PeptideProphet
28

 to fit this curve with two distribution functions. It 

was found that normal distribution offers a close approximation to both score 

distributions. After fitting these two distributions by using the maximum 

likelihood estimation package in R, a probability-probability plot or p-p plot was 

generated and is presented in Figure 3.7B to show the goodness of fit. In Figure 

3.7B, the observed probability in the histogram is plotted against the computed 

probability and shown as a dashed line. As shown in Figure 3.7B, the solid line 
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almost completely overlaps with the 45º solid line. This indicates that the 

computed probabilities are an accurate reflection of the observed probabilities. 

 

 

Figure 3.7 (A) Similarity score distribution of the matched peptides from a test 

sample by using SpecMatching against the validated E. coli spectral 

library. (B) Probability-probability plot showing the goodness of fit 

using two normal functions combined to represent the overall score 

distribution shown in (A).  
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Since the positive and negative distribution can be simulated by two 

normal distributions, one can readily calculate the different contributions at the 

overlapped portion of the histogram and estimate both the global and local FDR at 

a given score cut-off (see Figure 3.8A). 

The same dataset was searched using Mascot in order to compare the 

result with the SpecMatching result. The receiver-operating characteristics curves 

(ROC curves) were plotted for both search methods (Figure 3.8B). The results 

clearly show that SpecMatching is able to identify more peptides at all desired 

false-discovery rates than Mascot, which indicates superior sensitivity of 

SpecMatching to Mascot. Thus, SpecMatching has better discriminatory power to 

differentiate correct and incorrect peptide matches than Mascot. This can be 

attributed to the fact that the spectral searching algorithm uses the intensity 

pattern of all fragment ions more truthfully than the sequence searching algorithm 

does. 

A direct comparison was also carried out for the peptide matches (only the 

top-ranked matches) from both search results. In this case, a conservative score 

threshold was chosen for both search results. For the Mascot result, 0.01 of 

significance threshold was chosen, meaning that 1% of the peptide identifications 

in the result might be false. The global FDR for this Mascot result was estimated 

to be 0.4%. For the SpecMatching result, the threshold was gauged by either 

global or local FDR. For a fair comparison, 0.4% global FDR was chosen for the 

SpecMatching result, meaning that in the result 0.4% of peptide matches might be 

false spectral identifications. As Figure 3.8B shows, the number of spectral 
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identifications above the specified threshold in SpecMatching was 1,205 (979 

unique peptide sequences).  Among those peptide matches, 711 peptides can be 

found in both results, which constitute around 88% of the Mascot result and 73% 

of the SpecMatching result. 

 

 

Figure 3.8 (A) Determination of the global and local false discovery rates. (B) 

Receiver-operating characteristics curves (ROC curves) of the search 

results obtained by Mascot search and SpecMatching spectral search. 

(A) 

(B) 
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The peptide matches that can only be identified by either search engines 

were then isolated and examined manually for their sequence assignments. 

Among the 97 matches only found in the Mascot result, 66 of them are due to the 

fact that their peptide sequences were not included in the spectral library. Again, 

by expanding the spectral library in the future, these matches should be found in 

the SpecMatching result. Twenty-eight of the 97 matches were low score 

incidences (lower than the Mascot cut-off score of an average of 30) in the 

SpecMatching result, while three of them were high-score second hits (higher 

than the score cut-off) in the SpecMatching result. After manually checking the 

spectra of the three incidences, it was suspected that SpecMatching failed to 

differentiate the correct from the incorrect PSMs, resulting in false negatives. 

In the 270 matches found only in the SpecMatching result, 246 of them 

were identified by Mascot but rejected by identity threshold filter, while 24 of 

them could not be identified by Mascot. However, further analysis shows that 22 

out of the 24 identifications had good retention time correlation with the peptide 

sequences stored in the spectral library; the average retention time difference of 

less than 1.5 min in a 2-h run was within the experimental error. This suggests 

that most of these matches were correct. 

The above results indicate that SpecMatching is superior to Mascot 

searching in terms of both sensitivity and specificity. The major advantage mainly 

comes from the fact that the intensity pattern of the fragment ions in a spectrum is 

properly used in SpecMatching. This finding is consistent with the notion from a 

study comparing SpectraST with SEQUEST that spectral searching algorithm 
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worked better than sequence searching algorithm.
8
 In our case, the correctness of 

the peptide spectra in the spectral library has been experimentally validated using 

the metabolic isotope labeling method. 

 

3.4  Conclusions 

A strategy has been developed to provide experimental evidence to 

validate the peptide match results generated from sequence-database searches of 

MS/MS spectra in shotgun proteome analysis. It is based on the use of metabolic 

isotope labeling to produce unlabeled and 
15

N-labeled proteome samples from 

which tryptic peptides were produced for 2D-LC QTOF MS/MS analysis. The 

QTOF instrument offers relatively higher mass resolving power and mass 

measurement accuracy for MS/MS than other tandem MS with similar speed of 

spectral acquisition. The MS/MS spectra of the unlabeled peptides and their 

labeled counterparts can be overlaid and their fragmentation patterns and mass 

shifts due to nitrogen number differences can be readily compared to validate the 

spectrum-to-sequence matches. For spectral validation, two cut-off filters were 

developed. One was based on the number of common fragment ions found in the 

overlaid spectra; a minimum of 5 common ions were found to be needed to judge 

the fragmentation pattern matches. The second filter was based on the similarity 

of the fragmentation patterns of the unlabeled and labeled peptide pairs. A 

similarity score was calculated by using the fragment ion intensity dot-product, 
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and the cut-off score was found to be 0.96 out of 1.00, with 1.00 to be a perfect 

score. 

Using E. coli K12 proteome analysis as an example, it has been shown that 

this strategy can be used to construct a more reliable MS/MS spectral library. By 

analyzing the whole cell lysate digests, a total of 257,907 and 245,156 spectra 

were acquired from the unlabeled and 
15

N-labeled samples, respectively, using 

2D-LC MS/MS. From the analysis of these spectra, an experimentally validated 

MS/MS spectral library of tryptic peptides was constructed. It consists of 9,302 

unique spectra (unique sequence and charge state) from 7,763 unique peptide 

sequences. Finally, a spectral searching algorithm called SpecMatching was 

developed to utilize this spectral library. In analyzing a different digest of an E. 

coli extract using both Mascot and SpecMatching, it was shown that 

SpecMatching provided better sensitivity and specificity. 

We envisage the use of this strategy to construct the MS/MS spectral 

library of various organisms for proteome analysis with improved sensitivity and 

specificity. To increase the number of validated spectra, it is necessary to develop 

an optimized peptide precursor ion inclusion strategy to generate more common 

spectra of the unlabeled and labeled counterparts. This strategy is demonstrated 

with details in Chapter 4. To generate a comprehensive MS/MS spectral library of 

a model organism, such as E. coli, more detailed proteome analysis, such as the 

use of cellular fractionation (e.g., membrane-bounded vs. plasma) and protein 

separation (e.g., based on molecular weights), followed by 2D-LC MS/MS, will 
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be needed. There are currently plans to construct a website containing spectral 

libraries of model organisms and a spectral search tool, including algorithms to 

address the spectral transferability issue related to the use of different MS/MS 

platforms, for shotgun proteome analysis. 

 

3.5  Literature Cited 

 (1) Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S. 

Electrophoresis 1999, 20, 3551-3567. 

(2) Eng, J. K.; McCormack, A. L.; Yates, J. R., III J. Am. Soc. Mass Spectrom. 

1994, 5, 976-989. 

(3) Craig, R.; Cortens, J. P.; Beavis, R. C. J. Proteome Res. 2004, 3, 1234-

1242. 

(4) Nesvizhskii, A. I. J. Proteomics 2010, 73, 2092-2123. 

(5) Yates, J. R., III; Morgan, S. F.; Gatlin, C. L.; Griffin, P. R.; Eng, J. K. 

Anal. Chem. 1998, 70, 3557-3565. 

(6) Craig, R.; Cortens, J. C.; Fenyo, D.; Beavis, R. C. J. Proteome Res. 2006, 

5, 1843-1849. 

(7) Frewen, B. E.; Merrihew, G. E.; Wu, C. C.; Noble, W. S.; MacCoss, M. J. 

Anal. Chem. 2006, 78, 5678-5684. 

(8) Lam, H.; Deutsch, E. W.; Eddes, J. S.; Eng, J. K.; King, N.; Stein, S. E.; 

Aebersold, R. Proteomics 2007, 7, 655-667. 

(9) Hummel, J.; Niemann, M.; Wienkoop, S.; Schulze, W.; Steinhauser, D.; 

Selbig, J.; Walther, D.; Weckwerth, W. BMC Bioinformatics 2007, 8, 8. 



 

113 

 

(10) Frank, A. M.; Bandeira, N.; Shen, Z.; Tanner, S.; Briggs, S. P.; Smith, R. 

D.; Pevzner, P. A. J. Proteome Res. 2008, 7, 113-122. 

(11) Falth, M.; Savitski, M. M.; Nielsen, M. L.; Kjeldsen, F.; Andren, P. E.; 

Zubarev, R. A. J. Proteome Res. 2007, 6, 4063-4067. 

(12) Lam, H.; Deutsch, E. W.; Eddes, J. S.; Eng, J. K.; Stein, S. E.; Aebersold, 

R. Nat. Methods 2008, 5, 873-875. 

(13) Ahrne, E.; Masselot, A.; Binz, P. A.; Muller, M.; Lisacek, F. Proteomics 

2009, 9, 1731-1736. 

(14) Zhang, X.; Li, Y. Z.; Shao, W. G.; Lam, H. Proteomics 2011, 11, 1075-

1085. 

(15) Lam, H.; Aebersold, R. In Proteome Bioinformatics; Hubbard, S. J., Jones, 

A. R., Eds.; Humana Press Inc, 2010, pp 95-103. 

(16) Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R. Anal. Chem. 2002, 

74, 5383-5392. 

(17) Nelson, C. J.; Huttlin, E. L.; Hegeman, A. D.; Harms, A. C.; Sussman, M. 

R. Proteomics 2007, 7, 1279-1292. 

(18) Cantin, G. T.; Venable, J. D.; Cociorva, D.; Yates, J. R., III J. Proteome 

Res. 2006, 5, 127-134. 

(19) Dong, M.-Q.; Venable, J. D.; Au, N.; Xu, T.; Park, S. K.; Cociorva, D.; 

Johnson, J. R.; Dillin, A.; Yates, J. R., III Science 2007, 317, 660-663. 

(20) McClatchy, D. B.; Dong, M.-Q.; Wu, C. C.; Venable, J. D.; Yates, J. R., 

III J. Proteome Res. 2007, 6, 2005-2010. 

(21) Zhong, H.; Marcus, S. L.; Li, L. J. Proteome Res. 2004, 3, 1155-1163. 

(22) Wang, N.; Xie, C.; Young, J. B.; Li, L. Anal. Chem. 2009, 81, 1049-1060. 

(23) Liu, J.; Bell, A. W.; Bergeron, J. J. M.; Yanofsky, C. M.; Carrillo, B.; 

Beaudrie, C. E. H.; Kearney, R. E. Proteome Sci. 2007, 5, 12. 

(24) Elias, J. E.; Gygi, S. P. Nat. Methods 2007, 4, 207-214. 



 

114 

 

(25) Nelson, C. J.; Huttlin, E. L.; Hegeman, A. D.; Harms, A. C.; Sussman, M. 

R. Proteomics 2007, 7, 1279-1292. 

(26) Snijders, A. P. L.; de Vos, M. G. J.; Wright, P. C. J. Proteome Res. 2005, 

4, 578-585. 

(27) Wang, N.; Li, L. Anal. Chem. 2008, 80, 4696-4710. 

(28) Kapp, E. A.; Schutz, F.; Connolly, L. M.; Chakel, J. A.; Meza, J. E.; 

Miller, C. A.; Fenyo, D.; Eng, J. K.; Adkins, J. N.; Omenn, G. S.; Simpson, 

R. J. Proteomics 2005, 5, 3475-3490.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 

 

Chapter 4  

Experimental Evaluation of Statistical Tools for Peptide and 

Protein Identification Using 
18

O-labeling and Inclusion Strategy 

 

4.1  Introduction 

 In order to elucidate peptide sequences from mass spectrometry data, 

several strategies
1, 2

 have emerged and matured. Amongst them, the most widely-

used approach, sequence-database searching, involves comparing experimental 

MS/MS spectra with theoretical peptide fragmentation patterns derived from 

protein sequences in a proteome database and reporting the best peptide-spectrum 

matches (PSMs). Based on this concept, several sophisticated database search 

engines, such as Mascot
3
, SEQUEST

4
 and X!Tandem

5
, have been developed. By 

evaluating the resultant matches using statistical tools, either individually or 

globally, a final list of peptide sequences can be generated according to a defined 

confidence level
6
. Even though these search engines share the same concept of 

calculating scores for PSMs and subsequently inferring protein identifications, 

they distinguish themselves in their individual ways of scoring and interpretation.  

                                                 
A version of this chapter has been prepared for submission as Xu, M, Li, L., Experimental 

Evaluation of Statistical Tools for Peptide and Protein Identification Using 18O-labeling and 

Inclusion Strategy. 
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In Mascot (Matrix Science, London, UK), a probability-based Mascot 

identity threshold for each individual PSM is reported. A Mascot ion score above 

the threshold is generally considered to be a significant peptide assignment. In the 

definition of Mascot identity threshold, -10×log10(p/n), p is the defined error rate 

and n represents the number of candidate peptides (search space). For example, if 

there are 500 or 5000 candidate peptides and the probability of 0.05 is chosen, the 

Mascot identity threshold would be 40 or 50, respectively. Clearly, an increase in 

the number of candidate peptides, which is usually affected by searching in a 

more comprehensive database, enlarging the precursor tolerance windows, 

decreasing enzyme specificity, increasing the number of missed cleavages and 

variable modifications, would ultimately increase the Mascot identity threshold 

value. It is a well-known issue
7, 8

 of Mascot scoring scheme, that Mascot identity 

threshold becomes very conservative (poor sensitivity) when dealing with a large 

search space. 

Instead of reporting a probability and identity threshold for each PSM, 

X!Tandem
9
 adopted the concept of reporting expectation values (E-values) of 

PSMs. Unlike Mascot, X!Tandem is an open source software. In its algorithm, 

X!Tandem first measures the spectral similarity between the experimental 

spectrum and several candidate theoretical peptide fragmentation patterns, 

generates hyperscores (the sum of matched fragment ion intensities multiplied by 

the N factorial for the number of matched ions), plots a distribution of 

hyperscores for the spectral search and extrapolates an E-value to provide a 

statistical evaluation for each identification. E-value is defined as the number of 
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random matches that would be expected to have the same or better scores. It is 

believed that this empirical scoring scheme is more sensitive when searching a 

large space. Mascot also implemented this idea in its software package, called 

Mascot homology threshold. However, due to their different ways of performing 

statistical analysis, E-values from X!Tandem and probabilities from Mascot are 

not directly comparable.  

 In a recent development, researchers have focused more on the statistics 

used to evaluate the resulting PSMs, instead of sequence-database algorithms 

themselves. The target-decoy strategy was developed to estimate the global false-

discovery rate (FDR) of MS/MS search results. In the target-decoy approach, the 

target database represents the normal proteome database, and the decoy database 

is a reversed or randomized version of the target database. Any PSM from the 

decoy search that passes the score threshold is deemed a false positive. Based on 

the number of estimated false positives, the global FDR can be readily estimated. 

As the most commonly used approach, some researchers prefer searching the 

target and decoy databases separately, while others prefer constructing a 

concatenated database by combining the target and decoy databases and searching 

this compound target/decoy database. In 2007, Elias and Gygi
10

 published a 

detailed study of various target-decoy strategies.  

Apart from a simple target-decoy strategy, more sophisticated algorithms 

were developed to re-evaluate match scores and assign probabilities to each PSM 

by examining the properties of correct and incorrect PSMs. For example, 
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PeptideProphet
11

 takes advantage of the bimodal distribution that discriminant 

scores of correct and incorrect PSMs in the histogram and uses an expectation-

maximization algorithm to fit the distribution and thus calculate probabilities of 

each PSM. On the other hand, Percolator
12

 adopts a different machine learning 

approach. After extracting a vector of features that are related to the quality of the 

match (e.g., mass error and PSM score) from both target and decoy PSMs, an 

iterative classification process is applied to discriminate the target and decoy 

PSMs by using those features. After several iterations, the system converges and 

generates a robust classifier that can be used to calculate the probability of each 

PSM being a random match. Both methods have shown to be able to achieve high 

sensitivity without sacrificing too much specificity.
11,12

 While Percolator only 

applies to SEQUEST and Mascot search results
13

, PeptideProphet has been 

adapted for X!Tandem search results as well.   

 Despite these significant advances in statistical evaluation of PSMs, 

statistical tools do not provide experimental validation of the spectrum-to-

sequence assignments.  As shown in Chapter 3, by using differential isotope 

labeling, experimental evidence can be provided to validate protein identification 

results generated by sequence-database search method. In this Chapter, an 
18

O-

labeling approach was applied to complex peptide mixtures after trypsin digestion 

of protein mixtures. Traditionally, 
18

O-labeling methods have been applied to 

detect differentially expressed proteins in various proteomic systems
14, 15

.  In the 

case of trypsin-catalyzed 
18

O-labeling, two carboxyl-terminal 
16

O atoms are 

substituted with two 
18

O atoms in 
18

O-enriched H2O medium. The resultant 
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labeled peptides would have a higher molecular mass (4.0085 Da higher) than 

their unlabeled counterparts, but still behave the same way during separation in 

reversed-phase chromatography, as well as during the ionization and 

fragmentation processes in a mass spectrometer. Therefore, it is easy to detect and 

isolate the unlabeled and labeled pair in RP LC-MS/MS runs simply based on 

their retention time and precursor mass difference. Previous studies have 

demonstrated that, by examining the unlabeled and labeled MS/MS spectra of the 

same peptide sequence, evidence can be provided to validate search results 

generated by de novo sequencing
16-18

, peptide mass fingerprinting
19

, as well as the 

sequence-database strategy
20, 21

.       

 Herein an approach is developed involving the use of 
18

O-labeling for 

validating the PSMs generated from sequence-database searches using both 

Mascot and X!Tandem. Advanced statistical tools, including PeptideProphet and 

Percolator, were also assessed. In the experimental workflow, an inclusion 

strategy enabled targeted analysis for 
18

O-labeled PSMs in the LC-MS/MS runs. 

With multiple inclusion runs, almost all pre-identified unlabeled PSMs had 

matching 
18

O-labeled counterparts found. A retention time-based data filtering 

strategy enabled the isolation of true and false identifications for all the unlabeled 

PSMs. Based on these experimentally validated PSMs, the performance of all the 

statistical tools was carefully inspected.  
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4.2  Experimental Section 

4.2.1 Chemicals and Reagents 

Dithiothreitol (DTT), iodoacetamide (IAA), trifluoroacetic acid (TFA), 

guanidinium hydrochloride and ammonium bicarbonate were purchased from 

Sigma-Aldrich Canada (Markham, ON, Canada).  HPLC grade formic acid, LC-

MS grade water, acetone, and acetonitrile (ACN) were from Fisher Scientific 

Canada (Edmonton, Canada).  The BCA assay kit and immobilized trypsin were 

purchased from Pierce (Rockford, IL).  

4.2.2 Sample Preparation 

SU-DH-L1 cells
22

 (A human lymphoma cell line) were cultured in 

Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% heat-

inactivated fetal bovine serum and 1% penicillin under an atmosphere of 95% O2 

and 5% CO2 in 98% humidity at 37 °C. Cells were collected and lysed in 

CelLytic
TM

 M buffer (Sigma), 1mM phenylmethylsulfonyl fluoride (Sigma) and 

protease inhibitor mixture (Sigma). The lysates were precleared at 20,000 g for 15 

min. BCA assay on the cell lysate solution was performed to determine the 

protein concentration. Proteins in the cell lysates were reduced with dithiothreitol 

(DTT) and alkylated with iodoacetamide (IAA). Acetone pre-cooled to -80 ˚C 

was added gradually to the cell lysates to a final concentration of 80% (v/v). The 

solution was then incubated at -20 ˚C overnight and centrifuged at 20,000 g for 15 

min. The supernatant was decanted and the pellet was carefully washed once 
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using cold acetone. The pellet was re-solubilized in 6 M guanidinium 

hydrochloride. The protein mixtures were then fractionated by reversed-phase 

liquid chromatography on an Agilent 1100 HPLC system (Palo Alto, CA) using a 

4.6 X 50 mm mRP-C18 High-Recovery Protein Column (Agilent, CA) at 75 ˚C. 

In total, 40 fractions were collected. Next, each protein fraction was then dried 

down using a SpeedVac concentrator system and reconstituted using 50 mM 

ammonium bicarbonate. Pre-treated immobilized trypsin (50 µL) was added to 

each fraction, followed by 24 hours of incubation at 37 ˚C with rapid shaking. The 

immobilized trypsin gel in each fraction was then separated from the digestion 

mixture using a resin separator (Pierce). Desalting of each peptide fraction was 

performed on a 4.6 mm × 50 mm Polaris C18 A column with 3 µm particles and 

300 Å pore size (Varian, CA).  The eluted peptides were monitored and quantified 

using a UV detector operated at 214 nm. Each fraction then was divided into two 

equal portions, one of which underwent the 
18

O-labeling process. In the labeling 

process, both portions of each fraction were dried down. Then one portion was 

reconstituted in 50 µL of 
18

O-enriched H2O (Cambridge Isotope Laboratories, 

Andover, MA), followed by the addition of 50 µL of immobilized trypsin to 

accelerate the carboxyl-terminal oxygen exchange. The other portion underwent 

the same process except normal H2O was used instead of 
18

O-enriched H2O. After 

24 hours of incubation at 37 ˚C, immobilized trypsin was removed from the 

peptide mixture using a resin separator. Unlabeled and 
18

O-labeled samples were 

then kept separately at -80 ˚C until further analysis. 

4.2.3 RPLC MS/MS 
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The desalted digests were analyzed using a QTOF Premier mass 

spectrometer (Waters, Manchester, U.K.) equipped with a nanoACQUITY Ultra 

Performance LC system (Waters, Milford, MA).  In brief, 1 µg of the digest was 

injected onto a 75 µm × 100 mm Atlantis dC18 column with 3 µm particles and 

100 Å pore size (Waters, Milford, MA) via a Symmetry C18 trap column (180 µm 

× 20 mm).  For the chromatographic separation, solvent A consisted of 0.1% 

formic acid in water and solvent B consisted of 0.1% formic acid in ACN.  

Peptides were separated using a 120-min gradient and introduced by electrospray 

into the mass spectrometer fitted with a nanoLockSpray source at a flow rate of 

300 nL/min. A mixture of leucine enkephalin and (Glu1)-fibrinopeptide B, used 

as mass calibrants (i.e., lock-masses), was infused at a flow rate of 300 nL/min, 

and a 1-s MS scan was acquired every 1 min throughout the run. 

4.2.4 Inclusion Strategy 

As shown in Figure 4.1, the unlabeled and 
18

O-labeled aliquot of the same 

fraction were first analyzed in ordinary RPLC-MS/MS experiments to identify the 

unlabeled and 
18

O-labeled peptides, respectively, as described in the RPLC 

MS/MS section. Then the peptide identification lists from both aliquots were 

compared to isolate the common peptide sequences and the unique peptide 

sequences from the unlabeled aliquot. Since 
18

O-labeling approach increases the 

molecular masses of all the tryptic peptides with C-terminal lysine or arginine by 

4.0085 Da, it is possible to calculate the theoretical m/z values of those peptides 

when they are 
18

O-labeled. In principle, due to their identical chromatographic 
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and fragmentation behavior, in an 
18

O-labeled run of the same fraction the 
18

O-

labeled peptides would have exactly the same retention times as their unlabeled 

counterparts in their unlabeled runs. Therefore, based on the calculated m/z and its 

corresponding retention time, an inclusion list can be generated for the following 

18
O-labeled run. In the following 

18
O-labeled run, inclusion settings are switched 

on to make sure that the mass spectrometer only analyzes the ions with the m/z 

values and retention time specified on the inclusion list. Then all the 
18

O-labeled 

peptides were compared with the unlabeled peptide identifications to isolate 

common peptide sequences and the unique peptides from the unlabeled aliquot. 

Ideally, after one inclusion run, all the true positives from the unlabeled aliquot 

will find their 
18

O-labeled counterparts and the ones that do not have 
18

O-labeled 

counterparts identified are highly likely to be false identifications. However, due 

to imperfect reproducibility of the liquid chromatography and ionization process, 

one inclusion run is insufficient to find all the 
18

O-labeled counterparts for all the 

unlabeled peptides. Therefore, multiple inclusion runs are needed to resolve this 

issue.  

In order to estimate how many inclusion runs are needed, a replicate study 

was carried out. In this study, an unfractionated complex human cell lysate 

sample was prepared. In a similar manner to the inclusion strategy shown in 

Figure 4.1, a technical replicate of the unlabeled sample was used to replace the 

18
O-labeled fraction. Instead of calculating 

18
O-labeled precursor m/z values, the 

unlabeled precursor m/z values were used in the inclusion runs. Therefore, the 

minimal number of inclusion runs that are needed for 
18

O-labeled inclusion can be 
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readily estimated by how many technical replicates are needed to re-analyze all 

the unlabeled peptide identifications by using the same strategy. It was found that 

5 LC-MS/MS runs (1 normal LC-MS/MS run and 4 inclusion LC-MS/MS runs) 

were the minimal requirement for an 
18

O-labeled inclusion study (see results and 

discussion section 4.3.1). In total, there were 40 unlabeled fractions from protein 

RPLC fractionation and 253 
18

O-labeled runs were analyzed. The average number 

of 
18

O-labeled runs per unlabeled fraction was 6.325. 

 

Figure 4.1 Schematic of inclusion strategy. 

 

4.2.5 Mascot Search 

Using Proteinlynx Global Server 2.3.0 (Waters) all raw LC-ESI data were 

lock-mass corrected, de-isotoped, and converted to peak list files with retention 

time information. All the peak list files were then submitted to the Mascot search 

program (version 2.2.1).  The search parameters for unlabeled samples were 
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selected as follows: enzyme, trypsin; missed cleavages, 1; peptide tolerance, 30 

ppm; MS/MS tolerance, 0.2 Da; fixed modification, carbamidomethyl (C); 

variable modifications, ammonia-loss (N-term C), N-Acetyl (protein), oxidation 

(M), pyro-Glu (N-term Q), and pyro-Glu (N-term E). The search parameters for 

the 
18

O-labeled samples were the same as the unlabeled samples with one 

additional variable modification, double 
18

O-modification of carboxyl-terminal 

lysine or arginine. A concatenated database was constructed by combining the IPI 

Human database (version 3.68) and its reversed proteome sequences. For Mascot 

Percolator results, database searching was restricted to the original IPI Human 

database (version 3.68) with decoy function switched on in the Mascot program. 

For Mascot PeptideProphet results, database searching was restricted to the 

concatenated database.  

4.2.6 X!Tandem Search 

All the peak list files were also submitted to X!Tandem search engine 

(The Global Proteome Machine Organization, 2007.07.01). For the purpose of fair 

comparison, in all the X!Tandem searches the search parameters, including the 

variable modification settings in the refinement function, were kept the same as 

Mascot searches. The search was restricted to the aforementioned concatenated 

database. 

4.2.7 Statistical Analysis 

In the original Mascot search results, a significance threshold of 0.05 was 

applied to identify peptide sequences from each LC-MS/MS run. If a peptide-
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spectrum match (PSM) has a Mascot ion score no less than its Mascot identity 

threshold, it was deemed as identified. However, X!Tandem implements a 

different scoring scheme than Mascot. In X!Tandem, an E-value (Expectation 

value) is calculated for each PSM to provide statistical evaluation. In its 

definition
9
, E-value is the number of random matches that would be expected to 

have the same or better scores. Therefore, the higher the E-value, the less likely a 

PSM is deemed to be a valid identification. It was observed that by applying a 

maximum E-value of 0.05 to X!Tandem results, the estimated global false-

discovery rates of Mascot and X!Tandem results for the same LC-MS/MS run 

were very similar. Therefore, in the original X!Tandem search result, an arbitrary 

maximum E-value for PSM was set to 0.05.  

The target-decoy search strategy proposed by Elias and Gygi in 2007
10, 23

 

was applied by searching the MS/MS spectra against the concatenated database to 

calculate the global false discovery rate (FDR). The number of false positives can 

be estimated by counting the number of decoy sequences above the score 

threshold. The estimated global FDRs were calculated by the number of false 

positives divided by the total number of identifications (false positives + true 

positives). 

Mascot Percolator
13

 was also used to statistically evaluate the Mascot 

result in order to improve the number of identifications. In this study, the default 

setting was used, including all the features. After being processed by Percolator, 

each PSM was assigned two statistical values, posterior error probability (PEP) 
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and q-value. The q-value of each PSM can be understood as the minimal global 

FDR that is required to include that PSM in the search result
12, 24

. PEP can be 

deemed as the local FDR of a PSM, which indicates the probability of such match 

being random. In Mascot Percolator processed results, the original Mascot p-

values are replaced with PEP value. Therefore, based on the Mascot scoring 

equation, Mascot Score = -10×log10(p), the new Mascot score of 13 represents the 

local FDR of such PSM is 0.05. By applying the Mascot score threshold of 13 to 

the Mascot Percolator result, it is guaranteed that the maximum local FDR of the 

search result is 5%. In this study, the minimum new Mascot score of 13 was 

chosen. 

PeptideProphet
11, 25

 was the other machine learning algorithm used to 

statistically evaluate the results both from Mascot and X!Tandem. As a part of 

statistical software called Trans Proteomic Pipeline (version 4.3, JETSTREAM 

REV 1, Build 200909091257 MinGW), it assigns a probability to each PSM. 

Based on the definition of PeptideProphet probability, it is the probability of a 

PSM being correct. Therefore, 1 – probability can be understood as the local FDR 

of a PSM. In this study, a concatenated search and non-parametric modeling
26-28

 

were used. Using this strategy the negative distribution can be readily pinned 

down by decoy hits when fitting the bimodal distribution in PeptideProphet to 

maximize peptide identification while maintaining a low error rate. In 

PeptideProphet-processed results, the minimum probability of 0.95 (local FDR of 

0.05) was chosen. 
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4.2.8 18
O-labeling Validation 

A straightforward workflow was devised to experimentally validate 

unlabeled PSMs. First of all, all the unlabeled PSMs had to be confidently 

identified by at least one of the statistical tools: Mascot, Mascot PeptideProphet, 

Mascot Percolator, X!Tandem or X!Tandem PeptideProphet. For example, in 

Mascot an unlabeled PSM had to have an ion score higher than its identity 

threshold when a significance threshold of 0.05 was applied. PSMs of lower 

confidence were not included in the downstream analysis. 

Secondly, all the 
18

O-labeled counterparts of the unlabeled PSMs had to be 

confidently identified by at least one of the aforementioned statistical tools as well. 

It ensures the reliability of the labeled PSMs used to validate the unlabeled PSMs. 

For example, if both the unlabeled and labeled identification of the same peptide 

sequence were identified by Mascot PeptideProphet with a probability of 0.95, the 

chance of neither PSM being incorrect is extremely low (0.25%). Therefore it is 

of great importance to obtain good quality 
18

O-labeled PSMs. 

Lastly, both unlabeled and labeled identifications of the same peptide 

sequence had to elute at a similar organic solvent composition (%B = initial %B + 

(retention time – dead time) × gradient slope) during a RPLC separation. 

Theoretically, if both identifications were correct, they would have the same 

chromatographic behavior. Thus ideally, they would have identical %B when the 

same LC gradient profile is used. In reality, however, each peptide elutes from a 

chromatographic column as a Gaussian shape peak. Consequently, the same 
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peptide sequence might be associated with slightly different %B each time. So in 

this study, the last validation filter was the %B difference between the unlabeled 

and labeled peptides of the same sequence. If they differed too much, the 

unlabeled PSM was not considered to be validated by that labeled PSM, even if 

they appeared to share the same sequence.  

Only when it fulfilled all three validation requirements, was an unlabeled 

PSM deemed validated.  

4.2.9 Data Processing 

All in-house programs were written in Perl 5.12 (http://www.perl.org). 

Charts and graphs were generated using R’s plotting packages (http://www.r-

project.org/) and Microsoft Excel 2007. Software was run on standard desktop 

and laptop computers running Windows 7 (Home Edition).  

 

4.3  Results and Discussion 

4.3.1  Inclusion Strategy 

First of all, it is necessary to demonstrate that the proposed inclusion 

strategy could effectively re-identify PSMs found in the original LC-MS/MS run. 

As described in the experimental session, an unfractionated complex human cell 

lysate sample was prepared and analyzed by RPLC-MS/MS. After extracting all 

the MS/MS spectra, searching them using different search engines (e.g., Mascot 

and X!Tandem) and analyzing the results with various statistical tools (e.g., 
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PeptideProphet and Percolator), an original identification result, listed in Table 

4.1, was obtained. As shown in Table 4.1, 1601 PSMs were found in the Mascot 

result, in which only the original Mascot significance threshold of 0.05 was 

applied. The estimated global FDR of the Mascot result is 0.3%. Furthermore, 

PeptideProphet was applied to this Mascot search result to provide an advanced 

statistical analysis of those peptide identifications. It was found that by applying a 

minimal PeptideProphet probability of 0.95, which can be understood as the 

maximal local FDR of 0.05, 2587 PSMs were found with an estimated global 

FDR of 0.6%. In the meanwhile, Mascot Percolator was applied to the Mascot 

search result to provide a different statistical analysis. With a maximum posterior 

error probability (PEP) of 0.05, 2605 PSMs were found with an equivalent q-

value cut-off of 0.4%. Similarly, X!Tandem was also used to search all the 

MS/MS spectra in the same human proteome database. After applying an arbitrary 

maximum E-value of 0.05 to the search result, 2070 PSMs were identified with a 

global FDR of 0.3%. Then PeptideProphet was also applied to X!Tandem results 

to provide a different statistical analysis. By applying a maximal local FDR of 

0.05, 2402 PSMs were found with a global FDR of 0.4%. Then all the identified 

PSMs from all the aforementioned statistical tools were combined to construct a 

target list in order to apply inclusion strategy. After 5 inclusion runs, almost all 

the PSMs from the original run were able to be re-identified. As shown in Table 

4.1, only 5 PSMs out of 1601 were not re-identified in the Mascot result. The 

inclusion percentage was as high as 99.7%. It was found that more inclusion runs 

did not further improve the inclusion percentage. Considering the fact that the 
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Mascot result of the original run was analyzed with a significance threshold of 

0.05 and the estimated global FDR was 0.3%, it is reasonable to state that all the 

correct PSMs were effectively re-identified using the inclusion strategy. Similarly 

high inclusion percentages were also observed in the other search results: Mascot 

PeptideProphet, Mascot Percolator, X!Tandem and X!Tandem PeptideProphet 

(see Table 4.1). 

Table 4.1 Inclusion Strategy Results. 

 
Mascot 

Mascot 

PeptideProphet 

Mascot 

Percolator 
X!Tandem 

X!Tandem 

PeptideProphet 

Total PSMs 1601 2587 2605 2070 2402 

Leftover PSMs
a
 5 57 55 36 65 

Inclusion Rate 99.7% 97.8% 97.9% 98.3% 97.3% 

a: Leftover PSMs are those PSMs found in the original run but cannot be re-

identified in the inclusion runs.  

4.3.2  Identification Result Summary 

Table 4.2 summarizes the results obtained from the RPLC-QTOF MS/MS 

analysis of the human anaplastic large cell lymphoma cell line (SU-DH-L1). In 

total, 401,762 and 571,675 spectra were collected from the unlabeled and 
18

O-

labeled samples, respectively. All the spectra were searched by both Mascot and 

X!Tandem search engines and all the potential PSMs were given scores or 

probabilities after being statistically evaluated by Mascot, PeptideProphet, Mascot 

Percolator and X!Tandem. Arbitrary score thresholds were set up for all the 

statistical tools. In the original Mascot, a significance threshold of 0.05 was used. 

For PeptideProphet results, a minimal probability of 0.95 was applied. For Mascot 
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Percolator results, the new Mascot Identity threshold of 13, which is equivalent to 

a maximum posterior error probability (PEP) of 0.05, was applied. In the original 

X!Tandem results, the maximum expect value of 0.05 was adopted to maintain a 

similar global FDR as the original Mascot result where the significance threshold 

of 0.05 was applied.  

 As shown in Table 4.2, 94,121 unlabeled PSMs, corresponding to 3,263 

proteins, were identified by the original Mascot search engine with an estimated 

global FDR of 0.4%. Among those PSMs, 93,381 are matches with C-terminal 

lysine or arginine. A new term, KR PSM, was coined to represent those PSMs. 

Theoretically only KR PSMs can be labeled by 
18

O-labeling process. After 

removing redundant PSMs, 19,123 unique PSMs were obtained. Instead of only 

processing the Mascot result from the unlabeled data set by Mascot, it was found 

that after evaluating Mascot results by PeptideProphet or Mascot Percolator, the 

total numbers of PSMs was evidently higher at 120,105 and 130,774, increasing 

the original Mascot result by 27.6% and 38.9%, respectively. Consequently, the 

numbers of proteins identified by Mascot PeptideProphet and Mascot Percolator 

were also higher: 4,130 and 3,946, respectively. The Mascot PeptideProphet result 

still maintained a relatively low global FDR of 0.5% and the Mascot Percolator 

result had a low q-value score of 0.4%, indicating an error rate similar to that of 

the original Mascot result. When processing the unlabeled spectra by the 

X!Tandem search engine, instead of Mascot, 99,186 unlabeled PSMs were 

obtained. Among them, 98,175 could be categorized as KR PSMs. After removing 

redundant PSMs, 19,671 unique PSMs were found. After processing the 
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X!Tandem results with PeptideProphet, a 10.1% improvement in PSMs was 

observed. Global FDR estimation was also performed to ensure a good quality of 

data. It was found that the estimated global FDR was 0.4% in both X!Tandem and 

X!Tandem PeptideProphet results. When all the results from different statistical 

tools were combined, a total of 141,389 unlabeled PSMs, including 140,079 were 

KR PSMs, were found.  
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Table 4.2 Identification Result Summary. 

 
Unlabeled Data Set 

18
O-labeled Data Set 

 

All the 

PSMs 
KR PSMs

a
 

Unique 

PSMs
b
 

Proteins
c
 

All the 

PSMs 
KR PSMs

a
 

Unique 

PSMs
b
 

Proteins
c
 

Mascot 94,121 93,381 19,123 3,263 125,540 124,308 21,682 3,590 

Mascot  

PeptideProphet 
120,105 119,105 23,941 4,130 178,642 176,854 28,854 4,766 

Mascot 

Percolator 
130,774 129,634 25,155 3,946 192,932 191,024 30,020 4,481 

X!Tandem 99,186 98,175 19,671 3,498 149,571 147,852 23,861 4,115 

X!Tandem 

PeptideProphet 
109,229 108,150 21,357 3,623 166,493 164,616 25,786 4,265 

Combined Result 141,389 140,079 27,740 4,982 211,584 209,298 33,154 5,661 

a. KR PSMs are the PSMs that contain C-terminal lysine or arginine. Only KR PSMs can be labeled by 
18

O-H2O in this experiment. 

b. Unique PSMs are calculated by removing the redundant PSMs from all the PSMs; 

c. Protein identifications are derived from all the PSMs, not just K, R PSMs.  
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Detailed analysis showed that 55.6% of all the PSMs were identified 

by all five statistical tools (see Figure 4.2), whilst each statistical tool has its 

own strength in matching peptide sequences to MS/MS spectra. Of them, the 

original Mascot results had the lowest number of identifications, due to the 

fact that Mascot rejects many PSMs because of the high identity thresholds 

with Mascot (an average identity threshold of 33). It is a well-known issue of 

the original Mascot scoring scheme that the Mascot identity threshold is 

unreasonably high for relaxed parameter settings or when searching very large 

databases
8
. Meanwhile, Mascot Percolator had the highest number of PSMs, 

covering 97.7% of the original Mascot result and 94.3% of the Mascot 

PeptideProphet result. It clearly showed the high sensitivity of Mascot 

Percolator in terms of identifying PSMs. It is believed that the main 

improvement of Mascot Percolator comes from its advanced statistical 

analysis, with which it can discern many false negative identifications with 

relatively low Mascot ion scores from random matches.  
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Figure 4.2 Venn diagram analysis of all the unlabeled PSMs from Mascot, 

Mascot PeptideProphet, Mascot Percolator, X!Tandem and 

X!Tandem PeptideProphet. 

Comparison of the original Mascot result with the original X!Tandem 

result shows that 79,408 PSMs could be identified by both search engines, 

constituting 84.4% of the original Mascot result and 80.1% of the X!Tandem 

result. The identification differences mainly originate in the different statistical 

analyses those two search engines provide. As  shown in Figure 4.2, when 

PeptideProphet was applied to both search results to provide similar statistical 

analyses, the number of common PSMs increased by 19,565 (24.6%) to a total 

of 98,973. It indicated that both search engines often assign the same sequence 

to the same spectrum but different confidence levels to the same PSM. As a 
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result, some PSMs that are agreed upon by both search engines, especially the 

ones with confidence levels close to the cut-off value, might not pass the score 

thresholds of those two search engines at the same time to be considered as 

identified. While both search engines agree in most cases, X!Tandem can still 

identify PSMs that Mascot cannot (Figure 4.2), and vice versa. However, the 

validity of those PSMs, as well as all the common PSMs, remains to be 

examined. 

After applying the inclusion strategy to the 
18

O-labeled data set, 

125,540, 178,642, 192,932, 149,571 and 166,493 labeled PSMs were 

identified with estimated global FDRs of 0.3%, 0.6%, 0.4% (q-value), 0.4% 

and 0.4%, from Mascot, Mascot PeptideProphet, Mascot Percolator, 

X!Tandem and X!Tandem PeptideProphet, respectively. After combining all 

the PSMs, 211,584 PSMs were found. Upon removal of all the redundant 

PSMs, 33,154 unique PSMs remained. Because of the inclusion strategy 

applied in the experiment, a high overlap between the unlabeled and labeled 

data sets was to be expected. In fact, 96.5% of PSMs in the unlabeled data set 

had 
18

O-labeled counterparts. 

In summary, upon the protein level fractionation and RPLC-QTOF 

MS/MS analysis of the human cell lysates, a large collection of unlabeled and 

labeled PSMs were identified with relatively low estimated global FDRs. 
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Clearly, with the assistance of advanced statistical tools (PeptideProphet and 

Percolator), the number of identifications can be significantly improved. 

However, the validity of those PSMs remained questionable due to the lack of 

experimental corroboration. Therefore an 
18

O-labeling validation method was 

designed to address this issue. In principle, all the correct unlabeled PSMs that 

had C-terminal lysine or arginine (KR PSMs) could be experimentally 

corroborated by their labeled counterparts, while it was unlikely for random 

matches to find a labeled counterpart and thus become validated.  

4.3.3  18
O-labeling Validation 

As described in the experimental section, all the KR PSMs from the 

unlabeled data set had undergone 
18

O-labeling validation. In brief, during the 

process of validation, an unlabeled PSM needed to pass three filters: 1. the 

unlabeled PSM needed to be confidently identified by at least one of the 

statistical tools; 2. one confidently identified 
18

O-labeled counterpart had to be 

found; 3. both unlabeled and labeled PSMs of the same peptide sequence had 

to elute at similar %B. 

In total, 3,914,793 comparisons were done, including comparisons 

between redundant peptide identifications. In the process of validation, the 

first two filters can be easily set up. As described in the experimental session, 

a significance threshold of 0.05 was used for the original Mascot results, while 
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a minimum probability of 0.95 was adopted for all the PeptideProphet results. 

At the same time a minimum new Mascot score of 13 (equivalent to maximum 

local FDR of 0.05) was chosen for Mascot Percolator results. Finally a 

maximum E-Value of 0.05 was selected for X!Tandem results. By 

implementing those two quality filters, it was ensured that most low quality 

PSMs were excluded from the validation process. Consequently, the chance of 

erroneously validating by low quality PSMs was greatly reduced.  

Lastly, the third quality filter was set up and applied. If an unlabeled 

and a labeled PSM lead to the same peptide sequence identification, they 

constitute a spectral pair. Theoretically, in a spectral pair, if both PSMs were 

true identifications, they would elute at very similar %B from a 

chromatographic column. Therefore, it is reasonable to state that if in a 

spectral pair the %B at which the unlabeled and labeled PSMs elute differ too 

much, it is very likely that at least one of them does not contain the correct 

peptide identification information. In order to determine a reasonable %B 

difference cut-off between labeled and unlabeled PSMs in a spectral pair, a 

control experiment was carried out by analyzing the labeled sample in 

replicate and then examining the %B difference between replicate 

identifications. Figure 4.3A shows the distribution plot of the %B difference 

between replicate PSMs. It is very similar to Figure 4.3b, which is the 

distribution plot of the %B difference between labeled and unlabeled PSMs in 
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spectral pairs. As illustrated in both figures, most comparisons present a %B 

difference within 0.5%. The distribution shown in Figure 4.3B reveals that 95% 

of the cases have a %B difference of 0.5% or lower. Thus, a cut-off of 0.5% 

was adopted as the maximum %B difference to reject potentially false peptide 

matches during comparisons of unlabeled and labeled peptide spectra. 

After applying those three quality filters, true positives can be isolated 

from all the identifications in each statistical result. Initial analysis showed 

that KR PSMs from the original Mascot result only constituted 66.7% of total 

KR PSMs, while the percentages for the Mascot PeptideProphet, Mascot 

Percolator, X!Tandem and X!Tandem PeptideProphet results were 85.0%, 

92.2%, 70.1% and 77.2%, respectively (see Table 4.3). These results clearly 

showed that Mascot Percolator had the highest sensitivity in terms of 

identifying PSMs. After validation, a total of 136,027 unlabeled PSMs (3,954 

proteins) could be validated by this strategy, which constituted 97.1% of the 

total unlabeled KR PSMs. As shown in Table 4.3, Mascot Percolator provided 

the highest number of KR PSMs (129,634), constituting 92.2% of the total KR 

PSMs identified, as well as the highest number of validated PSMs (127,405), 

constituting 93.7% of the total validated PSMs. At the same time, the 

validation rate of the Mascot Percolator result maintained a high value 

(98.3%), comparable to the validation rates from the other statistical tools, 

99.6%, 98.5%, 99.2% and 99.0% for Mascot, Mascot PeptideProphet, 
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X!Tandem and X!Tandem PeptideProphet, respectively. Clearly, Mascot 

Percolator is not just the most sensitive tool to identify PSMs, but also 

provides fairly reliable results. 

 

 

Figure 4.3 Number of comparisons as a function of eluting organic solvent 

composition (%B) difference from (A) the comparison of 

replicate identifications and (B) the comparison of unlabeled and 

labeled matches. 
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Table 4.3 Validation Summary. 

Tools 
KR  

PSMs
a
 

Fractions of 

KR PSMs
b
 

KR 

Proteins
c
 

Validated 

PSMs 

Validation 

Rate
d
 

Fractions of 

Validated 

PSMs
e
 

Validated 

Proteins 

Mascot 93,381 66.7% 3,256 93,041 99.6% 68.4% 3,180 

Mascot  

PeptideProphet 
119,105 85.0% 4,114 117,363 98.5% 86.3% 3,612 

Mascot 

Percolator 
129,634 92.2% 3,933 127,405 98.3% 93.7% 3,618 

X!Tandem 98,175 70.1% 3,476 97,364 99.2% 71.6% 3,285 

X!Tandem 

PeptideProphet 
108,150 77.2% 3,607 107,108 99.0% 78.7% 3,386 

Combined Result 140,079 100% 4,944 136,027 97.1% 100% 3,954 

a. KR PSMs are the PSMs that contain C-terminal lysine or arginine. Other tryptic PSMs are not included due to their inability of being labeled by the 18O strategy. 

b. Fractions of KR PSMs are calculated by dividing the number of KR PSMs from one statistical tool by the total number of KR PSMs from all tools. 

c. KR protein identifications are derived from KR PSMs. 

d. Validation Rate is calculated by dividing the number of validated KR PSMs from one statistical tool by the total number of KR PSMs from the same tool. 

e. Fractions of KR PSMs are calculated by dividing the number of validated KR PSMs from one statistical tool by the total number of validated KR PSMs from all 

tools. 
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Next, PSMs that are identified only by one statistical tool were 

examined to assess their chance of being validated. It is commonly believed 

that if a PSM can be identified by multiple tools, it is considered more reliable 

than the one that can only be identified by one tool. As shown in the Venn 

diagram analysis (see Figure 4.2), in Mascot Percolator results, there are 

10,036 PSMs that are only found by Mascot Percolator. The numbers for the 

other statistical tools used in this study are 75, 3,660, 474 and 1,442 for 

Mascot, Mascot PeptideProphet, X!Tandem and X!Tandem PeptideProphet, 

respectively. Among all those tools, Mascot Percolator has the highest number 

of tool-specific PSMs. However, the question of their reliability still remains 

unanswered. The validation rates of those tool-specific PSMs were calculated 

after the application of the 
18

O-labeling validation method. Figure 4.4, a bar 

graph of these validation rates shows that Mascot-specific PSMs had the 

lowest validation rate. However, considering the low number of Mascot-

specific PSMs, no convincing conclusion can be drawn. However, for all the 

other tools where more than 400 tool-specific PSMs were found, it is 

statistically meaningful to calculate validation rates. As shown in Figure 4.4, 

Mascot Percolator-specific PSMs have the highest validation rate (88.5%), 

compared with the validation rates of 76.0%, 56.2% and 82.2% in Mascot 

PeptideProphet-specific PSMs, X!Tandem-specific PSMs and X!Tandem 

PeptideProphet-specific PSMs, respectively. Compared with the overall PSMs 
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validation rate (97.1%), they are still noticeably lower, indicating that, in 

general, those tool-specific PSMs are not as reliable as the ones that can be 

identified by multiple tools. Further study showed that PSMs identified by 

more statistical tools are more likely to be validated, thus being true PSMs. In 

Figure 4.5, the PSMs’ validation rate is plotted against the number of tools 

that they can be found in. Clearly, as the number of tools increases, the 

validation rate of PSMs, which indicates that the reliability of PSMs, increases 

as well. In summary, this study experimentally corroborated the common 

belief that if PSMs can be identified by multiple tools, they are more reliable 

than those that can only be identified by one tool. 

 

Figure 4.4 The validation rates of tool-specific PSMs. 
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Figure 4.5 Validation rate as a function of number of tools by which PSMs 

can be identified. 

Due to the fact that PSMs that are identified by multiple tools show 

high reliability, it was interesting to investigate if the best way to generate 

reliable results is by overlapping results from different statistical tools. 

Therefore, the overlapped PSMs between two or more statistical tools were 
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Mascot and Mascot Percolator, Mascot and X!Tandem, Mascot 

PeptideProphet and Mascot Percolator, Mascot PeptideProphet and X!Tandem 

PeptideProphet, X!Tandem and X!Tandem PeptideProphet, and Mascot, 
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shown. Of those combinations, Mascot PeptideProphet and Mascot Percolator 

provided the highest number of validated PSMs while maintaining a similarly 

high validation rate (99.4%). However, there was a downside to this strategy 

as well. Overlapping results from different statistical tools decreased the total 

number of PSMs. Compared to the number of KR PSMs (119,105) identified 

by Mascot PeptideProphet alone, the combination of Mascot Percolator and 

Mascot PeptideProphet only had 112,365, a noticeable 5.7% drop in the 

number of total PSMs  observed. In order to achieve the same validation rate 

by adjusting the probability cut-off in Mascot PepetideProphet, a bigger drop 

(12.6%) in the total PSM numbers was observed. Clearly, even though both 

methods could improve the reliability of consequent PSMs, simply 

overlapping results from different statistical tools could achieve the same 

reliability without suffering as much loss in identification number. 
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Table 4.4 Combination of Statistical Tools 

Tools  

Mascot 

& 

Mascot 

PeptideProphet  

Mascot 

& 

Mascot 

Percolator  

Mascot 

& 

X!Tandem  

Mascot 

PeptideProphet  

& 

Mascot 

Percolator  

Mascot 

PeptideProphet  

& 

X!Tandem  

PeptideProphet  

X!Tandem  

& 

X!Tandem  

PeptideProphet  

Mascot 

& 

Mascot 

PeptideProphet  

& 

Mascot 

Percolator  

KR PSMs  93,186  91,213  78,734  112,365  98,076  96,873  91,098  

Validated KR PSMs  92,900  91,052  78,710  111,675  97,904  96,319  90,946  

Validation Rate  99.7% 99.8% 100.0% 99.4% 99.8% 99.4% 99.8% 

 



 

148 

 

A more detailed examination was performed by analyzing those statistical 

tools individually. First, the original Mascot result was examined. As shown in 

Table 4.3, Mascot has the highest validation rate (99.6%) among all the tools used 

in this study. It demonstrated the great specificity of Mascot’s original scoring 

algorithm. At the same time, with the lowest number of validated KR PSMs 

(93,041, 68.4% of the total validated KR PSMs) inferior sensitivity compared to 

other statistical tools used in this study is suggested. As discussed in the result 

summary session, one widely believed suspect of the poor sensitivity is the high 

identity threshold assigned by the Mascot algorithm. It is very likely that a PSM 

has a decent Mascot ion score but is still considered insignificant because it fails 

to pass the identity threshold. Therefore, the relationship between the original 

Mascot score and the chance of the corresponding PSMs being validated was 

inspected. As illustrated in Figure 4.6, a trend was observed: as the original 

Mascot ion score increased, it was more likely that the corresponding PSMs were 

validated. When PSMs had Mascot ion scores lower than 20, the validation rate 

was only 86.3%. When PSMs had Mascot ion scores higher than 35, almost all the 

PSMs (99.9%) could be validated. It is intuitive that a higher Mascot ion score 

corresponds to a lower likelihood of the PSM being a random assignment. 

Interestingly, when PSMs have ion scores between 25 and 30, most of them are 

considered insignificant by Mascot as they failed to pass their identity thresholds. 

However, they still demonstrated an acceptable validation rate (94.8%). In fact, if 

the identity threshold was set to be 25, the overall validation rate would only 

decrease slightly from 99.6% to 99.0%. However, the number of validated PSMs 
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would increase by 18.6% (17,453 validated PSMs). Using the validation method, 

it was experimentally confirmed that the origin of the poor sensitivity comes from 

an unreasonably high identity threshold of Mascot. To address this issue, one 

might consider using different statistical strategies to evaluate the significance of 

PSMs (e.g., target-decoy strategy, Mascot Percolator or Mascot PeptideProphet). 

 

Figure 4.6 The validation rates of PSMs within different Mascot score ranges. 

Of those strategies, the target-decoy strategy is one of the most popular 
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target-decoy strategy can provide a reliable and unbiased assessment of the true 

error rate of the Mascot result, a straight 45 degree line should be observed. In 

Figure 4.7, the global FDR of the Mascot result estimated by the target-decoy 

strategy strongly agreed with the experimental error rate. It indicated that such 

statistical estimation is an accurate reflection of the true error rate of the Mascot 

result. Moreover, if the global FDR was slightly increased from 0.4% 

(significance threshold = 0.05) to 0.8%, the number of true positives can be 

improved by 25.3% (23,577 validated PSMs). Clearly replacing the identity 

threshold with a global FDR threshold estimated by target-decoy strategy is one 

possible alternative to avoid poor sensitivity.  

 

Figure 4.7 1 - validation rate as a function of estimated global FDR by the 

target-decoy approach. 
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well as Mascot did. It showed that such statistical evaluation underestimated the 

true error rate of the X!Tandem result. This underestimation of global FDR could 

be ascribed to the multi-stage function (refinement option) of X!Tandem searches. 

In X!Tandem searches, the refinement option allows X!Tandem to first filter the 

concatenated database before exploring every conceivable identification, which 

increases the proportion of target sequences in the remaining database and 

consequently biases against the decoy search. As a result, the number of decoy 

matches will not be a truthful reflection of incorrect matches in the target search, 

giving rise to unfair underestimation of global FDR for X!Tandem results. This 

compliance issue has been brought up and widely discussed in several studies
30-32

. 

Now using the validation method, it has been experimentally confirmed. 

Therefore it is reasonable to state that target-decoy strategy might not be the best 

choice to estimate global FDR with respect to multi-stage search engines like 

X!Tandem.  

Finally, it is of great interest to know which statistical tool performs the 

best. Since every tool possesses its own way to assess the reliability of the result, 

it is difficult to compare them on the same scale. However, thanks to the 

advantage of experimental validation, not only can one calculate the true error rate 

of results from each tool, it is also possible to put them on the same scale to do the 

comparison. The number of validated PSMs was plotted against true error rate (1 

– validation rate) for every statistical tool to investigate how well those tools 

perform at different error levels. In Figure 4.8, the number of validated PSMs 

truthfully reflects the number of true positives of each search result, while 1- 
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validation rate represents the true error rate of each search result. As shown in 

Figure 4.8, Mascot Percolator appeared to outperform the other four statistical 

tools with respect to sensitivity and specificity at all error levels. Among Mascot 

related results, the identification number improvement from both Percolator and 

PeptideProphet still held true, suggesting two possible alternatives to alleviate the 

unduly conservative problem of Mascot. The identification improvement of 

X!Tandem from PeptideProphet was confirmed as well. Therefore, it is 

reasonable to conclude that using an advanced statistical tool to process the 

original result further is certainly advantageous. However, it is worth mentioning 

that all the comparisons were done at a low error rate range. Because the 

validation is not applied to all the spectra but only the PSMs identified by those 

statistical tools at different thresholds, it is not feasible to extend the comparison 

to a higher error rate range. At higher error rate regions more studies are needed 

before any conclusions can be drawn. 
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Figure 4.8 Number of validated PSMs as a function of 1 - validation rate. 
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of the poor sensitivity of Mascot when searching large space. Apart from using 

Mascot Percolator or Mascot PeptideProphet, using global FDR estimated by 

target-decoy strategy as a threshold instead of using Mascot identity threshold was 

a possible way to improve its sensitivity. Besides, it was also confirmed that 

X!Tandem (with refinement function on) is not compliant with target-decoy 

strategy. Moreover, it was found that applying Percolator or PeptideProphet to 

original search results could truly improve the number of true PSMs while 

maintaining a relatively low error rate. Finally, the investigation on the 

performance of all five statistical tools revealed that Mascot Percolator 

outperformed the other four statistical tools.  

This study was focused on the development of an experimental approach 

to validate PSMs and using those validated PSMs to examine the performance of 

statistical tools on the peptide level. In the near future, a detailed study at the 

protein level will be carried out using the same validated dataset. Moreover, after 

the experimental validation process, all the validated unlabeled PSMs are ready to 

be compiled, processed and stored into a spectral library for future usage. The 

detail procedure of constructing a spectral library can be found in the 

experimental section of Chapter 3. 
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Chapter 5  

Strategies for Identification of Single-hit Proteins with High 

Confidence
*
 

 

5.1  Introduction 

Throughout the past decade, several sophisticated database search engines, 

such as Mascot
1
, SEQUEST

2
 and X!Tandem

3
, have been developed to correlate 

tandem mass spectra (MS/MS) with peptide sequences and consequently infer 

protein identification. This widely used strategy is called bottom-up proteomics
4
. 

While these search engines have been proven to be robust in proteomic studies, 

their results are not error-free. The resultant peptide-spectrum matches (PSMs) 

often require statistical assessments, either individual or global, to attain a final 

identification list that is deemed to be correct identifications at a defined 

confidence level
5
. For instance, a probability-based Mascot ion score and identity 

threshold are implemented in the Mascot algorithm to measure reliability of each 

individual PSM (www.matrixscience.com). Alternatively X!Tandem arrives at the 

same goal by reporting expectation values (E-values) of PSMs
6
. In addition, 

estimation of the global false discovery rate (FDR) of peptide identifications can 

be achieved by using the target-decoy approach. Moreover, sophisticated 

statistical tools, such as Percolator
7, 8

 and PeptideProphet
9
 have been created to 

                                                 
* A version of this chapter has been prepared for submission as Xu, M, Li, L., Strategies for 

Identification of Single-hit Proteins with High Confidence. 
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provide both a global and local FDR estimation of peptide identifications. At the 

protein level, several tools, such as ProteinProphet
10

, Mayu
11

 and MS-GF
12

, have 

also been developed to estimate global and local FDRs.  

Even though so many attempts have been successfully made to gauge the 

reliability of peptide and protein identifications, many researchers are still 

cautious about reporting protein identifications
13-15

. In principle, a protein is 

identified when at least one of its associated peptides is matched (assuming the 

same peptide sequence is not present elsewhere in the proteome). However, 

because of the error-prone property of peptide identification tools, it has become 

common practice to selectively report proteins with at least two unique peptides 

(multi-hits) as reliable identifications while ignoring proteins with only one 

unique peptide (single-hits) if no additional corroboration can be provided. 

Theoretically, this “two-peptide rule” is based on the multiplication rule of 

independent events in probability theories. If a protein is identified by two 

different peptide sequences, the probability of this protein being a random match 

is equal to the multiplication of probability of each peptide being random. 

Intuitively, this rule can provide a stringent control on the quality of protein 

identifications. In practice, however, this rule appears to be unduly conservative 

and causes enormous protein information loss (approximately one third of all 

protein identifications
16

). In a recent study
12

, Gupta and Pevzner argued that the 

“two-peptide rule” should be abandoned and single-hits should be treated at par as 

multi-hits with control of the protein FDR. While we fully agree with the 

argument that the commonly used “two-peptide rule” jeopardizes the sensitivity-
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specificity trade-off in protein identifications, in our opinion more studies, 

especially experimental validation studies, should be carried out to evaluate the 

accuracy of protein level FDR estimation before “the two-peptide rule” is 

completely replaced with protein level FDR gauges.  

In Chapter 3 and 4, two approaches have been successfully developed to 

experimentally validate PSMs. By comparing unlabeled and isotope-labeled 

matches of the same peptide sequence, it was demonstrated that not only is 

experimental validation a good way to isolate correct PSMs from search results 

and thus construct spectral libraries, but it can also be used to assess how accurate 

statistical tools estimate error rate of search results at the peptide level
17, 18

. In the 

experimental workflows of Chapter 4, an inclusion strategy was used to perform 

targeted analyses for 
18

O-labeled PSMs in the LC-MS/MS runs. With multiple 

inclusion runs, it was possible to find almost all 
18

O-labeled counterparts of pre-

identified unlabeled PSMs. Using a retention time-based data filtering strategy, 

true and false identifications in the unlabeled PSMs were easily distinguished. 

Based on those experimentally validated PSMs, the performance of some 

commonly used statistical tools, such as Mascot, Mascot PeptideProphet, Mascot 

Percolator, X!Tandem and X!Tandem PeptideProphet, was carefully inspected. 

Since the experimental validation approach enabled the differentiation 

between true and false peptide identifications, one can easily determine whether a 

protein identification is true or false by looking for a true peptide identification 

within. Due to the categorization of true and false protein identifications, protein 
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level FDRs can be truthfully calculated. In this work, a large experimentally 

validated human data set was used (over 400,000 spectra and 140,000 PSMs) to 

study the validity of protein identifications and consequently develop practical 

strategies to deal with single-hits. It was demonstrated that a simplistic peptide 

level FDR gauge cannot provide an acceptable error rate control for protein 

identifications. By further categorizing single-hits, a highly reliable subgroup can 

be isolated. Using multiple search engine results of the same data set or applying 

different thresholds on single-hits and multi-hits are good ways to report protein 

identifications. 

 

5.2  Experimental 

5.2.1  Data Sets 

The MS/MS data set used in this study was obtained from human cell 

samples (SU-DH-L1 cells, a human lymphoma cell line
19

). The detailed protocol 

used to generate this dataset can be found in Chapter 4. Briefly, proteins were 

extracted from human cells and then fractionated by reversed phase liquid 

chromatography. Next, each fraction of proteins was digested into peptide 

mixtures by trypsin. The desalted digests were analyzed using a QTOF Premier 

mass spectrometer (Waters, Manchester, U.K.) equipped with a nanoACQUITY 

Ultra Performance LC system (Waters, Milford, MA) to collect MS/MS spectra. 

In total, 401,762 MS/MS spectra were collected. 

5.2.2  Database Search 
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Using Proteinlynx Global Server 2.3.0 (Waters) all raw LC-ESI data were 

lock-mass corrected, de-isotoped, and converted to peak list files. A concatenated 

database was constructed by combining the IPI human database (version 3.68, 

size ≈ 48 MB, 87,061 sequences) and its reserved proteome sequences together. 

Database searches were carried out using both Mascot (version 2.2.1) and 

X!Tandem (The Global Proteome Machine Organization, 2007.07.01).   

In the Mascot search,  the search parameters were selected as follows: 

enzyme, trypsin; missed cleavages, 1; peptide tolerance, 30 ppm; MS/MS 

tolerance, 0.2 Da; fixed modification, carbamidomethyl (C); variable 

modifications, ammonia-loss (N-term C), N-Acetyl (protein), oxidation (M), 

pyro-Glu (N-term Q), and pyro-Glu (N-term E).  

In the X!Tandem search, the search parameters, including the variable 

modification settings in the refinement function, were kept the same as Mascot 

searches. The search was restricted to the aforementioned concatenated database. 

5.2.3  Peptide Identification 

In this study, five different statistical tools were used to identify peptides 

from MS/MS spectra, including the original Mascot, the original X!Tandem, 

Mascot Percolator, Mascot PeptideProphet and X!Tandem PeptideProphet.  

In the original Mascot search result, the significance threshold of 0.05 was 

applied to all PSMs. Therefore, if a PSM has a Mascot ion score no less than its 

Mascot identity threshold, it was deemed as identified. By the definition of 



 

163 

 

Mascot scoring algorithm, the application of the significance threshold of 0.05 

ensures that the probability of an identified PSM being random in the 

identification list is no more than 5%.  

X!Tandem implements a different scoring scheme compared to  Mascot. 

In X!Tandem E-value (Expectation value) is calculated for each PSM  to provide 

statistical evaluation. In its definition
6
, E-value is the number (not probability) of 

random matches that would be expected to have the same or better scores. 

Therefore the higher the E-value, the less likely such PSM is to be deemed as a 

valid identification. Here, in the original X!Tandem search result, an arbitrary 

maximum E-value for PSM is set to 0.05.  

Mascot Percolator
7
 was also used to statistically evaluate the Mascot result 

so as to improve the number of identifications. After being processed by 

Percolator, each PSM is assigned with two statistical values, posterior error 

probability (PEP) and q-value. The q-value of each PSM can be understood to be 

the minimal global FDR  required to include such PSM in the search result
8, 20

. 

PEP can be deemed as the local FDR of a PSM, which indicates the probability of 

such match being random. In Mascot Percolator processed results, the original 

Mascot p-values are replaced with PEP values. As a result based on the Mascot 

scoring equation, Mascot Score = -10×log10(p), the new Mascot score of 13 

represents that the local FDR of such PSM is 0.05. By applying the Mascot score 

threshold of 13 to the Mascot Percolator result, it is guaranteed that the maximum 
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local FDR of the search result is 5%. In this study, the minimum new Mascot 

score of 13 was chosen. 

PeptideProphet
10, 21

 was the other machine learning algorithm used to 

statistically evaluate the results both from Mascot and X!Tandem. As a part of the 

statistical software called Trans Proteomic Pipeline (version 4.3, JETSTREAM 

REV 1, Build 200909091257 MinGW), PeptideProphet assigns a probability to 

each PSM. Based on the definition of PeptideProphet probability, it is the 

probability of a PSM being correct. Therefore, 1 – probability can be understood 

as the local FDR of a PSM. In this study, a concatenated search and non-

parametric modeling
22-24

 were used.  The negative distribution can be readily 

pinned down by decoy hits when fitting the bimodal distribution in 

PeptideProphet to maximize peptide identification while maintaining low error 

rate. In PeptideProphet treated results, the minimum probability of 0.95 (local 

FDR of 0.05) was chosen. 

5.2.4  PSM Validation 

In Chapter 4, a strategy was devised to experimentally validate identified 

PSMs. The concept of this experimental validation is fairly straightforward. First, 

the 
18

O-labeling protocol was applied to each fraction of peptide digests to label 

all the tryptic peptides with C-terminal lysine or arginine (KR PSMs). Next, based 

on the masses of all the unlabeled KR PSMs, mass-to-charge ratios of their 
18

O-

labeled counterparts can be readily calculated. Combined with retention 

information, inclusion lists for the 
18

O-labeled RPLC-MS/MS runs can be easily 
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generated. According to the inclusion list, multiple targeted RPLC-MS/MS 

analyses were performed on all the 
18

O-labeled fractions in order to identify the 

18
O-labeled counterparts of all the unlabeled KR PSMs. Finally, a comparison was 

carried out between the eluting organic composition (%B) of the unlabeled and 

labeled identifications of the same peptide sequence. If they differed by more than 

0.5%, the unlabeled PSM was not to be considered validated by that labeled PSM 

even if they appear to share the same sequence. Theoretically, if an unlabeled KR 

PSM is a correct identification, its 
18

O-labeled counterpart should be also be 

identified with similar %B. After applying the validation method, all the 

unlabeled KR PSMs can be categorized into two groups, validated KR PSMs and 

invalidated KR PSMs. The validated KR PSMs can be deemed as true positives, 

while the invalidated ones are false positives.  

5.2.5  Protein Identification 

Due to the limitation of the validation method, only KR PSMs were used 

to infer protein identification. A protein that has at least one peptide score above 

the chosen threshold is considered to be identified. A protein that has at least one 

validated peptide score above the chosen threshold is considered validated. 

According to the number of unique peptides a protein has, protein identification 

can be categorized into two groups, single-hit (only one unique peptide) and 

multi-hit (more than one unique peptide). Furthermore, the name homologous 

single-hit (HSH) is coined to describe the single-hits that share at least one 

common peptide with other protein identification(s). Alternatively, strict single-
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hit (SSH) is used to describe the single-hits that only have one unique peptide and 

share no common peptide with any other protein identification. 

5.2.6  Data Processing 

All in-house programs were written in Perl 5.12 (http://www.perl.org). 

Charts and graphs were generated using R’s plotting packages (http://www.r-

project.org/) and Microsoft Excel 2007.  Software was run on standard desktop 

and laptop computers running Windows 7 (Home Edition).  

 

5.3  Results and Discussion 

From the RPLC-QTOF MS/MS analyses, a total of 401,762 spectra were 

collected. All the spectra were searched using both Mascot and X!Tandem search 

engines and all the potential PSMs were given scores or probabilities after being 

statistically evaluated by Mascot, PeptideProphet, Mascot Percolator and 

X!Tandem. Arbitrary score thresholds were set up for all the statistical tools. For 

original Mascot, the significance threshold of 0.05 was used. For PeptideProphet 

results, the minimal probability of 0.95 was applied. For Mascot Percolator results, 

the new Mascot Identity threshold of 13, which is equivalent to a maximum local 

FDR of 0.05, was applied. In original X!Tandem results, the maximum expect 

value of 0.05 was adopted. 
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As shown in Table 5.1, 94,121 PSMs were identified by original Mascot 

search engine with an estimated global FDR of 0.4%. Among those PSMs, 93,381 

of them are matches with C-terminal lysine or arginine (KR PSMs). After 

evaluating Mascot results by PeptideProphet or Mascot Percolator, the total 

numbers of PSMs were evidently higher, 120,105 and 130,774, increasing the 

original Mascot result by 27.6% and 38.9%, respectively. At the same time, 

Mascot PeptideProphet maintained a relative low error rate of 0.5% while Mascot 

Percolator had a q-value score of 0.4%, indicating a similar error rate as the 

original Mascot result. When processing  all the MS/MS spectra by X!Tandem 

search engine,  99,186 PSMs were collected, among which 98,175 can be 

categorized as KR PSMs. After processing X!Tandem results with PeptideProphet, 

108,150 KR PSMs was observed. It was found that the global FDR was 0.4% in 

both X!Tandem and X!Tandem PeptideProphet results. Further analysis at peptide 

level shows that 77,924 PSMs can be found by all five statistical tools, 

constituting the majority of all the KR PSMs, 55.6% (Figure 5.1A). As expected, 

each statistical tool has its own strengths when matching peptide sequences to 

MS/MS spectra. As shown in Figure 5.1A, the original Mascot appears to be the 

most agreeable statistical tool, showing only 75 unique PSMs. Meanwhile, 

Mascot Percolator seems to be the most sensitive tool, contributing 92.5% of all 

the KR PSMs.  

Due to the advantages of our 
18

O-labeling validation approach, the correct 

PSMs were able to be differentiated from spurious matches. Briefly, if an 

unlabeled KR PSM is correct, its 
18

O-labeled counterpart should be confidently 
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identified with similar %B as well. After applying the validation method, all the 

unlabeled KR PSMs can be categorized into two groups, validated KR PSMs and 

invalidated KR PSMs. The validated KR PSMs can be deemed as true positives, 

while the invalidated ones are false positives. Based on the number of true and 

false positives, PSM validation rates can readily calculated for results from all 

statistical tools. As shown in Table 5.1, in the original Mascot result, 93,041 out 

of 93,381 KR PSMs can be experimentally validated. The PSM validation rate is 

99.6%. Similarly, the PSM validation rates for the other statistical tools are 98.5%, 

98.3%, 99.2% and 99.0% for Mascot PeptideProphet, Mascot Percolator, 

X!Tandem and X!Tandem PeptideProphet, respectively. 
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Table 5.1 Identification and Validation Result Summary. 

 Mascot 

Mascot 

PeptideProphet 

Mascot 

Percolator X!Tandem 

X!Tandem 

PeptideProphet 

All the PSMs 94,121 120,105 130,774 99,186 109,229 

KR PSMs
a

 93,381 119,105 129,634 98,175 108,150 

Proteins
b

 3,256 4,114 3,933 3,476 3,607 

Multi-hits
c

 2,246 2,588 2,730 2,392 2,507 

Single-hits
d

 1,010 1,526 1,203 1,084 1,100 

SSHs
e

 899 1,362 1,059 982 989 

HSHs
f

 111 164 144 102 111 

Validated KR PSMs 93,041 117,363 127,405 97,364 107,108 

Validated Proteins 3,180 3,612 3,618 3,285 3,386 

Validated Multi-hits 2,246 2,580 2,714 2,388 2,502 

Validated Single-hits 934 1,032 904 897 884 

Validated SSHs 823 870 761 795 773 

Validated HSHs 111 162 143 102 111 

PSM Validation Rate
 g

 99.6% 98.5% 98.3% 99.2% 99.0% 

Protein Validation Rate 97.7% 87.8% 92.0% 94.5% 93.9% 

Multi-hits Validation 

Rate 100.0% 99.7% 99.4% 99.8% 99.8% 

Single-hits Validation 

Rate 92.5% 67.6% 75.1% 82.7% 80.4% 

SSHs Validation Rate 91.5% 63.9% 71.9% 81.0% 78.2% 

HSHs Validation Rate 100.0% 98.8% 99.3% 100.0% 100.0% 

a. KR PSMs: PSMs with C-terminal lysine or arginine; 

b. Proteins: protein identifications inferred from KR PSMs; 

c. Multi-hit: protein identifications with at least two unique peptides; 

d. Single-hit: protein identifications with only one unique peptide; 

e. SSHs (Strict Single-Hits): the single-hits that only have one unique peptide and share no 

common peptide with any other protein identification; 

f. HSHs (Homologous Single-Hits): the single-hits that share at least one common peptide with 

other protein identification(s); 

g. Validation Rate is calculated by dividing the number of validated matches (peptides or 

proteins) by the total number of matches. It can be understood as 1 – FDR. 
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Figure 5.1 Venn diagram analysis of (A) all the KR PSMs and (B) protein 

identifications from Mascot, Mascot PeptideProphet, Mascot 

Percolator, X!Tandem and X!Tandem PeptideProphet. 
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Based on the all the KR PSMs, the number of protein identifications were 

inferred for the result from each statistical tool. As shown in Table 5.1, the protein 

identification numbers are 3,256, 4,114, 3,933, 3,476 and 3,607 for Mascot, 

Mascot PeptideProphet, Mascot Percolator, X!Tandem and X!Tandem 

PeptideProphet, respectively. Interestingly, at the peptide level, Mascot Percolator 

showed the highest identification number (129,634 PSMs). Meanwhile, Mascot 

PeptideProphet appeared to have the highest number of protein identifications. 

Clearly, maximized number of peptide identifications does not necessarily give 

rise to the highest number of protein identifications. It happens that peptides of 

several proteins are identified in one result, while peptides of various proteins are 

matched in another. It was also observed that different statistical tools matched 

different numbers of single-hit protein identifications, ranging from 1,010 to 

1,527 (see Table 5.1). They consisted of approximately one third of the total 

number of protein identifications in the result from each statistical tool and were 

normally not considered as confident as multi-hits. Conventionally, researchers 

only report proteins with at least two peptides as confident identifications. 

Without additional corroboration, those single-hits eventually would end up being 

ignored, which inevitably leads to a substantial loss of information. However, 

including all single-hits might impair the reliability of the results. Therefore, how 

to report identification results of shotgun proteomic experiments is of great 

importance. With the assistance of our validated PSMs, better ways of reporting 

protein identifications may be found. 
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Before diving into the validation results, all the protein identifications 

from each tool were compared. As shown in Figure 5.1B, 2,866 proteins can be 

found by all five statistical tools, constituting 58.0% of all protein identifications. 

While the results from the statistical tools tested agreed well for most protein 

identifications, there were still some protein identifications unique to one 

statistical tool. Tool-specific protein identifications are coined to describe those 

proteins. From the previous study on peptide identifications (see Chapter 4), it 

was observed that the common identifications were more reliable than those tool-

specific identifications. Overlapping identifications from different results might 

shed some light on how to process protein identifications and eventually generate 

a reliable report without losing too much information. Using validated results 

from Chapter 4, that question can surely be answered.  

Since all the KR PSMs can be categorized into validated (true positives) 

and invalidated KR PSMs (false positives) after PSM validation process, it is not 

difficult to infer the validity of protein identifications. In principle, as long as the 

protein identification has one validated unique peptide identification, it is 

considered a validated protein identification (true positive). Based on the number 

of validated protein identifications, the protein validation rate can be easily 

calculated. As shown in Table 5.1, the majority of protein identifications can be 

validated. The protein validation rates were 97.5%, 87.5%, 91.8%, 93.8% and 

93.6% for Mascot, Mascot PeptideProphet, Mascot Percolator, X!Tandem and 

X!Tandem PeptideProphet, respectively. Comparing to PSM validation rate of the 

same statistical tool, the corresponding protein validation rate was apparently 
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lower. This often occurs because random peptide matches (false positives) do not 

cluster to individual proteins at the same rate as correct peptide matches (true 

positives) do. Random peptide matches tend to cluster to single-hit proteins, while 

correct peptide matches are apt to cluster to multi-hit proteins.  At the protein 

level, the number of false positives drops to much less than the number of true 

positive when inferring protein identifications from peptide matches. 

Understandably, a low global FDR at the peptide level (1 – PSM validation rate) 

does not necessarily result in a low global FDR at the protein level (1 – protein 

validation rate). For instance, in the Mascot PeptideProphet result, each PSM had 

a probability score of no less than 0.95, equivalent to a maximum local FDR of 

0.05, and the global FDR at the peptide level of this result was as low as 1.5%, 

indicating high reliability. However, after protein inference, the global FDR at the 

protein level was found to be at an unacceptable level of 12.2%. Clearly, when the 

goal of the study is protein identification (e.g., biomarker discovery, proteome 

profiling), a simple FDR control at the peptide level is not sufficient to ensure the 

reliability of protein identifications, let alone the reliability of single-hits. With 

respect to single-hits, the number of validated proteins, validated single-hits and 

validated multi-hits and their validation rates were tabulated. Compared with the 

multi-hit validation rates, single-hit validation rates are constantly lower in all 

cases, indicating their inferior reliability. In fact, a student t-test was performed 

and the result showed that at the 99% confidence level the single-hit validation 

rate is significantly lower than the multi-hits validation rate. Considering that the 

average validation rate of multi-hits was 99.7%, it is evident that the single-hits 
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were the main source of false positives. In the case of the original Mascot result, 

in which multi-hits validation rate was as high as 100.0%, the single-hits were the 

only contributor of false protein identifications. Even with a low global FDR at 

the protein level (2.3% in the Mascot result), the reliability of single-hits still 

cannot be fully guaranteed (single-hits validation rate is 92.5% in Mascot). 

From validation rates comparison, it is established that single-hits are not 

as reliable as multi-hits. Consequently, accepting all single-hits without any 

additional corroboration is not recommended. However, it does not mean that one 

should abandon single-hits all together. After all, the loss of one third of protein 

identifications is too costly. In order to resolve this dilemma, we first turned to the 

definition of single-hits. By definition
15

, single-hits are the proteins identified by 

only one unique peptide. It was found that single-hits can be further categorized 

into two subgroups. The name homologous single-hit (HSH) was coined to 

describe the single-hits that share at least one common peptide with other protein 

identification(s), while strict single-hit (SSH) was used to describe the single-hits 

that only have one unique peptide and share no common peptide(s) with any other 

protein identification. Based on this categorization, it was found that HSHs only 

constituted on average 10.6% of the single-hits in each result. Nevertheless HSHs 

showed a significantly higher validation rate than SSHs. As shown in Table 5.1 

and Figure 5.2, the average validation rate of HSHs is as high as 99.6%, 

comparable to the validation rate of multi-hits (99.7%). If multi-hits can be 

deemed as reliable identifications, so should HSHs. Consequently by simply 

further categorizing single-hits, homologous single-hits was isolated as a sub-
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group with highly reliable identifications. It is reasonable to accept HSHs as 

reliable identifications as they have validation rate as high as multi-hits. 

 

Figure 5.2 Validation rates for different types of protein identifications. 

However, among all the single-hits, HSHs were not the major subgroup. 

SSHs consisted of 90.4% of all the single-hits on average. They still showed a 

relatively low validation rate (77.3% ± 9.2%), suggesting low reliability. 

Therefore, how to discern the true SSHs from false SSHs holds the key to 

improve the reliability of single-hits. Firstly, SSHs from different results were 

overlapped and analyzed. At the peptide level, common PSMs were found to be 

more reliable than those tool-specific identifications (see Chapter 4). At the 

protein level, a similar trend for SSHs should be discovered as well considering 

that a SSH only contains one unique PSM. Therefore, SSHs were categorized 

according to by how many tools they were identified and the validation rate in 

each category was calculated (see Figure 5.3). As expected, the majority of 

validated SSHs (88.5%) can be identified by more than one tool, while the 
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majority of invalidated SSHs (75.0%) can only be identified by one tool. The 

validation rate increased as the number of tools by which SSHs can be identified 

increased. The SSHs that were identified by at least 4 tools, had validation rates as 

high as 99.4% and constituted 67.5% of all the validated SSHs. Clearly, the 

number of tools by which SSH can be identified is a good indicator of whether 

such SSH is true or false identification. 

 

Figure 5.3 The numbers of SSHs (validated and invalidated) as a function of the 

number of tools by which SSHs can be identified. The percentage 

labels in the figure indicate the validation rates of SSHs. 

In practice, not every research group has access to so many statistical tools. 

It is impractical to process single-hits that way. Since Mascot and X!Tandem are 

two of the most popular search engines, the common protein identifications from 

those two original results were first investigated. After overlapping all the protein 

identifications from both results, only 477 common SSHs can be found and their 
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validation rate was 99.2%. However,  once the comparison was broadened from 

just among SSHs to all the protein identifications, allowing SSHs to compare with 

HSHs and multi-hits, it was found that 654 SSHs in the original Mascot result can 

also be identified by X!Tandem. The validation rate for those SSHs is 99.4%, 

indicating reliability as high as multi-hits (see Figure 5.4). Comparing to the total 

number of validated SSHs from Mascot result (823), simply overlapping protein 

identifications with the X!Tandem result managed to recover 79.5% of them. 

Overall, 3,011 proteins were identified with a global protein FDR of 0.1% (Table 

5.2). Similarly, it is found that 555 SSHs in the original X!Tandem result can also 

be identified by Mascot with a validation rate of 99.3% (Figure 5.4). This simple 

overlapping method was able to salvage 69.2% of all the SSHs in X!Tandem. It 

appears that X!Tandem did a better job recovering SSHs in Mascot result than 

Mascot recovering SSHs in X!Tandem. This is due to the fact that there were 

fewer proteins identified in the original Mascot result. When comparing 

X!Tandem’s SSHs with all the protein identifications in the Mascot 

PeptidePropeht result, which contained the highest number of protein 

identifications,  720 out of 795 validated SSHs (90.6% recovery rate) in 

X!Tandem were recovered. Those SSHs from X!Tandem result had a validation 

rate of 98.4%, still indicating high reliability. Overall, 3,045 proteins were 

identified with a global protein FDR of 0.2% (see Table 5.2). In conclusion, 

simply overlapping SSHs from one result with all the protein identifications in 

another is a good way to differentiate true and false SSHs. 
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Figure 5.4 The number of SSHs (validated and invalidated) from Mascot that 

can be corroborated by X!Tandem and the The number of SSHs 

(validated and invalidated) from X!Tandem that can be corroborated 

by Mascot. The percentage labels in the figure indicate the validation 

rates of SSHs. 

Overlapping results from two search engines is a simple and effective way 

to isolate true SSHs from false SSHs. Nonetheless it requires two different search 

engines. It might be inapplicable to a lot of researchers who only have access to 

one. Therefore if there was an approach that requires only the original software 

(e.g., Mascot or X!Tandem), it would be of great help to many researchers. First, 

the original Mascot result was examined. In principle, random peptide matches 

should generally have a lower Mascot ion score than correct ones. So by 

increasing the identity threshold of each PSM, the number of random matches 

would decrease. 
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Table 5.2 Comparison of Protein Report Approaches. 

 

Mascot X!Tandem 

 

Unique 

Peptides Proteins 

Global FDR 

(Protein) 

Unique 

Peptides Proteins 

Global FDR 

(Protein) 

Overlap
a

 16,447 3,011 0.1% 16,454 3,045 0.2% 

Two-Stage
b

 16,306 2,870 0.5% 16,418 3,010 0.8% 

One-Stage
c

 14,156 2,743 0.5% 13,320 2,907 0.8% 

a. In the overlap approach, multi-hits and HSHs are accepted as confident protein 

identifications while only the SSHs inferred from the common PSMs found in 

both Mascot and X!Tandem results are reported. 

b. In the two-stage approach, all the multi-hits and HSHs are inferred from PSMs 

that pass a relatively lenient score threshold (significance threshold of 0.05 in 

Mascot and maximum E-value of 0.05 in X!Tandem) while a more stringent 

threshold applies to PSMs that lead to SSHs (significance threshold of 0.01 in 

Mascot and maximum E-value of 0.005 in X!Tandem).  

c. In the one-stage approach, all the PSMs used to infer protein identifications 

pass a stringent threshold (significance threshold of 0.01 in Mascot and 

maximum E-value of 0.005 in X!Tandem). 

As shown in Figure 5.5A, as the identity threshold gradually increases, the 

validation rate of SSHs increases, indicating that the reliability of SSHs is 

increasing. However, this gain in  reliability is not without any price. As 

illustrated in Figure 5.5A, as validation rate climbs up, the number of validated 

SSHs declines. Since the original identity threshold was obtained when the 

significance threshold of 0.05 was applied, based on the definition of Mascot 

identity threshold (Mascot identity threshold = -10×log10(p/n)), increasing the 

original identity threshold of each PSM by 7 would be equivalent to set the 

significance threshold to 0.01.  Additionally, it was found that after increasing the 

identity threshold by 7, the validation rate of the remaining SSHs improved from 
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91.5% to 97.2%, indicating a less than 5.0% error rate among SSHs.  The 

remaining SSHs constituted 60.6% of all the SSHs from the original Mascot result. 

In the original X!Tandem result a similar trend was found. As shown in Figure 

5.5B, as the E-value cut-off decreases, indicated by the increasing values of –

log(E) in the x-axis, the validation rate of SSHs increases and the number of 

validated SSHs declines. If a more stringent E-value cut-off (0.005) was chosen, 

61.8% of validated SSHs can be recovered with a validation rate of 96.1%, 

indicating a less than 5.0% error rate among SSHs.  It is therefore advantageous to 

utilize a two-stage scoring scheme to deal with protein identifications when only 

one search engine is available. In the first stage, a relatively lenient score cut-off 

(e.g., significance threshold of 0.05 in Mascot or maximum E-value of 0.05 in 

X!Tandem) is chosen for the all the PSMs. Next, all the peptide matches that are 

above  the score cut-off are used to infer protein identifications. While keeping all 

the multi-hits and HSHs intact, applying a more stringent score cut-off (e.g., 

significance threshold of 0.01 in Mascot and maximum E-value of 0.005 in 

X!Tandem) on all the SSHs  improves their reliability.  
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Figure 5.5 (A) The validation rate of SSHs and the number of validated SSHs as 

functions of the identity threshold increase in Mascot. (B) The 

validation rate of SSHs and the number of validated SSHs as 

functions of -log(E) in X!Tandem. 

Since the application of a more rigorous score cut-off on SSHs can 
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adopted for all the PSMs? In our opinion the answer is no. Considering that the 

main source of errors in protein identifications lies in SSHs, the extra-stringent 

score cut-off on multi-hits or HSHs would not help reduce the error rate of the 

result. On the other hand, applying such stringent score cut-off on the entire result 

will definitely reduce the number of peptide identifications and consequently 

cause some information loss (e.g., reduced numbers of protein identifications and 

sequence coverage). The result of our two-stage method was compared with the 

result of applying a stringent score cut-off on all the PSMs (one-stage method). In 

Mascot, the two-stage method (applying significance threshold of 0.05 on PSM 

level and significance threshold of 0.01 on SSHs alone) outperformed the one-

stage method (applying significance threshold of 0.01 on PSM level) with respect 

to the number of PSMs, unique peptide sequences and protein identifications. As 

shown in Table 5.2, the sole stringent identity threshold on all the PSMs can give 

rise to 13.2% and 4.4% reduction in unique peptides and protein identifications, 

respectively. At the same time, the global FDR on the protein level were the same 

for both methods, indicating the same high reliability of protein identifications. In 

X!Tandem, the superiority of the two-stage approach was also demonstrated. 

 

5.4  Conclusions 

In this study, experimentally validated PSMs from Chapter 4 were used to 

examine the validity of protein identifications from Mascot and X!Tandem results.  

The advantages of experimental validation made it became possible to isolate true 
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and false positives at both peptide and protein levels. With the numbers of true 

and false positives, one can readily calculate (not estimate) the true global FDRs 

of peptide and protein identifications. It was demonstrated that a low global FDR 

at the peptide level cannot guarantee a low global FDR at the protein level. If the 

goal of one’s study is protein identification (e.g., biomarker discovery, proteome 

profiling), a simplistic global FDR control at the peptide level is insufficient to 

gauge the reliability of protein identifications. In this study, it was found that the 

commonly used “two-peptide rule” can in fact significantly improve the reliability 

of protein identifications but is unduly conservative. In order to retrieve the 

correct single-hits eliminated by the “two-peptide rule”, a further categorization of 

all the single-hits discovered two subgroups: HSH and SSH. It was observed that 

HSHs were as reliable as multi-hits and thus recommended to be treated as such. 

With respect to the majority of single-hits, SSHs, two straightforward solutions 

were proposed to discern the true positives from false ones. If one has access to 

two search engines (e.g., Mascot and X!Tandem), one can compare SSHs from 

one result with all protein identifications from the other. The SSHs that can be 

found in both results are highly reliable and should be deemed as confident 

protein identifications. If there is only one search engine available, a two-stage 

threshold approach seems to be a rational choice. In the first stage, a relatively 

lenient score cut-off (e.g., significance threshold of 0.05 in Mascot or maximum 

E-value of 0.05 in X!Tandem) is chosen for the all the PSMs. Next, all  peptide 

matches that are above the score cut-off can be used to infer protein 

identifications. While keeping all the multi-hits and HSHs intact, applying a more 
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stringent score cut-off (e.g., significance threshold of 0.01 in Mascot and 

maximum E-value of 0.005 in X!Tandem) on all the SSHs can improve their 

reliability. Using either approach, more protein identifications can be identified 

than the overly conservative “two-peptide rule” without sacrificing the global 

protein FDR.  
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Chapter 6  

X!Tandem Percolator: Accurate and Sensitive Peptide 

Identification Tool
*
 

 

6.1  Introduction 

During the past decade tandem mass spectrometry has progressed to be a 

popular and powerful tool to study complex biological systems for proteomic 

studies
1-3

. In conjunction with liquid chromatography separations, thousands of 

tandem mass spectra are routinely acquired and in need of correlation to peptide 

sequences and eventually protein identifications. Instead of manual interpretation 

of each spectrum, search engines, such as Mascot
4
 and X!Tandem

5
, were 

developed to match the spectra with peptide sequences by comparing the 

experimental spectrum with the theoretical fragmentation patterns of individual 

peptide sequences derived from the protein sequences in a proteome database. To 

measure reliability of each individual peptide-spectrum match (PSM), a 

probability-based Mascot ion score and identity threshold are implemented in the 

algorithm of Mascot (www.matrixscience.com). When the significance threshold 

of 0.05 (p = 0.05) is applied, it ensures that the probability of an identified PSM 

being random in the identification list is no more than 5%. Meanwhile, X!Tandem  

                                                 
*
A version of this chapter has been prepared for submission as Xu, M, Li, Z., Li, L., X!Tandem 

Percolator: Accurate and Sensitive Peptide Identification Tool. Zhendong Li contributed partially 

to data processing of this work. 
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accomplishes the same goal by reporting expectation values (E-values, the 

number of random matches that would be expected to have the same or better 

scores) of PSMs
6
. Afterwards, the concept of global false discovery rate (FDR) 

was proposed
7
 as the standard to regulate the reporting of search results. The most 

common approach to estimate the global FDR of a search result is the target-

decoy approach
8
, which is based on the use of randomized decoy proteome 

databases. As the target-decoy approach enables the error control at the peptide 

level for different results from different search engines, it cannot provide any 

statistical evaluation on the reliability of each individual PSM.  

In addition to the target-decoy strategy, more sophisticated algorithms 

were developed to provide both global FDR estimation as well as individual 

assessment of PSMs. They re-evaluate the qualities of PSMs from the original 

search result and assign new probability to each PSM by examining the properties 

of correct and incorrect PSMs. For instance, PeptideProphet
9
 uses an expectation-

maximization algorithm to fit the bimodal distribution formed by discriminant 

scores of correct and incorrect PSMs in the histogram and thus computes the 

probability of each PSM and global FDR of the entire result. Alternatively, 

Percolator
10

 implements a different machine learning approach. After searching 

all the spectra in both target and decoy databases, Percolator extracts a vector of 

features that are related to the quality of the match (e.g., mass error and PSM 

score) from both target and decoy PSMs. Assuming that the features of correct 

matches (represented by high scoring target matches) differ from the features of 

incorrect matches (represented by decoy matches), an iterative classification 
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process is applied to find the best separation between correct and incorrect 

matches. After several iterations, the system converges and generates a robust 

classifier that can be used to calculate the probability of each PSM being random.  

Among all the statistical strategies, Percolator was demonstrated to be one 

of the most sensitive and accurate tools to evaluate PSMs. Due to the adaptive 

nature of Percolator, Percolator has been successfully extended from the 

application of SEQUEST
11

 results to the use of Mascot results
12

. When 

implementing Percolator with Mascot, the selection of the features used by 

Percolator was shown to be vitally important to the performance of Percolator. 

When the authors included extra features that included information such as 

intensity and fragment error, the sensitivity was boosted by 17%. 

In this work, Percolator program has been successfully interfaced with 

X!Tandem using a very simple PHP program. Since it is critical to select the best 

discriminating features for Percolator as to achieve the best performance, a set of 

experimentally validated PSMs were used to optimize and validate our choice of 

features. In a previous study
13

, Xu and Li described a method of using 
15

N-

labeling for validating the spectrum-to-sequence assignments and constructing a 

more reliable MS/MS spectral library (see Chapter 3). Due to the advantages of 

this experimental validation method, not only are a large set of spectrum-to-

sequence assignments justified, the annotation of the spectra are also validated, 

giving us an opportunity to examine the spectral characteristics of true peptide 

identifications. By comparing the features of those experimentally validated 
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PSMs (34,993 MS/MS spectra) with those of false identifications, a 

comprehensive set of features can be chosen for Percolator in an objective and 

rational manner. Followed by the optimization of features, the accuracy of 

X!Tandem Percolator was demonstrated by comparing the estimated false 

discovery rate of the validated data set with the factual false discovery rate. By 

comparing the results from our X!Tandem Percolator and the original X!Tandem, 

superior sensitivity and specificity of the X!Tandem Percolator result was 

demonstrated. Lastly, X!Tandem Percolator was applied to results with various 

search conditions, such as large MS/MS data sets from different species, human 

(46,494 MS/MS spectra) and E. coli (88,306 MS/MS spectra) to examine 

robustness. As a result, our X!Tandem Percolator clearly improved the number of 

peptide identifications at the same level of FDRs in both cases.  

 

6.2  Methods 

6.2.1  Sample Preparation  

Three different MS/MS data sets are used in this study. They are all 

originally collected using a QTOF Premier mass spectrometer (Waters, 

Manchester, U.K.) equipped with a nanoACQUITY Ultra Performance LC system 

(Waters, Milford, MA). The experimental details can be found in the experimental 

section of Chapter 3 and 4. 

6.2.2  E. coli Data Set 
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 The E. coli K12 cells (E. coli, ATCC 47076) were cultured, collected and 

disrupted. They were subsequently subjected to reduction, alkylation, acetone 

precipitation, trypsin digestion and strong cation exchange (SCX) fractionation. 

The detailed protocol was described in Chapter 3.  All the peptide fractions were 

then desalted and analyzed by RPLC-QTOF to collect MS/MS spectra. In total, 

88,306 spectra were collected and searched with both Mascot (version 2.2.1) and 

X!Tandem (The Global Proteome Machine Organization, 2007.07.01, version 

Cyclone) using the same search parameters including: enzyme, trypsin; fixed 

modifications, carbamidomethylation (C); variable modifications, acetylation (N-

term), ammonia-loss (N-term C), pyro-Glu (N-term Q), pyro-Glu (N-term E), and 

oxidation (M); precursor mass error, 30 ppm, fragment mass error, 0.2 Da, 

maximum missed cleavages, 2.  

6.2.3  Human Data Set 

Similar to the E. coli data set, SU-DH-L1 cells
14

 (A human lymphoma cell 

line, ATCC) were cultured, harvested, disrupted by cell lysis buffer and subjected 

to acetone precipitation, reduction, alkylation, protein reverse-phase fractionation 

and trypsin digestion. Then RPLC-QTOF-MS/MS analysis was performed on all 

the desalted peptide fractions to collect MS/MS spectra. Overall this human data 

set contained 46,494 MS/MS spectra and was searched by Mascot and X!Tandem 

with the same parameters aforementioned in the E. coli data set section.  

6.2.4  Validated E. coli Data Set 

This data set consists of 34,993 experimentally validated spectral 

identifications. Each of them was examined using a 
15

N-metabolic labeling 
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validation process. This approach is described in detail in Chapter 3. Briefly, 

unlabeled and 
15

N-labeled E. coli spectra were collected and further compared by 

overlaying the spectra of unlabeled and labeled matches of the same peptide 

sequence for validation. Two cut-off filters, one based on the number of common 

fragment ions and another one on the similarity of intensity patterns among the 

common ions, were developed and applied to the overlaid spectral pairs to reject 

incorrectly assigned spectra. The search parameters used were the same as those 

for the E. coli data set.  

6.2.5  Databases 

Target-decoy search strategy proposed by Elias and Gygi in 2007
8
 was 

applied by searching the MS/MS spectra against two separate databases (target 

and decoy databases) to calculate the global false discovery rate (FDR). The target 

databases used for E. coli and human data sets are E. coli K12 proteome 

sequences (size ≈ 2 MB, 4,339 sequences) and international protein index human 

database (IPI human database, version 3.68, size ≈ 48 MB, 87,061 sequences), 

respectively. The construction of a decoy database in this study was to simply 

reverse all the protein sequences found in target database.  

6.2.6  Percolator Processing 

The raw search results from Mascot (*.dat file) and X!Tandem (*.xml file) 

were imported to Percolator (version 2.01). The original result files were then 

parsed. Scoring features were extracted accordingly and sent to Percolator for 

further training steps.  
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In Mascot Percolator, the following features were used: precursor mass, 

charge, score difference between the best and second best match, precursor mass 

error, fraction of variable modification sites that was modified, the number of 

missed cleavages, fragment mass error, total intensity of the spectrum, total 

intensity of peaks that were used to identify a peptide, relative total intensity of 

peaks that were used to identify a peptide, fraction of ions that were matched in an 

ion series.  

X!Tandem has a different scoring scheme than Mascot. Instead of 

reporting the probability of a PSM being random, X!Tandem first plots a 

distribution of calculated hyper scores from a specific search and then 

extrapolates E-values to provide an statistical evaluation for each identification. It 

was therefore found that the features extracted from X!Tandem were not exactly 

the same as the ones from Mascot or SEQUEST. All the features used in the 

X!Tandem Percolator were listed and explained in Table 6.1. As shown in Table 

6.1, all those features can be categorized into 3 different groups, spectral quality, 

scoring and PSM statistics. In the category of spectral quality, all  three features 

represent the intrinsic quality of an MS/MS spectrum regardless of its peptide 

assignment. In the category of scoring, all of the 8 features come from the original 

X!Tandem scoring algorithm and are used to measure the reliability of the 

sequence to spectrum assignment. Lastly, all the features in the PSM statistics 

category involve the information that are not directly used by X!Tandem but still 

might indicate the difference between true and false PSMs. They all can be 

switched on or off based on different requirements of applications.  
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6.2.7  Comparison 

In order to evaluate the performance of X!Tandem Percolator, various 

comparisons among Mascot, Mascot Percolator, original X!Tandem and 

X!Tandem Percolator were  carried out. For the experimental validated data set 

(see section 6.2.4), factual FDR was proposed to measure the error rate of search 

results. Because of experimental validation of sequence assignments, correct and 

incorrect PSMs can be physically isolated by comparing the X!Tandem or 

Percolator result with the validated result. Therefore, factual false discovery rates 

(FDRs) were accurately calculated by dividing the number of total PSMs with the 

number of incorrect PSMs. For real shot-gun proteomic data (see section 6.2.2 

and 6.2.3), q-values were used instead. By definition, q-value is the minimal 

global FDR at which a PSM is accepted. Using widely accepted programs as 

references (e.g., Mascot and Mascot Percolator), receiver operating characteristic 

curves (ROC curves) were plotted to examine the number of PSMs at different 

factual FDR or q-value levels to demonstrate the improved performance of 

X!Tandem Percolator.   

6.2.8  X!Tandem Percolator 

X!Tandem Percolator was developed based on a mix of PHP and Perl 

scripts in an Apache server and it is integrated directly into X!Tandem. A simple 

click at the interface was all that needed to begin calculating features, re-ranking 

peptide identifications, assigning statistical values and exporting results in 

Percolator. X!Tandem Percolator can calculate features at 57 PSM per second on 

a quadcore 3.20GHz Phenom II  955 AMD processor. 
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Table 6.1 Complete List of Features Extracted from X!Tandem Search Results. 

Index Feature  

name 

Feature type Feature description 

1 Mass Spectral quality The observed mass [M+H]
+
 

2 - 5 Charge Spectral quality Four Boolean features indicating the charge state 

6 MaxI Spectral quality The maximum fragment ion intensity 

7 PSMSumI Spectral quality The log10 value of the sum of all of the fragment ion intensities 

8 Log(E) Scoring The log10 value of the expectation value for the peptide identification 

9 - 10 IonScore Scoring The summed intensities of different types of fragment ions (y, b ions) 

11 - 12 IonNo Scoring The number of peaks that matched between the theoretical and the test mass spectrum  

13 HyperScore Scoring X!Tandem's score for the peptide Identification 

14 NextScore Scoring The HyperScore of the second best peptide match of the spectrum 

15 DeltaScore Scoring The difference of HyperScore between the best and the second best peptide matches 

16 DeltaM PSM statistics The difference in calculated and observed mass (Th) 

17 RelDeltaM PSM statistics The relative difference in calculated and observed mass (ppm) 

18 - 19 IonFrac PSM statistics The fraction of fragment ions being matched in an ion series (y, b ion series) 

20 MissClea PSM statistics The number of missed internal enzymatic (tryptic) sites 

21 FragError PSM statistics The average mass error of all the fragment ions 

22 AnnoPeaks PSM statistics The fraction of high intensity peaks being annotated as fragment ions 

23 ModNo PSM statistics The number of variable modifications 

24 ModFrac PSM statistics The fraction of modifiable residues being found modified (variable) 

25 EnzN PSM statistics Boolean value: is the peptide preceded by an enzymatic (tryptic) site? 

26 EnzC PSM statistics Boolean value: does the peptide have a C-terminal enzymatic (tryptic) site? 

27 PepLeng PSM statistics The length of the peptide identification 
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6.3  Results and Discussion 

6.3.1  Feature Selection 

Even though Percolator is a semi-supervised learning method that does not 

need to construct a manually curated training set, in order to train a support vector 

machine, a variety of specific features that are capable of discriminating between 

true and false PSMs is still required. Understandably, the choice of features is 

vitally important. First, a list of features was composed that are supposedly 

capable of differentiating true and false PSMs. As shown in Table 6.1, there are 

27 features that are able to measure the intrinsic quality of spectra and the quality 

of PSMs. The rationale is that spectral level information might indicate what types 

of MS/MS spectra (e.g., precursor charge states and fragment ion intensities) are 

more likely to lead to correct identifications. The features in the scoring category, 

such as Log(E) values, measure how reliable PSMs are individually from the 

perspective of the search engine. Finally, the features in the category of PSM 

statistics suggest how likely one PSM is to lead to a true identification from a 

global perspective. Different from the original and Mascot Percolator, it was 

decided not to include features that exploit protein-level information because 

protein-level feedback might change the score distribution of spurious PSMs, 

resulting in PSM misclassification
15, 16

.  

In order to determine if these features will actually discriminate between 

true and false positives, a set of experimentally validated PSMs from a previous 

study on E. coli cell lysates were used as standards (see Chapter 3). The 
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advantage of using this data set was that every one of the 34,993 PSMs was both 

correctly annotated and experimentally validated. The stringent experimental 

validation procedure that all those PSMs had undergone made them a set of highly 

reliable peptide identifications and consequently a perfect positive training set to 

extract features from. In addition, unlike the limited number of peptides from 

several standard proteins, the greater number of peptide identifications from this E. 

coli cell lysates made the analysis more statistically robust. In terms of the 

negative training set, the matches from the decoy search would be good 

representatives of false PSMs. By comparing the listed features from both results, 

the difference between true and false identifications were visualized in box plots. 

This comparison was important for all the chosen features, considering that they 

are the key to differentiate PSMs.  

For all the features in the scoring category, features 8 – 15 in Table 6.1, in 

principle, should be able to show good discriminatory power. For instance, feature 

8, log(E), is the log10 value of the expectation value for the peptide identification 

calculated by X!Tandem. As the main X!Tandem score to determine the 

reliability of PSMs, it was not surprising to see that true PSMs have a distinctively 

different distribution of log(E) than decoy PSMs. As shown in Figure 6.1A, the 

notches around the median log(E) values on the box plots for both true and decoy 

PSMs did not overlap with one another, indicating that the median log(E) value in 

true PSMs was significantly lower than that in decoy PSMs. Similarly, as 

indicated in Figure 6.1B, D, E, F and H, the same conclusion can be drawn for 

features including hyperscore, delta hyperscore, y ion score and y ion number. On 
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the other hand, as Figure 6.1C and G suggest, the difference between true and 

decoy PSMs was not as great as the rest of the features in Figure 6.1. However, 

this does not mean that they should not be included in the X!Tandem or 

Percolator  algorithm. On the contrary, they can both be explained. In terms of the 

feature called next highest hyper score, considering that the next best match is 

supposed to be a random match, it was reasonable to see little difference between 

true and decoy PSMs for this feature. As for the b ion number, the little difference 

between true and decoy PSMs can be ascribed to the intrinsic fragmentation 

preference of tryptic peptides. Because most tryptic peptides have a more basic C-

terminus, during the fragmentation process, y ions are preferably observed. 

Consequently, the number of observed b ions is much less than that of y ions in 

true PSMs and very similar to the number of randomly matched ions (y or b ions) 

in decoy PSMs. 
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Figure 6.1 The difference between true and decoy PSMs in scoring features. 
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Apart from the features that were directly used by the X!Tandem 

algorithm, a set of features that indicate PSM statistics were also used. Take the 

feature fragment error as an example. In its definition, it represents the average 

absolute mass error of all the matched fragment ions. Generally, in a sequence 

database search, in an attempt to fully annotate an MS/MS spectrum, a wide mass 

tolerance window for fragment ions is cast. Unfortunately, it inevitably increases 

the possibility of random matches. However, in principle, the true fragment ions 

should have a smaller average absolute mass error than false ones, especially 

when MS/MS spectra were acquired with decent accuracy (e.g., QTOF data). 

Based on this concept, the fragment error should be able to provide a unique 

perspective to pin down false PSMs, which are primarily identified by detection 

of false fragment ions in MS/MS spectra. As illustrated in Figure 6.2F, the 

notches around the median values on the box plots did not overlap with one 

another, indicating that the median value of the fragment error in true PSMs was 

significantly lower than that in decoy PSMs. In addition, a new feature called 

AnnoPeaks was created, which was defined as the fraction of high intensity peaks 

(at least 70% intensity of the most intense peak) that were matched as fragment 

ions. Since peptides fragment in a reasonably predicable manner, most high 

intensity peaks in an MS/MS spectrum should be accounted for in a true PSM. 

Meanwhile in a false PSM fragment ions are matched by random peaks regardless 

of their intensities. Thus the feature AnnoPeaks should be able to provide another 

distinct perspective to distinguish true and false PSMs. By visualizing the 

distribution of AnnoPeaks values for both true and decoy PSMs in the box plot 
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(Figure 6.2B), the non-overlapping notches around their median values suggested 

that AnnoPeaks was indeed a good feature to discern true and false PSMs. 

Similarly, as indicated in Figure 6.2C, D, E, G and H, the same conclusion can be 

drawn for features including Precursor Mass Error, B, Y IonFrac, MissClea, 

ModNo and ModFrac (see their definitions in Table 6.1).  
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Figure 6.2 The difference between true and decoy PSMs in PSM statistics 

features. 
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In the category of spectral features, it was conventional for Percolator 

programs (SEQUEST and Mascot Percolator platforms) to include them in the 

process of differentiation. The rationale was that spectral level information might 

indicate what types of MS/MS spectra (e.g., precursor charge states and fragment 

ion intensities) are more likely to lead to correct identifications. Since those 

features are not a direct measurement of the quality of a sequence assignment, 

they might not be powerful discriminators to differentiate true and false positives 

when used individually. That was exactly what has been observed in this study. 

(see Figure 6.3). As shown in Figure 6.3A, the distributions of the quasi-

molecular ion masses were very similar between the true and decoy PSMs.  The 

median values of their quasi-molecular ion masses were not distinguishable. 

Similarly, based on Figure 6.3B and C, the same conclusion can be drawn for both 

the total fragment intensity and the maximum fragment ion intensity features. 

However, even though the spectral features individually were not very indicative 

in terms of differentiating PSMs, they still might contribute to the task when 

working collaboratively with each other or with features from the PSM category.  

The best way to examine their contribution is through feature removal analysis on 

real shotgun proteomic data. The E. coli data set (see section 6.2.2),  was searched 

with X!Tandem and run on Percolator, eliminating one subset of features at a time. 

As shown in Figure 6.4, spectral features did make a contribution in the process of 

differentiation, even though individually they did not show strong discriminatory 

power. The number of estimated correct PSMs at a q-value of 0.01 was 

summarized, as well as the percentage decrease in estimated correct PSMs 
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relative to using all the features. As shown in Table 6.2, removing spectral quality 

features led to a 1% drop in performance, while removing PSM statistics features 

resulted in a 9% drop. However, comparing to the original X!Tandem result, 

X!Tandem Percolator equipped with all the features can significantly improve the 

number of PSMs. 

 

 

Figure 6.3 The difference between true and decoy PSMs in spectral features. 

Table 6.2 Performance of X!Tandem Percolator When Fed with Different 

Features. 

 Number of estimated 

correct PSMs 

Drop in 

performance 

All features 11478 - 

Spectral quality features removed 11314 1% 

PSM statistics features removed 10442 9% 

Original X!Tandem 8786 23% 
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Figure 6.4 Performance of X!Tandem (XT) and X!Tandem Percolator (XP) 

when fed with different features. 

6.3.2  Performance on Validated Data Set 

After building a list of useful features based on an experimentally 

validated data set, a comparison was carried out on the performance of X!Tandem 

and X!Tandem on the same data set to examine X!Tandem Percolator’s accuracy. 

Unlike most normal shot-gun proteomic data in which only a part of spectra (30 to 

70%) are identifiable, all the un-identifiable spectra were filtered out in this 

validated data set. This  means that any robust statistical tool should be able to 

recover close to 100% of all the pre-validated PSMs. In fact, it was found that 

X!Tandem alone was able to re-identify 98.9% of all the pre-validated PSMs 

when a lenient E-value threshold (E-value = 1) was applied. Since X!Tandem 

Percolator was designed to minimize the number of false positives and negatives 

of the original X!Tandem result, it was reasonable to observe a similarly high 

recovery rate with better sensitivity and specificity trade-off. As expected, for 
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X!Tandem Percolator the recovery rate was found to be 99.9% when a q-value of 

0.4% was applied. Due to the advantage of validated data set, factual false 

discovery rates (FDRs) were calculated by dividing the number of PSMs with the 

number of incorrect PSMs (see section 6.2.7). When comparing the X!Tandem 

result with X!Tandem Percolator results at different factual FDR levels, the 

superior sensitivity and specificity that X!Tandem Percolator provided (see Figure 

6.5)was apparent. In fact, at the factual FDR level of 1% X!Tandem Percolator 

estimated the q-value to be 1% as well, indicating accurate statistical assessment 

of  X!Tandem Percolator.  

 

Figure 6.5 Performance comparison between X!Tandem and X!Tandem 

Percolator at different factual FDR levels. 

6.3.3  Example Experimental Data 

In order to examine X!Tandem Percolator’s robustness, Percolator was 

applied to X!Tandem search results for large E. coli, and human lymphoma cell 
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data to demonstrate the superior sensitivity and specificity. Using our validated 

data set, true and false positives were detected and the factual FDR was calculated 

accordingly. But in typical shot-gun proteomic data sets, there is no validation of 

sequence assignments. Researchers therefore rely on the X!Tandem and 

Percolator programs to estimate the number of true and false PSMs and 

consequently calculate the q-value (the minimal global FDR at which a PSM is 

accepted) for each PSM.  

6.3.3.1 Performance in Small Database 

First, a performance comparison between Mascot, Mascot Percolator, 

X!Tandem and X!Tandem Percolator was carried out on the shotgun E. coli data 

set (see section 6.2.2). The E. coli system was selected because of its relatively 

simple proteome complexity (only about 4300 predicted proteins) and its 

popularity as a model system in proteomic studies. The data set was first searched 

by both X!Tandem and Mascot, and then processed by Percolator programs, 

respectively. Figure 6.6 shows the number of estimated correct PSMs for 

X!Tandem, Mascot, Mascot Percolator, and X!Tandem Percolator at different 

levels of q-values. As indicated in Figure 6.6, both Percolator programs offer 

much better sensitivity and specificity trade-off than Mascot and X!Tandem. To 

be exact, at q-value of 0.01, X!Tandem Percolator managed to identify 11594 

PSMs, corresponding to 1391 proteins. Compared to the X!Tandem result (8875 

PSMs and 1209 proteins), that was 31% and 15% increase in the number of PSMs 

and proteins, respectively. The same trend was also observed in the comparison 

between Mascot Percolator and Mascot, which had been reported by Brosh et al.
12
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as well. Overall, this result demonstrated the performance advantages of 

X!Tandem Percolator over the original X!Tandem scoring method when dealing 

with a simple proteomic system. Moreover, after the statistical analysis by 

Percolator, X!Tandem and Mascot results became more much agreeable to one 

another. At q-value of 0.01, the percentage of PSMs appeared in both Mascot and 

X!Tandem results constituted only 46% of total PSMs that were identified by both 

search engines. However, the percentage increased to 82% after Percolator was 

applied. This can be attributed to the better sensitivity and unified statistical 

assessment of Percolator. 

 

Figure 6.6 Performance comparison between Mascot, Mascot Percolator, 

X!Tandem and X!Tandem Percolator on the shotgun E. coli data set. 

 

6.3.3.2 Performance in Large Database 

The same analysis was applied to the human data set (see section 6.2.3) to 

see how X!Tandem Percolator would respond to the searches with a much larger 
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proteome database (87061 protein sequences). Understandably, a much larger 

proteome database provides more combinations of amino acids.  It is therefore an 

even bigger challenge to differentiate true and false PSMs. Figure 6.7 shows the 

number of estimated correct PSMs for X!Tandem, Mascot, Mascot Percolator, 

and X!Tandem Percolator at different levels of q-values for the human data set. 

As indicated in Figure 6.6, both Percolator programs still offer much better 

sensitivity and specificity trade-off than Mascot and X!Tandem. In fact, at q-value 

of 0.01, X!Tandem Percolator was able to improve the number of PSMs and 

protein identifications of the original X!Tandem result by 52% and 29%, 

respectively. The improvement on the human data set was even greater than the 

improvement on the E. coli data set, indicating that Percolator was less easily 

influenced by the complexity of proteome databases.  

 

Figure 6.7 Performance comparison between Mascot, Mascot Percolator, 

X!Tandem and X!Tandem Percolator on the shotgun human data set. 

6.3.3.3 Sensitivity to Search Space Change 
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Sometimes, relaxed searching parameters are chosen by researchers in 

order to match as many peptide sequences as possible in a proteomic study. For 

instance, a wide precursor mass tolerance window is often cast so as to capture all 

the potential identifications. Contrary to the original intention, it is often noted 

that when relaxed searching parameters were set up for a sequence database 

search engine, a noticeable drop in the number of PSMs is often observed. This  is 

simply due to the fact that increased search space creates more possible random 

matches. In order to avoid a decrease  in accuracy, sensitivity is often sacrificed. 

In this study, in order to test how well X!Tandem Percolator is able to handle this 

issue, different precursor mass tolerance settings, including 15, 30 and 500 ppm 

was used in X!Tandem. After searching the human data set with those settings, 

results were processed by Percolator. As shown in Figure 6.8, as the precursor 

mass tolerance setting increases from 15 ppm to 30 ppm, an increase in PSM 

number for both X!Tandem and X!Tandem Percolator is obvious. In fact, at q-

value of 0.01, the improvement in PSM and protein identification were 8% and 1% 

for the X!Tandem result, and 11% and 4% for X!Tandem Percolator result, 

respectively. It indicated that 30 ppm was more appropriate mass accuracy 

window for this data set. When increasing the setting from 30 ppm to 500 ppm, 

little change is observed for either X!Tandem results or X!Tandem Percolator 

results. However, at q-value of 0.05, another commonly used threshold, a 

decrease in X!Tandem performance (5% less PSMs, 2% less proteins) can be 

easily spotted in Figure 6.8. At the same time, almost no decrease in X!Tandem 
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Percolator is observed. It is suggested that X!Tandem Percolator is a highly robust 

statistical tool and less easily influenced by search space increase. 

 

Figure 6.8 The influence of precursor mass tolerance setting on X!Tandem and 

X!Tandem Percolator. 

 

6.4  Conclusions 

Percolator was previously shown as a very robust classifier that can 

dramatically improve sensitivity on various search engines, such as SEQUEST
10

 

and Mascot
12

. In this study, an interface has been built for Percolator and 

X!Tandem, a very popular open-source search engine.  

To successfully integrate Percolator with X!Tandem, a large number of 

features that define the quality of PSMs were first created. Since an 

experimentally validated data set provided the opportunity of isolating the true 

PSMs from search results, by comparing the features from true and decoy PSMs, 
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the individual discriminatory power of each feature was carefully examined. 

Moreover, a feature removal analysis was also performed to demonstrate the 

collective contribution of different subsets of features.  

X!Tandem Percolator was applied to shotgun proteomic data, including 

the E. coli and human data sets. Under various conditions, including different 

sizes of databases and relaxed search parameters, X!Tandem Percolator always 

seemed to substantially outperform the original X!Tandem, showing a similar or 

even better performance of Mascot Percolator. Overall, it demonstrated that  

better classification of true and false PSMs can be achieved when multiple factors 

are working collaboratively instead of just using one scoring metric. 
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Chapter 7  

Conclusions and Future Work 

In MS-based proteomic studies, the correlation between the spectra and 

peptide identifications is a crucial step as well as a challenging task. Even with the 

triumph of various search strategies and algorithms, there is still room for 

improvement. The overall goal of this thesis research is to develop a spectral 

searching strategy capable of identifying peptide sequences from MS/MS spectra 

with high sensitivity and accuracy.  

 In Chapter 1, key terms are explained and sample preparation, 

instrumentation, isotopic labeling methods, search algorithms and statistical 

analyzing tools are discussed as related to mass spectrometry based protein 

sequencing. 

In Chapter 2, a shotgun proteome analysis method was developed and 

successfully applied to the identification of proteins from thousands of cancer 

cells. Since a small number of cells were used, cells were disrupted using a 

detergent (NP-40) containing solution instead of French press to minimize sample 

loss. The lysed cells were subjected to acetone precipitation, followed by cautious 

washing with cold acetone and solubilization in NH4HCO3. After trypsin 

digestion, the resultant peptide mixture was analyzed by RPLC-ESI MS/MS. To 

achieve the best mass spectrometric performance, the gradient slope of RPLC 

profile was optimized according to the sample amount injected into the column.  



 

215 

 

It was shown that this method could identify an average (n=3) of 167 ± 21, 237 ± 

30, 491 ± 63, and 619 ± 59 proteins from 500, 1000, 2500, and 5000 MCF-7 cells, 

respectively. To demonstrate the potential use of this method for generating 

proteome profiles from cancer cells isolated from human blood, MCF-7 cells were 

spiked into a healthy human blood sample and this mixture was processed and 

then subjected to antibody tagging of the MCF-7 cells. The tagged cells were 

sorted and collected using flow cytometry. The proteome profiles of small 

numbers of cells isolated in this way were found to be similar to those of the 

MCF-7 cells. This work illustrated that proteome profiling of a small number of 

cells isolated from blood can be achieved. By comparing the obtained profile to a 

standard profile, cell typing might also be possible, which may prove to be useful 

for cancer diagnosis or prognosis.  

In this work, Mascot, a sequence database search engine, was used to 

identify peptide sequences from MS/MS spectra. After manually validating 

numerous peptide-sequence matches, it was clear to me that the Mascot identity 

threshold strategy was unduly conservative to match all the identifiable peptides 

in a data set. An example was shown in Figure 7.1. Even though the entire series 

of y ions were identified, the peptide was still considered insignificant by Mascot 

as the Mascot ion score was lower than the Mascot identity threshold. This issue 

of sequence database search strategy definitely leads to reduced sensitivity of 

peptide and protein identification. In order to further improve the proteome 

profiling of a small number of cells, a more sensitive strategy for correlating 

peptide and MS/MS spectra should be used.  
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Figure 7.1 An example of a highly reliable peptide match that is considered 

insignificant by Mascot. 

In Chapter 3, an attempt was made to develop spectral search strategy for 

peptide and protein identification using MS/MS spectra. It was demonstrated that 

spectral searching strategy is more sensitive than sequence database searching 

strategy. One should keep in mind, though, that an accurate identification by 

spectral searching strategy is built on the premise of a reliable MS/MS spectral 

library. In Chapter 3, 
15

N-metabolic labeling approach was first developed to 

experimentally validate all the peptide matches from Mascot search results. In this 

experimental validation approach, the MS/MS spectra of the unlabeled peptides 

and their 
15

N-labeled counterparts can be overlaid and their fragmentation patterns 

and mass shifts due to nitrogen number differences can be readily compared to 

validate the spectrum-to-sequence matches. For spectral validation, two cut-off 

filters were developed. One was based on the number of common fragment ions 

found in the overlaid spectra. The second filter was based on the similarity of the 
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fragmentation patterns of the unlabeled and labeled peptide pairs. A similarity 

score was calculated by using the fragment ion intensity dot-product. 

Using E. coli K12 proteome analysis as an example, a highly confident 

MS/MS spectral library was constructed by using those experimentally validated 

peptide matches. This library consists of 9,302 unique spectra (unique sequence 

and charge state) from 7,763 unique peptide sequences. Finally, a spectral 

searching algorithm called SpecMatching was developed to utilize this spectral 

library. In analyzing a digest of an E. coli extract using both Mascot and 

SpecMatching, it was shown that SpecMatching provided better sensitivity and 

specificity even with this small-size spectral library. 

However, it does not mean that sequence database searching strategy 

should be completely replaced by spectral searching strategy. In fact, spectral 

searching and sequence database searching should be considered complementary 

to one another. Sequence database searching is more suited for discovery-oriented 

studies of which the objective is to identify novel peptides or modifications. In 

contrast, spectral searching is a more effective way to detect previously identified 

peptides. Given the complementary nature of those two strategies, in the future 

they can be combined in tandem as a better peptide identification method. For 

instance, sequence database searching can first be applied to a reference sample to 

construct a reference spectral library. Then the more sensitive spectral searching 

strategy can be applied to subsequent experiments to detect and even quantify the 

same set of interesting proteins under different experimental conditions. This 
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tandem method is particularly suited for studies involving numerous samples and 

replicates, such as clinical studies. 

In Chapter 4, 
18

O-labeling method was chosen as an alternative to validate 

peptide matches from a human cell digests as it is too costly to apply metabolic 

labeling strategy on human samples. In combination of the precursor inclusion 

strategy, all the identified PSMs (peptide-sequence matches) had a chance to be 

validated by their 
18

O-labeled counterparts. It successfully resolved the issue that 

some highly confident unlabeled PSMs cannot find a labeled counterpart. As a 

result, a large number of unlabeled PSMs from human cell lysates have been 

validated and are ready to be compiled into a spectral library for future usage. 

With the application of the precursor inclusion strategy, categorizing all the PSMs 

into correct and incorrect PSMs became possible with the application of three 

quality filters. Compared to Chapter 3, where only correct PSMs can be isolated, 

this categorization has an advantage. It made the calculated false discovery rate (1 

– validation rate) no longer an estimation but an accurate representation of the 

error content in a result.  

With those validated PSMs, the performance of commonly used search 

engines (Mascot and X!Tandem) and two popular statistical approaches 

(PeptideProphet and Percolator) were carefully examined. In Chapter 4, it was 

found that PSMs identified by multiple tools had lower error rates than the ones 

identified by only one tool. Then by comparing the numbers of validated PSMs at 

the same validation rate, it was found that it was better (more validated PSMs) to 
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embrace the overlapped PSMs from multiple statistical tools than simply to raise 

the score threshold. Next, it was confirmed that the unreasonably rigorous identity 

threshold was the cause of the poor sensitivity of Mascot when searching large 

space. Apart from using Mascot Percolator or Mascot PeptideProphet, using 

global FDR estimated by target-decoy strategy as a threshold instead of using 

Mascot identity threshold was a possible way to improve its sensitivity. Besides, it 

was also confirmed that X!Tandem (with refinement function on) is not compliant 

with the target-decoy strategy. Moreover, applying Percolator or PeptideProphet 

to original search results could truly improve the number of true PSMs while 

maintaining a relatively low error rate. Finally, the investigation on the 

performance of all five statistical tools revealed that Mascot Percolator 

outperformed the other four statistical tools. 

In Chapter 5, experimentally validated PSMs from Chapter 4 were further 

used to examine the validity of identifications from Mascot and X!Tandem results 

on the protein level. Thanks to the advantages of experimental validation, it 

became possible to isolate true and false positives on both peptide and protein 

levels. With the numbers of true and false positives, one can readily calculate (not 

estimate) the true global FDRs of peptide and protein identifications. It was 

demonstrated that a low global FDR on the peptide level cannot guarantee a low 

global FDR on the protein level. If the goal of one’s study is protein identification 

(e.g., biomarker discovery and proteome profiling), a simplistic global FDR 

control on the peptide level is insufficient to gauge the reliability of protein 

identifications. In this study, it was found that the commonly used “two-peptide 
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rule” can in fact significantly improve the reliability of protein identifications but 

is unduly conservative.  

In order to recapture the correct single-hits eliminated by the “two-peptide 

rule”, a further categorization of all the single-hits discovered two subgroups: 

homologous single-hits (HSHs) and strict single-hits (SSHs). It was observed that 

HSHs were as reliable as multi-hits and thus recommended to be treated as such. 

With respect to the majority of single-hits, SSHs, two straightforward solutions 

were proposed to discern the true positives from false ones. If one has access to 

two search engines (e.g., Mascot and X!Tandem), compare SSHs from one result 

with all the protein identifications from the other. The SSHs that can be found in 

both results are highly reliable and should be deemed as confident protein 

identifications. If there is only one search engine available, a two-stage threshold 

approach seems to be a rational choice. In the first stage, a relatively lenient score 

cut-off (e.g., significance threshold of 0.05 in Mascot or maximum E-value of 

0.05 in X!Tandem) is chosen for the all the PSMs. Next, use all the peptide 

matches that pass the score cut-off to infer protein identifications. While keeping 

all the multi-hits and HSHs intact, apply a more stringent score cut-off (e.g., 

significance threshold of 0.01 in Mascot and maximum E-value of 0.005 in 

X!Tandem) on all the SSHs to improve their collective reliability. Using either 

approach, more protein identifications can be identified than the overly 

conservative “two-peptide rule” without sacrificing the global protein FDR. 
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In Chapter 6, the validated PSMs from Chapter 3 was used to build an 

interface between Percolator, one of the most powerful statistical evaluation tools 

and X!Tandem, a popular open source sequence search engine. The key to this 

successful interfacing was to generate a large number of features that define the 

quality of PSMs. Since experimentally validated data set provided the opportunity 

of isolating the true PSMs from search results, by comparing the features from 

true and decoy PSMs, the individual discriminatory power of each feature was 

carefully examined. Moreover, a feature removal analysis was also performed to 

demonstrate the collective contribution of different subsets of features. Then 

X!Tandem Percolator was applied to shotgun proteomic data under various 

conditions, including samples from different species, different sizes of databases 

and relaxed search parameters. X!Tandem Percolator always seemed to 

substantially outperform the original X!Tandem, showing a similar or even better 

performance of Mascot Percolator. 

Even though Chapter 5 and 6 are not directly related to develop the 

spectral searching algorithm or construct spectral libraries, yet those two projects 

are extensions of experimental validation approaches, the main quality control on 

the reliability of spectral libraries. In fact, from Chapter 5, a better understanding 

on how to deal with single-hit proteins was achieved. It will definitely be useful in 

the near future when inferring protein identifications from peptide matches by 

spectral searching strategy. From Chapter 6, a significant sensitivity boost was 

obtained for X!Tandem, a sequence search engine. It was not possible without the 

correct PSMs from our 
15

N-metabolic labeling validation experiment in Chapter 3. 
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In turn, the enhanced sensitivity of X!Tandem will also benefit the construction of 

spectral libraries by creating more peptide-sequence matches from raw MS/MS 

spectra. 

Finally, it is obvious that the success and applicability of the spectral 

searching strategy depends heavily on both the reliability of PSMs and the 

proteome coverage of the spectral libraries. We envisage the use of experimental 

validation strategies to construct MS/MS spectral libraries of various organisms 

for proteome analysis with improved sensitivity and specificity. To generate a 

comprehensive MS/MS spectral library of a model organism, such as E. coli, 

more detailed proteome analysis, such as the use of cellular fractionation (e.g., 

membrane-bounded vs. plasma) and protein separation (e.g., based on molecular 

weights), followed by multi-dimensional LC-MS/MS, will be needed. In the near 

future, more protein profiling and experimental validation work will be done to 

achieve the goal of building up comprehensive and reliable spectral libraries. 

Meanwhile, in the future, a fully automated procedure based on the 

protocol will be created to make library construction easier. Besides, the spectral 

searching algorithm, SpecMatching, needs a user-friendly interface. Ideally, a web 

server containing spectral libraries of model organisms and a spectral searching 

tool will be constructed to accommodate the need for spectral searching based 

research. Without a doubt, as the advance of mass spectrometry technology and 

the rapid accumulation of MS/MS data, the spectral searching strategy will also 

improve and gain more useful features, such as faster speed and surrounding 
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informatics support. Given their complementary nature, in the future applications, 

spectral searching will be bundled with sequence database searching strategy as a 

follow-up analysis to increase the number of peptide and protein identifications. 

Besides, the concept of spectral searching can be easily applied to monitor the 

performance of the LC-MS/MS instrumentation to ensure day-to-day and lab-to-

lab consistency and quality.  

Furthermore, compared to unprocessed spectral identifications, spectral 

libraries with consensus spectra will serve as superior gold standards for 

bioinformatic studies, such as in understanding of peptide fragmentation 

mechanism, because the library spectral identifications are consolidated from 

many replicates, properly de-noised and deemed highly reliable.  

Lastly, the peptide identifications that are compiled in spectral libraries 

have been proven to be ionizable, detectable and identifiable. In combination of 

the valuable knowledge of the fragmentation and MS/MS spectra, we can easily 

choose proper candidates and develop selected reaction monitoring (SRM) or 

multiple reaction monitoring (MRM) assays for biomarker verification studies. It 

is reasonable to expect that spectral libraries will play an important role in the 

developing platform of targeted proteomic studies and connect discovery-based 

and verification-oriented proteomics.  

 

 


