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Abstract 

Municipal Solid Waste (MSW) represents a diverse array of materials promising 

substantial potential for reuse and recycling. MSW originates from residential, 

commercial, and construction sources and is generally divided into recyclable and non-

recyclable categories. Specifically, within the non-recyclable portion lies the organic 

component, which can be utilized to harness energy. This reclaimable combustible 

segment, extracted from MSW, is termed “Refuse Derived Fuel” (RDF). Processes like 

RDF incineration convert this material into a range of valuable resources. This 

transformative process yields heat, electricity, and a diverse array of biofuels through 

gasification and pyrolysis. Among these biofuels are biomethane, dimethyl ether, 

methanol, syngas, bio-oil, biochar, etc. However, lack of operating plant data, 

uncertainties in process inputs, operating parameters, capital investments, waste 

composition, and product costs are some of the critical parameters that influence the 

performance indicator for waste treatment systems. In particular, the waste treatment 

system transforming municipal solid waste into RDF faces limitations in maintaining 

consistent production and quality control standards of RDF. The leading cause is the 

unwary biomass fuel supply chain decision-making, implicating many decisions 

associated with discovering the best waste diversion options and measuring their impact 

on the waste processing plants. Hence, municipal solid waste management requires 

integrated decision-making for sustainable waste treatment systems. Rigorous 

assessment is crucial for improving operational planning and addressing uncertainties 

in waste-to-energy applications. 
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The proposed study aims to tackle the challenges of assessing waste treatment system 

related to the RDF production at a material recovery facility (MRF) while integrating 

varied uncertainties. A decision support system is proposed for sustainable RDF 

production connecting four key components to form a comprehensive framework 

tailored for management and operational level hierarchies at any MRF. The framework 

includes, first an advanced computer vision system, developed to enhance the workflow 

of the waste characterization process at an MRF. This system enables precise waste 

detection and early mitigation planning for unsuitable compositions in RDF production. 

Secondly, the prior phase is integrated to a discrete simulation model, examining 

various production line configurations for high-quality RDF and consistent mass flow 

efficiency. These simulations yield optimal process plant configurations, ensuring 

alignment with specified RDF quality benchmarks. Third, knowing the calorific value 

aids in optimizing combustion for maximum energy extraction, assessing fuel quality 

for suitable applications, and estimating emissions for cleaner energy systems. Using 

chemical analysis, real-world experiments are executed to develop calorific value 

prediction models for processed RDF. These models aid operational decision-making 

and are cross- validated with existing ones for accuracy. Lastly, study integrates risk 

epidemiology into the Public-Private-Partnership (PPP) model to assess RDF plant 

economics and introduces a quantitative energy from waste (EfW) feasibility model, 

accounting for subjective biases in risk perceptions of groups involved in PPP.  

 

The contributions of this study lay the foundation of efficient problem-solving and 
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scientific solution methods for effective decision-making in waste management. This 

study's insights benefit various stakeholders profoundly. Managers at MRFs gain the 

ability to assess diverse scenarios, ensuring robust configurations amid input 

uncertainties. Operators aiming to elevate profits and RDF material quality find 

strategic guidance in these scenarios. Local and regional waste managers benefit from 

efficiency parameter modeling, enhancing waste stream redirection to facilities 

optimizing sorting. Policymakers, often facing knowledge gaps, find clarity in this 

study regarding material sorting intricacies and impacts of recycling policy. The 

proposed research can be extended to investigate the RDF production problems 

considering additional uncertain factors, such as fluctuations in waste composition and 

variability in market demand for RDF, as well as dynamic events like operational 

disruptions and policy changes in future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

Preface 
 

This thesis is the original work by Junaid OOsman Tahir. Listed below are five journal 

papers closely linked to this thesis, either published or already submitted. 

1. Tahir, Junaid, Rafiq Ahmad, and Zighang Tian. "Calorific value prediction 

models of processed refuse derived fuel 3 using ultimate analysis." Biofuels 

14.1 (2023): 69-78. 

 

2. Tahir, Junaid, Zhigang Tian, Rafiq Ahmad, and Pablo Martinez. "Refuse-

derived fuel-3 production simulation using network flow modeling: Predicting 

the uncertainty in quality standards." Fuel 345 (2023): 128168. 

 

3. Tahir, Junaid, Zhigang Tian, Pablo Martinez, and Rafiq Ahmad. "Smart-sight: 

Video-based waste characterization for RDF-3 production." Waste Management 

178 (2024): 144-154. 

 

4. Tahir, Junaid, Zhigang Tian, Dr. Mohamad Kassem, Pablo Martinez, Rafiq 

Ahmad, (2024), "A Critical Analysis of Public Private Partnership Model in 

Energy from Waste Projects." Sustainable Futures (Accepted).  

 

5. Tahir, Junaid, Pablo Martinez, Rafiq Ahmad, (2024), “Integrated Approaches to 

Sustainable Energy Recovery: A Critical Review of Municipal Solid Waste 

Conversion into Refuse-Derived Fuel in Material Recovery Facility.” Energy 

Conversion and Management (under-review). 

 

 

 

 



 

vi 

 

Acknowledgements 
 

I extend my heartfelt gratitude to my esteemed supervisor Dr. Rafiq Ahmad and my 

mentor Dr. Pablo Martenez, for their invaluable guidance, unwavering support, and 

expert advice throughout my journey. Additionally, I express my sincere appreciation 

to Dr. Zhigang Tian and Dr Hamid Zaman, whose support and encouragement have 

been instrumental. 

 

My profound thanks go to the Edmonton Waste Management Center (EWMC) for their 

invaluable support in facilitating my research endeavors and to all my colleagues at the 

SMART Lab, whose collaborative spirit and dedication have played a pivotal role in 

advancing the progress of my research. 

 

I am deeply grateful to my dear son, Salaar, and beloved wife, Zarfi, whose unwavering 

support and cherished companionship have been my pillars of strength. Finally, I extend 

my deepest appreciation to my parents for their continuous support, care, and 

encouragement, which has been influential in my academic pursuits and well-being. 

 

 

 

 

 

 

 

 



 

vii 

 

Table of Contents 

Chapter 1: Introduction ............................................................................................... 1 

1.1 Research Background ............................................................................... 1 

1.1.1 Waste Generation ............................................................................... 1 

1.1.2 Energy Recovery from Waste ............................................................ 4 

1.1.3 Refuse Derived Fuel .......................................................................... 7 

1.1.4 Material Recovery Facility ................................................................ 8 

1.1.5 Waste to Biofuel Fuel Supply Chain Decision Making ................... 10 

1.2 Motivation and Methodology ................................................................. 12 

1.3 Thesis Objectives .................................................................................... 15 

1.4 Thesis Outline ......................................................................................... 16 

Chapter 2: Literature Review.................................................................................... 18 

2.1 Overview ................................................................................................. 18 

2.2 Research Methodology ........................................................................... 18 

2.2.1 Planning Phase ................................................................................. 19 

2.2.2 Conducting Phase............................................................................. 20 

2.2.3 Reporting Phase ............................................................................... 22 

2.3 Waste Characteristics Estimation ............................................................ 32 

2.3.1 Estimation Methods ......................................................................... 32 

2.3.2 Estimation Models ........................................................................... 36 

2.4 Characterization of Municipal Solid Waste ............................................ 38 

2.4.1 Continuous Waste Characterization ................................................. 38 

2.4.2 Computer Vision for Waste Composition Analysis ......................... 40 

2.4.3 Computer Vision at Waste Sorting Facilities ................................... 41 

2.5 RDF Quality Measures ........................................................................... 42 

2.5.1 Factors Impacting Quality Measures ............................................... 43 

2.5.2 Decisions in the Biomass Fuel Supply Chain .................................. 45 

2.6 Public Private Partnership (PPP) in EfW Projects .................................. 46 

2.6.1 Role of Public Private Partnership ................................................... 46 

2.6.2 PPP Trends in Energy from Waste Projects ..................................... 49 

2.6.3 PPP Risk Modeling in EfW Projects ................................................ 52 

2.7 Discussion and Research gaps ................................................................ 55 

2.8 Conclusion .............................................................................................. 60 

Chapter 3: Video-Based Waste Characterization for RDF-3 Production.................. 62 

3.1 Overview ................................................................................................. 62 

3.2 Methodology ........................................................................................... 63 

3.2.1 Stage 1: Dataset Collection & Preparation ...................................... 64 

3.2.2 Stage 2: Waste Detection Model ...................................................... 69 

3.2.3 Stage 3: Image Pre-processing ......................................................... 70 

3.3 Implementation Results & Discussion .................................................... 75 

3.3.1 HMI Application .............................................................................. 75 



 

viii 

 

3.3.2 Detection Model Results .................................................................. 76 

3.3.3 Waste Characterization Results ........................................................ 78 

3.3.4 Parameters of Influence and Limitations ......................................... 81 

3.3.5 Comparison With Other Studies ...................................................... 82 

3.4 Conclusion .............................................................................................. 83 

Chapter 4: Quality RDF-3 Production Modeling in a Material Recovery Facility .. 85 

4.1 Overview ................................................................................................. 85 

4.2 Methodology ........................................................................................... 86 

4.2.1 Description of input feedstock and mechanical treatment plant ...... 86 

4.2.2 A simulation modeling for identifying best-operating conditions ... 87 

4.3 Mathematical Modeling .......................................................................... 91 

4.3.1 Sorting Units .................................................................................... 92 

4.3.2 Mixing Units .................................................................................... 94 

4.3.3 Splitting Units .................................................................................. 94 

4.3.4 Communication Units ...................................................................... 94 

4.3.5 Final Mass Balance .......................................................................... 94 

4.3.6 Dryer Unit Modeling........................................................................ 95 

4.4 Simulation Model and Implementation .................................................. 96 

4.4.1 Model Inputs .................................................................................... 97 

4.4.2 Model Process Flow ......................................................................... 99 

4.4.3 Model Performance Metrics .......................................................... 102 

4.4.4 Model Outputs ............................................................................... 104 

4.4.5 Model Limitations and Scope ........................................................ 105 

4.5 Model validation and evaluation ........................................................... 106 

4.6 Results and Validation ........................................................................... 107 

4.6.1 Plant Efficiency Estimation Results ............................................... 108 

4.6.2 Calorific Value Estimation Results ................................................ 110 

4.6.3 Moisture Content Estimation Results ............................................ 110 

4.6.4 Ash Content Estimation Results .................................................... 112 

4.7 Optimal RDF Production Conditions.................................................... 113 

4.7.1 Impact of Dryer Unit ...................................................................... 114 

4.7.2 Waste Composition at Target Units ................................................ 116 

4.8 Discussion ............................................................................................. 117 

4.8.1 Comparison with other methods .................................................... 117 

4.8.2 RDF Market Selection ................................................................... 119 

4.9 Comparison With Previous Studies ...................................................... 121 

4.10 Conclusion ............................................................................................ 122 

Chapter 5: Calorific Value Modeling Of RDF-3 .................................................... 124 

5.1 Overview ............................................................................................... 124 

5.2 Methodology ......................................................................................... 124 

5.2.1 Experimental Procedure ................................................................. 124 

5.2.2 Model Accuracy Indicators ............................................................ 127 

5.3 Mathematical Modeling ........................................................................ 128 



 

ix 

 

5.3.1 Linear Models ................................................................................ 128 

5.3.1.1 Observations ........................................................................... 132 

5.3.1.2 Deciding on Important variables Using Backward Selection 

Method 132 

5.3.1.3 Results ..................................................................................... 133 

5.3.2 Machine Learning Models ............................................................. 136 

5.3.2.1 Train and Test Sets .................................................................. 137 

5.3.2.2 K-fold Cross Validation .......................................................... 138 

5.3.2.3 Results ..................................................................................... 139 

5.4 Discussion ............................................................................................. 141 

5.5 Conclusion ............................................................................................ 141 

Chapter 6: Risk Modeling In Waste to Energy Project Partnerships ...................... 143 

6.1 Overview ............................................................................................... 143 

6.2 Methodology: ........................................................................................ 144 

6.3 Results ................................................................................................... 151 

6.3.1 Energy from Waste PFI:UK Case Study ............................................... 151 

6.3.2 Operation and Maintenance Contract ............................................ 153 

6.3.3 Prediction of O&M Payment Outcomes ........................................ 155 

6.3.4 O&M Contract Financial Viability ................................................ 157 

6.3.5 Industrial Survey: Integrated Assessment of PFI ........................... 159 

6.3.5.1 Qualitative View ..................................................................... 159 

6.3.5.2 Quantitative View ................................................................... 162 

6.4 Energy from Waste P3: Canada Case Study ......................................... 164 

6.4.1 Assessment Of O&M Contract and Risk-Canada .......................... 166 

6.5 Discussion ............................................................................................. 169 

6.5.1 O&M Contract and Risk ................................................................ 169 

6.5.2 Key Differences of PFI-P3 Project in the UK and Canada ............ 171 

6.5.3 Key Implications ............................................................................ 174 

6.5.3.1 Implications for Theory .......................................................... 174 

6.5.3.2 Implications for Practice ......................................................... 175 

6.6 Conclusion ............................................................................................ 176 

Chapter 7: Conclusion, Discussion & Future work ................................................ 178 

7.1 Conclusion ............................................................................................ 178 

7.2 Research Contributions ......................................................................... 180 

7.2.1 Comprehensive Insights ................................................................. 182 

7.3 Limitations and Future Work ................................................................ 183 

Bibliography .............................................................................................................. 187 

Appendix .................................................................................................................... 201 

 

 

 



 

x 

 

List of Tables 

Table 1.1: Number of EFW facilities treating MSW in operation and planned for 

construction in Canada, after [12]. .................................................................. 6 

Table 1.2: RDF Types and their processing methods, [13] ..................................... 8 

Table 2.1: List of most widely used academic journals and conference proceedings 

from January 1993 to February 2024. ............................................................ 23 

Table 2.2: List of selected keywords and relevant network data .......................... 25 

Table 2.3: Overview of relevant categories in the SLR and top citied authors..... 29 

Table 2.4: Established Models for HHV Prediction of Similar Waste Residue .... 38 

Table 2.5: Computer vision software/Hardware application for various waste type 

at sorting facility ............................................................................................ 42 

Table 2.6: Energy from Waste (EfW) – Incineration , Advanced Conversion 

Technology (ACT), Biodrying Mechanical & Biological Treatment (BMBT), 

Landfill Mechanical & Biological Treatment (LFMBT),M (merchant facility) 

- private sector initiative, [144] ...................................................................... 51 

Table 2.7: Publicly owned solid waste assets, Infrastructure Canada, 2022, adapted 

from [145] ...................................................................................................... 52 

Table 2.8: Previous studies on operations & maintenance risk assessment in PPP 

for EfW applications ...................................................................................... 55 

Table 2.9: Comparison of frameworks from literature with underlying study for 

strategic(S), tactical(T) and operational(O) decisions in the scope of this study. 

Legend: ✓ indicates authors have used methodology and tackled the decisions 

in the biomass supply chain in a broad sense. ............................................... 58 

Table 3.1: Results of waste detection model ......................................................... 77 

Table 3.2: Comparison between the experimentally observed and estimated waste 

composition values,  assessed for three high-level waste categories. Waste 

components details are presented in Appendix (A5) ..................................... 80 

Table 4.1: In scope decisions making hierarchies of supply chain planning and 

design for producing RDF, after [17]. ............................................................ 89 

Table 4.2: In scope decisions making hierarchies with descriptions. ................... 99 

Table 4.3: Unit separation co-efficient for waste components, after [30], [80], [181], 

[182] ............................................................................................................. 102 

Table 4.4:Computation results of two-line configurations as model output ....... 115 

Table 4.5: Rejects waste composition at target units (R1, R2, R3, R4, and final fluff)

...................................................................................................................... 117 

Table 4.6: Comparison between quality measure from RDF plant and international 

standard (EN15539) for RDF classification ................................................ 118 

Table 4.7: Comparison between quality measure from RDF plant and international 

standard (EN15539) for RDF classification ................................................ 120 

Table 5.1: Multicollinearity check to identify predictors correlating with each other

...................................................................................................................... 131 

Table 5.2: Comparison between existing models and established correlation in this 



 

xi 

 

study presenting computed % error. ............................................................. 136 

Table 5.3:Train and Test set algorithm performance measure ............................ 137 

Table 5.4: K-fold Cross Validation performance measure .................................. 139 

Table 6.1 Operations & Maintenance contractor fee modeling, abbreviations are 

attached in Appendix (A7) ........................................................................... 149 

Table 6.2: Risk factors selected for uncertainty analysis in O&M contractor fee 

[152], [187] .................................................................................................. 150 

Table 6.3: Selected risk factors in contract components ..................................... 151 

Table 6.4: Annual O&M fee calculation tool using Year1 data, Appendix (A8).155 

Table 6.5: Parameters selected for quantitative analysis of survey (Cost, Time, 

Quality) ........................................................................................................ 163 

Table 6.6: O&M risks identified in EfW PPP projects in UK and Canada ......... 173 

Table 7.1: Comparison of frameworks from literature with underline study for 

strategic(S), tactical(T) and operational(O) decisions in scope of this study. 

Legend: ✓ indicates authors have used methodology and tackled the decisions 

in biomass supply chain in a bro .................................................................. 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

List of Figures  

Figure 1.1: Over the years municipal solid waste generation (million-tonnes/year) 

of OECD economies and fossil CO2 emissions (million-tonnes/year), have 

shown a growing trend, [2,4]. ......................................................................... 2 

Figure 1.2: Municipal waste per-capita generation in 2022 for 38 countries, [5] .. 3 

Figure 1.3: In scope municipal solid waste collection sources and physical 

composition ...................................................................................................... 3 

Figure 1.4: Waste Disposal strategies in selected countries, [5] ............................. 4 

Figure 1.5: Transformation of MSW into Refuse Derived Fuel and energy........... 5 

Figure 1.6: Final RDF-3 & RDF-5 samples, calorific values of RDF produced from 

different sources and composition, [13], [18]. ................................................. 7 

Figure 1.7: Overview of the proposed architecture. ............................................. 14 

Figure 1.8: Detailed outline of the methodology applied in this study ................. 15 

Figure 2.1: Research methodology, showing keywords, number of publications 

found. ............................................................................................................. 19 

Figure 2.2 : Historical trend of published studies in refuse derived fuel applications 

(period 1975-2024). ....................................................................................... 24 

Figure 2.3: A general network of co-occurring relevant research topics (2003-2023) 

retrieved from the literature. Number of studies according to publication year 

and application fields. .................................................................................... 26 

Figure 2.4: Network of co-occurring keywords timeline...................................... 27 

Figure 2.5: Number of studies according to publication year and application fields.

........................................................................................................................ 29 

Figure 2.6: MSW is typically analyzed using four key methods, 1) moisture content 

determination, 2) physical composition, 3) chemical composition, 4) heating 

value determination ........................................................................................ 35 

Figure 2.7: Statistical and Heuristic methods used for HHV predictions of various 

waste types extracted from publications between (2003-2023). .................... 36 

Figure 2.8: Standard configuration of a PFI/PPP framework based on financing 

options ............................................................................................................ 48 

Figure 2.9: Infrastructure delivery under PPP models, adapted from the Canadian 

Council for public-private partnerships [132]................................................ 49 

Figure 2.10: Number of UK EfW facilities and total tonnage of waste processed at 

EfWs in 2017-2021, adapted from [143] ....................................................... 51 

Figure 2.11: Challenges and research gaps in using RDF as renewable energy 

resource .......................................................................................................... 57 

Figure 3.1: Mass balance of the initial waste processing at an MRF in Edmonton, 

values are averaged at ± 95% confidence interval. ........................................ 63 

Figure 3.2: Proposed methodology for waste characterization system to enhance 

RDF-3 production quality .............................................................................. 67 

Figure 3.3: Stage 2 includes – Distribution of sorted waste components for 

annotation/labeling purposes, object detection hyperparameters determination, 

and training/validation curve plotting for model development...................... 68 



 

xiii 

 

Figure 3.4: Layout of the waste characterization application ............................... 76 

Figure 3.5: Confusion matrix of waste detection results ...................................... 78 

Figure 3.6: Prediction results of the proposed waste characterization application 

tested for  indoor industrial  environment. It also illustrates the percentage 

of error in estimating waste composition for four samples, covering thirteen 

waste components(-Batteries-1, Cardboard-2, Diapers/Napkin-3s, Film 

Plastics-4, Food Waste-5, Glas-6s, Metals-7, Other Combustibles-8, Other 

Noncombustible-9, Paper-10, Rigid Plastics-11, Wood-12, Yard Waste-13) . 81 

Figure 4.1: A simulation modeling framework for identifying best-operating 

conditions and quality standards for RDF ..................................................... 88 

Figure 4.2:Building blocks of multi-output units represented by network flow 

modeling technique, adapted from after [17] ................................................. 90 

Figure 4.3:Scheme of a multi-sorting unit: sorting an input stream mixture of target 

and non-target materials into two streams. .................................................... 92 

Figure 4.4: General mass balance model for the dryer (drying process). ............. 95 

Figure 4.5: MRF assembly line configuration used in the simulation showing 

selected material composition as model input and performance evaluation 

parameters as model output ........................................................................... 98 

Figure 4.6: Simulation model of a MRF developed in Simphony.net and simulated 

mass balance with material recovery rates representing mass flow of individual 

waste components (in direction left to right) at each unit. ........................... 101 

Figure 4.7: Hypothesis testing for validating (observed vs. model output samples) 

performance parameters of RDF production. .............................................. 107 

Figure 4.8: Comparison of graphical and analytical methods for plant efficiency 

parameter. ..................................................................................................... 109 

Figure 4.9: Comparison of graphical and analytical methods for the calorific value.

...................................................................................................................... 111 

Figure 4.10: Comparison of graphical and analytical methods for moisture content 

parameter...................................................................................................... 112 

Figure 4.11:Comparison of graphical and analytical methods for Ash content 

parameter...................................................................................................... 113 

Figure 4.12: Moisture content vs. RDF heating value variation. ........................ 114 

Figure 4.13: Simulation results of RDF moisture content Vs RDF LHV variation

...................................................................................................................... 116 

Figure 5.1: Experimental workflow from collection of processed waste to final 

HHV prediction modelling .......................................................................... 127 

Figure 5.2:Scatter plot of independent variables vs dependent variable for 

identifying linearity; Histogram plot represents normality check for the errors

...................................................................................................................... 130 

Figure 5.3: Correlation matrix: Carbon, Hydrogen and Oxygen contents directly 

impact Calorific value (Mj/Kg) ................................................................... 131 

Figure 5.4: Graphical plots of estimated HHV (HHVest) vs. experimental HHV 

(HHVexp) for Linear Regression Model-Eq.5.6 .......................................... 133 

Figure 5.5:Graphical plots of estimated HHV (HHVest) vs. experimental HHV 



 

xiv 

 

(HHVexp) for Linear Regression Model-Eq5.7 ........................................... 134 

Figure 5.6: : Q-Q plot represent how estimated and experimented HHV values are 

closely related and assume similar normal distribution. .............................. 135 

Figure 5.7:HHV Observed response vs HHV predicted response using Train and 

test set technique. ......................................................................................... 138 

Figure 5.8: HHV Observed response vs HHV predicted response using K-fold 

Cross Validation technique........................................................................... 140 

Figure 6.1: Methods used for modeling and identifying risks in EfW PFI project 

(UK) ............................................................................................................. 147 

Figure 6.2: Proposed payment mechanism assessment simulation modeling .... 150 

Figure 6.3: SUK PFI Contract Administration. Source: SUK. ........................... 153 

Figure 6.4: Financial impact of selected risks on O&M contract components ... 156 

Figure 6.5: Discount rate vs simulated net present value ................................... 158 

Figure 6.6: Response of Local Government Vs SUK for PFI and Traditional EfW 

projects ......................................................................................................... 163 

Figure 6.7:Surrey Biofuel facility development under DBFO agreement structure

...................................................................................................................... 166 

Figure 6.8: Risk allocation among stakeholders in the Surrey Biofuel facility 

project .......................................................................................................... 167 

Figure 6.9: Planned scenarios to evaluate financial feasibility of AD project .... 169 

Figure 6.10: Canadian PPP support stats with gender and age demographics, 

adapted after [181] ....................................................................................... 173 

Figure 7.1: Limitations of the study and areas for future research ..................... 185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xv 

 

List of Abbreviations 

MSW         Municipal Solid Waste 

OECD Organization for Economic Co-operation 

and Development (OECD) 

WtE Waste to Energy 

HHV Higher Heating Value  

LHV Lower Heating Value 

MRF Material Recovery Facility 

EfW 

VfM 

MAPE 

RMSE 

PPP 

PFI 

RDF 

SRF 

SPV 

CV 

O&M 

AD 

RFQ 

RFP 

EPC 

SITA 

NPV 

AAE 

ABE 

ASTM 

Energy From Waste 

Value For Money 

Mean Absolute Percentage Error  

Root Mean Square Error 

Public Private Initiative 

Private Finance Initiative 

Refuse Derived Fuel 

Solid Recovered Fuel 

special purpose vehicle 

Computer Vision 

Operations & Maintenance 

Anaerobic Digestion 

Request For Qualifications 

Request For Proposal 

Engineering Procurement Construction 

Suez Recycling and Recovery UK 

Net Present Value 

Average Absolute Error 

Average Biased Error 

American Society for Testing and 



 

xvi 

 

 

MJ/KG 

EN 

ISO 

 

YOLO 

SUK 

FEI 

 

 

 

 

Materials, 

Mega Joules per Kilo Gram 

European Standard 

International Organization for 

Standardization. 

You Only Look Once 

SITA UK 

FortisBC Energy Inc 



 

1 

 

Chapter 1: Introduction 

1.1 Research Background 

1.1.1 Waste Generation 

Globally, across many countries, the speed-up growth in population and urbanization 

has caused an upsurge in the generation of municipal solid waste (MSW). MSW is a 

heterogeneous mixture of various types of materials which varies in composition and 

volume depending on the type of waste generators including residential, commercial, 

construction and socioeconomic factors. As economies develop and populations grow, 

a general expectation of increased waste generation is often measured using metrics 

like waste per capita. At regional levels, a substantial amount of MSW is directed to 

landfills, resulting in a significant loss of valuable resources. This trend is especially 

projected to impact regions with significant proportions of burgeoning low-income and 

lower-middle-income countries, foreseeing the highest surge in waste production [1]. 

Several national and local governments have initiated measures to address waste 

production and processing, like sustainable source separation programs, extended 

producer responsibility etc. However, despite these efforts, over the years waste 

generation among OECD member countries has cumulatively increased by 9.3% 

between 2013 and 2020 [2]. Furthermore, solid waste does contribute to climate change 

in the form of CO2 equivalent emissions. MSW is predicted to increase to 3.40 billion 

tons by 2050 [1] and significantly escalate the carbon footprint [3]. Globally CO2 

emissions have consistently risen with occasional declines due to global events such as 

the pandemic in 2019, the financial crisis in 2008, and the dissolution of the Soviet 

Union in 1991, resulting in a temporary reduction in emissions illustrated in Figure 1.1, 

[4]. When it comes to waste generation globally, USA and Denmark generate a higher 

amount of waste per capita whereas the least waste per capita is generated by Japan and 
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Columbia, as shown in Figure 1.2, [5]. 

This study focuses on waste management, mainly handled by local municipalities in a 

decentralized approach. In this context, the local jurisdictions strategize solid waste 

management programs based on local factors like funding, community layout, norms, 

and the publics' affordability for services. Municipal solid waste collection sources with 

physical composition considered in this study are shown in Figure 1.3. The four main 

waste collection streams included in the study are recyclable, garbage, organic waste, 

and yard waste. Other types of waste like medical waste, single-use plastics and waste-

water sludge are not part of the study.  

 

Figure 1.1: Over the years municipal solid waste generation (million-tonnes/year) of OECD economies 

and fossil CO2 emissions (million-tonnes/year), have shown a growing trend, [2,4]. 
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Figure 1.3: In scope municipal solid waste collection sources and physical composition 

 
  

 
  

 
 

  
  

  
 

  
  

 
 

  
  

  
  

  
 

  
 

  
  

   
  

  
  

 
  

  
 

  
  

  
 

  
  

  
 

  
 

  
 

   
  

  
  

  
  

 
  

  
   

  
  

  
   

  
  

  
 

  
  

   
  

 
 

  
  

 
  

  
  

  
   

  
 

  
  

  
  

  
   

  
  

  
  

  
  

  
  

  
  

  
 

 
  

  
  

  
  

  
 

  
  

 
 

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
  

 
  

  
  

  
  

 
  

  
  

 
 

  
  

  
 

  
  

 
  

  
  

  
  

 
 

  
  

  
  

 
 

  
  

  
 

 

   

   

   

   

   

   

   

   

   

  
  

  
  

  
   

                                     

Figure 1.2: Municipal waste per-capita generation in 2022 for 38 countries, [5] 
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1.1.2 Energy Recovery from Waste 

MSW is processed in various ways utilizing recycling, composting, energy production, 

and landfill disposal methods. Globally, 19 percent of the waste produced undergoes 

material recovery through recycling and composting, and 11 percent is treated through 

some form of incineration process to produce energy. The 33 percent of waste is not 

managed in an environmentally safe manner and the remaining is landfilled [1]. Figure 

1.4 shows that South Korea has the highest recycling rate 61% and both Japan and 

Sweden incinerate major portion of the municipal solid waste generated.  

 

 

 

 

Figure 1.4: Waste Disposal strategies in selected countries, [5] 

 

However, to mitigate the rising carbon footprint, the MSW can be transformed to 

generate energy and has the potential to replace a wide range of fossil fuel products [6]. 

To achieve this, the non-recyclable organic fraction within MSW serves as a valuable 

feedstock and right after collection it is initially processed to separate out 

biodegradables, lignocellulosic waste and Refused Derived Fuel (RDF) for effective 

resource recovery [7]. These extracted fractions from MSW can undergo either 

Biological or Thermal treatment using specialized technologies such as anaerobic 
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digestion (AD), incineration, combined heat and power (CHP) plants, gasification, and 

pyrolysis[8]. These advanced methods pave the way for transforming waste into energy.  

The primary challenge encountered in Waste to Energy (WtE) initiatives often emerges 

during the preliminary waste treatment for thermochemical processing [7]. Therefore, 

the scope of this study is limited to the conversion of MSW exclusively into high-

quality RDF. This emphasis is crucial as the composition of RDF serves as a 

fundamental input for modeling and simulating incineration, gasification, and pyrolysis 

processes. Figure 1.5 shows the process of transforming MSW into RDF and energy 

products. Initially, the waste collection process begins at the source generators and 

collected waste progresses to the Material Recovery Facility (MRF) for 

thermomechanical treatment to process and sort the waste. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5: Transformation of MSW into Refuse Derived Fuel 

and energy 
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Thermo-mechanical treatment of waste is prominent due to distinct features, efficiently 

removing the recyclable and non-combustible materials from MSW using unique 

sequences of material recovery units [9] and producing a great quality RDF having 

higher heating value (HHV) [10]. From RDF, a range of energy products can be derived, 

including heat, power, and biofuels (Biomethane/Biochar). Waste incineration is the 

preferred option for treating MSW-derived RDF [11]. There are 800 existing WtE 

facilities using thermal treatment with the option of energy recovery by treating waste. 

Canada has only five of them, treating municipal solid waste and recovering heat or 

steam from the treated waste [12]. A few facilities are planned to be built in different 

regions in Canada. Cement manufacturing facilities in Canada would like to increase 

the use of MSW as an alternative energy source, which is a potential waste diversion 

option as compared to conventional incineration or pyrolysis treatment for waste. Table 

1.1 below shows the number of WtE facilities treating MSW in operation and planned 

for construction in Canada. 

     

Table 1.1: Number of EFW facilities treating MSW in operation and planned for construction in Canada, 

after [12]. 

 

 

Canada 

Large WtE 

Facilities (Treating 

Capacity>25t/day) 

Small WtE 

Facilities (Treating 

Capacity<10t/mo) 

Brand new WtE 

Facilities 

Planned (Large 

or Small) 

Brand new 

Biofuel WtE 

Facilities Planned 

(Large or Small) 

BC 1   

 

1 

AB 1 420 1 1 

SK     

 

  

MB     

 

  

ON 1   4 1 

QC 1 2 2 7 

NB     

 

  

NS     

 

  

NL     

 

  

PE 1   

 

  

NU     

 

  

NT     

 

  

YT     
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1.1.3 Refuse Derived Fuel 

Dr. Jerome Collins, named RDF in 1973, and the American Society for Testing and 

Materials (ASTM) has outlined several forms of RDF based on the methods of its 

preparation and the particle size representation illustrated in Table 1.2, [13]. This study 

is specifically focused on the RDF-3 category, which involves the sorting, screening, 

and shredding of MSW. This fuel category undergoes a comprehensive processing 

aimed at removing metal, glass, and other inorganic materials to refine the final fuel 

product in shredded form. 

Several properties of RDF such as calorific value, moisture content, amount of chlorine, 

sulfur and ash content are important when it is used in cement production plants or any 

other application [14]. Yet, pinpointing consistent values for these properties is 

challenging due to their heavy reliance on the waste source. For example, the different 

calorific values associated with RDF based of its sources are shown in Figure 1.6, [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Final RDF-3 & RDF-5 samples, calorific values of RDF produced from different sources and 

composition, [13], [18].  
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Table 1.2: RDF Types and their processing methods, [13] 

RDF 

Category 

Description Particle 

Size 

Processing Method 

RDF-1 Utilizing discarded waste as fuel Variable No specific processing 

RDF-2 Processing waste into coarse particles Coarse Potential magnetic separation 

RDF-3 Shredded MSW fuel, 95% passes 50mm mesh Shredded Removal of metal, glass, inorganic 

materials 

RDF-4 Transforming waste into powder form Powder Grinding process 

RDF-5 Densifying combustible waste into pellets Densified Compression into pellets, slugs, etc. 

RDF-6 Converting combustible waste into liquid Liquid Transformation into liquid form 

RDF-7 Converting combustible waste into gas Gas Gasification process 

 

The research has shown that many mathematical models presented in the past utilized 

ultimate analysis to predict the higher heating value (HHV) for various categories found 

in Biomass. But all the models are limited to the type of biomass used as references and 

often cannot be extrapolated to a different kind of substance such as RDF, also very few 

models exist to estimate HHV for urban wastes like MSW and RDF [16]. Improved and 

deeper studies are required to be conducted with a distinct group of RDFs to prove the 

robustness of the models previously developed in the literature. 

 

1.1.4 Material Recovery Facility  

The MRF are essential centers designed to precisely sort various waste components. 

Within these centers, the intricate operation involves sorting recyclable inorganic 

materials like plastics and metals, organic substances ideal for composting, and 

combustible materials tailored for energy production. In the realm of waste-to-energy 

(WtE) applications, this study focuses on specific MRFs dedicated to RDF production 

and its varied types. The facility is equipped with an array of waste sorting units, 

including primary shredders, ferrous separators, eddy currents, wind sifters, waste 
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screens, secondary shredders, dryers, and surge bins [9]. The sequence of these units 

and the process design play a vital role in the recovery and purity maximization of the 

sorted waste. Mathematical modeling of various waste sorting unit chain structures and 

process optimizations have been examined [17]. Additionally, RDF production line 

configurations studied by [18], [19], [20] also provide a good reference for comparing 

the performance metrics of an MRF for RDF production located in Canada, and Italy.  

However, the production of a high-quality RDF or SRF is impacted by the composition 

of the input waste stream and the design of the material recovery facility (MRF) which 

is comprised of multistage waste separation processes or units. The composition of the 

output waste stream and its quantities are calculated by means of mass balance [21] and 

this is generally done using semi-empirical methods due to the lack of available 

information on the performance of these operational units [22]. Moreover, a thorough 

evaluation of RDF quality standards (EN 15539) across European countries offers 

essential benchmarks for assessing and ensuring RDF quality within the context of 

waste management practices [23]. This aspect has a significant impact on the final 

product recognition because an RDF produced according to a defined quality assurance 

procedure can further become a certified “solid recovered fuel” (SRF) [23]. These 

standards promote their safe use in energy conversion activities and for the general trust 

of the public. 

Material recovery facilities within regional waste management systems hold the 

potential for integration with thermochemical processes within existing standalone WtE 

technologies [24]. The concept of waste-integrated biorefineries represents a significant 

stride, enabling the more efficient utilization of various fractions of MSW compared to 

the isolated operation of conventional WtE processes. This integration promises 

enhanced resource recovery and optimization within the waste management framework. 
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1.1.5 Waste to Biofuel Fuel Supply Chain Decision Making 

Using RDF as an alternative and renewable energy source is a significant step for 

today’s world to counter its energy demands as well as to reduce its dependency on 

fossil fuels for mitigating climate change. However, the major barrier to developing and 

implementing such innovative solutions is the cost of waste to the biofuel supply chain 

and uncertainty in MSW source generation [25]. Energy from waste has the potential 

to replace a wide range of fossil fuels, however existing biofuel supply chain implicates 

many decisions associated with waste type selection, collection, pretreatment, 

production, storage, conversion to bioenergy, and biofuel sales. The inherent 

abrasiveness of RDF presents a risk to process equipment[26], resulting in decreased 

efficiency and shortened lifetime. Furthermore, the amalgamation of diverse materials 

within RDF can cause issues like reactor blockages, often requiring restarts to rectify 

the situation [27]. The performance indicators of WtE processes are significantly 

impacted by uncertainties stemming from various factors. These include the absence of 

operational facility data, uncertainties in process inputs and parameters [27], 

dependency on cumbersome laboratory procedure for waste characterization and 

analysis [28], capital investments and product costs [29]. So, a major investment in 

using MSW to RDF as an alternative energy resource calls for vigilant decision-making 

in all aspects of the biofuel supply chain.  

In this context, depending on their timeframe, three significant decision-making 

categories are strategic, tactical, and operational [30]. Strategic decisions entail long-

term decisions that are difficult to change in a short time and have a long-lasting impact 

on the supply chain. Tactical decisions in the supply chain can range from a few months 

to a year depending on the strategic goals defined in the earlier stage and bridge the gap 

between strategic and operational decisions. In contrast to strategic and tactical 

decisions, operational-level decisions focus on short-term activities conducted on a 

day-to-day or weekly basis and ensure continuous operations of the facilities. Research 

in the past focused on strategic and tactical level decisions, whereas less emphasis is 
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placed on operational decisions and combined strategic or tactical levels with 

operational decisions [25]. The three decision categories can be mapped across four key 

biomass supply chain functional processes, including biomass supply and 

preprocessing, biofuel production, biofuel blending and distribution, and biofuel sales. 

There is a consensus in the literature that two or more of these decision categories 

should be modeled or optimized together to improve supply chain performance [31]. 

The planning and supply chain categories can be designed vertically and horizontally, 

providing an effective framework for waste-to-biofuel supply chain planning. In this 

study, a hybrid model is employed, which analyzes the three categories of decision-

making in tandem with the application of the RDF-3 production plant. 

In developing countries, most energy from waste projects are funded by public-private 

partnerships (PPP) at both national and municipal authority levels [32].  It is a form 

of long-term collaboration between public and private parties sharing their skills and 

assuming different levels of implicated risks and rewards in WtE infrastructure delivery, 

substantiated contractually for a definite duration. Such an arrangement enables the 

public sector to undertake projects they could not finance internally or through loans 

and grants. However, a few opponents argue against such arrangements for 

infrastructure delivery projects. The public sector can build attractive incentives in PPP, 

which could be misleading regarding budget and schedules and are usually absent in 

the conventional infrastructure delivery model.  

Similarly, the governments must pay a premium to incentivize private contractors to 

assume any risks. Usually, PPP financing costs are higher for the private sector because 

of high borrowing interest rates that vary during the projects’ long duration [33]. Lastly, 

in the event of project failure, the public sector can transfer the loss of extra tab to the 

taxpayer through increased taxes or some reduction in public services [34]. Despite 

these concerns, studies on the value of money with PPP in WtE are missing. 
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1.2 Motivation and Methodology 

The main motivation for conducting this research is to address the existing gap in 

maintaining the quality standards of RDF production, aiming to uncover sustainable 

practices that establish the operational and technical conditions ideal for consistently 

achieving high-quality RDF output at MRF. Thus, the major constraint is sustainability 

in converting RDF to a certified, self-declared, and nationally recognized SRF. In 

response to this challenge, a framework is proposed to develop an intelligent and 

integrated decision support system to achieve sustainable waste treatment processes at 

MRF. The architecture proposed for this study is presented in Figure 1.7, while the 

detailed methodology applied is depicted in Figure 1.8. The decision support system 

addresses challenges within the MRF on both managerial and operational fronts.  

At management level, an improved mixed risk epistemology is deployed where a 

quantitative probabilistic model using the Monte Carlo simulation method is developed 

that will be impactful to intricately depict and analyze the influence of lifecycle risks 

on operational phase costs and profitability for WtE projects. These risks encompass 

factors like the quality of service, often governed by contractual obligations, which are 

typically delegated to the operation and maintenance (O&M) contractor. The improved 

mathematical model would accurately depict the O&M contract components, 

encompassing various technical, payment, and incentive variables. It considers their 

fluctuations and dynamic interactions, ultimately influencing the financial outcomes 

and overall feasibility of the operational phase. This will assist identifying common 

risks associated with WtE technologies prevailing around unplanned maintenance, 

infeed waste reduction, market price, unsustainable debts, and policy changes. Also, a 

detailed survey will be conducted to bring perspectives of stakeholders involved in 

public private partnerships for procuring WtE facilities. The outputs of this level are 

vital to provide financial viability of projects and feed its recommendations to the 

operational level. 

At the operational level, the proposed methodology targets three significant problem 
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areas that directly influence both the operational sustainability and the quality of RDF 

production. First, the quality of the produced RDF significantly relies on the 

composition of in-feed waste and waste characterization method applied for auditing 

purposes, a process that is both time-consuming and fraught with potential hazards. 

This study focuses on enhancing the workflow of the waste characterization process at 

an MRF by deploying computer vision techniques to detect and classify waste based on 

video feeds as shown in Figure 1.8. The proposed waste characterization system would 

not only aid in the accurate detection of waste but also facilitates early-stage decision-

making regarding potential mitigation strategies for waste compositions unsuitable for 

RDF production. The outputs of this stage are waste composition probability 

distributions and feed at inputs to the next stage.   

Secondly, based on the conventional framework of waste management activities, the 

proposed methodology constitutes an extension to facilitate the integration of an 

assessment of a selected set of uncertainties for adding value in waste to the biofuel 

supply chain. The new approach demonstrates the addition of the above factors using 

network flow modeling, enhanced discrete event simulation and statistical modeling 

technique. The foundations of the model are based on assumptions like emphasis on 

general representation but not physical properties of MRF. The model provides 

improvements to operating conditions and enables prediction for quality standards of 

RDF, enabling the waste management authority to meet their outlined quality 

specification for the final product. However, the RDF distribution and transport related 

decisions are out of scope in this study. The outputs of this stage are RDF quality, 

productivity, supply data and optimal plant operating conditions. 

Lastly, new empirical models will be introduced to predict the calorific value(Mj/kg) 

of RDF. Linear and machine learning models are developed to predict the RDF calorific 

values. The estimated calorific value results will undergo comparison with established 

models found in the existing literature to validate the robustness and reliability of the 

newly proposed models. 

Each identified problem will undergo validation through a series of systematic 



 

14 

 

computational experiments using the proposed methods. These experiments will 

include the adoption of various baseline benchmarks for comprehensive comparative 

studies. Additionally, real-world case studies will be conducted using authentic data 

sourced from operational Material Recovery Facilities (MRFs). These case studies will 

showcase the effectiveness of the enhanced methods in resolving practical issues at both 

management and operational levels. The proposed framework yields a decision support 

system comprising four intelligent solutions developed through this research. 

 

 

 

 

 

Figure 1.7: Overview of the proposed architecture. 
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1.3 Thesis Objectives 

The main objective of this research is to “develop an intelligent framework for technical 

assessment and economic feasibility of an RDF production plant using stochastics 

process techniques and statistical methods, which will support management and 

operational level decisions for mitigating uncertainty in maintaining consistent 

production and quality control standards of RDF”. The detailed research objectives of 

this study are outlined as follows: 

Figure 1.8: Detailed outline of the methodology applied in this study  
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O1. Using a computer vision approach to integrate a video-based monitoring strategy 

for sustainable RDF-3 production. 

O2. Create a simulation model of a material recovery facility, which can support 

revisions in the strategic, tactical, and operational level decisions integrating  

uncertainties affecting its performance. 

O3. Develop a calorific value prediction model and validate its accuracy with previous 

prediction models of RDF-3. 

O4. Incorporate risk modeling for Public-Private Partnerships into the operations and 

maintenance of energy-from-waste applications, like RDF production. 

1.4 Thesis Outline 

Chapter 1: Research Background 

This chapter provides the research background surrounding the production of waste to 

RDF conversion and focuses on associated uncertainties involved in decision-making 

at material recovery facilities producing RDF. The research motivation and 

methodology are then introduced. A brief statement on the research objectives of the 

thesis and an overview of the framework are also presented in this chapter. 

 

Chapter 2: Literature Review 

This chapter summarizes the research progress on using RDF as a renewable energy 

resource and its sustainability problems, including the process for RDF quality 

monitoring, uncertainty modeling, and PPP in WtE projects. 

 

Chapter 3: RDF-3 Production and Characterization 

This chapter delves into developing a computer vision application for precise municipal 

solid waste characterization, commencing with a mechanical sorting line employing 

bag breakers and trommel screens. It encompasses a comprehensive characterization 

process post-trommel screen, capturing waste from single and multi-family sources. 
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The Smart-Sight application's development and validation within a practical Materials 

Recovery Facility (MRF) are central, aiding in predictive RDF-3 composition 

assessment. 

 

Chapter 4: Simulation Model for RDF-3 Production 

Here, a simulation model for Material Recovery Facilities (MRFs) producing RDF-3 is 

constructed. It supports strategic, tactical, and operational decisions while incorporating 

uncertainties affecting MRF performance. The model enhances operational conditions 

and predicts RDF quality standards, validated against real-world MRF data. 

 

Chapter 5: Predictive Models for RDF Calorific Value 

This chapter introduces predictive models for RDF calorific value, leveraging ultimate 

elemental analysis. Empirical and machine learning methods yield accurate predictions, 

surpassing previously published models. These models demonstrate improved accuracy, 

especially the machine learning models, offering effective complex correlation 

handling. 

 

Chapter 6: PPP Models in EfW Projects 

A comparative analysis of PPP models in Energy from Waste (EfW) projects in the UK 

and Canada is undertaken. It introduces a novel quantitative probabilistic model 

simulating EfW feasibility, considering risks in O&M contract. This model accurately 

captures the multifaceted impact of variables, emphasizing the significance of modeling 

these variables for financial viability. The study highlights inherent risks in EfW 

technologies and supports PPP models' superiority over traditional models in the EfW 

sector. 

 

Chapter 7: Finally, this chapter presents the research work completed in this thesis. The 

limitations and future works are also discussed in this chapter. 
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Chapter 2:  Literature Review 

2.1 Overview 

In this chapter a systematic literature review (SLR) is presented with focus on the 

critical aspects of energy-from-waste (EfW) projects, starting with the research 

methodology that lays the foundation for systematic investigation. In sustainable EfW 

projects, the estimation of calorific value is a key component, where different methods 

and models are explored to accurately assess the energy potential of waste. This is 

closely linked to the characterization of municipal solid waste, which is essential for 

determining the composition and properties of waste, with continuous waste 

characterization and computer vision techniques playing pivotal roles in enhancing the 

accuracy of waste analysis and sorting. 

The quality of refuse-derived fuel (RDF) is another crucial aspect, with various factors 

impacting its measures. This directly influences decisions in the biomass fuel supply 

chain, highlighting the importance of quality assessment in optimizing energy recovery. 

Public-private partnerships (PPP) are identified as instrumental in the successful 

implementation of EfW projects, with their role, trends, and risk modeling being key 

considerations for effective collaboration between the public and private sectors. 

The chapter concludes with a discussion on research gaps, indicating the need for 

further exploration in areas such as advanced waste characterization techniques, 

optimization of RDF quality, and innovative PPP models. This comprehensive 

overview not only connects the various components of EfW projects but also 

underscores the interdependencies between them, paving the way for a holistic 

approach to sustainable waste management and energy recovery. 

2.2 Research Methodology 

To achieve the research objectives of this study, the list of academic publications was 
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gathered from Scopus database due to the wide range of coverage and better choice for 

inter-disciplinary research topics [35]. Figure 2.1 shows the flowchart of the systematic 

literature review (SLR) research methodology [36], applied in conducting the literature 

review of this study, which includes three sequential phases that are explained in the 

following subsections. 

 

 

2.2.1 Planning Phase 

This phase identifies research questions that guide the selection of relevant studies, 

methodology, data extraction and synthesis, as well as the review protocol. The 

following four research questions are formulated according to the role of RDF in WtE 

applications, 

a) What newer techniques are available for composition analysis of MSW for RDF 

production, and how can they help decrease reliance on labor-intensive laboratory 

procedures? 

b) How do different models compare when estimating the calorific value of RDF or 

Figure 2.1: Research methodology, showing keywords, number of publications found.  
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biomass within solid waste management? 

c) What research studies emphasize the development and implementation of decision 

support systems to enhance quality within RDF production? 

d) What are the primary limitations in RDF production operations and maintenance 

for WtE projects operating under the PPP model? 

 

The research protocol is conducted in SCOPUS. The search history is set to last 25 

years, and there is a total of 1065 studies identified using research questions related to 

keyword combinations that included "Refuse Derived Fuel" along with associated 

terms such as "Municipal Solid Waste," "Material Recovery Facility," "Biofuel," 

"Waste to energy” and “investments." Supplementary material (S8) shows the selected 

keywords, number of studies, and search queries. This approach is designed to capture 

a comprehensive set of studies related to RDF and its interconnections with other 

critical aspects of waste management for RDF production and its applications. The 

keyword search in Scopus is set as title/abstract/keywords to acquire all the publications 

containing the selected keywords for current studies on RDF. The process of filtering 

out the searched papers is also summarized in Figure 1. For the review process, only 

papers published in peer-reviewed journals or conference proceedings in the English 

language are considered. Book reviews and editorials are excluded to ensure uniformity 

in the research aims and methods of all selected papers. To further refine the selection, 

the source titles and abstracts are reviewed. The total number of papers that are thereby 

selected for deep focus in this study amounts to 388. In the next phase of the SLR, all 

of the selected publications undergo rigorous screening and are subject to bibliometric 

and scientometric analysis, as well as quality assessment. 

2.2.2 Conducting Phase 

In the conducting phase, 388 review studies are investigated with their metadata 

extracted, analyzed, and synthesized. This section provides a comprehensive analysis 

of the reviewed papers, and the following sections delve into exploring, analyzing, and 
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synthesizing the data. 

Furthermore, a scientometric analysis is carried out to pinpoint key research areas 

pertaining to the underlying topic [37]. Through network modeling and visualization, 

scientometric research seeks to analyze the intellectual landscape of a knowledge 

domain. This approach enables the identification of key questions that researchers aim 

to address and highlights the methods authors have developed to achieve their 

objectives. To construct and map the knowledge domain intersection between the 388 

publications, keyword co-occurrence within the research area is analyzed using 

VOSviewer. This tool is selected for its ability to visually represent the results of 

scientometric analysis. The output from VOSviewer is a distance-based map, where the 

spatial distance between any two items visually indicates the strength of their 

relationship: the greater the distance, the weaker the relationship. Additionally, the size 

of each item label correlates directly with the frequency of the keyword across 

publications, while different colors distinguish various knowledge domains as 

identified by VOSviewer's clustering technique. 

Finally, citation analysis is conducted with the unit of analysis set to documents. The 

relatedness of items is determined based on the number of times authors cite each other, 

providing an aggregate representation of the research field and offering evidence for 

subsequent clustering in research areas. Additionally, burst detection sheds light on the 

relative changes in significance over time, helping identify trends and shifts in RDF 

production. This approach contrasts with previous analyses that merely offer a static 

overview of the field. 

A scientific criterion is identified as a quality check funnel to narrow down further the 

list of publications based on the objective, methodology, and the contributions 

presented. Additionally, journals published by reputable publishers are recognized as 

high-quality research and are, therefore, included in the review. In the subsequent 

eligibility phase, the focus narrowed to assessing the full text of the articles that passed 

the initial screening. The goal of the quality assessment is to evaluate the selected 

articles based on their relevance to RDF production in MRFs, research quality, and the 
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presence of recommendations for further research and future work in this area. The 

authors used a scoring scale of 1-10 for each paper, assigning scores for each criterion 

(0, 0.5, 1). The scores are as follows: 1 indicates the paper fully met the assessment 

criteria, 0.5 indicates partial compliance, and 0 indicates a lack of compliance. Papers 

scoring 5 or higher are included. The assessment criteria were: 

a) AC1: Was the research objective clearly defined in terms of RDF production? 

b) AC2: Has the study been cited by other research in RDF production? 

c) AC3: Does the study specifically address a phase of RDF processing in MRFs? 

d) AC4: Does the study detail a specific RDF processing challenge or scenario? 

e) AC5: Is the experimental design suitable for studying RDF processes? 

f) AC6: Are experiments conducted with a relevant RDF dataset? 

g) AC7: Is there a clear justification for the chosen method or technique? 

h) AC8: Is the method or technique compared with other RDF processing methods? 

i) AC9: Are the results of the study thoroughly evaluated? 

j) AC10: Is there evidence that the method improved RDF production outcomes?  

   

Each article is evaluated against the above-mentioned criteria, which may consider the 

scope of the study, its relevance to the field, and the article's contribution to the literature 

on the topic. Articles that do not meet these criteria are excluded. After a  thorough 

review process, 109 publications are precisely selected for their detailed examination 

of the relationship between RDF, its high-quality production, sustainable operations, 

and applications within WtE projects. The next sections highlight the results. 

2.2.3 Reporting Phase 

This phase presents the results and findings from the literature review. It also includes 

the review framework and suggests future directions for further research. The results in 

this phase are detailed throughout the remainder of chapter 2. 

The keyword search strategies outlined in Section 2.2.1 are utilized to uncover pertinent 

academic articles in journals, as summarized in Table 2.1. A significant portion of the 
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academic literature on RDF applications is found in journals that encompass MSW, 

material recovery facility, biofuel supply, and PPP fields, including Waste Management, 

Waste Management and Research, Fuel, Bioresource Technology, and Journal of 

Environmental Management. Among these journals, Waste Management is the journal 

that includes the most publications on these topics 

 

Table 2.1: List of most widely used academic journals and conference proceedings from January 1993 to 

February 2024. 

Journal Title 

Number of 

Articles % of Total Publication 

Waste Management 92 16% 

Waste Management and Research 31 6% 

Fuel 20 4% 

Bioresource Technology 19 3% 

Journal of Environmental Management 15 3% 

Journal of Material Cycles and Waste Management 13 2% 

Resources and Conservation 11 2% 

Environmental Science and Technology 10 2% 

Waste and Biomass Valorization 10 2% 

Waste Management & Research 10 2% 

WIT Transactions on Ecology and the Environment 10 2% 

Chemical Engineering Transactions 9 2% 

Environmental Science and Pollution Research 9 2% 

Fuel Processing Technology 9 2% 

International Journal of Life Cycle Assessment 9 2% 

Renewable Energy 8 1% 

Applied Thermal Engineering 7 1% 

Energy and Fuels 7 1% 

 

Figure 2.2 illustrates the annual variation in the number of publications on this research 

topic, in journals proceedings. Since 2009-2010, publications on RDF applications in 

selected applications have exhibited a consistent upward trend, with notable surges in 

2016 (a 56% increase in publications) and 2022 (a 24% increase). Interestingly, these 

peaks align with the initial development of technologies in solid waste management 

[38], [39] and the rise of big data techniques [40], respectively. It's worth noting that 

this study includes only the publications from the first two months of 2024, which 
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explains the comparatively lower-than-expected number of publications for that year. 

 

 

The study leverages a synthesis of interconnected topics to present a cohesive narrative 

that effectively bridges theoretical research with practical applications. This approach 

enhances the understanding of integrated waste management solutions, showcasing 

how interconnected insights can drive innovation and efficiency in the waste-to-energy 

recovery field. A threshold is set, requiring a minimum of five occurrences for a 

keyword to be included in the analysis, as depicted in Figure 2.3. This results in a map 

with 42 nodes, 583 links, and a total link strength of 2806. Table 2.2 summarizes the 

keyword occurrences and each individual node strength, and the map is illustrated in 

Figure 2.3. 

This analysis unveiled interconnected research topics. The initial cluster (in purple) 

encompasses significant areas such as "Moisture", "Chlorine", "Calorific value", 

"Characterization", "Combustion," and "Theoretical study," critical to RDF 

applications. The subsequent cluster (in pink) highlights themes like "Decision 

making," "Environmental impact," "Energy policy" "investments," and "Sustainability" 

as crucial areas of research in this domain. Similarly, "quality control", "Solid recovered 

Figure 2.2: Historical trend of published studies in refuse derived fuel applications (period 1975-2024). 
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fuel", "Waste products" and "mechanical biological treatment" are other topics 

highlighted in this research. The rigorous assessment at this stage ensures that only 

studies that are directly pertinent and meet the research quality standards are included. 

Additionally, this phase may also include a supplementary search forward and 

backward looking at references from the selected articles and works that cite them, 

thereby potentially introducing a few additional records that are relevant for inclusion. 

 

Table 2.2: List of selected keywords and relevant network data 

Keyword Occurrences Links 

Total link 

strength Avg. pub. Year 

Refuse derived fuels 217 40 642 2013 

Municipal solid waste 171 40 445 2015 

Waste management 120 40 365 2012 

Waste incineration 118 39 387 2016 

Combustion 85 38 246 2008 

Gasification 80 37 253 2014 

Waste treatment 75 37 281 2013 

Biomass 66 37 188 2012 

Pyrolysis 62 34 193 2013 

Calorific value 61 35 204 2016 

Land fill 44 30 152 2013 

Biofuels 42 33 95 2016 

Environmental impact 41 31 136 2010 

Chlorine 40 28 146 2014 

Anaerobic digestion 35 23 86 2012 

Waste products 35 30 87 2012 

Waste-to-energy 33 33 117 2015 

Gas emissions 27 26 97 2016 

Greenhouse gases 27 26 99 2018 

Methane 27 27 71 2009 

Thermogravimetric analysis 27 26 105 2016 

Theoretical study 25 10 15 1984 

Moisture 24 27 87 2017 

Decision making 23 28 76 2015 

Life cycle assessment 23 24 85 2017 

Chemical analysis 22 32 78 2012 

Sustainable development 21 27 72 2019 

Cements 20 27 70 2018 

Waste disposal facilities 18 28 65 2018 

Particle size 17 24 66 2014 
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Plastics 17 23 55 2015 

Plastic 15 24 65 2013 

Characterization 14 17 40 2008 

Chemical composition 14 25 68 2013 

Investments 14 20 37 2019 

Mechanical biological 

treatment 14 20 51 2016 

Pelletizing 14 16 49 2013 

Solid recovered fuel 13 27 61 2015 

Sustainability 13 20 45 2019 

Syngas 13 20 57 2019 

Energy policy 12 17 37 2020 

Quality control 10 20 38 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

                   

                   

                   

                   

                   

 

Figure 2.3: A general network of co-occurring relevant research topics (2003-2023) retrieved from the literature. 

Number of studies according to publication year and application fields. 
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Keyword co-occurrence networks are static snapshots of the research field, not 

reflecting temporal changes. However, VOSviewer introduces a time-zone perspective 

by representing each node with the average year in which that keyword was cited in the 

literature. Figure 2.4 shows the evolution of RDF studies and shows that characteristics 

of RDF, energy policy, investments, sustainability, and waste disposal facilities are a 

few emerging topics in recent times. 

 

 

Figure 2.4: Network of co-occurring keywords timeline 

 

Data synthesis was facilitated by extracting and summarizing pertinent information, 

encompassing dataset specifics into the following categories, “Decision Support 

Modeling”, “PPP-WtE applications”, “RDF-Quality”, “Waste Characteristics 

Prediction”, “Waste Characterization”, and “Waste Process Parameters”. This 

comprehensive approach aided in streamlining the data synthesis process. Finally, 109 

publications were selected for their direct exploration of the relationship between RDF, 

its high-quality production, sustainable operations, and applications within WtE.  

Figure 2.5 shows how the number of publications on the research topic under review 
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varies each year. Publications on waste characterization, PPP in waste to energy, and 

waste processing parameters show an overall upward trend from 2015 to 2022. Table 

2.3 presents the most cited studies within six key areas of our research focus highlighted 

before. The table lists the authors and publication years alongside the number of 

citations each study has received, illustrating the influence and relevance of these works 

in the field. (Castillo-Villar et al., 2017; Sarc and Lorber, 2013) [20], [41] are widely 

acknowledged for their seminal work on assessing RDF production quality. Their 

research is pivotal in classifying RDF according to SRF standards and analyzing 

biomass quality variance in biofuel production, ensuring that RDF meets stringent 

sustainability criteria. In the category of process parameters prediction, (Bairamzadeh 

et al., 2018; Clavreul et al., 2012) [42], [43] have significantly contributed by 

demonstrating how uncertainty analysis can enhance sensitivity analysis within waste 

management systems. (Channiwala and Parikh, 2002; Yin, 2011) [44], [45] are 

renowned for their predictive models of waste parameters. Similarly, (Buah et al., 2007; 

Shi et al., 2016) [28], [46] have garnered recognition for their studies on waste 

characterization of municipal solid waste (MSW) using pyrolysis and 

thermogravimetric techniques. In a comprehensive systematic review, (Vitorino de 

Souza Melaré et al., 2017) [47] emphasized the importance of decision support 

modeling in addressing challenges across various waste management sectors, 

employing tools such as mind maps. (Costi et al., 2004) [48] has made notable 

contributions by presenting foundational models and optimizations for decision support 

systems that aid in sizing recycling and waste disposal operations. From a PPP 

perspective, (Song et al., 2013a) [49] stand out as the most cited authors for their 

research on global trends in PPPs and risk identification in WtE incineration projects, 

with (Wu et al., 2018) [50] also making significant contributions to the field. 

All these aspects are prominently featured in the main sections of these publications. 

Consequently, this lays a solid foundation for the subsequent sections, where these 

threads are woven into a comprehensive narrative, contributing to a deeper 

understanding and paving the way for future research endeavors. 
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Table 2.3: Overview of relevant categories in the SLR and top citied authors 

# Category Author/Year Citations 

1 RDF Quality (Sarc and Lorber, 2013; Mbt et al., 2015) 153 

 
 

(Castillo-Villar et al., 2017) 71 

 
 

(De Filippis et al., 2004). 57 

 
 

(Velis et al., 2012) 55 

 
 

(Aboytes-Ojeda et al., 2022) 35 

 
 

(Manyà et al., 2015). 30 

 
 

(Mirkouei et al., 2016) 12 

 
 

(Ouigmane et al., 2021b) 5 

 
 

(Tahir et al., 2023b) 1 

2 Process Parameters Predictions (Clavreul et al., 2012) 357 

 
 

(Rotter et al., 2004) 215 

 
 

(Bairamzadeh et al., 2018) 175 

 
 

(Pressley et al., 2015) 162 

 
 

(Arena and Di Gregorio, 2014) 153 

 
 

(Diaz et al., 1982) 109 

 
 

(Velis et al., 2013) 80 

 
 

(Bessi et al., 2016) 64 

 
 

(Antmann et al., 2013) 43 

 
 

(Ip et al., 2018) 43 

 
 

(Ardolino et al., 2017) 34 

 
 

(Nasrullah et al., 2017) 33 

 
 

(Vanegas et al., 2015) 19 

 
 

(Tanguay-Rioux et al., 2021) 14 

Figure 2.5: Number of studies according to publication year and application fields. 
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(Mariapaola Testa et al., 2015) 12 

 
 

(Raymond, 2017) 12 

 
 

(Russo and Verda, 2020) 12 

 
 

(Shi et al., 2015) 3 

3 Waste Parameters Prediction (Channiwala and Parikh, 2002) 2554 

 
 

(Yin, 2011) 584 

 
 

(Vargas-Moreno et al., 2012) 310 

 
 

(Kathiravale et al., 2003) 287 

 
 

(Shi et al., 2016) 172 

 
 

(Xing et al., 2019) 125 

 
 

(Ozyuguran et al., 2018) 113 

 
 

(Boumanchar et al., 2019) 112 

 
 

(Samadi et al., 2021) 59 

 
 

(Yaka et al., 2022) 31 

 
 

(Galhano dos Santos and Bordado, 2018) 27 

 
 

(Dashti et al., 2021) 23 

 
 

(Sebastian et al., 2019) 21 

 
 

(Dodo et al., 2022) 19 

 
 

(Alves et al., 2018) 6 

 
 

(Tahir et al., 2023a) 1 

4 Waste Characterization (Buah et al., 2007) 198 

 
 

(Shi et al., 2016) 172 

 
 

(Ma et al., 2010) 142 

 
 

(Cozzani et al., 1995) 123 

 
 

(Vassilev et al., 1999) 100 

 
 

(Lu and Chen, 2022a) 75 

 
 

(Rana et al., 2018) 62 

 
 

(Hwang et al., 2007) 54 

 
 

(Zaini et al., 2019) 32 

 
 

(Rotter et al., 2011) 29 

 
 

(Robinson et al., 2016) 28 

 
 

(Garcia Lopez et al., 2018) 30 

 
 

(Agrawal, 1988) 27 

 
 

(Rada et al., 2006) 17 

 
 

(Silva et al., 2015) 15 

 
 

(Okoligwe et al., 2022) 9 

 
 

(Sbrolini Tiburcio et al., 2021) 9 

 
 

(Okoligwe et al., 2022) 8 

 
 

(Âriņa et al., 2020) 6 

 
 

(Ouigmane et al., 2021a) 4 

 
 

(Thawani et al., 2022) 3 

 
 

(Akdemir et al., 2023) 1 

 
 

(Cuingnet et al., 2022) 1 



 

31 

 

 
 

(Tahir et al., 2024) 0 

 
 

(Saravanan and Dhinagaran, 2023) 0 

5 Decision Support Modeling (Vitorino de Souza Melaré et al., 2017) 268 

 
 

(Costi et al., 2004) 146 

 
 

(Zahraee et al., 2020) 114 

 
 

(Sharifzadeh et al., 2015) 107 

 
 

(Mirkouei et al., 2016) 102 

 
 

(Yılmaz Balaman and Selim, 2015) 40 

 
 

(Burli et al., 2021) 17 

 
 

(Akhtari et al., 2020) 13 

 
 

(Pishvaee et al., 2021b) 9 

 
 

(Patel et al., 2023) 3 

 
 

(Gautam et al., 2022) 1 

6 PPP-WtE applications (Song et al., 2016, 2013b) 467 

 
 

(Wu et al., 2018, 2017) 231 

 
 

(Xu et al., 2015) 93 

 
 

(Fantozzi et al., 2014) 59 

 
 

(Spoann et al., 2019) 53 

 
 

(Arbulú et al., 2016) 50 

 
 

(Forsyth, 2005) 41 

 
 

(Saadeh et al., 2019) 38 

 
 

(Khawaja et al., 2021) 24 

 
 

(Dolla and Laishram, 2021a) 23 

 
 

(Zhang and Wang, 2018) 22 

 
 

(Lu et al., 2022) 15 

 
 

(Wang and Zhang, 2018) 14 

 
 

(Cui et al., 2020) 13 

 
 

(Cao et al., 2022) 8 

 
 

(Bourtsalas, 2023) 5 

 
 

(Hou et al., 2022) 3 

 
 

(Utama et al., 2020) 1 

    

In this context, the comprehensive data synthesis from the scientometric analysis and 

quality assessment helped categorize key findings into five topics which set a detailed 

empirical backdrop for the forthcoming detailed discussions. Each of these categories 

not only reflects a distinct aspect of waste management and energy production but also 

interlinks to form a cohesive understanding. These interconnections are crucial for 

developing integrated solutions that are more effective and sustainable. For example, 

improvements in RDF quality can enhance the outcomes of waste-to-energy 

applications (PPP-WtE), thereby making the systems more efficient and 
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environmentally compliant.  

The subsequent sections highlight the insights into “Waste Characteristics Prediction” 

which enhances understanding of how different waste compositions influence RDF's 

calorific value, crucial for optimizing energy recovery. Secondly, “Waste 

Characterization” provides a foundational knowledge base that supports the detailed 

examination of waste types and properties, which are essential for effective segregation 

and energy production treatment in subsequent processes. Third, drawing from the 

“RDF-Quality” findings, this topic probes into the standards and methodologies 

employed to ensure the high quality of RDF, which is critical for consistent energy 

production and environmental compliance. Fourth; leveraging the “Decision Support 

Modeling” insights, this part explores strategic, tactical, and operational decisions that 

drive the efficiency and sustainability of the biomass fuel supply chain. Lastly, the 

accumulated knowledge on “PPP-WtE applications” sheds emphasis on how 

collaborative efforts between public and private sectors can enhance the 

implementation and management of EfW projects, thereby ensuring sustainable and 

economically viable waste management solutions.  

This structured exploration ensures a thorough narrative that not only addresses the 

intricate dynamics of managing RDF and waste-to-energy systems but also prepares the 

groundwork for future advancements in the field. 

 

2.3 Waste Characteristics Estimation  

2.3.1 Estimation Methods  

Utilization of RDF as a fuel requires familiarity with its heating value, which is a very 

significant parameter and is often stated as the higher heating value (HHV) [51]. The 

HHV refers to the total energy released by a kilogram of fuel when it is completely 

burnt out and normally measured in mega joules per kilogram. Unlike HHV, the low 

heating value (LHV) quantifies the heat released from burning a substance while 
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keeping the resulting water vapor in a gaseous state. The measurement of these 

properties is expensive and requires time, which has prompted many previous works to 

focus their attention on determining mathematical models to predict HHV values for 

various categories of Biomass [52]. According to Channiwala [44], RDF’s calorific 

value is dependent on its chemical composition during the combustion process. In this 

study, basic characterization involves four key measurements: determining physical 

composition [53], moisture content [54], conducting chemical composition (proximate-

ultimate analysis), and determining the heating value, all shown in Figure 2.6. These 

assessments collectively provide fundamental insights into the composition and energy 

potential of the RDF material. The elemental composition of RDF on a dry and ash-free 

basis includes Carbon, Hydrogen, Oxygen, Nitrogen and Sulphur contents, and the 

weight percentages of these elements inside RDF can be found using the ultimate 

analysis [45]. Thus, the crucial parameter of HHV in waste or biomass fuels 

demonstrates a direct correlation with their ultimate analyses. The laboratory samples 

for analysis are prepared using the following ASTM E829-23 method [55]. 

Subsequently, the sample's particle size is reduced through shredding, resulting in the 

air-dried finely ground laboratory sample. This finely ground sample is separated and 

stored in an air-tight container, designated as the air-dried analysis sample. These 

specific samples are utilized for conducting various analyses shown in Figure 2.6.  

The ultimate analysis is normally conducted according to standards like ASTM 5373 

[56] , ASTM D4239 – 18 [57] or E775-15 [58], whereas the calorific value calculation 

is based on ASTM D5865 [59] or ASTM E711 [60] methods and experiments are 

conducted using a Bomb calorimeter and thermogravimetric analyzer [61]. The only 

drawback of using such composition analysis is related to representative samples, 

which may be either small or specific from the location where collected. Nonetheless, 

another method which is also used for HHV prediction applications is known as 

proximate analysis. The correlation involving four independent variables from 

proximate analysis (via ASTM D121 [62]), moisture, fixed carbon, volatile matter, and 

ash contents with HHV, exhibits the least estimation error, making it a viable choice for 
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future applications [63].  

However, Xing [64] proposed models for HHV prediction of biomass using machine 

learning approaches demonstrating ultimate-based models show better performances 

even with fewer samples. The results in that study showed that newly developed models 

which are based on the ultimate analysis give better predictions (R2 > 0.90) and the 

carbon and hydrogen fractions hold the significant places for having major impacts on 

the HHV. Thus, complex non-linear models developed using innovative techniques like 

machine learning are desirable to accurately predict the calorific value of biomass fuels 

and can significantly influence the operational stability of waste processing facilities.  

A recent study incorporated an assessment of CO2 emissions and potential cost savings 

achievable by substituting coal combustion with RDF [65]. This assessment focused on 

waste-derived fuels with heat values equal to or exceeding 20 MJ/kg, indicating their 

suitability for this substitution analysis. The study emphasized the potential for 

substantial savings: an estimated 64 kilotons/year of coal and $8.69M (USD) could be 

conserved by utilizing RDF as a viable energy replacement alternative. 
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Figure 2.6: MSW is typically analyzed using four key methods, 1) moisture content determination, 2) 

physical composition, 3) chemical composition, 4) heating value determination 
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2.3.2 Estimation Models 

Literature shows that many mathematical models presented in the past utilized ultimate 

analysis to predict the HHV for various categories found in Biomass. In 1880, Dulong 

provided the first model for calculating the heating value [66]. Both statistical and 

heuristic methods e.g linear regression, multi-layer neural networks, and genetic 

programming are prominent methods employed to predict HHV value using the 

ultimate analysis [67] and [68]. Advanced machine learning algorithms like artificial 

neural networks, Support vector machine regression and Random forest regression as 

mentioned by [64], [69], [70],[71], are new methods successfully applied to predict 

HHV for biomass fuels with variable training and validation datasets. Figure 2.7 shows 

the list of methods applied for such applications in the literature. The exploration 

primarily emphasizes the utilization of linear regression and artificial neural networks 

methods in determining the Higher Heating Value (HHV) of RDF-type materials. These 

methods show that better models can be devised with improved statistical efficiencies 

in the heating value predictions for biomass fuels.  

Figure 2.7: Statistical and Heuristic methods used for HHV predictions of various waste types 

extracted from publications between (2003-2023).  
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To illustrate the practical application of the updated physicochemical properties of 

individual waste components, Roshni et al.[72] presented a study to simplify the 

theoretical estimation of waste characteristics by experimentally analyzing individual 

components within mixed MSW feed on an as-received basis. In this approach both 

ultimate and proximate analysis are conducted using empirical equations. This 

approach minimizes the need for labor-intensive and economically complex 

experiments. Similarly, Ozyuguran et.al.[73] presented the linear and non-linear 

empirical equations to predict heat value for thirty-nine different material types with 

varying physical characteristics. For comparison purposes, the previously established 

empirical models for predicting HHV based on the ultimate analysis of similar waste 

types from the literature are shown in Table 2.4.  

Additionally, the models' performance is usually depicted through scatter plots, 

showcasing the relationship between model-predicted and observed values. The 

assessment of the developed models utilized statistical indicators like R2, mean average 

precision error (MAPE), root mean square error (RMSE), correlation coefficient (CC), 

average biased error(ABE), etc. [71], [73], [74]. These parameters were calculated 

based on the variance between observed and predicted values of HHV or LHV. But all 

the models are limited to the type of biomass used as references and often cannot be 

extrapolated to a different kind of substance such as RDF, also very few models exist 

to estimate HHV for urban wastes like MSW and RDF [16]. Improved and deeper 

studies are required to be conducted with a distinct group of RDFs to prove the 

robustness of the models previously developed in the literature. Further to this, it has 

been discovered that the literature did not elaborate on the type of RDF used for 

modelling HHV equations. In this context, previous studies did not highlight the line 

configuration consisting of material recovery units or material separation parameters of 

a facility used in prediction models which can have a significant impact on the quality 

of the RDF produced. Now the question arrives, can the existing correlations be used 

to determine or predict the HHV of the RDF and are they appropriate enough to be 
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applied?. 

Table 2.4: Established Models for HHV Prediction of Similar Waste Residue 

 

2.4 Characterization of Municipal Solid Waste 

2.4.1 Continuous Waste Characterization 

Municipal Solid Waste (MSW) is typically categorized based on its source or material 

Model 

# 

HHV equation (MJ/kg) Author Waste 

Residue 

Year 

Eq 2.1 

[140.96 𝐶 + 602.14 (𝐻 −
𝑂

8
) + 39.82 𝑆 + 42.75 (

𝑂

2
) − 104 𝑁

+ 89.29 (𝐻 −
𝑂

16
)] x 0.002326 

Wilson DL[75]. MSW 1972 

Eq 2.2 0.328C + 1.419H + 0.0928S Channiwala [44] MSW 2002 

Eq 2.3 0.4373C − 0.3059 Channiwala [44] MSW 2002 

Eq 2.4 370.8 C + 1112.4 H - 139.1O+317.8 N + 139.1 S Meraz L[76] MSW 2003 

Eq 2.5 0.416638C − 0.570017H + 0.259031O + 0.598955 N + 5.829078 Kathiravale [77].  MSW 2003 

Eq 2.6 0.336C+1.419H+0.94S−0.145 Reza B[78] RDF 2013 

Eq 2.7 0.350 C+1.01 H−0.0826 O  Shi H[28] MSW 2016 

Eq 2.8 0.40C+0.32H Rui Galhano[79] RDF 2017 

Eq 2.9 0.4531C Rui Galhano[79] RDF 2017 

Eq 2.10 0.4191C+0.6523 (H- 
𝑂

8
)+ 18.4007 S Octávio [16] MSW 2018 

Eq 2.11 
0.3805 C+0.7700 H-4.0219 

Boumanchar[67] MSW 2019 

Eq 2.12 

 

2.775 + 𝐻 + 0.004027 𝐶 + 0.004027 𝐶2 +
0.05706

𝐻 − 12.97
+

0.02323

𝐻 − 6.661

+
0.009398

𝐻 − 5.961
+

12.97 − 𝐻

𝐻3 − 5.922 𝐶
 

Boumanchar[67] MSW 2019 
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type, outlining its physical composition. Yet, in Waste-to-Energy (WTE) facility design, 

additional elements like moisture, volatile and fixed carbon content, non-combustible 

proportions, chlorine, and sulfur content are vital. These factors inform technology 

selection, furnace/boiler capacity determination, and auxiliary facility design, including 

flue gas cleanup equipment [28]. Processing MSW is increasingly challenging because 

of futile decision-making and fragmented integration in sustainable waste treatment 

processes, causing a substantial wastage of resources in landfills. In response, the 

continuous sorting of MSW and its transformation into a combustible fraction called 

refuse derived fuel (RDF) represents an effective measure to curtail resource depletion 

in landfills and shift towards alternative energy solutions. This approach aims to 

diminish reliance on conventional fossil fuels. However, RDF production must adhere 

to precise technical specifications, primarily dictated by its end-users or local 

municipalities. This aspect significantly influences the final product’s recognition, 

elevating RDF to meet the highest quality of solid recovered fuel (SRF) standards 

described by [23]. To achieve this goal, the recovery and purity of the sorted material 

must be ensured, and the cost of the waste separation process must be reduced [18], 

[80]. At present, the quality of the RDF is checked at the end of the sorting line by 

manually collecting the samples and sending them to laboratories at the MRF for further 

composition and chemical analysis. This is an expensive and time-consuming process 

and untimely for making any substantial improvements in RDF quality [52]. Even with 

timely sampling, MRF managers assume similarity in waste compositions for long 

periods of time, which leads to incorrect energy generation estimations and economic 

uncertainty. To enhance the quality of produced RDF, it is imperative to shift focus 

towards upfront waste characterization, enabling more proactive quality control 

measures. Also, the operations of the MRF require frequent waste stream 

characterizations to adjust feedstock quantities and meet the required final RDF 

specifications defined for parameters like calorific value, ash content, or moisture 

content among others, [81]. Thus, the dependency of sorting equipment separation 

coefficients on the in-feed MSW composition has yet to be explored.  
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2.4.2 Computer Vision for Waste Composition Analysis 

Over the years, advancements in computer vision (CV) technologies, driven by 

improved computational power and algorithms, have significantly enhanced the 

efficiency of waste sorting and recycling processes in waste management. A review 

conducted by [82] presents a detailed comparison of popular machine learning 

algorithms (ANN, SVM, decision trees, rule-based classifiers, etc.) and object detection 

networks (Xception, AlexNet, ResNet, DenseNet) to accomplish various tasks like 

waste recognition-classification and waste detection using R-CNN, Fast R-CNN, 

Retinet, YOLO, VGG structures for industrial, commercial, institutional, and 

residential-municipal waste materials. There are also studies which have explored the 

application of computer vision-based waste characterization in several other domains, 

including aluminum streams [83] and medical waste [84]. Use of hyperspectral imaging 

combined with artificial intelligence models for detecting chlorine in RDF [26], [85]. 

Sheng et al.[86] developed smart bins for collecting metal, plastic, paper, and general 

waste by integrating sensor data and a machine learning framework. Thermal imaging 

for waste classification by [87] and restoring value of damaged materials by [88] are 

also captivating applications. Another promising approach was presented by Standley 

et al.[89] in which a model is developed for deriving a physical attribute, such as an 

object's mass, from its image. In this context, there are various open-source image data 

sets for various purposes, such as multiple object detection and single object recognition 

of a wide range of waste types. Some notable examples include (DataCluster Labs,[90]; 

Koskinopoulou et al.[91]; Mohamed, 2021 [92]; Sekar, 2019 [93]; Yang and Thung 

[94]). In a systematic review by Abdallah et al.[95], it is mentioned that using CV 

models in their original state sets an additional challenge, emphasizing the need for 

tailored adaptations to fit the complexities of MSW management. Similarly, researchers 

often employ simplified environments and synthetic datasets in their studies. So the 

future research should focus on real-world complex functions and apply computer 

vision to industrial waste characterization and sorting applications,[96].  
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Residential waste collected from single-family (SF) or curbside units, multi-family (MF) 

or apartment buildings /complexes, undergoes initial processing like hand sorting and 

mechanical separation using bag-breaker and trommel screens. Fabrice et al.[18] 

presented a study that emphasized the pivotal role of trommel screens. This critical 

sorting unit influences recovery rates and the quality of output streams in a standard 

MRF. Sequenced at the conditioning stages of the MSW sorting process, the trommel 

unit segregates materials based on their physical properties [27]. Typically, the trommel 

screen’s output undergoes additional shredding or washing stages, which subsequently 

reduces the possibility of identifying distinct waste components, as noted by 

Onyinyechi et al.[97]. The waste residues collected after processing at various stages 

of the trommel unit maintain fraction size within a range of 5 to 23 cm and go through 

a manual waste characterization procedure before being directed via conveyors to the 

RDF production line [27]. This characterization aims to assess and predict the potential 

quality of RDF beforehand that can be produced to support operational decisions using 

computer vision. Such assessments can be facilitated using discrete-event simulation 

models as described by Junaid et al.[81]. The mass balance along with recovery of 

useful waste particles is significantly influenced by the size of the separation screens 

installed on the trommel units [27]. For such waste sorting at disposal facilities, the 

practical deployment of CV for automatic waste sorting requires significantly more 

research efforts to tackle the waste detection problems. 

2.4.3 Computer Vision at Waste Sorting Facilities 

Within waste sorting facilities, a computer vision-enabled waste classification system 

basically binds hardware and software elements. The hardware typically involves an 

inexpensive camera, functioning as the system's "eyes." Complementing this, the 

software comprises a set of sophisticated computer algorithms serving as the system's 

"brain.". These systems facilitate the identification of waste objects, creating an 

integrated and efficient waste sorting mechanism. Table 2.5 shows the implementation 

of various software and hardware solutions to detect and sort waste at sorting facilities . 
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The application method highlights the expansion of CV solutions across environments 

for waste monitoring or detection. Simplified methods lack real-world complexities, 

while Roadside, Conveyor, and Bin demonstrate practical real-world applications. 

Carolis et al.[85], presented an improved YOLOv3 network model to perform garbage 

detection and recognition in outdoor environments. 

 

Table 2.5: Computer vision software/Hardware application for various waste type at sorting facility 

Author Environment   Waste  Technology Used 

Application 

Method 

Tachwali et al, 2007 [98]  Indoor Recycling Software Conveyor 

Mittal et al, 2016 [99] Outdoor MSW Software Roadside 

Singh et al, 2017 [100] Outdoor MSW Software Roadside 

Chu et al, 2018 [101] Indoor MSW Software/Hardware Simplified 

Gundupalli et al, 2018 [102]  Indoor Recycling Software/Hardware Conveyor 

Ku et al, 2019 [103] Indoor C&DW Software/Hardware Conveyor 

Wang et al, 2019 [104] Indoor Recycling Software Conveyor 

Chen et al, 2020 [84] Indoor Medical Software Bin 

Nowakowski et al, 2020 [105] Outdoor Electronics Software Simplified 

Carolis et al, 2021 [106] Outdoor MSW Software Roadside 

Koskinopoulou et al, 2021[91] Indoor Recycling Software/Hardware Conveyor 

 

 

2.5 RDF Quality Measures 

The characteristics of waste fuels like RDF are calorific value, particle size, impurities, 

chlorine content, sulfur content, fluorine content, ash content, moisture content, and 

heavy metals content. These characteristics are used for the quality classification of 

different types of RDF [20]. This aspect holds a significant impact on the final product 

recognition because an RDF produced according to a defined quality assurance 

procedure can further become a certified “solid recovered fuel” (SRF) [23], [107]. SRF 

is a subset of the larger family of RDF, and its quality is well known and defined 

according to standards such as EN-15359 and ISO-21640. These standards promote 

their safe use in energy conversion activities and for the general trust of the public. 
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Manyà et al.[97] discovered RDF pyrolysis dependence on temperature and heating rate, 

advocating further research into their impact on char yields and volatile release. RDF 

inclusion in feedstock enhances carbonization, prompting exploration of RDF-biomass 

co-pyrolysis for waste management and increased char production. Higher 

temperatures improve RDF-derived char reactivity, indicating potential for better 

carbon dispersion. Inorganic components in RDF boost char reactivity, highlighting 

MSW-derived RDF’s for efficient biofuel production. 

2.5.1 Factors Impacting Quality Measures  

The production of a high-quality RDF or SRF is impacted by the composition of the 

input waste stream and the design of the material recovery facility (MRF) comprising 

of the multistage waste separation processes or units [9],[108], [109]. The composition 

of the output waste stream and its quantities are calculated by means of mass balance 

[21] and this is generally done using semi-empirical methods due to the lack of 

available information on the performance of these operational units [22]. Thus, the 

major constraint is sustainability in converting RDF to a certified, self-declared, and 

nationally recognized SRF. Antonio et al.[74], presented an extensive technical study 

on RDF production plant design to investigate the feasibility of producing a high 

calorific value product. The method used in the study involved testing various choices 

of process equipment and their utilization in different configurations in an RDF 

production line. Further, the study provides the heating value and mass efficiency in 

each configuration for defining the most suitable plants able to meet the required RDF 

quality levels at minimum cost. Yet, a few of the major constraints in utilizing this type 

of method are the evolving change in waste compositions, available newer waste 

treatment technologies, and stricter environmental regulations that were not present at 

the time of disclosure of this method. These points recommend propounding the 

reevaluation of this method and incorporating more uncertainties into the technical 

analysis. 

Vera et al. presented a material flow analysis of RDF production processes [110]. The 
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study showed how chemical characteristics of refuse-derived fuels (RDF) can be 

modified by mechanical operations to reach and assure quality targets. Similarly, Edo-

Alcon et al studied how the chemical and physical characteristics of RDF are influenced 

by input waste streams and processing technologies [111]. Using this idea, Nasrullah et 

al. [112] studied the influence of three input feedstocks such as MSW, construction, and 

other industrial waste, on the quality of the produced RDF in terms of its characteristics, 

recovered energy, and mass balance in a mechanical treatment plant. In the study, the 

results of the quality parameters were validated by laboratory analysis. The effect of 

external uncertainties such as fluctuations in input waste composition and internal 

uncertainties such as energy consumption of the equipment on the performance of two 

different plant configurations are also studied under an exergoeconomic perspective 

[42]. 

The recovery of a particular material in the output stream of an operational unit depends 

on the estimated separation parameters to characterize the performance of the MRF. A 

separation parameter is a value between 0 and 1 that defines a corresponding input 

stream that ends up in a specific output stream. In this context, Diaz et al. and Palmer 

used recovery factor transfer functions to estimate the material flow of various waste 

materials in each unit in an MRF [113], [114]. Another approach introduced by Vanegas 

et al.[115] focused on defining the material separation models from a probabilistic point 

of view using Bayesian separation. This method defines the probability for routing the 

desired material and non-desired material. Similarly, a network flow model introduced 

by Testa et al. provided a groundbreaking framework representing an MRF with 

multiple output units and recirculating streams [17]. In this context, Fabrice et al.[18] 

presented a modern line configuration consisting of material recovery units and 

compared the material separation parameters of those units with similar parameters 

found in the literature [25]. The study revealed that variations in the separation 

parameters of material recovery units can significantly impact the quality of the RDF 

produced. In the same way, Karine Ip et al. discussed how uncertainty and variations in 

the parameters affect the performance of the network flow models [80]. The study 
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incorporated uncertainty in the input material composition and based on that, it 

estimated the separation parameters of the operational sorting units. However, newer 

line configurations need to be tested. Research efforts should provide new data covering 

more waste characterizations while providing operating conditions and feedstock 

compositions affecting an MRF output stream composition such as RDF.  

2.5.2 Decisions in the Biomass Fuel Supply Chain 

One of the other major barriers to developing and implementing waste to biofuel 

solutions is the cost of biomass to the biofuel supply chain and uncertainty in biomass 

source generation [116]. The biomass supply chain implicates many decisions 

associated with biomass type selection, collection, pretreatment, production or harvest, 

storage, conversion to bioenergy, and biofuel sales. Depending on their timeframe, 

decision-making can be divided into three significant categories, strategic, tactical, and 

operational [30]. Strategic decisions entail long-term decisions that are difficult to 

change in a short time and have a long-lasting impact on the supply chain. At this level, 

uncertainties include technology policies and regulations, climate conditions, emerging 

waste treatment technologies, and environmental effects. Tactical decisions in the 

supply chain can range from a few months to a year, depending on the strategic goals 

defined in the earlier stage and they bridge the gap between strategic and operational 

decisions. The uncertainties at this level include RDF production planning, RDF 

demand forecasting, equipment performance etc. In contrast to strategic and tactical 

decisions, operational-level decisions focus on short-term activities conducted on a 

day-to-day or weekly basis and ensure continuous operations of the facilities, e.g., 

monitoring standards and quality of produced RDF or scheduling related tasks. The 

studies in the past tackled several sources of uncertainty affecting decision-making in 

the design and planning of the biomass to biofuel supply chain from aspects like 

feedstock selection [117], location and capacity design [118], selection of technology 

[119], or feedstock seasonality [120] among others. In this context, many publications 

in the literature focus on strategic and tactical level decisions, whereas less emphasis is 
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placed on operational decisions and combined strategic or tactical levels with 

operational decisions [25], [121].   

In the literature, researchers have adopted various modeling approaches for the efficient 

planning of biomass supply chains. The most dominant techniques are distinguished as 

mathematical programming, simulation, and geographic information system (GIS) 

based modeling [122]. Piedro et al. classified uncertainty-modeling approaches into 

four groups: analytical methods, models based on artificial intelligence, models based 

on simulation, and hybrid methods [40], [123]. The scope of this study is limited to 

simulation modeling [124] and decision sciences, as this area is not explored adequately 

for implicating uncertainty in RDF supply chain planning. Only a few references are 

available using the simulation method for these purposes as described in a study by 

Bairamzadeh et al.[42]. 

2.6 Public Private Partnership (PPP) in EfW Projects 

2.6.1 Role of Public Private Partnership  

In developing countries, most energy from waste (EfW) projects are funded by public-

private partnerships (PPP) at both national and municipal authority levels [32]. The PPP 

is a globally recognized model used to deliver infrastructure-based projects or services 

funded by private investors instead of the traditional public sector models. It is a form 

of long-term collaboration between public and private parties sharing their skills and 

assuming different levels of implicated risks and rewards in EfW infrastructure delivery, 

substantiated contractually for a definite duration. Such an arrangement enables the 

public sector to undertake projects they could not finance internally or through loans 

and grants.  

In 1997, the UK Government launched the PFI (Private Finance Initiative ) scheme to 

modernize its new infrastructure [125], and close to 700 projects were signed by 2017. 

Later, incorporating the UK government's 2018 decision to suspend all PFI, this move 

highlighted the need for new models that better balance private investment with public 
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accountability and value for money. The UK’s PFI model enacting trifling variations 

was later adopted in Canada and the rest of the world. The concept of PFI differs among 

countries; for example, in Canada, PPP is referred to as P3, and in the UK, it is referred 

to as PF2 or simply the old PFI. The distinction in financing structures between PFI and 

PPP significantly impacts their implementation and outcomes. PFI financial options 

could include bank debts, bonds market, mortgages, or lease finance. PFI projects 

typically involve a high degree of leverage, with the Special Purpose Vehicle (SPV) 

relying heavily on debt financing [126]. This structure can lead to a focus on short-term 

financial returns and a higher cost of capital, as the private sector seeks to cover the 

debt service and generate profits. The reliance on debt also increases the financial risk 

associated with these projects, which can be transferred to the public sector in the form 

of higher long-term payments. Figure 2.8 depicts this typical setup of a PFI scheme and 

the main participants including the public sector, SPV, sponsors and various categories 

of subcontractors in a project. Financial companies are critical actors in PFI transctions, 

as they engage in various functions such as arranging debt, providing debt and equity, 

and offering financial consultation. Moreover, these entities play a pivotal role in 

ensuring that the operations involving multiple companies are executed seamlessly in 

accordance with the established financial plans. 

 

In contrast, PPPs offer a more flexible approach to financing, allowing for a broader 

mix of financial instruments. This flexibility can enable a more balanced allocation of 

risks and returns between the public and private sectors. For example, the use of equity 

financing in PPPs can align the interests of private investors with the long-term success 

of the project, as their returns are more directly linked to the project's performance. 

Additionally, PPPs can incorporate various revenue streams, such as user fees or 

government payments, which can provide a more stable financial foundation for the 

project [127].  
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In a PPP, the structure allows involved parties more freedom to structure their 

contributions. Another major underlying difference is that PPP can be structured as a 

joint venture or via contract. Figure 2.9 shows different models inside PPP, which are 

additional ways the public sector can deliver infrastructure projects. It reflects the 

inherent nature of how contracts for private entity from public partners can be designed 

to incorporate element of risk management for design, build, finance, operations, and 

maintenance tasks in projects. 

Governments across the globe continue adapting PPPs in the development of critical 

public infrastructure as it is the most suitable model to deliver infrastructure on time 

and on-budget [128]. This is because PPPs not only provide taxpayers value-for-money 

(VfM) by transferring project-related risks to the contractor but also ensure that 

completed projects in the future are operated and maintained in good condition[33], 

[129]. VfM is defined as the optimum combination of whole-of-life cost and quality 

and fitness for the good or service that fulfills the user requirements [130]. The five 

interrelated VfM drivers in infrastructure-related projects are the sector management 

                      

                        
     

         
            

         
                 

         
           

                
            

                
                       

                
                      

                
    

                
    

    
      
     
     
        
          

                 

                               

      

           

Figure 2.8: Standard configuration of a PFI/PPP framework based on 

financing options 
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skills brought to the project by the private sector; the effective risk allocation; the long-

term nature of the contract; and the effective performance measurement and 

competition [131]. 

  

 

Figure 2.9: Infrastructure delivery under PPP models, adapted from the Canadian Council for public-

private partnerships [132] 

 

 

However, a few opponents argue against such arrangements for infrastructure delivery 

projects. The public sector can build attractive incentives in PPP, which could be 

misleading regarding budget and schedules and are usually absent in the conventional 

infrastructure delivery model. Similarly, the government must pay a premium to 

incentivize the private contractor to assume any risks. Usually, PPP financing costs are 

higher for the private sector because of high borrowing interest rates that vary during 

the projects’ long duration [33]. Lastly, in the event of project failure, the public sector 

can transfer the loss of extra tab to the taxpayer through increased taxes or some 

reduction in public services [34]. 

2.6.2 PPP Trends in Energy from Waste Projects 

Energy from waste initiative carry a range of benefits for the environment and its 

investors, like clean energy production, less load on landfills, lower greenhouse gas 
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emissions, and grants from the public sector for scaling sustainable processes. In EfW 

applications, cutting-edge technologies are incorporated, converting waste into heat, 

electricity, and other fuels [133]. China procured 463 EfW plants (using incineration 

technology) by 2020 due to an exponential increase in municipal solid waste generation 

[134] . To mitigate this challenge and improve energy recovery from waste, researchers 

are focusing on other technologies like pyrolysis, anaerobic digestion, and gasification 

processes[135], [136], [137]. However, from the public policy perspective, EfW 

projects are a flutter on government investments due to financial risks and natural 

implications like COVID-19 [138]. In past years, governments in various countries 

have incorporated PPPs or PFIs as a solution to deliver public infrastructures[34], [139], 

[140]. Following a PPP approach, new infrastructure projects, like EfW, could be 

delivered where most of the risk is shared by the private sector, payments and final bills 

are not immediately due as contracts prolong from 25 to 30 years [141]. This philosophy 

suits governments and ensures reliable and stable contract payments (transactions) from 

taxpayers’ money or other funds. From a sustainable point of view, the equity structure 

among private and public bodies is vital for maintaining the performance of PPP 

projects [142]. Figure 2.10 below shows the total number of EfW facilities operational 

in the UK. Seventeen more facilities are still under construction [143]. Table 2.6 

exhibits seventy EfW operational plants with a classification of contracts from 1973 to 

2022 adopting various technologies in the UK. 
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Figure 2.10: Number of UK EfW facilities and total tonnage of waste processed at EfWs in 2017-2021, 

adapted from [143] 

 

 

 

Table 2.6: Energy from Waste (EfW) – Incineration , Advanced Conversion Technology (ACT), 

Biodrying Mechanical & Biological Treatment (BMBT), Landfill Mechanical & Biological Treatment 

(LFMBT),M (merchant facility) - private sector initiative, [144] 

 

 

Recent projects in Canada provide indicators that because of growing pressure to reduce 

the amount of waste going to landfills, the government at municipal and provincial 

levels is undergoing a change by adopting P3 in procuring EfW infrastructure. 

Contract 

Classificatio

n 

PPP PFI M 

Year 

Operational 

BMB

T 

EfW 

(ACT) 

EfW 

(Incineration

) 

LFMB

T 

BMB

T 

EfW 

(Incineration

) 

LFMB

T 

EfW 

(Incineration

) 

1973-1994   5      

1997-2004 1  6   2   

2005-2011 1  5 1 2  1  

2012-2016 8  7  3 6 1  

2017-2022 1 1 11   1  7 

         

Total 11 1 34 1 5 9 2 7 
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Provinces like Quebec, Ontario, Alberta, and British Columbia have EfW facilities, 

among which a few are procured under the P3 model, as shown in Table 2.7,[145]. 

 

Table 2.7: Publicly owned solid waste assets, Infrastructure Canada, 2022, adapted from [145] 

  

Composting 

facilities  

Materials 

recovery 

facilities  

Anaerobic 

digestion 

facilities  

Incinerators  Energy 

from 

waste 

facilities  

Newfoundland & Labrador  8 14 0 0 2 

Prince Edward Island  1 1 0 0 1 

Nova Scotia  12 11 0 0 0 

New Brunswick  4 8 0 0 6 

Quebec  28 108 4 4 3 

Ontario 64 45 6 0 4 

Manitoba 32 37 1 3 1 

Saskatchewan 82 35 0 0 1 

Alberta 32 104 8 15 2 

British Columbia 27 31 2 0 2 

Yukon 3 0 0 0 0 

Northwest Territories 1 5 0 0 0 

Nunavut 0 0 0 0 0 

Total 294 399 21 22 22 

 

2.6.3 PPP Risk Modeling in EfW Projects 

 

Researchers have focused on modelling potential risks impacting EfW projects, such as 

economic, political, technological, environmental, and societal factors [146]. Fantozzi 

et al.[147] presented a study of risks in 2014 associated with PPP in bioenergy 

technology projects. This research study focused on the six categories of risks that have 

a paramount influence on various PPP topologies. It concluded that PPPs could 

effectively reduce risk in the bioenergy business for the public sector. Zhang et al.[148] 

conducted research in 2019, bundling a questionnaire survey and a professional 

validation to identify twenty-one risks related to incineration PPP projects. The study 

identified that studies on risks of PPP projects in the past normally analysed risks 
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individually based on risk sorting and statistical analysis and neglected their direct 

casual interrelationships, where one risk factor, ‘Change in law’, directly caused nine 

other risk factors. Among a few are operating cost overrun, public opposition, revenue, 

and government and private sector decision-making risks. Another study by Caiyun et 

al. in 2019 showed that environmental pollution, lack of supporting infrastructure, 

government credit, public opposition, government decision-making, and flawed legal 

and monitoring systems are the top risks touching the growth of EfW incineration PPP 

projects in China [149]. From a financing perspective, the Asian Development Bank 

(ADB) declared China to be an active proponent of PPP for EfW and provided 

screening parameters for investing in EfW in PPP topology [150].  

Overall, limited studies are adopting advanced technologies besides incineration for 

EfW in PPP. Recently, Dolla et al.[151] emphasized considering the nuances of 

technology in PPP procurement projects. The study identified twenty-two influential 

risk factors from the literature. It showed the variation of risks criticality measured 

associated with the four EfW treatment technologies (biomethane, RDF to power, 

incineration, pyrolysis & gasification). Each technology brings a set of critical risks 

which are mitigated by the public and private sectors. The risks such as waste volume, 

revenue, and market risk are among the critical one’s that directly affect the financial 

viability of energy from municipal solid waste (MSW) in PPP projects. Various risk 

occurrence probability forecasting models are available in the literature for improving 

the accuracy in estimating risk magnitude in PPP EfW projects. Wang et al. presented 

a risk occurrence probability forecasting model using the Bayesian updating approach 

(ROPFM-B) [152]. Zhang et al.[148] deployed DEMATEL (decision-making trial and 

evaluation laboratory) method to prioritize the risks and then analyze the 

interrelationships between them to identify critical risks. Another study by Cheng et 

al.[153] used DEMATEL method to identify pivotal risks such as government decision-

making, credit, and supervision behavior risks, along with legal, policy, revenue, cost, 

and management capacity risks. These risks, positioned at varying levels within a 

hierarchical structure, often act as catalysts for other risks. Deriving a risk evaluation 
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index is also a common way of prioritizing risks. Jokar et al. developed a method in 

accordance with fuzzy AHP (analytical hierarchy process) and fuzzy TOPSIS (a 

technique for order of preference by similarity to ideal solution) to obtain the priority 

of risk factors and choose the optimal contractor company for projects [154]. Another 

methodology based on weighted multi-granulation fuzzy rough sets (MGFRSs) to 

perform risk evaluation for PPP EfW incineration plant projects was introduced by 

Chao et al.[155]. An additional research framework is developed for risk allocation 

between public and private bodies in easing decision-making for EfW in PPPs by 

deploying adaptive neuro-fuzzy inference systems (ANFIS) [156]. Wang et al.,(2023) 

highlighted the importance of PPPs for construction waste recycling in China, 

pinpointing risk allocation and benefit distribution as pivotal for project success. Their 

research advances this field by crafting a novel Best-worst multi–criteria decision-

making method combined with a comprehensive fuzzy evaluation (BWM–FCE) risk 

assessment model, aimed at refining risk assessment for key stakeholders in 

construction waste recycling PPP projects, thus offering a holistic strategy to improve 

project efficacy in developing nations contexts [157]. The other important aspect of 

identifying and allocating risks in PPP projects is financial risk modeling. The major 

influences like capital costs, operations & maintenance costs, inflation, and discount 

rate forge risks for the positive and negative net present values (NPV), which could lead 

to rejection or acceptance of the project [158], [159]. 

It is concluded from the literature review that previous studies provide a vital 

understanding of the risk identification of PPP in numerous industries. With a focus on 

operations and maintenance (O&M) risk assessment of EfW in PPP projects, the 

preceding research is identified and presented in Table 2.8, highlighting former focus 

areas, methodology, and analysis techniques deployed. Specific to EfW technology 

studies, a few studies have [148], [151] focused on mixed research methods for risk 

identification and analysis of PPP projects in China and India. The PPP studies using 

mixed risk epistemology methods are not explored in the literature for EfW applications 

in UK and Canada.  
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Table 2.8: Previous studies on operations & maintenance risk assessment in PPP for EfW applications 

Ref Authors Focus Area Research Methodology Analysis Technique 

[160] Song et al. 2013  Incineration technology Subjective risk epistemology General response strategies 

[147] Fantozzi et al. 2014 Bioenergy technology Objective risk epistemology Economic feasibility analysis 

[161] 
Song et al. 2015  Incineration technology Objective risk epistemology 

Simulation and Fuzzy Multi-

objective Programming 

[162] 
Wu et al. 2017 Various EfW technologies Objective risk epistemology 

Fuzzy synthetic evaluation 

analysis 

[50] Wu et al. 2018 Incineration technology Subjective risk epistemology Linguistic modeling  

[148] 
Zhang et al. 2018 Incineration technology Subjective risk epistemology 

Causal risk relationship 

modeling 

[152] Wang et al. 2018 Incineration technology Objective risk epistemology Bayesian analytic approach 

[163] 
Spoann et al. 2019 Waste management Subjective risk epistemology 

Success and efficiency factor 

approach 

[151] 
Dolla et al. 2020 Various EfW technologies Subjective risk epistemology 

Risk allocation mechanism 

modeling 

[156] Utama et al. 2020 Incineration technology Subjective risk epistemology ANFIS modeling 

[134] Cao et al. 2022 Incineration technology Subjective risk epistemology Risk assessment 

[142] 
Hou et al. 2022 General Objective risk epistemology 

Multi-objective programming 

model 

 

 

2.7 Discussion and Research gaps 

This section applies a systematic review to delve into the ongoing research on RDF-3 

production for EfW applications. Its contribution stands as a valuable addition to this 

field, offering scholars and managers a deeper insight into the evolving trends and 

challenges within waste-to-energy decision-making at MRF. The challenges and 

research issues identified in this research are summarized in Figure 2.11 and discussed 

below,  

• O1. Waste recognition typically requires individual waste items against simple 

backgrounds, which are often not representative of real-world scenarios. In most 
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cases, waste materials are scattered or overlapped in complex settings. 

Therefore, this study will expand the application of computer vision techniques 

for waste composition analysis in the real-world environment, where tools like 

smartphones could aid MRF in distinguishing various single and multi-family 

wastes. The accuracy of the proposed solution from this study will be assessed 

in an MRF for validation purposes. 

• O2. Contemporary solid waste management methods lack sustainability, 

particularly concerning quality RDF-3 production operations. Therefore, this 

study attempts to develop a framework for the technical assessment of material 

recovery facilities that can support revisions in the strategic, tactical, and 

operational level decisions integrating different waste treatment technologies 

considering varied uncertainties affecting its performance selected in the scope 

as shown in Table 2.9. Additionally, this study delves into various modeling 

approaches used in relevant research within this domain. It offers an insightful 

exploration of diverse modeling methodologies employed in similar contexts by 

other research works. This comparative analysis contributes to a broader 

understanding of the modeling landscape, providing a valuable reference for 

researchers and practitioners in the field. The developed model would provide 

the best operating conditions and prediction for quality standards of RDF-3. The 

results of this study will be tested in an MRF for validation purposes. The model 

shall assist with scenario-based analysis, which can save huge costs and support 

the overall decision-making process.  

• O3. Various HHV prediction models are proposed in the literature, and to 

validate the existing models in literature, comprehensive studies using specific 

RDF types are necessary. Moreover, the literature fails to provide specifics 

about the types of RDF utilized in modeling HHV equations, as well as the unit-

level procedures involved in its preparation. After the detailed literature review, 

twelve established models were found relevant to RDF, as shown in Table 2.4, 

and would be used to validate the performance of models developed in this study. 
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• O4. This study will contribute to the gap in the literature on PPP in EfW projects 

by supporting the analysis of operations and maintenance of incineration and 

anaerobic digestion technologies. A stochastics modeling technique and survey 

analysis approach would be explored that can process identified risk 

uncertainties as input and model the impact of those on the economic feasibility 

of an O&M contract. Results of this would provide empirical evidence to 

stakeholders within the waste management sector about the VfM of PPP in EfW 

projects.  

 

 

 

  

 

 

 

 

 

 

 

 

 

  

The literature review presented diverse references that elucidate the framework devised 

for strategic, tactical, and operational decisions concerning biomass supply chain. 

Several studies have utilized different modeling approaches, each targeting specific 

types of uncertainty as outlined in Table 2.9. This research study compares with other 

studies across six modeling approaches, considering a selected set of strategic, tactical, 

and operational decisions, as well as types of uncertainty. Upon comparison, it is 

revealed that this study addresses various gaps in the research field. 

Figure 2.11: Challenges and research gaps in using RDF as renewable energy resource 

O3 

O1 

O2 

O2 

O4 
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Table 2.9: Comparison of frameworks from literature with underlying study for strategic(S), tactical(T) 

and operational(O) decisions in the scope of this study. Legend: ✓ indicates authors have used 

methodology and tackled the decisions in the biomass supply chain in a broad sense. 
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This literature review systematically explores the current research landscape 

surrounding RDF production for EfW applications, identifying existing research gaps 

that future studies could address. It serves as a foundational reference for academics 

and practitioners by shedding light on trends and challenges in waste-to-energy 

decision-making within MRFs. In literature, it is identified that waste recognition 

typically involves individual waste items placed against simplistic backgrounds, which 

do not reflect complex real-world scenarios where waste materials are often scattered 

or overlapping. In response, it has been suggested to extend the application of computer 

vision techniques to analyze waste composition in realistic environments. Tools such 

as smartphones could aid MRF staff in differentiating between different waste types, 

with the effectiveness of these solutions to be validated in an MRF setting. 

Similarly, it is also highlighted in the literature that current solid waste management 

practices often lack sustainability, especially concerning the production of high-quality 

RDF. New frameworks for the technical assessment of MRFs are required to be 

proposed to support improvements in strategic, tactical, and operational decisions. This 

involves integrating various waste treatment technologies under different conditions of 

uncertainty. Additionally, the literature review explores various modeling approaches 

documented in related research, providing a comparative analysis of these 

methodologies to enrich understanding and serve as a resource for future modeling 

efforts. The models developed aim to establish optimal operating conditions and 

standards for RDF production, with validation tests conducted in MRF settings. These 

models are designed to facilitate scenario-based analyses, potentially leading to 

significant cost savings and improved decision-making. 

The literature review reveals several models for predicting higher heating values (HHV) 

of RDF yet notes the need for comprehensive studies using specific RDF types to 

validate these models. Additionally, it is often pointed out that the literature lacks 

detailed descriptions of the RDF types used in HHV models and the procedures 

involved in their preparation. Thirteen established models relevant to RDF have been 

identified and are listed in Table S3; these models will be employed to validate the 
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performance of newly developed models in this study. 

Despite the wealth of knowledge in this field, the analysis of literature reveals certain 

limitations. As highlighted in Section 2.2.1, publication keywords capture the primary 

focus of research in this area. However, the keyword co-occurrence map (Figure 3) may 

display weak links and isolated terms, suggesting fragmented knowledge in the field. 

The primary RDF applications in WtE are limited due to the influence of chlorine in 

waste streams, with minimal interconnections between them. 

Finally, the literature indicates a significant gap concerning PPP in EfW projects, 

specifically focusing on the operational and maintenance aspects of incineration and 

anaerobic digestion technologies. Various machine learning, stochastic modeling 

techniques, and survey analysis approaches are being explored to process identified risk 

uncertainties and model their economic impact on the feasibility of O&M contracts. 

The findings from this study are expected to provide empirical evidence to stakeholders 

within the waste management sector about the value for money of PPPs in EfW projects. 

2.8 Conclusion 

RDF has started to transform key aspects of WtE applications, drawing growing interest 

from researchers and practitioners. This study aims to investigate the status and global 

trends of research on RDF. While numerous literature reviews have already been 

conducted, this paper represents the first comprehensive scientometric study of the field, 

analyzing 1065 journal articles using an SLR approach. The key journals are identified, 

alongside the state of the research field and prominent topics in RDF research for WtE 

applications. The findings reveal that substantial progress has been made, yet much 

work remains to be done. 

In summary, this chapter provides a literature review addressing research gaps at the 

operational and management levels in an MRF, aiming to achieve the objectives to 

address the existing gap in maintaining the quality standards of RDF production; this 

review aims to uncover sustainable practices that establish the operational and technical 

conditions ideal for consistently achieving high-quality RDF output at MRFs. The 
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detailed research methodology explains various methods and models for estimating the 

calorific value of RDF-type waste materials. It also highlights methods for continuous 

waste characterization and the application of computer vision for waste composition 

analysis. It identifies different standards for quality control measures of RDF and 

factors affecting these measures. While this study makes valuable contributions, it is 

essential to consider the limitations. The findings are influenced by the initial keyword 

selection and the scope of current literature. Thus, future research is needed to tackle 

the identified issues and provide solutions. Furthermore, conducting similar studies in 

the future will help monitor and understand the evolving nature of this field. The next 

chapter will concentrate on the first identified objective of this study, related to 

developing a computer vision application to precisely characterize municipal solid 

waste from single and multi-family sources. This process is designed to evaluate and 

forecast the potential physical composition by mass of RDF-3. 
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Chapter 3: Video-Based Waste 

Characterization for RDF-3 Production  

3.1 Overview 

In this chapter a computer vision application that can accurately characterize municipal 

solid waste originating from single and multi-family waste is developed. The process 

begins with the utilization of bag breakers and trommel screens within a mechanical 

sorting line at MRF, segregating bulky waste, non-combustible material, and hazardous 

waste. Subsequently, the residues from the trommel screen move along conveyors 

before entering the shredding phase at the RDF-3 production plant. This comprehensive 

characterization process is deployed immediately right after the trommel screen, 

encompassing waste from both single and multi-family sources. 

A fundamental aspect of this study involves the collection of a dataset comprising high-

quality images capturing waste ranging from 12.7cm to 23cm, segregated by the 

trommel unit. The culmination of this effort is the development and testing of the Smart-

Sight application, validated within a practical Materials Recovery Facility (MRF). 

Figure 3.1 illustrates the waste residues post-processing at different stages within the 

trommel unit. These residues maintain a fraction size ranging from 5cm to 23 cm and 

undergo a manual waste characterization process. Subsequently, they are directed 

through conveyors to the RDF-3 production line. This characterization process serves 

the purpose of assessing and predicting the potential physical composition of RDF-3 in 

advance, aiding operational decision-making processes.  
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3.2 Methodology 

The block diagram outlining the various stages of the research methodology is 

presented in Figure 3.2. Stage-1 involves the collection of RDF source samples ranging 

from 12.7 to 23cm, [169] .These samples are gathered at different intervals from a 

system operational within an MRF, as illustrated in Figure 3.1. Subsequently, these 

samples are analyzed in the MRF laboratory to validate the findings obtained through 

the proposed method. Stage-2 involves the preparation of a dataset from the collected 

samples, followed by training of classification and object detection models. Stage-3 

uses an artificial intelligence human-machine interface(HMI) application developed by 

integrating model from stage 2 and Python /Flask frameworks with computer vision 

techniques like Frane’s algorithm and frame differencing methods, for automated 

characterization of RDF waste source. For object detection to be applied successfully 

in waste characterization, it is essential to consider the RDF source stream as consisting 

of distinct and identifiable waste fragments. These fragments can be quantified by 

Figure 3.1: Mass balance of the initial waste processing at an MRF in Edmonton, values are 

averaged at ± 95% confidence interval. 
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calculating the area of their respective bounding boxes and subsequently comparing 

these measurements with the total area encompassing all the detected waste. The 

ultimate results generated by this process offer analytical insights into the composition 

by mass of the detected waste, all in accordance with the proposed methodology. Each 

of the stages are presented in detail in the following subsections. 

3.2.1 Stage 1: Dataset Collection & Preparation 

3.2.1.1 Waste Sample Collection 

Both SF and MF wastes are processed as described in Figure 3.1 and during 

the process, samples are systematically collected at 15-minute intervals over 

a two-hour duration. Subsequently, these collected samples are combined in 

specific proportions to create a homogeneous blend. This blending approach 

offers flexibility in ensuring the feedstock meets the specified requirements. 

In this study, two wet basis samples each for SF and MF, were systematically 

acquired using half-size deep aluminum trays, each having a capacity of 128 

ounces. Care was taken to uniformly fill each tray to its maximum capacity, 

adhering to a standardized procedure to ensure consistent volume among all 

samples. Notably, the mass of the material gathered in each tray exhibited 

variability, ranging from 450 grams to 650 grams. The composition of msw 

samples comprised paper, cardboard, rigid plastics, film plastics, food waste, 

yard waste, diapers/ napkins, other combustibles, metal, glass, other non-

combustibles materials and woodchips presented by Junaid et al.[170]. This 

study considers thirteen waste components divided into three high-level 

waste categories, including inert materials, compostables, and combustibles, 

as shown in Appendix section (A4). 
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3.2.1.2 Laboratory Waste Characterization Method  

The waste characterization process completed in the lab involves several 

key steps to facilitate physical separation. . Samples obtained from the 

trommel outputs underwent a separation process using a shaker device 

(Model: Sellbergs Eng.; type: LB/LO). The shaker is used to aid in the 

sorting process for enhancing efficiency as it generally separates materials 

that tend to stick or adhere together and ensures their distinct collection. 

Following this step, the waste samples undergo manual sorting into three 

primary categories, combustibles, compostables and inert materials. Further 

subcategories of these sorted materials are detailed in the Appendix (A4). 

Afterwards, the waste samples are subjected to oven drying at  approx. 

70ºC for 18-24 hours. Each category of waste is individually weighed, and 

its weight is calculated as a percentage relative to the total dry weight of the 

entire sample, as per Eq(3.1) below, 

 

       Composition (%) =
Weight of each waste category

Total dry weight of the materials sorted
 …….Eq.(3.1) 

 

Additionally, the moisture content for each sample obtained post trommel 

screening is calculated proportionally based on its composition and the 

measured moisture content of its sub-categories. The moisture content 

range within the particle size 12.7 cm to 23 cm for the MF material : Mean 

= 32.3%, Std Dev = 10.56% and SF material: Mean = 34.54%, Std Dev = 

8.56%.  

 

3.2.1.3 Dataset Preparation  

The dataset utilized in this study comprises images obtained from waste 

samples collected at the MRF, as well as open datasets made accessible by 

(DataCluster Labs, 2021 [90]; Koskinopoulou et al.[91]; Mohamed, 2021 
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[92]; Sekar, 2019 [93]; Yang and Thung, 2016, [94]) in their Garbage 

Classification dataset. The dataset includes a variety of washed and 

unwashed waste samples from SF and MF streams utilized for model 

training and illustrating the true nature of waste as it typically exists in the 

facility environment. A total of 3100 images were gathered from all sources. 

The data annotation process involved manual labeling of the desired thirteen 

waste classes in the collected dataset using visual object tagging tool (VoTT). 

The annotations are generated first in JSON format due to limitations of the 

tagging tool and latter converted to YOLO Darknet format. Next, data 

augmentation is performed to enrich and expand the dataset. This serves to 

improve the model's ability to generalize and prevent overfitting. 

Additionally, it allows the model to learn a broader range of relevant features. 

In this study, Albumentations, a Python library known for its speed and 

flexibility in image augmentations is harnessed, Buslaev et al.[171]. A 

variety of augmentation techniques such as flipping, rotation, noise addition, 

blurring, and brightness adjustments are used onto the images. The final 

dataset is comprised of a total of 3960 images with annotations and Figure 

3.3 shows the class distribution in the dataset. For training the object 

detection model, the dataset is split into 80% for training, 15% for validation, 

and 5% for testing. A Python script is developed that takes the dataset of 

images and labels, splits it into training, validation, and test sets, and 

organizes them into separate directories, ensuring that an equal class 

distribution is maintained, especially for the validation set, Carolis et 

al.[106]. 
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Figure 3.2: Proposed methodology for waste characterization system to enhance RDF-3 production quality 
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Values of hypermeters used for the objection detection method 

Input size=640 x 640, Batch size=16, Learning rate = Lr0,Lrf=0.01, Momentum=0.937, Weight decay=0.0005, 

Training time=2.5 hours,  Epochs=300 

 

 

                                    

                                        

                             

                          

Distribution of waste classes in the used dataset and few samples of the sorted waste components 

for data annotation and labeling purposes 

 

Training and validation curves for model development 

 

Figure 3.3: Stage 2 includes – Distribution of sorted waste components for annotation/labeling purposes, 

object detection hyperparameters determination, and training/validation curve plotting for model 

development 
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3.2.2 Stage 2: Waste Detection Model 

Detecting waste in video streams presents a complex challenge. In this study, we 

addressed this challenge by deploying the YOLO (You Only Look Once) architecture, 

which is known for its speed and superior performance when compared to other 

detection methods such as R-CNN and deformable parts models (DPM) as mentioned 

by Redmon et al.[172]. In terms of detection accuracy, there are several versions of 

YOLO available, including YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7 

(s-m-l), and YOLOv8 (s-m-l-x). Carolis et al.[106], presented an improved YOLOv3 

network model to perform garbage detection and recognition in outdoor environments. 

In this study, YOLOv8x model is adopted for indoor waste classification and 

detection.YOLOv8x has demonstrated the highest accuracy, along with a lightweight 

network design. This approach incorporates effective feature fusion techniques, 

resulting in more precise and improved detection outcomes for small  objects in 

complex scenes, Lou et al.[173]. The YOLOv8x is implemented in PyTorch, and 

initially a pretrained version of the algorithm on the COCO dataset  is used to save 

time by utilizing learned features (weights/biases), which are easily transferred to the 

new dataset. This involves initializing model parameters using transfer learning and 

subsequent fine-tuning on a custom dataset, as detailed in sections 3.2.1.1-3.2.1.3. A 

NVIDIA GeForce RTX 3090 is used to train all models with the pre-installed CUDA 

version 12.1 available from PyTorch. Figure 3.3 shows hyperparameters and their value 

for the model along with the training and validation loss curves obtained during training 

phase. The characteristics of the learning curves provide evidence of a well-suited 

model, as observed in the bounding box regression, classification, and deformable 

convolution layer loss plots. Throughout the training process, both training and 

validation losses steadily decrease until they converge to a stable point, with minimal 

divergence between their final loss values. The positively classified instances (precision) 

of the trained model reaches 76.2% and the average precision of the model at the 

intersection over union threshold is 71.6% (mAP@0.5). 
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3.2.3 Stage 3: Image Pre-processing 

In this study, image preprocessing is required to ensure and evaluate the accuracy of the 

results obtained from the waste detection model and posterior waste characterization. 

This is due to the reality in which image data is collected in the MRF using the system 

described in Figure 3.2. Cameras are subjected to vibrations and, generally, unexpected 

motions during daily operations. The below algorithms are used to mitigate the negative 

impacts of the system dynamics on the data collected. 

3.2.3.1 Motion Estimation  

As shown in Figure 3.2, the camera looks down on the waste stream, moving 

on a conveyor belt coming out of the trommel and onto the RDF production 

line. The expected motion seen in the image is the waste stream moving 

along with the conveyor belt, while the background remains static. A dense 

optical flow method can be used to estimate motion from two consecutive 

frames of a video feed, (Dheeraj et al., 2022[174]). Here, the objective is to 

compensate for potential camera motion between frames, allowing a focus 

on the desired motion of objects (waste streams) within the scene. Generally, 

optical flow refers to the movement of individual pixels on the image plane 

(Turaga., 2010[175]). It is a method used to estimate how picture intensities 

change over time and correspond to the movement of objects in the scene. 

The intensity at a point in a picture is expressed as a function of space and 

time as 𝐸(𝑥, 𝑦, 𝑡). This point progresses to a new position (𝑥 +△ 𝑥, 𝑦 +△

𝑦) after a certain time △ 𝑡, and the intensity of that point can be stated as 

𝐸(𝑥 +△ 𝑥, 𝑦 +△ 𝑦, 𝑡 +△ 𝑡). Under the above assumptions,  

 

 𝐸(𝑥, 𝑦, 𝑡) = 𝐸(𝑥 +△ 𝑥, 𝑦 +△ 𝑦, 𝑡 +△ 𝑡)  ………..Eq.(3.2) 

  

Applying Taylor series approximation  on RHS provides, 
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    𝐸(𝑥 +△ 𝑥, 𝑦 +△ 𝑦, 𝑡 +△ 𝑡) = 𝐸(𝑥, 𝑦, 𝑡) +
Δ𝐸

Δ𝑥
△ 𝑥 +

Δ𝐸

Δ𝑦
△ 𝑦 +

Δ𝐸

Δ𝑡
△

   𝑡………Eq.(3.3) 

 

Now substitute Eq(3.3) in Eq(3.2), 

 

Δ𝐸

Δ𝑥
△ 𝑥 +

Δ𝐸

Δ𝑦
△ 𝑦 +

Δ𝐸

Δ𝑡
△ 𝑡 = 0  …… Eq.( 3.4) 

 

 

The optical flow equation is derived from the above by dividing with △ 𝑡 

 

Δ𝐸

Δ𝑥
µ +

Δ𝐸

Δ𝑦
𝜈 +

Δ𝐸

Δ𝑡
= 0    ………. Eq.(3.5)   

 

Here ,  µ =
Δ𝑥

Δ𝑡
   and 𝜈 =

Δ𝑦

Δ𝑡
 ,  defines how fast the intensity changes 

moving across the image. For calculating the optical flow vectors for all 

pixels in each frame, Farneback’s method is used as proposed in (Farnebäck, 

2003[176]). This method provides a two-frame motion estimate based on 

quadratic polynomial expansion. The initial step involves approximating the 

neighborhoods of both frames with quadratic polynomials. This 

approximation is efficiently achieved through the polynomial expansion 

transform . As presented in Eq(3.6), 

 

𝑓(𝑥) = 𝑥𝑇𝑀𝑥 + 𝑏𝑇𝑥 + 𝑐 …….. Eq.(3.6) 

 

where M is a matrix, b a vector and c a scalar. By studying how an exact 

polynomial transform during translation, a method for estimating 

displacement fields from the coefficients of the polynomial expansion is 

derived. For comprehensive analysis of dense optical flow, OpenCV offers 

a method known as calcOpticalFlowFarneback() which includes ten 
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parameters to configure during the implementation. Adjusting these 

parameters can significantly impact the speed and accuracy of the optical 

flow calculation, however they will be further discussed in the results 

section. Appendix section (A6) shows a sample of the outcome of the 

integrated motion compensation technique, utilizing two polynomial 

expansions. 

 

3.2.3.2 Waste Detection using Frame Differencing:  

An issue with using machine learning approaches to quantify waste is that 

the stochasticity makes it difficult to trust the results on a frame-by-frame 

basis. With an expected performance of 70% precision on waste detection, 

a simple approach is developed to easily quantify (but not classify) the total 

waste in each video frame. This way, it will allow to compare the detected 

waste by both methods, by motion and by machine learning, and evaluate 

the detection rates of the proposed approach. For this, frame differencing is 

used, a straightforward and computationally efficient algorithm, for 

detecting moving objects through video monitoring. This approach is 

particularly suitable for identifying moving objects in indoor environments 

(Thapa et al.[177]). As shown in Figure 3.2 (stage 3), the first step in frame 

differencing involves reading several (four or eight usually) consecutive 

frames from a video sequence, stated as 𝑅𝑖(𝑥, 𝑦), where i is a sequence of 

frames. In the second step, RGB images are converted into grayscale images. 

The third step involves the creation of a background image, where we read 

the video file and randomly select 35-50 frames. Then, the median frame 

from this selection is calculated, which serves as the background model. 

Finally, the initial four consecutive frames are subtracted from the 

background, as outlined in Eq(3.7), where 𝑀𝑂𝑖(𝑥, 𝑦)  presents moving 

objects in each frame. 
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𝑀𝑂𝑖(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) − 𝑅𝑖(𝑥, 𝑦) …… Eq.(3.7) 

 

𝑀𝑂(𝑥, 𝑦) = ∑ 𝑀𝑂𝑖(𝑥, 𝑦)4
𝑖=0  ………. Eq.(3.8) 

  

In the fourth step, the differences are accumulated as shown in Eq(3.8), 

which highlights the maximum displacement of an object within the 

sequence of frames. In the fifth step, a morphological opening and closing 

process is used to eliminate noise from the resultant image. This final image 

is represented in black and white, where the black background surrounds the 

objects, and the displacement of these objects is indicated by connected 

white pixels. Further, contour detection is used to identify object boundaries 

within the binary mask, using the “cv2.findContours” function from 

OpenCV. These contours are essentially lists of coordinates outlining object 

boundaries. To reduce memory usage and remove noise, small contours are 

filtered out with areas less than 500 or 1000 square pixels. The remaining, 

larger contours have their minimum area bounding rectangles extracted and 

are visualized, offering a basic estimation of the waste objects' positions and 

sizes. 

3.2.3.3 Waste Quantity Calculation and Composition Analysis  

To calculate the area of number of detected moving object (𝑛), the ratio of 

non-zero white pixels (𝑃𝑥_𝑊𝑖) within in the frame and the total number of 

pixels (𝑃𝑥_𝑇 ) in the frame are computed. This task is completed using 

“cv2.countNonZero()” function and calculating (image height x image 

width). This ratio effectively quantifies the proportion of the frame occupied 

by the objects. Summing these individual ratios provides the total quantity 

of waste detected, as presented in Eq(3.9). This step is crucial since the 

detections made by the YOLOv8x model (section 3.2.2) also provide width 

and height information for the thirteen waste classes. The areas obtained 

from the bounding boxes calculated using Eq(3.10), by the YOLOv8x 
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model for every detected object i of type j, are compared to the areas 

calculated through the frame differencing algorithm. This comparison helps 

quantify the waste composition percentage within the incoming waste 

stream compiled using Eq(3.11). 

 

𝐴𝑟𝑒𝑎𝐹𝐷 = ∑
𝑃𝑥_𝑊𝑖

𝑃𝑥_𝑇

𝑛
𝑖  ……… Eq.(3.9) 

 

𝐴𝑟𝑒𝑎_𝑌𝑜𝑙𝑜𝑖𝑗 = ∑ 𝑊𝑖𝑗  𝑥 𝐻𝑖𝑗
13
𝑖𝑗  ………. Eq.(3.10) 

 

%𝐶𝑜𝑚𝑝𝑖= 
𝐴𝑟𝑒𝑎_𝑌𝑜𝑙𝑜𝑖

𝐴𝑟𝑒𝑎𝐹𝐷
 ……… Eq. (3.11) 

 

𝑀𝑊𝑖 = (%𝐶𝑜𝑚𝑝𝑖 𝑥  0.00397)  𝑥  𝐵𝐷𝑖 ………. Eq.3.12) 

 

 

𝑀𝐷𝑖= 
𝑀𝑊𝑖 𝑥 (1−𝑀𝐶𝑖 )

∑ 𝑀𝑊𝑖 𝑥 (1−𝑀𝐶𝑖 )
13
𝑖

    ………….Eq.3.13)  

 

In addressing the volume-to-mass conversion, the method adopted involves 

utilizing computer vision methods to acquire the percentage distribution of 

waste composition by volume for all waste classes. This distribution is 

subsequently applied to the cumulative volume capacity of tray (0.00397 m³) 

in which the samples are systematically collected and the known bulk 

density of waste classes, as outlined in Eq(3.12). The outcome of this 

procedure yields estimations of the wet mass (MW) for all waste classes i. 

Subsequently, Eq(3.13) is used to perform the conversion from wet mass to 

dry mass (MD). This conversion process entails multiplying the calculated 

wet masses by the complement of post-trommel screened moisture content 

probability distributions and then dividing the result by the total sum of the 

calculated dry mass proportion for all waste components. This process 

yields the composition (%) by mass. This comprehensive calculation 
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accounts for all waste components and their respective moisture content’s 

seasonal variations. Appendix (A15) includes the data collected for density 

and moisture contents. 

3.3 Implementation Results & Discussion 

This section presents the results of experiments conducted in the current research. 

Firstly, the software application and interface information are presented, in addition to 

the waste composition analysis results. Next, the performance of the YOLOv8x model 

in the waste characterization system is assessed. Afterwards, the system is tested and 

validated on new data to confirm its performance. Then, the waste characterization 

results obtained are compared to ones obtained from analysis in a laboratory following 

current MRF practice. Finally, we conclude by highlighting the significance of the 

entire system. 

3.3.1 HMI Application 

The trained YOLOv8x waste detection model is saved in ONNX format, which is an 

open and versatile format for machine-learning models. ONNX facilitates the seamless 

deployment of models across different machine learning frameworks and tools. The 

model is integrated with an application built using Flask framework and Python. Figure 

3.4 shows the layout of the application. The graphic user interface offers three input 

options: 'Choose video file,' 'Confidence interval slider,' and 'Play button.' When the 

application is initiated, the user selects a video for analysis, configures the confidence 

interval for object detection, and initiates the analysis by clicking the 'Play button.' The 

software then begins processing the video using the framework depicted above in 

Figure 3.2. The outcomes are presented through pie charts, showcasing in real-time the 

percentage breakdown of identified waste objects, alongside additional charts that 

reveal the detected waste types at each second of the video and the total percentage of 

detected/undetected waste. For waste detection and operational planning purposes, this 
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information is of significant value. This approach helps efficiently determine the 

characteristics of waste in a timely manner and take preemptive measures at early stages. 

Such measures are instrumental in decreasing the amount of inert and compostable 

waste in RDF feedstocks, thereby mitigating potential economic losses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Detection Model Results 

The performance of the model based on the YOLOv8x algorithm is evaluated using a 

validation dataset. This validation set consists of 15% of the total images, comprising 

an equal distribution of 45 pictures across all thirteen classes. The performance is 

presented in the form of a confusion matrix and uses common metrics for measuring 

the performance of deep learning models presented in the literature, such as overall 

accuracy, precision, recall, and F1 scores by Khan et al.[178]. As shown in Figure 3.5, 

the model exhibits susceptibility to confusion when distinguishing between certain 

waste classes. For example, it has categorized seven instances of rigid plastics among 

Figure 3.4: Layout of the waste characterization application 
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film plastics (2), glass (3), and metal (2). This confusion may stem from challenges in 

recognizing distinct waste type patterns and delineating specific contour features. Table 

3.1 shows that the model has achieved an overall accuracy of 70% ,which is calculated 

using equation 3.14 , average precision of 76.2%, average recall of 69%, and average 

F1-score of 72.2%. The performance results for the 'Film Plastics' class are 

comparatively lower than those for the other classes. This disparity is attributed to the 

sensitivity of object detection approaches to occlusion and transparency which occurs 

more often with film plastics than for other classes. This model is built from the ground 

up, and to improve the performance of the 'Film Plastics' class, it could be beneficial to 

increase the number of images specifically for this class. It is concluded that detection 

models are inherently more complex compared to classification models. This 

complexity arises because an image may contain multiple objects, each of which can 

belong to the same or different classes. 

 

Accuracy =
Number of images correctly classified

Total images
   …………………  Eq.3.14) 

 

 

Table 3.1: Results of waste detection model  

Waste 

Components 

Precision Recall mAP50 mAP50-

95 

F1 Score 

Batteries 0.78 0.66 0.69 0.40 0.71 

Cardboard 0.69 0.83 0.79 0.59 0.75 

Diapers/Napkins 0.84 0.63 0.71 0.52 0.72 

Film Plastics 0.45 0.42 0.39 0.29 0.43 

Food waste 0.76 0.58 0.61 0.43 0.66 

Glass 0.93 0.70 0.84 0.63 0.80 

Metals 0.86 0.90 0.90 0.72 0.87 

Other Combustibles 0.85 0.51 0.62 0.44 0.64 

Other Noncombustible 0.72 0.63 0.65 0.47 0.67 

Paper 0.79 0.73 0.73 0.49 0.76 

Rigid Plastics 0.72 0.73 0.76 0.65 0.72 

Wood 0.77 0.80 0.83 0.57 0.78 

Yard waste 0.75 0.83 0.79 0.58 0.79 

Average 0.762 0.69 0.716 0.52 0.722 

Overall Accuracy 70% 
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3.3.3 Waste Characterization Results 

The average accuracy of the predictions across all waste classes is 70%. The preceding 

error in accuracy primarily stems from video frames with too many correct but 

excessively predicted boundary boxes. To address this, confidence filters can be used 

to minimize bounding box regression and eliminate bounding boxes with low 

confidence levels. This approach ensures that  the most reliable object detections are 

considered while reducing the impact of overly predicted boundary boxes. In contrast, 

the number of  frames containing incorrectly characterized objects is limited and did 

not significantly contribute to incorrect results. The low accuracy challenge seemed to 

arise from a need for more iterations and the presence of particularly challenging 

examples for the detection model, which required additional time to adapt. Also, the 

Figure 3.5: Confusion matrix of waste detection results 
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impact of the learning rate can be explored in the future for such applications.  

In addition, mAP@50 is used as a metric to evaluate models’ errors on the validation 

set. Notably, after 200 epochs, the fluctuations in the average precision error across all 

classes remained relatively constant, fluctuating around 0.71. Figure 3.6 shows the 

outcomes of the waste characterization application developed in section 3.3.1. Videos 

are taken from MRF conveyors, capturing different fractions of waste materials as they 

fell after trommel screening. These videos are then loaded onto the application for 

analysis. Overall, it can be observed that the application performed reasonably well 

under various conditions achieving a processing speed of approximately between 25 

and 29 FPS (frames per second) enabling real-time performance with not substantial 

computational power. It's important to note that  dominant factors influencing the 

accuracy of predictions are the lighting conditions, the height of camera placement and 

the monitoring durations. Brighter spaces tend to yield more accurate waste 

composition estimations. Likewise, it was determined that placing the camera at a 

height between 24 to 28 inches is ideal for handheld devices. Additionally, it is observed 

that longer video durations increased the requirement for motion compensation, which 

is computationally intensive but provides high accuracy. To validate the results, a 

limited number of waste samples are collected directly from the conveyors and sent to 

the lab for analysis. Operational constraints limited the number of samples that could 

be analyzed in the lab. 

 

3.3.3.1 Validation of the Estimated Waste Composition  

For validation purposes, samples of single-family and multifamily waste residues 

which were collected on as received basis are gathered from the conveyor and after 

their computer vision inspection are sent to the lab for analysis, as discussed in section 

3.2.1.2. The lab typically provides results of the experimental analysis on a dry basis 

after an extended duration. Upon comparing the results obtained from the proposed 

application (using Eq 3.9 to Eq3.13) on dry basis and those from the lab, it is observed 

that the mean absolute error (MAE) between the experimental waste composition 
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values from the lab and the estimated value from the application is reasonably low. 

Given that RDF is a heterogeneous mix of various materials that vary in composition 

and volume, achieving a 70% accuracy in predicting its characterization with minimal 

error is considerably positive. This accuracy value gives a holistic view of the 

developed model’s performance across all waste categories, indicating that 70% of all 

waste items were classified correctly by the model. Figure 3.6 also displays the mean 

absolute error in the estimated values for thirteen waste types across all the collected 

samples. The larger error displacement in the estimation arrived from sample 3 for 

classes like film plastics, rigid-plastics, and paper. Sample 4 also showed estimation 

variations for paper, and rigid -plastics. When these waste types are grouped into the 

three high-level categories, it becomes evident that the difference between the estimated 

and observed values is minimal. This is shown in Table 3.2. The combustibles category 

accounts for the largest portion of compositions in both the laboratory and the Smart-

Sight model, followed by compostable materials. A detailed breakdown of each waste 

component is provided in Appendix (A4). 

 

Table 3.2: Comparison between the experimentally observed and estimated waste composition values,  

assessed for three high-level waste categories. Waste components details are presented in Appendix (A5) 

Categories Lab 

Resul

t S1 

Prediction 

S1 

Lab 

Result 

S2 

Predicti

on S2 

Lab 

Result 

S3 

Predict

ion S3 

Lab 

Result 

S4 

Predictio

n S4 

Inert 0.39% 3.06% 0.27% 1.38% 2.84% 1.83% 1.41% 0.00% 

Combustibles 75.80% 84.48% 66.96% 89.00% 94.46% 95.65% 73.75% 80.03% 

Compostable 23.82% 12.47% 32.76% 9.52% 2.70% 2.52% 24.87% 19.97% 
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3.3.4 Parameters of Influence and Limitations 

The proposed approach is specifically designed for waste streams where individual 

items can be detected on a conveyor. It operates under the assumption that every waste 

item on the conveyor can be accurately characterized under normal conditions. From 

Figure 3.6: Prediction results of the proposed waste characterization application tested for  indoor 

industrial  environment. It also illustrates the percentage of error in estimating waste composition for 

four samples, covering thirteen waste components(-Batteries-1, Cardboard-2, Diapers/Napkin-3s, Film 

Plastics-4, Food Waste-5, Glas-6s, Metals-7, Other Combustibles-8, Other Noncombustible-9, Paper-10, 

Rigid Plastics-11, Wood-12, Yard Waste-13) 
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the algorithm’s perspective, the frame differencing technique brings some limitations. 

For example, it is only tailored for detecting moving objects in videos and may require 

a waiting period to establish background models, most likely not limiting its real-time 

capabilities. However, this technique works well with stationary cameras but is less 

practical for moving ones and close objects may be falsely identified as a single object, 

posing a challenge.  

Similarly, for successfully implementing two-frame motion estimation, determining the 

best parameter values for the cv2.calcOpticalFlowFarneback function necessitates 

experimentation and a deep understanding of the unique characteristics of acquired data 

and detailed objectives. Figure 3.6 shows the result of the applied motion compensation 

technique using two polynomial expansions with the following parameters, pyr_scale: 

0.5, levels: 3, winsize: 15, iterations: 3, poly_n: 9, poly_sigma: 12, flags: 0. Future 

studies can explore optimizing these parameters for enhancing the waste 

characterization application, but the reported parameters have been optimized in this 

study empirically 

3.3.5 Comparison With Other Studies 

In this chapter, the authors have extended the application of work from Carolis et al., 

2020[106] by conducting a comprehensive analysis of thirteen low-level and three high-

level waste categories. It utilizes the latest version of the YOLOv8x object detection 

algorithm. The achieved average precision (AP) for waste characterization is 0.76, and 

the mAP@50 is 0.716, which represents an improvement compared to the 0.68 

precision and 0.59 mAP@50 in previous study by Carolis et al. for similar source of 

waste material. In contrast to the study conducted by Cuingnet et al.[83], this chapter 

introduces an alternative method for detecting metals, including aluminum with an 

average precision of 0.86, thereby extending the scope of prior research. In waste 

management, factors such as the configuration of material recovery lines, parameters 

for the separation of material recovery units, and the composition of municipal waste 

used for producing targeted materials can profoundly influence the quality of RDF 
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produced, Fabrice et al.[18]. This uncertainty in establishing quality standards for RDF 

is highly relevant to operational decisions within the plant. The new proposed method 

in this chapter contributes to reducing reliance on laborious and time-consuming efforts 

required for the waste characterization of RDF material providing accurate, immediate, 

and continuous information on waste composition. The new method integrated with 

previous work from Junaid et al., 2023a[81] will facilitate improved decision-making 

at tactical and operational levels within the material recovery facility. 

3.4 Conclusion 

This study proposes a unique waste characterization system for detecting single and 

multifamily waste for enhancing quality of RDF-3 production. The latest YOLOv8x 

object detection algorithm is employed to train a model capable of detecting inert, 

combustible, and compostable waste types with an overall accuracy of 70% and 

mAP@50 of 0.716. The proposed system demonstrates both accuracy and flexibility, 

making it suitable for real-world scenarios without being hindered by indoor 

environments. The integration of motion compensation and frame differencing 

techniques in this study considerably alleviates challenges commonly encountered in 

waste detection applications. While these algorithms effectively solve the identification 

of physical composition problem in terms of quality RDF production, the investment to 

obtain the optimized solution remains high. Hence, imperative algorithmic 

enhancements are needed to achieve high-quality solutions more efficiently, reducing 

computational costs.  

From the algorithm’s perspective, the frame differencing technique brings some 

limitations. For example, it is only tailored for detecting moving objects in videos and 

may require a waiting period to establish background models which may limit its real-

time capabilities. However, this technique works well with stationary cameras but is 

less practical for moving ones and close objects may be falsely identified as a single 

object, posing a challenge. In the study, a notable disparity in classification primarily 

emerged when dealing with plastics and rigid plastics. It is imperative to acknowledge 
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the importance of discriminating among various types of plastics, given their marked 

differences in calorific values and chlorine content. This facet of this research offers 

promising opportunities for future extensions and investigations. One particularly 

promising avenue worth exploring is the utilization of near-infrared spectroscopy, 

renowned for its efficacy in distinguishing between various polymers based on their 

distinct spectral signatures. Embracing this approach could lead to exciting 

advancements and progress within our research in this field.  

The proposed system in this study offers valuable assistance to waste management 

practitioners interested in implementing AI techniques for waste characterization and 

integrating smart solutions into their material recovery facilities. This system not only 

aids in the accurate detection of waste but also facilitates early-stage decision-making 

regarding potential mitigation strategies for waste compositions unsuitable for RDF 

production. 

In the upcoming chapter, the outputs pertaining to the physical compositions of waste 

from the developed tool will be utilized as one of the inputs for the next stage, which 

addresses the second objective of the study. This subsequent chapter focuses on creating 

a simulation model for a material recovery facility that produces RDF-3. The 

simulation's objective is to facilitate revisions in strategic, tactical, and operational 

decisions by integrating diverse waste treatment technologies and accounting for 

uncertainties that impact its performance. 
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Chapter 4: Quality RDF-3 Production 

Modeling in a Material Recovery Facility 

4.1 Overview 

This chapter considers creating a simulation model of a material recovery facility 

producing RDF-3, which can support revisions in the strategic, tactical, and operational 

level decisions integrating different waste treatment technologies considering varied 

uncertainties affecting its performance. The developed model supports revisions in the 

strategic, tactical, and operational decision levels and is integrated with varied 

uncertainties like probability distributions of in-feed waste compositions, moisture 

content, and calorific value of individual waste components, affecting the energy 

performance of an MRF. The model provides improvements to operating conditions 

and enables prediction for quality standards of RDF, enabling the waste management 

authority to meet their outlined quality specification for the final product. The 

validation of the model is conducted in a way, where the quality measures of the final 

product collected from an MRF are compared with the estimated values those from the 

simulation. The comparison reveals that precision in results from the developed model, 

in all performed tests is consistent with actual observed results, inferring the developed 

simulation model as a viable tool for estimating quality measures for RDF. The 

foundations of the model are based of assumptions like emphasis on general 

representation but not physical properties of MRF, only selected sets of uncertainties 

are studied, and variations in the operating conditions can affect estimated quality of 

RDF. 
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4.2 Methodology 

4.2.1 Description of input feedstock and mechanical treatment plant 

The composition of the pre-sorted municipal waste, which is further blended to the 

RDF-3 fraction from 2 to 5 centimeters, is based on nine major waste categories as 

defined by Ali et al.[169]. For this study, the composition includes paper (6.48%), rigid 

plastics (5.72%), film plastics (20.98%), food waste (organics-30%), yard waste 

(1.30%), diapers and napkins (14.68%), and other combustibles (15.85%). The 

remaining 5% composition is a mixture of glass and non-combustibles materials (see 

Appendix (A2)) for a complete detailed description of the waste composition). The 

waste characterization study presented by Ali et al.[169] provides the method to 

perform the sieve analysis and composition analysis for categorizing waste types. Such 

a MSW composition first passes through a mechanical sorting line to separate bulky 

waste, non-combustible material, and hazardous waste. Afterwards, further mechanical 

processing includes a shredder, a separator of metals and a drum screener. The output 

from a drum screener passes through a wind sifter where heavies fall, and fines pass 

through the eddy current separator to get rid of electromagnetic materials. Then the 

processed material is re-shredded to fraction size in the range of 2 cm to5 cm. The 

material type retrieved after the final stage is dried to achieve the desired moisture 

content in the final product and now referred as RDF-3. The RDF-3 samples collected 

at the final stage of the process are prepared for lab analysis using ASTM (E829). They 

are processed in the lab for carrying out ultimate analysis to explore the potential heat 

value, physical and chemical composition of those samples. The ultimate analysis is 

done in accordance with ASTM 5373 and ASTM D4239 – 18 methods, whereas the 

calorific value calculation is based on ASTM D5865 method, measured with a bomb 

calorimeter. The residual moisture in the RDF-3 sample is measured using 

ASTM(E949-88) method. 

 



 

87 

 

 

4.2.2 A simulation modeling for identifying best-operating conditions 

Waste management activities are best planned once it’s identified which quality 

standards are to be used and secondly, under which operational or technical conditions 

a plant produces high-quality RDF. Based on these two factors, a simulation modeling 

framework shown in Figure 4.1 is developed in this study for the sustainable production 

of RDF. The two important aspects in the proposed framework are the quality standards 

and the operating conditions. First, by adhering to standards RDF is produced according 

to a defined quality assurance procedure, thus it can further become a certified “solid 

recovered fuel” (SRF-quality trademark). Finally, operational or technical conditions 

represent the different treatments that are deployed to process incoming wastes, like a 

mechanical treatment or a mechanical-biological treatment [9], [113]. Only mechanical 

treatments are within the scope of this study. 

A generic form of decision-making in the biomass to RDF workflow is presented in 

Table 4.1, showing the interdependence of the biomass supply chain operations. The 

decisions taken in the upstream, like the selection of biomass for converting it into RDF, 

the choice of biomass conversion technology, or the facility’s capacity among others, 

affect the downstream operations massively. Thus, the biomass supply chain should be 

robust enough to mitigate uncertainties and adapt to varied operational conditions. This 

is achieved by modeling uncertainties in the decision-making process and selecting 

only those residual fractions from municipal solid waste, providing high-quality RDF 

fuel with stable physical, chemical, and environmental specifications. Based on the 

conventional framework of waste management activities, the proposed method 

constitutes an extension to facilitate the integration of an assessment of selected set of 

uncertainties for adding value in biomass to the RDF supply chain. The new approach 

demonstrates the addition of the above factors using the simulation modeling technique. 

However, the RDF distribution and transport related decisions are out of scope in this 

study. 
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Figure 4.1: A simulation modeling framework for identifying best-operating conditions and quality 

standards for RDF 
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Table 4.1: In scope decisions making hierarchies of supply chain planning and design for producing RDF, 

after [17]. 

 

The five major parameters for measuring the performance of the MRF are outlined in 

Figure 4.1 identifying plant efficiency, mass balance, moisture content, calorific value, 

and ash content, as estimated while volatile content and purity are tagged as calculated 

parameters. The calculated parameters are derived from the estimated parameters of the 

simulation model. 

Material separation of municipal waste in a materials recovery facility is carried out 

using a sequence of mechanical units. In this context, a network flow modeling 

technique by Testa et al. can be applied in designing a simulation model for modeling 

the RDF production in a general material recovery facility (MRF) to evaluate its 

performance [17]. A basic representation of this system modeling technique consisting 

of individual processing units is shown in Figure 4.2, where square boxes denote 

processes of the MRF connected in a sequence, and the circles represent the input and 

final outputs of the system. This approach serves to organize operating units of an MRF 

into four types: mixing units, sorting units, splitting units, and comminution. A list of 

general operating units in MRF includes a primary shredder, ferrous separator, eddy 
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current, wind sifters, waste screens, secondary shredder, dryer, and surge bin [9], [17], 

[18], [80]. 

These units separate out our desired target and undesired non-target material 

concentrations based on the following: 1) probabilistic modeling, which can describe 

units in the form of mass balance equations and are considered in the scope of this study; 

2) deterministic modeling, which focuses on physical characteristics of the materials 

and considered out of the scope for this study. 

These units separate out our desired target and undesired non-target material 

concentrations based on the following: 1) probabilistic modeling, which can describe 

units in the form of mass balance equations and are considered in the scope of this study; 

2) deterministic modeling, which focuses on physical characteristics of the materials 

and considered out of the scope for this study. 

 

 

Figure 4.2:Building blocks of multi-output units represented by network flow modeling technique, 

adapted from after [17] 

 

Karine et al. modeled a material separation process of MRF using the network flow 

modeling technique [80]. The separation process was modeled on a per-material basis 

with an empirically derived separation parameter. Based on that, it presented the 

performance evaluation of MRF depending on three parameters: 1) assembly line 

configuration, 2) parameters of separation, and 3) input material stream composition. 

Using this technique, it was illustrated how to measure the performance of an MRF by 

calculating the plant efficiency, recovery, grade (concentration of desired material), and 

associated business costs. It also studied the impact of uncertainty to account for 

variations in input stream waste composition on the performance. However, this study 

had a limited number of data points (nine samples) defining the uncertainty distribution 
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for each material component feeding into the model. Adding more observations with 

outlined operating conditions can support the further refinement of the performed 

sensitivity analysis in the study. The inclusion of uncertainty in such type of modeling 

is present in the literature where stochastics and probabilistic tools are implemented for 

creating simulation scenarios like the Monte Carlo method for sampling from 

probability distributions [42]. 

Similarly, a similar network flow modeling technique was deployed to assess the limits 

of partition coefficients previously published in the literature for modeling the sorting 

efficiency of unit operations [18]. By using the simulation modeling approach in the 

study, the purity and recovery of the recovered materials were calculated as the MRF 

sorting efficiency parameters to evaluate the overall performance for each unit under 

consideration in the research. Units like air classifiers and ballistic separators have an 

influence on the recovery and purity measures for the RDF stream. The intensity of this 

influence variates by the choice of material separation configuration of the trommel 

unit used upstream. However, the trommel is out of scope in the context of this study. 

 

4.3 Mathematical Modeling 

In this study, the network flow modeling technique is used to design and compute the 

material flow in the system [17]. A waste processing system comprised of various multi-

output units where each node can be represented as a unit (x), and (x,y) is a directed 

flow of material (M) from unit (x) to unit (y). The multi-output streams of each unit are 

considered two in this study. The flow of material can be represented as ε, expressing 

set of all nodes for all input and output units in the system. The following are the derived 

mathematical models for the four types of operating units considered in the scope of 

the study for modeling an MRF. 
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4.3.1 Sorting Units 

A simple representation for modeling sorting units is shown in Figure 4.3, where for 

any mixture of material (𝑀), a mass flow rate of (Px
M), in the input stream (tons per 

hour) going to unit (𝑥) is defined. Unit (𝑥) processes the input material stream and 

afterward separates the material into two streams. These two streams could be tagged 

as the target unit (𝑦) stream (having the desired material concentration) and the non-

target unit (𝑘) stream (having the undesired material concentration). The mass flow of 

material in the target unit is equal to (sx,y
T ∗  Px

T ) where (sx,y
T ) is called the separation 

coefficient or separation parameter. So, a unit (𝑥) diverts a fraction (sx,y
T ) of its flow to 

target unit (𝑦 ) and diverts a fraction (sx,k
N  ) of its flow to non-target unit (𝑘 ). The 

separation parameter value should be between 0 and 1. Each input node feeds a stream 

to the initial sorting unit. The inputs to each sorting unit comprise an input stream from 

an input node and an output stream from other sorting units. Every sorting unit can 

generate multiple output streams, as described before. There is no output flow from an 

output node as it is designated as a collection node. 
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Figure 4.3:Scheme of a multi-sorting unit: sorting an input stream mixture of target and 

non-target materials into two streams. 
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(Px
T) is the mass flow rate to unit (x) for target input material (m), (Px

N) is the mass flow 

rate to unit (x) for a non-target input material (m), sx,y
T  Px

T is mass flow in the output 

stream to target unit (𝑦), sx,k
N  Px

N is mass flow in the output stream to non-target unit. 

For any given MRF, a steady-state flow rates of each material through each unit can be 

computed, provided if the quantity of input material, the sorting efficiency of each unit 

and the assembly line configuration are known. To compute the flow of materials 

though each sorting unit, the mass balance equation with external flow rate of material 

can be represented as: 

 

Px
m = μy

m + ∑ sx,y
m Py

m

i
 …… Eq.(4.1) 

 

Where sx,y
m = 0 if there is no connection between (x) and (𝑦). Similarly, μy

m ≠ 0, 

only if an input unit feeds a sorting unit. For steady-state flow of each material through 

each unit, the system of linear equations for all units in a system can be presented in 

matrix notations as shown in the equation below. 

 

P̅m = μ̅m + (Sm)TP̅m ……..Eq.(4.2) 

 

Where (P̅m) is the flow vector of material (m), (Sm)T is the sorting matrix, which is 

system-level sorting matrix of material (m) that unit (x) receives in input and sends to 

unit (𝑦), and (μ̅m) is the input vector. Solving the system of linear equations one can 

derive the final steady-state equation of the sorting unit from obtaining the flow rate at 

each unit for each material (m) as: 
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P̅m = (I − (Sm)T)−1μ̅m ……..Eq.(4.3)  

 

 

4.3.2 Mixing Units 

These units combine the input material flow to a single flow. 

 

Px
out = ∑ 𝑃𝑦(x,y)∈ ε

  ……..Eq.(4.4)  

 

 

4.3.3 Splitting Units 

This type of units divides the input flow of material into output stream having same 

material composition based on the separation parameter. 

Px,y
out = sx,y Px  …….. Eq.(4.5) 

 

4.3.4 Communication Units 

These units modify the size of inflow of material by shredding its components, thus 

mass balance is unchanged. 

 

Px,
out = Px   …….. Eq.4.6) 

 

4.3.5 Final Mass Balance 

Flow of each material type through all types of output unit (x) as follows, 

 

Px = ∑ (Py)
Mix

(x,y)∈ ε
+ ∑ sx,y

m (Py
m)

Sort

(x,y)∈ ε
+ ∑ sx,y(Py)

Split

(x,y)∈ ε
 …….. Eq.(4.7) 
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4.3.6 Dryer Unit Modeling 

A dryer unit is required to ultimately increase the caloric value and decrease the 

moisture content of the RDF feedstock. The use of dryer is highly dependent on the 

demand requirements of the final RDF fluff and the selected market for its sale. Various 

types of dryers can be categorized generally into continuous or batch dryers at a high 

level. The drying methods used by the dryers include bio-drying, thermal drying, and 

dewatering. In this study the scope is limited to the Belt conveyor type of the dryer 

using the thermal drying method which consist of some sections with circulating or 

static fans and heating coils in continuous processes. Establishing an experimental test 

for reaching the feasible level of RDF drying was not possible due to operational 

restriction in this study. For this reason, a vendor is consulted for captivating guidelines 

regarding optimal RDF final moisture content, and they recommended the moisture 

content of 14%wt. The mass balance of the dryer unit is shown in Figure 4.4. 

 

MWet . NWet= Mdry . Ndry + Mevp . Nmoist   …….. Eq.(4.8) 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: General mass balance model for the dryer (drying process). 

 

Where (M_Wet) is the mass of wet RDF coming into the dryer, (N_Wet) is the moisture 

content of the wet RDF (wet basis), (M_evp) is the mass of evaporated moisture, 

(N_moist) is the moisture content of the evaporated moisture, (M_dry) is the mass of 

dry RDF leaving the dryer, and (N_dry) is the moisture content of the dried RDF mass 
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(wet basis). 

The heating value of the refuse-derived fuel can be used to quantify the energy 

generated by combustion with air following standard temperature and pressure 

conditions (STP-250C and 101.3 kPa). In this context, the state or phase of water in 

feedstocks defines the quantity of heat released during the combustion of RDF fuel. 

The first stage of combustion exhausts the RDF into gas and water vapors. The value 

of the total heat release during this stage is termed as low heating value. In the second 

stage, if the water vapors are condensed to a liquid state, then extra energy can also be 

extracted, and the total heat release is termed as high heating value. The high eating 

value will be estimated using the simulation model and from the collected observed 

samples for HHV of the RDF. The low heating value of the RDF can be estimated using 

the following equation [179]. 

 

LHV =  HHVD(1 − M) − 2.44M …….. Eq.(4.9)   

HHVD =  HHV/(1 − M) …….. Eq.(4.10)  

 

Where (M) is the moisture content of the RDF on wet basis and (HHVD) is the high 

heating value on dry basis. The constant of 2.44 is the latent heat for water at STP 

measured in MJ/Kg [180]. 

 

4.4 Simulation Model and Implementation 

This study applies the material separation coefficient modeling technique to a novel 

material recovery line configuration shown in Figure 4.5. The modeling of this 

configuration is novel in a sense as it provides deep insights on conversion of RDF-3 

to energy applications besides providing an extension to the research conducted by [18], 

[80]. Both modeled MRF configurations, which had different functions and didn’t put 

emphasis explicitly on energy from waste applications.   
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The RDF facility used as a case study in this research planned to commission a dryer 

unit to be complacent with the required final product specifications. Therefore, the 

inclusion of dryer unit in the material recovery line configuration adds more value to 

understand its impact on the quality parameters of produced RDF-3 or SRF product. In 

this context, analytically estimating performance parameters of the RDF plant like 

(plant efficiency, mass balance, average moisture content, gross calorific value, ash, 

volatile content and purity) using data originating from such configurations is unique 

and, to authors best knowledge, not used for quality estimation of RDF-3 material. The 

simulation of this model is developed in Simphony.net, and the model results are 

validated with the actual laboratory results within the MRF, where the samples of the 

RDF are analyzed. 

 

4.4.1 Model Inputs 

The model’s schema comprises units shown in Figure 4.5, where the inputs to the model 

are the probability distributions of in-feed waste compositions, moisture content and 

calorific values of individual waste components. The waste components include paper, 

rigid plastics, film plastics, food waste, yard waste, diapers and napkins, other 

combustibles, glass, and other non-combustible materials. The characteristics of such 

waste stream changes every season due to its heterogeneous nature, that is why a four-

season dataset (containing 30 observations) is collected to record variability in waste 

composition, moisture content and calorific values as presented in Appendix (A1). The 

Monte Carlo method is used in the simulation for sampling from probability 

distributions to provide values of the performance parameters of MRF. 

Besides introducing uncertainties in the waste composition and its associated 

characteristics as inputs in the simulation model, a combination of relevant strategic, 

tactical, and operational level decisions are also introduced in the model, as shown in 

Table 4.2. In the supply chain context, uncertainty is modeled depending on data 

availability. Generally, the nature of uncertainty can be distinguished as randomness, 
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epistemic uncertainty, and deep uncertainty [114]. Deployment for each type of these 

uncertainties depends on the quality of information present, and this study guides on a 

further selection of suitable optimization approaches and uncertainty representation. 

Table 2 demonstrates the taxonomy of uncertainty sources and the selected decisions to 

measure their effect on the performance parameters of MRF using a scenario-based 

stochastic simulation modeling technique. 

 

Figure 4.5: MRF assembly line configuration used in the simulation showing selected material 

composition as model input and performance evaluation parameters as model output 
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Table 4.2: In scope decisions making hierarchies with descriptions. 

  

# 

Decision 

Type 

Decision Description 

1 Strategic Selection of waste 

composition for 

producing RDF 

Utilize various physical composition, moisture 

content and calorific value ranges of MSW as 

input to the model 

2 Strategic Technology upgrades Adding new units in the RDF production line 

e.g. dryer  

3 Strategic RDF market selection Consider various market value potential for the 

sale of RDF /SRF 

4 Tactical Technology performance Utilize various ranges of unit separation 

coefficients as input to the model 

5 Operational Biomass yield/ Quality Utilize various quality standards as evaluation 

criteria to measure the quality of RDF 

produced 

 

4.4.2 Model Process Flow 

The mass flow from each of the units in the MRF configuration shown in Figure 4.5, is 

diverted to target and non-target units based on the separation parameter values Q-FS, 

Q-WS, Q-WD, Q-ECT for each material. The targeted material stream falls into landfill 

bins whereas the non-target material stream moves on to the next processing stage and 

so forth until the final RDF fluff is produced. In the model, a dryer is one of the 

important components of the model because of its capability to reduce the moisture of 

the final RDF fluff and its use in the configuration depends on the predefined quality 

standards of the RDF to be produced. A sample run of the simulation is presented in 

Figure 4.6, showing the mass balance of the individual waste components flowing 

through each unit in the process. The sample run shows that a mixed waste stream with 

a mass flow rate of 39 tons per hour passes through the units. The concentration of 

individual waste components would separate out at the end of each process in a unit till 
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they reach the final stage of processing in the drying unit. The partition coefficient 

information was available from an RDF plant about few streams (waste components) 

passing through sorting units and provided a range of sorting coefficients. However, it 

was not possible to assess the internal sorting coefficients for all the operating units. To 

address this, sorting efficiencies from literature were adapted for building the 

simulation model. Table 4.3 shows the selected design separation coefficients of the 

units found in the literature and the adjusted coefficients (highlighted in yellow color). 

For units with available information from the RDF plant, a few of the coefficients were 

adjusted within provided range in the model based on a basic optimization problem 

solved to realize the mass balance helping identifying partition coefficients for all waste 

streams of the units. These partition coefficients can be updated based on experience 

(historical data) or experimental tests on each unit in future to study its effect on the 

quality parameters. 
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Figure 4.6: Simulation model of a MRF developed in Simphony.net and simulated mass balance with material 

recovery rates representing mass flow of individual waste components (in direction left to right) at each unit. 
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Table 4.3: Unit separation co-efficient for waste components, after [30], [80], [181], [182] 

 

4.4.3 Model Performance Metrics 

Following are the parameters calculated by the model to measure the performance of 

the MRF: 

4.4.3.1 Overall Plant Efficiency 

It is the measure of how much infeed is properly sorted on mass basis, as 

described by [18]. 

      ∈ =
∑ 𝑓𝑦(𝑚)

𝑚
𝑚

𝑢𝑚
  …..Eq.(4.11)     

Where the single target output unit denoted by (𝑦) for material (𝑚), (𝑓𝑦(𝑚)
𝑚 ) 

is the mass sorted correctly for material (𝑚), and (𝑢𝑚) is the total input flow 

of material (𝑚). 

 

 

Units Paper 
Rigid 

Plastic 

Film 

Plastic 

Yard 

Waste 
Food 

Diapers 

& 

Napkins 

Other 

Combus

tible  

Glass 

Non-

Combusti

ble  

Shredder 1 1 1 1 1 1 1 1 1 

Magnetic 

separator 
         

Target 0.0007 0.0031 0.0144 0 0.0002 0.0147 0.0327 0.0022 0.9253 

Non-Target 0.9993 0.9969 0.9856 1 0.9998 0.9853 0.9673 0.9978 0.0747 

Waste Screen 
         

Target 0.1453 0.1037 0.1439 0.3048 0.1272 0.0095 0.1532 0.0014 0.011 

Non-Target 0.8547 0.8963 0.8561 0.6952 0.8728 0.9905 0.8468 0.9986 0.989 

Wind Sifter 
         

Target 0.02 0.02 0.061 0.02 0.02 0.02 0.15 0.105 0.582 

Non-Target 0.98 0.98 0.939 0.98 0.98 0.98 0.85 0.895 0.418 

Eddy Current 
         

Target 0.011 0.008 0.001 0.002 0.001 0.004 0.167 0.006 0.8 

Non-Target 0.989 0.992 0.999 0.998 0.999 0.996 0.833 0.994 0.2 
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4.4.3.2 Gross Calorific Value 

It is the amount of heat created when moisture in feedstock is converted 

into water vapor and back to the liquid state. This study uses the estimation 

equation presented by Roshni et al. [72] as shown in the equation below, 

 

𝐶𝑉 =
∑ 𝑊𝑟𝑗 

𝐶𝑉𝑟𝑗 
𝑛
𝑗=1

∑ 𝑊𝑟𝑗  

𝑛
𝑗=1

…….Eq.(4.12)  

     

Where (𝑛) is the number of individual material components, (𝐶𝑉𝑟𝑗) is the 

calorific value of each individual waste component (𝑗) on an as-received 

basis, (𝑊𝑟𝑗) is the raw weight of the individual waste component (𝑗). 

4.4.3.3 Moisture Content 

It represents the weighted average (in percentage) of the moisture content 

of the total waste available. 

𝑀𝐶(%) =
∑ (𝑊𝑟𝑗 

)𝑀𝐶𝑖𝑗 
𝑛
𝑗=1

∑ 𝑊𝑟𝑗
𝑛
𝑗=1

……Eq.(4.13)   

    

Where (MC𝑖,𝑗) is the moisture content of the individual waste components 

(𝑗) on a wet basis, and (W𝑟,𝑗) is the weight of the raw individual waste 

component (𝑗). 

4.4.3.4 Ash Content 

Roshni et al. presented a way to easily estimate ash content in mixed MSW 

using the following expression [72]. 

𝐴𝑆𝐻 (%) =
∑ 𝑊(𝑑𝑟𝑦)𝑗 

𝐼𝐶𝑗 
𝑛
𝑗=1

𝑊 (𝑤𝑒𝑡)𝑗
…….Eq.(4.14)    

   

Where ( 𝐼𝐶𝑗 ) is the inert content (in percentage) and is determined by 

separating the inert content of individual waste components from the sum 

of the total weight of the components, (𝑊(𝑑𝑟𝑦)𝑗) is the dry weight of the 
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corresponding component (𝑗), and (𝑊 (𝑤𝑒𝑡)𝑗) is the total wet weight of the 

component (𝑗). 

 

4.4.3.5 Volatile Content 

It is the material which could be transformed into vapors and the overall 

volatile content of the final product can be calculated as, 

𝑉𝐶(%) = 100 − (𝑀𝐶 − 𝐼𝐶)……Eq.(4.15)   

 

4.4.3.6 Recovery 

It measures the quantity of material (𝑚) collected at the target (desired) unit. 

 

𝑅𝑚  =
𝑓𝑦(𝑚)

𝑚

𝑢𝑚
 …….Eq.(4.16)   

 

4.4.3.7 Purity 

It measures the concentration of target material (𝑚) in output stream (𝑦), 

   

𝐺𝑚  =
𝑓𝑦(𝑚)

𝑚

∑ 𝑓𝑦(𝑚)
𝑚

𝑚
………Eq.(4.17)  

 

4.4.4 Model Outputs 

The yield of the produced RDF is determined in terms of material and energy recovery. 

Material and energy recovery are calculated based on mass and energy balances from 

input to output streams of the MRF. Mass balance is established and calculated based 

on the mass of input waste feedstocks and by weighing the output streams produced. 

The energy content of the RDF is calculated by multiplying the individual waste 

components heating values by their respective total mass. The output of the model is a 

compiled report showing values of the performance parameters for measuring the 

efficiency of MRF. In other words, it provides evidence under which operational or 
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technical conditions a plant produces high-quality RDF. The performance parameters 

included in this study are also shown in Table 4.4. The mass balance equation is derived 

previously as represented by Eq(4.7). 

4.4.5 Model Limitations and Scope 

The developed model is a simplification of the RDF production planning for supporting 

biomass supply chain planning. A series of assumptions have been made to simulate the 

RDF production in a MRF and as a result some of the processes in the developed model 

may not capture features of the real world. The modeling of units operating in a MRF 

focuses on its general representation but not physical properties. Similarly, the 

estimated quality of the produced RDF may be impacted by other processes of the MRF 

due to variations in operating conditions. Current assumptions and limitations of the 

model are listed below: 

 

a) The model computes the steady-state flow rates for each material going through 

each unit.  

b) The flows entering the system are assumed to be stationary. 

c) The units to have no storage capacity or build-up. 

d) The processes must operate under steady operating conditions. 

e) The value of the separation parameters is constant and independent of the input 

composition. 

f) No physical modeling of the units is considered. 

g) Each separation process is modeled on a per-material basis with separation 

coefficients available from the literature and identified from an RDF plant. 

h) Only selected set of the uncertainties affecting RDF production as shown in 

Table 1 are incorporated in the model due to limited data availability. 

i) Cost relevant to logistics, plant operations, or inventory holding, and 

environmental impacts of the RDF production are not covered in the model. 
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4.5 Model validation and evaluation 

The material separation simulation modeling technique is applied to a novel material 

recovery line configuration to model the RDF production and validated the results of 

the model with an RDF production plant in Edmonton. The output values from the 

model for five of the key quality parameters, calorific value, moisture content, ash 

content, mass balance and plant efficiency have been validated from the observed 

values. The comparison reveals that the simulation model results are representative of 

the observed results, inferring this model is a viable tool for estimating quality 

parameters for the RDFs. A data set that is normally distributed is crucial for the 

application of statistical analysis. In various applications, the collected quantitative 

dataset from an experiment is evaluated with a most suitable hypothesis test and a major 

assumption for this requires the data to be normally distributed [183]. This study tests 

the distribution of the output data sets from the model (experimental results) and 

observed samples for normality using both analytical and graphical methods. The check 

for normal distribution is being tested analytically using Kolmogorov-Smirnov Test or 

Shapiro-Wilk Test. However, Q-Q (quantile -quantile) plots and frequency histogram 

plots are the graphical methods used to validate normality of datasets [184]. Following 

are the two null hypothesis tests conducted in the study to discover whether two data 

samples are statically equal. The first null hypothesis (H0A) is, that both the data 

samples have similar probability distribution. The second null hypothesis (H0B) 

determines if there is no significant difference between the observed and experiment 

samples. To test the second null hypothesis (H0B), parametric test such as the T-test or 

Z-test or Levene test and non-parametric test such  Mann-Whitney U test are used, as 

both the samples are unpaired, unequal, and independent in this study. The following 

Figure 4.7 describes the workflow for model validation process, 
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Figure 4.7: Hypothesis testing for validating (observed vs. model output samples) performance 

parameters of RDF production. 

 

4.6 Results and Validation 

In this study, the quality-related results of RDF production holding paramount standing 

are estimated using a simulation model and compared with an operating MRF. The 

conducted comparison highlights the effect of the varying input waste composition, 

moisture content and calorific value on the performance parameters of an MRF. These 

parameters (calorific value, moisture content, ash content, mass balance, and plant 

efficiency) cover the production yield and physical and chemical properties of the RDF, 

which can support classifying an RDF as an SRF quality fuel based on EN-5539 and 

ISO-21640. However, the quality of the collected data from the MRF could be 

undermined by factors like, 1) the collected samples are small in mass and compared to 

total material mass flow of system, 2) the plant operations should be close to typical 

and sustainable without disruptions, and 3) the collected samples should incorporate 

seasonal variations in waste compositions as innumerable feedstock components could 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Sample 1: Observed Data 

Sample 2: Experiment Data   

H0A 

Rejected Retained 

H0A=Data Sets 

assume similar 

distribution   

H1A=Data Sets  do 

not assume similar 

distribution   

Both samples have 

similar distribution? 
H0B 

Rejected Retained 

H0B=There is  a  no 

significant difference 

between the samples   

H1B= Significant 

difference  between 

samples 

No significant 

difference between 

samples ? 

Analytical Method 

1.Kolmogorov-Smirnov Test 

Or  

2. Shapiro-Wilk Test  

 

Graphical 

Method 

1.QQ Plot 

2.Histogram 

Parametric method 

1.T-Test  or F Test or Levene Test 

Non-Parametric method 

1. Mann-Whitney U test 

 

 

Sample 1: Observed Data 

Sample 2: Experiment Data   

Normality Check Normality Check 

P-      ≤  .   P-value>0.05 
P-value>0.05 P-      ≤  .   
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be entering the MRF. The validation of the model is conducted for mass flow until the 

secondary shredder unit, as the performance data collection for the dryer unit is 

restricted due to MRF operations. Thus, the outputs of the dryer unit are estimated using 

analytical techniques. 

4.6.1 Plant Efficiency Estimation Results 

The first performance parameter of the simulation model evaluated is the plant 

efficiency, which focuses on the ratio of the correctly sorted material. The simulation 

model runs 100 times and the plant efficiency data collected from MRF and the 

estimated values from the model are represented in the histogram & Q-Q plot shown in 

Figure 4.8. Graphical techniques are used to assess how closely two samples agree to 

be normal, in a way that data points form a straight line in the Q-Q plot when samples 

are normally distributed. Most of the data points in both samples lie close to the center 

line and inside the 95% confidence interval suggesting both data samples are 

approximate to one another and can be considered statistically equal. Further, the 

analytical “Kolmogorov-Smirnov” method is used to validate what was perceived in 

the graphical method.  

The probability value (p) is greater than the 5% significance level suggesting that both 

samples can be assumed to be normally distributed. A two-tailed t-test for independent 

samples (equal variances not assumed) showed that the difference between 

experimental values and observed values was not statistically significant,  p = 

0.246 >0.05 with a 95% confidence interval. Thus, the null hypothesis is retained as 

both samples have approximately the same distributions and there is no significant 

difference found between the samples. The determination coefficient, R2, measures the 

goodness-of-fit in the regression analysis and the R2 value close to 1 indicates that the 

regression has explained a large proportion of the variability in the response. Whereas 

a number close to 0 indicates that the regression did not explain much of the variability 

in the response. Therefore, in our study R2 is 0.916 and 0.983, reflecting a good fit for 

the model. 
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In general, it was found that  assembly lines in an MRF should start with shredding to 

achieve high efficiency in the latter stages of the material recovery process but on the 

downside, it can result in frequent jamming of the shredding unit. Similarly, the use of 

a drying unit brings in the limitations of slow feed rates and can become a bottle neck 

in MRF system. This is because drying of solid wastes is challenging due to its varying 

heterogeneity, biological , physical, and chemical properties. A conveyor belt dryer 

system could remove the moisture efficiently to meet RDF specifications but its costly 

to operate and generally reduces plant efficiency. Another important factor affecting the 

overall plant efficiency is the sorting coefficients for each type of waste component 

getting sorted in ratios at each unit in an MRF. However, the scope of this study 

considers static separation coefficients for designing the simulation model. 

 

Figure 4.8: Comparison of graphical and analytical methods for plant efficiency parameter. 



 

110 

 

4.6.2 Calorific Value Estimation Results 

The estimated energy content from the model once graphically compared to the 

observed value suggests that both samples are approximately normally distributed as 

shown in Figure 4.9. The (p) value resulting from the Kolmogorov-Smirnov method for 

both samples are greater than 0.05, which provides analytical evidence for both samples 

to be statistically equal. A two-tailed t-test for independent samples (with equal and not 

equal variances assumed) is conducted reflecting p= 0.235 and p= 0.065 >0.05, showing 

that the difference between experimental and observed values was not statistically 

significant. The null hypothesis could be retained. The majority of the points in both 

cases reside inside a 95% confidence interval showing strong evidence for data samples 

to be normally distributed. The determination coefficient, R2 is 0.97 (observed data) 

and 0.967(experiment data), showing a good fit for the model. Only a few empirical 

models in the literature are suitable for predicting the calorific value of RDF-3 material. 

However, this study presents a practical way of testing various scenarios affecting the 

calorific value estimation. The developed model improves the prediction of calorific 

value for RDF-3 based on the physical and chemical characteristics of the infeed waste 

components. The calorific value of RDF increases as the RDF moisture content 

decreases, this influence will be discussed further in section 4.7. 

4.6.3 Moisture Content Estimation Results 

While conducting the normality checks of the moisture content parameter, it was 

discovered that both samples are approximately normally distributed. The observed 

data comprises monthly averaged moisture content collected during the normal 

operations of the MRF. As shown in Figure 4.10 ,the P-value for both the Kolmogorov-

Smirnov test  and the Shapiro-Wilk test are greater than 0.05 making it evident that 

both samples are normally distributed. Similarly, the Levene test of equality of variance 

provides a p-value of 0.091, which is greater than the 5% significance level. The Levene 

test is therefore not significant and the null hypothesis that all variances of the samples 
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are equal is retained and there is variance equality in the samples. Moisture content is 

an important quality parameter as it directly impacts the use of the RDF in wide range 

of applications. Depending on the target application like the cement industry or other 

coal-powered plants, the use of a dryer unit significantly aids in lowering the moisture 

content to meet RDF specifications. 

 

 

 

 

 

 

 

Figure 4.9: Comparison of graphical and analytical methods for the calorific value. 
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4.6.4 Ash Content Estimation Results 

The samples under observation also assume normal distribution. However, the added 

investigation further elaborated the fact that both samples are more closely following 

lognormal distribution as shown in Figure 4.11. Considering a random variable T has a 

normal distribution, then (V=exp(T) ) has a lognormal distribution. An F test is 

conducted to check whether the two samples have their variance differ significantly and 

the test showed the p-value (P=0.867), P >5% indicating that the variances of the two 

samples are equal. Thus, the null hypothesis is retained. The Figure 4.11 shows the 

histogram and Q-Q plot for both the samples with lognormal distribution in 

Figure 4.10: Comparison of graphical and analytical methods for moisture content parameter 
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consideration 

 

4.7 Optimal RDF Production Conditions 

The final results of the two-line configurations modeled in this study are shown in Table 

4.4. The difference between the two lines is just the placement of the dryer unit. The 

line configuration-1 without a dryer unit provides 73.1% plant efficiency, 24.8% 

average moisture content, 22.93 MJ/Kg  gross calorific value and 7.33% ash content. 

The dryer units are added in an MRF to drop the moisture content of RDF to improve 

its heating value and to avoid more steam generation in the combustor. Thus, the drying 

Figure 4.11:Comparison of graphical and analytical methods for Ash content parameter 



 

114 

 

unit is added to the system supplement the quality and meet the overall target 

specifications set for RDF fluff. 

4.7.1 Impact of Dryer Unit 

In our study the known observed average calorific value of RDF is 22.26 MJ/Kg and 

experimented average calorific value of RDF is 22.94 MJ/Kg. So, the values of the 

LHV can be estimated. As shown in Figure 4.12, by plugging in various values of 

moisture (M) and experimental conditions in Equations 4.9 and 4.10, it can be observed 

that the heating value ultimately increases as the moisture content of the RDF feedstock 

decreases. 

The moisture in feed material is lost in form of steam or depending on the drying 

method and dryer type used. This drying process increases the heating value of the RDF 

material. The heating value increases with decreasing of RDF moisture content. This 

fact can be observed by using dryer unit in line configuration 2 where it increases the 

heating value of RDF from 22.93MJ/Kg to various higher heating value thresholds 

depending on moisture settings on the dryer. Figure 4.13 provides evidence generated 

based on the model results to demonstrate this variation between the two. If the infeed 

material is high in moisture, then the dryer would take more time to reduce the moisture 

Figure 4.12: Moisture content vs. RDF heating value variation. 
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level of the outfeed, thus creating a bottle neck for having an efficient throughput in the 

system. Besides reducing moisture content, drying also results in mass reduction which 

improves storage and handling capabilities of the RDF fluff. 

Table 4.4:Computation results of two-line configurations as model output 

 

 

 

 

 

 

Line 

# 

Line 

configur

ation 

Material 

produced 

Effici

ency 

(%) 

Moisture 

(%) 

Ash 

(%) 

HHV(Mj

/Kg) 

LHV(Mj/

Kg) 

Volatile 

Content 

(%) 

   Avg,      

Std        

Avg,   

Std        

Avg,    

Std        

Avg,    

Std        

Avg,     

Std        

Avg,    

Std        

1 PS,FS,W

S,WDS,E

C,SS 

RDF 73.1        

2.94 

24.8,  

4.66 

7.33   

1.96 

22.93,   

2.97 

22.33,  

2.97 

49.92, 

0.046 

2 PS,FS,W

S,WDS,E

C,SS,Dr 

RDF 63,        

3.4 

62.19,    

2.94 

60.6,    

3.189 

59.3,     

2.78 

58.26,     

3.4 

 

12% 

13% 

14% 

15% 

16% 

7.85,   

2.5 

7.78,   

1.39 

7.88,  

1.883 

7.32,   

1.45 

7.26,   

1.40 

25.44,   

4.06 

25.29,     

4 

24.6,    

3.35 

23.86,   

3.3 

23.813,  

3.78 

25.14,  

0.93 

24.97,   

0.9 

24.32,   

0.9 

23.49,   

0.9 

23.42,   

0.9 

49.99, 

0.035 

49.98, 

0.023 

49.98, 

0.039 

49.97, 

0.021 

49.96, 

0.032 
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4.7.2 Waste Composition at Target Units 

One of the important parameters that are derived based on partition coefficients is the 

purity of the target materials. Table 4.5 represents the calculated purity measure of the 

rejects from all processing units in the assembly line. The non-combustibles, metals, 

and glass are highly undesirable for combustion purposes and the removal of these 

components can be effectively monitored using the developed simulation model. 

Though, the purity of the targeted material is affected by the material recovery measure 

dependent on the unit’s material partition coefficients. These partition coefficients can 

be updated based on experience (historical data) or experimental tests on each unit. The 

effect of partition coefficients on purity and recovery can be studied using the 

developed simulation model. However, the scope of this study does not realize the 

sensitivity of these coefficients on the quality parameters in current edition of the 

simulation model. 

 

 

 

 

 

Figure 4.13: Simulation results of RDF moisture content Vs RDF LHV variation 
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Table 4.5: Rejects waste composition at target units (R1, R2, R3, R4, and final fluff) 

Target Units R1 R2 R3 R4 RDF 

Waste Components Ferrous Separator Waste 

Screen 

Wind Sifter Eddy 

current 

Final Product 

Composition 

Contamination 6.8% 

   

- 

Ferrous Metal 93.2% - - - - 

Glass - 0.1% 11.0% 0.7% 0.9% 

Noncombustible - 1.1% 58.0% 80.1% 0.0% 

Other Combustibles - 14.7% 15.0% 16.6% 20.1% 

Paper - 13.9% 2.0% 1.2% 25.4% 

Rigid Plastics - 9.9% 2.0% 0.7% 8.2% 

Yard waste - 33.4% 2.0% 0.2% 9.7% 

Food - 12.2% 2.0% 0.0% 6.3% 

Film Plastics - 13.8% 6.0% 0.0% 15.9% 

Diapers/Napkins - 0.9% 2.0% 0.5% 10.2% 

 

4.8 Discussion 

4.8.1 Comparison with other methods 

There are several approaches for network flow modeling techniques that can be used 

for waste flow modeling. Some of these approaches include linear programing, mixed-

integer programming (MILP), agent-based modeling, system dynamics and discrete 

event simulation [17,21]. Each of these modeling approaches has its own strengths and 

weaknesses, and the choice of approach depends on the specific problem and available 

data. In the past various empirical models were developed to estimate the quality 

parameters of RDF. The previously developed empirical models used for estimating the 

quality parameters of RDF like high heating value (HHV) suffered massive deviations 

because of complexities in its physical and chemical characteristics. Table 4.6 below 

shows the other approaches used for estimating the HHV of RDF. The performance 

metrics used to evaluate the effectiveness of the modeling techniques generally include 

the coefficient of determination, average absolute error and average biased error. 

 



 

118 

 

Table 4.6: Comparison between quality measure from RDF plant and international standard (EN15539) 

for RDF classification 

Author Waste Residue Year Method Performance Metric 

(AAE% ) 

Estimated-HHV(Mj/kg) 

Shi H [41] MSW 2016 MLR,SLR 

 
 

  6.73 27.633           

Rui Galhano dos Santos 

[40] 

RDF 2017 LR 3.90 - 4.65 20.22 - 21.53 

This Study RDF 2022 DES-NFM 2.3 22.93 - 25.44 

Linear Regression(LR), Multiple Linear regression (MLR), Stepwise Linear Regression(SLR), Discrete event 

simulation-network flow modeling(DES-NFM) 

 

 

The approach developed in this study caters to this gap by providing a framework for 

understanding the influence of input feed stock, technology and other MRF 

performance parameters on RDF/SRF production in a mechanical treatment plant. 

Aspects like various line configurations in a MRF, separation coefficients of material 

recovery units and municipal waste composition used for producing targeted material 

can have a considerable influence on the quality of RDF produced. The rationale for 

using the discrete event simulation model in this study was its applicability to explore 

the operational performance of a waste processing facility and only a few references 

are available using the network-flow modeling simulation method for these purposes 

[42]. In general, discrete event simulation is used to explore the effects of changes in 

processing capacity and time on the efficiency of the facility, as well as the effects of 

different arrival rates of waste on the processing time and facility utilization. The 

accuracy, computational efficiency, and robustness in the applicability of the developed 

network flow-based simulation model justify its use in comparison to other approaches 

presented in Table 4.6. 

Therefore, the more powerful and not expensive approach to understand various 

physical systems for RDF production can be seen through the developed simulation 

procedure in this study. However, the discrete-event simulation models for large scale 

applications are incapable of capturing simultaneous events at independent facilities in 
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waste processing centers, due to their limitation of having only one event executing per 

clock tick, globally. 

 

4.8.2 RDF Market Selection 

SRF differs from generic RDF as it is a fuel which follows international standards, and 

its quality features are known. Thus, these specifications vary globally depending on 

the various factors deciding the fate of the RDF fuel consumption in either cement 

industry or other power plants. The cement industry is an existing market where 

significant investment for alternatives fuels consumption have been made in recent 

times [185]. So, for assuring a sustainable and consistent supply and demand of 

RDF ,any term contract with cement plants for RDF supply would be beneficial.  

Compared with international standards, the results from the model shown in Table 4.4  

follow the specification that is reasonably acceptable for endorsing an RDF to SRF. An 

assessment of SRF quality standards (EN 15539) for European countries is presented 

by Giovanna Pinuccia [23]. The study provides reference values for physic-chemical 

properties of an SRF produced from municipal solid wastes. Hence, the result of this 

study can be compared with the reference values of [23] to evaluate the quality 

measures of the produced RDF. Table 4.7 shows the comparison of results between this 

study and the values from the reference. The scope of this study is limited to just the 

three fuel properties. 
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Table 4.7: Comparison between quality measure from RDF plant and international standard (EN15539) 

for RDF classification 

Fuel Property Line # EN 15539 

Specification  

This 

Study  

Data 

Measure 

Fuel Quality 

Standard (SRF or 

RDF) 

Net Calorific Value 

(Mj/Kg),ar 

Line 1 Class-2, Class -3,Class-

4 ,Class -5 

22.33 Average SRF 

 Line 2 Class-1,Class-2, Class -

3,Class-4 ,Class -5 

>21 Average SRF 

      

Moisture,wt%,ar Line 1 15.29 24.8 Average RDF 

 Line 2 15.29 ≤15 Average SRF 

      

Ash % ,d Line 1 13.83 7.33 Average SRF 

 Line 2 13.83 ≤7.8 Average SRF 

 

 

The estimated quality standards of the RDF from simulated model for Line 2 provide 

reasonable evidence for endorsing it as an SRF. This endorsement is dependent on the 

use of dryer in the MRF as it provides the capability to increase the calorific value and 

reduce moisture content of the produced fluff. The RDF produced using Line 1 on the 

other end may not be tagged as an SRF quality product as the average moisture content 

property of the fuel does not comply with the international standards. But the 

specifications collected in the EN 15539 standard are collected from seven European 

countries whereas the final specification demand of the RDF/SRF could vary depending 

on the end-user’s requirements of the product. The reported standard EN15539 does not 

apply to solid biofuels and to untreated municipal solid waste. It also does not account 

for variances in origin or end-usage of the examined solid recovered fuels. Thus, the 

comparison reveals that the simulation model results are precise in providing prediction 

for the fuel classification, deeming this model a viable tool for estimating HHV for the 

RDFs. 
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4.9 Comparison With Previous Studies 

The waste treatment system, which transforms municipal solid waste to refuse-derived 

fuel (RDF), faces limitations in maintaining consistent production and quality controls 

standards of RDF. The profound cause is the unwary biofuel supply chain decision 

making in discovering the best waste diversion options. In the literature, various 

researchers tackled several sources of uncertainty affecting decision making in the 

design and planning of the biomass to biofuel supply chain. In this context, many 

publications focus on measuring the effect of uncertainties in strategic and tactical level 

decisions, whereas less emphasis is placed on operational decisions and combined 

strategic or tactical levels with operational decisions. The proposed method in this study 

constitutes an extension to facilitate the integration of an assessment of a selected set 

of uncertainties for adding value in biomass to the RDF supply chain. A network flow 

modeling technique is used to design a stochastic simulation model for a material 

recovery facility to estimate quality parameters of refused-derived fuel. The units of the 

MRF are modelled based on the study of Karine et al. and Testa et al. and the separation 

parameters of the units available in the literature are utilized for designing the infeed 

separation process on a per-material basis.  

In this chapter, the authors have extended the application of work from Karine et al by 

incorporating more uncertainties as inputs to the model like new probability 

distributions of in-feed waste compositions, moisture content, calorific value of 

individual waste components (all with higher number of data samples) and technology 

upgrades affecting the performance of RDF production in an MRF. These uncertainties 

are related to strategic decision levels. Further the insertion of technology performance 

uncertainty in the simulation modeling assists the model in utilizing various ranges of 

unit separation coefficients as input to the model and applies to tactical level decisions. 

Similarly, the uncertainty in the identification of quality standards as evaluation criteria 

to measure the quality of RDF produced and the final yield are in relevance to 

operational decisions. The inclusion of  dryer as part of the technology upgrade, 
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justifies how the calorific value  of the produced RDF can be improved while 

removing moisture content from the final product. The other major improvement is the 

application of advanced statistical analysis (like Q-Q plots and analytical methods) to 

evaluate the model results with a most suitable hypothesis test. Two null hypotheses  

considered in the study support establishing the fact the results of the model and 

observed data samples have similar normal probability distribution and there is no 

significant difference between the two samples. This concludes the achievement of the 

objectives in this study and that the established model can be used as a viable tool for 

estimating quality measures for the RDF. The outputs of the model provide resulting 

probability distribution of performance metrics and inform about the quality of the RDF 

or whether RDF could become SRF or not. The projected quality standards can be used 

by facility management for long term planning to increase productivity and RDF sales 

revenues which will be part of the future work of this study. This study also fills the gap 

where simulation method is not explored enough for modeling sources of uncertainties 

like biomass supply, technology, and quality in the RDF to biofuels supply network. 

Future work, depending on the application requirements ,could focus refining the model 

to incorporate more uncertainties listed in the model limitations section. During the 

design phase of unit configurations in a MRF, its manager can run several scenarios for 

each possible configuration to determine robustness configurations against variability 

of input uncertainties. 

 

4.10 Conclusion 

In this chapter, the material separation coefficient modeling technique was employed 

within a practical material recovery line configuration which produced RDF-3. This 

endeavor led to the development of a simulation model designed to identify the most 

effective operating conditions and predict the quality standards for RDF. Attending to 

the physical, chemical, and thermal properties, an RDF can be endorsed as a 

standardized SRF. The SRF produced can be used as an alternative fuel in cement kilns, 
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power generation plants, or heat demanding processes, especially those from the 

material recovery stages. All the decisions type incorporated in the model provide 

insight into MRF management to improve the quality of the RDF product. The 

developed model can test the strategic, tactical, and operational decisions to evaluate 

their impact on the RDF quality. This study provides results that can support revisions 

in the strategic, tactical, and operational level decisions integrating different waste 

treatment technologies considering varied uncertainties. The model results are useful 

and can be used by public or private sectors to conduct the technical feasibility of 

replacing current fossil fuels with the SRF derived from MSW. Using these fuels as an 

alternative would reduce the municipal solid waste sent to landfills. 

In the following chapter, the study reveals calorific value estimation methods and 

models for the produced RDF in an MRF. As part of the third objective of this study, 

new models are introduced to predict the calorific value of RDF. This highlights the 

need for more advanced studies focused on a distinct group of RDFs to validate the 

robustness of the models in the existing literature. 
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Chapter 5: Calorific Value Modeling Of 

RDF-3  

5.1 Overview 

In this chapter, new models are introduced to predict the calorific value of RDF, as more 

advanced studies are required to be conducted with a focus on a distinct group of RDFs 

for validating the robustness of the models in the existing literature. The calorific value 

based on ultimate (elemental) analysis considers the contents of C, H, N, S, and O 

elements in RDF. Using empirical and machine learning methods, the newly established 

models accurately predicted the calorific value of the samples provided by a local 

municipality situated in Edmonton, Alberta, Canada. Furthermore, these new models 

demonstrated a lower bias and average absolute error than the other twelve previously 

published models pertinent to RDF material. Based on the established workflow the 

ultimate analysis-based models gave a higher coefficient of determination (R2) value in 

the range 0.78 -0.80, indicating that the developed model improves the prediction of 

calorific value for RDF. The newly developed machine-learning models showed better 

results than the empirical models developed in this study implying that complex 

correlations can be dealt with effectively while predicting calorific values for RDF. 

5.2 Methodology 

5.2.1 Experimental Procedure 

In this study, a workflow is established which demonstrates steps starting from 

collection of wastes samples in a facility, method for processing of waste samples, and 

formation of models using the retrieved ultimate analysis data for making HHV 

predictions. The physical composition of the pre-sorted MSW, which is further blended 

to the RDF-3 fraction (2cm-5cm), is based on eight major waste categories. Figure 5.1 
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shows the complete experimental procedure and highlights the composition of samples 

included in the experiments like Paper (6.48%), Rigid Plastics (5.72%), Single-use 

plastics (0.04%), Film plastics (20.98%), Food waste (organics-30%), Yard waste 

(1.30%), Diapers/ Napkins (14.68%) and Woodchips (15.85%). The remaining 5% 

composition was a mixture of glass and non-combustibles materials.  

Such MSW composition first passes through a mechanical sorting line comprising of 

trommel screens to separate bulky waste, non-combustible material, and hazardous 

waste. The described waste composition is pre-mixed in defined proportions to achieve 

a homogenous blend and it provides flexibility in keeping the final fluff specification 

meet client requirements. Afterwards, further mechanical processing includes a 

shredder, a separator of metals, and a drum screener. The output from a drum screener 

passes through a wind sifter where heavies fall, and fines pass through the eddy current 

separator to get rid of electromagnetic materials. Then the processed material is re-

shredded to a fraction size in the range of (2cm-5cm). The material type retrieved after 

the final stage is called RDF-3.   

The RDF-3 samples collected at the final stage of the process were sent to the lab for 

carrying out ultimate analysis to explore the potential heat value and chemical 

composition of those samples. The composition of the RDF in terms of its basic 

elements except for its moisture content and ash content is important for its utilization 

as a fuel. In this study, the ultimate analysis provides mass percentages of carbon, 

hydrogen, oxygen, nitrogen, and sulfur, respectively on an ash-free and dry basis 

(C+H+O+N+S=100%). Ultimate analysis was done in accordance with ASTM 5373, 

which provides instrumental determination of carbon, hydrogen & nitrogen contents, 

while ASTM D4239-18 was used for determining the sulfur content utilizing high-

temperature tube furnace combustion. Using elemental analyzer, the ultimate analysis 

was performed by burning of weighted RDF sample in a controlled environment and 

analyzing the gas products like CO2, H20, NOY and SO2. The contents of C, H and N 

are determined automatically by the analyzer unit by following model, Eq(1),  
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% 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑛𝑎𝑙𝑦𝑡𝑒 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑒  x  𝑈𝑛𝑖𝑡 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 x 100 …….Eq.5.1) 

 

Whereas the oxygen content is determined by the difference between the weights of the 

elements that are already been determined and the ash free-dry weights. The heating 

value is determined using ASTM D5865 method. The procedure involved operating a 

calorimeter in adiabatic mode and burning samples ranging from 1g to 1.5 g in size 

inside a metal vessel. The vessel is placed within in water-filled bucket to strictly 

control the temperature. Once the samples are completely burned in the vessel, 

consequently, there is a rise in the temperature of the water inside the bucket. The heat 

value produced is calculated by multiplying the temperature rise by the heat capacity 

of the calorimeter, which is a previously determined value obtained by burning a 

specific mass of the standard material (used benzoic acid as an assumption). This 

measurement is automatically completed by the calorimeter and the process is repeated 

completely if the samples are not entirely combusted. 

For research purposes twenty-five waste samples were collected and processed at the 

waste management facility in Edmonton. The data collected is presented in the 

Appendix (A3). The chemical composition (independent variables) and HHV 

(dependent variable) data are used for creating models augmented with historical 

information for making HHV predictions. The estimated values of HHV from the 

developed models are compared with historical values to measure the accuracy of the 

models and provide operational support in data-driven decision-making. In this study, 

the defined framework and the composition of waste streams used for retrieving RDF-

3 from MSW are shown Figure 5.1, which creates a sense of refinement in creating 

prediction models of RDF-3. The previously developed models in the literature didn’t 

clearly state the experimental workflow, waste sorting units and composition of waste 

used for predicting the calorific value for RDF-3. Factors like waste composition, 

processing equipment, residual particle size and elemental analysis methods play a vital 

role in HHV prediction modelling [110], [111], [112]. 
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5.2.2 Model Accuracy Indicators 

The data collected in the database is used to drive linear models and machine learning 

models to estimate heat values. For comparison purposes, the previously established 

models for predicting HHV based on the ultimate analysis of Biomass were selected 

from the literature Table 2.1(Chapter 2). The accuracy of the models is compared based 

on the AAE known as average absolute error (1), ABE known as average Biased error % 

(2), RMSE known as Root means squared error (3) (for only machine learning model), 

and the best model is selected based on the lowest values observed in terms of % error 

calculated between the predicted values and the experimental values. 

 

Figure 5.1: Experimental workflow from collection of processed waste to final HHV prediction 

modelling 



 

128 

 

𝐴𝐴𝐸(%) =  
1

𝑛
∑ |

𝐻𝐻𝑉est−𝐻𝐻𝑉exp

𝐻𝐻𝑉exp
|𝑛

𝑖=1  x 100              ……Eq.5.2) 

 

𝐴𝐵𝐸(%) = ∑ (
𝐻𝐻𝑉est−𝐻𝐻𝑉𝑒xp

𝐻𝐻𝑉exp

𝑛
𝑖=1 ) x 100                  ……Eq.5.3) 

 

 𝑅𝑀𝑆𝐸 = √
∑     (𝐻𝐻𝑉exp−𝐻𝐻𝑉𝑒st) 2𝑛

𝑖=1

𝑛
             ……Eq.(5.4) 

 

5.3 Mathematical Modeling 

5.3.1 Linear Models 

The selection of any method for conducting data analysis depends on its flexibility or 

restrictiveness (interpretability), in a sense that it can produce just a relatively small 

range of shapes to estimate any function (y) . Linear regression is one of the inflexible 

methods. The most common approach is the least square criterion, which involves 

estimating the coefficients in linear regression which is one of the methods selected for 

fitting regression models in this chapter. Mathematically, the linear relationship is 

expressed as ,Y= R0 + R1X where, R0 and R1 represent the intercept and slope terms in 

the linear model. Together, R0 and R1 are known as model coefficients. Once we have 

used our coefficient parameter training data to produce estimates ˆR0 and ˆR1 for the 

model coefficients, we can predict the future HHV value of Biomass based on the 

chemical composition of RDF samples by computing, ˆy = ˆ R0 + ˆ R1X. For multiple 

linear regressions the following expression describes the relation between ‘p’ distinct 

predicators. 

 

𝑌 = 𝑅0 + 𝑅1𝑋1 + 𝑅2𝑋2 + ⋯ . . +𝑅𝑝𝑋𝑝 + 𝐸𝑟 ..…….Eq.5.5) 

 

 

For meaningful interpretation of the results in multiple linear regression analysis, there 

are certain conditions which must be satisfied. These conditions are 1) Linearity, which 
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instigates the requirement for existence of linear relationship among the dependent and 

independent variables. In this context, Figure 5.2 shows the scatter plot with individual 

independent variables on the x-axis and dependent variable (HHV) on the y-axis. The 

plots demonstrate that concentrations (%) of carbon, hydrogen, and oxygen directly 

impact the high heat value (Mj/Kg). This is concluded on the basis that in linear 

regression, the straight line is laid through the data, and the linearity exists where the 

majority of data points are positioned around the straight line. 2) Normality of errors, 

which is determined either analytically or graphically. The check for normality is being 

tested using analytical methods like Kolmogorov-Smirnov and Anderson-Darling. The 

p-value resulting from both methods are 0.771 and 0.093. This provides analytical 

evidence that the errors are normally distributed as both p values are greater than 0.05 

with 95% confidence interval. Figure 5.2 also shows the graphical method where a 

histogram plot between the residuum and their probability provides an compelling 

evidence for satisfying the condition of normality of errors. 3) Multicollinearity, it is 

tested whether two or more independent variables correlate strongly with each other. 

The developed correlation matrix is shown in Figure 5.3. It is observed that none of the 

independent variables had a strong correlation with each other as the Tolerance (1-R2j) 

and VIF (variance inflation factor, 1/Tolerance) values of all independent variables 

remain under threshold values (Tolerance >0.10 and VIF <10) as shown in Table 5.1. 

Though, oxygen content barely makes it across the Tolerance threshold. This would 

further be discussed in the next section for deciding on important variables using the 

backward selection method.4) Homoscedasticity, an assumption for linear regression, 

is that the residuals have a constant variance. If this condition is not met, 

heteroscedasticity is present among the residuals, and this makes the results of the 

regression unreliable. To meet this condition, there are multiple ways to validate a data 

samples, though in this study, the Breusch-Pagan Test and White Test methods are used. 

Both methods include first fitting a regression model, calculating the squared residuals, 

a new regression model is fitted using squared residuals as response values and 

compiling chi-square test statistics. The corresponding p-value to this chi-square test 
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statistic is compared with the significance level (0.05). Using  Breusch-Pagan Test, a 

p-value (0.62, 0.68) was observed, and similarly, using the White Test method a p-value 

(0.128,0.139) was observed. Since both the p-values are greater than 0.05, thus it is 

assumed that homoscedasticity is present. 

 

 

 

 

Figure 5.2:Scatter plot of independent variables vs dependent variable for identifying linearity; 

Histogram plot represents normality check for the errors 
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Table 5.1: Multicollinearity check to identify predictors correlating with each other 

Independent Variables Tolerance VIF 

Carbon Content 0.18 5.48 

Hydrogen Content  0.25 4.07 

Oxygen Content 0.13 7.92 

Nitrogen Content 0.66 1.51 

Sulphur Content 0.38 2.61 

 

 

 

 

 

Figure 5.3: Correlation matrix: Carbon, Hydrogen and Oxygen contents directly 

impact Calorific value (Mj/Kg) 
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5.3.1.1 Observations 

In this study, multiple linear regression is conducted after meeting the basic 

requirements for improving the interpretability of regression analysis. The 

obtained Pearson’s values clearly indicated that C (0.75), H(0.46), and O(-

0.67) are the most significant variables to estimate HHV values due to their 

Pearson’s coefficient, which for higher correlation, R, should be as close as 

possible to 1 or −1. The determination coefficient, R2, measures the 

goodness-of-fit in the regression analysis and the R2 value close to 1 

indicates that a large proportion of the variability in the response has been 

explained by the regression. Whereas a number close to 0 indicates that the 

regression did not explain much of the variability in the response. Therefore, 

in our study R2 is 0.9994, reflecting a good fit for the model. The F- statistic 

value is 7883, which is far larger than 1, providing compelling evidence 

that there are one or more predictors directly affecting the HHV of Biomass. 

The P-value of 8.133E-31 is well below the alpha value of 5%. It should be 

mentioned here that the constant was considered to be zero, which led to 

better linear regressions. Following is the first model for predicting HHV, 

 

(0.2388 C + 1.01 H +  0.144306 O − 0.6506 N − 0.26927 S)  ………Eq.5.6) 

5.3.1.2 Deciding on Important variables Using Backward Selection 

Method 

The process commenced with a comprehensive inclusion of all variables 

within the model, followed by stepwise elimination of the variable 

exhibiting the largest P-value, indicating lesser statistical significance. This 

iterative procedure involved fitting a new model with (p − 1) variables, 

persisting until a halting criterion was met—signifying that all remaining 

variables possessed P-values below the threshold of significance (<0.05). 
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In this case, Carbon, Hydrogen, and Oxygen content are the selected 

predictors that impact the HHV value for biomass samples because each 

one of them has a p-value less than <0.05. Performing regression analysis 

again provides a better estimation of coefficients based on selected 

predictors. 

 

(0.25099C + 0.8856H + 0.1401O )…….Eq.5.7) 

 

5.3.1.3 Results 

The developed correlations have presented a low bias error as well as a 

lower absolute mean error when compared with other established equations 

mentioned in Table 5.2. Figures 5.4 and 5.5 show the Estimated vs 

Experimental HHV plots of the Linear Regression Models eq 5.6 and eq 

5.7. Thus, the developed equations represent a tool that can be applied to 

estimate the higher heat values of RDFs by using the simple numerical 

procedures models. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Graphical plots of estimated HHV (HHVest) vs. experimental HHV (HHVexp) 

for Linear Regression Model-Eq.5.6 
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The average absolute errors and average bias errors of the newly 

established model are compared to those from 12 models to estimate the 

HHV of Biomass available in the literature. Table 5.2 shows the 

AAE %and ABE% of each model and its respective errors. It is observed 

from the ultimate analysis data, the carbon and hydrogen fractions are 

most significant as they have a significant impact on the HHV of RDF. 

The oxygen fraction has limited effects on the RDF HHV. For validation, 

the collected quantitative dataset from the model is evaluated with the 

most suitable hypothesis test. In this case, the Null hypothesis H0 is to 

determine if there is no significant difference between the experimental 

values and estimated values of HHV. A two-tailed t -test for independent 

samples (with equal variances assumed) was conducted, which showed 

that the difference between the estimated and the experiment HHV values 

was not statistically significant, with p=0.996, 95% confidence interval. 

Thus, the null hypothesis is retained. Besides, it is also observed that both 

data samples have a similar probability distribution. As shown in Figure 

5.6, a graphical technique is used to assess how closely two samples agree 

Figure 5.5:Graphical plots of estimated HHV (HHVest) vs. experimental HHV (HHVexp) for 

Linear Regression Model-Eq5.7 
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to be normal, in a way that data points form a straight line in Q-Q plot 

when samples are normally distributed. Most of the data points in both 

samples lie close to the center line and inside the 95% confidence interval 

suggesting both data samples are approximate to one another and can be 

considered statistically equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: : Q-Q plot represent how estimated and experimented HHV values are closely related and assume 

similar normal distribution. 
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Table 5.2: Comparison between existing models and established correlation in this study presenting 

computed % error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2 Machine Learning Models 

So far ,linear models were developed based on the chemical composition of the RDF, 

and moving on in this part ; it would be discussed how to use a supervised learning 

algorithm to train the model to get a better prediction of HHV by feeding unfamiliar 

test data set to the trained model. A reasonable way to achieve this goal is to implement 

an ordinary least squares linear regression model. Such a model is formulated as shown 

in eq 5.8, 

 

𝑦𝑛 = ∑ 𝐶𝑖 𝑥𝑛𝑖 +  𝑒𝑛 𝑛
𝑖=0 ………Eq.(5.8) 

 

Model Author 

Waste 

Residue 

Year AAE% ABE% 

Eq 1 Wilson DL. MSW 1972 12.879 -11.726 

Eq 2 Channiwala SA MSW 2002 7.677 7.123 

Eq 3 Channiwala SA MSW 2002 15.326 -15.248 

Eq 4 Meraz L MSW 2003 17.001 -16.703 

Eq 5 Kathiravale S. MSW 2003 37.493 37.493 

Eq 6 Reza B RDF 2013 9.368 9.128 

Eq 7 Shi H MSW 2016 15.144 -15.124 

Eq 8 Rui Galhano dos Santos RDF 2017 10.981 -10.860 

Eq 9 Rui Galhano dos Santos RDF 2017 11.281 -10.760 

Eq 10 Octávio Alvesa MSW 2018 11.969 11.490 

Eq 11 Imane Boumanchar MSW 2019 20.159 -20.159 

Eq 12 Imane Boumanchar MSW 2019 27.300 -23.391 

Eq 13 This Study RDF 2022 1.691 0.052 

Eq 14 This Study RDF 2022 1.761 0.067 
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Where xi is the explanatory variables, Y is the dependent variable, n is the number of 

samples, and the coefficient C is found by minimizing the error of prediction. Training 

such a model means setting its parameters so that model best fits the training set. While 

training such a model, it is vital to not over fit or under fit the training data and to 

achieve this most used practice is to monitor performance measures like Root mean 

squared error (RMSE) and determination coefficient (R2). Literature review showed 

that only a few studies had used different techniques to split up the training dataset 

relevant to RDF material and created useful estimates of performance for the least-

squares linear regression models. The techniques incorporated in this study are the least 

computationally expensive and provide reasonable performance in the estimate of 

accuracy. Our study evaluates the predictions accuracy on the RDF-3 dataset using the 

following techniques such as,  

5.3.2.1 Train and Test Sets 

It is one the fastest algorithm evaluation techniques. This technique trained 

the linear regression model in a short duration with 70-30 splits for training 

and test datasets. In addition to specifying the volume of the  split, the 

random seed is also declared to ensure that the same random numbers are 

obtained each time when the model runs. The model showed an accuracy 

score of approximately 70% on the test dataset and the RMSE value of train 

and test datasets is shown below in Table 5.3. As shown in Figure 5.7, the 

perfect linear line is plotted between the predicted and the observed HHV 

values. 

Table 5.3:Train and Test set algorithm performance measure 

 

 

 

 

Measure Training 

Dataset 

Test Dataset 

MAE 0.3186 0.537 

MSE 0.1955 0.4060 

RMSE 0.442 0.637 

R2 0.830 0.699 
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5.3.2.2  K-fold Cross Validation 

In this study, the number of RDF samples available for analysis is not 

large, which is why we have employed the K-fold cross-validation 

technique, where every observation in the dataset has the chance of 

appearing in the training and test data set. The scikit learn library is used 

for implementing such a linear regression model in tandem with the cross-

validation technique to split datasets for training and validation purposes. 

This approach provides a better estimate for the performance of a 

machine-learning algorithm with less variance as compared to a single-

use train /test set split. Cross validation is expressed as, 

 

𝑐𝑣𝑘 =
1

𝐾
∑ 𝑒𝑗

𝑘
𝑗=1 …….Eq.(5.9) 

 

 

 

Figure 5.7:HHV Observed response vs HHV predicted response using Train and test 

set technique. 
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Here k is the number of times the process repeats to obtain Mean square 

Error e_(j ). The random seed is specified to 1 and the shuffle is set true 

in order to change the selection of samples at every run of the model. The 

k folds for cross-validation were selected in the range from 5 to 10. As 

shown in Figure 8, the perfect linear line is plotted between the predicted 

and the observed HHV values and with trial and error the best results were 

obtained at k=10 where the RMSE = 0.558 and the other performance 

measure are shown in the Table 5.4. 

 

Table 5.4: K-fold Cross Validation performance measure 

 

           

 

 

 

5.3.2.3 Results 

It is observed that machine learning modelling further improves the 

performance of the HHV model by training them with high accuracy. In 

both the techniques, the mean absolute error is well below 1, indicating that 

machine learning models could predict the HHV value more accurately as 

compared to the earlier presented empirical models in this study (Eq 5.6- 

Eq 5.7) as well as other models presented in the Table 5.2. 

However, the higher R2 value of 0.733 for the test set and the greater 

number of points near the curve of HHV estimated vs. HHV experimental 

(Figure 5.8) demonstrate that the K-fold Cross-Validation technique for 

training the datasets is more suitable for this analysis and more desirable as 

compared to the Train and Test sets technique. Generally, lower values of 

RMSE indicate a better fit of the model. The RMSE value derived from the 

Measure  Value 

MAE 0.445 

MSE 0.311 

RMSE 0.558 

R2 0.733 
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test train evaluation technique is 0.558, which is better and since errors are 

averaged after being squared, RMSE is very useful when large errors are 

specifically not desired where the number of samples is limited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calorific value prediction based on ultimate analysis data can minimize 

laborious effort, cost and time because most of the steps involved in 

ultimate analysis are very time-consuming. Besides, this is a major attempt 

to utilize Waste-to energy processing plant data for developing a predictive 

model for RDF-3 material using a Machine Learning-based approach. One 

of the other benefits of using this study is its practical application in 

optimizing the operations of a waste processing facility for supporting 

informed data-driven decision-making. The model developed is tested at 

the Edmonton waste management plant and provides an efficient medium 

to forecast the calorific value predictions for the operational planning and 

process integration tasks at the facility like providing RDF-3 to different 

waste processing vendors.  

 

Figure 5.8: HHV Observed response vs HHV predicted response using K-fold Cross 

Validation technique 
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5.4 Discussion 

During this study it was observed that the calorific value of the RDF depends on the 

performance of the material recovery facility. Running the plant in various 

configurations and fluctuations in the efficiency of waste processing units had an 

impact on the composition of the RDF produced. This finding is also highlighted in a 

study by [18]. Factors like various material recovery line configurations, parameter of 

separation of material recovery units and municipal waste composition used for 

producing targeted material can have a significant impact on the quality of RDF 

produced. This uncertainty in the identification of quality standards of RDF are in 

relevance to operational decisions of the plant. The chemical characteristics of refuse-

derived fuels can be modified by mechanical operations to reach and assure quality 

targets. However, methods to analyze the performance of material recovery facilities 

will be studied in the future for improving the quality of produced RDF. Future studies 

could also focus on investigating how separation parameters of a facility depend on 

both the input composition of municipal solid waste and the overall feed rate in a plant. 

 

5.5 Conclusion 

This Chapter considers an extensive investigation into estimating the calorific value of 

processed RDF-3, which is a very uniquely characterized biomass fuel. Only a few 

models in the literature are suitable for predicting the calorific value of RDF-3 material 

and validation of the prediction accuracy for these models have to be conducted, which 

was the goal of this study. Using previously developed empirical models sometimes 

provides massive deviations in estimations because of the complex chemical and 

physical characteristics of RDF-3. To achieve the goal of this study, authors established 

a workflow (shown in Figure 5.1) explaining from the collection of processed waste to 

the final HHV prediction modelling for RDF-3. The developed mathematical models 

are based on the processed MSW to RDF-3 conversion technology, which involves 
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mechanical processing of the feedstock. These new models help in reducing the 

dependency on the laborious and time-consuming efforts required to conduct the 

ultimate analysis of RDF-3 material for improved decision-making at tactical and 

operational levels in the facility. This is accomplished by collecting historical HHV  

data from experiments using ASTM 5373 and ASTM D5865 methods comprising 

unique procedures in their implementations. Therefore, analytically estimating HHV by 

using data originating from these standards is unique and, to authors best knowledge, 

not used for  HHV estimation of RDF-3 material. Judging by the higher number of 

points near the curve of HHV estimated vs. HHV experimental, models presented in 

this study for RDF-3 type material are better, in fact, more accurate than the model 

proposed in the past, as verified by the ABE and AAE indicated in the Table 3. This 

comparison reveals that the HHV prediction performance of the linear regression and 

machine learning model is consistently better than that of their existing linear and/or 

nonlinear counterparts. The implementation of other machine learning approaches will 

be studied in the future study of HHV estimation for RDF-3. 

In the next chapter, as part of the fourth objective of this study, a comparative analysis 

of Public-Private Partnership (PPP) models in Energy from Waste (EfW) projects in the 

UK and Canada will be presented. This analysis introduces a novel quantitative 

probabilistic model that simulates EfW feasibility while considering risks in Operations 

and Maintenance (O&M) contracts. The model is specifically designed to accurately 

capture the multifaceted impact of variables, emphasizing the importance of modeling 

these variables for financial viability. Additionally, the study highlights the inherent 

risks in EfW technologies and advocates for the superiority of PPP models over 

traditional models in the EfW sector. 
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Chapter 6: Risk Modeling In Waste to 

Energy Project Partnerships 

6.1 Overview 

This chapter bridges a critical gap by conducting a comparative analysis of the prevalent 

PPP or PFI (Private Finance Initiative) models operational in EfW projects within the 

UK and Canada. The PPP, and some of its specific types such as the PFI, have been 

significantly adopted over the last three decades as a mechanism for the financing and 

delivery of projects. It had been adopted to procure various infrastructure projects 

across communication, energy, transport, waste, and water sectors. Its adoption is 

driven by the proposition that it provides good value for money and increases 

accountability and efficiency of public spending where the private sector assumes a 

major share of responsibility in terms of risks associated with such partnerships. These 

attributes that promoted its adoption are now subjected to increased scrutiny and review 

by both policy makers and researchers. Concerns about the value for money of PFI to 

taxpayers in the energy from waste (EfW) sector are increasingly raised by both 

governments and investors in the UK and Canada. Despite these concerns, studies on 

the value of money of PFI in EfW are missing. 

 

This chapter introduces a novel quantitative probabilistic model, aiming to simulate 

EfW feasibility during the operation phase. This unique model adeptly navigates the 

intricate landscape of operational phase costs and profitability, encompassing a 

spectrum of lifecycle risks. By capturing the multifaceted impact of variables—ranging 

from contractual service quality standards, typically passed on to the Operation and 

Maintenance (O&M) contractor, to the fluctuating dynamics of technical, payment, and 

incentive structures—the quantitative probabilistic model emerges as a pivotal 

predictive tool. Its role is crucial in accounting for and predicting the potential ripple 
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effects these variables can have on the financial viability of EfW projects. This study 

underscores the criticality of accurately modeling the impact of these variables. Failure 

to do so could lead to significant losses for the O&M contractor, ultimately undermining 

the entire viability of the EfW project. The latter employs psychometric methodology 

to delve into the primary concerns of professionals involved in EfW projects regarding 

associated risks. The thorough analysis highlights key risks inherent in EfW 

technologies, focusing on areas such as unplanned maintenance, reduced waste inflow, 

market price fluctuations, unsustainable debts, and policy dynamics. Ultimately, the 

study strongly supports the idea that Public-Private Partnership (PPP) models outshine 

traditional delivery models in the UK and Canada when it comes to EfW applications. 

 

6.2 Methodology:  

The concept of risk is used in various disciplines, and the methods deployed for 

modeling them are usually explained against the background of their epistemological 

foundation [186]. When calculability limits arrive, the risk is studied using different 

approaches. The implications of such diverse perspectives in theorizing on risk and 

uncertainty can be real and objective, subjectively biased, socially mediated, and 

socially constructed or transformed. In that context, this study aims to model risks from 

two perspectives: 1) real and objective and 2) subjectively biased. The methodology 

applied in this paper uses a case study within Canada and SITA UK (SUK), one of the 

largest EfW providers in the UK and Europe. It analyses the feasibility of PFI for 

procuring waste management facilities.  

Considering risk as real and objective, a technical risk assessment of the operations and 

maintenance contract is conducted, shown in Figure 6.1 (left branch in the tree). Several 

components contribute to the fee for the O&M contract. These components include base 

payment, waste transfer payment, waste diversion performance, performance KPI 

deduction, electricity production incentive, mileage deduction, non-acceptance fee, and 

annual major maintenance fee. The developed expressions for calculating the fee 
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associated with each of these components are summarized in Table 6.1. This involves 

analyzing various factors, such as the scope of work, duration of the contract, required 

resources, and associated risks, to establish a reasonable fee mechanism. The detailed 

calculation of each of these contract components and their relationship with the inherent 

risks is included in the next section 6.3 . A probabilistic model is developed on top of 

contract components to calculate and predict payment outcomes at the O&M phase. 

The model employs the Monte Carlo simulation method to explore the possible 

payment mechanism outcomes while considering the sensitivity of inputs and the likely 

risk associated with each. This kind of methodology allows an analysis of risk factors 

under variable sensitivity settings during contract negotiation and therefore aids the 

formation of an accurate contract cost and provides a forecasting tool during the 

contract term to predict possible outcomes in the following contract period to aid 

budgeting purposes.  

 

Figure 6.2 shows the simulation modeling, incorporating eight risk factors outlined in 

Table 6.2 and the O&M contract fee data from Appendix (A8) as inputs. These elements 

influence the payment mechanisms and are included in this probability model based on 

the South Tyne & Wear waste management partnership PFI project final business case 

[187] and [152]. Table 6.3 subsequently identifies the risk factors considered within the 

contract components, influencing the payment mechanism analysis alongside a 

designated sensitivity value for the examined parameter. The methodology for 

calculating each risk's impact involves multiplying the applied sensitivity value by the 

difference between the risk factor outcome and a neutral threshold of 0.5. Subtracting 

0.5 from the risk factor result transforms the scale so that it centers around zero. This 

adjustment allows the formula to account for both positive and negative deviations from 

this midpoint. The simulation model provides outcomes in the form of net cashflows. 

After running hundred simulations, a set of cash flow outcomes 𝐶𝐹𝑡,𝑠 are generated  

for each time period t for simulation s. 𝐶𝐹 is the average cash flow at time t across all 

simulations. The results of the simulation model are explained in section 6.3. This 
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methodical simulation approach provides insights into the net cash flows, utilizing Net 

Present Value (NPV) and Internal Rate of Return (IRR) analyses to determine the 

profitability of the case studies under consideration. Specifically designed for private 

stakeholders in EfW PPPs, this model is instrumental in evaluating profitability and 

pinpointing the uncertainties that affect the financial outcomes of the O&M contracts. 

Furthermore, it delves into identifying which sources of uncertainty influence the 

financial return of the O&M contract and how the relationship between NPV and 

discount rates influences the project acceptance or rejection decision. The discount rate 

here refers to the interest rate, and due to lack of available data, it has been taken as a 

certain parameter in the study. The results generated by the simulation highlight the 

impact of various risks, as detailed in Table 6.3, on the calculations related to the O&M 

fees. This underscores the importance of risk selection by users, tailoring the analysis 

to the unique aspects of each project. 

Considering risk as subjectively biased shown in Figure 6.1 (right branch in the tree), a 

psychometric approach is deployed within case framework to explore the concerns of 

professionals regarding various risks in EfW applications. A standardized questionnaire 

shown in Appendix (A17), psychological scaling, and multivariable analysis aid in 

constructing cognitive maps to discover general patterns. Using such an approach, this 

second branch in the tree considers the perspectives of the different stakeholders 

qualitatively on the value of money, transfer of risk, or influence shifts and quantitively 

based on cost, time, and quality. The stakeholders are involved in the Special Purpose 

Vehicle (SPV), with representatives from the PFI bid group, the project management 

group, and the Operation and Maintenance (O&M) contractor. 
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The case study considered is the EfW plant STV 4 & 5 operated by SUK a large 

recycling and resource management company and provider of services to local 

authorities and businesses under an O&M contract. Mixed quantitative and qualitative 

methods are applied in the case study. Individuals pertinent to PFI in the case study 

were selected to receive a questionnaire based on the nature of their position within the 

PFI project structure Appendix (A11). That stakeholder structure includes members 

from the SUK PFI bid team, the SUK project management team, the Suez Environment 

Project management team, the SUK plant operations management team, SUK technical 

support team, and the PFI SPV management consortium. The questionnaire included 

both quantitative and qualitative components. The questionnaire is formulated to draw 

out key project stakeholders’ opinions of the advantages and disadvantages of PFI 

projects when considered against facilities procured through internal corporate finance. 

PFI 

Real & Objective Subjectively Biased

Inherent Life cycle risks 

integration

Industrial Survey

Probabilistic tool for 

payment mechanism

Advantages/ Disadvantages

 PFI Projects

 Influence of stakeholders

 Transfer of risks

 Value for money

Stakeholders' perspective of 

 Cost

 Time

 Quality

Qualitative Analysis Quantitative Analysis

Operations & Maintenance  

Fee modeling

Risk Epistemology

Case Study

Figure 6.1: Methods used for modeling and identifying risks in EfW PFI project (UK) 
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Each candidate has been sectioned into a group based on their role and employer, 

allowing a summary for each group to be formulated for each question. Quantitative 

questions are asked concerning cost, time, and quality. Each question is scored 1 to 5 

as a priority to the statement regarding the question. The response rate to the 

questionnaire is approximately 60% (n=24), which can be considered adequate. The 

response may reflect a possible sensitivity of the PFI topic within the Waste 

Management Industry or a lack of general knowledge of what PFI represents as a 

scheme and, therefore, an unwillingness to participate in this study. The candidates are 

asked to consider two situations for the construction of an EfW project, one being a PFI 

project funded under the PFI scheme finance from the private sector that of STV EfW 

lines 4,5 and the other an internally funded project by SUK for Suffolk EfW.  

Additionally, a case study of the Canadian P3 model for procuring EfW infrastructure 

projects is included Section 6.4. Incorporating the Canadian P3 model, this study 

examines the high-level dynamics of risk allocation and the modeling of contract fees. 

This analysis sheds light on the strategic distribution of risks among stakeholders and 

outlines the methodologies used to calculate fees within the framework of Public-

Private Partnerships in Canada. Lastly, the study also involves a theoretical implications 

and comparison of PPP models of EfW-procured project using P3 in Canada and UK. 

The comparison provides further insights into successful P3 implementation in Section 

6.5 
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Table 6.1 Operations & Maintenance contractor fee modeling, abbreviations are attached in Appendix 

(A7) 

Eq Component Equation 

1 Annual O&M Contract Fee 
∑ 𝐵𝑃𝑖 + 𝑊𝑇𝑆𝑖 − 𝐷𝑃𝐷𝑖 + 𝑃𝐷𝑖 + 𝐸𝐼𝐼𝑖 − 𝑀𝐷𝑖 − 𝑁𝐴𝐷𝑖 + 𝐴𝑀𝑀𝑖

𝑛

𝑖=0

 

2 Base Payment (𝐵𝑃) 
∑(𝐹𝐹𝑟𝑝𝑖𝑥𝑖 ∗ 𝐼) + (𝐹𝐹𝑎𝑤𝑒𝑖 ∗ 𝐼𝑎𝑤𝑒) + (𝑉𝐹𝑖 ∗ 𝑇𝑡𝑛 ∗ 𝐼)

𝑛

𝑖=0

 

3 Waste Transfer Station Fee 

(WTS) 
∑(𝑇𝑆𝑇𝑖𝑗 ∗ 𝑇𝑆𝑅𝑗) ∗ 𝐼 + (𝑇𝑆𝐹𝑖𝑗 ∗ 𝐼)

𝑛

𝑖=0

 

4 Diversion Performance 

Deduction (DPD 
∑(𝐴𝑈𝐿𝑇𝑖 − 𝑇𝑈𝐿𝑇𝑖) ∗ 𝑈𝐿𝐴𝑅𝑖 ∗ 𝐼 + (𝐴𝑃𝐿𝑇𝑖 − 𝑇𝑃𝐿𝑇𝑖) ∗ 𝑃𝐿𝐴𝑅𝑖 ∗ 𝐼)

𝑛

𝑖=0

 

5 Performance Deduction(PD) 
∑ 𝐴𝑃𝐹𝐷𝑖 ∗ 𝐼

𝑛

𝑖=0

 

6 Electricity Income Incentive 

(EII) 
∑ 𝐸𝑃𝐴𝐺𝑖 ∗ 𝐸𝑃𝑆𝑖

𝑛

𝑖=0

 

7 Mileage Deduction(MD) 
∑ 𝐶𝑊𝐴𝐷𝑖 ∗ 𝑀𝑇𝐷𝑖

𝑛

𝑖=0

∗ 𝐻𝑅𝑖 ∗ 𝐼 

8 Non-Acceptance Deduction 

(NAD) 
∑ 𝑁𝐴𝐷𝑅𝑖 ∗ 𝐶𝑊𝑁𝐴𝑖

𝑛

𝑖=0

 

9 Annual Major Maintenance 

Fee(AMM) 
∑ 𝐿𝑀𝑖

𝑛

𝑖=0

 

10 Target Unprocessed Waste to 

landfill (TULT) 
∑(𝐶𝑊𝐴𝑖 + 𝐶𝑊𝑁𝐴𝑖) ∗

𝑛

𝑖=0

𝑈𝐿𝑃𝑇𝑖% 

11 Target Processed Landfill 

Tonnage(TPLT) 
∑ 𝐶𝑊𝑃𝑖 ∗ 𝑃𝐿𝑃𝑇𝑖

𝑛

𝑖=0

% 

12 Electricity Production Above 

Guaranteed Electricity 

Production (EPAG) 

∑(𝑀𝑤ℎ𝑎𝑖 − 𝑀𝑤ℎ𝑔𝑖) ∗ 𝑃𝑒 ∗ 𝐼

𝑛

𝑖=0

 

13 Electricity Production 

Shortfall(EPS) 
∑((𝑀𝑤ℎ𝑔𝑖 + 𝑊𝑉𝐹𝑖) −

𝑛

𝑖=0

𝑀𝑤ℎ𝑎𝑖) ∗ 𝑃𝑑 + 𝐸𝑇𝐴 

14 Monthly Lifecycle 

Maintenance Fee 
∑ 𝐿𝑀𝑖

𝑛

𝑖=0

∗ 𝑀 ∗ 𝐼 
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Table 6.2: Risk factors selected for uncertainty analysis in O&M contractor fee [152], [187] 

 

 

 

Risk Factors 

Risk 

No 

Description 

 

Probability Distribution Result ( µ,σ) 

1 Tonnage Decline Triangle (0,0.4,1.0) 0.59,0.34 

2 Calorific Value Change Triangle (0,0.4,1.0) 0.52,0.37 

3 Waste Diversion Triangle (0,0.8,1.0) 0.38,0.35 

4 KPI Performance Normal (0,0.5,1.0) 0.47,0.23 

5 Delivery Fuel Triangle (0,0.7,1.0) 0.44,0.35 

6 Electricity Price Triangle (0,0.6,1.0) 0.45,0.35 

7 Poor Waste Triangle (0,0.8,1.0) 0.42,0.36 

8 Unplanned downtime Triangle (0,0.5,1.0) 0.47,0.37 

Figure 6.2: Proposed payment mechanism assessment simulation modeling 
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Table 6.3: Selected risk factors in contract components 

Contract 

Components 
Risk1 Risk2 Risk3 Risk4 Risk5 Risk6 Risk7 Risk8 

Base Payment              

Waste Transfer 

Payment 
             

Waste Diversion 

Performance 
             

Performance KPI 

Deduction 
             

Electricity Production 

Incentive 
          

Mileage Deduction              

Non-Acceptance Fee                

Yearly Major 

Maintenance 
                

 

6.3 Results 

In this section, the methodology outlined in previous section are employed to conduct 

a comprehensive case study analysis of the PFI’s in UK and Canada. This involves a 

thorough assessment of the O&M contracts in place and a detailed survey analysis. The 

section further delves into intricate calculations that consider various performance 

indicators providing an in-depth view of the effectiveness and efficiency of the O&M 

contracts within these PFI implemented WtE projects. The results of these calculations 

highlight the significance in evaluating the success of the PPP models. 

6.3.1 Energy from Waste PFI:UK Case Study 

The South Tyne and Wear Waste Management partnership in UK was established to 

jointly procure solutions for treating and disposing of residual municipal waste [188]. 

It comprises the Borough Council of Gateshead (local authority 1), the Council of the 

Borough of South Tyneside (local authority 2) and the City of Sunderland (local 



 

152 

 

authority 3). The framework for the PFI contract administration and network is shown 

in Figure 6.3 which shows makeup of the SPV is presented as 45% being owned by 

SUK, 20% by banks, and 35% by the authority. The Authorities in partnership have a 

contract agreement with the SPV, and the SPV is responsible for managing the different 

contracts and subcontracts, as shown in the lower part of Figure 6.3. The case study 

discussion will focus on the operation and maintenance contract and phase.  Published 

in the Official Journal of the European Union on 16 September 2008 (reference 2008/S 

179-239146), expressions of interest were invited from appropriately qualified 

organizations for services relating to the design, installation, operation, and 

maintenance of residual waste treatment facilities for the specified contract period. The 

facility began treating residual waste at its 256 thousand tons per year capacity energy-

from-waste incineration plant in 2014. 

The consortium attempted the adoption of an optimum risk allocation approach. Design 

and build procurement for STV lines 4 and 5 with penalty payments for late project 

hand was adopted. The risk to the SPV is partly transferred to the EPC contractor to 

provide facilities within budget, within time, and to an agreed specification and 

performance. As returns on their financial investment, they are entitled to a guaranteed 

payment mechanism regardless of plant performance. The risk or any shortfall in the 

business case that results from the operation lies with STV, the O&M contractor, and 

ultimately SUK. This approach of transferring risk to the SPV formed the basis of a 

sound business case for the local authorities. 
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6.3.2 Operation and Maintenance Contract 

An EfW provides a long-term relationship with the local communities for a disposal 

point for municipal wastes with a 25-year-long contract. For the SPV, this period 

represents an adequate opportunity to recover the capital cost and accrued interest on 

the project debt and achieve revenues. Revenues are assigned to an escrow account to 

cover the O&M costs of the facility according to a method of determining the 

deductions. The O&M contract is formed between the SPV (i.e., the employer) and the 

O&M contractor (i.e., SITA UK). The O&M contractor shall carry out major 

maintenance following a major maintenance schedule. The major maintenance 

schedule considers a unitary charge, which includes an annual capped maintenance fee. 

If the cost of major maintenance is higher than the annual maintenance fee in any one 

year, the risk is borne by the O&M contractor. This occurrence does not relieve the 

O&M contractor from performing the major maintenance. However, the O&M 

contractor can retain savings achieved after executing the major maintenance. 

Therefore, the accurate estimation of the annual major maintenance fee when preparing 

the contract fee for inclusion in the contract bid is crucial for the economic viability of 

not only the O&M contract but also the entire project. Indeed, the SPV is responsible 

Large Corporation-

20% 

Large Recycling 

and Resource 

Management 

company UK-

45% 

Major Credit 

Agency- 35% 

SPV Contract 

Agreement 

Local 

Authority 1
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EPC Project
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D&B (WTS)
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Sub-Contract

Waste Supply
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Figure 6.3: SUK PFI Contract Administration. Source: SUK. 



 

154 

 

for both the construction and operation of the asset, and the cost of both, including the 

cost of finance, is included in a single price making up the “unitary charge” provided 

to the local authority. PFI supporters argue this way of packaging the financial model 

encourages up-front investments that will drive down the cost of the project over the 

asset’s life cycle [128]. Spending more on construction might prove fruitful if this 

results in lower maintenance spending in the long term. 

 

The O&M fee is a complex calculation considering key performance indicators that can 

be either positive or negative. The design of annual O&M fee includes eight major 

components shown in Table 6.4 which are calculated using equations developed in this 

study presented in Table 6.1. The gate fee (£18/tn), waste handling fee (£10.80/tn), 

landfill disposal charge (£60/tn), performance failure fee (£1M at 98%), non-

acceptance fee (£15/tn) are selected from the data set available in Appendix (A8). The 

final annual fee for the O&M contract is estimated to be (£5,050,405) for processing  

170,835 tonnage. The ongoing cost during the asset’s lifecycle, including the O&M 

contract, is usually high due to the required resources over a 25-year contract and the 

pressure to fulfill the KPIs associated with calculating and negotiating agreed variables 

[187]. These inherent risks are passed to the O&M contractor, who requires accurate 

calculation when forming the O&M contract. The accurate calculation is affected by 

the sensitivities to driving forces that, if not fully considered, could result in serious 

losses to the O&M contractor. 
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Table 6.4: Annual O&M fee calculation tool using Year1 data, Appendix (A8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.3 Prediction of O&M Payment Outcomes 

A Monte Carlo analysis tool presented earlier, is developed to allow the decision makers 

to apply varying risk profiles to a set of predetermined risks that will influence each 

parameter of O&M fee calculation. The risks can be added in the contract bid stages as 

the decision makers require to integrate the inherent life cycle risks. An appropriate 

probability distribution can be selected to represent the risk shown in Table 6.2 and the 

reasonable number of iterations (default-100) to gain a result. Appendix (A10) provides 

a practical demonstration of the tool's application, showcasing its functionality and the 

  
Tonnage Gate Fee 

 
Result 

1 Base Payment 170,835.00 £18.00   £3,075,030.00 

  
Tonnage Handling Fee 

 
Result 

2 Waste Transfer 170,835.00 £10.80 
 

£1,845,018 

 
Payment 

    

  
Tonnage Landfill Charge 

 
Result 

3 Waste Diversion  7,848.00 £60.00   -£470,880.00 

 
Performance 

    

  
KPI% Failure Fee 

 
Result 

4 Performance KPI 98 £1,000,000.00 
 

-£20,000.00 

 
Deduction 

    

  
Extra MW Incentive 

 
Result 

5 Electricity Production  6000 £13.15   £78,900.00 

 
Incentive 

    

  
Tonnage Fee Miles  Result 

6 Mileage Deduction 170,835.00 £1.45 3.2 -£792,674.40 

  
Tonnage Fee 

 
Result 

7 Non-Acceptance 7000 £15.00   £105,000.00 

 
Fee 

    

  
Tonnage Fee 

 
Result 

8 Yearly Major 170,835.00 £7.20 
 

£1,230,012.0 

 
Maintenance 

          

 
Indexation       1 

 
Final Annual Fee     £5,050,405.60 

 
          

 
Monthly Fee       £420,867.13 
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step-by-step process involved in its utilization. As an example, this would mean for the 

task, Base Payment, and Risk 1, a sensitivity of 50,000t is applied and a Risk factor of 

0.59, which results in 50,000 * (0.59-0.5) = 4757. This means that the resultant risk is 

4,757 tons of waste lost from the base payment calculation, and as shown in table 

Appendix (A10), the result considering all associated risks for the task is a payment of 

£3,137,073. The resultant total taking all tasks and risks into account for the final annual 

O&M contract fee is changed to £4,974,802 from what was £5,050,405, demonstrating 

the possible losses to revenue to the O&M contractor. This change in revenue is 

imposed by inclusion of risks in O&M. Figure 6.4 shows a box plot highlighting the 

financial effect of risks on contract components. It depicts that inclusion of selected 

risks on contract components bring financial impacts on contract components like base 

payment (bringing an average change of £8,546), waste transfer payment (bringing an 

average change of £5,127), and waste diversion performance (bringing an average 

change of £126,050). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Financial impact of selected risks on O&M contract components 
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6.3.4 O&M Contract Financial Viability 

For the private partners to measure the profitability of this project, the discounted 

cashflows are calculated for the first 5 years of the project. The discount rate is assumed 

to be set to 10%, and the initial capital investment is assumed to be £8M. This method 

for measuring productivity emphasizes the time value of money and determines the 

present value of upcoming and past cash flows. To achieve this, the net present 

values(NPV) can be calculated, and based on that, the calculated internal rate of return 

(IRR) can be compared with discount rates [189]. If IRR is smaller than the discount 

rate, it generally indicates that the project is not expected to generate higher returns than 

the cost of capital. In this case study, the project is not considered financially viable and 

acceptable for investment. The tool developed simulates the risks associated with 

contract components and provides calculated net present value plotted against a range 

of discount rates. Figure 6.5 shows that under current assumptions, the IRR (11%) is 

greater than the discount rate (10%), which is marginal evidence to consider this project 

financially viable. The net present values are positive until the discount rate is 10% but 

becomes zero and negative beyond that value. The tool can therefore be used to develop 

all sensitivities and measure the outcomes of all possible scenarios impacting the final 

O&M annual fee. The simplified calculation and risk analysis tool could aid the O&M 

contractor in obtaining a payment mechanism that is easier to administrate on an 

ongoing basis during the contract term, reducing costs 



 

158 

 

 

Two mechanisms play a role here in PFI and risk transfer; firstly, the fact that the 

contractual agreements entered into automatically transfer key risks from one party to 

another; in other words, they are in-built into the process of PFI. Examples are the 

securing and provision of funding being passed from Local Authority hands to that of 

the SPV, the securing of planning permissions being passed to SUK, and the 

construction contract being transferred to a construction contractor. This, in theory, is 

the best-placed entity to deal with the risk. Therefore, in the argument that risk transfer 

may not be sufficient, the PFI scheme is not correctly set out in how it operates in 

principle. Secondly, that agreement mechanisms built into those very contracts in the 

form of payment mechanisms, rewards, and penalties are designed to mitigate the risk 

that has transferred over to the particular body, thus the argument that costs naturally 

increase. The costs associated with risk transfer in the case of STV 4 and 5 are within 

the affordability model of “do minimum” costs, and arguably are comparable to that of 

a standalone facility in terms of building costs. This would suggest that the cost of the 

original services is high compared to the cost of STV 4 and 5 as a solution or that STV 

4 and 5 is keenly priced as it is not higher than the “do minimum” cost. The overall cost 
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Figure 6.5: Discount rate vs simulated net present value 
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associated with unitary payment mechanisms is complex and can be stated as providing 

a guaranteed income to the O&M contractor as long as KPIs are within parameters. 

There is scope for losses to the O&M contractor if the given solution of an EfW plant 

does not perform to its specification; hence the design is high quality with over-capacity 

in-built. Risk can be seen as in the hands best placed to manage that risk; there is likely 

an increased cost associated with that risk, which falls within a financial cost no greater 

than that already being experienced for existing services. 

 

6.3.5 Industrial Survey: Integrated Assessment of PFI 

The industrial survey is organized using a questionnaire designed as a mechanism to 

collect qualitative as well as quantitative information, (Appendix A17). This method 

assisted in truly protracting key project stakeholders’ opinions of the advantages and 

disadvantages of PFI projects considered against EfW facilities bought through internal 

corporate finance. All groups included in the survey have had a strong knowledge of 

the PFI scheme. For comparison, SITA‘s Suffolk EfW project is considered in the 

survey questionnaire against the PFI of the South Tyne and Wear Waste Management 

partnership. 

6.3.5.1 Qualitative View 

The following are the findings from the qualitative section of the survey, 

a) All groups of SUK do not support the idea of transfer of risk not only of the 

project build to the stakeholder best suited to address it but also risk transfer in 

the operation of the facilities over the 25-year O&M contract. 

b) The majority group in the survey believes that there is an increased cost 

associated with risk transfer within a PFI contract and that the method of PFI is 

complex, leading to high pre-contract award costs, the end contract is inflexible 

to the local authority due to long 25-year contract term, but this also gives a 
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guaranteed waste management route of known costs. This shows clear gains for 

SUK in the author’s opinion here due to long-term contracts at a fixed cost, a 

guaranteed income without the cost of the asset on the balance sheet, an 

increased company profile and security of the company because of an increase 

in size, and leading long-term relationships developed with local councils. 

c) It was mutual consent among the groups that establishing a well-crafted PFI is 

a costly and time-consuming exercise for all parties involved in the contract. 

Suppose the intricacies in the engineering procurement & construction (EPC) 

and O&M contracts are not addressed with clear cost and time perspectives. In 

that case, the result can be disastrous, with high contractual penalties if things 

go wrong. 

d) Some groups believed that project profits might be higher if it is funded 

internally by SUK, like an example quoted for the SITA Suffolk EfW project, 

but this is at increased risk to SUK. It was observed that a question on VFM has 

been achieved. Sufficient responders focused on VFM must be demonstrated in 

a specific calculation process, demonstrating the obligations of the local council 

under the PFI scheme before a PFI contract is awarded. This should ensure a 

degree of confidence. The questionnaire result states the asset was built on cost 

and on time and functions at full capacity, operated by an experienced company 

at a fixed cost to the client. Also, providing a guaranteed waste recycling point 

for the next 25 years, achieving the local council recycling targets set by the 

government. Effective transfer of risk plays a key role in obtaining these 

outcomes by allowing the appropriate stakeholder in the PFI project to manage 

that risk. 

e) In Local Authorities’ perspective: PFI projects can be seen as the 

infrastructure on credit and, therefore, have an associated increased cost to pay 

back that credit. Overall, this is seen as VFM for the public, based on the 

alternatives available, there is also the opinion that the public’s perception 

would be that of a costly enterprise to deliver a waste management facility as 
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they would not have the same level of knowledge of the cost of alternatives and 

the risks associated with unproven technologies. Risks for Local Authority 

include Legislation, Planning, Technology, Waste flow modeling, and 

attractiveness of the project.  

f) In facility’s Operator Perspective: A degree of lack of transparency may also 

contribute to a deficiency of public knowledge of PFI. All groups agree that 

internal funding will give the best financial return to SUK but is constrained by 

available funding and acceptance of risk, while PFI guarantees a known return 

with reduced financial risk and allows participation in many more projects. 

There is an emphasis on improving efficiency, reliability, and operational 

capability in order to service the O&M contract effectively. Effective use of 

known technologies (EfW) has been used as the risks associated with unproven 

technologies are too high to undertake in a PFI due to financial risk. 

Improvement in the facilities due to required higher specification has also driven 

up the service provided by the O&M contractor; this relates to the quality of 

assets provided and not necessarily by an increased drive to improve upon 

service delivery. Contractual frameworks for performance measurement and 

associated reward/penalty schemes drive requirements; again, an increase in 

cost is associated with providing this level of service. The risk for this category 

includes Utility prices, permitting/planning, Diversion targets, performance 

framework, schedules, and pollution residues market test.  

g) Strategic Insights on PFI: Costs of the SUK project may have increased in 

later PFI schemes in proportion to risk transfer. The tendering process has to 

some extent, in the view of the SPV, maintained a degree of control of the cost 

of services due to the competitive nature of PFI bidding. The government has 

withdrawn the current version of PFI for the waste industry sector; all groups 

see that there should be a variant of the PFI scheme for the sector going forward. 

Alternate approaches may benefit from being tied to a long-term contract or the 

flexibility of shorter-term contracts. The SPV hold strong views of the benefit 
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provided by the integration of the private sector specialisms into the 

management of EPC contracts and ongoing O&M contracts, even to the extent 

that Central Government should aid Local Authorities in their own procurement 

processes for large capital-intensive projects, further funding seen by the SPV 

as desirable 

6.3.5.2 Quantitative View 

The analysis was conducted about the cost, time, and quality associated with PFI EfW 

and traditional EfW projects. The main category is further sectioned into three sublevels, 

as shown in Table 6.5. Based on these sublevels, the importance of responses from all 

stakeholders is categorically highlighted in Figure 6.6. Regarding the actual cost of the 

project, there is a clear lean towards higher importance on keeping costs down if 

considering the position of SUK, whether it is internally funded or not. So an inference 

is that costs may not be the most important factor for Local Authority in the candidates’ 

judgment. In all situations, cost certainty, and VFM are scored as desirable, with no 

desire for cost overruns in any of the situations posed. Time in relation to the project’s 

earliest possible start contributes little to the study and reflects, in each case, a 

viewpoint of the individual and their role within the PFI structure or organization. 

Certainty over contract duration, as in costs, is a high consideration for the majority in 

each case, and acquiring the shortest possible contract duration is not a high priority for 

the majority. So, in each case, completing a project on time to a manageable program 

is a sensible viewpoint. Quality of product scoring high may reflect a desire to minimize 

life cycle costs and reflects in each case; this may also reflect a desire to increase long-

term profit; a PFI contract itself will influence this in that the profit going to the SPV is 

a shared resource to that consortium, SUK, Local Authority, and Funding partners, for 

each case of STV 4,5 and Suffolk the profit-sharing mechanisms are similar. The desire 

to influence the design gets a mixed response which reflects the candidates’ roles. Risk 

considerations appear to play a part in the answers given for quality for some candidates 

depending on where they sit in the PFI process and to which organization they belong 
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is influencing their viewpoint. The EfW design may be viewed as a standard package, 

and therefore control over design may not be a top priority for the SPV or SUK, or PFI 

bid team, and in line with the appropriate PFI process of risk transfer to the private 

sector for the public sector, leave it in the hands of the constructor. 

 

Table 6.5: Parameters selected for quantitative analysis of survey (Cost, Time, Quality) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cost 

C1 Lowest possible capital expenditure 

C2 Certainty over contract price, no fluctuation 

C3 Best value for money overall  

Time 

T1 Earliest possible start on site  

T2 Certainty over contract duration  

T3 Shortest possible contract period  

Quality 

Q1 Top quality, minimum maintenance  

Q2 Sensitive design, control by employer 

Q3 Detailed design not critical, leave to contractor 

  

  

  

  

    

  

  

  

 

 

 

 

 

 

                                                    

  

  

  

  

    

  

  

  

 

 

 

 

 

 

                                           

  

  

  

  

    

  

  

  

 

 

 

 

 

 

                                                        

  

  

  

  

    

  

  

  

 

 

 

 

 

 

                                               

Figure 6.6: Response of Local Government Vs SUK for PFI and Traditional EfW projects 
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6.4 Energy from Waste P3: Canada Case Study 

The Canadian P3 model for procuring infrastructure projects is one of the most 

successful in the world. However, Canada’s EfW market and relevant infrastructure are 

not as developed as in Asia or Europe. This factor can be subjected to various factors 

like vast land available for landfills, limited policy support available for the EfW 

industry, or other economic concerns. Recent projects in Canada provide indicators that 

because of growing pressure to reduce the amount of waste going to landfills, the 

government at municipal and provincial levels is undergoing a change by adopting P3 

in procuring EfW infrastructure. Provinces like Quebec, Ontario, Alberta, and British 

Columbia have EfW facilities, among which a few are procured under the P3 model. 

Appendix (A16) shows a comprehensive list of risks and their subcategories commonly 

considered in PPP projects in Canada. The procuring authority transfers the ownership 

of risk to private partners and retains certain risks as part of their project development 

strategy under the PPP model. These risks are specific to energy from the waste sector, 

like waste feedstock uncertainty, revenue, market trends, social and political issues, 

residual disposals, procurement process, etc. 

One of the great cases is the successful delivery of the Surrey Biofuel processing facility 

project under P3 model for public services in BC, Canada, in 2018. A well-crafted 

business case determined that the capital costs of the biofuel facility will be 

approximately $68 million. It also examined the advantages of such an investment 

considering alternative strategies for handling the same organic waste stream by the 

City of Surrey (Procuring Authority/Owner). The business case recognized the most 

suitable project procurement and delivery model by evaluating qualitative and 

quantitative metrics and set out a preferred long-term transaction structure that allocated 

key project risks to the party most able to manage such risks cost-effectively. The 

business case also determined that the project should be procured using a design, build, 

finance, operate and maintain (DBFOM) delivery model. The project was put together 

at no cost to the ratepayers of Surrey, BC. Funding for the facility was made possible 
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through the federal government’s Public-Private Partnership program, and the project 

finished on time with no budget overruns. It also focused on analyzing proven and 

established technologies for processing organic waste streams. The facility is designed 

to process 115K tonnes of organic waste per year to produce 120K GJ of renewable 

natural gas through an anaerobic digestion process and approximately 45K tonnes of 

compost [190]. The Fortis BC (FEI) will consume a surplus portion of the biomethane 

produced. The funding source for this project includes 25% of capital cost support from 

PPP Canada, and a private group of  companies for design, build, finance, operations 

& maintenance of the facility will invest 75% of the funds. Figure 6.7 shows schematics 

for the key stakeholders in the project. So private partners are responsible for producing 

and selling the product in the market [191]. The risk for the City of Surrey may seem 

low compared to a private group of companies and others, as it essentially provides 

land, tipping fees, and feedstock for 25 years. The risks in managing operations and 

maintenance contracts are there, as nobody knows where the RNG market will sit in 

the coming years. 
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6.4.1 Assessment Of O&M Contract and Risk-Canada 

The Surrey biofuel facility is a 25-year partnership between the City of Surrey (COS) 

and its private partners. The FEI will store the produced renewable natural gas (RNG) 

from other contract partners in its grid at the biofuel facility. The City takes 

responsibility for selling biomethane and uses it for fueling garbage trucks used in 

residential collection [191]. The City will pay a tipping fee to the private partner based 

on a tiered pricing arrangement. The City will buy, sell and store the produced 

biomethane to FEI based on biomethane energy recovery charges like Net sales rate and 

Recovery rate depending on the volume of biomethane produced. The City will also 

pay FEI a facility fee between $10K and 14K per month to compensate for capital and 

operating costs for developing the interconnection facility that will store the biomethane 

supply [192]. The private project partner will share revenues for biomethane production 
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Figure 6.7:Surrey Biofuel facility development under DBFO agreement structure 
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in excess of a preset value. Suppose the production targets of biomethane are not met 

due to a shortfall or operational /maintenance failure. In that case, private partners must 

compensate the City of Surrey for the shortfall. Besides, they must ensure acceptable 

odor levels, manage the feedstock residuals and process other bioproducts. In this case 

study, risk probability and risk severity are used to determine risk ranking, and both are 

expressed as an integer from 1 to 5 [134]. Based on that, the risk significant index and 

risk impact are calculated to evaluate the significance of identified risks. In this context, 

Figure 6.8 shows the risk impact score for the eleven dominant risks and their 

allocations among the stakeholders, reflecting their focus on each risk component. This 

information is compiled based on the authors’ interpretation of the available literature 

/contract details [134],[192],[191],[193] and presented in Appendix (A14). 

 

 

Figure 6.8: Risk allocation among stakeholders in the Surrey Biofuel facility project 

 

 

Probability (P) Severity(S)  Risk Significance Index 

(P x S) 

Risk Impact (Sqrt 

RSI) 

0

1

2

3

4

5
Feedstock Volume Risk

Feedstock Composition

Technology Reliability

Unplanned Maintenance

Feedstock Based

Maintenance

Odour Control

/Enviromental

Compliance

Market Pricing

Ability to supply

Biomethane to Grid

Changes in Law &

Policy

Unsustainable dept

Product Quality

COS Private Entity FEI



 

168 

 

 

However, not enough data points are available in the literature for the O&M contract of 

the Surrey biofuel facility. Based on the findings from the sample dataset of an AD 

facility operating in a waste management facility in Edmonton, a cost-benefit analysis 

can be developed for depicting an O&M contract. This project can contribute to private 

contractors achieving financial performance goals with a positive net annual operating 

position, as indicated in the cost-benefit analysis presented in Appendix (A12). 

Projecting the residential waste generation rate for the next eight to ten years, the 

proposed ADF(Anaerobic Digestion Facility) benefits from the extended capacity of 

48,000 tonnes per year. The HSADF, while annually reducing the GHG footprint by 

43,000 tCO2e, is anticipated to generate 12.1 million kWh of electrical and 45,800 GJ 

of thermal energy annually. In addition, it is expected to produce 24,400 tonnes of 

compost material annually. The assumed capital budget for this project is $36,944,000. 

The generated power will be utilized in the composting facility in Edmonton to offset 

fossil fuel-generated power, and the heat will be beneficially used at the same waste 

management facility for drying or heating purposes, replacing natural gas. The 

underlined assumptions for the analysis are presented in Appendix (A13). 

Such a cost-benefit analysis from the AD facility in Edmonton can be implemented for 

measuring the financial performance of the O&M contractor at the Surrey AD facility. 

Figure 6.9 shows that the project in Edmonton has a positive net operating income 

indicating that operations are generating more revenue than its operating expenses, 

resulting in profitability. This is because the project significantly reduces GHG 

emissions from operations by generating renewable energy, avoiding hauling and 

landfilling activities, and associated GHG emissions. Thus, the Edmonton project 

represents a unique renewable energy project like Surrey with the ability to generate 

distributed “green” power and “renewable” heat from residential waste materials. 
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Figure 6.9: Planned scenarios to evaluate financial feasibility of AD project 

 

 

6.5 Discussion 

6.5.1 O&M Contract and Risk 

The process of risk management ensures the project itself is managed appropriately, 

delivering a quality project on time and within budget. The risk allocation register 

produced by the Local Authority highlights the key risks that they transfer to their 

contractor SUK and risks that SUK acknowledges as being born by themselves. As 

stated in the key stakeholder survey, a higher specification of the facility has been 

required to ensure SUK meets contractual requirements to mitigate their risk of 

operation shortfalls. This also reflects in the level of service provided; this, therefore, 

has been beneficial not only to the Local Authority in the facility provided but also to 

SUK as it has demanded that they raise their level of performance to match. The O&M 

contract and annual management fee that SUK has to manage and calculate, as stated 

above, is complex, as shown by the author, and thus has an associated level of 

management time and cost associated with its upkeep, employing financial managers 

to ensure contractual penalties are mitigated.  

Year 1 Year 2 Year 3 Year 4 Year 5

Total Operating Revenue $509,155 $1,321,855 $1,554,325 $1,798,280 $2,054,150

Total Operating Expenses $(232,667) $216,032 $(51,228) $56,962 $18,849

Net Operating Income $741,822 $1,105,823 $1,605,553 $1,741,318 $2,035,301
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Analysis of the O&M contract and development of the sensitivity of risk analysis 

indicates the sensitivity to the risk associated with the contract and its direct relation to 

the annual fee chargeable. This risk is being transferred to the operator SUK. It can be 

considered that this drives VFM for the public purse for waste disposal by mitigating 

the possibility of failure by each party, the consequences of which would not be 

beneficial to any party. PFI in the waste industry has had its success stories and failings, 

as noted by Gyekye [194]. For the Local Authority STV 4&5 PFI has provided the 

required facilities as specified by the Local Authority to meet its obligations under the 

waste directive within a cost framework determined by the “do nothing” calculation 

thus can be considered VFM. The ongoing O&M service contract providing an income 

to SUK may be argued as high or low dependent on the fee to provide the same service 

to the Local Authority as a purely private enterprise.  

The O&M contract annual cost evaluation tool provided by the author makes a simple 

calculation of a gate fee as the starting point for base calculation, equating to a gate fee 

of £18 per tonne of waste. This is a comparable figure to EfW gate fees within the SUK 

group. The O&M payment mechanism calculation tool is a simpler solution along with 

a risk sensitivity and analysis tool, allowing a saving over the lifetime of the contract 

due to ease of administration of the contractual obligations in the calculation of the 

ongoing annual payment mechanism. The risk analysis and risk sensitivity taken to 

individual tasks provide future O&M contact evaluation and ongoing forecast analysis 

of annual budget requirements; this will help reduce ongoing cost and reduce future 

contract formulation costs, should the government provide a future PFI or similar 

scheme. SUK for major EfW build limit their risk by using an EPC contract, whether it 

is as a PFI or internal funding mechanism. The return on a PFI is limited when 

compared to internal funding, the latter being an increased risk financially, as the capital 

outlay is large. Growth in the company is high because EfW build PFI is providing a 

secure method of finance without stretching the capital available from the parent 

company of SUK, Suez Environment. The parent company Suez Environment also 

controls contract selection and award; a greater stake should be undertaken by SUK 
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stakeholders if diversification of the contract is desirable with associated retention of 

some risk. SUK should consider risk sharing of the project build in terms of desirable 

common key plant machinery, as this will increase cost savings in the longer term and 

possibly improve the reliability and quality of the product if the risk is managed well. 

6.5.2 Key Differences of PFI-P3 Project in the UK and Canada 

Public-Private Partnerships (PPPs) in energy from waste (EfW) projects have been 

implemented in both Canada and the UK. The key differences between PPPs for EfW 

in these two countries are quite contrasting. Drawing parallels between these two 

countries, it is evident that both are utilizing their versions of Public-Private 

Partnerships to address the growing deficits in EfW infrastructure. The UK’s EfW PFI 

or PPP projects have shown higher procurement times and costs on average compared 

to Canada. However, a direct comparison between the two countries is not feasible due 

to limited information and differences in project sizes. The success of PPPs in each 

country depends on factors such as the governing framework, market size, financing 

structures, technology, and public perception. For both countries, the complexity of 

designing and managing long-term public-private arrangements presents some 

limitations and challenges in sustainable development goals for energy from the waste 

industry. In order to realize their social value beyond their economic value, PPPs need 

to be “fit for purpose.” This is because, in the UK, O&M contracts of PPPs for EfW 

projects have typically been financed through a combination of equity and debt, with 

lenders willing to provide long-term debt financing. This prevents the emergence of 

critical risks for O&M contractors presented in Table 6.6. In Canada, the regulatory 

framework varies by province and municipality, and no national program is specifically 

focused on EfW PPPs. Canada has efficient procurement processes matured through 

experience, and a diverse market for project finance is the successful determinant. 

The common risks prevailing for both countries also depend on the technologies 

deployed to extract energy from waste. The common risks in both technologies 

identified in this study prevail around five key areas, unplanned maintenance, infeed 
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waste reduction, market price, unsustainable debts, and policy changes. The 

quantification of these risks in the public and private sectors requires a comprehensive 

risk analysis methodology encompassing risk identification, assessment, allocation, and 

mitigation. Conducting risk workshops with subject matter experts from all 

stakeholders, including financial advisors, can aid more in assigning probabilities to 

identified risks and assessing their impacts on various project phases. 

Adding to this discussion, Figure 6.10 shows that the majority of Canadians support or 

somewhat support the delivery of infrastructure projects through PPP. The portion of 

the population which approves support for PPP out of the total sample size (S) is 

presented in percentages. The people from Prairie province are more likely to approve 

in favor of PPP’s compared to Quebec and favor that PPP’s are beneficial to indigenous 

communities as well as to environmentalists [195]. The UK has a higher adoption of 

advanced EfW technologies, such as gasification and pyrolysis, which have not yet 

been widely adopted in Canada. In both countries, there have been concerns about the 

environmental impact of EfW facilities and the potential for negative health effects. 

However, there is generally more public support for EfW projects in the UK than in 

Canada due to a long history of successful implementation and better education about 

the benefits of the technology. Overall, while there are some differences between PPPs 

for EfW projects in Canada and the UK, both countries offer opportunities for private-

sector involvement in this sector. Integrating affordability of  EfW projects to 

consumers in low- and middle-income groups. Providing training opportunities for 

communities to harness specific skills of local stakeholders. 
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            Table 6.6: O&M risks identified in EfW PPP projects in UK and Canada 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risks Identified for 
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Support of Public -Private Partnerships in Canada 

2018 survey , sample size (s)=1000 

61.2% 

S=100 

69.1% 
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S=200 

65.9% 

S=300 52.3% 

S=250 

67.4% 
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59.8% 

S=489 55 
plus

35 to 
54

18 to 
34

61.7% 

S=196 

65.3% 

S=455 

63.2% 

S=349 

Figure 6.10: Canadian PPP support stats with gender and age demographics, 

adapted after [181] 
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6.5.3 Key Implications 

In dissecting the dynamics of risk transfer within PFI, two mechanisms emerge as 

foundational: the intrinsic risk redistribution embedded in PFI contracts and the 

contractual mechanisms aimed at mitigating these risks. This bifurcation offers 

substantial implications for both theoretical understanding and practical application in 

the realm of PFI’s. 

6.5.3.1 Implications for Theory 

The adoption of a mixed risk epistemology approach, coupled with the use of 

simulation for risk modeling, in this study has significant implications for theory in 

project management and public-private partnerships. It underscores the importance of 

integrating quantitative and qualitative methods, alongside simulation techniques, for a 

comprehensive evaluation of risks in infrastructure projects. This approach challenges 

traditional theoretical frameworks that often prioritize objective data, highlighting the 

value of incorporating subjective perceptions and experiences, as well as the dynamic 

nature of risks captured through simulation. Additionally, the study enriches the 

theoretical framework of PFI and risk transfer by acknowledging the dual mechanisms 

at play, the risk redistribution and the contractual mechanisms such as operations and 

maintenance payment schemes, rewards, and penalties as risk mitigators. This 

perspective encourages a reevaluation of risk management theories to incorporate the 

nuanced, structural components of PFIs that designate risk handling to the most apt 

entity, moving beyond simplistic models to a more integrated view of contractual risk 

management. Overall, this study contributes to a more nuanced understanding of project 

evaluation and risk assessment, encouraging a shift towards more holistic theoretical 

models in the field. 
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6.5.3.2 Implications for Practice 

For practitioners, these insights translate into actionable strategies for optimizing PFI 

arrangements. The recognition that risks are not just transferred but strategically 

allocated within PFI contracts necessitates careful planning and drafting of agreements. 

Practitioners must ensure that contracts clearly define the roles and responsibilities of 

each party, matched with their capability to manage specific risks. This alignment 

minimizes misunderstandings and disputes over risk ownership, leading to smoother 

project execution. Furthermore, the understanding that contractual mechanisms are 

designed to mitigate transferred risks while potentially increasing costs highlights the 

importance of financial modeling in PFI projects. Practitioners should employ robust 

financial analysis to predict the impact of risk transfer on project costs and ensure that 

these costs are within the projected 'Do Minimum' affordability models. This approach 

ensures that PFI projects remain financially viable without compromising on quality or 

performance standards. 

Moreover, the recognition of inherent cost implications associated with risk 

management mandates a proactive approach to cost control and value for money. 

Practitioners should negotiate contracts that balance risk mitigation with cost efficiency, 

ensuring that unitary payment mechanisms and performance incentives align with the 

project's financial objectives. This balance is critical in maintaining the financial 

sustainability of PFI projects, ensuring that they deliver public value without undue 

financial strain on public resources. 

The exploration of risk transfer mechanisms within PFI contracts not only broadens the 

theoretical understanding of risk management in PFI but also provides practical 

guidance for structuring and managing PFI projects. By acknowledging and 

strategically addressing the complexities of risk transfer, both theorists and practitioners 

can contribute to the development of more effective and efficient PFI arrangements that 

meet the needs of all stakeholders involved. 
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6.6 Conclusion 

This study has employed a unique methodology by incorporating mixed research 

methods, including subjective and objective epistemology concepts, to model the risks 

associated with operations and maintenance (O&M) contracts for EfW applications. 

This methodology, by bridging quantitative risk modeling  including contract 

components modeling with qualitative insights using survey approach into stakeholder 

experiences, provides a unique contribution to the literature on PPPs in EfW 

applications. It not only addresses the gap identified in existing research but also offers 

practical recommendations for policymakers, project managers, and private sector 

partners involved in the planning and execution of PPP EfW projects. 

Through this research, it has become evident that careful planning and execution are 

essential for the success of Private Finance Initiative (PFI) or Public-Private Partnership 

(PPP) projects. Success factors such as providing detailed technical information during 

the Request for Qualifications (RFQ) stage and aligning it with the Request for Proposal 

(RFP) are crucial for incorporating the right expertise within the private partner’s team. 

To ensure cost and time efficiencies throughout the EfW project life cycle, public 

partners can draft project agreements and procurement documents based on the 

developed quantitative probabilistic model, which models and captures operational 

phase costs and profitability. Using mixed epistemology method our study has achieved 

several key objectives, including capturing the perspectives of key stakeholder groups 

on the use of PPP models in waste management projects, providing comparative data 

to determine VFM and the quality of products and services, analyzing the complex 

nature of O&M contracts in terms of risk quantification, examining the payment 

mechanism’s costs and forecasts for the contract duration, and conducting a 

hypothetical comparison of lessons learned from EfW projects procured using P3 in 

Canada and UK. The objective based risk modeling for EfW incineration technology in 

this study helped estimate a decrease of £75.5K  in the annual O&M cost as compared 

to the original designed cost. Also, its subjective biased risk modeling concludes that 
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certainty over contract price with no fluctuation is ranked highly among stakeholders 

in EfW projects. The risks identified in this study like unplanned maintenance, infeed 

waste reduction, market price, unsustainable debts, and policy changes for both 

incineration and AD technology in EfW applications have a drastic impact on the 

financial performance of O&M contracts. These findings contribute to a better 

understanding of the challenges and opportunities associated with PFI and PPP models 

in EfW projects, providing valuable insights for industry practitioners and policymakers. 

Further research and analysis in this field can continue to enhance the O&M contract 

understanding and drive improvements in implementing PFI and PPP models in the 

waste management sector. Nonetheless, this research concludes that PPP or P3 models 

outperform traditional delivery models in both Canada and the UK.  

The final chapter of this study emphasizes the significance of the integrated decision 

support system developed throughout the course of this research. This system plays a 

crucial role in mitigating challenges at both operational and management levels within 

an MRF. By integrating various modeling approaches and considering uncertainties, the 

decision support system enables a more informed and effective decision-making 

process. It serves as a valuable tool for optimizing operations, enhancing resource 

efficiency, and ultimately improving the overall performance of MRFs. 
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Chapter 7:  Conclusion, Discussion & 

Future work 

7.1 Conclusion 

This study establishes a decision support system targeting managerial and operational 

challenges within MRFs. At the management level, it introduces an advanced 

quantitative probabilistic model. This model intricately analyzes lifecycle risks' impact 

on operational phase costs and profitability in WtE projects. It accurately depicts risk 

factors typically delegated to O&M contractors, considering technical, payment, and 

incentive variables' fluctuations. This approach identifies prevalent risks such as 

unplanned maintenance, waste reduction, market price volatility, debts, and policy 

changes associated with WtE technologies. 

At operational level, this study addresses key concerns affecting sustainability and RDF 

production quality. Firstly, it enhances waste characterization by mass using computer 

vision, enabling accurate waste detection and early mitigation strategies for unsuitable 

compositions. Secondly, it extends waste management practices, incorporating 

uncertainties to enrich the biofuel supply chain. This approach enhances operational 

conditions, predicting RDF quality to meet set specifications. 

Additionally, new empirical models predict RDF's calorific value, validating their 

reliability against established models. Systematic computational experiments and real-

world case studies validate the effectiveness of these methods. The proposed framework 

delivers a robust decision support system comprising four intelligent solutions, offering 

comprehensive solutions for both managerial and operational challenges in MRFs. 

This study makes significant theoretical, managerial, and global implications for 

sustaining RDF production. Following are the benefits of this research, 

 

a) Intelligent Framework for RDF Production Plants: 

This study contributes to theoretical advancements by introducing an innovative 
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framework that combines technical assessment and economic feasibility 

analysis for RDF production plants. This framework offers a comprehensive 

approach, considering both technical aspects such as processing efficiency, 

waste sorting, and energy recovery, alongside economic factors like cost-

effectiveness and profitability. It offers a comprehensive approach that advances 

understanding in waste management and resource recovery domains. 

b) Simulation Environment for Decision Support: 

From a managerial standpoint, this study's framework provides valuable 

decision-making tools. Within a simulation environment, this study empowers 

decision-makers at strategic, tactical, and operational levels. It provides a 

platform to simulate various scenarios, aiding in decision-making related to 

maintaining consistent production levels and ensuring high-quality control 

standards applicable to various types for RDF materials. 

c) Robust Unit Configuration Design in MRFs: 

The framework developed in this study allows managers in Material Recovery 

Facilities (MRFs) to conduct scenario analyses during the design phase. This 

enables the identification of robust configurations that can effectively handle 

uncertainties in input variables, ensuring efficient operations despite variability. 

d) Enhancing Profits and RDF Material Quality: 

Beyond theoretical and managerial impacts, the study holds global relevance. 

By improving RDF production efficiency and quality, it contributes to global 

waste management practices. For MRF operators aiming to improve profits and 

enhance the purity and quality of RDF material, this study offers valuable 

insights derived from the framework's assessments. It provides guidance on 

modeling processes and strategies to achieve higher-quality RDF outputs. 

e) Efficiency Modeling for Waste Diversion: 

Waste managers at local and regional levels benefit from the efficiency 

modeling provided by this study. The correlation of efficiency parameters with 

quality aids in redirecting waste streams to facilities where sorting processes are 
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more efficient, optimizing the overall waste management system. Additionally, 

it aligns with global sustainability goals by offering insights into waste diversion 

and efficient resource utilization, impacting waste management practices 

internationally. 

f) Informing Policy Decisions for Recycling: 

Policymakers gain valuable insights into material sorting processes and 

recycling policies through this study. It bridges knowledge gaps, enabling the 

formulation of policies that align with desired environmental outcomes. This 

aspect makes it a valuable resource for shaping future waste management 

policies and regulations.  

Each aspect contributes to a more holistic understanding and practical 

application of RDF production, waste management, and policy formulation, 

offering valuable tools and insights for various stakeholders involved in these 

domains. 

7.2 Research Contributions 

The main contributions of this research are summarized as follows: 

a) Developed a waste characterization system that contributes by pioneering the 

assessment of waste composition estimation for RDF-3 production using 

computer vision techniques like frame differencing and motion compensation, 

filling an area devoid of prior evaluation with real material recovery facility data. 

This fills a crucial void in research, offering insight into the practical application 

of computer vision in optimizing RDF-3 production. processes. 

b) Constructed methods based on statistical and heuristics modeling techniques for 

estimating calorific values and other important parameters of RDF production 

that significantly diminishes the need for labor-intensive and time-consuming 

processes involved in characterizing RDF material. It offers precise, 

instantaneous, and ongoing data on waste composition, alleviating the 

challenges posed by traditional characterization methods. 
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c) Designed and extended network flow modeling application for RDF-3 

production that provides the best operating conditions and prediction for quality 

standards. It demonstrates that attending to the physical, chemical, and thermal 

properties, an RDF can be endorsed as a standardized SRF. The modeling of the 

application of the dryer unit and its impact on RDF-3 production in a real-world 

environment are uniquely explored in this study. 

d) Proposed a decision support system that can test the strategic, tactical, and 

operational decisions to evaluate their impact on the RDF quality. This study 

provides results that can support revisions in the strategic, tactical, and 

operational level decisions integrating different waste treatment technologies 

considering varied uncertainties like waste composition technology 

performance and upgrades, yield and quality of RDF and RDF market selection. 

The combined effect of all types of decision was not explored enough in past 

research. 

e) Established design of experiments which addressed the scarcity of detailed 

information regarding sorting efficiencies and output quality from MRFs 

producing RDF-3 material. 

f) Developed a framework for modeling and identifying risks in energy from waste 

PPP projects using risk epistemology. 

g) Developed an quantitative probabilistic model that is capable to model and 

capture how operational phase costs and profitability are affected by lifecycle 

risks (such as quality of service driven by contractual requirements that are 

usually passed on to the Operation and Maintenance (O&M) contractor). 

h) Incorporated mixed research methods to include survey results from industry 

experts (local authorities and operator perspectives), on successful delivery and 

operation of WtE plants based on time, cost and quality parameters. 

i) Explored the pivotal O&M risks within EfW PFI and PPP projects in the UK 

and Canada. This research bridges a literature gap by delving into the risks 

associated with O&M contracts using real-world examples, an area largely 
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missing in existing studies on PPP or PFI in EfW applications. 

7.2.1 Comprehensive Insights 

Additionally, this study thoroughly examines various modeling approaches employed 

in related research within this domain. By offering a comprehensive exploration of 

diverse methodologies used in similar contexts, this comparative analysis enhances the 

broader understanding of modeling landscapes, serving as a valuable reference for both 

researchers and practitioners in this field. Moreover, this research employs a 

combination of statistical, survey, experimental, and heuristic methods to address 

decision-making challenges. It specifically addresses random and epistemic 

uncertainties, as highlighted in Table 7.1 below, providing comprehensive insights 

within this context. 

 

Table 7.1: Comparison of frameworks from literature with underline study for strategic(S), tactical(T) 

and operational(O) decisions in scope of this study. Legend: ✓ indicates authors have used methodology 

and tackled the decisions in biomass supply chain in a bro 

References Modeling approach  S T O 
Type of 

Uncertainty 

  

S
ta

ti
st

ic
al

 M
et

h
o

d
 

M
at

h
em

at
ic

al
 P

ro
g

ra
m

m
in

g
 

S
u

rv
ey

 o
r 

E
x
p

er
im

en
ta

l 
M

et
h
o

d
s 

H
eu

ri
st

ic
 M

et
h

o
d

s 

S
to

ch
as

ti
c 

P
ro

ce
ss

 

T
h

eo
re

ti
ca

l 
M

et
h
o

d
s 

G
IS

/O
th

er
 

T
ec

h
n

o
lo

g
y

 U
p
g

ra
d

e 

B
io

m
as

s 
m

ar
k

et
 S

el
ec

ti
o

n
 

W
as

te
 S

el
ec

ti
o

n
 /

C
o

m
p

o
si

ti
o
n

 

T
ec

h
n

o
lo

g
y

 p
er

fo
rm

an
ce

 

B
io

m
as

s 
y

ie
ld

 

B
io

m
as

s 
Q

u
al

it
y

 

O
&

M
 R

is
k

s 

R
an

d
o

m
 

E
p

is
te

m
ic

 

D
ee

p
 U

n
ce

rt
ai

n
ty

 

Bairamzadeh et 

al,2017[42]                  

Castillo et al, 

2017 [41]      
            

Nunes et al, 

2023[164]                  
Aboytes-ojeda et 

al, 2022[165]      
            



 

183 

 

Mohseni et al, 

2016[166]       
      

     
Testa et al, 

2015[17]                  
Sebastian et al, 

2022[72]                  
Ip et al,  

2018[80]              
 
   

Arina et al,  

2020[167]            
      

Tanguay et al, 

2021,[18]                  
Sharma et al, 

2013[168]        
    

 
     

Dolla et al, 

2021[151]                  

Nasrullah et al, 

2017,                  

This Research  
 
   

  
         

 

 

7.3 Limitations and Future Work 

Despite achieving its primary goal, the research presented in this study is confronted by 

several limitations that warrant further exploration in future work. These limitations 

can serve as opportunities for enhancing the study's impact and addressing unresolved 

questions. Figure 7.1 highlights these limitations and future research directions in detail, 

providing a roadmap for advancing the field. 

The study successfully achieved its objectives of investigating RDF-3 production and 

relevant waste management processes selected in the scope of the study. It provided 

valuable insights into the impact of various factors on RDF quality, such as plant 

configurations and the study highlighted the importance of understanding the chemical 

characteristics of refuse-derived fuels and the need for improved methods to analyze 

the performance of MRF. Following are the limitations and research areas to enhance 

the current study in the future, 

a) The current research primarily centers on RDF-3 production goals, yet it doesn't 
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emphasize decisions concerning scheduling, maintenance, sorting unit 

reliability, energy consumption, and production schedules. To enhance 

production efficiency and reduce environmental impact, it's crucial to address 

these overlooked objectives. Future studies should explore aspects like carbon 

emissions, equipment reliability, service quality, and resource utilization to 

effectively resolve RDF production challenges. 

b) The research problems in the current study are confined to static conditions, 

relying on predetermined operating and processing conditions, quality standards, 

intuitions from design of experiments and other constraints. Yet, the inherent 

unpredictability of waste composition, separation coefficients, biofuel supply 

chain planning require future investigations. That would focus on handling 

additional uncertain factors like processing times, sequence-dependent setups, 

fluctuating processing RDF yields and maintenance times, to better align with 

real-world complexities. 

c) This study introduces computer vision techniques for waste characterization. 

While these algorithms effectively solve the identification of physical 

composition problem in terms of quality RDF production, the investment to 

obtain the optimized solution remains high. Hence, imperative algorithmic 

enhancements are needed to achieve high-quality solutions more efficiently, 

reducing computational costs. From the algorithm’s perspective, the frame 

differencing technique brings some limitations. For example, it is only tailored 

for detecting moving objects in videos and may require a waiting period to 

establish background models, most likely not limiting its real-time capabilities. 

However, this technique works well with stationary cameras but is less practical 

for moving ones and close objects may be falsely identified as a single object, 

posing a challenge. 

d) The PPP and PFI case studies in this work come from the UK and Canadian 

WtE industry, which is a relatively limited scope for risk modeling of O&M 

operations contract. The research in this study in confined, yet there are other 
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countries where WtE projects are successfully delivered and operated under PPP. 

Therefore, more research on case studies needs to be conducted to verify the 

universality as well as application of the developed risk epistemology-based 

framework in this study. 

 

 

Figure 7.1: Limitations of the study and areas for future research 
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e) Maintaining a quality standard for RDF is challenging, and various 

interventions are required to mitigate inconsistent production in an MRF. A 

ZDM methodology integrated with a data mining approach can avoid failure to 

maintain a consistent RDF quality. Wang C.[196] applied such a datamining 

approach to manufacturing zero defect products by collecting process and 

product data and applying advanced machine learning techniques to predict the 

failure in the manufactured products. The simulation and modeling approaches 

developed in the previous sections of this study could be considered to be the 

key enabling technologies of ZDM as described by [197]. Similarly, ZDM aims 

to eliminate defects completely through defect prediction and prevention [198]. 

In a study, Powell et al.,(2022), presented a research framework for advancing 

ZDM strategies. One of the framework’s vital components emphasized the 

extension of ZDM strategies to less explored manufacturing processes. For 

instance, continuous manufacturing processes involve thermal or chemical 

transformations or systems where its process parameters must adapt to the 

product characteristics obtained via thermal or chemical transformations acting 

on the material properties [198]. However, the integration of the ZDM 

framework with this study provides an opportunity for further research in this 

field. 
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Appendix 

A1: The probability distributions applied in the simulation for modeling 

uncertainty in material composition, moisture content and calorific value of the 

waste components. 

 

 

 

 

A2: Waste composition categories, after [169]. 

 

 Waste 

Components 

Description Category 

1 Paper and 

Cardboard 

Writing and computer paper, newspaper, flyers, 

envelopes, magazines, egg cartons, corrugated 

cartons, packaging, and cardboard boxes, etc. 

Combustibles 

2 Rigid Plastic Household bottles and containers* (shampoo, 

detergent, sauce, yogurt, etc.), food dishes, beverage 

bottles, lids, tubs, plastic utensils, etc. 

Combustibles 

3 Film Plastic Mainly garbage, shopping, and grocery bags, etc. Combustibles 

4 Yard Waste Trimmed grass, leaves, garden waste, thatch, tree 

limbs, or woody bush, etc. 

Compostable 

5 Food Waste All types of food waste Compostable 

Sources of uncertainty Materials Probability Distribution Mean Standard Dev Shape Scale Low High

Paper Normal 0.22292 0.07412  

Rigid Plastic Weibull 1.874904 0.077246  

Film Plastic Weibull 4.052993 0.158514  

Yard Waste Normal 0.11106 0.11279  

Food Weibull 0.91315 0.062846  

Diapers & Napkins Normal 0.07885 0.04883  

Other Combustible Normal 0.25514 0.08449  

Glass Weibull 0.452483 0.002496  

Non-Combustible Gamma 1.134841 0.023413  

Paper Normal 0.20158 0.06276  

Rigid Plastic Uniform 0.019087 0.102264

Film Plastic Normal 0.1756 0.06834  

Yard Waste Normal 0.47176 0.10938  

Food Weibull 6.172186 0.622246  

Diapers & Napkins Normal 0.41913 0.10813  

Other Combustible Weibull 2.644437 0.194076  

Glass Beta 0 0.084

Non-Combustible Weibull 1.174516 0.095154  

Paper Normal 17.56 2.86  

Rigid Plastic Normal 38.26 11.22  

Film Plastic Normal 38.12 5.321  

Yard Waste Normal 17.49 0.859  

Food Normal 19.31 3.43  

Diapers & Napkins Normal 22.544 4.3  

Other Combustible Normal 18.74 1.9  

Glass - 0 0.0001

Non-Combustible - 0 0.0001

Input Material Composition

Moisture content

Calorific Value
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6 Sanitary Diapers, napkins, and toilet papers Compostable 

7 Other 

Combustibles 

Polystyrene foam, pellets, wood, textiles and fabrics, 

shoes, rubber, colorful wrapping plastics, etc. 

Combustibles 

8 Glass All broken pieces of glass Inert 

9 Metals and Non- 

Combustibles 

ferrous and non-ferrous metals (e.g., tin cans, 

aluminum foil, aluminum cans), wire (insulated or 

uninsulated), hangers, utensils, rock, drywalls, etc. 

Inert 

 

 

 

A3: The chemical composition data (concentration %) for RDF-3 produced in 

Edmonton 

# 

Carbon 

Content 

Hydrogen 

Content 

Oxygen 

Content 

Nitrogen 

Content Sulfur 

Calorific Content 

Ash free-Dry Basis 

(Heating Value, 

MJ/Kg) 

1 50.04 6.53 31.23 0.45 0.21 22.545 

2 56.29 5.29 35.48 0.26 0.03 24.075 

3 46.52 6.6 35.33 0.39 0.14 21.987 

4 38.31 7.54 35.92 0.65 0.44 21.506 

5 41.25 7.88 36.76 0.79 0.49 22.32 

6 42.67 7.61 38.26 0.87 0.56 23.894 

7 41.45 8.08 38.83 0.51 0.48 22.737 

8 42.62 6.66 38.14 0.77 0.43 21.045 

9 40.42 6.58 39.78 0.74 0.42 20.893 

10 41.43 6.41 40.37 0.67 0.48 21.877 

11 40.49 6.48 41.84 0.63 0.4 21.604 

12 53.29 7.83 29.55 0.64 0.15 24.236 

13 53.5 7.96 28.94 0.58 0.14 24.314 

14 45.45 7.51 34.6 0.67 0.13 24.157 

15 43.58 6.93 38.09 0.79 0.17 22.258 

16 40.59 6.29 38.23 0.83 0.15 21.016 

17 42.81 6.48 39.71 1 0.17 21.334 

18 44.66 6.1 39.29 0.31 0.17 23.11 

19 43.25 6.33 39.77 0.79 0.19 22.37 

20 43.76 5.81 40.19 0.43 0.14 21.298 

21 45.21 6.11 38.32 0.4 0.15 21.913 

22 43.79 6.08 40.46 0.32 0.22 22.3 

23 42.84 5.73 40.14 0.05 0.28 21.71 

24 36.07 5.46 48.48 0.47 0.52 20.834 

25 37.51 6.06 46.01 0.43 0.37 21.176 
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A4:  Waste composition categories. 

 Waste 

Components 

Description Category 

1 Paper and 

Cardboard 

Writing and computer paper, newspaper, flyers, 

envelopes, magazines, egg cartons, corrugated 

cartons, packaging, and cardboard boxes, etc. 

Combustibles 

2 Rigid Plastic Household bottles and containers* (shampoo, detergent, 

sauce, yogurt, etc.), food dishes, beverage 

bottles, lids, tubs, plastic utensils, etc. 

Combustibles 

3 Film Plastic Mainly garbage, shopping, and grocery bags, etc. Combustibles 

4 Yard Waste Trimmed grass, leaves, garden waste, thatch, tree limbs, 

or woody bush, etc. 

Compostable 

5 Food Waste All types of food waste Compostable 

6 Sanitary Diapers, napkins, and toilet papers Compostable 

7 Other Combustibles Polystyrene foam, pellets, wood, textiles and fabrics, 

shoes, rubber, colorful wrapping plastics, etc. 

Combustibles 

8 Glass All broken pieces of glass Inert 

9 Metals and Non- 

Combustibles 

ferrous and non-ferrous metals (e.g., tin cans, aluminum 

foil, aluminum cans), wire (insulated or 

uninsulated), hangers, utensils, rock, drywalls, etc. 

Inert 

10 Batteries 9v, C , D, CR123A, 23 A, AAAA, AAA, AA Inert 

 

 

A5: The distribution of waste composition for MF and SF, as assessed in the 

laboratory, is being compared with the predictions made by Smart-Sight. 

  

Multifamily Waste Composition Single-family Waste Composition 

Waste 

Components 

Categor

y 

Lab 

Sample 

1 

Predict 

Sampl

e 1 

Lab 

Samp

le 2 

Predict 

Sample 2 

Lab 

Sampl

e 3 

Predict 

Sample 3 

Lab 

Sampl

e 4 

Predict 

Sample 4 

Batteries Inert 0.0% 0.00% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Cardboard Combust

ibles 

22.8% 24.33% 20.1

% 

22.9% 5.3% 8.8% 4.6% 12.5% 

Diapers/Napkin

s 

Compost

able 

18.0% 10.56% 24.0

% 

9.5% 0.3% 2.5% 14.1% 20.0% 

Film Plastics Combust

ibles 

22.1% 18.76% 8.5% 14.9% 23.3% 52.1% 22.8% 26.8% 

Food waste Compost

able 

2.9% 1.91% 4.4% 0.0% 1.2% 0.0% 5.4% 0.0% 

Glass Inert 0.4% 0.00% 0.0% 0.0% 2.7% 0.0% 0.0% 0.0% 

Metals Inert 0.0% 0.00% 0.3% 0.0% 0.1% 0.0% 1.4% 0.0% 

Other Combust 0.0% 2.93% 0.0% 4.4% 0.0% 0.0% 0.0% 0.0% 
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A6: Sample frame demonstrating motion compensation which assists in stabilizing 

camera movement and object detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A7: O&M contract fee modelling abbreviations 

I =Indexation, FFrpix =Fixed O&M fee, FFawe= Fixed O&M fee average weekly earnings, VF= 

variable fee , Ttn= Total Tonnage of waste processed, Iawe= Indexation average weekly, TST= 

(Number of tonnes waste accepted each transfer station earnings, TSF= Fixed waste transfer station 

fee, TSR= Transfer station rate, AULT= Actual unprocessed waste to landfill, TULT= Target 

unprocessed waste to landfill, ULAR=Unprocessed landfill rate, APLT= Processed landfill tonnage, 

TPLT= Target processed landfill tonnage, PLAR= Processed landfill rate, CWA= Contract waste 

accepted , CWNA= Contract waste not accepted ,ULPT=Unprocessed landfill performance target, 

CWP= Contract waste processed ,PLPT= Processed landfill performance target, APFD= Annual 

performance failure deduction, Mwha= Electricity production MWh/pa, Mwhg= Guaranteed 

electricity production target, PE= Purchase rate (£13.13/MWh), WVF= Waste volume factor, ETA= 

Combustibles ibles 

Other 

Noncombustibl

e 

Inert 0.0% 3.05% 0.0% 1.4% 0.0% 1.8% 0.0% 0.0% 

Paper Combust

ibles 

18.3% 19.75% 19.4

% 

35.6% 34.6% 28.3% 27.1% 9.3% 

Rigid Plastics Combust

ibles 

9.7% 17.73% 14.6

% 

9.6% 30.1% 6.4% 13.9% 31.4% 

Wood Combust

ibles 

2.9% 0.96% 4.4% 1.7% 1.2% 0.0% 5.4% 0.0% 

Yard waste Compost

able 

2.9% 0.00% 4.4% 0.0% 1.2% 0.0% 5.4% 0.0% 
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Export threshold adjustment, CWAD= Contract waste accepted at delivery point, MTD=Mileage to 

delivery point, HR=Haulage rate, NADR=None acceptance deduction rate, CWNA= contract waste 

not accepted, LM= Annual major Maintenance Fee, M= Months. 

 

 

A8: O&M contract fee Data 

 

 

Base Payment = (Fixed O&M Fee RPIX * Indexation) + (Fixed O&M FEE AWE 

*Average weekly earnings index) + (Variable Fee * Total Tonnage of waste 

processed * Indexation) 

Year FF RPIX I FF awe I awe VF Tonnage I Result 

Year1 591,730.00 1.00 1,851,303.00 1.00 3.66 170,835.00 1.00 3,068,118.27 

Year2 591,776.00 1.00 1,844,222.00 1.00 3.66 169,827.00 1.00 3,057,734.65 

Year3 591,776.00 1.00 1,844,222.00 1.00 3.66 168,691.00 1.00 3,054,081.82 

Year4 591,776.00 1.00 1,844,222.00 1.00 3.67 167,447.00 1.00 3,050,026.15 

Year5 591,730.00 1.00 1,851,303.00 1.00 3.67 164,548.00 1.00 3,047,088.71 

 

Waste transfer stations = ((Number of tonnes waste accepted each transfer station * rate) * 

Indexation) + (Fixed waste transfer station fee * Indexation) 

Year TST n TSR y I TSF y I Result 

Year1 170,835.00 8.31 1.00 428,691.00 1.00 1,848,329.85 

Year2 169,827.00 8.31 1.00 428,691.00 1.00 1,839,953.37 

Year3 168,691.00 8.31 1.00 428,691.00 1.00 1,830,513.21 

Year4 167,447.00 8.31 1.00 428,691.00 1.00 1,820,175.57 

Year5 164,548.00 8.31 1.00 428,691.00 1.00 1,796,084.88 

Annual O&M Contact Fee = Base payment + Waste Transfer Stations - Diversion Performance 

Deduction - Performance Deductions+ Electricity Income Incentive - Mileage Deduction - None 

Acceptance Deduction + Annual Major Maintenance Fee 

Yea

r By TSPy Dy Py Ey My Ny Lmy Result 

Yea

r1 

3,068,11

8.27 

1,848,32

9.85 

461,46

2.60 0.00 0.00 

792,67

4.40 

75,00

0.00 

1,217,55

9.00 

4,804,87

0.12 

Yea

r2 

3,057,73

4.65 

1,839,95

3.37 

462,17

3.85 0.00 

121,95

1.44 

787,99

7.28 

75,00

0.00 

2,037,01

8.00 

5,731,48

6.33 

Yea

r3 

3,054,08

1.82 

1,830,51

3.21 

463,22

0.14 

25,00

0.00 

33,591.

44 

782,72

6.24 

75,00

0.00 

1,980,19

9.00 

5,552,43

9.09 

Yea

r4 

3,050,02

6.15 

1,820,17

5.57 

463,66

8.68 0.00 

33,591.

44 

776,95

4.08 

75,00

0.00 

1,923,95

1.00 

5,512,12

1.40 

Yea

r5 

3,047,08

8.71 

1,796,08

4.88 

466,53

0.00 0.00 

33,591.

44 

763,50

2.72 

75,00

0.00 

3,949,42

2.00 

7,521,15

4.31 
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Diversion Performance Deduction = ((Actual unprocessed waste to landfill - Target unprocessed 

waste to landfill)*Unprocessed landfill rate*Indexation) + (Processed landfill tonnage - Target 

processed landfill tonnage)*Processed landfill rate * Indexation) 

Year AULT y TULT y 

ULAR 

y I APLT y 

TPLT 

y 

PLAR 

y I Result 

Year

1 

10,000.0

0 

7,848.2

4 50.00 

1.0

0 

8,000.0

0 922.51 50.00 

1.0

0 

461,462.6

0 

Year

2 

10,001.0

0 

7,840.4

6 50.00 

1.0

0 

8,000.0

0 917.07 50.00 

1.0

0 

462,173.8

5 

Year

3 

10,002.0

0 

7,826.6

7 50.00 

1.0

0 

8,000.0

0 910.93 50.00 

1.0

0 

463,220.1

4 

Year

4 

10,003.0

0 

7,825.4

1 50.00 

1.0

0 

8,000.0

0 904.21 50.00 

1.0

0 

463,668.6

8 

Year

5 

10,004.0

0 

7,784.8

4 50.00 

1.0

0 

8,000.0

0 888.56 50.00 

1.0

0 

466,530.0

0 

 

Target Unprocessed Waste to landfill = Contract waste accepted + Contract waste not accepted * 

Unprocessed landfill performance target 

Year CWA y CWNA y ULPT y Result 

Year1 170,835.00 10,000.00 4.34% 7,848.24 

Year2 169,827.00 10,000.00 4.36% 7,840.46 

Year3 168,691.00 10,000.00 4.38% 7,826.67 

Year4 167,447.00 10,000.00 4.41% 7,825.41 

Year5 164,548.00 10,000.00 4.46% 7,784.84 

 

Target Processed Landfill Tonnage = Contract waste processed * Processed landfill 

performance target 

Year CWP y PLPT y Result 

Year1 170,835.00 0.54% 922.51 

Year2 169,827.00 0.54% 917.07 

Year3 168,691.00 0.54% 910.93 

Year4 167,447.00 0.54% 904.21 

Year5 164,548.00 0.54% 888.56 

 

Performance Deduction = Annual performance failure deduction * Indexation 

Year PSD y I Result 
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Year1 0.00 1.00 0.00 

Year2 0.00 1.00 0.00 

Year3 25,000.00 1.00 25,000.00 

Year4 0.00 1.00 0.00 

Year5 0.00 1.00 0.00 

 

Electricity Income Incentive = Electricity production above guaranteed electricity production - 

Electricity production shortfall 

  Ei y Ed y Result 

Year1 0.00 0.00 0.00 

Year2 121,951.44 0.00 121,951.44 

Year3 121,951.44 88,360.00 33,591.44 

Year4 121,951.44 88,360.00 33,591.44 

Year5 121,951.44 88,360.00 33,591.44 

 

Electricity Production Incentive = Electricity production MWh/pa - Guarenteed electricity 

production target * £13.13/MWh * Indexation 

Year Mwha y MWhg y Pe I Result 

Year1 148,503.00 148,503.00 13.13 1.00 0.00 

Year2 160,000.00 150,712.00 13.13 1.00 121,951.44 

Year3 160,000.00 150,712.00 13.13 1.00 121,951.44 

Year4 160,000.00 150,712.00 13.13 1.00 121,951.44 

Year5 160,000.00 150,712.00 13.13 1.00 121,951.44 

 

Electricity Production Deduction payment = (((Guarenteed electricity production * Waste volume 

factor) - Actual level of electricity production)*£40/MWh)+Export threshold adjustment 

Year MWhg y WVF y Mwha y P d ETA Result 

Year1 148,503.00 1.00 148,503.00 40.00 0.00 0.00 

Year2 150,712.00 1.00 150,712.00 40.00 0.00 0.00 

Year3 150,712.00 1.00 148,503.00 40.00 0.00 88,360.00 

Year4 150,712.00 1.00 148,503.00 40.00 0.00 88,360.00 

Year5 150,712.00 1.00 148,503.00 40.00 0.00 88,360.00 

 

Mileage Deduction = (Contract waste accepted at delivery point * Mileage to delivery point * 

Haulage rate * Indexation) 

 Year TA t AM HR I Result 

Year1 170,835.00 3.20 1.45 1.00 792,674.40 

Year2 169,827.00 3.20 1.45 1.00 787,997.28 
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Year3 168,691.00 3.20 1.45 1.00 782,726.24 

Year4 167,447.00 3.20 1.45 1.00 776,954.08 

Year5 164,548.00 3.20 1.45 1.00 763,502.72 

 

None Acceptance Deduction = None acceptance deduction rate * contract waste not accepted 

Year NADR CWNA Result 

Year1 15.00 5,000.00 75,000.00 

Year2 15.00 5,000.00 75,000.00 

Year3 15.00 5,000.00 75,000.00 

Year4 15.00 5,000.00 75,000.00 

Year5 15.00 5,000.00 75,000.00 

 

Monthly Lifecycle Maintenance Fee = Annual major maintenance fee / 12 * Indexation 

Year LM y M I Result 

Year1 1,217,559.00 12.00 1.00 101,463.25 

Year2 2,037,018.00 12.00 1.00 169,751.50 

Year3 1,980,199.00 12.00 1.00 165,016.58 

Year4 1,923,951.00 12.00 1.00 160,329.25 

Year5 3,949,422.00 12.00 1.00 329,118.50 

 

 

A9: Details of the Risk factors included in the study 

Tonnage decline: the risk that the overall quantity of waste in the market may reduce over 

periods of years. This can result from a reduction of waste produced by the consumer by result 

of less packaging in consumer goods, or by the fact that waste is further recycled further up the 

waste chain. This affect the income (i.e. gate fee) that is paid for each tonnage received at EfW 

facility.  

Calorific value change: the risk that waste as an end-of-life product delivered to EfW facilities 

reduces in calorific value over a period of years and therefore provides less heat value for 

conversion to electricity output. This could be in relation to change in waste producer markets 

or by dilution of waste streams from non-combusting products such as scrap metal. Waste is 

also affected by climate and seasonal change. Wet climate conditions can produce wet wastes 

and introduce high degree of green waste in spring summer, all of which affect the combustion 

properties and heat generation. 

Landfill diversion targets: these targets assess the growth and size of landfills from one year 

to the next and are set up by national governments or the European Union. EfW plants are part 

of the policy strategies to meet the 2020 landfill diversion targets set by the EU. As waste 

diversion targets are achieved, investments in EfW reflected by allocated ‘PFI credits’ decrease.  

KPI Performance: performance measurement standards associated with the O&M contract, 

designed to ensure optimal performance and service delivery, reward or penalty resulting.  
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Delivery Fuel: the cost of fuel can increase with political change and oil markets. Waste 

transport from transfer stations to the remote EfW can be dramatically affected by the fuel prices. 

Waste that may be diverted will also attract a fuel cost associated with the additional distance 

to landfill. 

Electricity Price: the risk of market changes in relation to electricity export revenue can change 

with market forces, green incentives and policies, and political and social changes over time. 

Waste production: the waste produced by society can vary from region to region and also with 

time and social reform and change.  

Unplanned Downtime: if there are unforeseen problems (e.g. breakdown, unplanned down 

time) with the EfW facility this will reduce availability from a target value set in the contract 

around 92%. This will result in reducing waste input to the facility and drive down associated 

revenue streams. There may also be a penalty for low availability target in the KPI. This is a 

risk the O&M contractor must mitigate effectively in the EPC contract by quality and reliability 

of technology selection 

 

 

A10 : Risk factor calculation result developed using simulation in excel  

 

 

A11 : Roles which were sent a questionnaire 

 

SUK PFI Bid Senior Manager   Questionnaire Complete 

SUK PFI Bid Manager    Questionnaire Not Complete 

SUK Project Director    Questionnaire Complete 

SUK Construction General Manager   Questionnaire Complete 

SUK Construction Civil Engineer   Questionnaire Not Complete 

SUK Technical General Manager   Questionnaire Complete 

Suez Environnent Project Manager   Questionnaire Complete 

Risk Factor Analysis Tool

Select Values from Annual fee tab Risk1 Risk2 Risk3 Risk4 Risk5 Risk6 Risk7 Risk8 Results

Tonnage Gate Fee Result

1 Base Payment 170,835.00 £18.00 £3,075,030.00 Risk Result 4757 -1188 -123 £3,137,073

Sensty 50000 10000 5000

Tonnage Handling Fee Result

2 Waste Transfer 170,835.00 £10.80 £1,845,018.00 Risk Result 4757 -1188 -123 £1,882,244.07

Payment Sensty 50000 10000 5000

Tonnage Landfill Charge Result

3 Waste Diversion 7,848.00 £60.00 -£470,880.00 Risk Result -1188 -728 -246 -£600,586.43

Performance Sensty 10000 10000 10000

KPI% Failure Fee Result

4 Performance KPI 98 £1,000,000.00 -£20,000.00 Risk Result -2 -1 -2 -£75,864.66

Deduction Sensty 100 10 100

Extra MW Incentive Result

5 Electricity Production 6000 £13.15 £78,900.00 Risk Result 238 63 -297 -0.6 -182 -61 £75,742.50

Incentive Sensty 2500 2500 2500 13.15 2500 2500

Tonnage Fee Miles Result

6 Mileage Deduction 170,835.00 £1.45 3.2 -£792,674.40 Risk Result 4757 -0.1 -123 -£771,170.16

Sensty 50000 1.45 5000

Tonnage Fee Result

7 Non Acceptance 7000 £15.00 £105,000.00 Risk Result -510 £97,351.14

Fee Sensty 7000

Tonnage Fee Result

8 Yearly Major 170,835.00 £7.20 £1,230,012.00 £1,230,012.00

Maintenance

Annual Fee £4,974,802

Indexation 1

Final Annual Fee £5,050,405.60 Monthly Fee£414,566.83

Monthly Fee £420,867.13

O&M Contract Fee Calculation
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Suez Environnent Project Engineer   Questionnaire Complete 

SUK Regional Manager    Questionnaire Not Complete 

SUK Plant Manager    Questionnaire Not Complete 

SPV Consortium Director    Questionnaire Complete 

SPV Consortium Manager    Questionnaire Not Complete 

 

 

A12 : Planned scenarios to evaluate financial feasibility of AD project (Canada) 

 

    Year1 Year2 Year3 Year4 Year5 

1 Tip Fee Revenue 216,000 221,400 453,870 697,825 953,694 

2 Sale of Compost 293,155 293,155 293,155 293,155 293,155 

3 GHG Credits - 807,300 807,300 807,300 807,300 

  Total Revenue 509,155 1,321,855 1,554,325 1,798,280 2,054,150 

              

  Expenditure           

  Operations and 

Maintenance 

          

4 Operations 

Personnel 

267,285 534,570 547,934 561,633 575,673 

5 Material and 

Chemicals 

102,500 205,000 210,125 215,378 220,763 

6 Maintenance of 

digester and 

equipment 

101,875 203,750 208,844 214,065 249,416 

7 Electricity 83,573 167,147 171,325 175,609 179,999 

8 Combined Heat 

and Power 

maintenance 

102,901 205,802 210,947 216,221 221,626 

9 Reduction in 

Landfill Haul 

and Disposal 

(1,839,435) (2,278,575) (2,499,437) (2,372,928) (2,410,727) 

10 Reduction in 

Natural Gas cost 

(14,307) (45,783) (74,397) (74,397) (85,843) 

11 Contingency 

15% 

158,701 189,940 194,689 199,556 204,545 

12 Electricity offset (484,240) (968,480) (992,692) (1,017,509) (1,042,947) 

  Total 

Operations and 

Maintenance 

(1,521,147) (1,786,629) (2,022,662) (1,882,374) (1,887,495) 

              

  Financial           

13 Debenture 642,633 710,968 679,741 647,643 614,650 
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Interest 

14 Net 

Amortization 

645,847 1,291,693 1,291,693 1,291,693 1,291,693 

  Total Financial 1,288,480 2,002,661 1,971,434 1,939,336 1,906,344 

  Total 

Expenditure 

(232,667) 216,032 (51,228) 56,962 18,849 

              

  Net Position 741,822 1,105,823 1,605,553 1,741,318 2,035,301 

 

 

A13:  AD Assumptions 

1. Commercial organic waste volumes and ICI volumes from an contract partner for 

resourcing waste charged at new Year 1 preferred rate of $60 per tonne Organics with 

an annual 2.5% increase. The percentage of ICI volumns to the ADF is gradually 

increasing from 15% in Year 1 till 100% in 2024. 

2. Assumes 24,430 tonnes of compost sold at $12 per tonne. This will be high grade 

compost produced from the ADF. 

3. Assumes 32,290 tonnes of GHG sold at $25 / tonne for 13 years (Year2 -2031). 

Assumed a conservative estimate of 75% of the assumed credits and price. 

4. Assumes 3.0 FTE Plant Operators, 1.0 FTE Millwright, and 1.0 FTE Instrument Tech. 

Wage rates  assumed at 

Year1 contract rates plus 2.5% per year cost of living. 

5. Chemicals and other materials used in the operation of the ADF; Estimates provided 

from vendor company 

6. Digester maintenance and equipment (excluding day-to-day); Estimates provided 

from vendor company  

7. Electric power needed to operate facility. Estimates provided from vendor company  

8. Combined Heat and Power Maintenance. Information from engineering consultant, 

assumption  $0.017/kwh 

9. Reduction in landfilling costs because of increased capacity in the overall organic 

waste process. Tonnage and price of $65 / tonne in Year 1 (inflated at 2.5% annually) 

provided by the Utility. 

10. The facility design includes heat capture technology to offset natural gas use and 

reduce GHG emissions. It is expected to be used in the core group of buildings in 

proximity to the AD facility. Assumes use of 25% of heat being captured and utilized 

in Year 1 increasing in steps to 75% (max) in Year 5. 

11. Consultant estimate, industry standard 

12. Assumes 12.1 million kwh produced and utilized in composting facility to offset 

grid power. Selling price of 8 cents for distributed  power, based on most recent prices 

and regulatory review. 

13. 20-year terms with the following assumptions: starting year: $5.9M @ 2.602%; Year 

0: $10.8M @ 2.8%; Year 1: $9.5M @ 3.3% 

14. Amortized on a straight-line basis over 20 years beginning with a half year in Year 
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1. 

 

 

A14: Risk assessment :Canada Case study 

 

 

 

 

A15:  Moisture content and Bulk density of waste categories, [Junaid et al, 2023, 

Alabdraba et al, 2013] 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Category

Probability 

 (P)

Severity(S) Risk 

Significance 

Index (P x S)

Risk 

Impact 

(Sqrt RSI)

Probability 

 (P)

Severity(S) Risk 

Significance 

 Index (P x 

S)

Risk 

Impact 

(Sqrt RSI)

Probability 

 (P)

Severity(S) Risk 

Significance 

 Index (P x 

S)

Risk 

Impact 

(Sqrt RSI)

Feedstock Volume Risk 4 4.5 18 4.2 4 3 12 3.5 2.5 2 5 2.2

Feedstock Composition 2.5 2 5 2.2 5 4.5 22.5 4.7 1 1 1 1.0

Technology Reliability 1 1.5 1.5 1.2 5 4.2 21 4.6 3.5 4 14 3.7

Unplanned Maintenance 2.5 2 5 2.2 5 4.4 22 4.7 2.5 2.5 6.25 2.5

Feedstock Based Maintenance 2 1.5 3 1.7 5 4.6 23 4.8 1 1.2 1.2 1.1

Odour Control /Envirmental Compliance 3 3 9 3.0 3 4 12 3.5 3 3 9 3.0

Market Pricing 4 5 20 4.5 3 2.5 7.5 2.7 2.5 2 5 2.2

Ability to supply Biomethane to Grid 3 3 9 3.0 4 4.5 18 4.2 4.5 4.5 20.25 4.5

Changes in Law & Policy 5 5 25 5.0 4 4 16 4.0 2.4 4 9.6 3.1

Unsustainable dept 1 1 1 1.0 4 3.5 14 3.7 1 1 1 1.0

Product Quality 3 4 12 3.5 3 3 9 3.0 1 1 1 1.0

COS Private Entity Fortis BC

Waste Characteristics Materials Probability Distribution Mean Standard DevShape Scale Low High

Paper/Cardboard MixNormal 0.2016 0.06276

Rigid Plastic Uniform 0.01909 0.10226

Film Plastic Normal 0.1756 0.06834

Yard Waste Normal 0.4718 0.10938

Food Weibull 6.17219 0.6223

Diapers & Napkins Normal 0.4191 0.10813

Other Combustible Weibull 2.64444 0.1941

Glass Beta 0.00001 0.084

Non-Combustible Weibull 1.17452 0.0952

Paper/Cardboard Mix 366

Rigid Plastic 158

Film Plastic 56.9

Yard Waste 80

Food 364

Diapers & Napkins 75.8

Other Combustible 110

Glass 234.022

Non-Combustible 145

Wood 54

Metals 69.182       

Avg Bulk Density Kg/m3)

Moisture content 
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A16: Waste to energy risk allocation and categories under PPP Canada, adapted 

from [190] 
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A17: Questionnaire, PFI Case study 

Introduction 

This questionnaire is designed to evaluate what are the determining factors that PFI stakeholders 

may take into consideration when entering into a PFI project for Energy from Waste Projects and 

project stakeholder opinion of the PFI scheme. It forms a component of a MSc Project Management 

dissertation “A critical review of PFI contract for EFW Tees Valley Lines 4&5”. The study is a 

comparison between PFI and a more traditional approach funding such projects. The outcomes are 

designed to consider all stakeholders and the perceived benefits in each case. All information is 

considered as confidential and will be presented in a sensitive and anonymous manner both for the 

individuals and stakeholders concerned. An ethical release form has been presented to Teesside 

University in order to conduct the study. 

Please take 30 minutes to consider and answer the questions. There are 20 in total. 

If you are not sure of an answer, enter N/A 

Question 1 

Please give a brief description of your role within the PFI project STV 4&5. 

Question 2 

What is your understanding of the reason why PFI was introduced into the UK? 

Question 3 

What do you consider to be the advantages to the local council who use the PFI scheme to procure 

EFW facilities? 

Question 4 

What do you consider to be the disadvantages to the local council who use the PFI scheme to procure 

EFW facilities? 

Question 5 

What do you consider to be the advantages to SITA UK who bid the PFI scheme to secure waste 

treatment contracts for EFW facilities? 

Question 6 

What do you consider to be the disadvantages to SITA UK who bid the PFI scheme to secure waste 

treatment contracts for EFW facilities? 

Question 7 
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What is the role of the SPV in the PFI scheme? 

Question 8 

Transfer of risk to the appropriate stakeholder best suited to deal with that risk, is a key principle of 

PFI to ensure value for money. What in the case of STV 4&5 are the main risks transferred or shared 

between parties, Council, SPV and SITA UK that you are aware of? 

Question 9 

Value for money is an essential element of PFI for the local council, does in your opinion the scheme 

deliver value for money how is this achieved? Explain your answer. 

Question 10 

The unitary payment for STV 4&5 is quoted on a government web site, quoting the overall PFI 

commitment to the public purse as around £25 million per annum over the lifetime of the contract 

cumulating to 710 million. The unitary payment includes all costs for services as well as the cost of 

the build, the overall PFI commitment to the public purse for all UK PFI projects peaks in 2017 at 

£10,140 million repayment. As a member of the public what are your thoughts? 

Question 11 

What in your opinion is the best option for SITA UK if available, a PFI contracted facility or an 

internal funded contracted facility, STV 4&5 EFW compared to Suffolk EFW for example, give 

reasons. 

Question 12 

There are risks that were allocated to the EPC contractor under the EPC contract, towards the end 

of the EPC contract the turbine presenting problems, and subsequent claims between parties, would 

the same risk be allocated in the same manner in both a PFI project and a traditional financed project? 

Question 13 

Do you see a future for the PFI scheme for EFW once the economic turnaround is complete and 

government funding may be more readily available to local councils for public sector projects? 

Question 14 

Has there been an effect on the quality of facility provided under the PFI scheme? Give examples. 

Question 15 

Has there been an effect on the quality of service provided by SITA UK under the PFI scheme? Give 



 

216 

 

examples. 

Question 16 

Has there been an overall cost increase or decrease in the services provided by SITA UK under the 

PFI scheme? Give examples. 

Question 17 

Please score each criteria below for the selection of a PFI contract, if you were in the position of the 

local government regarding EFW lines 4&5. Rank 1 lowest priority 5 the highest priority. Circle 

one priority for each. 

 

Question 18 

Please score each criteria below for the selection of a PFI contract, if you were in the position of 

SITA UK regarding EFW lines 4&5. Rank 1 lowest priority 5 the highest priority. Circle one priority 

for each. 

Criteria

C1 Lowest possible capital expenditure 1 2 3 4 5

C2 Certainty over contract price, no fluctuation 1 2 3 4 5

C3 Best value for money overall 1 2 3 4 5

T1 Earliest possible start on site 1 2 3 4 5

T2 Certainty over contract duration 1 2 3 4 5

T3 Shortest possible contract period 1 2 3 4 5

Q1 Top quality, minimum maintenance 1 2 3 4 5

Q2 Sensitive design, control by employer 1 2 3 4 5

Q3 Detailed design not critical, leave to contractor 1 2 3 4 5

Priority 1 lowest 5 highest

COST

TIME

QUALITY
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Question 19 

Please score each criteria below for the selection of a Waste management contract, if you were in 

the position of the local government regarding Suffolk EFW. Rank 1 lowest priority 5 the highest 

priority. Circle one priority for each. 

 

 

 

 

 

 

 

Criteria

C1 Lowest possible capital expenditure 1 2 3 4 5

C2 Certainty over contract price, no fluctuation 1 2 3 4 5

C3 Best value for money overall 1 2 3 4 5

T1 Earliest possible start on site 1 2 3 4 5

T2 Certainty over contract duration 1 2 3 4 5

T3 Shortest possible contract period 1 2 3 4 5

Q1 Top quality, minimum maintenance 1 2 3 4 5

Q2 Sensitive design, control by employer 1 2 3 4 5

Q3 Detailed design not critical, leave to contractor 1 2 3 4 5

Priority 1 lowest 5 highest

COST

TIME

QUALITY

Criteria

C1 Lowest possible capital expenditure 1 2 3 4 5

C2 Certainty over contract price, no fluctuation 1 2 3 4 5

C3 Best value for money overall 1 2 3 4 5

T1 Earliest possible start on site 1 2 3 4 5

T2 Certainty over contract duration 1 2 3 4 5

T3 Shortest possible contract period 1 2 3 4 5

Q1 Top quality, minimum maintenance 1 2 3 4 5

Q2 Sensitive design, control by employer 1 2 3 4 5

Q3 Detailed design not critical, leave to contractor 1 2 3 4 5

Priority 1 lowest 5 highest

COST

TIME

QUALITY



 

218 

 

Question 20 

Please score each criteria below for the selection of an EPC contract, if you were in the position of 

SITA UK regarding Suffolk EFW. Rank 1 lowest priority 5 the highest priority. Circle one priority 

for each  

Criteria

C1 Lowest possible capital expenditure 1 2 3 4 5

C2 Certainty over contract price, no fluctuation 1 2 3 4 5

C3 Best value for money overall 1 2 3 4 5

T1 Earliest possible start on site 1 2 3 4 5

T2 Certainty over contract duration 1 2 3 4 5

T3 Shortest possible contract period 1 2 3 4 5

Q1 Top quality, minimum maintenance 1 2 3 4 5

Q2 Sensitive design, control by employer 1 2 3 4 5

Q3 Detailed design not critical, leave to contractor 1 2 3 4 5

Priority 1 lowest 5 highest

COST

TIME

QUALITY


