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Abstract

A family of parsimonious contaminated shifted asymmetric Laplace mixtures is de-

veloped for asymmetric clusters in the presence of outliers and noise (referred to as

bad points herein). A series of constraints are applied to a modified factor analyzer

structure of the scale matrix parameters, yielding the twelve models comprising the

family. Application of the modified factor analyzer structure and this series of par-

simonious constraints makes this model effective at analyzing high-dimensional data

by reducing the quantity of free parameters that need to be estimated in the model.

Notably, these models are developed for an unsupervised setting and do not rely on

any previous information about identified outliers or the underlying group structure

of the data. A variant of the EM algorithm is developed for parameter estimation.

Various implementation issues are discussed, and a series of analyses and comparisons

to well-established clustering methods is conducted on real and simulated data.
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Chapter 1

Introduction

Cluster analysis is the process of identifying and assigning a meaningful group struc-

ture to a data set. Observations are classified into sub-populations of the data known

as components or groups with the intention of maximizing within group similarity and

between group dissimilarity. More specifically, cluster analysis attempts this process

in an unsupervised setting where no previous information of any component member-

ship properties for the observations is available. Many methods and techniques for

clustering exist, including non-parametric methods such as distance-based methods

and agglomerative hierarchical clustering. However, this research is focused on the

parametric method of model-based clustering, where the parameter estimates of a

finite mixture model are fitted by maximum likelihood estimation.

Model-based clustering provides several advantages over non-parametric methods.

In particular, model-based clustering provides a more rigorous definition of a compo-

nent and established methods of comparing proposed models. As noted by Marriott

(1974) this approach “is about the only clustering technique that is entirely satisfac-

tory from the mathematical point of view. It assumes a well-defined mathematical

model, investigates it by well-established statistical techniques, and provides a test of

significance for the results.” The strong mathematical framework and a clear method

of model comparisons justifies our use of model-based clustering as the foundation

for the models developed in this thesis.
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1.1 Motivation

Despite these advantages, many of the model-based clustering algorithms possess

their own set of limitations. If the data features outliers or noise, models will of-

ten assimilate them into the group structure. This results in unwanted influence

on the parameter estimates, compromising the clustering solution. By introducing

the distinction between “good” points and “bad’ points, with the former referring to

observations within the components and the latter referring to the aforementioned

outliers and noise, contamination can be introduced to the distributions in the mix-

ture model (Punzo and McNicholas 2016; Tukey 1960). This allows for clustering

algorithms to identify outliers and omit these points when calculating the parameter

estimates.

Additionally, it is typical that the finite mixture model assumes a Gaussian dis-

tribution for each component in the data. Consequentially, the model will assume

that components in the data are symmetric. This can result in the model over-fitting

the data, an issue in which multiple symmetric components are assigned to describe

a single asymmetric component. While the introduction of contamination can help

to alleviate the effect of outliers, in the presence of asymmetric components it is

prone to incorrectly classifying observations within the fringes of the skew as bad

points. Many distributions have been introduced that allow for the parametrization

of skewness to accommodate asymmetry, such as skew-normal (Lin 2009) and skew-t

(Lin 2010) distributions, but the shifted asymmetric Laplace distribution (Franczak

et al. 2014) offers the unique of advantage of compatibility with the contamination

protocol.

Finally, when dealing with high-dimensional data algorithms can become incredibly

computationally expensive making them an impractical method of analyzing data.

This is primarily the result of the difficulty of estimating a p× p covariance or scale

matrix parameter for large values of p. Factor analysis is a well established method

2



of dimension reduction, which assumes the variability in the data can be described

by a small number of latent factors. Applying a factor analyzer decomposition to the

covariance or scale matrix parameters in a mixture model (Ghahramani and Hinton

1997) eases the computational demands for parameter estimates. This can be further

alleviated through the application of parsimonious constraints to the factor analyzer

decomposition (McNicholas and Murphy 2008).

Within the existing literature of model-based clustering, clustering algorithms exist

that utilize the solutions described to address each possible pair of these limitations.

Mixtures of contaminated shifted asymmetric Laplace distribution (Morris et al. 2019)

account for outliers and asymmetric components; mixtures of contaminated Gaussian

factor analyzers (Punzo et al. 2020) account for outliers and high dimensions; par-

simonious shifted asymmetric Laplace mixtures (Franczak et al. 2013) account for

asymmetric components and high dimensions. None currently exist that simultane-

ously account for all three.

1.2 Thesis Objectives

In this thesis we propose a family of parsimonious contaminated shifted asymmet-

ric Laplace mixtures to address all three of the limitations we have detailed in the

motivation. An alternating expectation conditional-maximization algorithm is used

to implement this family of models. Once these models are developed, they are ap-

plied to a set of real data on athletes collected by the Australian Institute of Sports

(Telford and Cunningham 1991) as well a series of simulated data sets with the intent

of showing improved performance in comparison to existing model-based clustering

algorithms.
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1.3 Thesis Outline

1.3.1 Chapter 2

The second chapter discusses the concepts and work in mixture modelling literature

that this thesis builds upon. This review includes, but is not limited to: finite mixture

models, mixtures of shifted asymmetric Laplace distributions, mixtures of contam-

inated distributions, families of parsimonious mixture models, and variants of the

expectation maximization algorithm.

1.3.2 Chapter 3

The third chapter provides the methodology for the development of the algorithm

used to implement our proposed family of models. We discuss how the factor analyzer

decomposition and the family of parsimonious constraints are applied to a mixture

of contaminated shifted asymmetric Laplace distributions. Next, a derivation of the

expected values and parameter estimates used in the implementation of these models

is given. The chapter concludes with the discussion of computational considerations

that were required to ensure the algorithm used to implement our family of models

remained practical.

1.3.3 Chapter 4

Chapter 4 provides an exploratory analysis conducted on simulated data sets using

our family of models to observe classification performance, component recovery, and

the reliability of model selection criteria for identifying an optimal model.

1.3.4 Chapter 5

Chapter 5 provides an analysis conducted on a real data set provided by the Australian

Institute of Sport (AIS) using our family of models to compare the classification

performance and component recovery to results obtained using competing mixture

models in Punzo et al. (2020).

4



1.3.5 Chapter 6

Chapter 6 concludes this thesis with a discussion of our results and recommendations

for future work.

5



Chapter 2

Model-based Clustering

2.1 Mixture Models

2.1.1 Finite mixture models

A finite mixture models assumes that the data is sampled from a population comprised

of a finite number of sub-populations, such that each sub-population can be modelled

by a probability distribution. It is typical that the distribution type is also assumed

to be constant across all sub-populations, but not necessary.

More formally, a p-dimensional random vector X arises from a finite mixture model

if for all x ⊂ X,

f(x | ϑ) =
G∑︂

g=1

πgfg(x | θg) (2.1)

such that

ϑ = (π1, . . . , πG,θ1, . . . ,θG), 0 < πg ≤ 1, and
G∑︂

g=1

πg = 1

where, for a group g, πg is the mixing proportions, θg is a vector of parameters and

fg(x|θg) is the component density. See McLachlan and Peel (2000a), McNicholas

(2016), and Titterington et al. (1985) for a detailed review of finite mixture models.

2.1.2 Gaussian mixture models

At the time of the review paper by Fraley and Raftery (2002), the most frequently

used component density in mixture modelling to date is the multivariate Gaussian.
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This is primarily due to their mathematical tractability and prominence in the history

of statistical research. The density of a Gaussian mixture model (GMM) is expressed

as

f(x| ϑ) =
G∑︂

g=1

πgϕ(x|µg,Σg) (2.2)

where ϑ is the vector of parameters, πg is the probability of membership in component

g, and the component densities given by

ϕ(x|µg,Σg) =
1√︁

(2π)p|Σg|
exp

{︃
−1

2
(x− µg)

′Σ−1
g (x− µg)

}︃
(2.3)

are the density of a multivariate Gaussian distribution with a mean vector µg and a

covariance matrix Σg.

2.1.3 Contaminated Gaussian mixture models

The density for the contaminated Gaussian distribution (Tukey 1960) is given by

f(x | ϑ) = ρϕ(x | µ,Σ) + (1− ρ)ϕ(x | µ, ηΣ) (2.4)

where ρ ∈ (0, 1), η > 1, ϑ = {ρ,µ,Σ, η} and ϕ(x|µ,Σ) is as defined in Equa-

tion (2.3). These two embedded components are distinguished as a “good” com-

ponent which features lower dispersion to describe the “true” density, and a “bad”

component which accommodates the outliers or contamination. It follows then that

ρ denotes the proportion of “good” observations in the component while η denotes

the degree of the contamination. Since η > 1 it can be interpreted as an inflation

parameter for the increased variability due to contamination (Punzo and McNicholas

2016).

Therefore, the density for each of the G groups in a mixture of contaminated

Gaussian distributions is itself a mixture of two groups centered at the same point

with proportional covariance matrices. The density for mixtures of contaminated

Gaussian distributions is then given by

f(x| ϑ) =
G∑︂

g=1

πg
[︁
ρgϕ(x | µg,Σg) + (1− ρg)ϕ(x | µg, ηgΣg)

]︁
(2.5)
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where all terms are as previously defined (Punzo and McNicholas 2016).

2.2 Mixtures of Shifted Asymmetric Laplace Dis-

tributions

2.2.1 Generalized inverse Gaussian distribution

The density of a random variable W following a generalized inverse Gaussian (GIG)

distribution, notated as W ∼ GIG(a, b, υ), is given by

g(w) =
(a/b)υ/2wυ−1

2Kυ(
√
ab)

exp

{︃
−aw + b/w

2

}︃
(2.6)

for w > 0, where a, b ∈ R+, υ ∈ R and Kυ is the modified Bessel function of the third

kind with index υ (Barndorff-Nielsen et al. 1982). The GIG distribution possesses

the property of tractability for the following expected values:

E[W ] =

√︃
b

a
Rυ(

√
ab) (2.7)

E[1/W ] =

√︃
a

b
Rυ(

√
ab)− 2υ

b
(2.8)

E[log W ] = log

√︃
a

b
+

∂

∂υ
log Kυ(

√
ab) (2.9)

where Rυ(z) := Kυ+1(z)/Kυ(z).

2.2.2 Centralized asymmetric Laplace distributions

Let V be a p-dimensional random vector from a centralized asymmetric Laplace

(CAL) distribution (Kotz et al. 2001). The density of V is given by

f(v | α,Σ) =
2exp{v′Σ−1α}
(2π)p/2|Σ|1/2

×
(︃

v′Σv

2 +α′Σ−1α

)︃υ/2

Kυ(u) (2.10)

where υ = (2− p)/2, u =
√︁

(2 +αΣ−1α)(v′Σ−1v), Σ is a scale matrix, and α ∈ Rp

is a skewness parameter which allows the distribution to account for asymmetry in

the data. The notation V ∼ ALp(α,Σ) indicates the random variable V follows a

p-dimensional CAL distribution.
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2.2.3 Shifted asymmetric Laplace distributions

The CAL density is not effective for model-based clustering and classification since

each component density will be centered at the same origin (Franczak et al. 2014).

This is addressed for a random vector V ∼ ALp(α,Σ) through the introduction of

a shift parameter µ by considering the random vector X = (V + µ). This random

vector X follows a p-dimensional shifted asymmetric Laplace (SAL; Franczak et al.

2014) distribution, notated X ∼ SALp(µ,α,Σ), with density given by

ξ(x | µ,α,Σ) =
2 exp{(x− µ)′Σ−1α}

(2π)p/2|Σ|1/2
×
(︃

δ(x,µ|Σ)

2 +α′Σ−1α

)︃υ/2

Kυ(u) (2.11)

where u =
√︁
(2 +α′Σ−1α)δ(x,µ | Σ), δ(x,µ | Σ) = (x − µ)′Σ−1(x − µ) and

υ, α, and Σ are defined as before. It follows that the density for mixtures of SAL

(MSAL; Franczak et al. 2014) distributions is given by

f(x | ϑ) =
G∑︂

g=1

πg ξ(x | µg,αg,Σg) (2.12)

where all terms are as previously defined and ξ(x) is given in Equation (2.11).

2.2.4 Relationship to the normal distribution

Kotz et al. (2001) show that a random vector V ∼ ALp(α,Σ) can be generated

through the relationship

V = Wα+
√
WN

where W ∼ Exp(1) and N ∼ Np(0,Σ) are independent of one another. Conse-

quentially, the random vector X ∼ SALp(µ,α,Σ) can be generated through the

relationship

X = µ+Wα+
√
WN.

It follows that

X | w ∼ Np(µ+ wα, wΣ)

9



and therefore from Bayes’ theorem,

W | x ∼ GIG(a, b, υ)

where a = 2 +α′Σ−1α, b = δ(x, µ | Σ) and υ = (2− p)/2.

2.2.5 Mixtures of contaminated SAL distributions

Morris et al. (2019) applies contamination to MSALs in a manner analogous to

the approach used in Punzo and McNicholas (2016). For a random vector X ∼

SALp(µ,α,Σ) the covariance is given by

Cov(X) = Σ+ααT .

When a contamination scheme is applied to a SAL distribution, the covariance of the

bad observations is inflated by a factor of η relative to the covariance of the good

observations. Hence, if {µ,α,Σ} are the parameters of the good component the

covariance for bad observations is given by

Cov(X) = η(Σ+ααT ) = ηΣ+
√
ηα

√
ηαT

leading to the contaminated SAL (CSAL) distribution, the density of which is given

by

f(x | ϑ) = ρξ(x | µ,α,Σ) + (1− ρ)ξ(x | µ,√ηα, ηΣ) (2.13)

where ϑ is the vector of parameters, ρ and η are as defined in Section 2.1.3, and

ξ(x | µ,α,Σ) is as defined in Equation (2.11). It follow that the density for mixtures

of CSAL distributions is given by

f(x | ϑ) =
G∑︂

g=1

πg
[︁
ρgξ(x | µg,αg,Σg) + (1− ρg)ξ(xg | µg,

√
ηgαg, ηgΣg)

]︁
(2.14)

where all terms are as previously defined.
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2.3 Parsimonious Mixture Models

2.3.1 Introduction

When estimating the covariance matrices Σg in a Gaussian mixture model, each ma-

trix will have p(p− 1)/2 free parameters. Since the number of free parameters scales

quadratically with respect to the number of variables in a data set, estimation of the

covariance matrices can become incredibly computationally intensive and tedious for

higher dimensional data sets. McNicholas and Murphy (2008) impose a factor ana-

lyzer decomposition to the covariance matrix and introduce parsimonious constraints

to that decomposition, causing the number of free parameters in Σg to scale linearly

with respect the number of variables in a data set.

2.3.2 Factor analyzers

Factor analysis (Spearman 1904) is a data reduction technique that attempts to ex-

plain variability within a data set by replacing the observed variables with a reduced

number of unobserved, but underlying, random quantities known as factors. The

model assumes a p-dimensional random vector X is modelled using a q-dimensional

random vector U with q ≪ p such that

X = µ+ΛU+ ε (2.15)

where Λ is a p×q matrix of factor loadings, U ∼ N (0, Iq) is the vector of factors and

ε ∼ N (0,Ψ) with Ψ = diag(ψ1, . . . , ψp). It follows that the marginal distribution of

X is multivariate Gaussian with mean µ and covariance ΛΛ′ +Ψ. The probabilistic

principal component analysis (PPCA; Tipping and Bishop 1999b) model is a special

case of the factor analysis model that assumes the distribution of the errors are

isotropic, that is that Ψ = ψIp.
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2.3.3 Mixtures of factor analyzers

The mixtures of factor analyzers (MFA) model introduced by Ghahramani and Hinton

(1997) assumes mixtures of Gaussian distributions with a factor analysis covariance

structure, the density of which is given by

f(x| ϑ) =
G∑︂

g=1

πgϕ(x|µg,ΛgΛ
′
g +Ψg). (2.16)

Tipping and Bishop (1999a) introduced a mixtures of PPCA models by assuming that

the distribution of errors is isotropic with a covariance structure Σg = ΛgΛ
′
g + ψgIp.

McLachlan and Peel (2000b) further generalize the MFA by introducing the fully

unconstrained covariance structure where Σg = ΛgΛ
′
g +Ψg.

2.3.4 Parsimonious Gaussian mixture models

The family of parsimonious Gaussian mixture models (PGMM) introduced by Mc-

Nicholas and Murphy (2008) further extends the MFA model by allowing for con-

straints across groups on the Λg and Ψg matrices, as well as the isotropic constraint

Ψg = ψgIp. The possible combinations of these constraints provides eight distinct

parsimonious models.

2.3.5 The expanded PGMM family

In McNicholas and Murphy (2010) the family of PGMMs is expanded upon by ex-

pressing the Ψg matrices as

Ψg = ωg∆g

where ωg ∈ R and ∆g = diag(δ1, . . . , δp) such that |∆g| = 1 for g = 1, 2 . . . , G.

This results in the modified factor analysis covariance structure Σg = ΛgΛ
′
g + ωg∆g.

Constraints across groups can now be applied to the parameters ωg and∆g separately,

resulting in four new models and extending the total number of models to twelve. The

estimates for the eight pre-existing models are obtained from the PGMM estimates

12



by setting ωg = |Ψg|1/p and ∆g = Ψg/|Ψg|1/p. The nomenclature and constraint

combinations for the twelve models in the family of extended parsimonious Gaussian

mixture models (EPGMM), as well as there PGMM equivalents when applicable, is

provided in Table 2.1. The covariance structure and the number of free parameters

in this structure for all models in the EPGMM family is provided in Table 2.2.

2.3.6 Mixtures of contaminated Gaussian factor analyzers

In Punzo et al. (2020), the factor analysis covariance structure and the parameter

constraints given in McNicholas and Murphy (2008) are applied to the mixtures of

contaminated Gaussian distributions developed in Punzo and McNicholas (2016).

This this resulted in a family of eight mixtures of contaminated Gaussian factor

analyzers that are analogous to the models given in Table 2.1.

Table 2.1: Nomenclature for each member of the EPGMM family and its PGMM
equivalent. (C = constrained, U = unconstrained)

EPGMM Nomenclature PGMM Equivalent

Model ID Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip Ψg = Ψ PGMM ID

CCCC C C C C C CCC

CCUC C C U C U CUC

CCCU C C C U C CCU

CCUU C C U U - -

CUCU C U C U - -

CUUU C U U U U CUU

UCCC U C C C C UCC

UCUC U C U C C UUC

UCCU U C C U C UCU

UCUU U C U U - -

UUCU U U C U - -

UUUU U U U U U UUU

13



Table 2.2: Covariance structure and number of covariance parameters for each mem-
ber of the EPGMM family.

Model ID Covariance Structure Number of Covariance Parameters

CCCC Σg = ΛΛ′ + ωIp [pq − q(q − 1)/2] + 1

CCUC Σg = ΛΛ′ + ωgIp [pq − q(q − 1)/2] +G

CCCU Σg = ΛΛ′ + ω∆ [pq − q(q − 1)/2] + p

CCUU Σg = ΛΛ′ + ωg∆ [pq − q(q − 1)/2] + [G+ (p− 1)]

CUCU Σg = ΛΛ′ + ω∆g [pq − q(q − 1)/2] + [1 +G(p− 1)]

CUUU Σg = ΛΛ′ + ωg∆g [pq − q(q − 1)/2] +Gp

UCCC Σg = ΛgΛ
′
g + ωIp G[pq − q(q − 1)/2] + 1

UCUC Σg = ΛgΛ
′
g + ωgIp G[pq − q(q − 1)/2] +G

UCCU Σg = ΛgΛ
′
g + ω∆ G[pq − q(q − 1)/2] + p

UCUU Σg = ΛgΛ
′
g + ωg∆ G[pq − q(q − 1)/2] + [G+ (p− 1)]

UUCU Σg = ΛgΛ
′
g + ω∆g G[pq − q(q − 1)/2] + [1 +G(p− 1)]

UUUU Σg = ΛgΛ
′
g + ωg∆g G[pq − q(q − 1)/2] +Gp

2.3.7 Woodbury identity

The Woodbury identity (Woodbury 1950) states that given a p× p matrix A, a p× q

matrix U, a q× q matrix B, and a q× p matrix V such that the matrix (A+UBV)

is invertible, then that inverse can be expressed as:

(A+UBV)−1 = A−1 −A−1U(B−1 +VA−1U)−1VA−1

Given the factor analysis covariance structure Σg = ΛgΛ
′
g+Ψg, we set A = Ψg, U =

Λg, V = Λ′
g, and B = Iq, and it follows that

(ΛgΛ
′
g +Ψg)

−1 = Ψ−1
g −Ψ−1

g Λg(I
−1
q +Λ′

gΨ
−1
g Λg)

−1Λ′
gΨ

−1
g . (2.17)

When modelling high-dimensional data, calculating the inverse of the p×p covariance

matrices Σg can be very computationally expensive and impractical. By re-expressing

the covariance matrix via the Woodbury identity, the calculation now only requires

14



the inversion of the diagonal p× p matrix Ψg and the q× q matrix (I−1
q +Λ′

gΨ
−1
g Λg).

Additionally, Woodbury (1950) also provides the identity for calculating the determi-

nant

|ΛgΛ
′
g +Ψg| = |Ψg| / |Iq − (Λ′

g(ΛgΛ
′
g +Ψg)

−1Λg)|. (2.18)

2.4 The Expectation Maximization Algorithm

An expectation-maximization (EM) algorithm (Dempster et al. 1977) is an iterative

procedure that is used to find maximum likelihood estimates (MLE) when data is

either incomplete or assumed to be incomplete. The complete-data is considered

to consist of the observed and missing data. The algorithm operates by alternating

between two steps, an expectation step (E-step) and a maximization-step (M-step). In

the E-step, the expected value of the complete-data log-likelihood is calculated using

the parameter estimates from the preceding M-step. In the M-step, the expected value

of complete-data log-likelihood is maximized with respect to the model parameters.

This process is iterated until convergence has been reached.

2.4.1 Expectation conditional-maximization

The expectation-conditional maximization (ECM) algorithm (Meng and Rubin 1993)

is a modification of the EM algorithm, where the M-step is replaced by multiple

conditional-maximization-steps (CM-step). The set of parameters is partitioned ϑ =

{ϑ1,ϑ2, . . .ϑm} such that each subset of the partition correlates to a CM-step. In

each CM-step, the complete-data log-likelihood is maximized with respect to the

model parameters in its respective partition with the other parameters fixed at their

most recent estimates.

For illustrative purposes we consider the partition ϑ = {ϑ1,ϑ2} at a given itera-

tion (k + 1). In the first CM-step, the estimates ϑ̂
(k+1)

1 are calculated to maximize

the complete-data log-likelihood with ϑ2 fixed at ϑ̂
(k)

2 . In the second CM-step, the

15



estimates ϑ̂
(k+1)

2 are calculated to maximize the complete-data log-likelihood with ϑ1

fixed at ϑ̂
(k+1)

1 .

2.4.2 Alternating expectation conditional-maximization

The alternating expectation-conditional maximization (AECM) algorithm (Meng and

Van Dyk 1997) is an extension of the ECM algorithm that allows for the specification

of the complete-data to change between CM-steps. The AECM algorithm is used in

this thesis to implement the parsimonious contaminated SAL mixtures developed in

Chapter 3. McLachlan and Krishnan (2008) provides an extensive overview of the

AECM and its application to fitting mixtures of factor analyzers models.

2.4.3 Aitken’s acceleration stopping criterion

Convergence of an EM algorithm is typically evaluated by comparing successive esti-

mates until a point where improvement is deemed sufficiently small or negligible. How-

ever, when an EM algorithm is applied for mixture model fitting, the log-likelihood

can often experience “speed bumps” in the rate at which the log-likelihood increases

resulting in a false sense of stability. Therefore, Aitken’s acceleration (Aitken 1926)

is used to estimate the asymptotic maximum of the log-likelihood at each iteration.

Let l(k) be the log-likelihood at iteration k, then the Aitken acceleration at iteration

k is given by

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
.

The asymptotic estimate of the log-likelihood at iteration (k + 1) is then given by

l(k+1)
∞ = l(k) +

1

1− a(k)
(l(k+1) − l(k)),

in Böhning et al. (1994). This thesis uses the convergence criterion proposed by

McNicholas et al. (2010), in which the EM algorithm is considered to have converged

on an iteration (k + 1) if

l(k+1)
∞ − l(k) < ε.
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where ε ∈ R is some small constant. More specifically ε = 10−2 is used.

2.5 Model Selection and Performance

2.5.1 Bayesian information criterion

The Bayesian information criteriom (BIC; Schwarz 1978) is one of the most widely

used methods for model selection. For a model with parameter ϑ, the BIC is calcu-

lated as

BIC = 2l(x, ϑ̂)− plog(n) (2.19)

where l(x, ϑ̂) is the maximized log-likelihood, ϑ̂ is the MLEs of ϑ, p is the number

of free parameters, and n is the number of observations. Fraley and Raftery (1998,

2002) provide practical evidence that BIC is an effective model selection criterion for

mixture models.

2.5.2 Integrated complete likelihood

The integrated completed likelihood (ICL; Biernacki et al. 2000) is essentially an ex-

tension of the BIC, designed specifically for clustering and classification applications.

First, we introduce a component membership label

Zig =

{︄
1 if observation i is in group g

0 otherwise

then, the ICL of a model is calculated as

ICL = BIC +
n∑︂

i=1

G∑︂
g=1

MAP(zig)log(zig)

where zig is the expected value of Zig, MAP(zig) is the maximum a posteriori clas-

sification given by zig, and BIC is defined as in Equation (2.19). The ICL penalizes

the BIC by subtracting a measure of the estimated entropy, or the uncertainty in the

classification of observations into components.
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2.5.3 Rand and adjusted Rand indices

The Rand index (Rand 1971) is used to compare partitions and is given by the

proportion of pairwise agreements out of the total number of pairs. In classification

applications, this manifests as the proportion of correctly classified observations. The

Rand index takes on a value belonging to [0, 1] with 1 indicating perfect classification

and 0 indicating that no observations were classified correctly. It follows that expected

value of the Rand index under random assignment will be given by 1/G. The adjusted

Rand index (ARI; Hubert and Arabie 1985) corrects for this issue so that the expected

value under random classification is 0, but still takes a value of 1 under perfect

classification. If classification performance is worse than would be expected under

random assignment, the ARI will take on a negative value. Consequentially, the ARI

will penalize incorrect classifications more harshly than the Rand index.
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Chapter 3

Methodology

3.1 Introduction

This thesis introduces a family of parsimonious contaminated SAL mixtures (PC-

SALM) by imposing the constraints contained in McNicholas and Murphy (2008,

2010) to the modified factor analysis decomposition of the scale matrix parameter

Σg in the MCSAL model given in Equation (2.14). This leads to a family of twelve

models with scale matrix structures analogous to the twelve covariance structures

provided in Table 2.2.

3.2 Parsimonious Contaminated SAL Mixtures

The CSAL density given in Equation (2.13) can be alternatively expressed using the

relationships in Section 2.2.4 as

fCSAL(x | ϑ) = ρ

∫︂ ∞

0

ϕ(x | µ+ wα, wΣ)h(w)dw

+ (1− ρ)

∫︂ ∞

0

ϕ(x | µ+ w
√
ηα, wηΣ)h(w)dw (3.1)

where w is an exponential random variable, h(w) is the density of an exponential

random variables with rate 1, the parameters ϑ = {ρ, η,µ,α,Σ} are defined as in

Equation (2.13), and ϕ(x |µ,Σ) is defined as in Equation (2.3). It follows that the

density for mixtures of CSAL distribution given in Equation (2.14), can also be re-
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expressed as

f(x | ϑ) =
G∑︂

g=1

πg

[︃
ρg

∫︂ ∞

0

ϕ(x | µg + wgαg, wgΣg)h(wg)dwg

+ (1− ρg)

∫︂ ∞

0

ϕ(x | µg + wg
√
ηgαg, wgηgΣg)h(wg)dwg

]︃
(3.2)

where πg is as defined in Equation (2.13) and all other parameters are as previously

defined.

We can now apply the modified factor analyzer decomposition Σg = ΛgΛ
′
g +ωg∆g

described in McNicholas and Murphy (2010) to our scale matrices. This gives us the

density for a mixture of unconstrained parsimonious CSAL distributions

f(x|ϑ) =
G∑︂

g=1

πg

[︃
ρg

∫︂ ∞

0

ϕ(x|µg + wgαg, wg(ΛgΛ
′
g + ωg∆g))h(wg)dwg

+ (1− ρg)

∫︂ ∞

0

ϕ(x|µg + wg
√
ηgαg, wgηg(ΛgΛ

′
g + ωg∆g))h(wg)dwg

]︃
(3.3)

Applying the constraints given in Table 2.1 to the parameters Λg, ωg,∆g produces

the family of parsimonious CSAL mixtures (PCSALM). Reformatting our density in

this way also allows us to more easily obtain the maximum likelihood estimates from

the complete-data log-likelihood.

To properly express the complete data log- likelihood, we must first account for

the missing data. In our case, there are four sources of incompleteness. For each

observation vector xi we do not know its component membership or its status as a

good or bad observation. We introduce two indicator variables: Zig and Vig defined

as

Zig =

{︄
1 if observation xi belongs to group g,

0 otherwise,

Vig =

{︄
1 if observation xi in group g is good,

0 if observation xi in group g is bad.
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The other two sources of missing data in each PCSALM model are the latent weight

variables wig and the latent factors uig. The complete-data log-likelihood for Equa-

tion (3.3) is given by

lC(ϑ) = lC1(π) + lC2(ρ) + lgoodC3 (µ,α,Λ, ω,∆) + lbadC3 (η,µ,α,Λ, ω,∆) (3.4)

where

lC1(π) =
n∑︂

i=1

G∑︂
g=1

ziglog(πg),

lC2(ρ) =
n∑︂

i=1

G∑︂
g=1

zig [viglog(ρg) + (1− vig)log(1− ρg)] ,

lgoodC3 (µ,α,Λ, ω,∆) =
n∑︂

i=1

G∑︂
g=1

zigviglog
[︁
ϕ(x|µg + wigαg, wig(ΛgΛ

′
g + ωg∆g))h(wig)

]︁
,

lbadC3 (η,µ,α,Λ, ω,∆) =
n∑︂

i=1

G∑︂
g=1

zig(1− vig)

× log
[︁
ϕ(x|µg + wig

√
ηgαg, wigηg(ΛgΛ

′
g + ωg∆g))h(wig)

]︁
.

3.3 The AECM algorithm for PCSALM

The parameters ϑ for all models in the PCSALM family are partitioned into the

sets ϑ = {ϑ1,ϑ2} where ϑ1 = {π,ρ,µ,α,η} and ϑ2 = {Λ,ω,∆}. The parameter

set ϑ1 is further partitioned such that ϑ11 = {π,ρ,µ,α} and ϑ12 = {η}. The

parameter set ϑ1 corresponds to the first alternation in the AECM and the parameter

set ϑ2 corresponds to the second alternation. The parameter subsets ϑ11 and ϑ12

correspond to the first and second CM-steps respectively within the first alternation.

For a model with G groups π = (π1, . . . , πG), ρ = (ρ1, . . . , ρG), µ = (µ1, . . . ,µG),

α = (α1, . . . ,αG), η = (η1, . . . , ηG), Λ = (Λ1, . . . ,ΛG), ω = (ω1, . . . , ωG), and

∆ = (∆1, . . . ,∆G) where the appropriate constraints for each model are applied to

the parameter sets Λ,ω,∆.
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Calculations for the expected values and parameter updates in the first alterna-

tion follow from Franczak et al. (2014) and Morris et al. (2019). Calculations for

the expected values and parameter updates in the second alternation follow from

McNicholas and Murphy (2008, 2010) and Punzo et al. (2020).

3.3.1 Alternation 1: E-step

In the E-step of the first alteration of our AECM algorithm, the complete-data consists

of the observed data xi, the component membership labels Zig, the good observation

labels Vig and the latent weight variables Wig for i = 1, . . . , n and g = 1, . . . , G. The

expected values for the missing data on iteration k are given by

z
(k)
ig := E[Zig | xi] =

π
(k)
g fCSAL(xi | ρ(k)g , η

(k)
g ,µ

(k)
g ,α

(k)
g ,Σ(k)

g )∑︁G
h=1 π

(k)
h fCSAL(xi | ρ(k)h , η

(k)
h ,µ

(k)
h ,α

(k)
h ,Σ

(k)
h )

v
(k)
ig := E[Vig | xi] =

ρ
(k)
g ξ(xi | µ(k)

g ,α
(k)
g ,Σ(k)

g )

fCSAL(xi | ρ(k)g , η
(k)
g ,µ

(k)
g ,α

(k)
g ,Σ(k)

g )

E
(k)
1ig := E[Wig | xi, Zig = 1] =

⌜⃓⃓⎷ b
(k)
ig

a
(k)
g

Rυ

(︃√︂
a
(k)
g b

(k)
ig

)︃

E
(k)
2ig := E[1/Wig | xi, Zig = 1] =

⌜⃓⃓⎷a
(k)
g

b
(k)
ig

Rυ

(︃√︂
a
(k)
g b(k)ig

)︃
− 2υ

b
(k)
ig

E
(k)
3ig := E[log Wig | xi, Zig = 1] = log

⌜⃓⃓⎷a
(k)
g

b
(k)
ig

+
∂

∂υ
log Kυ

(︃√︂
a
(k)
g b

(k)
ig

)︃

˜︁E(k)
1ig := E

[︂˜︂Wig | xi, Zig = 1
]︂
=

⌜⃓⃓⎷˜︁b(k)ig

a
(k)
g

Rυ

(︃√︂
a
(k)
g
˜︁b(k)ig

)︃

˜︁E(k)
2ig := E

[︂
1/˜︂Wig | xi, Zig = 1

]︂
=

⌜⃓⃓⎷a
(k)
g˜︁b(k)ig

Rυ

(︃√︂
a
(k)
g
˜︁b(k)ig

)︃
− 2υ˜︁b(k)ig
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˜︁E(k)
3ig := E[log ˜︂Wig | xi, Zig = 1] = log

⌜⃓⃓⎷a
(k)
g˜︁b(k)ig

+
∂

∂υ
log Kυ

(︃√︂
a
(k)
g
˜︁b(k)ig

)︃

where a
(k)
g = 2 + α

(k)′
g (Σ(k)

g )−1α
(k)
g , b

(k)
ig = δ(xi,µ

(k)
g |Σ(k)

g ), ˜︁b(k)ig = δ(xi,µ
(k)
g |η(k)g Σ(k)

g ),

Rυ(z) := Kυ+1(z)/Kυ(z), υ = (2 − p)/2 and Kυ(z) is a modified Bessel function of

the third kind. The closed form updates for E1ig, E2ig, E3ig, ˜︁E1ig, ˜︁E2ig, ˜︁E3ig follow

from Wig|xi, zig = 1 ∼ GIG(ag, big, υ) as shown in Section 2.2.1.

Using these expected values for the missing data and the logarithmic expression of

the Gaussian density, we can compute the complete-data log-likelihood for the first

alternation as

Q(ϑ) = Q1(π) +Q2(ρ) +Qgood
3 (µ,α,Σ) +Qbad

3 (η,µ,α,Σ) +Q4

where

Q1(π) =
G∑︂

g=1

nglog(πg) (3.5)

Q2(ρ) =
n∑︂

i=1

G∑︂
g=1

zig [viglog(ρg) + (1− vig)log(1− ρg)] (3.6)

Qgood
3 (µ,α,Σ) =− np

2
log(2π)− 1

2

G∑︂
g=1

ng,goodlog|Σg| −
p

2

n∑︂
i=1

G∑︂
g=1

zigvigE3ig

− 1

2

n∑︂
i=1

G∑︂
g=1

zigvigE2ig(xi − µg)
′Σ−1

g (xi − µg)

+
n∑︂

i=1

G∑︂
g=1

zigvig(xi − µg)
′Σ−1

g αg

− 1

2

n∑︂
i=1

G∑︂
g=1

zigvigE1igα
′
gΣ

−1
g αg (3.7)
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Qbad
3 (η,µ,α,Σ) =− np

2
log(2π)− 1

2

G∑︂
g=1

ng,badlog|Σg|

− p

2

G∑︂
g=1

ng,badlog(ηg)−
p

2

n∑︂
i=1

G∑︂
g=1

zig(1− vig) ˜︁E3ig

− 1

2

n∑︂
i=1

G∑︂
g=1

zig(1− vig) ˜︁E2ig
1

ηg
(xi − µg)

′Σ−1
g (xi − µg)

+
n∑︂

i=1

G∑︂
g=1

zig(1− vig)
1

√
ηg
(xi − µg)

′Σ−1
g αg

− 1

2

n∑︂
i=1

G∑︂
g=1

zig(1− vig) ˜︁E1igα
′
gΣ

−1
g αg (3.8)

and

Q4 = −
n∑︂

i=1

G∑︂
g=1

zig

[︂
vigE1ig + (1− vig) ˜︁E1ig

]︂
where all parameters and expected values are assumed to be their respective estimates

for iteration k, ng =
∑︁n

i=1 zig is the expected number of observations in group g,

ng,good =
∑︁n

i=1 zigvig is the expected number of good observations in group g, and

ng,bad =
∑︁n

i=1 zig(1− vig) is the expected number of bad observations in group g.

3.3.2 Alternation 1: CM-step 1

In the first CM step of alternation one, the updates for the parameters in the subset

ϑ11 = {π,ρ,µ,α} on iteration (k + 1) are given by

π(k+1)
g =

n
(k)
g

n
,

ρ(k+1)
g =

n
(k)
g,good

n
(k)
g

,

µ(k+1)
g =

B(k)
[︂∑︁n

i=1 a
(k)
ig xi

]︂
−D(k)

[︃∑︁n
i=1 z

(k)
ig

(︃
v
(k)
ig +

1−v
(k)
ig

η
(k)
g

)︃
xi

]︃
B(k)A(k) − (D(k))2

,
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α(k+1)
g =

A(k)

[︃∑︁n
i=1 z

(k)
ig

(︃
v
(k)
ig +

1−v
(k)
ig√

η
(k)
g

)︃
xi

]︃
−D(k)

[︂∑︁n
i=1 a

(k)
ig xi

]︂
B(k)A(k) − (D(k))2

where

a
(k)
ig = z

(k)
ig

(︄
v
(k)
ig E

(k)
2ig +

1− v
(k)
ig

η
(k)
g

˜︁E(k)
2ig

)︄
, A(k) =

n∑︂
i=1

z
(k)
ig

(︄
v
(k)
ig E

(k)
2ig +

1− v
(k)
ig

η
(k)
g

˜︁E(k)
2ig

)︄
,

B(k) =
n∑︂

i=1

z
(k)
ig

(︄
v
(k)
ig E

(k)
1ig +

1− v
(k)
ig

η
(k)
g

˜︁E(k)
1ig

)︄
and D(k) =

n∑︂
i=1

z
(k)
ig

⎛⎝v(k)ig +
1− v

(k)
ig√︂

η
(k)
g

⎞⎠ .

3.3.3 Alternation 1: CM-step 2

In the second CM step of alternation one, closed form updates for the parameters in

the subset ϑ12 = {η} on iteration (k + 1) are obtained by differentiating Q(ϑ) with

respect to ηg for g = (1, . . . , G):

∂

∂ηg
Q(ϑ) =− p

2ηg
ng,good +

1

2η2g

n∑︂
i=1

zig(1− vig) ˜︁E2ig(xi − µg)
′Σ−1

g (xi − µg)

− 1

2η
3/2
g

n∑︂
i=1

zig(1− vig)(xi − µg)
′Σ−1

g αg.

Setting the partial derivative to zero and multiplying by −2η2g allows us to express

this equation as

0 = agηg + bg
√
ηg + cg

where, for iteration (k + 1)

a(k+1)
g = p(n

(k)
g,good), b(k+1)

g =
n∑︂

i=1

z
(k)
ig (1− v

(k)
ig )(xi − µ(k+1)

g )′(Σ(k)
g )−1α(k+1)

g

and c(k+1)
g = −

n∑︂
i=1

z
(k)
ig (1− v

(k)
ig ) ˜︁E(k)

2ig(xi − µ(k+1)
g )′(Σ(k)

g )−1(xi − µ(k+1)
g ).

By using the quadratic formula to find the real positive root to this equation, a closed

form solution for ηg can then be obtained by

η∗g =

⎛⎜⎜⎝−b(k+1)
g +

√︃(︂
b
(k+1)
g

)︂2
− 4a

(k+1)
g c

(k+1)
g

2a
(k+1)
g

⎞⎟⎟⎠
2

.
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A lower limit of 1 is set to ensure the integrity of the parameter, hence the update

for ηg is then given by

η(k+1)
g = max{1, η∗g}.

3.3.4 Alternation 2: E-step

In the E-step of the second alternation, the missing data consists of the three previous

sources of incompleteness and the missing latent factors Uig. The expected values

zig, vig and the series of expected values related to Wig are updated in a similar

manner to Section 3.3.1, but they are calculated with the parameter set {ϑ(k+1)
1 ,ϑ

(k)
2 }

for iteration (k+1). The expected values calculated on this step for iteration (k+1)

are denoted by the superscript (k+1/2). We can express the complete log likelihood

in terms of the latent factors Uig as

l2C(ϑ2) =C +
G∑︂

g=1

{︄
− ng

2
log|Ψg| −

ng

2
tr(Ψ−1

g S(k+1)
g )

+
n∑︂

i=1

zig

(︄
vigE2ig +

1− vig

η
(k+1)
g

˜︁E2ig

)︄
(xi − µ(k+1)

g )′Ψ−1
g Λguig

−
n∑︂

i=1

zig

⎛⎝vig + 1− vig√︂
η
(k+1)
g

⎞⎠ (α(k+1)
g )′Ψ−1

g Λguig

− 1

2
tr

[︄
Λ′

gΨ
−1
g Λg

n∑︂
i=1

zig

(︄
vigE2ig +

1− vig

η
(k+1)
g

˜︁E2ig

)︄
uigu

′
ig

]︄}︄
. (3.9)

where C is a constant with respect to ϑ2, Ψg = ωg∆g and the matrices S
(k+1)
g are

given by

S(k+1)
g =

1

ng

n∑︂
i=1

zig

(︄
vigE2ig +

1− vig

η
(k+1)
g

˜︁E2ig

)︄
(xi − µ(k+1)

g )(xi − µ(k+1)
g )′

− 2

ng

n∑︂
i=1

zig

⎛⎝vig + 1− vig√︂
η
(k+1)
g

⎞⎠ (xi − µ(k+1)
g )(α(k+1)

g )′

+
1

ng

n∑︂
i=1

zig

[︂
vigE1ig + (1− vig) ˜︁E1ig

]︂
α(k+1)

g (α(k+1)
g )′. (3.10)
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Recalling the latent factor model defined in Equation (2.15), if the observation

vector X ∼ Np(µ
∗,Σ∗), then the expectations for the latent factor U and the outer

product UU′ are given by

E
[︁
U | X

]︁
= β(X− µ∗) (3.11)

E
[︁
UU′ | X

]︁
= Iq + βΛ+ β

[︁
(X− µ∗)(X− µ∗)]β′ (3.12)

where β = Λ′(ΛΛ′ +Ψ)−1. Using Equations (3.11) and (3.12) we can calculate the

expected values shown in Appendix A.1 that enable us to express the complete data

log-likelihood Equation (3.9) as

Q2C(ϑ2) =C +
G∑︂

g=1

−ng

2
log|Ψg| −

ng

2
tr(Ψ−1

g S(k+1)
g )

+ ngtr
(︂
Ψ−1

g Λgβ
(k)
g S(k+1)

g

)︂
− ng

2
tr
(︂
Λ′

gΨ
−1
g ΛgΘ

(k+1/2)
g

)︂
(3.13)

where the matrices β(k)
g and Θ(k+1/2)

g are given by

β(k)
g =Λ(k)′

g (Λ(k)′

g Λ(k)′

g + ω(k)
g ∆(k)

g )−1 (3.14)

Θ(k+1/2)
g =Iq − β(k)

g Λ(k)
g + β(k)

g S(k+1)
g β(k)′

g (3.15)

with the appropriate constraints for for each model applied to the parameters Λg, ωg,

and ∆g.

3.3.5 Alternation 2: CM-step

In the CM-step of the second alternation on iteration (k + 1) we maximize Q2C(ϑ2)

with respect to ϑ2 with ϑ1 = ϑ
(k+1)
1 . It is important to note that for models belonging

to the original PGMM family, we obtain estimates of the parameter Ψ and derive ω

and ∆ from this estimate. The updates for the parameter set ϑ
(k+1)
2 for each set of

constraint conditions in Table 2.1 are as follows:
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• First, let us define the terms

˜︁S(k+1) =

g∑︂
g=1

π(k+1)
g S(k+1)

g

Θ(k+1/2) = Iq − β(k)Λ(k) + β(k)S(k+1)β(k)′

• Model CCCC: Σg = ΛΛ′ + ωIp

β(k) = Λ(k)′(Λ(k)Λ(k)′ + ω(k)Ip)
−1

Λ(k+1) = ˜︁S(k+1)β(k)(Θ(k+1/2))−1

ω(k+1) =
1

p
tr
{︂˜︁S(k+1) +Λ(k+1)β(k)˜︁S(k+1)

}︂
• Model CCUC: Σg = ΛΛ′ + ωgIp

β(k)
g = Λ(k)′(Λ(k)Λ(k)′ + ω(k)

g Ip)
−1

Λ(k+1) =

[︄
G∑︂

g=1

n
(k)
g

ω
(k)
g

S(k+1)
g β(k)

g

]︄[︄
G∑︂

g=1

n
(k)
g

ω
(k)
g

Θ(k+1/2)
g

]︄−1

ω(k+1)
g =

1

p
tr
{︂
S(k+1)
g − 2Λ(k+1)β(k)

g S(k+1)
g +Λ(k+1)Θ(k+1/2)

g Λ(k+1)′
}︂

• Model CCCU: Σg = ΛΛ′ + ω∆

β(k) = Λ(k)′(Λ(k)Λ(k)′ + (ω∆)(k))−1

Λ(k+1) = ˜︁S(k+1)β(k)(Θ(k+1/2))−1

(ω∆)(k+1) = Ψ(k+1) = diag
{︂˜︁S(k+1) +Λ(k+1)β(k)˜︁S(k+1)

}︂
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• Model CCUU: Σg = ΛΛ′ + ωg∆

β(k)
g = Λ(k)′(Λ(k)Λ(k)′ + ω(k)

g ∆(k))−1

Λ(k+1) =

[︄
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p
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]︂}︂

∆(k+1) =
1

κ
diag

{︂
Ξ(k+1/2)
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,

where the matrix Ξ(k+1/2) and the coefficient n+ 2κ are given by
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G∑︂
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ω
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]︂
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p∏︂
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Ξ
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jj

)︄1/p

• Model CUCU: Σg = ΛΛ′ + ω∆g

β(k)
g = Λ(k)′(Λ(k)Λ(k)′ + ω(k)∆(k)

g )−1
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(k+1)
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,
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g and the coefficient κg are given by
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• Model CUUU: Σg = ΛΛ′ + ωg∆g

β(k) = Λ(k)′(Λ(k)Λ(k)′ + (ωg∆g)
(k))−1
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}︂
,

where λ
(k+1)
j is the jth row of Λ(k+1) and r

(k+1/2)
j is the jth row of R(k+/2).

• Model UCCC: Σg = ΛgΛ
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• Model UCCU: Σg = ΛgΛ

′
g + ω∆
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}︂
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• Model UCUU: Σg = ΛgΛ
′
g + ωg∆
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g = Λ(k)′

g (Λ(k)
g Λ(k)′
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κ
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where the matrix Ξ(k+1/2) and the coefficient κg are given by,
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• Model UUCU: Σg = ΛgΛ
′
g + ω∆g
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g = Λ(k)′

g (Λ(k)
g Λ(k)′

g + ω(k)∆(k)
g )−1
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G∑︂
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g tr

{︂
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• Model UUUU: Σg = ΛgΛ
′
g + ωg∆g

β(k)
g = Λ(k)′

g (Λ(k)
g Λ(k)′

g + (ωg∆g)
(k))−1

Λ(k+1)
g = S(k+1)

g β(k)
g (Θ(k+1/2)

g )−1

(ωg∆g)
(k+1) = Ψ(k+1)

g = diag
{︂
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g +Λ(k+1)

g β(k)
g S(k+1)

g

}︂
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3.4 Computational Details

3.4.1 Initialization

The parameters in the set ϑ(0) = {π(0)
g ,µ(0),α(0),Σ(0)} are initialized via an MSAL

model. The MSAL models ability to account for asymmetry provides an initial es-

timate of the skewness parameter as well as a more accurate initial estimate for our

location parameter. The preliminary parameter estimates required for the MSAL

model are implemented using the zig estimates obtained from the kmeans(...) func-

tion of the stats package in R. The contamination parameters are initialized with the

fixed values η
(0)
g = 1.001 and ρ

(0)
g = 0.999 for all g = 1, . . . , G. These values are not

set equal to 1 to avoid singularities within the first iteration (Punzo et al. 2020). The

initial parameter estimates are then used to obtain initial estimates of all expected

values calculated in Section 3.3.1.

Initialization of the parameter set ϑ
(1/2)
2 = {Λ(1/2),ω(1/2),∆(1/2)} is conducted

subsequent to the E-step of the second alternation in the first iteration. The method of

initialization follows from McNicholas and Murphy (2008). The eigen-decomposition

of the matrix Sg is computed using the R function eigen(...). The initial values

for the elements in Λg are then calculated as

λij =
√︁
djγij,

where dj is the jth largest eigenvalue of Sg and γij is the ith element of the eigenvector

corresponding to dj, where i = 1, . . . , p and j = 1, . . . , q. The parameters {ω,∆} are

then initialized as

Ψg = diag{Sg −ΛgΛ
′
g},

ωg = |Ψg|1/p, ∆g =
1

ωg

Ψg.
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3.4.2 Dealing with Infinite Log-Likelihood Values

As documented in Franczak et al. (2014) complications can arise when estimating the

location parameter µg for mixtures of SAL distributions. Computational singularities

occur when the the parameter µg is equal to some observation vector xi in the data.

In our PCSALM family, such singularities manifest when calculating the expected

values E2ig and ˜︁E2ig as the Mahalanobis distance δ(xi,µg|Σg) will take on a value

of zero. To remedy this issue, we stop updating the parameter µg if the euclidean

distance between µg and xi for i = 1, . . . , n is less than 10−10. In such an event the

estimate for the parameter αg is also modified to be calculated as

α(k+1)
g =

∑︁n
i=1 z

(k)
ig

(︃
v
(k)
ig +

1−v
(k)
ig√

η
(k)
g

)︃
(xi − µ

(k)
g )

∑︁n
i=1 z

(k)
ig

(︃
v
(k)
ig E

(k)
1ig +

1−v
(k)
ig

η
(k)
g

˜︁E(k)
1ig

)︃
where all terms are as given in Section 3.3.2. This solution has been shown to be

effective in Franczak et al. (2014) and Morris et al. (2019).

3.4.3 Minimum Component Size

In some cases, the expected component membership labels assigned less than three

observations to a mixture component. This creates an issues and when computing

the matrices Sg because the positive definite property does not hold. Therefore,

the calculations shown in Section 3.3.5 were compromised. This issue was addressed

by restricting the component size to ng > 5 for g = 1, . . . , G while the AECM

algorithm was iterating. From an interpretive perspective, 1 or 2 observations would

not comprise a probability distribution, and thus would not serve as a meaningful

component.
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Chapter 4

Simulated Data Analysis

In this section, four types of simulated data sets were considered:

1. SAL clusters with noise;

2. SAL clusters;

3. Gaussian clusters with noise;

4. Gaussian clusters.

4.1 Simulation 1

In the first simulation, thirty data sets with n = 1000 observations and p = 10

dimensions were generated to feature G = 2 asymmetric components where the size

of the components were given by n1 = 600 and n2 = 400. The components in each

data set were generated using the R function rsal(...) from the package MixSAL

(Franczak et al. 2018). The parameters used as inputs in the rsal(...) function

were randomly generated in the following manner:

• Entries in µ1 were generated by a uniform distribution on (5, 15),

• Entries in µ2 were generated by a uniform distribution on (10, 20),

• Entries in α1 and α2 were generated by a uniform distribution on (−2, 2),
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• Σ1 andΣ2 were generated using the R function genPositiveDefMat(...) from

the package clusterGeneration. (Qui and Joe 2020).

The set of parameters generated was unique to each data set. Contamination was

implemented by including an additional 100 observations vectors where each entry

was randomly generated from a uniform distribution on (−10, 50), increasing the total

number of observations to n = 1100. These additional noise observations were unique

to each data set. Each scale matrix structure in the PCSALM family was fitted to

all data sets with G = 1, . . . , 4 components and q = 1, . . . , 4 factors. This resulted in

a total of 192 models being fitted to each data set.

4.1.1 Results for SAL clusters with noise

Table B.1 provides the complete ARI, sensitivity, specificity, ICL and BIC values for

models selected by the ICL from all possible models in the PCSALM family. The

classification measures are summarized in Table 4.1. The ARI metric was ineffective

at reflecting the capability of a model to correctly identify the additional noise ob-

servations as contamination. For this reason, we evaluated the ARI using only the

known good points and the sensitivity and specificity were considered. The sensitivity

is the proportion of noise observations that were correctly identified as bad points by

the model and the specificity is the proportion of good points that were identified

as such. The selected models generally provided a strong classification performance

with 28 of the selected models providing an ARI and specificity value greater than

0.90. These models were also generally effective at detecting bad points with 22 of

the models correctly identifying at least 95% of the noise observations. Despite this

strong performance, several of the models suggested by the ICL were unable to ac-

curately identify any bad points and instead opted to consider the noise observations

as components.

In general, the preferred models produced by the AECM algorithm tended to

be fit to 4 components while keeping observation counts in two of these components
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Table 4.1: Summary of classification performance for models selected by ICL for SAL
clusters with noise.

Mean ARI 0.95

Mean Sensitivity 0.78

Mean Specificity 0.97

# of Models w/ ARI ≥ 0.90 28

# of Models w/ Sensitivity ≥ 0.95 22

incredibly low, often at 1 or 0 observations. While technically considered a component

by the algorithm, such low observation counts make it easy to justify labelling these

points as contamination. An example of such a solution can be seen in the solution

proposed by the ICL for the first data set, shown in Table 4.2.

Table 4.2: Contingency table of the suggested clustering solution for data set 1 fea-
turing SAL clusters with noise (0 identifies bad points).

True Labels

0 1 2

0 99 0 1

1 1 0 0

2 0 0 399

3 0 0 0

4 0 600 0

The model selected by the ICL for the 29th data set provided the worst performance

with an ARI of 0.29. The proposed solution is provided in Table 4.3a. When evalu-

ating classification performance we can see that the model is severely over-estimating

the proportion of contamination in the data, featuring a specificity value of 0.540. A

similar issue was present in the proposed solution for the 18th data set, although not

as severe. Referring back to the formulation of the ICL in Section 2.5.2, the measure is

penalized for the estimated entropy in component membership labels zig. We applied
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a similar formulation of entropy to the expected values vig, to evaluate when there

was uncertainty in the bad points identified. The solutions proposed for data sets

18 and 29 featured the highest levels of uncertainty with penalties of -5115.89 and

-6161.00 respectively. Comparatively the mean penalty across all 30 data sets was

only -1494.07. The values quantifying entropy in vig corroborate our observation of an

over-estimation of the proportion of contamination in the data and could potentially

serve as an indication for when this kind of misclassification is present.

Table 4.3: Contingency tables of the clustering solutions for data set 29 featuring
SAL clusters with noise (0 identifies bad points).

(a) Model selected by ICL

True Labels

0 1 2

0 98 292 168

1 0 0 232

2 1 0 0

3 1 0 0

4 0 308 0

(b) Model selected by modified ICL

True Labels

0 1 2

0 99 0 2

1 0 0 398

2 1 0 0

3 0 0 0

4 0 600 0

When the selection procedure for data set 29 used a modified ICL that incorporates

estimated entropy of the expected values vig via addition to penalize we obtained the

solution given in Table 4.3b. The classification performance has clearly improved, in

particular the specificity of the new solution has improved to 0.998. However, when

the modified ICL was used as the selection metric for all data sets the mean sensitivity

dropped to 0.422. For this reason, we would only suggest using the modified ICL when

the entropy term for vig is sufficiently large and the model selected by the ICL suggests

an excessive proportion of bad points. Data set 29 provides ample justification since

the initial solution suggests more than 50% of the data is bad points.

Despite poor sensitivity in some of the selected models and the proposed solutions

for data sets 18 and 29, these issues are a consequence of ICL’s inconsistency in
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selecting the optimal model and not the PCSALM family’s inability to formulate

an accurate solution. Table B.2 provides a count of all models for each simulation

that were able to satisfy strict classification performance thresholds. Most notably,

the PCSALM family was able to produce multiple solutions with an ARI > 0.95

and perfect identification of bad points for all 30 data sets in the simulation. The

lowest number of near-perfect solutions occurred in the 28th data set, with 5 models

providing such a clustering solution.

Table 4.4: Summary statistics for the classification performance of each scale matrix
structure when selected with ICL for SAL clusters with noise.

Model Mean ARI S.D. of ARI Mean Sensitivity S.D. of Sensitivity

CCCC 0.95 0.15 0.99 0.01

CCCU 0.95 0.16 0.99 0.01

CCUC 0.99 0.01 0.26 0.41

CCUU 0.99 0.01 0.28 0.40

CUCU 0.99 0.01 0.83 0.27

CUUU 0.99 0.01 0.28 0.40

UCCC 0.98 0.01 0.86 0.19

UCUC 0.99 0.01 0.33 0.44

UCCU 0.99 0.01 0.89 0.17

UCUU 0.99 0.01 0.34 0.45

UUCU 0.99 0.01 0.84 0.29

UUUU 0.99 0.01 0.31 0.44

Table 4.4 provides summary statistics of the classification performance of models

selected by the ICL for each of the 30 data sets when only comparing models with

the same scale matrix structure. The structures “CCCC” and “CCCU” were very

capable of identifying bad points, with a mean sensitivity of 0.99 and extremely low

variance. However, despite having a high mean ARI of 0.94 and 0.95 respectively the

variability in the ARI was much higher than in other models making these structures

less reliable for accurate classification performance. The opposite was true for the

remaining ten scale matrix structures. All provided highly accurate ARI values with
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little variability but were not as capable of identifying contamination. The “UCCU”

structure was the most capable at detecting bad points with a mean sensitivity of

0.89.

Table 4.5: Summary statistics for the classification performance of each scale matrix
structure when selected with a modified ICL for SAL clusters with noise.

Model Mean ARI S.D. of ARI Mean Sensitivity S.D. of Sensitivity

CCCC 0.98 0.02 0.99 0.01

CCCU 0.98 0.04 0.99 0.01

CCUC 0.99 0.01 0.23 0.39

CCUU 0.99 0.01 0.25 0.38

CUCU 0.99 0.01 0.81 0.26

CUUU 0.99 0.01 0.28 0.40

UCCC 0.99 0.01 0.84 0.18

UCUC 0.99 0.01 0.23 0.38

UCCU 0.99 0.01 0.88 0.17

UCUU 0.99 0.01 0.24 0.39

UUCU 0.99 0.01 0.83 0.30

UUUU 0.99 0.01 0.21 0.38

When the estimated entropy of the expected values vig were incorporated into

the model selection procedure via addition to the ICL, we obtained the results in

Table 4.5. These results are mostly comparable to those selected by the unmodified

ICL in Table 4.4, however the ARI values for the scale matrix structures “CCCC”

and “CCCU” have a slightly improved mean and a sizeable decrease in the standard

deviation. Since their ability to accurately identify bad points remains intact these

scale matrix structures in conjunction with this model selection method yielded very

strong classification performance for all suggested models across each of the 30 data

sets.
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4.2 Simulation 2

Thirty data sets were generated in a manner analogous to the generation procedure

described in Section 4.1, but were distinguished by the exclusion of any additional

noise observations in the data. Similarly, all thirty data sets were fitted to each

scale matrix structure in the PCSALM family with G = 1, . . . , 4 components and

q = 1, . . . , 4 factors, resulting in a total of 192 models being fit to each data set.

4.2.1 Results for SAL clusters

Models from the PCSALM family were first selected using ICL for each of the 30 data

sets. The summary statistics for the ARI and the number of observations assigned

to be outliers of these models is provided in Table 4.6. The mean ARI value of 0.78

demonstrates an adequate performance, but the high amounts of variability present

compromised the reliability of classification solutions proposed. Additionally, the

number of bad points incorrectly identified by the models was much higher than

desired and also appeared to be quite volatile.

Table 4.6: Summary statistics of classification performance for models selected by
ICL for SAL clusters.

Mean Std. Dev. Minimum Maximum

ARI 0.78 0.33 -0.00 1.00

Bad points identified 164.27 335.07 0.00 1000.00

Upon further investigation we were able to discover that the high number of obser-

vations misclassified as bad points and the large amounts of variation in these metrics

was due to six models that grossly over estimated the overall proportion of bad points

in their respective data sets. These models were selected for data sets 2, 4, 14, 19, 20

and 23 in the simulation, and were the only models that suggested a specificity below

95%. The number of observations misclassified as bad points by these six models is

provided in Table 4.7.
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Table 4.7: Bad points incorrectly identified in SAL clusters when specificity does not
exceed 0.95.

Data Set 2 4 14 19 20 23

Bad points identified 997 1000 943 650 731 471

These six data sets were the isolated from the rest of the data sets in the simulation

and the summary statistics of the ARI were re-analyzed. Table 4.8 contains the

updated summary statistics as well as the mean entropy in the expected values vig. As

expected, the models selected for the six isolated data sets provided poor classification

performance and feature a high degree of uncertainty in their identification of the bad

points. The remaining 24 models featured a much stronger classification performance

than our initial analysis with greatly reduced variability.

Table 4.8: Comparison of the certainty in bad points identified and its effect on the
classification performance of models selected by ICL for SAL clusters.

Specificity < 95% Specificity ≥ 95%

Mean vig Entropy 3085.94 7.80

Mean ARI 0.14 0.94

Std. Dev. ARI 0.16 0.04

Since all of the models that provided poor classification performance for their

respective data set also featured a high degree of uncertainty in their identification

of the bad points, the model selection process was redone with the aforementioned

modification to the ICL to penalize entropy in the expected values vig. Table 4.9

provides summary statistics of the classification performance for the models selected.

The metrics provided here demonstrate a stronger and much more stable classification

performance that is similar to the performance of the 24 models in our initial analysis

that did not severely over-estimate contamination. Our modified ICL selected a

different model in 9 of the 30 data sets simulated, including all six to feature the low

specificity that we previously high-lighted.
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Table 4.9: Summary statistics of classification performance for models selected by the
modified ICL for SAL clusters.

Mean Std. Dev. Minimum Maximum

ARI 0.94 0.03 0.84 1.00

Bad points identified 3.60 8.49 0.00 34.00

4.3 Simulation 3

The third simulation generated ten data sets featuring Gaussian components and

contamination using the method of generation described in Punzo et al. (2020). These

data sets were generated with n = 200 observations and p = 10 dimensions and

featured G = 2 components and a latent factor structure with q = 3 latent factors.

The set of parameters were generated in the following manner:

• µ1 was set at the origin,

• µ2 was generated from N10( 0, I10),

• Entries in the loading matrices Λ1, Λ2 were drawn from independent N (0, 1),

• Diagonal entries of the matrcies Ψ1, Ψ2 were generated by a uniform distribu-

tion on (0.5, 1),

• π1 was calculated by generating n = 200 values from the uniform distribution

on (0, 1), then evaluating the proportion of observations with a value greater

than 0.5. π2 was then given by 1− π1.

This set of parameters was then used as inputs for the rmvnorm(...) function in R

to generate the Gaussian components. Contamination was implemented by including

an additional 20 observation vectors where each entry was randomly generated from

a uniform distribution on (−5, 5), increasing the total number of observations to

n = 220. Each scale matrix structure in the PCSALM family was fitted to all data

sets with G = 1, . . . , 5 components and q = 1, . . . , 9 latent factors, resulting in a total
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of 540 models being fit to each data set. q = 10 latent factors was not considered as

it was in Punzo et al. (2020) since a value q = p led to singularities in our AECM

algorithm. The results of the analysis were compared to the results given in Punzo

et al. (2020). This comparison was possible since our data was generated to match

the data used in their analysis.

4.3.1 Results for Gaussian clusters with noise

A comparison of the classification performance given by the PCSALM family and

other mixture of factor analyzers is provided in Section 4.3. The models proposed

by the PCSALM family provided a slightly weaker ARI than the MCGFA models,

but still had a comparable classification performance for points within the Gaussian

clusters to the other mixtures of factor analyzers. The model was not effective at

identifying bad points with a mean sensitivity of only 0.075. This is likely because

the noise observations included in these data sets were less dispersed than in the

previous simulation, and were captured by the skewness parameter of the PCSALM

instead. Additionally, the PCSALM model was not effective at recovering the number

of latent factors and suggested solutions with q = 7.

Table 4.10: Classification performance of mixtures of factor analyzers models on
Gaussian clusters with noise.

PCSALM MCGFA MMtFA EPGMM

G 2 2 2 2

Mean ARI 0.920 0.936 0.926 0.902

ARI Std. Dev. 0.03 0.06 0.05 0.05

Mean Sensitivity 0.075 0.965 N/A N/A

4.4 Simulation 4

Ten data sets were generated featuring Gaussian components and similarly used the

method of generation described in Punzo et al. (2020). These data sets differed from
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those in Section 4.3 since the data did not include any additional noise observations.

These data sets were also fitted to each scale matrix structure in the PCSALM family

with G = 1, . . . , 5 components and q = 1, . . . , 9 latent factors, resulting in a total of

540 models being fit to each data set. Again, the results of the analysis were compared

to the results given in Punzo et al. (2020).

4.4.1 Results for Gaussian clusters

Table 4.11 provides a comparison of the classification performance of the PCSALM

family for Gaussian clusters to other mixtures of factor analyzers. The PCSALM is

able to provide strong and comparable classification performance to the other mixture-

models, although it is slightly weaker than its competitors.

Table 4.11: Classification performance of mixtures of factor analyzers models on
Gaussian clusters.

PCSALM MCGFA MMtFA EPGMM

G 2 2 2 2

Mean ARI 0.824 0.872 0.867 0.863

ARI Std. Dev. 0.08 0.04 0.05 0.04
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Chapter 5

Real Data Analysis

5.1 AIS data set

The Australian Institute of Sport (AIS) data set (Telford and Cunningham 1991)

consists of p = 11 numerical measurements of the blood characteristics and physi-

ological features of n = 202 athletes, as well as their gender and respective sport.

There is a total of 17 different classifications for an athlete’s sport. Since the data

set only contains 202 observations, there is not enough information to properly define

17 meaningful components. Therefore, our analysis was focused on classifying the

data into the gender labels male and female. Each scale matrix constraint in the

PCSALM family was fit to G = 1, . . . , 4 components and q = 1, . . . , 5 latent factors.

The classification results and a comparison to the results obtained for the same data

in Punzo et al. (2020) is provided in Tables 5.1 and 5.2. The model proposed from

the PCSALM family was selected with BIC to maintain consistency with the results

obtained in Punzo et al. (2020).

Table 5.1: Contingency table of solutions proposed by mixtures of factor analyzers
models for the AIS data set.

PCSALM MCGFA MMtFA EPGMM

1 2 1 2 3 1 2 3 1 2 3

female 98 2 64 36 0 65 35 0 80 20 0

male 2 100 3 15 84 3 16 83 1 17 84
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The PCSALM family showed significant improvement in classification performance

when compared to other mixtures of factors analyzers. The model was able to cor-

rectly identify two groups in the data as opposed to the three group solutions by the

other models in the comparison. The best fitting PCSALM model featured an ARI

of 0.92 and only 4 misclassified observations, which is a noticeable increase over the

ARI range of 0.54 − 0.65 given by the competitors. The AIS data set is known to

feature asymmetry in its components (McNicholas 2016), so the PCSALM family’s

ability to out-preform other mixtures of factors analyzers is unsurprising.

Table 5.2: Classification performance of the AIS data set for mixtures of factor ana-
lyzers models.

PCSALM MCGFA MMtFA EPGMM

Model UUCU UCUCU UCCC UUU

G 2 3 3 3

q 5 4 5 4

ARI 0.92 0.55 0.54 0.65

The PCSALM family also showed mild improvement in the classification perfor-

mance when compared to mixtures of SAL distributions. Table 5.3 provides a com-

parison between the classification performance of our results and mixtures of SAL

distributions. While both models correctly identified two groups in the data, the

PCSALM model only misclassified 4 observations as compared to 8 misclassifications

by the MSAL model.

Table 5.3: Contingency table of solutions proposed by mixtures of SAL models for
the AIS data set.

PCSALM MSAL

1 2 1 2

female 98 2 100 0

male 2 100 8 94
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Figure 5.1 gives the pairs plot for the p = 6 physiological measurement variables

in the AIS data. These variables were chosen to be featured since there was a clearer

visual separation in the points from each gender than in the variables quantifying

blood characteristics. Points in the pairs plot were coloured using the model obtained

with the PCSALM family. Black points indicate observations classified as female and

red points indicate observations classified as male. The proposed solution appears

to accurately reflect the separation in the components in many of the given plots.

Variable combinations “pcBfat vs. lbm” and “pcBfat vs. wt” are two examples of

plots that have particularly clear separation into two components.

Figure 5.1: Pairs plot of the p = 6 physiological measurements in the AIS data set,
coloured by the PCSALM solution (black = f, red = m).
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Chapter 6

Conclusions

6.1 Summary

This thesis introduces a family of parsimonious contaminated shifted asymmetric

Laplace mixtures. Applying the constraints developed in McNicholas and Murphy

(2008, 2010) to the modified factor analysis decomposition of the scale matrix pa-

rameters in mixtures of CSAL distributions led to the formulation of twelve models.

Mixtures of factor analyzer models had previously been introduced with component

densities that incorporated a contamination protocol with the mixtures of contam-

inated Gaussian factor analyzers (MCGFA) in Punzo et al. (2020). However, the

models in the PCSALM family introduced in this thesis are the first mixtures of fac-

tor analyzers developed within the mixture-modelling literature with the capability of

accommodating contamination and asymmetric components. The PCSALM models

were implemented via an AECM algorithm for parameter estimation with initial val-

ues obtained from an embedded MSAL model, and tested in four simulation analyses

and an analysis of a real data set provided by the Australian Institute of Sports.

In the first two simulations, data was generated from a mixture of SAL distribu-

tion with two components and was considered both with and without noise obser-

vations contaminating the data. The PCSALM family was able to provide a strong

classification performance and was generally effective at identifying additional noise

observations as bad points. In instances of poor specificity a modified ICL measure
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was introduced that accounts for entropy in the expected values vig. This model

selection criteria was shown to be effective at providing accurate solutions when the

ICL suggested an unreasonable proportion of bad points in the data. The scale ma-

trix structures “CCCC” and “CCCU” used in conjunction with the modified ICL for

model selection provided highly accurate classification performance for SAL clusters

with noise. Additionally, the modified ICL provided strong classification performance

for SAL clusters without noise. In this simulation, any limitations in classification

performance were a result of inconsistency in the ICL as a model selection metric.

In the third and fourth simulations, the generated data featured two Gaussian com-

ponents and was considered with and without noise observations contaminating the

data. In these simulations the PCSALM family was compared to results from Punzo

et al. (2020) for the same data. The PCSALM family was able to provide a com-

petitive clustering performance to other mixtures of factor analyzers for observations

within the components. However it was not capable of identifying noise observations

as bad points when they were included in the data. Noise observations in simulation

3 were less dispersed than those in simulation 1, so it is likely that PCSALM captured

the noise observations through the skewness parameter.

The data set provided by the AIS contains measurements on blood characteris-

tics and physiological features of male and female athletes. The PCSALM family

was able to provide an exceptional classification performance for this data set when

attempting to distinguish the gender label for athletes, only misclassifying 4 of 202

observations. When compared to established clustering methods the PCSALM model

showed improvement over all the other mixture-models considered.

6.2 Future Work

Further testing is always constructive for a models justification. Although we pre-

formed many analyses within this thesis, more tests would allow us to more closely

examine the entire scope of the PCSALM family. One of the more significant limi-
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tations faced is that the EM algorithms for the MCGFA and CSAL models had not

been made publicly available in R at the time of writing this thesis. This hindered

our ability to construct comparisons between the PCSALM family and its closest

competitors. Additional testing with real data featuring very high dimensions is also

required to see how effective the modified factor analyzer structure is in this setting.

While the modified ICL developed in Chapter 4 was shown to be an effective

method of correcting for low specificity in PCSALM models, it is still undeveloped as

a model selection criteria. The theoretical justification for the criterion’s construction

must be elaborated upon, and tests must be preformed to evaluate its effectiveness

on mixture-models outside of PCSALM family. Furthermore, in this thesis we justify

its use when the model identifies a high proportion of bad points that feature high

levels of uncertainty in their identification. This metric is quite nebulous and open

to subjectivity. It also relies on the interpretation that if the data is sufficiently

comprised of bad points, then that identification is open to scrutiny. Refining the

recommendation for its use to rely on a more defined combination of the entropy term

of the expected values vig and the proportion of bad points identified is necessary.

In the case of the PCSALM family, since several models are fit to each set of data

we can obtain the mean value of these measures across all models. Assessing these

measures by their relative magnitude is likely to be the most reliable signal for our

modified ICL’s implementation.

In Punzo et al. (2020) the MCGFA models also considered constraints on the con-

tamination parameters {ρg, ηg} that held them equal across components, yielding four

models for each covariance matrix structure used. These constraints were extraneous

to the focus of this thesis. However, their implementation in the PCSALM family

may yield a stronger classification performance for some data sets.
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Appendix A: First Appendix

A.1 Expected value calculations for alternation 2
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Appendix B: Second Appendix

B.1 Expanded results for SAL clusters with noise

Table B.1: Classification performance of models selected by ICL for SAL clusters
with noise.

Data Set ARI Sensitivity Specificity ICL BIC

1 0.998 0.99 0.999 -42486.56 -42486.56

2 1.00 1.00 1.000 -44012.40 -43998.65

3 1.00 1.00 1.000 -42659.86 -42659.54

4 0.945 0.98 0.962 -39616.89 -39594.10

5 0.995 1.00 0.997 -41242.33 -41242.94

6 0.991 0.98 0.996 -51785.42 -51765.15

7 1.000 0.98 1.000 -55140.30 -55113.87

8 1.000 0.00 1.000 -51971.62 -51969.91

9 0.994 0.34 1.000 -53629.29 -53609.36

10 1.000 0.99 1.000 -53669.20 -53656.50

11 1.000 1.00 1.000 -50827.16 -50802.24

12 1.000 0.00 1.000 -51131.58 -51120.59

13 0.995 0.98 0.998 -52404.44 -52384.27

14 0.990 0.98 0.999 -54000.88 -53967.80

15 0.991 0.52 1.000 -53464.67 -53444.32

16 0.979 1.00 0.996 -53548.80 -53545.10

17 0.998 1.00 0.999 -53936.67 -53923.85

18 0.528 0.98 0.635 -52076.65 -52076.65
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Data Set ARI Sensitivity Specificity ICL BIC

19 0.945 1.00 0.965 -53782.62 53782.58

20 0.977 0.11 1.000 -53101.57 -53089.88

21 0.998 0.98 0.999 -54146.19 -54115.89

22 0.984 0.98 1.000 -52514.57 -52495.91

23 1.000 0.98 1.000 -52732.18 -52693.90

24 1.000 0.00 1.000 -54346.19 -54344.66

25 0.998 0.74 1.000 -53394.01 -53393.33

26 0.966 0.99 0.992 -53565.66 -53557.56

27 0.953 0.98 0.979 -52960.52 -52940.86

28 0.993 0.95 0.997 -52748.44 -52734.11

29 0.295 0.99 0.540 -51123.87 -51110.50

30 0.976 0.00 1.000 -55308.51 -55301.21

Table B.2: Count of models that satisfied performance benchmarks for ARI and
sensitivity for SAL clusters with noise.

Data Set ARI > 0.95 Sensitivity = 1 ARI > 0.95 & Sensitivity = 1

1 136 27 27

2 134 21 21

3 144 11 11

4 138 18 15

5 144 30 30

6 144 16 16

7 144 15 15

8 128 10 10

9 135 18 18

10 141 14 14

11 129 26 26

12 127 8 8
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Data Set ARI > 0.95 Sensitivity = 1 ARI > 0.95 & Sensitivity = 1

13 133 18 13

14 144 19 19

15 135 19 19

16 88 16 8

17 135 22 22

18 120 12 10

19 133 23 22

20 103 14 14

21 144 32 32

22 80 21 17

23 144 36 36

24 136 14 14

25 129 19 19

26 129 19 19

27 137 19 19

28 144 5 5

29 129 9 9

30 144 30 30
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