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Abstract

V1309 Sco was observed in 2008 as a luminous red nova and presents as some

of the best time–resolved spectral data of a contact binary merger. However,

the parameters of its progenitor and the physics behind the morphology of its

light curve remain uncertain. We use the Smoothed Particle Hydrodynamics

(SPH) code StarSmasher to model the progenitor primary star, using a MESA

model at the base of the red giant branch with M = 1.52 M�, R = 3.715 R�

and total particle numbers N = 1× 105, N = 2× 105, and N = 3× 105. We

vary spatial resolutions in each of the models to find total energy profiles that

match the initial MESA model well near the surface.

We analyze all three models using a new code we developed called FluxCal,

which solves the radiative transfer problem in SPH simulations using an envelope

fitting method for inherently optically thick particles and a Runge–Kutta ray

tracing method in the LTE approximation. FluxCal allows for the first time

ever the calculation of spectral properties at SPH simulation boundaries with

optically thick particles. We observe an accuracy improvement of ∼ 2 orders of

magnitude in the effective temperature of an SPH stellar model over a traditional

ray tracing method.

We simulate a contact binary merger with the M = 1.52 M�, R = 3.715 R�,
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N = 2×105 red giant primary and a M = 0.16 M�, R = 0.203 R�, N = 1×104

secondary with StarSmasher out to ∼ 14 days (≈ 4 months wall time) to model

the V1309 Sco merger. We use FluxCal to calculate the effective temperatures

in 10 hour intervals which we use to calculate luminosities. The merger in our

simulations evolved on timescales shorter than expected from observations. This

may be due to the primary’s envelope artificially expanding during relaxation to

a larger radius than the initial MESA model, which leads to Roche lobe overflow

and loss of angular momentum at larger separations. Calculated luminosities

peak at values similar to that observed in V1309 Sco. We require additional

simulation time or a simulation with lower resolution to view late–time spectro–

temporal dynamics.
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Preface

This thesis is original work by Roger Hatfull in collaboration with professor

Natalia Ivanova from the University of Alberta. The framework of the presented

code FluxCal in §5 originates from the unpublished code SPLOT, maintained by

professor James C. Lombardi at Allegheny College, and is modified significantly

in FluxCal. The author of the envelope fitting routine in §5.3.2, including the

physical concepts involved, was professor Natalia Ivanova. Dr. Jose Nandez

(PhD) at the University of Waterloo helped implement a gravity solver for

the creation of FluxCal input files from StarSmasher output files and, in

collaboration with professor Natalia Ivanova, developed software used to reduce

data used in the presented analysis of SPH stellar profiles in §6.1.



v

Acknowledgements

Acknowledgements are made for professor Natalia Ivanova for her remarkable

guidance and support. Without her enlightening discussions and feedback this

thesis could not have been possible. Professor James C. Lombardi is also

acknowledged for his invaluable conversations, insightful commentary, and

extraordinary helpfulness.

Thanks are given to Dr. Jose Nandez (PhD) who wrote a gravity solver used

to create FluxCal input files from StarSmasher output files and, in collaboration

with Natalia Ivanova, wrote a code that allows for comparison of StarSmasher

stellar model energy profiles to MESA energy profiles. His incredible support

with running the StarSmasher code on ComputeCanada clusters and valuable

conversations are also much appreciated.

Acknowledgements go to the professors, faculty, and students of the astro-

physics group at the University of Alberta for their support and educational

wisdom. In particular, Kenny X. Van, Zhuo Chen, Asma Hattawi, Yue Zhao,

and Pavan Hebbar are thanked for their helpful discussions.

Thanks go to professor Daniel Price for developing the code SPLASH (Price,

2011) which was used sporadically to attain swift general understandings of

spatiotemporal evolution in StarSmasher simulations.



Contents

1 Introduction 1

1.1 Contact Binary Mergers . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Shrinking the Orbit . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Ejecting the Common Envelope . . . . . . . . . . . . . . 5

1.2 V1309 Sco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Recreating the Merger . . . . . . . . . . . . . . . . . . . 9

2 Radiative Transfer 11

2.1 Optical Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Radiative Transfer Equation . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Outgoing Intensity . . . . . . . . . . . . . . . . . . . . . 15

2.3 Local Thermodynamic Equilibrium (LTE) . . . . . . . . . . . . 17

2.3.1 Near LTE . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Visible Luminosity . . . . . . . . . . . . . . . . . . . . . 19

2.5 Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Optical Depth at the Photosurface . . . . . . . . . . . . 22

2.5.2 Photospheric Pressure . . . . . . . . . . . . . . . . . . . 25

2.6 Mean Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Planck Mean Opacity . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Rosseland Mean Opacity . . . . . . . . . . . . . . . . . . 27

vi



CONTENTS vii

3 Smoothed Particle Hydrodynamics 29

3.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Momentum Equation . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Energy Equation . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Artificial Viscosity . . . . . . . . . . . . . . . . . . . . . 32

3.2 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 StarSmasher 37

4.1 StarSmasher Equations of Motion . . . . . . . . . . . . . . . . . 37

4.1.1 Artificial Viscosity . . . . . . . . . . . . . . . . . . . . . 38

4.2 Radiative Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Tabulated Equation of State (TEOS) . . . . . . . . . . . . . . . 43

4.3.1 Polynomial Temperature Solution . . . . . . . . . . . . . 45

4.4 Overview of Workflow . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Relaxation Process . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Core Particles . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.2 Optimal nnopt . . . . . . . . . . . . . . . . . . . . . . . 52

5 FluxCal 53

5.1 Photosurface Problem . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Particle Optical Depths . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Optically Thick (Envelope Fitting) . . . . . . . . . . . . . . . . 59

5.3.1 Fundamental Envelope Solutions . . . . . . . . . . . . . 60

5.3.2 FluxCal Envelope Fitting . . . . . . . . . . . . . . . . . 62

5.4 Optically Thin (Runge–Kutta Integrator) . . . . . . . . . . . . . 63

5.4.1 The Integrating Grid . . . . . . . . . . . . . . . . . . . . 65

5.4.2 Empty Space . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Optical Depth Calculation . . . . . . . . . . . . . . . . . . . . . 68



5.6 Visible Luminosity Calculation . . . . . . . . . . . . . . . . . . 69

5.7 Effective Temperature Calculation . . . . . . . . . . . . . . . . . 69

5.8 FluxCal Framework . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9 Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Results 76

6.1 StarSmasher Stellar Models . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Finding the Optimal nnopt . . . . . . . . . . . . . . . . 82

6.2 Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Surface Optical Depths . . . . . . . . . . . . . . . . . . . 84

6.2.2 Model Radii . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Effective Temperatures . . . . . . . . . . . . . . . . . . . 86

6.3 Dynamical Simulation . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Light Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Discussion 103

7.1 Relaxed Stellar Models . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Expansion During Relaxation . . . . . . . . . . . . . . . 103

7.1.2 Central Cool Spots . . . . . . . . . . . . . . . . . . . . . 104

7.1.3 Ray Tracing at the Surface . . . . . . . . . . . . . . . . . 104

7.2 Dynamical Simulation . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Merger Behavior . . . . . . . . . . . . . . . . . . . . . . 105

7.2.2 Ejecta Optical Depths . . . . . . . . . . . . . . . . . . . 106

7.2.3 Effective Temperatures and LTE . . . . . . . . . . . . . 107

7.3 Light Curve Features . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Conclusions 109

A Appendix 111

A.1 TEOS MESA Inlist . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 V1309 Sco Primary Star Inlist . . . . . . . . . . . . . . . . . . . 112

viii



List of Tables

5.1 Calculated particle optical depths . . . . . . . . . . . . . . . . . 59

6.1 StarSmasher relaxations . . . . . . . . . . . . . . . . . . . . . . 84

ix



List of Figures

1.1 Roche lobe potentials . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 V1309 Sco I magnitude observations . . . . . . . . . . . . . . . 7

1.3 V1309 Sco luminosities . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Gas cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Intensity within a gas cloud . . . . . . . . . . . . . . . . . . . . 13

2.3 Viewing angles . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Tabulated equation of state (TEOS) . . . . . . . . . . . . . . . 44

4.2 Relaxation energies . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Core clumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Hexagonal particle packing . . . . . . . . . . . . . . . . . . . . . 55

5.2 Hexagonal lattice order . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Stellar envelope solution . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Runge–Kutta integration example . . . . . . . . . . . . . . . . . 64

5.5 Runge–Kutta integration through empty space . . . . . . . . . . 67

5.6 FluxCal driving and integrating grids . . . . . . . . . . . . . . . 72

6.1 Initial N = 3× 105 model . . . . . . . . . . . . . . . . . . . . . 77

6.2 Final relaxed N = 1× 105 model . . . . . . . . . . . . . . . . . 79

6.3 Final relaxed N = 2× 105 model . . . . . . . . . . . . . . . . . 80

x



6.4 Final relaxed N = 3× 105 model . . . . . . . . . . . . . . . . . 81

6.5 Optimal nnopt comparison . . . . . . . . . . . . . . . . . . . . . 83

6.6 Fully relaxed N = 3× 105 model outer particle optical depths . 85

6.7 Comparison of effective temperatures calculated with only the

envelope fitting routine and only the Runge–Kutta integrator . . 87

6.8 Dynamical run energy evolution . . . . . . . . . . . . . . . . . . 91

6.9 Dynamical run particle positions (part 1) . . . . . . . . . . . . . 92

6.10 Dynamical run particle positions (part 2) . . . . . . . . . . . . . 93

6.11 Dynamical run outer particle optical depths (part 1) . . . . . . 94

6.12 Dynamical run outer particle optical depths (part 2) . . . . . . 95

6.13 Dynamical run effective temperatures (part 1) . . . . . . . . . . 96

6.14 Dynamical run effective temperatures (part 2) . . . . . . . . . . 97

6.15 Dynamical run effective temperatures with only the Runge–Kutta

integrator (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.16 Dynamical run effective temperatures with only the Runge–Kutta

integrator (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.17 Location of particles on the TEOS after merger . . . . . . . . . 100

6.18 Light curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



Chapter 1

Introduction

Dense clouds of molecular gas in the interstellar medium collapse under self–

gravity to form either a single star or fragment to form a collection of stars

(McKee and Ostriker, 2007). Although the underlying mechanisms for this

fragmentation are unclear, both wide and close binary systems have been

observed after a protostellar core collapse, with more than ∼ 50% of Sun–like

stars having stellar companions (Raghavan et al., 2010), 10–15% of which have

separations of 1–10 AU. More than 80% of stars with M1 & 16 M� are in a

binary (Duchêne and Kraus, 2013). From hereafter, we use the term “primary”

to refer to the most massive star and “secondary” to refer to the second–to–most

massive star.

In the case of a Sun–like primary with a brown dwarf secondary, the primary

eventually evolves off the main sequence and onto the red giant branch resulting

in its envelope expanding outward. To understand how the system is affected

by such an expansion, consider the two stars as point masses in a corotating

frame. The net force acting on any small packet of mass is F = −m∇ϕ, where

ϕ is the effective gravitational potential is written as,

ϕ = −
(
GM1

r1

+
GM2

r2

)
− 1

2
ω2

orbr
2
cm, (1.1)

1
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Figure 1.1: The three dimensional effective potential ϕ (offset mesh) is shown in
the vicinity of two point masses (black dots). A cross–section is taken through
the equitorial plane and contours of equipotential are traced. The grey shaded
region indicates where, for particles with zero velocity, a common envelope can
gather. The white region inside the grey shading are the Roche lobes of each
component. The point mass with the larger Roche lobe is the primary and the
other is the secondary. Image adapted from van der Sluijs (2006).
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where G is the gravitational constant, M1 and M2 are the masses of the primary

and secondary, r1 and r2 are the distances to the primary and secondary

respectively, ωorb is the orbital angular velocity, and rcm is the distance from

the center of mass. In Fig. 1.1, the locations of local maxima in ϕ are traced as

equipotential contours. The positions where they self–intersect are commonly

called the “Lagrange points”.

The equipotential that defines the first Lagrange point L1 also defines the

so–called “Roche lobes” of each mass. The 1D volume–equivalent radius of a

star at its Roche lobe can be related to its true 3D Roche lobe volume by an

approximation derived by Eggleton (1983),

rL,1 =
0.49(M1/M2)2/3a

0.6(M1/M2)2/3 + ln(1 + (M1/M2)1/3)
, (1.2)

where a is the orbital separation, M1 is the mass of the primary, and M2 is the

mass of the secondary. The secondary’s Roche lobe radius is found in the same

way by switching all subscripts 1→ 2 and 2→ 1 in Eq. 1.2.

As the primary’s envelope expands to larger radii, it may fill its Roche lobe.

Once full, mass transfer from the primary to the secondary can occur around

the L1 saddle–point. Prior to the primary’s Roche lobe becoming full, the

system is called a “detached binary”, and “semidetached binary” when one of

the Roche lobes is full. Eventually, mass transfer may cause the secondary’s

Roche lobe to be full as well, forming a “contact binary”. Mass at radii larger

than the Roche lobe radius is gravitationally bound to the system as a whole,

but not to either individual star, forming a common envelope of material, as

seen in the gray shaded region in Fig. 1.1. During a common envelope event

(CEE hereafter), mass can become gravitationally unbound from the common

envelope when the envelope expands past an outer Lagrangian point. Outflow

most easily escapes around the L2 point, as the maximum potential a packet of

mass can have within the common envelope is defined by the equipotential at
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L2. It is also possible for outflow to escape the L3 point and elsewhere if the

common envelope expands to sufficient radii.

1.1 Contact Binary Mergers

1.1.1 Shrinking the Orbit

With the two stars in the binary still treated as point masses, the orbital

evolution can be understood through analysis of the angular momentum. The

total orbital angular momentum of the system is written as,

J2 = G
M2

1M
2
2

M1 +M2

a(1− e2), (1.3)

where G is the gravitational constant, M1 and M2 are the masses of the primary

and secondary respectively, a is the orbital separation and e is the eccentricity

of the orbit. The change in angular momentum over time is calculated by

differentiating Eq. 1.3 with respect to time to get,

J̇

J
=

1

2

ȧ

a
+
Ṁ1

M1

+
Ṁ2

M2

− 1

2

Ṁ1 + Ṁ2

M1 +M2

− eė

1− e2
, (1.4)

where dotted values represent the time derivative.

Consider the case of mass transfer from the primary to the secondary

(Ṁ2 = −Ṁ1) in a circular orbit (e = 0) with fully conserved angular momentum

(J̇ = 0). Here, ȧ can be found using Eq. 1.4,

ȧ

a
= 2

Ṁ1

M1

(
M1

M2

− 1

)
. (1.5)

Thus, as the primary loses mass to the secondary, the orbital separation decreases

with time for as long as M1 > M2.
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1.1.2 Ejecting the Common Envelope

The ability for a contact binary to eject its common envelope lies in the energy

budget of the system. The binding energy of the common envelope was first

introduced by Webbink (1984) as proportional to the change in orbital energy,

Ebind = αCE

(
GMc,1M2

2af
− GM1M2

2ai

)
, (1.6)

where Mc,1 is the primary’s core mass, ai and af are the initial and final orbital

separations, and αCE is a dimensionless parameter that describes the efficiency

at which energy is transferred from orbital motion to envelope expansion

(Livio and Soker, 1988).

The binding energy Ebind is equal to negative the total energy of the primary’s

envelope (Han et al., 1994) and can be calculated as,

Ebind =

∫ surface

core

(
Gm

r
− u
)
dm, (1.7)

where m is the mass coordinate, r is the distance from the center of the primary,

and u is the specific internal energy. However, in the case of quasi–steady

outflow from the common envelope, the binding energy depends on the enthalpy

(Ivanova and Chaichenets 2011; Ivanova et al. 2013),

Ebind =

∫ surface

core

(
Gm

r
− Ê

)
dm, (1.8)

where Ê ≡ u+P/ρ is the enthalpy, P is pressure, and ρ is density. A convenient

alternative to calculating the binding energy is introduced by de Kool et al.

(1987),

Ebind =
GM1 (M1 −M1,c)

λrL,1
, (1.9)

where λ is a factor of order unity that depends on the density distribution in

the primary’s stellar envelope (see Wang et al. 2016 for a table of values), rL,1
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is the radius of the primary’s Roche lobe at the onset of spiral–in, as calculated

in Eq. 1.2. If the decrease in orbital energy exceeds the binding energy and

energy is not lost by other means, the entire common envelope can be ejected.

1.2 V1309 Sco

1.2.1 Observations

The first observations of V1309 Sco were published by Mason et al. (2010)

as a classical nova type event. V1309 Sco has a distinctive light curve,

as seen in Fig. 1.2, which is thought to be the result of a contact binary

merger (Tylenda et al., 2011). Similar observations such as that of V838

Mon, V4332 Sgr, and M31 RV, may also be a result of a merger or collision

(Tylenda and Soker, 2006). Objects of this class are most commonly referred

to as “Luminous Red Novae” (LRNe), but are also referred to as “intermediate

luminosity red transients”, “V838 Mon–like events”, and “mergebursts”, and

often present with suddenly increasing luminosities and infrared I and/or visual

V magnitudes over days to months, dimming to values lower than pre–outburst

over months to years.

V1309 Sco was first identified as a classical nova in 2008 by Nakano et al.

(2008) for the American Association of Variable Star Observers (AAVSO here-

after) project1. Subsequent observations by Rudy et al. (2008a) discovered

narrow Fe II emission lines, suggesting an ejection of an outer mass shell from

a white dwarf star. However, observations ∼ 40 days later showed no binary

companion in the vicinity, making the cause of mass ejection unknown and

highly unusual (Rudy et al., 2008b). Tylenda et al. (2011) used archival I band

data of V1309 Sco from before the outburst from the third phase of the Optical

Gravitational Lensing Experiment (OGLE hereafter) (Udalski, 2003) together

1Data available at https://www.aavso.org/data-download

https://www.aavso.org/data-download
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4500 4600 4700 4800 4900
time [JD 2450000+ ]
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Figure 1.2: Observations of the V1309 Sco outburst in the I filter from the
OGLE–III project (Udalski, 2003) are shown as black points and AAVSO data
are shown as black triangles. The OGLE data were processed by the standard
OGLE procedures (Udalski et al., 2008). The first plateau appears at ∼ 2454720
JD, lasts for ∼ 20 days, and declines to a secondary plateau at ∼ 2454860 JD,
which lasts for ∼ 100 days. Further observations by Kamiński et al. (2015) show
a continued decline to about 17.5 magnitude ∼ 1600 days later. Measurement
uncertainties are shown, but are smaller than the data points.
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Figure 1.3: Luminosity as calculated by Tylenda et al. (2011) for V1309 Sco
using data from AAVSO, OGLE, and SAAO. One data point, shown as a black
square, was taken with the NASA Intrared Telescope Facility (shown as ITF,
also known as IRTF). Values are calculated using a multiband photometry
technique (Tylenda, 2005).
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with AAVSO and South African Astronomical Observatory (SAAO) observa-

tions, as seen in Fig. 1.2. Prior to outburst, there exists periodicity in the light

curve, indicating an eclipsing binary system. The orbital period of the binary

was measured as decaying with time and had a period of ∼ 1.4 days just prior

to outburst (Tylenda et al., 2011). The periodic feature in the light curve is

not present post–outburst, indicating a merger.

Tylenda et al. (2011) used multiband photometry (Tylenda, 2005) to calcu-

late the luminosity, as seen in Fig. 1.3, using a distance estimate of 3.0 kpc and

reddening EB−V = 0.8. Here, photometric magnitudes are compared to a set of

reference stellar spectra, with the best fit in terms of least squares is selected

(see Tylenda 2005 for more details).

1.2.2 Recreating the Merger

To explain the light curve in Fig. 1.2, the physics involved in the two plateau

features must be understood. Prior to outburst, V1309 Sco had an I magnitude

of ∼ 15. The first plateau occurs at I magnitude ∼ 7 at Julian date (JD

hereafter) ∼ 2454720, and lasts ∼ 20 days, while the second plateau occurs at

I magnitude ∼ 14 at ∼ 2454860 JD, and lasts ∼ 100 days. The mechanisms

driving these features is uncertain, but may be a result of observing a “frozen

in space” photosphere in the expanding outflow, where material above the

photosphere becomes transparent. Ivanova et al. (2013) discuss the role of

recombination in the outflow, as inspired by hydrogen recombination fronts

modelled in type IIP supernovae simulations (Kasen and Woosley, 2009). As

the recombination front is near the photosphere, recombination energy might

be released through radiative flux, possibly affecting the light curve. Ivanova

(2018) suggests the recombination energy can not be efficiently transported

into convective flux for primary stars with scaled entropies S/(kbNA) < 37 mol

g−1 in their envelopes. The role of recombination energy in the features of red

novae light curves is still an active debate (Ivanova 2018; Grichener et al. 2018;
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Soker et al. 2018).



Chapter 2

Radiative Transfer

Consider an asymmetrical cloud of gas with a source of photons radiating

outwards from its center. An observer very far away views the gas cloud along

the z axis and can only see the photons that escape the cloud from the surface

parallel to the z axis, as seen in Fig. 2.1. As the photons travel through the cloud,

they are absorbed and re–emitted by gas particles until they escape. Depending

on the chemical composition and number density of the gas, photons may escape

easily or not at all. In this chapter, computationally useful approximations are

derived for the quantities that define the physics of radiative transfer through

the gas cloud – intensity, flux, and luminosity, as well as attenuation, radiation

pressure, and photon energy density.

2.1 Optical Depth

The distance a photon with frequency ν travels on average before interacting

with a gas particle is called the mean free path,

`ν ≡
1

σνn
=

1

κνρ
, (2.1)

11
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Figure 2.1: A sketch of an asymmetrical gas cloud with the coordinate axis
defined by letting z always be toward the observer, shown as an artist rendition
of a human eye, regardless of viewing angle. The xy plane is taken to be
perpendicular to z with azimuthal angle φ measured in xy and θ is the polar
angle. A beam of radiation is emitted toward the observer from a small area
element in the cloud at (r, θ, φ) with area normal s (see Fig. 2.2).

where σν is the absorption cross–section, n is the particle number density, ρ is

the gas mass density, and κν is the mass absorption coefficient, also known as

the opacity. A photon is, on average, absorbed by a gas particle when `ν � |dε|,

where dε is the distance within the gas cloud along the photon’s direction of

travel. After being absorbed, a photon may be re–emitted and once again make

an attempt to escape. The mean free path depends on the location in the cloud,

as σν , n, κν , and ρ are all position dependent. Once the photon enters a region

where `ν � |dε|, it will successfully escape on average. In summary, photons

are,

• trapped within the cloud in regions where |dε/`ν | � 1,

• move mostly unobstructed when |dε/`ν | � 1.

The dimensionless quantity “optical depth” τν characterizes the ability for

photons to escape a material in a specified direction z. It is defined as,

dτν ≡ −κνρdz, (2.2)
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Figure 2.2: A sketch of a beam of intensity inside a gas cloud at some optical
depth τ . A single photon traveling in direction ε contributes a small amount of
energy to the total intensity beam, defined over the solid angle dΩ. The intensity
originates from the small spherical area element dA and the photon travels
through an equivalent rotated area element dσ, angled ψ from the direction of
travel.

where both κν and ρ are functions of z. The following terms define the optical

properties of the gas cloud,

• “Optically thick” means τν � 1. Photons are unable to escape.

• “Optically thin” means τν � 1. Photons are easily able to escape.

• The surface of the gas cloud, where ρ = 0, is where τν = 0.

The change in optical depth dτν can be thought of as the probability of

photons to interact with gas particles. At the τν = 0 surface, there are no gas

particles to interact with so the probability is zero. A photon that travels from

τν = 0 to τν � 1 is very likely to interact with a gas particle on its path.
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2.2 Radiative Transfer Equation

Consider an area element dA(τν) along the line of sight z. Let z be the surface

normal to dA(τν) and ε be the direction of travel for a single photon with

frequency ν, as seen in Fig. 2.2. The photon passes through area element dσ,

from which dA(τν) makes an angle ψ, and contributes to a solid angle dΩ,

defined for circular area elements as

dΩ ≡ 2π sinψdψ = −2πdµ, (2.3)

where µ ≡ cos(ψ) = dz/dε. The total intensity at optical depth τν in the z

direction is written as,

Iν(τν , µ) ≡ dEν
dt

1

dσ

1

dΩ
, (2.4)

where dEν is the unit energy per frequency moving through dσ in unit time dt.

Photons travel from the source of radiation outwards, diffusing through the

gas cloud to the surface. Along a single photon’s travel, it interacts with gas

particles via absorption and emission processes, contributing to a total intensity

at a given location. A single photon makes a small contribution to the intensity

dIν(τν , µ) dependent on how that photon is emitted and absorbed,

dIν(τν , µ) = dIem
ν (τν , µ) + dIabs

ν (τν , µ), (2.5)

where dIem
ν (τν , µ) and dIabs

ν (τν , µ) are the small contributions to the emitted

and absorbed intensity by a single photon. The absorption component neglects

emission effects and the emission component neglects absorption effects.

The absorption component of a single photon along its direction of motion ε

is proportional to the total intensity in that direction, where the proportionality

coefficient is equal to the probability that it will interact with a gas particle.

This is a similar concept to the optical depth in Eq. 2.2 being equivalent to

the probability of interaction with a gas particle. The absorption component is
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written as,

dIabs
ν (τν , µ) = −Iν(τν , µ)κνρdε. (2.6)

The emission component dIem
ν (τν , µ) of a single photon is described by

the “source function” Sν(τν , µ), which encapsulates the physics of emission

within it and has the same dimensions as intensity. As with the absorption

component, the emission component is proportional to the source function,

where the proportionality constant is again the probability of interacting with

a gas particle along −ε,

dIem
ν (τν , µ) = Sν(τν , µ)κνρdε. (2.7)

Hence, Eq. 2.5 can be written using Eq. 2.6 and Eq. 2.7 as,

dIν(τν , µ)

κνρdε
= Sν(τν , µ)− Iν(τν , µ). (2.8)

Recall that dε = dz/µ, so Eq. 2.8 can be written using the optical depth from

Eq. 2.2 as,

µ
dIν(τν , µ)

dτν
= Iν(τν , µ)− Sν(τν , µ). (2.9)

This first–order linear ordinary differential equation can be solved using an

integration factor to obtain,

Iν(τν , µ) = Iν(τν,0, µ)e(τν−τν,0)/µ +
1

µ

∫ τν,0

τν

Sν(τ
′
ν , µ)e(τν−τ ′ν)/µdτ ′ν , (2.10)

where τν,0 is the optical depth at which the intensity is considered to originate.

2.2.1 Outgoing Intensity

Consider the case where the intensity originates from an optical depth much

larger than the final optical depth, τν,0 � τν . The outgoing intensity is written
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using Eq. 2.10 as,

I+
ν (τν , µ ≥ 0) =

1

µ

∫ τν,0

τν

Sν(τ
′
ν , µ ≥ 0)e(τν−τ ′ν)/µdτ ′ν . (2.11)

At the τν = 0 surface, Eq. 2.11 is written as,

I+
ν (τν = 0, µ ≥ 0) =

1

µ

∫ τν,0

0

Sν(τ
′
ν , µ ≥ 0)e−τ

′
ν/µdτ ′ν . (2.12)

Consider the Taylor expansion of the source function around τν = 0,

Sν(τν , µ ≥ 0) ≈ Sν(τν = 0, µ ≥ 0) + τν

(
dSν(τν , µ ≥ 0)

dτν

)
τν=0

. (2.13)

The outgoing intensity in Eq. 2.12 is hence written as,

I+
ν (τν = 0, µ ≥ 0) ≈Sν(τν = 0, µ ≥ 0)

(
1− e−τν,0/µ

)
+ µ

(
dSν(τν , µ ≥ 0)

dτν

)
τν=0

[
1−

(
1 +

τν,0
µ

)
e−τν,0/µ

]
.

(2.14)

As stated previously, τν,0 � τν , and hence, τν,0 � 0. Therefore, Eq. 2.14 is

written as,

I+
ν (τν = 0, µ ≥ 0) ≈ Sν(τν = 0, µ ≥ 0) + µ

(
dSν(τν , µ ≥ 0)

dτν

)
τν=0

, (2.15)

which is equal to the Taylor expansion of the source function in Eq. 2.13 for

τν = µ. Thus, the intensity at the τν = 0 surface, originating at an optically

thick region, equals the source function at τν = µ,

I+
ν (τν = 0, µ ≥ 0) ≈ Sν(τν = µ, µ ≥ 0). (2.16)
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2.3 Local Thermodynamic Equilibrium (LTE)

We adopt that a small region within the gas cloud is in local thermodynamic

equilibrium (LTE hereafter) if a single value of temperature can be attributed

to all gas particles within that neighborhood, and so radiation produced by

those particles is a function of that temperature. In this work, for simplicity,

we assume without further proof that at large optical depths LTE is nearly

satisfied.

In the case of strict LTE, the source function Sν(τν � 1, µ) is well described

by the Planck blackbody function Bν(T (τν � 1)), where T (τν � 1) is the local

temperature in the optically thick region. In LTE, the incoming and outgoing

intensities are the same, and hence the change in intensity dI(τν � 1, µ) = 0.

Therefore, the radiative transfer equation from Eq. 2.9 indicates that

Iν(τν � 1, µ) = Sν(τν � 1, µ) = Bν(T (τν � 1)). (2.17)

This implies that the total intensity has no angular dependency. For strict LTE,

it can be shown that there is zero net radiation flux as I is angle independent,

so in principle strict LTE can not be considered.

2.3.1 Near LTE

If deviation from LTE in §2.3 is small, we can consider the source function as a

Taylor expansion around τν , similar to the process in §2.2.1,

Sν(τ
′
ν � 1, µ) ≈ Bν(T (τν)) + (τ ′ν − τν)

(
dBν(T (τν))

dτν

)
τν

. (2.18)

For large τ , and τν,0 � τν , the outgoing radiation from Eq. 2.11 can be written

as,

I+
ν (τν � 1, µ ≥ 0) = Bν(T (τν)) + µ

(
dBν(T (τν))

dτν

)
τν

. (2.19)
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Similarly, using Eq. 2.18 in Eq. 2.10 gives the incoming intensity as,

I−ν (τν � 1, µ < 0) = Bν(T (τν)) + µ

(
dBν(T (τν))

dτν

)
τν

. (2.20)

Thus, a general form for the total intensity in optically thick regions is,

Iν(τν � 1, µ) = Bν(T (τν)) + µ

(
dBν(T (τν))

dτν

)
τν

. (2.21)

2.4 Luminosity

The luminosity is defined as the total energy lost by radiation over time in all

directions,

L ≡ dEtot

dt
=

∫
dE

dt
, (2.22)

where dEtot is the unit total energy radiated away and dE is the unit energy

radiated away through the small area element in §2.2. By integrating the

intensity from Eq. 2.4 over all frequencies, Eq. 2.22 can be written as,

L = 2π

∮
A

∫ 1

0

I+(τ = 0, µ ≥ 0)µdµdA(τ = 0), (2.23)

where A is the surface area at τ = 0.

We adopt that outgoing radiation from the surface is isotropic at each point

on the surface. For isotropic outgoing radiation, the intensity does not depend

on µ and can hence be written using Eq. 2.23 as,

L = π

∮
A

I+(τ = 0, µ ≥ 0)dA(τ = 0). (2.24)

Let the “effective temperature” Teff(r) be the temperature of a blackbody

that would produce the same amount of radiation through the small area element

dA(τ = 0) as the gas cloud. A blackbody satisfies LTE, as described in §2.3,

and thus the frequency–integrated outgoing intensity from the gas cloud at its
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surface can be written as,

I+(τ = 0, µ ≥ 0) =
σSB

π
Teff(r)4. (2.25)

Note that this defines Teff(r) as a function of I+(τ = 0, µ ≥ 0) and Teff has been

written with explicit position r dependence, as it is dependent on the line of

sight.

Let the “photosurface” be an imaginary area which satisfies the above

blackbody condition, written as Aph. The luminosity at the true surface (τ = 0)

of the cloud is calculated as,

L = σSB

∮
Aph

Teff(r)4dA(τph), (2.26)

where τph is the optical depth at the photosurface.

If the photosurface is spherically symmetric it is called a “photosphere”.

When Teff(r) is constant over all r, the luminosity in Eq. 2.26 can be written as,

L = 4πσSBR
2
phT

4
eff , (2.27)

where Rph is the radius of the photosphere.

2.4.1 Visible Luminosity

Outside of the gas cloud, assuming that photons do not interact with any other

material, the luminosity is a universal quantity. However, a stationary distant

observer can only measure the energy escaping the cloud in their direction.

Thus, if and only if the photosurface is spherically symmetric and radiation is

isotropic can the luminosity be calculated by Eq. 2.27. Instead, consider the

“visible luminosity” L (ξ, ζ), which is the fraction of the total luminosity a far

away observer looking on with polar and azimuthal viewing angles (ξ, ζ) (see

Fig. 2.3) can detect, based on the area of the photosurface visible to them. The
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Figure 2.3: The same sketch of the gas cloud from Fig. 2.1, but showing the
local coordinates (x′, y′, z′) that describe the orientation of the gas cloud. The
cloud’s orientation is independent of the viewing angle (ξ, ζ) where ξ is the
polar angle and ζ is the azimuthal angle.

visible luminosity is calculated using Eq. 2.23 as,

L (ξ, ζ) = 2π

∮
Q(ξ,ζ)

∫ 1

0

I+(τ = 0, µ ≥ 0)µdµdq(τ = 0), (2.28)

where Q(ξ, ζ) is the projected τ = 0 surface area A and can be thought of as

the “flattened” 3D τ = 0 surface area.

If radiation is isotropic at the τ = 0 surface, the visible luminosity can be

written as,

L (ξ, ζ) = π

∮
Q(ξ,ζ)

I+(τ = 0, µ ≥ 0)dq(τ = 0). (2.29)

As done in §2.4, let Teff(r) be the temperature of a blackbody that would

produce the same amount of visible radiation as the gas cloud through the small

projected area element dq(τ = 0). Here, Eq. 2.29 gives the visible luminosity as,

L (ξ, ζ) = σSB

∮
Qph(ξ,ζ)

Teff(r)4dq(τph), (2.30)
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where τph is the location at the photosurface and Qph(ξ, ζ) is the projected

surface area of the photosurface. As done in §2.4, consider the case of a

photosphere with constant Teff across its surface. Here, Qph(ξ, ζ) = πR2
ph and

the visible luminosity is hence given by Eq. 2.30 as,

L (ξ, ζ) = πσSBR
2
phT

4
eff . (2.31)

This differs by the total luminosity in Eq. 2.27 by a factor of 4, which is

consistent as the only physical difference between Eq. 2.31 and Eq. 2.27 are the

projected and 3D photospheric areas.

2.5 Radiation Pressure

Photons with frequencies ν traveling through dA(τν) in direction µ carry mo-

menta dEνµ/c, where c is the speed of light, and thus exert a pressure on dA(τν).

Pressure is defined as a force per area, which is equivalent to momentum per

area per time. Thus, each photon makes a small contribution to the radiative

pressure at τν , written as,

dPrad,ν(τν) ≡
1

c

dEν
dt

µ

dA(τν)
, (2.32)

where A(τν) is the surface area over which the force from a single photon is

applied. Using the definition of the intensity per unit frequency in Eq. 2.4,

integrating Eq. 2.32 over all angles gives the radiation pressure due to all the

photons applying a force on dA(τν) as,

Prad,ν(τν) =
2π

c

∫ 1

−1

Iν(τν , µ)µ2dµ, (2.33)

where Iν(τν , µ) is the total intensity at the location of τν .

Another way to write the radiation pressure comes from considering the
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equation of radiative transfer from Eq. 2.9. In what follows, we write the left

hand side of Eq. 2.9 in the same form as the right hand side of Eq. 2.33,

d

dτν

[
1

c
Iν(τν , µ)µ2

]
=

1

c
Iν(τν , µ)µ− 1

c
Sν(τν , µ)µ. (2.34)

We integrate both parts over all angles,

d

dτν

[
2π

c

∫ 1

−1

Iν(τν , µ)µ2dµ

]
=

2π

c

∫ 1

−1

Iν(τν , µ)µdµ

− 2π

c

∫ 1

−1

Sν(τν , µ)µdµ. (2.35)

Using Eq. 2.33, Eq. 2.35 can be written as,

dPrad,ν(τν)

dτν
=

2π

c

∫ 1

−1

Iν(τν , µ)µdµ− 2π

c

∫ 1

−1

Sν(τν , µ)µdµ. (2.36)

If the source function Sν(τν , µ) is isotropic, then Eq. 2.36 can be written as,

dPrad,ν(τν)

dτν
=

2π

c

∫ 1

−1

Iν(τν , µ)µdµ (2.37)

2.5.1 Optical Depth at the Photosurface

Consider an imaginary blackbody object (see §2.3) which radiates the same

amount of energy over time per area as that radiated away from the photosurface

of the gas cloud. Let both the blackbody and gas cloud radiate isotropically

such that for each case, Eq. 2.24 can be written as,

πI+
cl (τcl = 0, µ ≥ 0)Acl = Lcl, (2.38)

σSBTeff(r)4Abb = Lbb, (2.39)

where subscripts “cl” and “bb” refer to the cloud and blackbody respectively.

Equating these then yields the outgoing intensity from the surface of the gas
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cloud as,

I+
cl (τcl = 0, µ ≥ 0) =

Abb

Acl

σSB

π
Teff(r)4. (2.40)

We now introduce the radiation flux as,

dFν(τν) =
dEν
dt

1

dA(τν)
. (2.41)

Using the definition of intensity from Eq. 2.4, Eq. 2.41 integrated over all

frequencies can be written as,

F (τ) = 2π

∫ 1

−1

I(τ, µ)µdµ. (2.42)

Hence, Eq. 2.37 can be written as,

dPrad(τ)

dτ
=

1

c
F (τ). (2.43)

Integrating both sides over the surface of the gas cloud yields,

∮
Acl

dPrad,cl(τcl = 0)

dτcl

dA(τcl = 0) =
1

c

∮
Acl

Fcl(τcl = 0)dA(τcl = 0), (2.44)

where Acl is the τcl = 0 surface area of the gas cloud and Fcl(τcl = 0) is the

radiative flux from the surface of the gas cloud. Note the quantity on the right

hand side is the same as the luminosity of the cloud as written in Eq. 2.23, as

Fcl(τcl = 0) = F+
cl (τcl = 0). Thus, Eq. 2.44 can be written as,

∮
Acl

dPrad,cl(τcl = 0)

dτcl

dA(τcl = 0) =
1

c
Lcl. (2.45)

Let us consider the simple case where dPrad,cl(τcl)/dτcl is constant across Acl.

Recall that Lcl = Lbb, so Eq. 2.45 can be written using Eq. 2.39 as,

dPrad,cl(τcl)

dτcl

=
1

c

Abb

Acl

σSBTeff(r)4. (2.46)
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In the assumption that Abb → Acl, separating the variables in Eq. 2.46 and

integrating both sides from the photosurface τcl = τph to the true surface τcl = 0

for constant Teff(r) with r yields,

Prad,cl(τph) =
1

c
σSBT

4
effτph + Prad,cl(τcl = 0) (2.47)

The pressure at τcl = 0 in the cloud can be found using Eq. 2.40 in Eq. 2.33

with the assumption that Abb → Acl and is written as,

Prad,cl(τcl = 0) =
2

3

σSB

c
T 4

eff . (2.48)

From Eq. 2.33, assuming isotropic radiation, the radiative pressure at the

photosurface of the cloud can be written as,

Prad,cl(τph) =
2π

c

∫ 1

−1

Icl(τph)µ2dµ =
4π

3c
Icl(τph) (2.49)

The outgoing flux at some location inside the cloud can be written as,

F+
cl (τcl) = 2π

∫ 1

0

Icl(τcl, µ)µdµ. (2.50)

Thus, by using Eq. 2.50 with isotropic total radiation, the radiative pressure at

the photosurface in the cloud in Eq. 2.49 can be written as,

Prad,cl(τph) =
4

3c
F+

cl (τph). (2.51)

Therefore, Eq. 2.47 can be written using Eq. 2.48 and Eq. 2.51 as,

F+
cl (τph) =

1

2
σSBT

4
eff

(
3

2
τph + 1

)
. (2.52)

As assumed earlier, Abb → Acl and Lcl = Lbb. Therefore, the outgoing flux at

the surface of the cloud F+
cl (τph) → F+

bb(τcl = 0). For a blackbody radiating
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isotropically from its surface, F+
bb(τcl = 0) = σSBT

4
eff and, thus, from Eq. 2.52,

τph = 2/3.

2.5.2 Photospheric Pressure

Assuming a geometrically isotropic gas cloud, the usual equation of hydrostatic

equilibrium dP/dr = −gρ, where g is the local gravitational acceleration, can be

combined with the definition of optical depth from Eq. 2.2 along the direction

dz = dr,
dP (τ)

dτν
=

g

κν
. (2.53)

Integrating over all ν, Eq. 2.53 can be written as,

dP (τ)

dτ
=
g

κ̄
, (2.54)

where κ̄ is the frequency mean opacity (see §2.6). Then, taking g and κ̄ as

constants with distance, separating the variables and integrating from the

photosphere (τ = τph) to the surface (τ = 0) yields,

P (τph) = τph
gs
κ̄s

+ P (τ = 0), (2.55)

where gs = GM/R2 is the gravitational acceleration at the surface and κ̄s is

the mean opacity at the surface. The pressure at τ = 0 can be calculated using

Eq. 2.48 and allowing the outgoing intensity to be equal to that of a blackbody.

Hence, Eq. 2.55 can be written as,

P (τph) = τph
gs
κ̄s

+
2

3c
σSBT

4
eff . (2.56)

The equation for the luminosity due to a photosphere in a gas cloud that is

radiating isotropically at its surface is given by Eq. 2.27 and, hence, the pressure
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at the photosphere in Eq. 2.56 can be written using τph = 2/3 as,

P (τph) =
2

3

gs
κ̄s

(
1 +

Lκ̄s
4πcGM

)
. (2.57)

For isotropic gas clouds with low luminosities and/or low mean opacities, the

above equation is written as,

P (τph) ≈ 2

3

gs
κ̄s
, (2.58)

where τph = 2/3 has been used from §2.5.1. The relation in Eq. 2.58 is utilized

later in §5.3.2 to find the pressure at the photosphere of stellar models.

2.6 Mean Opacity

The mean opacity κ̄ is found by integrating the frequency–dependent opacity

κν over all frequencies subject to a weighting function,

κ̄ =

∫∞
0
κνZνdν∫∞

0
Zνdν

, (2.59)

where Zν is the weighting function.

2.6.1 Planck Mean Opacity

The unit absorbed intensity across all frequencies is calculated by integrating

Eq. 2.6 such that,

d

(∫ ∞
0

I−ν (τν , µ < 0)dν

)
= −ρdε

∫ ∞
0

κνIν(τν , µ)dν. (2.60)

Low temperature gases (T . 2000 K) can form clumps of various molecules

called dust grains (see Barvainis 1987 for further details). When radiatively

heated dust grains collide with gas particles, they transfer enough of their
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thermal energy into the gas such that the gas temperature remains constant

(Goldreich and Kwan, 1974). Hence, the gas satisfies the strict LTE condition

in §2.3 and by Eq. 2.17, the total intensity is equal to the Planck blackbody

function. Thus, Eq. 2.60 becomes,

d

(∫ ∞
0

I−ν (τν , µ < 0)dν

)
= −ρdε

∫ ∞
0

κνBν(T (τν))dν. (2.61)

By letting the opacity κν equal the Planck mean opacity κ̄P , Eq. 2.61 becomes,

d

(∫ ∞
0

I−ν (τν , µ < 0)dν

)
= −ρκ̄Pdε

∫ ∞
0

Bν(T (τν))dν. (2.62)

Hence, the Planck mean opacity is defined by using the Planck blackbody

function as the weighting function Zν in Eq. 2.59,

κ̄P ≡
∫∞

0
κνBν(T (τν))dν∫∞

0
Bν(T (τν))dν

(2.63)

This opacity is used for optically thin environments.

2.6.2 Rosseland Mean Opacity

The Rosseland mean opacity follows from the Rosseland flux approximation

for high optical depths (Rosseland, 1924). The energy flux at frequency ν at

optical depth τν along some line of sight is defined as,

Fν(τν) ≡
∫
dEν
dt

1

dA(τν)
. (2.64)

Using the definition of intensity from Eq. 2.4, the general form for total intensity

in near LTE (see §2.3.1) in Eq. 2.21, and integrating over all angles, the flux in

Eq. 2.64 can be written as,

Fν(τν � 1) =
4π

3

dT (τν)

dτν

dBν(T (τν))

dT (τν)
. (2.65)
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By the definition of optical depth in Eq. 2.2, Eq. 2.65 can be written as,

Fν(τν � 1) = −4π

3

1

κνρ

dT (τν)

dz

dBν(T (τν))

dT (τν)
. (2.66)

Integrating over all frequencies gives the total flux as,

F (τ � 1) = −4π

3

1

ρ

dT (τ)

dz

∫ ∞
0

1

κν

dBν(T (τν))

dT (τν)
dν. (2.67)

By allowing the opacity κν to be equal to an average with frequency such that

κν = κ̄R where κ̄R is the Rosseland mean opacity, Eq. 2.67 can be written as,

F (τ � 1) = −4π

3

1

ρ

dT (τ)

dz

1

κ̄R

∫ ∞
0

dBν(T (τν))

dT (τν)
dν. (2.68)

Hence, the Rosseland mean opacity is defined by using dBν(T (τν))/dT (τν) as

the weighting function Zν in Eq. 2.59,

1

κ̄R
≡
∫∞

0
1
κν

dBν(T (τν))
dT (τν)

dν∫∞
0

dBν(T (τν))
dT (τν)

dν
. (2.69)

This opacity is used for optically thick environments.



Chapter 3

Smoothed Particle

Hydrodynamics

We model the V1309 Sco progenitor and merger using Smoothed Particle

Hydrodynamics (SPH hereafter) methods (Monaghan, 1992). The SPH method

is intrinsically Lagrangian, where fluid is considered to consist of overlapping

individual particles, and equations are written to follow each particle. Each

particle is considered to exist within a spherical region, where gas properties

are defined by a “smoothing kernel” with a radius characterized by a quantity

called the “smoothing length” h. Here, we discuss the exact equations of motion

used in SPH and the most appropriate kernel function for the purposes of this

work.

3.1 Equations of Motion

The volume within a particle’s smoothing kernel is considered to be a packet of

fluid subject to the equations of fluid dynamics. At the most fundamental level,

the SPH technique is a method for approximating integrals within fluids using

discrete summations. Following the work of Monaghan (1992), the mathematical

convolution of some function f ′(r) with another function W (r, h) results in the

29
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function f(r), which is written as,

f(r) =

∫
f ′(r′)W (r− r′, h) dr′. (3.1)

where here, W (r−r′, h) is known as the “kernel function” and is both normalized

to unity over all space and becomes a delta function in the limit as h → 0.

Eq. 3.1 can be approximated by summation as,

fs(r) =
∑
j

mj
fj
ρj
Wj , (3.2)

where mj , ρj , and rj are the mass, density, and position at the center of particle

j, fj ≡ f(rj) is the value of the function f at rj, and Wj ≡ W (|r− rj|, hj).

While quantities can be calculated at any point in space using Eq. 3.2, the

central values of the nearby SPH particles must be known. From here forward,

continuous quantities will be written explicitly as a function of position r and

particle central values will be written with subscripts i or j. For example, the

density at any position r is written as,

ρ(r) =
∑
j

mjWj, (3.3)

while the density at the center of a particle i is written as,

ρi =
∑
j

mjWij, (3.4)

where Wij ≡ W (|ri − rj|, hj).
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3.1.1 Momentum Equation

The momentum equation of fluid dynamics is written as,

dv(r)

dt
= −∇P (r)

ρ(r)
, (3.5)

where v is the flow velocity, t is time, P (r) is pressure, and r is the position.

This can be rewritten with ρ(r) inside the operators to maintain symmetric

formulae,
dv(r)

dt
= −∇

(
P (r)

ρ(r)

)
− P (r)

ρ(r)2
∇ρ(r). (3.6)

From Eq. 3.2, Eq. 3.6 is calculated at the center of a particle i as,

dvi
dt

= −∇

(∑
j

mj
Pj
ρ2
j

Wij

)
− Pi
ρ2
i

∑
j

mj∇Wij , (3.7)

dvi
dt

= −
∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

)
∇Wij , (3.8)

where particle central values are taken as constants.

3.1.2 Energy Equation

The energy equation of fluid dynamics is written as,

du(r)

dt
= −

(
P (r)

ρ(r)

)
∇ · v(r), (3.9)

where u(r) is the specific internal energy, defined as the total internal energy

divided by mass, at location r. Symmetrizing the equation as before in Eq. 3.6,

Eq. 3.9 can be written as,

du(r)

dt
= v(r) · ∇

(
P (r)

ρ(r)

)
−∇ ·

(
P (r)

ρ(r)
v(r)

)
. (3.10)
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To turn this into an SPH summation, Eq. 3.2 is used as,

dui
dt

=
∑
j

mj
Pj
ρ2
j

vi · ∇Wij −
∑
j

mj
Pj
ρ2
j

vj · ∇Wij, (3.11)

dui
dt

=
∑
j

mj
Pj
ρ2
j

(vi − vj) · ∇Wij. (3.12)

The term ∇ · v(r) in Eq. 3.9 is written symmetrically by placing ρ(r) inside the

operators to get,

∇ · v(r) =
1

ρ(r)

[
∇ ·
[
ρ(r)v(r)

]
− vi · ∇ρ(r)

]
(3.13)

∇ · v(r) =
1

ρi

∑
j

mj (vj − vi) · ∇Wij. (3.14)

Therefore, Eq. 3.9 becomes,

dui
dt

=
∑
j

mj
Pi
ρ2
i

(vi − vj) · ∇Wij. (3.15)

Averaging Eq. 3.12 and Eq. 3.15 gives,

dui
dt

=
1

2

∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

)
(vi − vj) · ∇Wij. (3.16)

Notice that Eq. 3.16 has the same symmetric terms as the momentum equation,

which maintains continuity between two particles.

3.1.3 Artificial Viscosity

We have intentionally neglected the viscosity term in the above equations for

simplicity, but it must be included as it contributes significantly to the loss of

angular momentum within a fluid. While viscosity is thought to be essentially

some internal shear between fluid interfaces, the mechanism by which it operates

cannot be uniformly modeled. Instead, a new variable is introduced to the
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particle equations of motion in Eq. 3.8 and Eq. 3.16 such that,

dvi
dt

= −
∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

+ Πij

)
∇Wij , (3.17)

dui
dt

=
1

2

∑
j

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

+ Πij

)
(vi − vj) · ∇Wij (3.18)

where Πij is the artificial viscosity term, introduced by Monaghan and Gingold

(1983) as,

Πij =


−αc̄ijµij+βµ2ij

ρ̄ij
(vi − vj) · (ri − rj) > 0,

0, otherwise,

(3.19)

µij =
h̄ij (vi − vj) · (ri − rj)

(ri − rj)
2 + η2

, (3.20)

where c̄ij, ρ̄ij, and h̄ij are the arithmetic means of the sound speed, density,

and smoothing length, respectively, and η is chosen to be η ≈ 0.1h̄ij to prevent

Πij from becoming infinite when vi − vj 6= 0 and separation ri − rj → 0. The

coefficients α and β are similar to the Navier-Stokes first and second order

viscosity coefficients and are typically given values of α = 0.5 and β = 1, with

α = 1 and β = 2 for situations with strong shocks (Steinmetz, 1996).

While there are many proposed alternatives to Eq. 3.19 (Hosono et al.,

2016), the Balsara correction (Balsara, 1995) is among the most common, as it

prevents regions with low particle numbers from being stripped of their angular

momentum too quickly (Steinmetz, 1996). Following the work of Steinmetz

(1996), it is written as,

Π̄ij = Πij (fi + fj) , (3.21)

fi =
|∇ · v|i

|∇ · v|i + |∇ × v|i + 0.0001ci/hi
. (3.22)

where Π̄ij is the Balsara–corrected artificial viscosity term, |∇ · v|i and |∇ × v|i
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Figure 3.1: Dimensionless quantity h3W (u) is plotted against u = r/h for the
cubic spline function (black) as described by Eq. 3.23 and the Wendland C4

function (red), as written in Eq. 3.24. Both kernel functions have compact
support over 2h.

are the divergence and curl of the velocity evaluated at the position of particle

i, and 0.0001ci/hi prevents divergences, where ci and hi are the sound speed

and smoothing length of particle i respectively. For the purposes of this work,

we use the artificial viscosity prescription in the SPH code StarSmasher, which

is different than that described here (see §4.1.1).

3.2 Kernel Functions

Using kernels with compact support, meaning they equal zero at the surface of

the kernel, is a hallmark of SPH codes. By holding the number of neighboring

particles Nnb fixed over time and allowing the smoothing lengths h vary for each

particle, a trade off is made between numerical convergence and computation

time by choosing Nnb.

A popular kernel function is the cubic spline (Monaghan and Lattanzio,
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1985),

W (u) =
1

πh3


1− 3

2
u2 + 3

4
u3 0 ≤ u ≤ 1

1
4

(2− u)3 1 < u ≤ 2

0 otherwise

(3.23)

where u = r/h is the ratio between the distance from the center of the particle

and the smoothing length. While this does provide a smooth function from

center to surface, as seen in Fig. 3.1, it also gives way to clumping instabilities,

also known as pairing instabilities. This occurs when two or more particles

get very close to one another and can not separate. Dehnen and Aly (2012)

show this instability occurs when the total internal energy for some number of

particles enters a local equilibrium based on their configuration rather than the

hydrostatic equilibrium condition. This tends to happen with functions that

have negative Fourier transformations, such as the cubic spline, and do not for

other functions, such as the Wendland family (Wendland, 1995). In particular,

the Wendland functions perform well in terms of keeping the Poisson shot noise

low when calculating summation interpolants in Eq. 3.1 compared to other

functions (Rosswog, 2015).

We use the 3D Wendland C4 function (see Fig. 3.1) for the purposes of this

work,

W (u) =
1

πh3

495

256

(
1− 1

2
u

)6(
35

12
u2 + 3u+ 1

)
. (3.24)

The Wendland C4 kernel is free from clumping instabilities (Dehnen and Aly,

2012) and yields superior numerical convergence over the traditional cubic spline

(Zhu et al., 2015). It is significantly steeper than the cubic spline near the center

of the kernel, but also approaches zero more gradually near the surface, as seen

in Fig. 3.1. This property also helps prevent clumping by keeping the kernel

gradient less flat around the center such that small fluctuations produce larger

forces, as in Eq. 3.8.



Chapter 3. Smoothed Particle Hydrodynamics 36

3.3 Spatial Resolution

The centers of SPH particles are the only locations where physical values are

calculated by the process described in §3.1. At each of these positions the

number of neighbors requirement described in §3.2 is strictly met and thus

these are the only locations where physical values are guaranteed some level of

accuracy dependent on the number of neighbors and smoothing lengths. For all

other positions in the simulation space, this accuracy level is not guaranteed but

can still be achieved with a sufficient number of overlapping kernels. Thus, the

“spatial resolution” within some volume at some location in an SPH simulation

is defined as the particle number density,

n(r) =
N(V )

V
, (3.25)

where N(V ) is the number of particle centers in volume V at position r. At

the center of particle i,

ni =
3

4π

Nnb,i

h3
i

, (3.26)

where Nnb,i is the number of neighbors for particle i and hi is its smoothing

length.
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StarSmasher

We use the SPH code StarSmasher (Gaburov et al., 2010) to simulate the

V1309 Sco progenitor and merger, a code specifically designed for contact binary

merger dynamics. StarSmasher can generate 3D stellar models from 1D inputs

and is free from shocks that form when particles from regions with significantly

different mass resolutions mix. The code calculates gravitational accelerations

using the TREESPH method (Hernquist and Katz, 1989). We use the Wendland

C4 kernel as described in §3.2 at all times. In this chapter, we discuss the

equations of motion, equation of state, and radiative cooling prescription in

StarSmasher as well as the creation of 3D stellar models and general workflow

for simulating binary mergers.

4.1 StarSmasher Equations of Motion

The equations of motion in StarSmasher are different from that in §3.1 in that

particle smoothing lengths hi vary with the nearby mass resolution. Following

Appendix A of Gaburov et al. (2010), the user is given control of the parameter

nnopt, defined as,

nnopt ≡
Nnb,i∑
j

G (rij, hi) , (4.1)

37
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where Nnb,i is the number of neighbors for particle i, rij ≡ |ri−rj| is the distance

from the center of particle i to particle j, and the weighting function G (rij, hi)

is written as,

G (rij, hi) ≡ V (4hi − 4|rij − hi|, hi), (4.2)

V (xij, hi) ≡ 4π

∫ xij

0

x′2ijW (x′ij, hi)dx
′
ij, (4.3)

where 0 ≤ xij < 2hi, and W (xij, hi) is the kernel function with compact support

of 2hi. When the summation in Eq. 4.1 is less than the value of nnopt, the

smoothing length hi is set such that Nnb,i is incremented by 1. In other words,

hi is increased so that the kernel of particle i includes the next closest particle.

Then, the following condition is checked,

Nnb,i∑
j

G (rij, hi) ≥ nnopt. (4.4)

The particle i incrementally gains more neighbors until Eq. 4.4 is satisfied, and

this defines its number of neighbors Nnb,i.

4.1.1 Artificial Viscosity

The acceleration and change in internal energy of particle i due to artificial

viscosity in StarSmasher is written as in the appendix of Hwang et al. (2015)

as,

(
dvi
dt

)
AV

= −
∑
j

1

2
mj

[
Πij∇Wij(hi) + Πji∇Wij(hj)

]
, (4.5)(

dui
dt

)
AV

=
∑
j

1

2
mjΠij (vi − vj) · ∇Wij(hi). (4.6)

This is similar to the approach described in §3.1.3, but here Πij has different

dimensions and indices i and j are not interchangeable, so Πij 6= Πji. The
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artificial viscosity term Πij used in StarSmasher is written as,

Πij = 2
Pi
ρ2
i

(
−αµij + βµ2

ij

)
, (4.7)

where,

µij =


(vi−vj)·(ri−rj)

ci|ri−rj | fi if (vi − vj) · (ri − rj) < 0,

0 if (vi − vj) · (ri − rj) ≥ 0,

(4.8)

fi =
|∇ · v|i

|∇ · v|i + |∇ × v|i + 0.00001ci/hi
. (4.9)

In the current work, parameters α = 1 and β = 2 are always used (see §3.1.3).

4.2 Radiative Cooling

Modeling the physics of radiative transfer as described in §2 in SPH codes

requires characterizing the absorption and emission characteristics of the fluid,

which varies with direction and frequency, as seen in the derivation of the

radiative transfer equation in §2.2. Radiative cooling is modeled in StarSmasher

by treating particles as polytropic pseudo–clouds, as in Stamatellos et al. (2007),

and applying a “pressure scale height method” (Lombardi et al., 2015).

Following the work of Stamatellos et al. (2007), consider an SPH particle i

located within a pseudo–cloud at radius r = ξrR0, where ξr is a dimensionless

radius and R0 is a scale–length. The cloud has a central density ρc and is chosen,

along with R0 to reproduce ρi and gravitational potential Φi at ξr,

ρi = ρcΘ(ξr)
n, (4.10)

Φi = −ϕrGρc4πR2
0, (4.11)
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where Θ(ξR) is the Lane–Emden function for index n (Chandrasekhar, 1939),

ϕr = −ξR
dΘ

dξr
(ξR) + Θ(ξr), (4.12)

where ξR is the boundary of the polytrope.

The pressure scale height is defined as,

HP ≡
P (r)

|∇P (r)|
. (4.13)

Using the polytropic equation of state, P (r) = Kρ(r)1+1/n with Eq. 4.10 gives,

HP,i =
R0

n+ 1

Θ(ξr)

|dΘ(ξr)/dξr|
(4.14)

The column–density of particle i on a radial line from ξr to ξR is given by

Stamatellos et al. (2007),

Σi(ξr) =

∫ ξR

ξr

ρcΘ(ξ′r)
nR0dξ

′
r, (4.15)

=
ρi

Θ(ξr)n

∫ ξR

ξr

Θ(ξ′r)
nR0dξ

′
r. (4.16)

For SPH codes, ρi in Eq. 4.10 is known, and HP,i can be calculated by rewriting

Eq. 4.13 using the fluid momentum equation in Eq. 3.5,

HP,i =
Pi

ρi|dvi/dt|
. (4.17)

Thus, writing Eq. 4.16 using terms ρi and HP,i yields,

Σi(ξr) =
(n+ 1)ρiHP,i

Θ(ξr)n+1

∣∣∣∣dΘ(ξr)

dξr

∣∣∣∣ ∫ ξR

ξr

Θ(ξ′r)
ndξ′r (4.18)

As in Stamatellos et al. (2007), the pseudo–mean column–density is calcu-
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lated by taking a mass–weighted average of Σi(ξr) over all ξr,

Σ̄i =

∫ ξR
0

Σi(ξr)Θ(ξr)
nξ2
rdξr∫ ξR

0
Θ(ξr)nξ2

rdξr
. (4.19)

= ζ ′ρiHp,i, (4.20)

where ζ ′ is a dimensionless quantity that varies with n (see Lombardi et al. 2015

for a table of values and further discussion).

The pseudo–mean column–density is related to the optical depth and hence

describes the ability for radiation to escape. As radiation escapes, it carries

away specific internal energy, defined by Stamatellos et al. (2007) as,

dui
dt

∣∣∣∣
RAD

=
4σSB [T0(ri)

4 − T 4
i ]

Σ̄2
i κ̄R(ρi, Ti) + κ̄P (ρi, Ti)−1

, (4.21)

where T0(ri) represents the background effective temperature, ρi and Ti are the

density and temperature of particle i, κ̄R(ρi, Ti) is the pseudo–mean opacity (see

Eq. 23 of Stamatellos et al. 2007), and κP (ρi, Ti) is the Planck mean opacity

(see §2.6). The background effective temperature is an artificial consideration

that prevents particles from cooling beyond some characteristic temperature

due to radiative processes alone. It can be thought of as the temperature of the

physical surrounding region within which the StarSmasher simulation is being

performed, such as the interstellar medium for example. Its value is specific to

the physical context within which the simulation is being performed and we

use T0 = 100 K for our dynamical simulation in §6.3, as done in Lombardi et al.

(2015) for modeling the V838 Mon red nova. While κ̄R(ρi, Ti) and κP (ρi, Ti)

are calculable for a polytrope (see Stamatellos et al. 2007 and Lombardi et al.

2015 for details), tabulated values are used instead.
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4.2.1 Implementation

In this section we provide a summary of the implementation of radiative

cooling in StarSmasher by Lombardi et al. (2015). Specific internal energies

are updated for each timestep,

ui(t+ ∆t) = ui(t)e
−∆t/ttherm,i + u0,i

[
1− e−∆t/ttherm,i

]
+
dui
dt

∣∣∣∣
HYDRO

∆t, (4.22)

where t is time, ∆t is the timestep, ttherm,i is the thermalization timescale of

particle i, dui
dt

∣∣
HYDRO

is the change in ui due to only hydrodynamical effects, and

u0,i is the background specific internal energy, which describes the specific inter-

nal energy of the surrounding region, as with background effective temperature

discussed in §4.2. The background temperature is set such that u0,i = u(ρi, T0),

where u(ρi, T0) is calculated using the tabulated equation of state described in

§4.3. The thermalization timescale for particle i ttherm,i is written as,

ttherm,i =
u0,i − ui
dui/dt|RAD

. (4.23)

Thus, radiative cooling is calculated by StarSmasher for each particle by

the following 5–step process:

1. Pseudo–mean column density Σ̄i from Eq. 4.19 is calculated using ρi and

HP,i from Eq. 4.17.

2. Pseudo–mean and Planck mean opacities κ̄R(ρi, Ti) and κ̄P (ρi, Ti) are cal-

culated from pre–computed tables of values (see Eq. 15 of Lombardi et al.

2015 for pseudo–mean opacity calculation).

3. Radiative cooling rate dui/dt|RAD is calculated using Eq. 4.21 as well as

the hydrodynamical heating rate dui/dt|HYDRO from Eq. 3.18 using the

artificial viscosity term from §4.1.

4. Thermalization timescale ttherm,i is calculated by Eq. 4.23.
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5. Specific internal energy ui is calculated using Eq. 4.22.

The total energy lost due to outgoing radiation in a StarSmasher simulation

is calculated as,

Erad =
N∑
i

(ui,HYDRO − ui) , (4.24)

where ui,HYDRO is the specific internal energy particle i would have achieved

if there was no radiative cooling and ui includes the radiative cooling term.

Values for Erad are shown in §6.3 for a dynamical simulation of a stellar merger

(see §4.4) and the change in Erad with time for the same simulation is shown in

Fig. 6.18.

4.3 Tabulated Equation of State (TEOS)

We use the same tabulated equation of state (TEOS hereafter) as in Nandez et al.

(2015), which was created using the MESA-EOS module (see §4.2 of Paxton et al.

2011) for solar chemical composition X = 0.7, Y = 0.28, and Z = 0.02 to

describe the relationship between density ρ, specific internal energy u, and

temperature T , as seen in Fig. 4.1. The TEOS is created by Nandez et al.

(2015) using MESA version 6208. The MESA inlist is provided in Appendix A.1.

Outside the temperature range 8.2 ≤ log T ≤ 3, values are extrapolated using

the method described in §4.3.1 with proportionality constants defined by the

boundary values in the table. The values in the TEOS are hence based on

the equation of state of MESA, which uses OPAL tables (Rogers and Nayfonov,

2002) for stars with masses M ≥ 0.1 M� and SCVH tables (Saumon et al.,

1995) for low–mass stars and giant planets with masses M < 1 M�. Due to

the high resolution of the TEOS, StarSmasher uses a bi–linear interpolation

method to calculate physical values.



Chapter 4. StarSmasher 44

Figure 4.1: We show values of specific internal energy values in color for the
range of log ρ and log T values covered by the TEOS discussed in §4.3. The black
contour shows approximately the space occupied by particles in the dynamical
simulation in §6.3 at t ≈ 8.33 days. The bottom plot shows the particle ρ, T ,
and u values within the contour. StarSmasher interpolates across the TEOS
using a bi–linear method within the TEOS bounds to calculate temperatures
and a polynomial solution elsewhere, as discussed in §4.3.1. All values are in
cgs units.
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4.3.1 Polynomial Temperature Solution

When an attempt is made to use the TEOS to calculate a temperature with ρ

and u values that are outside its domain, the temperature is instead calculated

by solving a 4th order polynomial equation of state constructed from the energy

density terms of the ideal gas law and radiation (Hwang et al., 2015). By the

equipartition theorem in three dimensions, the energy density of an ideal gas is,

uideal =
3

2

kBT

µmH

, (4.25)

where kB is the Boltzmann constant and µmH is the mean molecular weight.

The energy due to radiation is the usual Urad = aT 4. Thus, the specific internal

energy is,

urad =
aT 4

ρ
, (4.26)

where ρ is the mass density. The total energy density therefore follows from

combining Eq. 4.25 with Eq. 4.26 to get,

u =
3

2

kBT

µmH

+
aT 4

ρ
. (4.27)

The general solution to this 4th order polynomial follows from pages 55, 57, and

58 of Stillwell (1989) as,

T = −
√
γ

2
+

1√
2

√
q√
2γ
− γ, (4.28)

γ =
3

√√√√ q2

16
+

√(
q2

16

)2

−
(r

3

)3

+
3

√√√√ q2

16
−

√(
q2

16

)2

−
(r

3

)3

, (4.29)

q =
3

2

k

µmH

1

a
ρ, (4.30)

r = −1

a
ρu. (4.31)
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4.4 Overview of Workflow

The first step in creating a contact binary merger simulation is to generate a

full 3D SPH model of each star. However, StarSmasher does not include the

necessary physics to perform stellar evolution, such as nuclear reactions and

energy transfer, for example. Additionally, stellar evolution for Sun–like stars

occurs on timescales of tens of billions of years, which is impractical to simulate

using SPH methods, as SPH codes take timesteps on dynamical timescales,

which can go down to seconds. 3D stellar models are instead initialized directly

from 1D MESA output and relaxed dynamically until hydrostatic equilibrium is

achieved with radiative cooling turned off (see §4.5). During this time, the only

damping force present is that created by the artificial viscosity, as described in

§6.1.

The gravitational force experienced by a small packet of mass m near the

surface of a stellar model is approximated by treating the rest of the model as

a point mass such that,

Fg,m = −GMm

R2
, (4.32)

where G is the gravitational constant, M � m is the mass of the point mass,

and R is the radius of the stellar model, equal to the separation of m and M . If

a second point mass of mass M ′ � m is instantaneously placed some distance r

away from m, the instantaneous change in the total gravitational force on m is,

δFg,m = −GM
′m

r2
. (4.33)

To prevent significantly disrupting the hydrostatic equilibrium of each fully

relaxed SPH stellar model by the artificial gravitational shock in Eq. 4.33, we

create a binary system in a corotating frame by placing each model a large

separation r apart such that δFg,m is small. The angular velocity that defines

the corotating frame is that which allows the net centrifugal and gravitational
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accelerations of the stars to balance and is written as (Gaburov et al., 2010),

ω2
orb = −1

2

(∑N1

i=1 mi|v̇x,i|∑N1

i=1 mixi
+

∑N
i=N1

mi|v̇x,i|∑N
i=N1

mixi

)
, (4.34)

where ωorb is the orbital angular velocity, |v̇x,i| is the magnitude of the change

in velocity of particle i in the direction x towards the center of mass with time,

and xi is the distance of particle i away from the center of mass. The particle

index i is ordered such that all particles which originated in the primary star

have i = 1, . . . , N1 and for the secondary star i = N1, . . . , N where N is the

total number of particles.

We relax the binary system with radiative cooling turned off until hydrostatic

equilibrium is achieved in both stars in what is hereafter called a “binary scan”.

StarSmasher gradually places the stars closer to the center of mass to obtain

hydrostatic equilibrium at smaller separations. This step is purely artificial,

and the particles are not moved by applying a global force, but rather by

instantaneously changing their positions with each time step. We stop the

binary evolution when the desired separation is reached.

After the binary scan, we set the stars to interact dynamically in an inertial

(non–rotating) frame in what is hereafter called a “dynamical run” or “dynamical

simulation”. We activate radiative cooling during the dynamical run to allow

the system to lose energy by the process described in §4.2.

4.5 Relaxation Process

With a 1D MESA model as input, StarSmasher initializes a 3D model by placing

particles on a close–packed hexagonal lattice (hcp hereafter) to best approximate

the lowest possible initial energy configuration (Lombardi et al., 2006). The

3D model is initialized with a constant number density and each particle is

assigned a physical value based on its radial position relative to the mass shells
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in the original 1D model. After initialization, the 3D model is then set free to

interact and its energy values are monitored to determine how well relaxed it is.

The monitored energies are calculated as the following summations,

U =
∑
i

miui (4.35)

W =
1

2

∑
i

miϕi (4.36)

T =
1

2

∑
i

miv
2
i (4.37)

E = U +W + T, (4.38)

where U is the total internal energy, W is the total gravitational potential energy,

T is the total kinetic energy, E is the total energy, and ϕi is the gravitational

potential of particle i (see Appendix A of Gaburov et al. 2010 for details on ϕ).

Total internal energy U is calculated by summing over all non–core particles

(see §4.5.1) while W and T are calculated with core particles inclusive.

As a model relaxes, its envelope exchanges internal energy and gravitational

potential energy in search of a lower energy configuration. This forms oscillations

with decreasing amplitude over time, as seen in Fig. 4.2. The oscillations are

dampened by the artificial viscosity prescription in §4.1. Once oscillations are

negligible (total internal energy |∆U | . 1041 ergs s−1 or total gravitational

potential energy |∆W | . 1041 ergs s−1), the model is considered to be relaxed.

4.5.1 Core Particles

Density changes very quickly over short length scales in dense stellar cores. The

only way to spatially resolve the density in the traditional SPH way is to use a

very large number of particles. As a result of the initial hcp lattice discussed in

§6.1, a particle must always be placed at the center of the model. Let a regular

SPH particle c have a mass m∗c = ρ∗cV
∗
c , where V ∗c is its volume, determined by
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Figure 4.2: Energy fluctuations in the envelope of a N = 3× 105 StarSmasher

relaxation for a MESA model with M = 1.52 M� and R = 3.72 R� evolved to an
age of 2.54 Gyr, placing it near the base of the red giant branch (see §6.2). Here,
U , W , and T are the total internal, gravitational potential, and kinetic energies
respectively, with E being the total energy. See the beginning of §4.5 for how
they are calculated. Damping is due to the artificial viscosity prescription.
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its smoothing length. The only possible physical values at the center of the

model are those at the center of the MESA model, so particle c is assigned the

central MESA density. Recall the number density is constant, as discussed in

§4.5, so it is therefore possible for particle c to have a volume for which its mass

exceeds the total mass of the star.

To show this, note that the number density at the core is equal to the total

number density of the model, as number density is constant throughout,

1

Vc
=
N

V
, (4.39)

where N is the number of particles and V is the total volume of the model.

Therefore, the central particle must have mass,

m∗c =
ρ∗cV

N
. (4.40)

For a given value of N , it might be that m∗c ≥M where M is the total mass of

the star. For example, for N = 2×105, R = 3.715 R�, ρ∗c ≈ 6×104 g cm−3, and

M = 1.52 M�, m∗c = 10.91 M�, which is much too large. Thus, StarSmasher

uses a special “core particle” when the following condition is met,

ρ∗c
V

N
≥ ωM, (4.41)

where ρ∗c is the central density of the MESA model and the dimensionless parame-

ter 0 < ω < 1 is inserted to ensure the centrally placed particle’s mass does not

exceed ωM . The value ω = 0.25 is always adopted, independent of the MESA

model.

A core particle is different from regular particles in the sense that they

interact with other particles gravitationally only. Gravitational interactions with

core particles are calculated identically as with regular particles. However, core

particle smoothing lengths are fixed upon initialization and are not subject to



Chapter 4. StarSmasher 51

−0.2

0.0

0.2

t= 0.000 days t= 0.019 days t= 0.037 days t= 0.055 days

−0.25 0.00 0.25

−0.2

0.0

0.2

−0.25 0.00 0.25 −0.25 0.00 0.25 −0.25 0.00 0.25
x [R⊙ ⊙

y
[R

⊙
⊙

Figure 4.3: Early time evolution of the particle center positions (filled cir-
cles) within the kernel (large circle) of the core particle (small circle) in two
StarSmasher relaxations of a N = 5× 104, M = 1.52 M�, nnopt= 69 model,
initialized from the same MESA model described in §6.1. The core particle kernel
has a smoothing length in the top panel of hc = 0.122 R� and hc = 1.71 R� in
the bottom panel. As seen in the top panel, nearby particles clump together
with the core when the core particle smoothing length is sufficiently small.

the nnopt criterion described in §4.1. When a StarSmasher model is initialized

with a core particle, the core particle is the last to be assigned values. The mass

of a core particle mc thus equals the difference between the total mass of the

MESA model and the total mass of all the initialized particles.

A core particle can have a smoothing length that causes the gravitational

force between the core particle and its neighbors to be very large. This causes

the core particle neighbors to clump around it and form a pairing instability

(see §3.2), as seen in Fig. 4.3. This generally occurs for small core particle

smoothing lengths, and by assigning a larger smoothing length, clumping no

longer occurs. This is due to the core particle mass being distributed over a

larger volume and hence the force due to gravity changes more gradually near

the core particle, which prevents clumping. All presented models in this work

have core smoothing lengths that do not produce clumping in the vicinity of

the core particle, which we find by increasing the smoothing length in small
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increments until we no longer observe clumping near the core throughout the

entire relaxation.

4.5.2 Optimal nnopt

When the number of neighbors parameter nnopt is varied, it changes the spatial

resolution of the simulation by altering the particles’ smoothing lengths (see

§3.3). While intuitively a larger nnopt should produce a uniformly more accurate

simulation by increasing the number of neighbors for each particle Nnb,i, this

is not necessarily the case. Particles near the surface of the model have their

neighbors distributed unevenly, with more neighbors located inward toward the

core than outward toward the surface. Thus, the smoothing lengths of particles

near the surface must be larger than those deeper within the envelope. The

local spatial resolution n(ri), as written in Eq. 3.26, is significantly lower in the

outer kernels of the surface particles than the average through the envelope.

Lowering the value of nnopt allows for smaller smoothing lengths everywhere,

including at the surface. Ultimately, lower nnopt gives better local spatial

resolution ni, as ni ∝ Nnb,i/h
3
i , but lower accuracy in the summation interpolants

in §3.1. Thus, there exists some unique optimal nnopt value for a given N for

which the spatial resolution and the accuracy in physical values calculated for

the surface particles produce a profile that best matches the initial MESA model

profile. See §6.1.1 for how nnopt can be found for given particle resolutions.
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FluxCal1

Even with a sufficiently accurate initial 3D stellar model of the V1309 Sco

progenitor, simply merging it with a secondary in a dynamical simulation and

retrieving SPH particle temperatures is not sufficient to make comparisons with

the real observations in §1.2.1. The radiative transfer equation from §2.2 must

be solved in the SPH simulation space to acquire spectral data which may then

be compared to real observations. Previous attempts at solving the radiative

transfer problem for SPH codes have all resulted in ray tracing algorithms

which use either a Monte–Carlo or Runge–Kutta integration scheme, such

as SPAMCART (Lomax and Whitworth, 2016), MOCCASIN (Hubber et al., 2016),

DART-Ray (Natale et al., 2015), Urchin (Altay and Theuns, 2013), and SPHRAY

(Altay et al., 2008), among others.

In a basic sense, ray tracing methods calculate the intensity by solving the

equation of radiative transfer in Eq. 2.9 using a numerical integration method

along many lines of sight through the simulated fluid. Each ray travels through

particle smoothing kernels until the condition for optical thickness in §2.1 is

met, such that additional contributions to the intensity are considered negligible

by the user. However, a ray may encounter an optically thick region with

1Available at https://github.com/hatfullr/fluxcal
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poor spatial resolution, as discussed in §3.3. In this case, the physical values

calculated in the usual SPH way in §3.1 are not consistently accurate. These

regions are common in simulations involving stellar objects, where there exist

high density, high opacity particles at the photosurface.

In this chapter, we introduce a new code we developed called FluxCal as

an alternative to other ray tracing methods in solving the radiative transfer

problem for SPH simulations. FluxCal uses both a novel envelope fitting

technique (§5.3) and a Runge–Kutta ray tracer (§5.4) to calculate a grid of

effective temperatures from a viewing angle. We discuss the limitations of ray

tracing in SPH simulations with regards to stellar models in §5.1, the method

by which FluxCal calculates particle optical depths in §5.2, and in §5.3 and §5.4

how this information is used to overcome the limitations. The visible luminosity

and effective temperatures in SPH simulation space are calculated by FluxCal

by the method described in §5.6 and §5.7, respectively. Finally, we provide a

summary of how FluxCal operates in §5.8 and discuss additional tools FluxCal

provides for exploring and/or debugging a simulation in §5.9.

5.1 Photosurface Problem

To evaluate the efficacy of ray–tracing algorithms in SPH simulations, consider

a relaxed SPH stellar model with a photosphere located at a radius Rph, as

defined in §2.4. Each particle in an SPH simulation must have some number of

neighboring particles, as discussed in §3.1. The center of each particle is where

the accuracy of physical values is guaranteed (see §3.3). Thus, the location

farthest from the center of the model where physical values are accurate is the

center of the outermost particle. Hence, to make an accurate calculation at

the photosphere, the minimum requirement is that the outermost particle’s

center is located at the photosphere. This condition is true in general any

time a photosurface is located in a a region of poor spatial resolution, not only
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Figure 5.1: A sketch of three SPH particles with the largest separation from
center–to–center allowed without forming a gap in the middle. An equilateral
triangle is formed by tracing a line from each particle center to another, and
the particles have radii that extend to the center of this triangle. It is a matter
of trivial geometry to show the maximum separation from center–to–center is
equal to

√
3 ri.

photospheres, and the following discussion applies to photosurfaces of any shape.

To avoid having simulated fluid beyond the true surface of the initial model

(where the density is zero), the outermost particle must have a physical radius

ri equal to the photospheric depth R−Rph, where R is the radius at the true

surface.

Consider the SPH stellar model has some number of photospheric particles

Nph all with radii ri = R−Rph with centers located at the photospheric radius

Rph. Allow these particles to be positioned in such a way that they are not

neighbors with one another and such that there are no gaps between their

kernels, as in Fig. 5.1. For this to hold true and still be valid in the SPH

sense, their neighbors must all be located deeper within the model. When

the particles are maximally separated, they form a hexagonal lattice such that

their center–to–center separations are all equal to
√

3 ri, as seen in Fig. 5.1.

To calculate the value of Nph, consider the number density of particles at the

photosphere. The surface area within which there are three particles is the
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Figure 5.2: A sketch of hexagonal lattices of order k = 1 (left), k = 2 (middle),
and k = 3 (right).

surface area of the equilateral triangle seen in Fig. 5.1, written as,

A4 =
3
√

3

4
r2
i . (5.1)

Imagine constructing a complete hexagonal lattice of order k. The number of

particles required to construct a k = 1, k = 2, and k = 3 lattice respectively, as

seen in Fig. 5.2, as well as the surface area of each order is,

Nk = {7, 19, 37} , (5.2)

Ak = {6A4, 24A4, 54A4} . (5.3)

It is relatively straightforward to see that the total area of the kth lattice is

written as,

Ak = 6k2A4. (5.4)

It is less straightforward to see that the number of particles in the kth lattice is

written as,

Nk = 1 + 6
k∑
j=1

j = 1 + 3k(k + 1). (5.5)

Eq. 5.5 can be made easier to understand by analyzing the k = 4 lattice, but
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we leave this as an exercise for the reader.

By equating Eq. 5.4 to the total area of the photosphere, we can solve for k,

6k2A4 = 4πR2
ph, (5.6)

k =

√
2π

3A4
Rph, (5.7)

k =

√
8π

35/4

Rph

ri
. (5.8)

Thus, the total number of particles required at the photosphere is calculated by

combining Eq. 5.5 and Eq. 5.8 to get,

Nph ≥ 1 +

√
8π

35/4

Rph

ri

(√
8π

35/4

Rph

ri
+ 1

)
, (5.9)

Nph & 1 + 1.27
Rph

ri

(
1.27

Rph

ri
+ 1

)
. (5.10)

For the V1309 Sco progenitor primary, we calculate the value of ri = R−Rph

using the definition of optical depth in Eq. 2.2 with constant ρ ∼ 10−7 g cm−3

and κ̄ ∼ 0.25 cm2 g−1 near the photosphere taken from the MESA model, and

letting τph = 2/3. Here, ri ∼ 4× 10−4 R�, and Rph = 3.715 R� (also from the

MESA model), so Nph & 108 particles, which is impractical with contemporary

technology.

5.2 Particle Optical Depths

The optical depth is found by integrating the optical depth from Eq. 2.2 over

all frequencies,

dτ(w) ≡ −ρ(w)κ̄(w)dw, (5.11)

where ρ(w) is the mass density, κ̄(w) is the mean opacity (see §2.6), and w

is an axis along a line of sight. When calculating the optical depth, FluxCal
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uses tabulated Rosseland and Planck mean opacities, as in §2.6. We use the

Rosseland mean opacity table from MESA (see §4.3 of Paxton et al. 2011) and

the Planck mean opacity table from Semenov et al. (2003). We use Rosseland

mean opacities for temperatures above 1500 K, and Planck mean opacities

below.

The summation interpolant of Eq. 5.11 is calculated by the same method in

§3.1 as,

dτ(w) = −
∑
j

mjκ̄jW (|r− rj|, hj)dw, (5.12)

where mj and κ̄j are the mass and mean opacity at the center of particle j

respectively, hj is the smoothing length of particle j, r is the position and rj is

the position of particle j. For a single isolated particle i,

dτ(w) = −miκ̄iW (|w − wi|, hi)dw, (5.13)

where here w is a distance along some axis that passes through the center of

particle i. The optical depth of particle i is hence calculated by integrating

Eq. 5.13 from the τ = 0 surface of the kernel to the τ = τi center. For a kernel

function with compact support over 2h, as described in §3.2,

τi = miκ̄i

∫ wi+2hi

wi

W (|w − wi|, 2hi)dw. (5.14)

Making the substitution u = (w − wi)/hi, du = dw/hi,

τi = miκ̄ihi

∫ 2

0

W (u)du. (5.15)

Performing the integral on the right–hand side results in some constant divided

by the smoothing length cubed. Thus, Eq. 5.15 is written as,

τi =
miκ̄i
h2
i

Cτ , (5.16)
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mi hi Ti ρi κi τi

[1026 g] [1012 cm] [K] [g cm−2] [cm2 g−1] [–]

0.687 1.131 3.398× 103 6.270× 10−10 3.720× 10−4 7.287× 10−2

0.702 2.410 3.591× 103 1.055× 10−10 1.984× 10−4 8.753× 10−3

0.859 3.083 3.492× 103 3.103× 10−11 1.089× 10−4 3.589× 10−3

6.888 0.026 4.315× 105 4.725× 10−4 6.992× 101 2.582× 108

5.354 0.017 5.585× 105 1.995× 10−3 5.106× 100 3.484× 107

5.766 0.023 5.190× 105 5.658× 10−4 5.381× 101 2.181× 108

Table 5.1: The masses mi, smoothing lengths hi, temperatures Ti, densities ρi,
opacities κi, and optical depths τi as calculated by Eq. 5.16 for a selection of
particles ≈ 8.33 days after merger in the StarSmasher dynamical simulation
described in §6.3. Optically thin particles are shown on top and optically
thick are shown on bottom. We use the Wendland C4 kernel function in this
simulation.

where Cτ = 3/(4π) ≈ 0.24 for the cubic spline function from Eq. 3.23 and

Cτ = 55/(48π) ≈ 0.36 for the Wendland C4 function from Eq. 3.24.

We show in Table 5.1 optical depths calculated by Eq. 5.16 for particles with

the Wendland C4 kernel function from our StarSmasher dynamical simulation

of a contact binary merger discussed later in §6.3. There exists a wide range

of optical depths in our dynamical simulation, as some particles are cool and

diffuse in the outflow while others are hot and dense near the core.

5.3 Optically Thick (Envelope Fitting)

Any optically thick SPH particle at the surface of the gas cloud has a photosphere

somewhere within its kernel, as discussed in §2.1. Tracing a ray through the

kernel of an optically thick particle to find the location of its photosphere is

inaccurate, as described in §3.3 and §5.8. Thus, we employ a fitting routine to

match particle central temperatures Ti, pressures Pi, and local gravitational

accelerations gi to stellar envelope solutions.



Chapter 5. FluxCal 60

5.3.1 Fundamental Envelope Solutions

Temperature T and pressure P profiles in stellar envelopes can be described as a

family of solutions determined by surface gravity and effective temperature. For

simple parameterized envelopes, this can be demonstrated analytically using the

method described by Kippenhahn and Weigert (1994). Let the mean opacity κ̄

scale as a power law with P and T such that κ̄ = κ0P
aT b. The usual equation

of radiative transport is hence written as,

∂T

∂P
=

3κ0

64πσSBG

l

mT 3
P aT b, (5.17)

where G is the gravitational constant, l ≡ 4πr2F is the luminosity and F is the

local flux, m is the enclosed mass, and r is the radial position. It is assumed that

l ≈ L and m ≈M , which are the total luminosity and total mass respectively,

both of which are constants. Separating the variables in Eq. 5.17 and integrating

yields,

T 4−b = BP (a+1) + C, (5.18)

where C is the integration constant and,

B ≡ 4− b
a+ 1

3κ0

64πσSBG

L

M
. (5.19)

For any given values of a and b, the solution in Eq. 5.18 has a slope,

∇ ≡ ∂ lnT

∂ lnP
. (5.20)

The approximation of κ̄ as a power law with P and T and setting l ≈ L and

m ≈M as constants restricts how far inwards the solution for any given a and

b may be extended.
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Figure 5.3: A set of MESA models in the range 0.1 M� ≤M < 2.0 M� evolved
to the zero age main sequence. The lowest mass model is at the very bottom of
the plot, with increasing mass moving upwards. These models are representative
of the envelope solutions described by Kippenhahn and Weigert (1994).
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5.3.2 FluxCal Envelope Fitting

We create stellar models and evolve them to the zero–age main sequence using

default MESA parameters as seen in Fig. 5.3. We then evolve these to create

a grid of models with surface gravitational accelerations g over a range of

−4 ≤ log g ≤ 4.6 in increments of 0.1. We tabulate values for ∇ through the

temperature range 3.3 ≤ log T ≤ 6 in increments of 0.01 within the envelope for

each model. For given particle central values Ti, and gi, we calculate ∇ from

the table by simple interpolation.

The pressure at the photosphere of low luminosity and/or low surface opacity

stars is given by Eq. 2.58,

Pph ≈
2

3

gi
κ̄s
. (5.21)

Here, κ̄s is the mean opacity at the surface and is computed using a table of low

temperature opacities (Ferguson et al., 2005). The fitted pressure is calculated

as,

P = Pi

(
T

Ti

)1/∇

, (5.22)

where Pi is the particle central pressure.

We use a simple midpoint method to calculate T at P = Pph, where the

lower bound is set to the lowest possible log T value in the ∇ table, the upper

bound is set to log Ti, and the midpoint is the numerical average of the two.

For the upper bound, midpoint, and lower bound, FluxCal calculates P as in

Eq. 5.22 and Pph as in Eq. 5.21. From hereafter, we denote these points with

a subscript u for upper bound, m for midpoint, and l for lower bound. When

Pu ≥ Pph,u and Pm ≤ Pph,m, Tl is given the value at Tm, otherwise Tu = Tm.

The midpoint is recalculated as the numerical average of Tu and Tl, P and

Pph are recalculated at all three points, and the process is repeated until Tm

converges to Tph. We use the temperature at the photosphere Tph to calculate

the effective temperature Teff in §5.7.
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5.4 Optically Thin (Runge–Kutta Integrator)

FluxCal traces a ray in the negative z direction using a 4th order Runge–Kutta

adaptive step size integrator (Press et al., 1992) to calculate the optical depth

in Eq. 2.2. The integrator calculates optical depth at each step as,

τm+1 = τm +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4, (5.23)

where m = 0, 1, 2, 3, . . . is an index of the steps taken for which τm=0 = 0, and

k1, k2, k3, and k4 are increments defined as,

k1 ≡ s

(
dτ

dz

)
zm,τm

, (5.24)

k2 ≡ s

(
dτ

dz

)
zm+h/2,τm+k1/2

, (5.25)

k3 ≡ s

(
dτ

dz

)
zm+h/2,τm+k2/2

, (5.26)

k4 ≡ s

(
dτ

dz

)
zm+h,τm+k3

, (5.27)

where zm is the physical z location at index m and s is the step size. In the

adaptive Runge–Kutta method, δτ ≡ τm+1 − τm is calculated at each step and

s is altered depending on some defined accuracy parameter a∗. If δτ > a∗, the

integrator discards τm+1 and the step is repeated from τm with a smaller s, and

if δτ � a∗, s is increased to save computational time.

By default, FluxCal takes the integration bounds as from the maximum z

value zmax for which fluid exists (τ = 0) along the line of sight, to the minimum

z value zmin for which fluid exists. The integrator stops before reaching zmin if

the accumulated τ ≥ τthick, where τthick is a user–controlled quantity, or if an

optically thick particle’s kernel has been entered.
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Figure 5.4: We show an example of the steps taken by the Runge–Kutta adaptive
step size integrator (colored points), as discussed in §5.4, on an integration
ray (black dashed line) through the data from the StarSmasher dynamical
simulation shown in Fig. 6.11 and Fig. 6.12 and discussed in §6.3. Particles
(shown as circles) have radii equal to twice their smoothing lengths hi and are
shaded according to their optical depths calculated by Eq. 5.16 with Cτ ≈ 0.36
(Wendland C4 kernel). Points of entry into each particle kernel are not visible
here, nor for any 2D projection as a consequence of creating the projection.
Here, we do not use the envelope fitting routine described in §5.3 and the
definition of optically thick is arbitrarily set to τthick = 1 × 105 to show the
behavior of the 4th order Runge–Kutta adaptive step size integrator.
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5.4.1 The Integrating Grid

Although an intuitive solution to obtaining physical values for the Runge–Kutta

integrator is to use the SPH method at each step, it is computationally more

efficient to create a grid of values and calculate a distance weighted average

between the two nearest vertices. From here forward, we call this grid the

“integrating grid”. Let Hz be the z spacing between integrating grid vertices

along the line of sight such that,

Hz ≡
zmax − zmin

Nz − 1
, (5.28)

where zmax and zmin are the maximum and minimum z values for which fluid

exists respectively and Nz is the number of grid vertices, equal to 416 by default

in FluxCal for all lines of sight. We calculate the densities and temperatures

for all integrating grid vertex indices K in the usual SPH way (see §3.1),

ρ(K) =
∑
j

mjWj, (5.29)

T (K) =
∑
j

mj

ρ(K)
TjWj, (5.30)

where Wj is the kernel function for particle j evaluated at K. We take the

density term ρ(K) in the summation interpolant Eq. 5.30 as a constant for all

particles j by a symmetry argument.

For any physical location zmin ≤ z ≤ zmax, we define the real–valued index

location K as,

K ≡ z − zmin

Hz

. (5.31)

We calculate the values of ρ(K) and T (K) as a distance weighted average,

ρ(K) = ρ(bKc)
(
bKc+ 1−K

)
+ ρ(bKc+ 1)

(
K − bKc

)
, (5.32)

T (K) = T (bKc)
(
bKc+ 1−K

)
+ T (bKc+ 1)

(
K − bKc

)
, (5.33)
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where bKc is the floor value of K. FluxCal uses both Eq. 5.32 and Eq. 5.33 to

calculate the optical depth in §5.5 and the effective temperature in §5.7 along

the line of sight.

5.4.2 Empty Space

When physical values are calculated using a distance weighted average, it is

possible to obtain non–zero density values when outside SPH particle kernels.

For example, consider a pair of integrating grid vertices K and K + 1 where K

has one intersecting kernel due to particle i and K + 1 has none. Let there be

some location,

bKc < K∗i < bKc+ 1, (5.34)

where bKc is the real–valued index location of K, K∗i is the boundary of the

kernel for particle i, and bKc + 1 is the location of K + 1. In the region

K∗i < bKc+ 1, the distance weighted average density (Eq. 5.32) ρ(K) > 0 when

it should be equal to zero, as K∗i < bKc + 1 is empty space. We show this

situation with a sketch in Fig. 5.5.

To maintain a density of zero in empty space, we write the density ρ(K)
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Figure 5.5: We show a sketch of the Runge–Kutta integrator exiting a particle
kernel into empty space before re–entering another kernel. The integrator moves
along the line of sight (black arrow) into the integration grid (black lines) taking
incremental steps (green and red squares). We show the steps in which the
integrator is not in empty space as green squares, and red squares where it is.
Physical values are calculated by FluxCal as the distance weighted average of
the nearest integration grid cell values (filled black circles). The integrator is
located in empty space (ρ = 0) at the red squares, and in non–empty space
(ρ > 0) at the green squares. The plotting bounds are arbitrary, the particles
shown are not real SPH particles, the integration grid was not taken from
FluxCal output, and the integration steps shown are not indicative of the real
Runge–Kutta integrator behavior.
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along line of sight as,

ρ(K) =



miWi, if |rK − ri| < 2hi and either



ρ(bKc) = 0

ρ(bKc+ 1) > 0

or

ρ(bKc) > 0

ρ(bKc+ 1) = 0


,

0, if |rK − ri| ≥ 2hi and either



ρ(bKc) = 0

ρ(bKc+ 1) > 0

or

ρ(bKc) > 0

ρ(bKc+ 1) = 0


,

ρ(K), otherwise (see Eq. 5.32),

(5.35)

where rK is the physical position at K and ri is the physical location of the

most–recently–entered particle. We calculate the temperature similar to the

density, except the top–most case in Eq. 5.35 has the quantity miTiWi/ρ(K),

as in Eq. 5.30.

5.5 Optical Depth Calculation

Using the values of ρ(K) and T (K) from Eq. 5.32 and Eq. 5.33 respectively,

FluxCal calculates the mean opacity κ̄(K) using the table of ρ, T , κ̄ values

described in §5.2. The frequency–integrated optical depth can be written by

integrating both sides of Eq. 2.2 from τ = 0 to τ ,

τ =

∫ zmax

zmin

κ̄(K)ρ(K)dz, (5.36)

where κ̄ is the mean opacity (see §2.6). FluxCal uses the Runge–Kutta method
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described in §5.4 to perform this integral and the result is used later in calculating

the effective temperature along the line of sight in §5.7.

5.6 Visible Luminosity Calculation

We first assume the SPH simulation radiates isotropically from its surface.

Hence, we calculate the visible luminosity using Eq. 2.30, written here again as,

L (ξ, ζ) =

∮
Qph(ξ,ζ)

Teff(r)4dq(rph). (5.37)

The effective temperature Teff(r) must be calculated at all visible dq(rph) to

evaluate L (ξ, ζ). FluxCal accomplishes this by applying both the optically thick

and thin methods for calculating temperatures to the Runge–Kutta integrator,

a process we detail in §5.7.

5.7 Effective Temperature Calculation

Recall from §2.4 the effective temperature Teff is the temperature of a blackbody

with the same outgoing energy per time as from the surface of a given radiating

gas cloud. The effective temperature along a line of sight can be calculated

using Eq. 2.25 as,

T 4
eff =

π

σSB

I+(τ = 0). (5.38)

We assume that both the outgoing radiation and the source function are isotropic

for all τ .

As we described in §5.5, the optical depth is calculated as a function of dz,

and thus has dependency on µ. For a far away observer, all rays emitted from a

gas cloud are parallel with each other and the line of sight, so µ = 1 for all rays.

With this in mind, the frequency–integrated solution to the radiative transfer
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equation in Eq. 2.10 can be written as,

I(τ) = I0(τ0)eτ−τ0 +

∫ τ0

τ

S(τ ′)e−τ
′
dτ ′. (5.39)

Thus the outgoing intensity at the τ = 0 surface is written as,

I+(τ = 0) = I+
0 (τ)e−τ +

∫ τ

0

S(τ ′)e−τ
′
dτ ′, (5.40)

where we have written τ0 as τ after setting τ to zero. Here, τ = 0 is the surface

location and τ is the accumulated optical depth calculated by the Runge–Kutta

integrator in §5.4. We calculate the originating outgoing intensity I+
0 (τ) as,

I+
0 (τ) =

σSB

π

T
4
ph, thick particle

0, otherwise

, (5.41)

where Tph is calculated using the envelope fitting method in §5.3.2 only if an

optically thick particle (see §5.5) exists along the line of sight.

We calculate the source function S(τ ′) only for optically thin particles as

S(τ ′) =
σSB

π
T (τ ′)4. (5.42)

Thus, combining Eq. 5.40, Eq. 5.41, and Eq. 5.42 with Eq. 5.38 yields the

effective temperature as,

Teff =



Tph, only optically thick[∫ τ
0
T (τ ′)4e−τ

′
dτ ′
]1/4

, only optically thin[
T 4

phe
−τ +

∫ τ
0
T (τ ′)4e−τ

′
dτ ′
]1/4

, optically thick & thin

0, no particles on line of sight

.

(5.43)

From top–to–bottom, the conditions apply to the z line of sight when (1) the
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first particle visible is optically thick, (2) there are optically thin particles but

no optically thick particles, (3) there are optically thin particles in front of an

optically thick particle, and (4) there are no particles.

5.8 FluxCal Framework

The user provides data files containing physical times and particle: positions,

masses, smoothing lengths, densities, velocities, internal energies, mean molecu-

lar weights, and local gravitational accelerations. FluxCal calculates particle

central temperatures and pressures using either the high resolution TEOS or the

polynomial solution as described in §4.3 from StarSmasher. To use FluxCal

with other codes, a TEOS with a similar resolution should be provided to

maintain precision in the bi–linear interpolation method. For best possible

results, the TEOS used in the SPH simulation and the TEOS used in FluxCal

should be at least similar so that FluxCal performs calculations in a similar

physical framework.

FluxCal rotates the particles to the desired viewing angle (ξ, ζ), as seen

in Fig. 2.3. It then defines a 3D coordinate system with the same origin as

in the data set, but with the positive z direction pointed toward an observer

who is infinitely far away, as shown by the red, blue, and green arrows in

Fig. 5.6. FluxCal then creates a 2D grid, called the “driving grid” with an

arbitrary initial resolution of 3 × 3 on the xy plane with a z location large

enough to encapsulate all fluid. The driving grid has a surface area equal to the

largest possible cross–section with the line of sight and hence encapsulates all

particles and their kernels on the xy plane. For each vertex on the driving grid,

FluxCal constructs the integrating grid as described in §5.4.1 and integration

is performed along the negative z direction, as discussed in §5.4. In summary,

the integrator begins at the surface of the first visible particle kernel, travels

iteratively in the negative z direction, and terminates when any of the following
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Figure 5.6: We show a sketch of the driving and integrating grids used by
FluxCal as described in §5.8 for a set of particles (gray spheres). The driving
grid (shown in red) is initialized with an arbitrary resolution of 3× 3 on the xy
plane and the integrating grid (shown in black) is constructed on the xyz plane.
The integrating grid here has a uniform number of cells for visual clarity and
do not start at zmax or end at zmin (see §5.4.1), which is not representative of
the actual FluxCal code. We show the orientation of the coordinate axes in
the bottom left with the standard corresponding colors red, green, and blue for
x, y, and z respectively. We indicate integration in the −z direction with thick
light blue arrows. The value of Teff at a vertex fills a corresponding cell area,
which we show with thin light blue arrows extending perpendicular to the thick
light blue arrows. That is, Teff is constant and equal to the vertex value across
one entire driving grid cell. The grids we show here have very low resolutions
and are not representative of typical FluxCal resolutions.
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conditions are met:

• The accumulated optical depth from integrating through optically thin

particles along the line of sight constitutes an optically thick region.

FluxCal calculates the effective temperature Teff using a distance weighted

average of nearby particles, as described in §5.4.1.

• The surface of an optically thick particle kernel has been reached. FluxCal

calculates the value of Teff using both envelope fitting and ray tracing.

• There are no particle kernels in the negative z direction. FluxCal takes

the value of Teff to be zero.

FluxCal calculates the visible luminosity L (ξ, ζ) (see §5.6) from the viewing

angle (ξ, ζ) under the assumption that the outgoing radiation is isotropic,

L (ξ, ζ) = AcellσSB

∑
cells

T 4
eff,cell, (5.44)

where Acell is the area of each driving grid cell and Teff is the effective temperature,

calculated by the method in §5.7.

To ensure some level of precision in L (ξ, ζ), FluxCal calculates the visible

flux from the driving grid and compares it to the previously calculated value.

FluxCal calculates the visible flux as,

F (ξ, ζ) = σSB

∑
cells

T 4
eff,cell, (5.45)

where the summation is performed over all driving grid cells. FluxCal in-

crementally increases the driving grid resolution if the following condition is

met,

Fn(ξ, ζ)−Fn−1(ξ, ζ) > p∗Fn(ξ, ζ), (5.46)

where subscript n denotes the total number of iterations for which F (ξ, ζ) has

been calculated for a given time–slice and p∗ is a quantity that describes the
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precision of F (ξ, ζ) and is set by the user (called “fracaccuracy” in the code).

In this way, FluxCal achieves numerical convergence in the visible flux, which

is a quantity that depends on both L (ξ, ζ) and Acell, as in Eq. 5.44. Hence, the

user defines the level of desired precision in L (ξ, ζ) by setting fracaccuracy,

and that precision is achieved once the condition in Eq. 5.46 is met. For all our

FluxCal calculations performed in this work, we use fracaccuracy = 0.01.

5.9 Other Tools

Spectral physics in SPH codes are often difficult to debug as there are many

dependencies that come into play. To help tackle this, FluxCal has several useful

debugging tools which operate separately from the main L (ξ, ζ) calculator.

For example, it is often useful to know the properties of the particles nearest

to the observer along the line of sight. As in Eq. 5.39, optically thin particles

attenuate intensity from optically thick regions differently for each driving grid

vertex. FluxCal can find the properties of particles closest to the observer

at each driving grid vertex to give deeper insight on the behavior of outer

atmospheres. Particles with kernels that span more than one driving grid cell

may produce duplicate entries. FluxCal removes such duplicate entries in the

final output.

FluxCal can also give the integration results from any of the rays traced

through the driving grid vertices, or through any desired location without a

grid. This is particularly useful for understanding how any given line of sight in

the simulation affects the value of L (ξ, ζ), or for identifying regions of interest,

such as grid vertices that have relatively high or low effective temperatures.

FluxCal is able to obtain all available information on any number of particles

over their spatiotemporal evolution through the simulation. This is very desirable

for analyzing contact binary merger simulations, as particles that contribute to

the outflow can be tracked and their origins identified.
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A typical problem that arises when there are optically thick particles in an

SPH simulation is having a single, large, optically thick particle taking up most

of the view during some time after the start of the simulation. Using FluxCal,

it is straightforward to find that particle’s index and quickly trace its evolution

back to the start of the simulation to verify if its evolution is physical. This

may show, for example, that it originated from a dense, hot region and was

artificially kicked out by a numerical instability.
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Results

6.1 StarSmasher Stellar Models

We model a primary star using three particle resolutions N = 1×105, N = 2×105,

and N = 3×105 for a MESA model with M = 1.52 M� and R = 3.715 R� evolved

to an age of 2.54 Gyr. Our MESA model has a central density of ρ∗c ≈ 6× 104 g

cm−3 and a core mass of 0.189 M�. We use MESA version 9793 with the inlist

provided in Appendix A.2. This star is near the base of the red giant branch on

its evolution and is intended to approximate the V1309 Sco progenitor primary

(Stȩpień, 2011).

The models each have a core mass mc that depends on N and nnopt, as

seen in Table 6.1, as the core particle is simply assigned the difference between

the MESA total mass and the total mass of the other particles, as discussed in

§4.5.1. We show the initial N = 3× 105 model in Fig. 6.1 and the final relaxed

N = 1 × 105, N = 2 × 105, and N = 3 × 105 models in Fig. 6.2, Fig. 6.3,

and Fig. 6.4. Each model has the optimal nnopt value for its resolution, as

discussed in §4.5.2. In all figures, quantities with a leading δm are the relative

fractional errors by mass between the StarSmasher model and the MESA model.

For example,

δmρi =
ρMESA(Mi)− ρi
ρMESA(ri)

, (6.1)

76
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Figure 6.1: Initial profile of the StarSmasher N = 3 × 105 model before
relaxation. We show the relative fractional errors by mass between the MESA

and StarSmasher models for the density δmρ (top left) and pressure δmP (top
right). Also we show the number of neighbors Nnb,i (middle left), particle radii
2hi (middle right), particle acceleration components (bottom left), and local
spatial resolutions ni (bottom right). The acceleration components of gravity
(green) and hydrodynamics (blue) form the net acceleration (black). We omit
from this image values of δmρ and δmP that represent errors larger than 100%.
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where δmρi is the relative fractional error in the density at the center of particle

i located at mass coordinate Mi, ρi is the density of particle i, and ρMESA(Mi) is

the density of the shell nearest to ri in the MESA model. We calculate the mass

coordinate for each particle using a numerical sum over all particles from the

core to the surface,

Mi =
i∑
j

mj, (6.2)

where mj is the mass of particle j.

We calculate the local spatial resolution at each particle using Eq. 3.26 with

smoothing lengths of 2hi. At both the beginning and the end of each relaxation,

the spatial resolution varies by approximately an order of magnitude in the top

∼ 8% by mass. Resolution is the worst for the outermost particles and improves

moving inward through the envelope. In all our models, both the worst and

best spatial resolutions in the entire envelope are achieved in the top ∼ 8% of

mass. This variance depends on the smoothing lengths hi exponentially and

on the neighbor number Nnb,i linearly. In Fig. 6.2, Fig. 6.3, and Fig. 6.4, there

is a clear change in ni near the core as a near direct result of Nnb,i, as hi is

approximately constant there.

The initial pressure and density profile of the N = 3× 105 model, as seen

in Fig. 6.1, matches to within ∼ 5% through most of the envelope until the

surface region at m & 1.45 M�. There, particle radii 2hi are significantly larger

than that of particles deeper within the envelope. This is a result of the Nnb,i

criterion described in §4.1 and occurs in the top ∼ 0.8% of the envelope by mass,

compromising the spatial resolution. We find similar results for the N = 1× 105

and N = 2× 105 models, as seen in Fig. 6.2 and Fig. 6.3 respectively, though

the surfaces are not as well modelled as in the N = 3× 105 case.
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Figure 6.2: The same plot as in Fig. 6.1 but for the fully relaxed N = 1× 105

model after ∼ 18 days. Values of δmρ and δmP that represent errors larger than
100% are not shown.
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Figure 6.3: The same plot as in Fig. 6.1 but for the fully relaxed N = 2× 105

model after ∼ 18 days. Values of δmρ and δmP that represent errors larger than
100% are not shown.
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Figure 6.4: The same plot as in Fig. 6.1 but for the fully relaxed N = 3× 105

model after ∼ 18 days. Values of δmρ and δmP that represent errors larger than
100% are not shown.



Chapter 6. Results 82

6.1.1 Finding the Optimal nnopt

As discussed in §4.5.2, there exists an nnopt value which allows the total energy

profile of any given StarSmasher relaxation to best match the initial MESA

model. We first create the N = 1× 105, N = 2× 105, and N = 3× 105 models

with nnopt = 10 and calculate the relative fractional error in the total energy

profiles by mass δmE as,

δmE(m) =
Em(m)− ESPH(m)

Em(m)
, (6.3)

where m is the mass coordinate, Em(m) is the integrated total energy from the

surface inwards at m in the MESA model, and ESPH(m) is the integrated total

energy at m in the SPH model. We analyze the δmE profile in the outer 0.1 M�,

shown in Fig. 6.5, by eye to determine goodness of fit. This is sufficient, as

profiles typically vary by only ∼ 1% in this mass range. In what follows, we

obtain only a close approximation to the best possible nnopt value, to within a

few. Choosing an nnopt that differs by a few to what is found here results in a

difference in δmE by less than 1%. In situations where small changes in nnopt

give large changes in the δmE profile, the following method can still be used,

but a numerical metric describing the goodness of fit should be employed, such

as a least–squares method or χ2 value.

For the given N , we relax additional StarSmasher models with nnopt values

increasing in increments of 10 until the δmE profile has a slope ∼ 0 and values

approaching 0. Generally, with increasing nnopt, the slope becomes more

negative and values become more positive. Once we find an nnopt for which the

slope has become negative and values are close to zero throughout, we explore

ever smaller perturbations in nnopt around that value to find the δE profile

that has the values and slope closest to zero. We show in Fig. 6.5 and Table 6.1

the optimal nnopt values for the N = 1× 105, N = 2× 105, and N = 3× 105

models as 20, 30, and 87 respectively.
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Figure 6.5: Relative fractional errors in total energy δE between the fully relaxed
StarSmasher N = 1×105 (top), N = 2×105 (middle), and N = 3×105 (bottom)
models from Table 6.1, normalized to mass coordinate M = 1.44 M�. We find
the optimal nnopt values (black) by the method described in §6.1.1 for all three
models as 20, 30, and 87 respectively.
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N nnopt mc R 〈Teff 〉 〈τs〉 4L L 〈Teff ,RK〉 〈2hs〉
– – [M�] [R�] [K] [1010] [L�] [L�] [105 K] [R�]

MESA – 0.189 3.715 4973 – – 7.59 – –

1× 105 20 0.191 3.947 5252 2.08 10.17 10.66 1.363 0.336

2× 105 30 0.186 3.982 5288 1.59 10.58 11.14 1.121 0.324

3× 105 87 0.188 3.991 5448 0.62 12.37 12.62 1.284 0.374

Table 6.1: Fully relaxed StarSmasher models for varying particle resolutions at
optimal nnopt (see §6.1). Shown are the core masses mc, radii R (τ = 0 surface),
average effective temperatures 〈Teff〉 found by the method described in §5.7,
average optical depths of the particles closest to the observer 〈τs〉, four times
the visible luminosities 4L (ξ, ζ), and total luminosities L = 4πσSBR

2 〈Teff〉4.
Also shown are the average effective temperatures 〈Teff,RK〉 calculated by the
Runge–Kutta integrator only (see §5.4) for optical thickness τthick = 10 and the
average surface particle radii 〈2hs〉, as defined in §6.2.2. Visible luminosities
are multiplied by a factor of 4 to approximate the total luminosities L in the
assumption that the star is spherically symmetric, as discussed in §2.4.1.

6.2 Relaxations

We process the three StarSmasher relaxations from §6.1 with FluxCal to find

values of Teff both with and without the envelope fitting method described in

§5.3.2. Our results from the envelope fitting turned off represents the expected

outcome for traditional ray tracing algorithms. We calculate the average optical

depths of the outermost particles in Table 6.1 to describe the behavior of

FluxCal. Finally, we calculate the visible and theoretical luminosities and

compare their values. Our methods for calculating these quantities are hereby

detailed.

6.2.1 Surface Optical Depths

We calculate the average surface particle optical depth as,

〈τs〉 ≡
1

Ns

Ns∑
i

τi, (6.4)
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Figure 6.6: The optical depths of the first visible particles along driving grid
vertices for our N = 3 × 105 model in Table 6.1, as calculated with Eq. 5.16.
The driving grid has a resolution of 63 × 93 cells from (x, y) ≈ (−3.94,−3.95)
to (x, y) ≈ (3.94, 3.96). We show particles as filled circles with radii equal to
twice their smoothing lengths, in order of distance to the observer along the z
axis.
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where Ns is the total number of particles with kernels that are visible to the

observer and τi is the optical depth of particle i, as calculated by Eq. 5.16. We

find 〈τs〉 decreases with increasing N , which is consistent with better spatial

resolutions at the surface, as described in §3.3 and §4.5.2. Our results in

Fig. 6.6 show the spatial distribution of the surface particle optical depths in

the N = 3 × 105 particle model. We identify the surface particles by finding

the first visible smoothing kernel to the observer for each driving grid vertex,

as described in §5.8. We show the surface particles as cross sections with the

xy plane in Fig. 6.6 in order of position on the z axis.

6.2.2 Model Radii

We calculate the radius at the τ = 0 surface as,

R ≡ max(|ri|+ 2hi), (6.5)

where |ri| is the position of particle i and 2hi is its radius. As seen in Table 6.1,

R increases with nnopt. The consequence of larger nnopt is larger smoothing

lengths and, hence, larger radii R, as described in §5.1 and §4.5.2. We define

the average surface particle radius 〈2hs〉 as,

〈2hs〉 ≡
2

Ns

Ns∑
i

hi. (6.6)

We present values for 〈2hs〉 in Table 6.1.

6.2.3 Effective Temperatures

We calculate effective temperatures for the N = 1 × 105, N = 2 × 105, and

N = 3× 105 models using FluxCal by the process described in §5.7 and average

them across the driving grid to find 〈Teff〉 in Table 6.1. The surface particles

have very large optical depths, as seen in Table 6.1, Fig. 6.6, and discussed in
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Figure 6.7: Effective temperatures calculated by FluxCal for our N = 1× 105

(top), N = 2×105 (middle), and N = 3×105 (bottom) models in Table 6.1. On
the left side is the effective temperature calculated normally, while the right side
uses only the Runge–Kutta integrator with optical thickness set to τthick = 10.
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§6.2.1, and thus the Runge–Kutta integrator, as described in §5.4, is not used

by FluxCal for any of the driving grid vertices.

We turn off the envelope fitting routine and use only the Runge–Kutta

integrator to calculate the effective temperatures Teff,RK with τthick = 10. We

average these values across the driving grid to find 〈Teff,RK〉, which are ∼ 2

orders of magnitude larger than 〈Teff〉 in all three models.

We show the spatial distributions of Teff,RK and Teff for the N = 1 × 105,

N = 2 × 105, and N = 3 × 105 models in Fig. 6.7 for the viewing angle

(ξ, ζ) = (0, 0). A cool spot is present in the center of all three models, the

largest of which is in the N = 2× 105 model, and appears like an opposite limb

darkening effect. FluxCal cannot capture the physics of limb darkening, as

the angle µ is kept constant and thus the origin of this feature is unclear. The

feature may be a result of the initial hcp lattice discussed in §4.5 and insufficient

particle mixing (see §7.1.2), but more work is required to draw any conclusions.

Our values of 〈Teff,RK〉 do not scale monotonically with N , while 〈Teff〉 do.

FluxCal does not use the Runge–Kutta integrator to calculate 〈Teff〉 as in

Eq. 5.43 due to the high optical depths of the outermost particles (〈τs〉 ∼ 1010).

Thus, values of 〈Teff,RK〉 are subject to the SPH photosurface problem discussed

in §5.1. This is corroborated by the poor spatial resolution ni near the surface of

all models, seen in Fig. 6.2, Fig. 6.3, and Fig. 6.4. The envelope fitting solution

is unaffected by the poor outer spatial resolution, as it calculates quantities

using only central values, as opposed to the kernel–smoothed quantities used

by the Runge–Kutta integrator (see §5.4).

6.3 Dynamical Simulation

We simulate V1309 Sco as a contact binary merger with StarSmasher by the

process described in §4.4 with our N = 2× 105 particle model as the primary,

a M = 0.16 M�, R = 0.203 R�, 2.54 Gyr, N = 1 × 104 brown dwarf model
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as the secondary (Stȩpień, 2011), with an initial orbital period of 1.44 days

(Tylenda et al., 2011). We do this to show the behavior of FluxCal in a regime of

both optically thick and optically thin particles and as an attempt to model the

observations of V1309 Sco in §1.2.1. We ran the simulation for ≈ 4 months wall

time with 16 NVIDIA P100 Pascal GPUs and 96 Intel E5-2683 v4 “Broadwell”

CPUs on the ComputeCanada Cedar supercluster.

Outflow begins at t = 0 days until merger at t ∼ 5 days and, as seen in

Fig. 6.8, meje ∼ 0.06 M� is ejected. From the particle positions in Fig. 6.9 and

Fig. 6.10 as well as optical depths in Fig. 6.11 and Fig. 6.12, we find that no

visible outflow originates from the secondary.

We show the energies associated with the merger in Fig. 6.8, which are

calculated as,

Eint =
∑
i

miui (6.7)

Epot =
1

2

∑
i

miϕi (6.8)

Ekin =
1

2

∑
i

mi|vi|2, (6.9)

ESPH = Eint + Epot + Ekin (6.10)

Etot ≡ Etot + Erad (6.11)

where ui, ϕi, and vi are the specific internal energies, specific gravitational

potential energies, and velocities of particle i respectively, and ESPH and Etot are

the total energy from SPH hydrodynamics and total energy – including radiative

cooling Erad – respectively. We calculate the total internal energy Eint by

summing over all non–core particles, while the total potential and kinetic energies

Epot and Ekin are calculated by summing over all particles inclusive of core–

particles. The average total energy of our simulation is 〈Etot〉 ≈ −1.73× 1048

erg, the change in total energy over the entire evolution is ∆Etot ≈ −1.68× 1045



Chapter 6. Results 90

erg, and the total energy radiated away is ∆Erad ≈ 4.19 × 1044 erg. We find

∆ESPH ≈ −1.1× 1045 erg and a numerical precision of,

(
1−

∣∣∣∣ ∆ESPH

ESPH(t = 0)

∣∣∣∣)× 100 ≈ 99.88%. (6.12)

We calculate the specific total energy of a single particle by summing over

that particle’s specific energies,

ei ≡
1

2
|vi|2 + ui +

1

2
ϕi. (6.13)

The particles that have ei ≥ 0 are unbound from the system. Thus, the total

energies of the unbound particles are found in the same way as Eq. 6.7 through

Eq. 6.11, but summing only over particles with ei ≥ 0.

The energy radiated away by cooling processes Erad, as calculated by Eq. 4.24,

increases with ejected mass meje and continues to increase at a constant rate

some time after mass ejection ceases.

We show the locations of all particles in the dynamical run at t ≈ 14.25

days in Fig. 6.17. Particles with low densities fall out of the range of the TEOS

at t = 12.375 days, many of which are the outermost particles in the outflow.

Thus, the outermost particles at late times have temperatures calculated by the

polynomial solution in §4.3.1, not the TEOS.

6.4 Light Curve

As seen in Fig. 6.13 and Fig. 6.14, the shape of the outflow is approximately

symmetric in the ζ direction. Thus, we calculate visible luminosities using

FluxCal by the process described in §5.6 from a set of ξ values to show how

L (ξ) varies with viewing angle. We multiply L (ξ) by a factor of 4 as a

geometric isotropic assumption for the photosurface, which is equivalent to the

isotropic assumption made by Tylenda et al. (2011). As seen in Fig. 6.18, the
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Figure 6.8: Energies of the bound and unbound material over time from the
dynamical simulation of a merger between our N = 2 × 105 primary model
and a N = 1 × 104, M = 0.16 M�, R = 0.203 R� secondary (Stȩpień, 2011).
The simulation begins at t = 0 days when the orbital period is 1.44 days
(Tylenda et al., 2011). We show the total internal energy Eint, total potential
energy Epot and total kinetic energy Ekin in the left column, while showing the
total mass of the ejecta meje, energy lost by radiative cooling Erad calculated by
Eq. 4.24, and the unbound kinetic (black), internal (red), potential (blue), and
total (black dashed) energies in the right column. We calculate all quantities
using StarSmasher output. The total energy of the simulation stays conserved
to within 99.88% over the entire evolution.
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Figure 6.9: Particle positions in the dynamical StarSmasher simulation seen in
Fig. 6.8 and discussed in §6.3. The left, middle, and right columns have lines of
sight down the z, y, and x axes respectively, corresponding with viewing angles
(ξ = 0°, ζ = 0°), (ξ = 90°, ζ = 0°), and (ξ = 90°, ζ = 90°). We color the axes to
indicate spatial orientation.
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Figure 6.10: Particle positions as continued from Fig. 6.9.
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Figure 6.11: Optical depths of the nearest particles to the observer, as calculated
by FluxCal (see §5.2), for the dynamical run, plotted in the same fashion as
Fig. 6.6. The outflow becomes more optically thin as it expands and cools. This
plot is continued in Fig. 6.12.
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Figure 6.12: Optical depths of the dynamical run continued from Fig. 6.11.
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Figure 6.13: Effective temperatures calculated by FluxCal (see §5.7) for the
dynamical run. This plot is continued in Fig. 6.14.
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Figure 6.14: Effective temperatures of the dynamical run continued from
Fig. 6.13.
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Figure 6.15: The same as Fig. 6.13, but with the envelope fitting routine
for optically thick particles turned off. The Runge–Kutta adaptive step size
integrator (see §5.4) determines all effective temperatures and hence the driving
grid is forced to very high resolutions at early times. This plot is continued in
Fig. 6.16.
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Figure 6.16: The same as Fig. 6.14, but continued from Fig. 6.15.
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Figure 6.17: The location of all particles at t ≈ 14.25 days in the dynamical
simulation on the TEOS diagram, plotted in the same way as in Fig. 4.1. We
show the particles that are closest to the observer at a (ξ, ζ) = (90°, 0°) viewing
angle in cyan.
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Figure 6.18: Light curves from multiple viewing angles of the dynamical run.
We calculate visible luminosities (colored) using FluxCal (see §5.6) and multiply
them by a factor of 4 as an isotropic assumption to the total luminosity. We
show the derivative with time of the energy lost due to StarSmasher radiative
cooling Erad from Fig. 6.8 in black. We also show the time t = 12.375 days when
particles of low density first fall out of range of the TEOS as a dashed black
line. We assume a geometrically isotropic photosurface to imitate the isotropic
assumption made by Tylenda et al. (2011) in calculating their luminosities.
Error bars are smaller than the data points.
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simulation increases in luminosity by ∼ 4 orders of magnitude over ∼ 10 days,

which is an order of magnitude faster than the V1309 Sco I magnitude outburst,

as seen in Fig. 1.2. For each viewing angle, the luminosity drops rapidly after

the peak, over timescales shorter than that observed for V1309 Sco by about

an order of magnitude.

We calculate the change in energy radiated away with time due to radiative

cooling in StarSmasher (see §4.2) as,

dErad,n

dt
=
Erad,n+1 − Erad,n

tn+1 + tn
, (6.14)

where n is the index of the data and the final data point is omitted.

Our light curves in Fig. 6.18 have a constant time resolution of 10 hours

while dErad/dt has a constant time resolution of 1 hour. We calculate the total

energy radiated away from t = 0 days to t ≈ 14.25 days as,

∫ t=14.25 days

t=0

4L (ξ = 0°)dt = 2.283× 1044 erg,∫ t=14.25 days

t=0

4L (ξ = 22.5°)dt = 2.677× 1044 erg,∫ t=14.25 days

t=0

4L (ξ = 45°)dt = 3.317× 1044 erg,∫ t=14.25 days

t=0

4L (ξ = 67.5°)dt = 3.777× 1044 erg,∫ t=14.25 days

t=0

4L (ξ = 90°)dt = 3.961× 1044 erg,

Erad(t = 14.25 days) = 4.120× 1044 erg.

The time when particles fall out of the range of the TEOS follows the

peak in luminosity. The slope of log(4L /L�) from each viewing angle appears

unaffected by the outer particles exiting the TEOS range.
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Discussion

7.1 Relaxed Stellar Models

7.1.1 Expansion During Relaxation

Particles closest to the core are initialized by StarSmasher with densities ρ

and pressures P smaller than the initial MESA model, and their neighbors are

initialized with ρ and P larger than the initial model as seen in Fig. 6.1. In

our N = 1× 105, N = 2× 105, and N = 3× 105 initial models, there are more

particles at the core with high δρ and δP than there are low δρ and δP , resulting

in an overall high δρ and δP core region. This creates an outward expansion

wave as the inner particles move to lower ρ and P regions. The expansion wave

propagates from the core to the surface and results in significantly expanded

relaxed models. Our N = 1× 105, N = 2× 105, and N = 3× 105 models have

larger radii than expected as a result, as seen in Table 6.1.

This may be a result of core particles being assigned masses that are smaller

than the core of the MESA model. As mentioned in §4.4, StarSmasher is not

equipped to handle stellar core physics, such as nuclear reactions and energy

transfer. Core particles are assigned masses based only on the nearby number

density, and thus it is possible to have a core particle with a mass smaller than

103
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the MESA core, as seen in Table 6.1. By disallowing a core particle to have a

mass less than the MESA core, the nearby particles and their neighbors may

be initialized with proper ρ and P values, though more work is needed for

affirmation.

7.1.2 Central Cool Spots

Cool spots appear in the center of our N = 1×105, N = 2×105, and N = 3×105

models, the most pronounced of which is in the N = 2× 105 model. We observe

a hexagonally symmetric pattern on the relaxed N = 1× 105 and N = 3× 105

models, as seen in Fig. 6.7, whose origin is unclear but may be a result of the

initial hcp lattice. In a 3D hcp lattice, there are symmetry axes with which

aligned particles may have disproportionate gravitational accelerations in some

directions, ultimately leading to smaller changes in entropy relative to other,

non–aligned particles. In this case, the hexagonal pattern is visible as bands

of lower effective temperatures due to the smaller change in entropy there.

However, such bands are not clearly visible for the N = 2 × 105 model and

there instead exists a large cool spot. The method by which this cool spot is

created is uncertain and further work is required to understand the underlying

mechanism.

7.1.3 Ray Tracing at the Surface

We calculate the average particle optical depths 〈τs〉 using Eq. 5.16 at the

surface of the relaxed models and find values ∼ 1010, which is consistent with

§5.1 and §4.5.2. We use the Runge–Kutta integrator and no envelope fitting

to calculate 〈Teff,RK〉, which results in values that are ∼ 2 orders of magnitude

greater than 〈Teff〉 and have no observable consistent behavior; they do not

scale monotonically. The values of 〈Teff,RK〉 also do not scale with the spatial

resolution of the outermost particles which we estimate as ni . 600 R−3
� ,
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ni . 1000 R−3
� , and ni . 1500 R−3

� for the N = 1 × 105, N = 2 × 105, and

N = 3 × 105 models respectively (see Fig. 6.2, Fig. 6.3, and Fig. 6.4). This

indicates the spatial resolution at the optically thick surface is sufficiently

low that the Runge–Kutta integrator calculates values with very large error

margins.

7.2 Dynamical Simulation

7.2.1 Merger Behavior

The ejected mass at t & 6.25 days forms a bipolar topography similar to V4332

Sgr (Kamiński et al., 2018), as seen in Fig. 6.9 and Fig. 6.10. As the surrounding

envelope expands, the outflowing particles become more optically thin, as seen

in Fig. 6.11, until t & 10.42 days, when particle optical depths increase, as

seen in Fig. 6.12. This may be a result of dust formation in the outer particles.

Indeed, the outer most particles at the final time have temperatures T . 1500

K (see §2.6.1), as seen in Fig. 6.17, indicating dust has formed or is forming at

the end of the simulation.

Outflow material is hotter than expected at the initial time t = 0 days, by

∼ 3500 K. This is a result of the expanded N = 2× 105 primary envelope, as

discussed in §7.1.1, which leads to contact between the primary and secondary

at a larger separation than expected. This results in overflow of the primary’s

envelope into the common envelope and thus loss of orbital angular momentum

(see §1.1.1) and subsequent outflow at separations larger than with a non–

expanded envelope. The net effect is a merger that evolves over shorter timescales

than with a non–expanded envelope. Solving the problem of envelope expansion

during relaxation may allow the merger to occur on longer dynamical timescales.

With a smaller primary envelope size, the primary would fill its Roche lobe

at smaller separations, and thus the common envelope phase would occur at

smaller separations. Angular momentum would not be lost due to mass transfer



Chapter 7. Discussion 106

from the primary to the secondary as early–on as in our expanded case, which

would result in a merger over longer dynamical timescales.

Less than 5% of the initial primary’s envelope mass is ejected by the final

time, so full ejection by recombination runaway as described by Ivanova et al.

(2015) does not apply in our case.

7.2.2 Ejecta Optical Depths

The polynomial temperature solution described in §4.3.1 is used for low density

(log ρ . −10), low temperature (log T ≤ 3) ejecta at late times (t > 12.375 days)

in the dynamical simulation for the outermost material, as seen in Fig. 6.17,

and high density (log ρ & 3), high temperature (log T ≥ 8.2) inner material

throughout, as seen in Fig. 4.1. This assumes a constant adiabatic index of

Γ = 5/3 for an ideal monatomic gas, which is correct for both atomic and

molecular hydrogen. However, as discussed in §2.6.1, molecules and dust can

form at temperatures (log T . 3.3), indicating Γ = 5/3 may not be appropriate.

This may affect the calculated temperatures of the outermost particles in the

ejecta, which fall out of range of the TEOS after t = 12.375 days, hence affecting

Teff and the resultant light curve.

As seen in Fig. 6.12, many outer particles experience an increase in optical

depth τi by ∼ 4 orders of magnitude some time after 10.42 . t . 12.5 days.

Using the equation of local spatial resolution in Eq. 3.26, τi from Eq. 5.16 can

be written as,

τi =
4π

3

mi

Nnb,i

nihiκ̄iCτ . (7.1)

As described in §3.1, neighbor numbers change in StarSmasher as a function

of local mass resolution. In the assumption that the local mass resolution is

approximately constant in the ejecta, the number of neighbors Nnb,i and mass

mi of each particle is approximately constant. Thus, τi ∝ hiκ̄i, so both hiκ̄i

must increase by ∼ 4 orders of magnitude from t ≈ 10.42 days to t ≈ 12.5 days.
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As seen in Fig. 6.12, smoothing lengths appear to increase marginally, by less

than a factor of 2, so the increase in τi is a result of an increasing κ̄i. As seen

in Fig. 6.17, these particles have temperatures low enough to form molecules

and dust, as discussed in §2.6.1. Thus, the rapid increase in optical depth may

be a result of dust and molecule formation.

7.2.3 Effective Temperatures and LTE

As discussed in §5.7, FluxCal calculates the effective temperature Teff at each

driving grid vertex using the Planck blackbody function as the source function

for the optically thin regime. This assumes strict LTE, as described in §2.3,

which does not necessarily apply to the optically thin regime. The ejecta in

the dynamical simulation first becomes optically thin at t & 2.08 days until

t & 14.25 days, as seen in Fig. 6.11 and Fig. 6.12, and thus may not be in

the LTE regime. To account for possible non–LTE situations such as this, the

detailed physics of emission and absorption for the full range of transitional

states of the gas components must be accounted for and is the possible subject

of future work.

At t & 10.42 days, it is clear that the effective temperatures Teff calculated

by FluxCal are very similar between the Runge–Kutta integrator only case

(Fig. 6.16) and the Runge–Kutta integrator plus envelope fitting method case

(Fig. 6.14). This implies the optically thick particles for which the envelope

fitting method is used are located at large optical depths, so their contributions

to Teff in Eq. 5.43 are small compared to that from the optically thin particles

in front of them.

7.3 Light Curve Features

Prior to peak luminosity, there exists an “S” shape in the light curve that is

most pronounced for the (ξ = 0°) viewing angle and is less pronounced with
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increasing ξ. Ejected material generally has a lower temperature than the hot,

inner material, as seen in Fig. 6.13 and Fig. 6.14. From viewing angle (ξ = 0°)

at t . 6.25 days, more of the hot inner material is visible than at any other

viewing angle and the projected area of the photosurface is greater than that

from any other viewing angle. Thus, the luminosity measured from the (ξ = 0)

viewing angle is greater than that from any other viewing angle until t ≈ 6

days.

At t & 6 days, outflow starts to obstruct the hot inner material visible from

small ξ and the overall shape of the ejecta becomes approximately spherical.

These combined effects result in similar luminosity values measured from all

viewing angles at t ≈ 6 days, as seen in Fig. 6.18.

At t & 6 days, the projected photosurface area from (ξ = 0°) is smaller than

that from any other viewing angle and very little of the inner hot material is

visible. As Teff is greater in the equatorial region than the polar regions for

these times and projected photosurface areas are larger, as seen in Fig. 6.14,

the measured luminosity is the lowest from the (ξ = 0°) viewing angle.

The rate at which energy is lost by the radiative cooling prescription discussed

in §4.2.1, shown as a black curve in Fig. 6.18, does not scale with the luminosity

calculated by FluxCal. This is unexpected, as both quantities describe the

energy lost from the system by radiation. The reason for their differences is

uncertain.



Chapter 8

Conclusions

We calculate the spectral properties of optically thick SPH particles using a

new code we developed called FluxCal with an accuracy improvement of ∼ 2

orders of magnitude over a traditional Runge–Kutta adaptive step size ray

tracing approach. We create stellar models at three resolutions N = 1× 105,

N = 2 × 105, and N = 3 × 105 using StarSmasher based on our initial

M = 1.52 M�, R = 3.715 R� MESA model, which is a candidate for the V1309

Sco progenitor primary (masses determined by Stȩpień 2011). We find the

nnopt values that best match the total energy profiles in the top ∼ 8% of the

envelope by mass for all three models.

We use our N = 2× 105 primary model and an N = 1× 104, M = 0.16 M�,

R = 0.203 R� brown dwarf secondary (Stȩpień, 2011) in a StarSmasher merger

simulation to model the presumed V1309 Sco red nova (Tylenda et al., 2011).

We calculate a grid of effective temperatures every 10 hours using FluxCal and

produce light curves from multiple viewing angles.

FluxCal operates over a grid constructed individually for each provided

input file. FluxCal calculates particle optical depths to detect optically thick

particles, whose individual effective temperatures are calculated using an analytic

envelope fitting technique. Effective temperatures are calculated at each vertex

on the grid by integrating the outgoing intensity from the surface inwards to a
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sufficiently large optical depth (τthick = 10) such that additional contributions

to the flux are negligible (∼ 10−4 ergs s−1 cm−2). FluxCal presents the first

ever solution to the problem of calculating outgoing radiation from a poorly

spatially resolved optically thick region in SPH simulations.

We observe StarSmasher stellar models artificially expanding outwards as

a result of poor initial conditions. This may affect our dynamical simulation

by allowing a common envelope to form at larger separations, altering the

merger dynamics. This expansion may also affect the physical properties of

surface particles, altering the results from FluxCal when calculating effective

temperatures and visible luminosities.

Our dynamical simulation, which ran for ≈ 4 months wall time with 16

NVIDIA P100 Pascal GPUs and 96 Intel E5-2683 v4 “Broadwell” CPUs on the

ComputeCanada Cedar supercluster has not yet evolved to long enough times

to properly compare the resultant light curve to V1309 Sco observations. We

require a TEOS with a broader range of density and specific internal energies to

correctly calculate temperatures in the low density ejecta at late times. FluxCal

lacks the non–LTE physics of absorption and emission of transitional states,

which must be used to correctly calculate effective temperatures outside of the

LTE regime.

An accurate dynamical simulation of V1309 Sco as a contact binary merger

would allow for an excellent understanding of contact binary merger events. If

successful, primary and secondary masses could be explored to understand how

a merger light curve changes, bringing an end to over a century of conjecture.

With these new tools, V1309 Sco is a dragon that may soon be slain.
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Appendix

A.1 TEOS MESA Inlist

1 &eos_table

2

3 !file that contains mass fractions of metals C thru Ni

4 mass_list = 'mass_frac.txt'
5

6 !MESA/eos table version number

7 table_version = 48

8

9 !FreeEOS option suite, see FreeEOS README for details

10 eos_version = 4

11

12 !option to do only eosDT or eosPT tables

13 do_eosPT = .true.

14 do_eosDT = .true.

15

16 !set log10T range

17 log10Tmin = 3d0

18 log10Tmax = 8.2d0

19 dlog10T = 0.02d0 !default 0.02

20

21 !for eosDT: set log10Q range ( log10Q = log10Rho

22 ! - 2*log10T + 12 )

23 log10Qmin = -8.0d0

24 log10Qmax = 4.5d0
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25 dlog10Q = 0.03d0 !default 0.03

26

27 !for eosPT: set log10W range ( logW = logPgas - 4*logT )

28 log10Wmin = -14.0d0

29 log10Wmax = -2.8d0

30 dlog10W = 0.1d0

31

32 /

A.2 V1309 Sco Primary Star Inlist

1 &star_job

2

3 ! choose starting model

4 ! create_pre_main_sequence_model = .true.

5

6 ! plot or not

7 pgstar_flag = .true.

8

9 ! control the output

10 history_columns_file = 'history_columns.list'
11 profile_columns_file = 'profile_columns.list'
12

13 ! save a model at the end of the run

14 save_model_when_terminate = .true.

15 save_model_filename = 'v1309_last'
16

17 write_profile_when_terminate=.true.

18 filename_for_profile_when_terminate='profile_last.data'
19

20 change_initial_net = .true. ! switch nuclear reaction

21 ! network

22 new_net_name = 'pp_and_cno_extras.net'
23

24 set_rate_c12ag = 'Kunz'
25 set_rate_n14pg = 'jina reaclib'
26

27 kappa_file_prefix = 'OP_gs98'
28 kappa_lowT_prefix = 'lowT_fa05_gs98' ! for lower

29 ! temperatures
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30

31

32 / !end of star_job

33

34 &controls

35

36 ! starting specifications: calibrated values

37 initial_mass = 1.52d0 ! in Msun units

38 ! there is rather disagreement on what is true solar

39 ! metallicity

40 initial_Z = 0.02d0 ! one of the calibrated solar

41 ! metalicity values

42

43 use_Type2_opacities = .true.

44 Zbase = 0.02 ! this is set to Z of the star in

45 ! run_star_extras.f

46

47 which_atm_option = 'photosphere_tables'
48

49 use_Ledoux_criterion = .true.

50 alpha_semiconvection = 0.1

51 mixing_length_alpha = 1.8

52

53 ! calibrated overshooting parameters for the Sun

54 overshoot_f_above_nonburn_core = 0.0174

55 overshoot_f_above_burn_h_core = 0.0174

56 overshoot_f0_above_nonburn_core = 0.008

57 overshoot_f0_above_burn_h_core = 0.008

58

59 max_years_for_timestep = 1.e7

60

61 ! This is where you are to set stops

62

63

64

65 max_age=2.54e9

66

67

68 ! make output more frequent and make sure that last one is

69 ! saved

70 history_interval = 1

71 profile_interval = 10

72
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73

74 / !end of controls
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