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Abstract 5 

The performance of construction systems (e.g., activities, operations, projects) is commonly 6 

measured using different indicators, such as productivity or production rate. The accurate 7 

prediction of performance, which is an important concern of construction researchers and 8 

practitioners, requires effective techniques for construction modeling. However, the complexity 9 

of construction systems creates three challenges for construction modeling: (1) construction 10 

systems are affected by numerous interacting factors, (2) the factors that affect construction 11 

systems often exhibit both probabilistic and non-probabilistic uncertainty, and (3) construction 12 

systems are dynamic. Fuzzy system dynamics (FSD) is a simulation technique used for modeling 13 

construction systems with the potential to address the three aforementioned challenges. 14 

However, the application of FSD technique in construction is still limited due to its low accuracy 15 

for modeling the non-linear, complex and highly-dimensional relationships between the different 16 

variables of construction systems (i.e., system relationships), since in current applications of 17 

FSD, system relationships are often defined by linear regression due its computational simplicity. 18 

This paper introduces a new hybrid technique — neuro-fuzzy system dynamics (N-FSD) — by 19 

integrating FSD and hybrid neuro-fuzzy systems. In N-FSD, hybrid neuro-fuzzy systems are 20 
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used to define the non-linear and complex relationships between the different variables of the 21 

FSD model. The use of hybrid neuro fuzzy systems for defining system relationships, rather than 22 

linear regression, can improve the accuracy of FSD models in construction applications. The 23 

applicability of the N-FSD technique is tested through a construction case study by modeling the 24 

production rate of earthmoving operations. 25 

Keywords: construction modeling, hybrid technique, fuzzy logic, neuro-fuzzy systems, system 26 

dynamics 27 

1. Introduction 28 

Construction projects are complex systems, and their performance levels are constantly changing 29 

under the effect of numerous interacting factors. Predicting performance is challenging for 30 

several reasons. First, there are numerous interactions between the factors that affect the 31 

performance of construction systems (e.g., time, cost, quality); these interactions may affect 32 

individual factors as well as overall project performance [1]. Therefore, an appropriate modeling 33 

technique needs to capture the interactions between factors along with each factor’s individual 34 

impact on the performance of construction projects. Second, factors that influence the 35 

performance of construction projects exhibit probabilistic and non-probabilistic uncertainty, so 36 

an appropriate modeling technique needs to capture both types of uncertainties. Third, the 37 

behavior of construction systems and the factors influencing their performance are dynamic (i.e., 38 

they change over time); therefore, dynamic modeling techniques (i.e., techniques that are capable 39 

of tracking the changes of real-world systems over time) are superior to static techniques for 40 

modeling construction systems [1,2]. 41 

Various techniques are used for construction modeling to overcome the three aforementioned 42 

challenges. Simulation techniques are one type of modeling technique capable of overcoming 43 
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some of these challenges, as they predict the behavior of construction projects by running them 44 

virtually using computer-based models [3]. System dynamics (SD) is a simulation technique 45 

developed by Forrester [4] for modeling complex industrial systems. SD is capable of capturing 46 

the dynamism of construction systems as well as the interactions between the factors that affect 47 

the performance of these systems. However, SD cannot capture the non-probabilistic 48 

uncertainties (i.e., uncertainties caused by subjective or imprecise information) of the factors that 49 

affect construction systems. In order to address this limitation, Levary [5] hybridized SD with 50 

fuzzy logic, which is an artificial intelligence (AI) technique developed for modeling subjective, 51 

imprecise, and linguistically expressed information (i.e., non-probabilistic uncertainties). The 52 

resulting hybrid simulation technique, fuzzy system dynamics (FSD), is a powerful technique for 53 

modeling the performance of construction projects, and it has been applied to a variety of 54 

construction problems such as construction risk management [6,7], construction productivity 55 

[2,8], and construction quality management [9]. 56 

To develop SD/FSD models, modelers first need to quantitatively define the relationships 57 

between the different factors that affect the system—called system relationships—and then the 58 

SD/FSD models can simulate the behavior of a real-world system and predict its output. 59 

Theoretically, system relationships can be defined using any input-output predictive modeling 60 

technique (e.g., linear regression, artificial neural networks [ANN], Gaussian process regression, 61 

fuzzy rule-based systems [FRBS], and neuro-fuzzy systems) [10–16]. Each predictive modeling 62 

technique used for defining system relationships in SD/FSD models has some advantages and 63 

disadvantages over the other modeling techniques. As an instance, the linear regression 64 

technique is commonly used in different applications due to its computational simplicity; 65 

however, this technique lacks the capacity to learn from data and model non-linear system 66 
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relationships [8]. As one of the most commonly used predictive modeling techniques in 67 

engineering context, ANN has the capacity to learn from data and model the non-linear 68 

relationships between the input and output variables; however, this technique lacks the capacity 69 

to capture the non-probabilistic uncertainty of the input and output variables and this technique 70 

solely relies on historical data for modeling and validation purposes [17]. Accordingly, the 71 

choice of modeling technique used for defining system relationships is a critical task in the 72 

process of developing SD/FSD models, since the accuracy of the SD/FSD models relies on the 73 

accuracy of the modeling technique used for defining these relationships. Table 1 presents an 74 

overview of the modeling techniques used for defining system relationships in recent 75 

applications of SD/FSD in construction context. 76 

Table 1. Classification of system variables of the N-FSD model of the earthmoving  77 

operation rate. 78 

Variable Type System Variables 
No. of 

Variables 

Objective system 

variables 

Soil type, groundwater level, number of equipment, 

equipment capacity, absenteeism, absenteeism rate, 

hauling distance, equipment per labor, overtime work, 

crew size, temperature, precipitation, snow on ground, 

wind speed, total volume of work, daily working time, 

crew composition, production rate 

18 

Subjective system 

variables 

Soil moisture, crew motivation, crew experience, 

operator experience, schedule compression, site 

restrictions 

6 

As shown in Table 1, in existing applications of SD and FSD, the technique most commonly 79 

used to define system relationships is linear regression, due to its computational simplicity. 80 

However, the application of linear regression for defining system relationships decreases the 81 

accuracy of SD and FSD techniques in construction applications for two reasons. First, the 82 

relationships between the factors affecting construction systems are usually non-linear and 83 

cannot be accurately modeled by linear regression [18]. Second, linear regression often has low 84 
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prediction accuracy in construction applications due to limited availability of data. According to 85 

Table 1, the expert-driven FRBSs (i.e., FRBSs developed by expert knowledge) are also used for 86 

modeling system relationships in FSD models, however, this modeling technique lacks the 87 

capacity to learn from data; and according to Zadeh’s principle of incompatibility [19], this 88 

technique is not appropriate for modeling highly dimensional relationships, in which a large 89 

number of input variables are mapped to the output(s). Accordingly, there is a gap in the existing 90 

body of knowledge on FSD modeling in construction for identifying an appropriate and accurate 91 

technique for defining the non-linear, complex and highly-dimensional relationships between the 92 

different variables of construction systems. This research gap is addressed in this paper by 93 

hybridizing neuro-fuzzy systems with an FSD technique to develop a new modeling technique, 94 

called the neuro-fuzzy system dynamics (N-FSD) technique. The hybridization of neuro-fuzzy 95 

systems with FSD can increase the accuracy of the FSD technique in construction applications 96 

because (1) hybrid neuro-fuzzy systems can model the non-linear relationships between the 97 

factors that affect construction systems more accurately than linear regression [18]; (2) hybrid 98 

neuro-fuzzy systems has the capacity to capture the non-probabilistic uncertainty exhibited of the 99 

input and output variables; (3) hybrid neuro-fuzzy systems has the capacity to learn from data 100 

and outperform statistical techniques if limited data is available for modeling [20]; and (4) hybrid 101 

neuro-fuzzy systems outperform the expert-driven FRBSs for defining highly dimensional 102 

system relationships [19]. 103 

The rest of this paper is organized as follows. Section 2 presents a brief literature review on FSD 104 

and neuro-fuzzy systems and their applications in construction modeling. Section 3 presents the 105 

methodologies for integrating neuro-fuzzy systems and the FSD technique and for developing 106 

N-FSD models. In Section 4, the N-FSD technique is applied to a construction case study to 107 
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predict the production rate of earthmoving operations, and the accuracy of this technique is 108 

compared to a conventional FSD technique in order to illustrate how hybridization of FSD and 109 

neuro-fuzzy systems (i.e., the N-FSD technique) can improve the accuracy of the FSD technique. 110 

Finally, Section 5 presents research conclusions and areas of future research. 111 

2. Research Background 112 

2.1. Fuzzy System Dynamics Technique in Construction Applications 113 

The FSD technique is a hybrid simulation technique, developed by integrating SD and fuzzy 114 

logic, for modeling real-world systems that exhibit both probabilistic and non-probabilistic 115 

uncertainty [5]. Nasirzadeh et al. [21] developed an FSD model for construction risk 116 

management in which the magnitudes and probabilities of the risk factors are subjectively 117 

assessed by expert knowledge (rather than historical data). Khanzadi et al. [22] developed an 118 

FSD model to predict the cost performance of infrastructure projects over their life cycles in 119 

order to determine the concession period of build-operate-transfer (BOT) contracts for such 120 

projects. Gerami Seresht and Fayek [8] used FSD to capture the non-probabilistic uncertainties 121 

of numerous factors affecting construction systems to predict the multi-factor productivity of 122 

equipment-intensive activities. Siraj and Fayek [7] presented an application of the FSD technique 123 

in construction risk management for analyzing the impacts of interrelated and interacting risk 124 

and opportunity events on work package cost and determining work package and project 125 

contingencies; in this application, the probability and impact of risk and opportunity events and 126 

the causal relationships between them were assessed by experts using natural language. 127 

The development of FSD models starts with the identification of all the factors that affect a 128 

particular real-world system, hereafter called system variables, and the relationships between 129 

these factors. There are two categories of system variables in construction systems, which can be 130 
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distinguished based on their scale of measure [12]: (1) objective system variables that are defined 131 

by crisp numbers (e.g., 40°C for temperature) and (2) subjective system variables that are 132 

defined by subjective scales or linguistic terms (e.g., high crew motivation) [8]. After the system 133 

variables are identified, the relationships between the system variables are identified and defined 134 

quantitatively. According to Coyle [23], there are two types of system relationships in FSD 135 

models: hard system relationships, for which the mathematical form of the relationship is known, 136 

and soft system relationships, for which the mathematical form of the relationship is unknown. 137 

Since the mathematical form of hard relationships is known, these relationships are always 138 

defined using mathematical equations. Unlike hard system relationships, the mathematical form 139 

of soft system relationships is unknown; these relationships therefore need to be defined by an 140 

input-output predictive modeling technique. In existing applications of FSD in construction, soft 141 

relationships are usually defined either by linear regression, when historical data are available 142 

[8,22,24], or by expert-driven fuzzy rule-based systems (FRBSs), when historical data are not 143 

available. 144 

While soft system relationships can be defined by any input-output modeling technique, in 145 

existing applications of FSD, linear regression is commonly used to define these relationships for 146 

the sake of computational simplicity [10]. In a recent paper, Gerami Seresht and Fayek [8] 147 

compared linear regression and the fuzzy c-means (FCM) clustering technique [25] in terms of 148 

their accuracy in defining soft system relationships and concluded that in some cases, FCM 149 

clustering outperforms linear regression. However, in the comparison conducted by Gerami 150 

Seresht and Fayek [8], neither of the two techniques (i.e., linear regression or FCM clustering) 151 

was universally the best technique for defining soft system relationships in their FSD model. 152 

Moreover, the accuracy of the FCM clustering technique decreases as the dimensionality of the 153 
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relationships increases (i.e., the number of input and/or output variables increases) [26], which 154 

hinders the application of this technique for defining highly dimensional soft system 155 

relationships (i.e., systems having numerous input and/or output variables). There is a gap in the 156 

research on identifying an appropriate predictive modeling technique for defining soft system 157 

relationships in construction applications. Such a technique should be capable of modeling the 158 

non-linear relationships between system variables, handling the limited data availability often 159 

found in construction, and handling the high dimensionality of system relationships in 160 

construction applications. This research gap is addressed in this paper by integrating the FSD 161 

technique with neuro-fuzzy systems, the latter of which are used to define soft system 162 

relationships in FSD models. This new hybrid modeling technique, hereafter called the 163 

neuro-fuzzy system dynamics (N-FSD) technique, can potentially outperform the FSD technique 164 

for predicting the behavior of construction systems, since the use of  neuro-fuzzy systems rather 165 

than linear regression improves accuracy when modeling non-linear system relationships [18] 166 

and enables the modeling technique to learn from historical data [27]. 167 

2.2. Neuro-Fuzzy Systems for Predictive Modeling in Construction Applications 168 

Neuro-fuzzy systems are input-output modeling techniques developed by integrating two 169 

common AI techniques: ANNs and FRBSs [17,28]. Despite the wide application of ANNs in 170 

construction modeling, this technique has two limitations: (1) an ANN cannot capture the 171 

non-probabilistic uncertainty exhibited by the factors that affect construction systems and (2) the 172 

reasoning process of an ANN is not transparent. On the other hand, an FRBS is a predictive 173 

modeling technique with the capability of processing non-probabilistic uncertainties and 174 

mimicking human reasoning processes, though it lacks the capacity to learn from historical data. 175 

The limitations of these two techniques are addressed by integrating them, thereby developing 176 
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neuro-fuzzy systems. The reasoning process of neuro-fuzzy systems is transparent and has the 177 

capacity to process non-probabilistic uncertainty because it uses the human-like reasoning 178 

process of the FRBS technique, and by using the learning algorithm of the ANN technique, 179 

neuro-fuzzy systems have the capacity to learn from data and improve the accuracy of their 180 

predictions by training. 181 

Neuro-fuzzy systems consist of five data processing layers [27]: (1) the input layer, where the 182 

inputs are entered as crisp numbers; (2) the fuzzification layer, where the membership value for 183 

each input is determined; (3) the inference layer, where the FRBS component predicts the output 184 

of the system based on the inputs; (4) the defuzzification layer, where the outputs of the FRBS 185 

are defuzzified; and (5) the output layer, which delivers the final output of the hybrid 186 

neuro-fuzzy system. A learning algorithm (e.g., a backpropagation learning algorithm) is used to 187 

adjust the different features of the system, including the shape and/or number of fuzzy 188 

membership functions of the input and output variables and the number of fuzzy rules and rule 189 

weights [17]. There are different types of neuro-fuzzy systems, which are categorized based on 190 

three characteristics: (1) the structure of their FRBS component (i.e., Mamdani or Sugeno); 191 

(2) their learning algorithm (e.g., backpropagation, random, supervised or unsupervised 192 

learning); and (3) the features of the system, which are adjusted by the learning algorithm (e.g., 193 

the shape of membership functions, rule weights) [29]. The adaptive network-based fuzzy 194 

inference system (ANFIS) [30] and the evolutionary fuzzy neural inference model (EFNIM) [31] 195 

are two types of neuro-fuzzy systems commonly used in construction applications. 196 

The ANFIS neuro-fuzzy systems technique has a Sugeno-type FRBS, and learning algorithms 197 

are used to tune both the weights of the rules of the FRBS and the shapes of the membership 198 

functions that represent the inputs and the outputs of the system. The ANFIS has been applied to 199 
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a variety of construction problems, including strength prediction of construction materials [32] 200 

and hydraulic structure design [17]. Despite the extensive use of the ANFIS in different 201 

engineering applications, this technique is limited in terms of learning algorithms and the 202 

features of the system that are tuned by learning [29]. The learning algorithm of the ANFIS 203 

technique requires differentials to implement the learning process; therefore, those features of the 204 

system that are not differentiable (e.g., the number of rules of the rule base) cannot be optimized 205 

by the learning algorithm of the ANFIS technique [29]. In order to address this limitation, 206 

population-based neuro-fuzzy systems are introduced, which combine neuro-fuzzy systems with 207 

a population-based optimization technique (e.g., a genetic algorithm [GA] or particle swarm 208 

optimization [PSO]) so that those features of the system that are not differentiable can be 209 

optimized by the optimization component [29,33,34]. Moreover, the ANFIS technique is a static 210 

neuro-fuzzy system, which means the structure of the system (i.e., the number of membership 211 

functions and rules of the system) cannot be optimized by the learning process [29]. As opposed 212 

to static neuro-fuzzy systems, self-organizing neuro-fuzzy systems are capable of optimizing the 213 

structure of the system through the learning process by determining the optimum number of 214 

membership functions that represent the input and output variables or the number of rules of the 215 

FRBS. Self-organizing neuro-fuzzy systems can be developed by hybridizing a neuro-fuzzy 216 

system (e.g., the ANFIS) with a fuzzy clustering technique [17,29,34]. Hybridization of the 217 

ANFIS with subtractive clustering [17], FCM clustering [35], and grid partitioning [36] are a few 218 

examples of such hybrid neuro-fuzzy systems. In the case of the N-FSD technique, the soft 219 

system relationships are defined using a population-based hybrid neuro-fuzzy system, which 220 

combines the capabilities of the subtractive clustering, PSO, and ANFIS techniques for 221 

developing predictive models. 222 
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3. Methodology for Developing Neuro-Fuzzy System Dynamic Models 223 

This section presents the research methodology for hybridizing the FSD technique with neuro-224 

fuzzy systems and developing N-FSD models. The development of N-FSD models consists of 225 

three major steps: qualitative modeling, quantitative modeling, and model validation, as 226 

presented in Fig. 1. 227 

 228 

Fig. 1. Methodology for developing N-FSD models. 229 
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3.1. Qualitative N-FSD Modeling 230 

Qualitative N-FSD modeling is accomplished by following steps similar to those used for the 231 

FSD technique, which are briefly discussed in this section. Qualitative FSD modeling is 232 

discussed in more detail by Gerami Seresht and Fayek [8] and Nasirzadeh et al. [2]. In the first 233 

step, all the factors that affect the real-world system are identified through a literature review 234 

and/or based on the knowledge of the modeler about the real-world system [37]. Hereafter, these 235 

factors are called system variables. In the second step, system variables are represented using one 236 

of the four different types of variables in N-FSD models: stock variables, flow variables, 237 

dynamic variables, and static variables (or constants). Stock variables are those variables that 238 

accumulate over time (e.g., total volume of soil excavated). Flow variables represent the rate of 239 

increase/decrease in stock variables (e.g., daily production). Dynamic variables are those that 240 

change in value (e.g., temperature, crew size), and static variables (or constants) are those whose 241 

value does not change throughout the simulation run (e.g., total volume of work). 242 

In the third step, the relationships between system variables, called system relationships, are 243 

identified. There are two types of system relationships in N-FSD models: hard system 244 

relationships and soft system relationships. Since the mathematical form of hard system 245 

relationships is known, these relationships are identified using the mathematical equation that 246 

defines the relationship. For example, the relationship between the total cost of an activity (TC) 247 

and its unit cost (UC) and the total volume of work (V) is evident from the mathematical 248 

equation that defines the relationship (𝑇𝐶 = 𝑈𝐶 × 𝑉). On the other hand, the mathematical form 249 

of soft relationships is unknown, as is the case, for example, with the relationship between the 250 

precipitation level and the production rate of an earthmoving operation. These relationships 251 

therefore need to be identified using existing knowledge about the real-world system, which is 252 
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acquired through a literature review or expert knowledge [37]. Finally, qualitative modeling is 253 

accomplished by representing system variables and system relationships graphically in stock-254 

and-flow and cause-and-effect diagrams. 255 

3.2. Quantitative N-FSD Modeling 256 

The process of quantitative N-FSD modeling consists of two steps: (1) representing the values of 257 

system variables and (2) defining system relationships quantitatively. To represent the values of 258 

system variables, which are identified in qualitative modeling, they are classified as either 259 

objective or subjective, based on their scale of measure [8,12]. Next, the values of the objective 260 

system variables are represented by crisp numbers, and the values of the subjective system 261 

variables are represented by fuzzy membership functions, which are developed using one of the 262 

few data-driven techniques, such as FCM clustering or subtractive clustering [38]. 263 

Once the values of the system relationships are represented, the hard system relationships are 264 

defined quantitatively. Hard system relationships are always defined using mathematical 265 

equations, and arithmetic is implemented to determine the outputs of these equations at each time 266 

step of the simulation run. Conventional (i.e., regular) arithmetic is used for those equations, 267 

which include only objective system variables, and fuzzy arithmetic is used for the equations that 268 

include subjective system variables [39]. Fuzzy arithmetic operations may be implemented using 269 

one of the two approaches introduced in the literature: (1) the α-cut approach, which uses 270 

horizontal discretization of the input fuzzy numbers and interval calculations [40], or (2) the 271 

extension principle approach, which is an extension of arithmetic operations on crisp numbers 272 

applied by the extension principle of fuzzy sets and using any give fuzzy t-norm [41]. Both 273 

approaches for implementing fuzzy arithmetic have advantages and disadvantages. Implementing 274 

fuzzy arithmetic using the α-cut approach is advantageous because of its computational 275 
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simplicity and the low sensitivity of the outputs to changes in the input variables [39,41]. The 276 

disadvantage of the α-cut approach is the overestimation of uncertainty in simulation results 277 

[8,39,41,42], which reduces the ability of the user to accurately predict the output of the 278 

real-world system and hinders the process of decision-making using simulation results [43]. On 279 

the other hand, the advantage of implementing fuzzy arithmetic by the extension principle 280 

approach is its flexibility in using different t-norms, which can reduce the overestimation of 281 

uncertainty in simulation results compared to the α-cut approach. However, implementing fuzzy 282 

arithmetic by the extension principle approach is computationally complex, and there only a few 283 

computational methods established for this approach using the drastic product t-norm [43] and 284 

the product and Lukasiewicz t-norms [41]. Accordingly, the appropriate approach for 285 

implementing fuzzy arithmetic in N-FSD models needs to be selected by the modeler while 286 

considering the advantages and disadvantages of each approach. 287 

After defining the hard system relationships, the soft system relationships are defined 288 

quantitatively using an input-output modeling technique. This is an important step in FSD and 289 

N-FSD modeling because the accuracy of the simulation model heavily relies on the accuracy of 290 

the technique used to define the soft system relationships [23]. Since the mathematical form of 291 

hard system relationships is known, they are always defined with maximum accuracy (i.e., with 292 

no error), so it is the input-output modeling technique used for defining the soft system 293 

relationships that is responsible for the accuracy of the simulation model. In the case of the 294 

N-FSD technique, soft system relationships are defined using neuro-fuzzy systems, whose 295 

methodology is presented in Fig. 2. As a result, each soft system relationship of N-FSD models 296 

is defined by a neuro-fuzzy system, which is hereafter called a predictive block. 297 
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 298 
Fig. 2. Methodology for defining soft system relationships using EFNIM models. 299 

To develop predictive blocks, a Sugeno-type FRBS is first developed using the subtractive 300 

clustering technique. Sugeno-type FRBSs can transform the complex and non-linear 301 

relationships between input and output variables into a set of linear relationships [18], which can 302 

increase the accuracy of the FRBS as a predictive model and improve the computational 303 

efficiency of the model. While FRBSs can be developed using any fuzzy clustering technique, 304 

the use of subtractive clustering is preferred over the other fuzzy clustering techniques for N-305 

FSD in order to facilitate the use of PSO for optimizing the structure of the FRBS. The 306 

user-defined parameter for subtractive clustering (as discussed below) is continuous, unlike the 307 

FCM clustering technique; the PSO technique, which is an appropriate technique for optimizing 308 

continuous variables [44], can therefore effectively optimize the user-defined parameter for 309 

subtractive clustering. The user-defined clustering parameter for subtractive clustering is called 310 

the cluster radius, and it determines the minimum Euclidean distance between any two cluster 311 

centers. In subtractive clustering, each data point is considered to be a potential cluster center, 312 

and the potential of each data point to become a cluster center (𝑃𝑖) is determined using Equation 313 

1 [17]. 314 
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 𝑃𝑖 = ∑ 𝑒−𝛼‖𝑥𝑖 − 𝑥𝑗‖
2

𝑛

𝑗=1
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2

𝑟𝑎
)

2

 1 

where 𝑟𝑎stands for the predefined cluster radius and ‖. ‖ stands for the Euclidean distance. Next, 315 

the data point with the highest potential for becoming a cluster center (i.e., the point with the 316 

largest value of 𝑃𝑖) is selected as the first cluster center and then 𝑃𝑖 is recalculated for all the 317 

remaining points using Equation 2 [17]. 318 

 𝑃𝑖 ⇐ 𝑃𝑖 − 𝑃1
∗. 𝑒−𝛽‖𝑥𝑖−𝑥1

∗‖2
, 𝛽 = (

2

𝑟𝑏
)

2

 2 

where 𝑟𝑏 is a positive constant called the squash factor, which ensures that the potential for all 319 

the points neighboring the first cluster center is reduced significantly, so that the occurrence of 320 

developing two clusters with extremely close cluster centers will be avoided. The value of the 321 

squash factor is suggested to be 𝑟𝑏 = 1.25 × 𝑟𝑎 [17]. In Equation 2, 𝑃1
∗ is largest value 𝑃𝑖 322 

calculated in the previous step (refer to Equation 1) and 𝑥1
∗ is the location of the first cluster 323 

center. This process for calculating the potential of each data point for becoming the next cluster 324 

center and selecting the point with the highest potential is repeated until the potential of all 325 

remaining points (i.e., 𝑃𝑖 in Equation 2) is less than 15% of the potential for the first cluster 326 

center (i.e., 𝑃1
∗ in Equation 2) [38,45]. In subtractive clustering, the value of the cluster radius of 327 

each input and output variable is determined by the user [38,45]. This approach enables the user 328 

to change the weights of the input or output variables for the development of the FRBS in order 329 

to improve its accuracy. Decreasing the cluster radius of an input or output variable decreases its 330 

weight for the development of the FRBS and vice versa. 331 

After developing an initial FRBS using randomly selected cluster radii, the PSO technique is 332 

used to determine the optimum value of the cluster radius for each input and output variable of 333 
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the FRBS, taking into consideration the minimization of the root mean square error (RMSE) of 334 

the predictions made by the FRBS. Equation 3 presents the mathematical form of the 335 

optimization problem solved by the PSO technique. 336 

 min
𝑟𝑎

𝑖
√

∑ (�̂�𝑡 − 𝑦𝑡)𝑡=𝑇
𝑡=1

𝑇
, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑟𝑎

𝑖 ∈ (0,1), 𝑖 = 1,2, … , 𝑘 3 

where �̂� is the actual data, 𝑦𝑡 is the predicted output of the FRBS, 𝑇 is the total number of 337 

historical data points used for testing, and 𝑟𝑎
𝑖 stands for the cluster radius of the input/output 338 

variable i, and 𝑘 stands for the total number of input and output variables. Next, the FRBS 339 

developed using the optimum values of the cluster radii is trained using the learning algorithm of 340 

the ANFIS technique in order to improve the accuracy of the predictive block [17]. This learning 341 

algorithm improves accuracy by determining the rule weights of the FRBS. The details of the 342 

learning algorithm used in the ANFIS technique are discussed extensively in the literature 343 

[27,29,30]. The population-based hybrid neuro-fuzzy system used for developing the predictive 344 

blocks of N-FSD models has the capacity to learn from historical data (i.e., using the ANFIS 345 

learning algorithm), as well as the ability to optimize the structure of the neuro-fuzzy system 346 

using PSO and subtractive clustering techniques. 347 

3.3. Validation of N-FSD Models 348 

The validity of N-FSD models is tested using two types of validation tests: (1) structural 349 

validation tests, which validate the qualitative modeling step where the system variables and 350 

system relationships are identified, and (2) behavioral validation tests, which validate the 351 

quantitative modeling step where the values of the system variables are determined and the 352 

system relationships are defined quantitatively. The structural validity of N-FSD models can be 353 

determined through a variety of tests, including structure verification, dimensional consistency, 354 
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and parameter verification tests [46–49]. The structure verification test determines if the 355 

structure of the N-FSD model complies with the available knowledge about the real-world 356 

system, which may be obtained by reviewing the literature or acquiring expert knowledge 357 

[46,49]. The dimensional consistency test ascertains whether the units of measure on both sides 358 

of the system relationships are consistent [8,46,50]. The dimensional consistency test can be 359 

implemented only on hard system relationships, where the mathematical form of the 360 

relationships is known [8]. Finally, the parameter verification test determines whether the 361 

constants of the system are consistent with those of the real-world system [49]. Thus, the 362 

structural validation tests determine if the qualitative N-FSD model provides the user with an 363 

accurate understanding of the factors that affect the real-world system being studied and the 364 

interactions between these variables. 365 

The behavioral validation tests of the N-FSD models determine whether the N-FSD model can 366 

accurately replicate the behavior of the real-world system in different situations [46–49]. The 367 

behavioral validity of N-FSD models can be determined through a variety of tests, including 368 

prediction accuracy tests, the extreme conditions test, and the pattern verification test [8,46,49]. 369 

Prediction accuracy tests are commonly used for all different predictive modeling techniques; in 370 

these tests, model outputs (i.e., predictions) are compared to empirical data using different error 371 

measures in order to determine the accuracy of the predictions made by the model. For the 372 

validation of SD and N-FSD models using prediction accuracy tests, Barlas [46] suggested using 373 

the mean absolute percentage error (MAPE), where a MAPE of 30% or below confirms the 374 

validity of the model. Although prediction accuracy tests are necessary for validating predictive 375 

modeling techniques, including the SD and N-FSD techniques, these tests alone cannot confirm 376 

the behavioral validity of the N-FSD models [46,50]. The extreme conditions test is a behavior 377 
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validation test that sets the value of some system variables at their extremes (i.e., their lower or 378 

upper bounds) and determines whether or not the N-FSD model behaves in a manner similar to 379 

the real-world system in extreme conditions [49]. Finally, the pattern verification test compares 380 

model outputs to empirical data to ascertain whether the N-FSD model can accurately replicate 381 

different aspects of the patterns of empirical data, for example, predicting the extremum points 382 

(i.e., minimums and maximums) of system outputs, predicting the frequency of repeated values 383 

in system outputs, and predicting increasing and decreasing trends in system outputs [8,46]. 384 

Thus, the structural validation tests ascertain whether the quantitative N-FSD model can 385 

accurately mimic the behavior of the real-word system and provide the user with accurate 386 

predictions of system outputs. 387 

4. Construction Application of the N-FSD Technique 388 

In this section, the application of the N-FSD technique for modeling the production rate of an 389 

earthmoving operation is presented in order to illustrate the applicability of this technique to 390 

construction problems. In addition, the N-FSD technique is compared to the conventional FSD 391 

technique in terms of the accuracy of simulation results to illustrate how the hybridization of 392 

neuro-fuzzy systems with the FSD technique can improve the accuracy of the FSD technique. 393 

The N-FSD model of the earthmoving production rate is developed through the qualitative and 394 

quantitative modeling steps discussed in Sections 3.1 and 3.2. The qualitative N-FSD modeling 395 

is accomplished by identifying system variables, identifying system relationships, and finally 396 

developing the cause-and-effect diagram. In this paper, system variables (i.e., those factors that 397 

affect the production rate of the earthmoving operation) are identified through a literature review 398 

[8,13,51,52]. Next, the relationships between the system variables are identified based on 399 

knowledge of the real-world system. Finally, all the system variables and system relationships 400 
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are presented in the cause-and-effect diagram and the qualitative N-FSD model of the 401 

earthmoving production rate is developed as presented in Fig. 3. 402 

 403 

Fig. 3. Qualitative N-FSD model of earthmoving production rate. 404 

The qualitative N-FSD model of the earthmoving production rate is developed using AnyLogic® 405 

software. In the model, there are 24 dynamic system variables, two stock variables, and one flow 406 

variable. Out of the 24 dynamic system variables represented in Fig. 3, there are seven 407 

independent variables, shown in green: groundwater level, temperature, wind speed, 408 

precipitation, soil type, site restrictions, hauling distance and total work volume. The 409 
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independent system variables are those system variables that are not affected by any other system 410 

variables (i.e., there are no arrows to show system relationship ends for these variables). 411 

Following the development of the qualitative N-FSD model, the first step for developing the 412 

quantitative N-FSD model is classifying the system variables into objective and subjective 413 

system variables, as presented in Table 1. 414 

The values of the objective system variables are represented by crisp numbers (e.g., 4°C for 415 

temperature) and the values of the subjective system variables are represented by fuzzy numbers 416 

(e.g., high crew motivation). Fuzzy numbers are a specific type of fuzzy membership functions 417 

that (1) have bounded support; (2) are normal (i.e., they possess at least one point in the universe 418 

of discourse with the membership value of 1); and (3) are convex [53,54]. Fuzzy numbers can be 419 

used to represent the values of real-world parameters when exact values are not measurable due 420 

to subjectivity [41,54]. While in most cases the system variables are classified as objective or 421 

subjective based on their scale of measure [12], in some cases, the measuring technique used to 422 

determine the values of the system variables needs to be taken into account, as well. For 423 

example, soil moisture can be an objective system variable if it is measured numerically using 424 

soil tests, or it can be a subjective system variable if it is measured subjectively through expert 425 

judgment. The values of subjective system variables are represented using fuzzy numbers, which 426 

are developed using the subtractive clustering technique, as illustrated in the quantitative 427 

definition of soft system relationships below. 428 

After classifying the system variables, the hard system relationships are defined using 429 

mathematical equations. As discussed in Section 3.2, hard system relationships are identified 430 

based on the fact that the mathematical form of these relationships is known. In this case study, 431 

there are four hard system relationships, as presented in Equations 4 to 7. 432 
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 𝐴𝑏𝑠𝑒𝑛𝑡𝑒𝑒𝑖𝑠𝑚 = 𝐴𝑏𝑠𝑒𝑛𝑡𝑒𝑒𝑖𝑠𝑚 𝑅𝑎𝑡𝑒 × 𝐶𝑟𝑒𝑤 𝑆𝑖𝑧𝑒 4 

 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑃𝑒𝑟 𝐿𝑎𝑏𝑜𝑟 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝐶𝑟𝑒𝑤 𝑆𝑖𝑧𝑒
 5 

 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑖𝑙𝑦 𝑊𝑜𝑟𝑘 𝐻𝑜𝑢𝑟𝑠 = 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐻𝑜𝑢𝑟𝑠 + 𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑊𝑜𝑟𝑘 6 

 𝐷𝑎𝑖𝑙𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑖𝑙𝑦 𝑊𝑜𝑟𝑘 𝐻𝑜𝑢𝑟𝑠 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 7 

Next, the soft system relationships are defined quantitatively by developing predictive blocks 433 

using the population-based hybrid neuro-fuzzy system discussed in Section 3.2. Table 2 presents 434 

the soft system relationships of the N-FSD model of the earthmoving production rate. 435 

Table 2. Input and output variables of the soft system relationships. 436 

# Output system variable Input system variables 

1 Snow on ground Precipitation, temperature 

2 Soil moisture Precipitation, soil type, groundwater level 

3 Schedule compression Remaining work, production rate, total work volume 

4 Absenteeism rate Crew size, overtime work, crew motivation 

5 Crew size 
Number of equipment, absenteeism, schedule compression, 

total volume of work 

6 Number of equipment 
Schedule compression, equipment capacity, total volume of 

work 

7 Operator experience Crew composition, crew experience 

8 Crew experience Crew composition 

9 Crew composition Crew size 

10 Crew motivation 
Production rate, overtime work, crew experience, crew 

composition 

11 Equipment capacity Hauling distance, total volume of work 

12 Production rate 

Crew motivation, precipitation, temperature, groundwater level, 

soil type, soil moisture, snow on ground, wind speed, hauling 

distance, site restrictions, equipment per labor, overtime work, 

absenteeism, crew composition, crew motivation, crew 

experience, operator experience, equipment capacity, crew size, 

number of equipment 
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Developing predictive blocks using neuro-fuzzy systems for defining soft system relationships is 437 

the unique characteristic of the N-FSD technique that distinguishes it from the conventional FSD 438 

technique. The methodology for developing predictive blocks is illustrated in detail using a 439 

numerical example of the soft system relationship between the production rate and the 20 input 440 

system variables (refer to Table 2). First, the input and output variables for each soft relationship 441 

are determined as presented in Table 2. Next, using a random set of cluster radii 442 

{𝑟𝑎
𝑖|𝑖 = 1,2, … ,21 𝑎𝑛𝑑 𝑟𝑎

𝑖 ∈ (0,1)}, an initial FRBS is developed using the subtractive clustering 443 

technique to define the soft relationships between the production rate and the 20 input variables. 444 

Fig. 4 shows the structure of the initial FRBS developed for the production rate. 445 

As shown in Fig. 4, the FRBS developed for the production rate has five layers: (1) the input 446 

layer, where the values of the 20 input variables are entered in the system; (2) the fuzzification 447 

layer, where the values of the input variables are fuzzified; (3) the inference layer, where the 448 

rule-base of the FRBS is located; (4) the defuzzification layer, which determines the membership 449 

value for each membership function of the output (i.e., the production rate); and (5) the output 450 

layer, which determines the final output of the system by aggregating all the membership 451 

functions of the output (refer to Section 2.2). 452 

In the next step, the PSO component is used to optimize the cluster radius for each input and 453 

output variable of the relationship. The mathematical formulation of the optimization problem is 454 

presented in Equation 3. Fig. 5 shows the results of optimization using the PSO technique. 455 

 456 
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 457 
Fig. 4. Initial FRBS structure for production rate developed by subtractive clustering.  458 
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 459 

Fig. 5. PSO optimization results for optimizing the cluster radii for subtractive clustering. 460 

In Fig. 5, the vertical axis shows the value of the RMSE of the FRBS for predicting the 461 

production rate using actual field data (refer to Equation 3) and the horizontal axis shows the 462 

number of iterations of the PSO technique. As shown in Fig. 5, the minimum value of 𝑅𝑀𝑆𝐸 =463 

0.0323 is obtained through the optimization process. In other words, in each iteration, the PSO 464 

optimization technique changes the value of the cluster radius for each input and output variable 465 

and consequently develops new FRBSs and determines the RMSE of the developed FRBSs. 466 

Finally, the optimum value of the cluster radius for each input and output variable is determined, 467 

yielding the FRBS with the minimum value of the RMSE. Table 3 presents the optimum cluster 468 

radii for all the variables of the soft relationships that predict the value of the production rate 469 

(i.e., the output variable is the production rate). 470 
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Table 3. Optimum cluster radii for the variables of the soft relationships that predict  471 

production rate 472 

Variable Name Cluster Radius Variable Name Cluster Radius 

Temperature 0.892119 Total volume of work 0.354266 

Precipitation 1.00E-20 Site restriction 0.307102 

Snow on ground 0.496825 Soil type 0.201373 

Wind speed 0.914398 Hauling distance 0.842654 

Crew size 0.651692 Crew motivation 0.025542 

Crew composition 0.000871 Operator experience 0.034076 

Crew experience 0.820244 Groundwater level 1.00E-20 

Overtime work 0.316029 Soil type 1.00E-20 

Absenteeism 0.705813 Soil moisture 1.00E-20 

Equipment per labor 0.998841 Equipment capacity 1.00E-20 

Production rate 0.831932   

After determining the optimum cluster radii and developing the optimum FRBS (i.e., the FRBS 473 

with the minimum RMSE) using the PSO technique, the learning algorithm of the ANFIS 474 

technique is used to improve the accuracy of the predictive block by tuning the rule weights. 475 

Thus, the predictive block for defining the soft system relationship that predicts the value of the 476 

production rate using the 20 input variables, presented in Table 2, is developed. Using the same 477 

methodology, the other soft system relationships of the N-FSD model (refer to Table 2) are 478 

defined by developing a predictive block for each relationship. 479 

4.1. Validation of the N-FSD Model of Earthmoving Production Rate 480 

The structural validity of the N-FSD model is tested using dimensional consistency and structure 481 

verification tests. The dimensional consistency test is implemented through dimensional analysis 482 

of the mathematical equations that define the hard system relationships of the system [8]. 483 

Dimensional analysis of the mathematical equations that define the hard system relationships of 484 

the N-FSD model (Equations 4–7) confirms that the four hard system relationships of the N-FSD 485 

model are dimensionally consistent. The factors that affect the production rate of earthmoving 486 
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operations are extracted from the literature [8,52,55–57], and their relationships with the 487 

production rate are confirmed with a structure verification test through a literature review. 488 

Next, the validity of the N-FSD model needs to be tested using behavioral validation tests, which 489 

compare the simulation results to actual field data. In this paper, the behavioral validity of the 490 

N-FSD model is tested by running the simulation model for a 30-day period and comparing the 491 

results to actual field data. The actual field data were collected from a case study of earthmoving 492 

operations on a pipeline maintenance project in Alberta, Canada [8]. This project included 79 493 

work packages (i.e., digs), each of which includes the following activities: excavation, 494 

sandblasting, welding, coating, and backfilling. The case study presented in this paper is focused 495 

on the earthmoving activities (i.e., excavation and backfilling), which were executed by eight 496 

earthmoving crews. Field data were collected for these two activities by documenting the value 497 

of the factors that influence the production rate and the actual daily production rate of the 498 

earthmoving operations. 499 

In order to illustrate how hybridizing FSD with neuro-fuzzy systems improves the ability of the 500 

N-FSD technique to predict the behavior of real-world systems, the accuracy of N-FSD and FSD 501 

models are compared using this case study. The errors of the two techniques (i.e., FSD and 502 

N-FSD) in predicting the production rate of the earthmoving operation are calculated using 503 

actual field data and compared to one another. While all soft system relationships are defined by 504 

hybrid neuro-fuzzy systems in the N-FSD mode, in the FSD model  these relationships are 505 

defined by linear regression as practiced in the recent applications of SD/FSD techniques in 506 

construction (refer to Table 1), including the FSD model of construction productivity by Gerami 507 

Seresht and Fayek [8], the construction labor productivity model developed by Nasirzadeh et al. 508 

[2] and the SD model for assessing the environmental impacts of cement industry by Ekinci et al. 509 
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[58]. The simulation results of the N-FSD and FSD techniques and the actual field data are 510 

numerically shown in Table 4 and graphically presented in Fig. 6. Due to confidentiality 511 

constraints, all field data presented in Table 42 are normalized within the range of [0,1] using 512 

Equation 8. 513 

 𝑉𝑖
𝑁 =

𝑉𝑖 − 𝑚𝑖𝑛(𝑉𝑖)

𝑚𝑎𝑥(𝑉𝑖) − 𝑚𝑖𝑛(𝑉𝑖)
 8 

where 𝑉𝑖
𝑁 stands for the normalized value of any system variable, 𝑉𝑖 stands for the original value 514 

of the system variable. 515 

 516 

Figure 6. Simulation results for production rate in comparison to actual field data.  517 
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Table 4. N-FSD and FSD simulation results and actual field data for production rate 518 

Time (Day) N-FSD Result FSD Result Actual Data 
N-FSD Error 

(𝐀𝐜𝐭𝐮𝐚𝐥 − 𝐑𝐞𝐬𝐮𝐥𝐭)

𝐀𝐜𝐭𝐮𝐚𝐥
 

FSD Error 
(𝐀𝐜𝐭𝐮𝐚𝐥 − 𝐑𝐞𝐬𝐮𝐥𝐭)

𝐀𝐜𝐭𝐮𝐚𝐥
 

1 0.102 0.08 0.082 0.249 0.020 

2 0.173 0.436 0.192 0.098 1.273 

3 0.176 0.477 0.192 0.083 1.486 

4 0.148 0.256 0.190 0.222 0.346 

5 0.075 0.073 0.106 0.293 0.312 

6 0.057 0.063 0.060 0.044 0.056 

7 0.126 0.18 0.145 0.133 0.239 

8 0.057 0.022 0.060 0.044 0.631 

9 0.128 0.262 0.145 0.119 0.803 

10 0.13 0.274 0.106 0.225 1.583 

11 0.157 0.295 0.180 0.129 0.636 

12 0.494 0.313 0.429 0.151 0.271 

13 0.494 0.313 0.429 0.151 0.271 

14 0.152 0.254 0.180 0.157 0.409 

15 0.166 0.409 0.228 0.273 0.792 

16 0.162 0.347 0.228 0.290 0.520 

17 0.644 0.45 0.745 0.135 0.396 

18 0.496 0.374 0.429 0.156 0.129 

19 0.64 0.388 0.745 0.140 0.479 

20 0.097 0.377 0.123 0.213 2.060 

21 0.182 0.272 0.219 0.169 0.242 

22 0.183 0.313 0.219 0.165 0.429 

23 0.085 0.142 0.097 0.126 0.459 

24 0.085 0.142 0.097 0.126 0.459 

25 0.1 0.081 0.076 0.311 0.062 

26 0.074 0.064 0.095 0.217 0.323 

27 0.173 0.204 0.209 0.173 0.025 

28 0.178 0.245 0.209 0.150 0.171 

29 0.083 -0.063 0.086 0.031 1.735 

30 0.178 0.245 0.209 0.150 0.171 

MAPE 16.42% 55.96% 

As shown in Table 4, the N-FSD technique outperforms the FSD technique in terms of accuracy, 519 

as the MAPE for the N-FSD technique is 16.42% and for the FSD technique it is 55.96%. The 520 

ability of the two simulation techniques (i.e., FSD and N-FSD) to predict the behavior of 521 
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constructions systems is compared using behavioral validity tests (refer to Section 3.3) and the 522 

following conclusions are drawn based on the simulation results presented in Fig. 6: 523 

• The N-FSD technique outperforms the FSD technique in predicting trends in the behavior 524 

of construction systems. Trends in the production rate (i.e., an increase or decrease in the 525 

value of the production rate between any two consecutive points) are correctly predicted 526 

by the N-FSD model in 28 out of 29 cases (96%), while the FSD model predicted these 527 

trends correctly in 20 out of 29 cases (69%). 528 

• The N-FSD technique outperforms the FSD technique in predicting the behavior of 529 

construction systems in extreme conditions. The extreme conditions (i.e., where the value 530 

of the production rate reaches its minimum or maximum values) are predicted by the 531 

N-FSD mode correctly in all cases (days 8, 22, and 23 for the minimum value and days 532 

17 and 19 for the maximum value), while the FSD model predicted these extreme 533 

conditions correctly only in one out of five cases (day 8 for the minimum value). 534 

Thus, the results of the comparison show that the N-FSD technique can more accurately predict 535 

the behavior of construction systems than the FSD technique. 536 

4.2. Research Limitations and Future Directions 537 

The construction case study presented in this section reveals that the N-FSD technique also has 538 

some limitations for modeling construction systems, which need to be addressed in future research. 539 

First, there two types of uncertainties exhibited by the different variables in construction systems, 540 

the probabilistic uncertainties and non-probabilistic uncertainties. The N-FSD technique has the 541 

capacity to capture the non-probabilistic uncertainties of construction systems, however, this 542 

modeling technique cannot capture the probabilistic uncertainties of these systems. While there 543 

are numerous system variables in construction systems that exhibit probabilistic uncertainty (e.g., 544 
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temperature or level of precipitation), in future applications, it is necessary to integrate the N-FSD 545 

with Monte Carlo simulation to capture the non-probabilistic uncertainty of construction systems. 546 

Such integration delivers a comprehensive modeling technique, with the capacity to capture all the 547 

different types of uncertainty in construction systems and increases the applicability of this 548 

technique in different engineering contexts. The second limitation of the N-FSD technique lies in 549 

its high computational cost, as compared to the SD/FSD techniques, and the lack of a commercial 550 

software package for developing N-FSD models. The N-FSD model of earthmoving operations 551 

presented in this paper has been developed in AnyLogic® and by establishing an online connection 552 

to MATLAB®. In such architecture of the model, at each time step of simulation, AnyLogic® sends 553 

the value of input variables for each system relationship (i.e., defined by hybrid neuro fuzzy 554 

systems) to MATLAB®; next, the MATLAB® determines the outputs of the system relationships 555 

and returns the results to AnyLogic®. Establishing the connection for exchanging information 556 

between the two software packages increases the computational cost of this modeling technique 557 

significantly, as compared to the FSD model of earthmoving operations presented in this section 558 

(i.e., two hours of simulation runtime for N-FSD model as compared to five minutes simulation 559 

runtime for FSD model). The high computational cost of N-FSD technique may limit the 560 

application of this technique for modeling construction systems with larger scope of modeling (i.e., 561 

including numerous system variables); and to address this limitation, evaluating the outputs of 562 

neuro-fuzzy systems should be accomplished within the simulation framework, AnyLogic® in this 563 

case, by defining new functions for hybrid neuro-fuzzy systems in the sub-class of system 564 

relationships. 565 
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5. Conclusions and Future Work 566 

The complexity of construction projects makes it challenging to develop models for predicting 567 

projects’ performance, which is an essential task for several managerial practices. In this paper, a 568 

new hybrid modeling technique, called neuro-fuzzy system dynamics (N-FSD), has been 569 

introduced by hybridizing FSD with neuro-fuzzy systems. The N-FSD technique has the capacity 570 

to capture the dynamic and interacting structure of construction systems and the 571 

non-probabilistic uncertainty of the factors influencing construction systems. The application of 572 

the N-FSD technique for modeling construction systems is tested through a case study by 573 

modeling the production rate of earthmoving operations and comparing the results to the FSD 574 

technique. The results show that the hybridization of FSD with neuro-fuzzy systems (in the 575 

N-FSD technique) improves the applicability of the FSD technique in construction, since  576 

(1) N-FSD is more accurate than FSD in terms of predicting the value of the production rate; 577 

(2) N-FSD is more accurate than FSD in terms of predicting the trends of the system output (i.e., 578 

an increase or decrease in the value of the production rate between any two consecutive points); 579 

and (3) N-FSD is more accurate than FSD in terms of predicting the behavior of the system in 580 

extreme conditions (i.e., when the system output reaches its minimum or maximum values). The 581 

contribution of this paper is introducing a new hybrid modeling technique — N-FSD technique 582 

— to address the following challenges associated with modeling construction systems: 583 

(1) capturing the impact of numerous interacting factors that affect construction systems; 584 

(2) capturing the non-probabilistic uncertainty exhibited by the variables affect construction 585 

systems, (3) addressing the dynamism of construction systems; and (4) modeling the non-linear 586 

and highly-dimensional relationships between the variables of construction systems accurately. 587 

This paper also contributes to the state of the art in FSD modeling by hybridizing this technique 588 
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with machine learning (i.e., neuro-fuzzy systems) to enable this technique to learn from historical 589 

data.. Finally, this paper contributes to construction practice by providing a new technique for 590 

developing predictive models for construction systems that will support construction 591 

practitioners in their managerial practices.  In future research, the N-FSD technique will be used 592 

to model different aspects of construction systems, such as managing construction risk or 593 

predicting different performance indicators of construction systems (e.g., productivity, cost 594 

performance). Moreover, in future research, the N-FSD technique will be extended by 595 

integrating it with Monte Carlo simulation in order to model the probabilistic uncertainty of the 596 

factors that affect construction systems. 597 
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