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Abstract

String assignment is one of the key steps in protein three-dimensional structure determi­

nation via NMR (Nuclear Magnetic Resonance) spectroscopy. It addresses the problem o f 

how to map non-overlapping strings of spin systems to the target protein sequence, and it 

has been proven that finding an optimal solution for string assignment is NP-hard. Many 

methods have been developed to solve this problem. However, most o f them have speed and 

scalability issues which make them unsuitable for large proteins, or high volume input data. 

We have developed a new approach to solving the string assignment based on integer pro­

gramming. Experimental results have shown that our approach has advantages over other 

methods in both speed and scalability. Moreover, we applied the idea into a web application 

which provides high performance protein NMR string assignment function to users all over 

the world.
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Chapter 1

Introduction
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Proteins play a vital role in supporting our daily physiological activities. Their functions 

ranged from building muscle tissues and connective tissues, hydrolyzing the polymers in 

food, protecting against diseases, to transferring oxygen and other sustenance over the body. 

Some functions can be done by a single protein, and others require interactions of multiple 

proteins. Recent research has shown that the functions o f a protein and how it interacts with 

other proteins are mainly determined by its three-dimensional structure (Thornton et al., 

2000).

Obtaining the three-dimensional structure of a protein is not easy. With years o f study, 

researchers have already built the whole databases o f genome sequences for many species 

including the human being, and are able to extract the amino acid sequences o f proteins 

from the databases. Unfortunately, predicting how the protein sequence folds in a three- 

dimensional space remains as an extremely difficult task due to the complex interactions 

between amino acids. Many computational prediction methods have been developed to 

address this problem in the last few decades, such as molecular dynamics, secondary struc­

ture prediction, homology and pattern recognition, energy minimization on lattice models, 

and knowledge-based approaches, e.g., protein threading (Clote & Backofen, 2000). These 

methods have been proven to be able to produce impressive prediction results. However, 

they still cannot replace the experimental techniques for the protein three-dimensional struc­

ture determination for two reasons. First reason is that none o f the computational methods 

can guarantee to produce the correct result for a particular protein. Second, for a new pro­

tein, all the computational methods can only “predict” its three-dimensional structure and 

we still need experimental results to verity the prediction.

Two experimental techniques, X-Ray crystallography and NMR spectroscopy, are the 

dominant methods for protein structure determination. They both have their own advan­

tages and disadvantages. In general, X-Ray crystallography provides higher accuracy for 

protein three-dimensional structure than NMR spectroscopy, but it may take from several 

months to several years to determine the structure o f one protein. Compared with X-Ray 

crystallography, NM R spectroscopy wins with its efficiency and lower cost. Therefore, 

when we need to determine the protein three-dimensional structures of a large dataset, for 

instance, at the genomic scale, NMR spectroscopy is a more suitable solution than X-Ray 

crystallography.

Since 1985, the first time that NMR was used in determining the complete structure 

for a protein (proteinase inhibitor IIA from bull seminal plasma) (Williamson et al., 1985), 

much effort has been expended to make NMR protein structure determination process au-

2
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tomatic. Modem computing techniques can help biologists analyze NMR data to determine 

the protein three-dimensional structure with high accuracy.

In general, the whole process o f using NMR spectroscopy for the protein three-dimensional 

structure determination can be done in three stages: peak picking, protein NMR sequential 

resonance assignment, and structure determination. In NMR spectra, peaks are generated 

from chemical shifts in a protein molecule and reflect the properties o f the atoms that form 

the chemical shifts. The stage of peak picking is to identify the peaks of atoms in a protein 

molecule. Then the observed peaks along with the protein sequence are used in the next 

stage, protein NMR sequential resonance assignment, in short, sequential resonance assign­

ment, to produce mappings o f observed peaks and atoms of residues in the target protein. 

Finally, the three-dimensional structure o f the protein can be determined at the structure 

determination step, by combining the protein sequence with the positions of atoms in three- 

dimensional space.

The process of sequential resonance assignment consists of three steps and a scoring 

scheme (see Figure 1.1). The first step is peak grouping. In the peak grouping step, spin 

systems are generated from observed peaks. Each spin system contains chemical shifts 

of one residue and some other information, such as coupling constants. Then, the step 

o f connectivity determination estimates the connections between every two spin systems 

according to their chemical shift values. If  two spin systems are believed from two neigh­

boring residues, a directed connection is made from one to the other according to the order 

of residues. Several sequentially connected spin systems form a segment of spin systems, 

which is referred as a string. Finally, guided by a scoring scheme, the step of string assign­

ment maps strings to correct positions on the target protein sequence. The scoring scheme 

evaluates every possible spin system/residue mapping and provides the confidence infor­

mation for each mapping. It plays an important role in the sequential resonance assignment 

because the quality o f the scoring scheme mainly determines the accuracy of the sequential 

resonance assignment.

Peak grouping - Connectivity determination -  String assignment

S c o rin g  sc h em e

Input:
Peaks & Protein sequence

Output:
Mapping of grouped peaks and residues

Figure 1.1: Protein NMR sequential resonance assignment

In our research, an Integer Programming (IP) approach is designed to solve the string
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assignment. Compared to existing methods, our approach not only speeds up the string 

assignment process but also can handle large proteins. It takes only a few seconds to solve 

string assignment for protein with more than 700 residues while other methods may take 

hours, even days. In additional, some experiments which are not feasible to other meth­

ods can be easily done because o f the efficiency o f our approach, for instance, scoring 

scheme evaluation on a large dataset. Scoring scheme is very important to string assign­

ment; however, without an efficient method, researchers can only test scoring schemes on 

small dataset with limited protein size. W hat’s more, a web application based on the IP 

approach is designed and developed to provide public string assignment service to users all 

over the world.

4
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Chapter 2

Related Work
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Many approaches have been proposed for sequential resonance assignment, one of the 

key stages in the NMR protein three-dimensional structure determination. Several pro­

grams/systems have been developed to accomplish this task. In these programs/systems, 

different algorithms were used for the string assignment process and are summarized as 

below.

2.1 G A R A N T

GARANT (General Algorithm for Resonance AssignmeNT) (Bartels et al., 1997) is a pro­

gram which uses a combination o f genetic algorithm and local optimization routine for 

sequential resonance assignment. It contains three major elements: graph representation, a 

scoring scheme, and a combination algorithm.

GARANT represents NMR resonance assignment as a graph matching problem be­

tween two graphs: ( 1 ) expected graph which represents correlations of the atoms of the 

protein and expected cross peaks (graph A in Figure 2.1 (Bartels et al., 1997)), and (2) ob­

served graph which represents, correlations of the chemical shifts and observed cross peaks 

(graph B in Figure 2.1).

A. Expected peaks 

atoms (a\f) (  HNj )  (  Haj )  (  Hp2j )  (  HNi+i )

n=2

expected peaks (sjtf) COSY )

B. Observed peaks

chemical shifts (cd£>)

n=2

observed peaks ( sp )  CO S1' )

C. Assignment o f  the m easured peaks

NOESY

(  <osv ) (  NOISY )

chemical shifts 

atoms 

n=2 

observed peaks
ex p e c te d  p ea k s

(  6.93 )  (  4.31 )

(  H N j ~ < ' H g .

( r v )

NOESY

Figure 2.1: Schematic representation for 2D (n =  2) homonuclear NMR spectra o f ex­
pected (A) and observed (B) peaks, and of the mapping used to describe possible resonance 
assignments (C).

GARANT uses the “mutual information” as the scoring scheme to evaluate the mapping

6
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between the expected graph and the observed graph. The “mutual information” between a 

set o f expected peaks/atoms M  and a set o f all observed peaks/chemical shifts D  over a 

resonance assignment A  is defined as

I a ( D - M )  =  Y , I ^ d ) ^ m )
k e K

—  Y '  loe
h e  p { p $ )
_  v ( J kh J k))

— V  Inrr P \ a p  Ia M  )___________
1U6 „  ,  (k) | (fc) W (fc) N ’

k e K  Y l e L k P { a D  Ia M , l ) P \ ° M , l )  

where K  is a set of attributes k, L is a set of possible values I for attribute k. In above 

equation, p ( a ^ |o ; ^ )  is the conditional probability of the value observed when its 

expected value is a $  for attribute k, and p ( a ^ ) is a priori probability that a '^  is observed 

for attribute k.

Then, the joint algorithm o f a genetic algorithm and a local optimization routine is used 

to find the best matching, Figure 2.1 C, between two graphs, Figure 2.1 A and B. This best 

matching can therefore be converted to the corresponding best resonance assignment.

The combination algorithm can be briefly described as Algorithm 1, where smax con­

trols the maximum number o f generations in the genetic algorithm in case that the algorithm 

does not converge. One disadvantage o f this algorithm is that the genetic algorithm usually 

converges very slowly; therefore, a large number of generations has to be set to terminate 

the algorithm. Another disadvantage is that the complexity o f the two graphs grows expo­

nentially in the size o f the protein. Some heuristic techniques are required to be applied for 

using this program on large proteins.

1 Find a local optimal assignment for the initial generation;
2 while Step t < tmax do
3  Generate 30 candidate assignments;
4 Combine to a new assignment;
5  if  Converged then Stop loop;
6 else t  <— t  +  1;
7 end
8  Output final assignment;

Algorithm 1: the combination algorithm in GARANT

2.2 AutoAssign

AutoAssign (Zimmerman et al., 1997) is an expert system which combines symbolic con­

straint satisfaction methods with a domain-specific knowledge base for determining reso-

7
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nance assignments from NMR spectra of proteins. This system can be run in two modes, 

the interactive mode or the “batch” mode. Figure 2.2 (Zimmerman et al., 1997) shows an 

overview o f the processing sequence of AutoAssign.

Match Weaker Spin Systems

Allow Degenerate Shifts

Extend Assigned Segments

Finish Assignments

Make Strongest Matches

Initialization Routines

Match Ladders 
and Establish Links

Propagate Constraints

Designate Chemical Shifts 
and Residue Type Probabilities

Figure 2.2: Schematic overview of AUTOASSIGNs default execution sequence

First, the input information is initialized to generate the internal representation for Au­

toAssign. Then a sequence of stages of “constraint-based matching” are taken place to des­

ignate chemical shifts and match the C °-ladders (the connections between spin systems) 

with Ca -ladders (the mappings between spin systems and residues) for each spin system 

till the final assignments are found. At each stage, AutoAssign uses the constraint-based 

matching cycle to iteratively establish the best matches between the C °-ladders and C a- 

ladders, where the matches are the “best possible” sequential links between GSs (genetic 

amino acid spin-system objects derived from NMR spectral data). Here, “best” is evaluated 

by the scoring scheme which represents the Bayesian posterior probability p(r \Ca , C@) of 

a spin system with Ca and C® chemical shifts mapping to a residue r. And the probability 

is computed as

, ,c „ =  p(C“ ,O V )P (r )
Z r p(C«,CP\r )P(r )

where p ( Ca , C@\r) is the probability of observing chemical shift values Ca and OP for 

residue type r, and P(r )  is the frequency o f occurrence of residue type r  in the target 

protein sequence.

In AutoAssign, the connectivity determination process and the string assignment pro­

cess are combined together. This combination allows the two processes to validate each
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other, also it increases the assignment speed by reducing the total number of possible con­

nections. Another strategy to reduce the search space is to combine best-first search with 

constraint satisfaction methods (Mackworth, 1977; Fox, 1986; Nadel, 1986; Kumar, 1992). 

However, due to the propagation of initial errors, AutoAssign only works when errors are 

rare. Moreover, AutoAssign requires a careful definition o f what constitutes logical incon­

sistencies to minimize the propagation of errors. Consequently, AutoAssign may fail due to 

missing data or ambiguous connections. In summary, AutoAssign requires seven to eight 

three-dimensional NMR spectra in order to reduce the complexity and provide meaningful 

assignments.

2.3 Mapper

Mapper (Guntert et al., 2000) is a semi-automatic sequence-specific NMR assignment pro­

gram which uses an input of short fragments of sequentially neighboring spin systems and 

performs an exhaustive search for self-consistent simultaneous mappings o f all these frag­

ments onto the protein sequence. The idea can be explained in two steps.

First, consider each fragment individually and map it to all possible locations in the 

protein sequence. Then, use a scoring scheme to compute the evaluation value and the 

acceptable probability for each mapping. For the fragment Fi with length lt , the evaluation 

value x 2 0 ; k)  of mapping it to a protein subsequence Sk,k+h-1 , which indicates the segment 

from the k-th amino acid to the (k + lt — l)-th  amino acid in the whole protein sequence, is 

computed as the sum of the squared deviations o f the chemical shift values in Fi from the 

corresponding reference chemical shift values at the position k , . . .  , k  + k ~  1  in the protein 

sequence:

U- 1

X2 (i \k)  = J 2  J 2  
j = 0  a e A j ( i )

faff ( 0  -  {k+j)

AfaV(fc+j)

2

(2.1)

where Aj  (i ) denotes the set o f atoms at position j  in the fragment Fi, and denotes the 

experimental chemical shift value for the atom a G Aj(i ) ,  and bj*(k+j) an^ Afaff(fc+j) are 

the expected chemical shift value and its standard deviation for the atom a of the residue 

type r ( k + j ) ,  respectively. This mapping can be accepted for the next step if  the acceptable 

probability Q ( x 2 (i] k)\vi),  where =  Y?j=o IA?'(*)I's the total number o f atoms in the 

fragment Fi, is greater than a user specific threshold Qq.

Second, an exhaustive search for simultaneous, self-consistent global mappings of all 

fragments is applied on the basis of the accepted individual mappings. For each global
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mapping, its global evaluation value x 2 (Global) is computed as the sum of each individual 

mappings, and this mapping is ranked by its acceptable probability Q(Global),  which is 

calculated in the same way as individual mappings. A global mapping is considered as a 

“reasonable” mapping if  its acceptable probability is close to 1 0 0 %.

2.4 PACES

PACES (Protein sequential Assignment by Computer-assisted Exhaustive Search) (Cog­

gins & Zhou, 2003) applies an exhaustive search on a directed graph, which represents the 

connectivity relationship of spin systems, to find the best non-overlapping paths and the 

corresponding mapping between these paths and the protein sequence segments. In this 

graph, each vertex represents one spin system and each directed edge represents an adja­

cency between two spin systems. These edges are built by the following rules. Given two 

spin systems,

„ _  (~*ol r'O Tra /~ia W? /~<0 rja
3 j  ’ j  ’ j  ’ j  ’ j —1 ’ j —1 ’ j - 1 ’ j-l>

_  ria /~<0 zra /~<a W? /~iO zia
Sk u fc-i> -“ fc-i’

there is an edge from spin system Sj to spin system Sk, if

\ C f - C U \ < S c ^ ,

I

I C f - C g - J Z S c o ,

\ H f  — Hk- l \  < Sffa,

where 8c<*, 8 c g , 5c°, and Sna are user-specified connectivity thresholds.

After the graph is built, all possible paths are enumerated. If  there is a cycle in a path, 

the path is cut at the last visited vertex to break the cycle (see Figure 2.3). When all paths 

are ready, each path is examined by mapping it to every possible location on the protein 

sequence. A scoring scheme which contains the statistical chemical shift distribution o f 

each amino acid type from the BioMagResBank is used to determine the possible amino 

acid type that a spin system can be mapped to. If  only a part o f the path can be mapping to 

a segment of protein sequence, the rest of path is cut and added back to the path pool for 

assignment elsewhere.

Ideally, the alignment could be straightforward when each path only contains correct 

connections and no two paths share the same vertices. However, in practice, due to chemi­

cal shift degeneracy, a spin system could be connected to several other spin systems, which

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

->H

break here

Figure 2.3: Break the cycle in a path. The line from spin system 6  to spin system 3 is cut to 
break the cycle.

exponentially increases the total number o f all possible paths. Then, enumerating all pos­

sible paths is very difficult if not impossible. Applying an exhaustive search upon all paths 

becomes a both time consuming and memory consuming process. Therefore, PACES is 

only suitable for short sequences or when high quality data are available.

2.5 M A R S

MARS (Jung & Zweckstetter, 2004) is an automatic backbone assignment program which 

contains five key features: ( 1 ) simultaneous optimization for both the local and the global 

assignment quality, (2 ) exhaustive search for segments containing up to five connected spin 

systems during linking and mapping, (3) best-first elements for both linking and mapping, 

(4) combination of the secondary structure, and (5) evaluation mappings by performing 

multiple assignment.

Figure 2.4 shows an overview o f MARS assignment procedure. In the first step, MARS 

detects the connectivities among spin systems to build a graph. Spin systems are connected 

according to their experimental intra- and inter-chemical shifts. In the second step, MARS 

maps the connected spin systems onto the protein sequence. After all spin systems are 

randomly mapped to the protein sequence, MARS repeats to randomly select a spin system 

as a start point to refine this assignment. It checks a given number of spin systems according 

to the graph created in the first step until all spin systems have been selected as start points. 

In MARS, the number of spin systems checked are reduced from five to two in each repeat.

The main factor influencing the assignment quality o f MARS is quality o f chemical shift 

values of spin systems. For low quality NMR spectral data, the limited length of examined 

spin systems string may limit the performance o f MARS.

11
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Predicted chemical shifts

Observed chemical shifts

Reliable assignment

Local
assignment

Global
assignment

Mapping

Assigning

Linking

Make pseudo energy U

Match predicted chemical shifts 
with observed chemical shifts

Establish connectivity

Assignment 60

Assignment 1

Figure 2.4: Overview of MARS assignment procedure

2.6 R IBR A

RIBRA (Relaxation and Iterative Backbone Resonance Assignment) (Wu et al., 2006) is 

a fully automated program for NMR resonance assignment using nearest neighbor and 

weighted maximum independent set algorithm. In RIBRA, all spin systems are first paired 

with each other and each pair is placed on all possible locations on the protein sequence 

according to TATAPRO II typing scheme (Atreya et al., 2002). The pair o f spin systems 

can be viewed as a string with two spin systems. Then, a segment extension algorithm is 

applied on these spin system pairs to form longer strings if  two pair share the same residues 

and have matched overlapping spin systems. After all strings are collected, RIBRA treats 

the string assignment problem as finding a maximum independent set o f strings of spin 

systems to cover the target protein sequence (see Figure 2.5).

RIBRA performs very well when high quality data are available. However, when the 

data quality is low, the number of strings of spin systems is increased exponentially as many 

spin systems pairs are overlapping. Therefore, the performance o f RIBRA on poor quality 

dataset drops rapidly. Even worse, it becomes infeasible for long protein sequence with low 

quality spectral data.

12
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Protein sequence

___

[ Stf4 j

I strs I I str6 |

Figure 2.5: Finding independent set o f strings o f spin systems in RIBRA. s tr \  to stre  are 
six strings of spin systems. One segment can be initially mapped to multiple positions on 
the target protein sequence, such as string s tr 4 . String s tr \ , s tr 2 , s tr 3 , and s tr 5  form a 
maximum independent set which covers the protein sequence.

2.7 Summary

Based on the methods used to solve sequential resonance assignment, above six systems 

could be divided into two groups. The first group only contains GARANT which repre­

sents the sequential resonance assignment as graph matching. It maps peaks directly to 

the residues and tries to find the best matching between the observed mappings and ex­

pected mappings. The disadvantage o f this approach is that it cannot handle large proteins 

due to the complexity o f groups grows exponentially in the size of proteins. The second 

group contains the other five systems. The method used in this group for solving string 

assignment can be summarized as following. First, it tries to enumerate all strings. Then, 

it searches all possible mapping positions for each string to find the best set o f strings to 

cover the target protein sequence. The main drawback o f this method is that the number of 

total strings increases exponentially when the connection complexity among spin systems 

increases. Therefore, this method is only suitable for string assignment when high quality 

spectra data are available, in this case the connections between spin systems are not too 

complicated. To handle large proteins with general connections between spin systems, a 

new method is desired for string assignment.

13
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Chapter 3

Protein NMR String Assignment 
Using Integer Programming
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In this chapter, an integer programming approach is demonstrated for finding the con­

strained maximum-weighted bipartite matching, which is the best candidate for the correct 

assignment between spin systems and residues.

3.1 String Assignment as bipartite matching

After peak grouping and connectivity determination, we have a set of spin systems and 

there are some connections between spin systems. Given the amino acid residues from the 

target protein, we need to map these spin systems onto the corresponding residues. At the 

beginning of the string assignment process, we can build initial mappings between spin 

systems and residues. In the initial mappings, each spin system is mapped to multiple 

residues, and each spin system/residue mapping is evaluated by a scoring scheme based on 

chemical shift values o f the spin system and the type o f the residue to gives the confidence 

o f such mapping. The scoring scheme assigns a value to each mapping which indicates 

the confidence level of such mapping and the bigger the value, the more confident the 

mapping is. We can view the initial mappings as a bipartite graph (see Figure 3.1 (A)), 

and links between spin systems and residues are weighted by their confidences. The string 

assignment is to find the maximum-weighted bipartite matching (see Figure 3.1 (B)) of the 

graph, which represents the “best” mappings of spin systems and residues.

Although finding a maximum weighted matching is not difficult, it becomes compli­

cated when there are connectivity constraints which have to be satisfied in the matching 

(see Figure 3.1 (C)), i.e., two adjacent spin systems have to be mapping to two neighboring 

residues. Xu et al. (Xu et al., 2002) have proved that the constrained bipartite matching is 

NP-hard even if all edges have the unit weight and the maximum length of strings of spin 

systems is 2. For a more general case, where the length o f strings of spin systems could be 

any number from 1  to the total number o f spin systems, the constrained maximum weighted 

bipartite matching becomes Max SNP-hard (Chen et al., Mar 2005). In the following sec­

tions, We will show how to formulate the string assignment as an integer program.

3.2 Integer Program  R epresentation for String A ssignm ent

3.2.1 Basic Integer Program

First of all, let’s consider the simplest case without any connectivity constrains. In the sim­

plest case, given a set of spin systems containing no false positive (fake) and false negative 

(missing) spin systems, the string assignment process is to find a solution in which each
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(A)

Spin systems

Residues

O O O

(B)

Spin systems

 o o o o o o o o o o o o o o o o
Residues

(C)

Spin systems

 O O (X) QOOO O O QOOOOO
Residues

Figure 3.1: (A) initial mappings where lines between spin system and residue indicate 
possible mappings; (B) bipartite matching without connectivity constraints; (C) bipartite 
matching with connectivity constraints.

spin system has to be mapped to one and only one residue. Given weights on every map­

ping of spin system/residue pair, where the weight is the confidence o f each mapping, this 

process can be modeled as an integer programming problem, or more specifically, a 0 - 1  

integer program.

Suppose the length o f the protein sequence is n, i.e., there are n  residues, and we have n 

spin systems, we want to map these n spin systems to the n residues so that each spin system 

corresponds to one residue. Let the residue set be R  = {rj} ,  1 <  j  < n, where j  is the 

index of residue rj  in the protein sequence. Let spin system set be S' =  {.s,}, 1 <  i < n. 

Given the weight matrix W  =  {?%■}, 1 <  i , j  < n, where each element Wij is a non­

negative number which represents the confidence o f mapping the spin system s* to the 

residue rj.  Given the assignment matrix X  =  { ly } , 1 <  i, j  < n  and x tj  e  {0,1}, where 

Xij — 1 if we map the spin system ,st to the residue rj  and x,j =  0 otherwise. Then 

finding the best assignment is equivalent to finding a configuration o f X  which maximizes 

S i< i  j<n w i j  x x i j> where 6  {0,1}. Because one spin system must be mapped to one 

and only one residue and vice versa, in the matrix X ,  there is only one element equals 

to 1 for each column and for each row. Therefore, the basic 0-1 integer program can be
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formulated as Formulae (3.1 -3.4)

Maximize ^  Wij x Xjj (3.1)
1 <i,j<n

subject to — 1, VI <  i <  n (3.2)
1 <j<n

^ 2  Xij =  1,V1 < j  < n (3.3)
l< i<n

Xij e  {0,1} (3.4)

In practice, in the NMR experiments, there are usually two kinds o f noise remaining in 

the spectral data. One is that an actual peak could be missing (false negative), and the other 

is that a visible peak could be false (false positive) (Hsu et al., 2004). Therefore, the number 

of observed spin systems may be less or more than the number o f the amino acid residues. 

The false positive spin systems should not be mapped to any residue and some resides may 

not have the corresponding spin systems. In this case, we cannot guarantee to find the one- 

to-one mapping between spin systems and residues. The assignment constraints, Formulae 

(3.2, 3.3), have to be relaxed. Let m  be the number of spin systems and n  be the number 

of residues. We get a more general 0-1 integer program shown as Formulae (3.5, 3.6, 3.7, 

3.4).

Maximize ^  w tJ x x l3 (3.5)

subject to ^ 2  x ^  < 1,\/1 < i < m  (3.6)
l<j<n

J 2  X i j < l , V l < j < n  (3.7)
1 <i<m
Xij e  (o, 1}

3.2.2 Sim ple C onnectivity C onstrained Integer Program

Our experiments (Section 5.4) have shown that the assignment results from the basic integer 

program, Formulae (3.5,3.6,3.7,3.4), are usually biologically poor, i.e., many spin systems 

are mapped to wrong residues. The reason is that for spin systems corresponding to the 

sam e type o f  residues, their spectral data are u su ally  very sim ilar to each  other. Therefore, 

these spin systems could be mapped to a residue with equally high confidence. On the 

other hand, one spin system could be mapped to several the same type o f residues also with 

equally high confidence.

To resolve this issue, we introduced the connectivity information into the integer pro­

gram. The connectivity information is determined by the connectivity determination pro-
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cess and shows the relationship between spin systems which gives the constraints for the 

possible mapping positions for each spin system. In general, if two spin systems are con­

nected to each other, then they must be mapped to two neighboring residues.

To simplify the problem, let us first consider a special case in which the following 

connectivity constraints hold.

1. Every spin system can have at most one spin system as its immediate successor.

2. Every spin system can have at most one spin system as its immediate predecessor.

3. There is no loop for every spin system chain, i.e., no spin system has any successor 

which is also its predecessor.

With these constraints, the spin systems form a set of disjoint spin system strings in which 

no two strings share a spin system (see Figure 3.2). Also the set of strings can be viewed as 

a set of constraints of spin system pairs. For example, a string containing four spin systems, 

S3S2 S5S8 , can be converted to three spin system pairs, (S3 , S2 ) ,(s2 , S5 ) , and (S5 , sg).

0
0

•
0

©
1

© © ©
1

0 0 0

01 •10

Figure 3.2: Simply connected spin systems

Let C  =  {(sfc, s /)} be the set satisfying the above constraints, where Sk and s/ are two 

adjacent spin systems and S k  is the immediate predecessor of S j .  Then in the assignment 

result, two spin systems Sk and s/ must be mapped to two neighboring residues, i.e, if  spin 

system Sk is mapped to residue rj in the final assignment, spin system has to be mapped to 

residue r]+1. At the same time, if  Sk  is not mapped to the residue r3, si must not be mapped 

to r j+1 . Therefore, we have additional constraints for the (sk, si) pair (Formula 3.8). And 

the integer program with such limited connectivity constraints is shown as Formulae (3.5,

3.6, 3.7, 3.8, 3.4).

Maximize ^  wt] x x t]
1 < n

subject to ^  Xij < 1,V1 <  i <  m
1 < j < n
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Xij ^  <  J <  n
1 < ?' < m
x kj = x tJ+1 , VI <  j  < n  -  1 and (sfc, s;} € C  (3.8)

€ {0,1}

3.2.3 C om plex C onnectivity C onstrained Integer Program

Due to variability in the accuracy of measurement equipment and chemical shift degener­

acy, the spectral data contains noise and errors. The connectivity determination process 

sometimes can only give the probability o f one spin system being adjacent to another spin 

system, i.e., one spin system may have multiple immediate successors or multiple immedi­

ate predecessors. For instance, in Figure 3.3, the spin system sj has two possible immediate 

successors S2 and S4 , and the spin system S4 has two possible immediate predecessors s i 

and S3 .

Figure 3.3: Complex connected spin systems

So we need to design an integer program to handle the more general case in which the 

first two connectivity constraints in Section 3.2.2 are relaxed and the connection loop is still 

not allowed.

First, let us define two kinds of connections, the “hard” connection and the “soft” con­

nection. If  one spin system sp has only one immediate successor sq and is the only one 

immediate predecessor for sq, the connection between sp and sq is called a “hard” connec­

tion, which means that this connection has to be satisfied in the assignment if sp or ,sq is 

mapped to some residue. If  one spin system sp has a set of immediate successors S'p, where 

|Sp| >  1 , each connection between sp and its immediate successors is called a “soft” con­

nection, which means that the connection does not have to be satisfied in the assignment. 

If  one spin system sq has a set of immediate predecessors S'q, where \S'q\ >  1, each con­

nection between sq and its immediate predecessors is also a “soft” connection. However, if 

sp is mapped to a residue in the assignment, one o f the “soft” connections between sp and 

its immediate successors has to be satisfied. Similarly, if  sq is mapped to a residue in the 

assignment, one o f the “soft” connections between sq and its immediate predecessors has
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to be satisfied.

Therefore, the connectivity information can be partitioned into three sets. The set 

C \ =  {(.Sfc, .s/)} contains only the “hard” connections, the set C2 =  {(sp, S'p)} and the 

set C 3  =  {(S'q. sg)} contain the “soft” connections. In set C2, element (sp, S'p) represents 

all the “soft” connections between sp and its immediate successors, and in set three, el­

ement (Sg, sq) represents all the “soft” connections between the immediate predecessors 

of sq and sq itself. Algorithm 2 shows the function which separates the connections. The 

constraint functions for these three sets of connectivities are shown as Formulae (3.9, 3.10, 

3.11), respectively.

Input: Set o f connections C  =  {<  Sk, si >}
Output: Sets o f cataloged connections C \,C 2, and C3

1 foreach Spin system s € S' do
2 if  there are multiple connections from s then
3 S's <— the successors set of s;
4 C2 ^ U n io n ( C 2, ( s , S 's));
5 end
6 if there are multiple connections to s then
7 S's <— the predecessors set of s;
8 C3 <— U nion(C z , (S's, s ));
9 end

10 end
11 Remove connections in C2 or C 3  from C;
12 Ci <- C;

Algorithm 2: Connections catalog algorithm

The integer program with the general connectivity constraints is shown as Formulae 

(3 .5 ,3 .6 ,3 .7 ,3 .9 ,3 .10 ,3 .11 ,3 .4).

Maximize 5 3  Wij x x, 7
l < i < r n , l < j < n

subject to ^ 2  Xij <  1,V1 <  i < m
1 < j < n

x i j  3  < n
1 < i < m

x kj =  xij+x  VI <  j  < n  -  1, if  (sk , s t) € Cy (3.9)

xPj < x q , i + 1 VI <  j  <  ri — 1, if  (sp, S'p) €  C2 (3.10)
s q£S'p

xq,j+ 1 <  XPJ V 1  -  3 -  n ~  ! ’ i f  ^ 9 ’ e  C3 (-3 - 1 ^

Xij € (0 ,1}

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

PSAtip
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Based on our integer program with the general connectivity constraints, Formulae (3.5,

3.6, 3.7, 3.9, 3.10, 3.11, 3.4), We have designed and developed a web application, namely, 

PSAtip (Protein NMR Sequential Resonance Assignment Through Integer Programming). 

PSAtip is designed for uses who want to rapidly get mappings of spin systems and residues 

for determining the protein three-dimensional structure.

4.1 System Architecture of PSAtip

Users
Web Server App. Server File Server 

Figure 4.1: PSAtip overview

Figure 4.1 gives an overview of the system architecture of PSAtip. Users submit their 

jobs of string assignment to PSAtip via a web browser to the front end of PSAtip, which is 

a web interface that runs on a web server. The uploaded instance data from users are stored 

on a file server and the assignment requests are added to the request queue awaiting solving. 

On the application server, a daemon, the request queue monitor, monitors the request queue 

and starts the back end o f PSAtip if  there is a request awaiting in the queue. After the jobs 

are solved, the results o f the string assignment are saved on the file server and displayed to 

users by the front end o f PSAtip.

PSAtip contains three modules, the front end (the web interface), the request queue 

monitor, and the back end (the string assignment module). Among these three modules, 

the web interface is programmed in PHP1 and runs on the web server; the request queue 

monitor and the string assignment module are programmed in Java and deployed on the 

application server.

4.1.1 R equest Q ueue M onitor

The request queue monitor continuously monitors a FCFS (First Come First Serve) queue of 

requests and the status of the string assignment module. The string assignment module has 

two status: “busy” if  it is solving an instance and “sleeping” otherwise. Only in “sleeping”

'a server-side HTML embedded scripting language, http://www.php.net/
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status, the string assignment module can accept and start solving a new instance. When 

there is a request awaiting in the queue, the monitor module checks the status o f the string 

assignment module first. I f  the assignment module is sleeping, the monitor module wakes 

it up to solve the request and remove this request from the queue; otherwise, it holds the 

request and wait till the assignment module is sleeping. The process of the request queue 

monitor is shown as Figure 4.2.

Yes Empty?

^^TNo

Check request queue

Get the first request

Check the status of 
string assignment module

Sleeping? 

Yes

Wake up 
string assignment module 

to solve the request

Remove the request 
from queue

Figure 4.2: The process of request queue monitor

4.1.2 String A ssignm ent M odule

The string assignment module solves the assignment requests and prints out the results. It 

contains four parts, the weight determination function, the connectivity analysis function, 

the math engine interface, and the math engine (see Figure 4.3).

Input data
Spin system s file 
P rotein sequence file

Connectivity information file

Weight determination Connectivity analysis

Math engineMath engine interface

Assignment result

Figure 4.3: Overview of string assignment module 

Weight determination function
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The weight determination function computes a weight matrix for a string assignment. 

Entries in the weight matrix are the confidences of mapping each spin system to every 

residue on the target protein sequence.

The weight determination function requires a scoring scheme to calculate the confi­

dence of each mapping based on the chemical shift values of the spin system and the residue 

type. There are many choices o f scoring schemes that we could choose from. In order to 

know the appropriate scoring schemes to be used in PSAtip, we have developed a tool, scor­

ing scheme evaluator, to compare the performance of seven scoring schemes on a standard 

dataset. Finally, two scoring schemes are chosen based on our experimental results (see 

Section 5.4).

Our experimental results also have shown that using the secondary structure information 

o f the target protein in the weight determination function can always improve the accuracy 

of final assignments. For this reason, the secondary structure information is also required by 

the weight determination function. The secondary structure o f the protein can be predicted 

by third party tools, such as PSIPRED2.

Connectivity analysis function

The connectivity analysis function separates the connections in the connectivity infor­

mation file into three connectivity constraint sets according to Algorithm 2. These three 

sets consist of the “hard” connections and the “soft” connections as defined in see Section 

3.2.3.

Math engine interface

The math engine interface converts the data in the weight matrix and connectivity con­

straint sets into the form that can be used by the math engine according to the integer 

program formulae (3.5, 3.6, 3.7, 3.9, 3.10, 3.11, 3.4). Also it extracts the result from the 

math engine for outputting the assignment.

Math engine

The math engine is used to solve the integer program instance. There are many math 

engines available on the market. Some of them are free, for instance GLPK (GNU Linear 

Programming Kit); some of them are commercial software. Here, we adopted a commercial 

math engine, CPlex3, which is well known for its high performance in solving constraint 

programming problems, such as linear program, integer program, and quadratic program. 

To solving an integer program, CPlex uses the branch and bound algorithm plus many other

2http://bioinf.cs.ucl.ac.uk/psipred/
3 A product o f ILOG inc.. http://www.ilog.com/products/cplex/
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techniques, such as cuts, heuristics, and a variety of branching and node selection strategies. 

A component library is provided to allow developers to directly integrate the power o f CPlex 

into their applications.

4.1.3 W eb interface

The web interface allows users to submit their assignment request and displays the assign­

ment results. Figure 4.4 shows the entry of PSAtip where users can upload their input files 

and specific parameters for the string assignment module.

'P rotein N frN M 'R  Sequentia l'"Resonance ^A ssignm ent

Welcome to  PSAtip, version  1 .1 , re leased  on April 27 , 2006.

Required Input

a. P td tiln  sequence file ■ :
b. Secondary structure file
c. Spin system s file

[+■ Add] [View/modify] 
[+  Add] [View/modify] 
[+  Add] [View/modify]

[delete] ab se n t 
[delete] : ab se n t 
[delete] a b se n t

Optional Input
a . Adjacency inform ation file [+  Add] [View/modify] [de le te ] ab se n t

Scoring Scheme Options
a. + Prediction M ethod © N a iv e  Bayesian* O  Normal D istribution

b. + Secondary  S tru c tu re  Probability ©  Probabilistic* O N on_probabilistic

Subm it | [S ta r t Over]

Figure 4.4: Entry to PSAtip

Users are required to provide at least three files for each instance (a protein sequence 

file, a secondary structure file, and a spin system file). Users could also provide an optional 

file with adjacency connectivity information to help get a better assignment. Besides the 

upload function which allows users to upload their input files, the web interface also offers 

a view/edit function to allow users to make sure that the uploaded files contains the correct 

information before assignment request are submitted, and a remove function to allow users 

to delete files that is no longer in use, e.g., the optional file with adjacency information.

After all required files are uploaded, the user can choose a scoring scheme (option 3.a in 

Figure 4.4) for calculating the confidence o f each mapping o f spin system and residue in the 

string assignment. If  there is probability information in the secondary structure information 

file, the user can also specify a particular method to handle the probability information
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(option 3.b in Figure 4.4).

For example, when the secondary structure information is predicted by PSIPRED, in 

some cases, PSIPRED can not provide the certain type of secondary structure for a residue 

and it gives the probability for each type o f secondary structure. We have two methods to 

handle the cases that the probability information occurs in the secondary structure informa­

tion file. We can either simply ignore the probability and only use the type of secondary 

structure with highest probability, which is the “Non_probabilistic” option in option 3.b, or 

use the probabilities when calculating the confidences o f mappings, the “Probabilistic” op­

tion. Without loss generality, assume the probability that the type of the secondary structure 

of a residue r  is a-helix, /9-sheet, or coil is pr (a), pr (fl), or pr (c), respectively. The score 

of mapping a spin system s to a residue r

S c o re (s ,r ) =  y ^ p r (t)Score(s, r , t ), (4.1)
t e T

where T  is the set of three secondary structure types and Score(s, r, t) is the score o f map­

ping spin system s to residue r  with secondary structure type t. I f  the “Non_probabilistic” 

option is chosen and for a residue r, the type of secondary structure with highest probability 

is t r , then pr (t) =  1  if  t  =  t r andpr (t) =  0  otherwise.

After uploading all input data, the user can click the “submit” button to generate an 

assignment request which will be added to the request queue. When the request is solved 

by the string assignment module, a display function will be called to generate an HTML 

(HyperText Markup Language) file which contains the assignment result as well as the 

input information. Displaying both the input information and the assignment result at the 

same time helps the user to gain insights from the assignment result conveniently, instead 

of looking back and forth between the result and input files. Figure 4.5 shows an instance 

of assignment result displayed in a web browser.

4.2 Mapping Confidence

Due to the reading error on chemical shift values, spectral data are corrupted by noise. 

Consequently, the performance of string assignment process will be affected and the result 

becomes sensitive to the noise. To overcome this issue and test the robustness of the assign­

ment, we add normal distributed independent noise4  to the original chemical shift values, 

run the string assignment process many times and each time a different set of noises are

4in practice, a reasonable choice o f noise is normal distributed noise.
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Vup^ul. PS*tt*
"Protein MJM'R Sequen tia l''R esonance  2A ssignm ent

Assignment resu lt

Strings of spin sy s te m s  in a lte rn a te  colors.

[B ack]

Amino Acid K Q T L P E R T i f f H E D E | Ir P P S G lAVG 0  L Y C F P Q F  40

Spin S ystem  «  4 4

Amino Add A DE E S LRQWL A QR Q I A A D ML T  QL T  Am S M j 80

S p in S y s te m  « ♦ «  M M I  M * « M  • -

Amino Acid W M  VS  S F T G C M D E  G N a | M I  N Q P P S V G L A A H ^ E H  L  I  QQ L 120

S p in S y s te m  M  •  «  < H H »  •  •  •  •  i H  4 # 4  4 4  •  •  •  M M «  •

Amino Acid R  T G A P  160

Spin S ystem  4-# 4 4

Amino acid color legend:

Color
Secondary  S tru c tu re  Alpha Helix Beta S h e e t R andom  Coil 

Confidence color legend:

I I  I I I  I I i  I 1 I
Confidence < 5 %  5 -15%  1 5-25%  2 5 -3 5 %  3 5 -4 5 %  4 5 -5 5 %  5 5-65%  6 5-75%  7 5-85%  8 5 -9 5 %  > 95%

Figure 4.5: Assignment result. The protein sequence is colored according to its secondary 
structure. The co lor of lin es b etw een  am ino acid  and spin system  shows the confidence 
level of these mappings. Adjacency information is displayed as connected dots with same 
color. The chemical shift values for each spin system shows in a pop-up box when the 
mouse cursor is moved on one spin system.
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added to the chemical shift values. After all assignments are done, the confidence o f each 

mapping can be calculated (Equation 4.2).

C o n f id e n c e ^ ,  r ,)  =  (4.2)

For example, spin system Sj is mapped to residue t j  in the initial assignment where there is 

no additional noises added, and we repeat the assignment 99 times with additional noises. 

In all 100 assignments, if  spin system s* is mapped to the same residue rj 95 times, we say 

that this mapping has a confidence level 95%.

The information o f confidence level could be very important to biologist because it tells 

them which mappings are more believable than others.
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Chapter 5 

Experiments
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We developed a tool called scoring scheme evaluator which uses the same integer pro­

gram in PSAtip to investigate the effectiveness of our IP approach, to compare the different 

scoring schemes for string assignment, and to study the impact of protein secondary struc­

ture information on scoring schemes. In our experiments, we used a standard dataset that is 

built from BMRB1 (Biological Magnetic Resonance Bank) and PDB2  (Protein Data Bank).

5.1 Standard Dataset

The dataset used for comparing scoring schemes is gathered from BMRB and PDB. In 

the dataset, each instance contains three kinds of information—the protein sequence, the 

corresponding secondary structure, and the spin systems information including chemical 

shift values and correct mapping positions. Each instance was chosen by applying the 

following criteria:

• the same protein ID is shared in both BMRB and PDB;

• the sequence similarity of protein sequences obtained from BMRB and PDB is greater 

than 90 %.

• the sequence length o f the protein is larger than 50;

• the spin systems information contains at least H , N , Ca , Cg chemical shifts;

• the spin systems information contains no more than 50% missing chemical shifts;

In the end, 478 instances that satisfy the criteria are remained and among all instances, 

the longest protein sequence contains 731 residues. For all 478 instances, a pair-wise align­

ment on the protein sequences is applied. If  the sequence similarity of two proteins is 

greater than 50%, one of the corresponding instance is put into the standard dataset. At 

the end, the standard dataset contains 161 instances and the longest protein sequence in the 

standard dataset contains 370 residues.

5.2 Scoring Scheme Evaluator

Scoring scheme evaluator is developed to compare the performance o f different scoring 

schemes for string assignment because the scoring scheme plays an important role in the

’http://www.bmrb.wisc.edu/
2http://www.rcsb.org/pdb/
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task o f protein NMR sequential resonance assignment. It is very useful if  we can evalu­

ate the performance of a scoring scheme because a good scoring scheme could increase 

the accuracy o f string assignment, which indirectly increases the quality o f protein three- 

dimensional structure through NMR spectroscopy.

Scoring schemes Standard dataset
Correct m appings 
 ► ^  Result compare ^

Chem ical shifts 
Protein sequence!

Weight determination

Adjacency information Assignments

Core program

Figure 5.1: Overview of scoring scheme evaluator

Figure 5.1 shows an overview of scoring scheme evaluator. The standard dataset is used 

to provide required information for other functions in this tool. With a specified scoring 

scheme, assignments are done for all instances and the results is compared to the correct 

mappings to produce the overall performance for this scoring scheme. Several scoring 

schemes have been integrated into this tool and they can be used directly in it. If  the user 

has a new scoring scheme to test, an API (Application Programming Interface) is provided 

so that the user can send the weight matrix directly to the core program. After the assign­

ments are done, the result comparison function compares the assignments with the correct 

mappings in the dataset to produce the performance o f the specified scoring scheme. The 

performance is evaluated by average precision and average recall on the standard dataset. 

For each assignment, precision indicates the percentage o f correctly assigned amino acids 

over total assigned amino acids (Equation 5.1), and recall indicates the percentage o f cor­

rectly assigned amino acids over amino acids with known answers (Equation 5.2):

„  number o f correctly assigned amino acids
P rec ision  =  ------------ --------— (----- f — .-------    x 100%, (5.1)

number o f assigned amino acids
„  ,, number o f correctly assigned amino acids ___...
Recall =  ------------     :---------------------------------x 100%. (5.2)

number o f amino acids with known answers

5.3 Effectiveness o f IP A pproach

We tested the string assignment over 478 instances and the experimental results have shown 

that the average running time for solving one instance is less than 1 second (including sys­

tem I/O) on a hardware platform with a P4 3.2G CPU and 1GB memory. Among all in­

stances, the most complex instance is a protein sequence that contains 731 residues and 90%
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spin systems are connected with each other. In this case, the total number of variables and 

the number o f constraints for the integer program are around 500,000 each. Even for the 

most complex instance, the running time is less than 5 seconds. This is a big improvement 

comparing to other approaches, such as MARS, RIBRA, and previous works o f our group. 

To finish one string assignment problem, other approaches could take minutes, hours, days, 

even weeks. For example, on a relatively smaller dataset which contains 70 instances and 

in which the longest protein sequence contains only 215 residues, the branch-and-bound 

algorithm can only solve half instances with two-day time limit per instance and the IDA* 

algorithm leaves 5 instance unsolved with the same time limit per instance. When the time 

limit is extended to 7 days, the branch-and-bound algorithm still fails to solve some in­

stances. On the other hand, our program solves all 478 instances in the whole dataset with 

average running time less than 1  second for one instance.

5.4 Scoring Scheme Comparison

To see how different scoring schemes affect the performance of string assignment, seven 

scoring schemes, TATAPro II, PACES, AutoAssign, MARS,CASA, Normal, and HBSS 

(Histogram-Based Scoring Scheme (Wan, 2006)), are compared on the standard dataset 

described on the above with defferent percentage o f spin systems connectivity. Adjacency 

information set is randomly generated based on a given connectivity percentage ranged 

from 10% to 90% with interval of 10%. The secondary structure information is excluded in 

this comparison because not all scoring schemes use the secondary structure information.

TATAPro II

TATAPro II, a residue typing scheme to evaluate a possible mapping between a spin 

system and a residue, is used by many applications, for example RIBRA. If a spin system is 

likely to be mapped to a residue, “ 1 ” is assigned to this spin system/residue pair; otherwise, 

“0” is assigned. This value is calculated based on Table 5.1 (Atreya et al., 2002).

PACES

PACES (Coggins & Zhou, 2003) also uses a typing scoring scheme which is similar to 

TATAPro II but w ith  different ch em ical sh ift ranges (Table 5.2).

AutoAssign

AutoAssign evaluates the spin system/residue mapping with a probability score which 

is calculated as follows (Zimmerman et al., 1997). Given chemical shift C a and C'j  o f a
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Carbon chemical shift Amino acid

Absence of C 'j Gly
14 <  C 0 < 24 Ala
56 < C 0 < 67 Ser
24 <  C 0 < 36 and C a < 64 Lys, Arg, Gin, Glu, His, Trp, Cysred, Val and Met
24 < C $  < 36 and C a > 64 Val
36 <  C 13 < 52 and C a < 64 Asp, Asn, Phe, Tyr, Cysoxd, lie and Leu
36 <  C? < 52 and C a > 64 He
--- Pro
C0 > 67 Thr

Table 5.1: TATAPRO II residue typing scheme

spin system, the probability that the spin system is mapped to an amino acid type R,

P(RlC‘ , c e ) = P( C ° , C m  X ^ M c ^ l R ) P m r  < » >

where p(C °\ C 0 \ R ) is the probability of observing chemical shift vales C a and C'3 for R, 

and P (R )  is the frequency of occurrence o f R  in the protein sequence.

MARS

In MARS, a Z-score is used to guide the string assignment process. The Z-score for 

mapping spin system Si to residue r3 is defined as

(, 4)

where 5 ( i ) ^ p is the measured chemical shift value o f type k  o f spin system ■sl, S(j)k  is the 

predicted chemical shift value of type k  of residue r3, Ncs is the number of chemical shift 

types and 0 7 - is the standard deviation of the statistical chemical shift distribution used for 

calculating 5{j)u  (Jung & Zweckstetter, 2004). And S(i)ekxp — 6(j)k  is set to zero when 

chemical shift of type k  is missing.

CASA

CASA (Wang et al., 2005) uses the binary typing score to evaluate the mapping between 

chemical shift and residue. This typing score is calculated as

*'•‘>-0 ; ■ < 5 -5 > 

where pt and a t are the mean and standard deviation o f this type o f chemical shift for 

residue r  in BMRB, and R p — 5 for H atom and R p =  4 for other atoms.

Normal
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Amino Acid ca Carbonyl
Min Max 2H Adj. Min Max Adj. Min Max

A Ala 48 57 -0.68 14 24 -1.00 171 183
C Cys 49 66 -0.55 23 51 -0.71 166 180
D Asp 49 59 -0.55 36 45 -0.71 170 180
E Glu 50 62 -0.69 25 36 -0.97 170 181
F Phe 50 65 -0.55 34 45 -0.71 170 180
G Gly 41 49 -0.39 41 49 -0.39 167 180
H His 49 62 -0.55 23 37 -0.71 169 180
I lie 53 67 -0.77 33 44 -1.28 169 181
K Lys 50 62 -0.69 26 39 -1.11 170 182
L Leu 49 61 -0.62 37 48 -1.26 170 181
M Met 48 62 -0.69 25 41 -0.97 169 182
N Asn 47 59 -0.55 34 44 -0.71 170 180
P Pro 59 67 -0.69 26 36 -1.11 171 181
Q Gin 50 61 -0.69 22 36 -0.97 170 180
R Arg 49 63 -0.69 25 36 -1.11 170 181
S Ser 51 64 -0.55 59 69 -0.71 169 180
T Thr 55 69 -0.63 65 74 -0.81 169 179
V Val 55 69 -0.84 28 37 -1.20 169 180
W Trp 51 64 -0.55 24 37 -0.71 170 181
Y Tyr 51 64 -0.66 33 45 -0.71 169 180

Table 5.2: Chemical shift ranges in PACES

GARANT (Bartels et al., 1997) uses the “mutual information” as a measure of map­

ping the observed chemical shift lo*d to the expected chemical shift w(a/vr) in a resonance 

assignment R. And the “mutual information”

=  log P^ ~ T T ^  (5-6)
P\UD>

where p{oj*d \o.m) =  /J‘a(aM)(u}b  ~  u {aM)) is a uniform a priori probability of the ob­

served chemical shift u*D and a normal distribution with mean cjj(q.m) and standard devia­

tion ct{<i m ) ,  p (^ d )  — where A  u is the width o f the range o f possible chemical shifts, 

and p a{x) = - jL r -e -W * !* ?  is the probability density of the normal distribution with 

zero mean and standard deviation a.

HBSS

HBSS uses a Naive Bayes method to determine the score o f mapping spin system to an 

amino acid with the secondary structure, which is

score — -  E log (p (cs|aa ,ss)), (5.7)
c s e { H i ,N i ,C ? ,C ? }
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where cs is chemical shift value, aa is the amino acid type, ss  is the corresponding sec­

ondary structure, and p(cs\aa. ss) =  -.

Figure 5.2 summarized the assignment precision and recall on each scoring scheme. 

For both chart (a) and (b) in Figure 5.2, the x-axis indicates the connectivity percentages 

and the y-axis indicates the average accuracy (precision or recall). And the accuracy of 

applying different scoring schemes for string assignment is marked by different colors.

When there is no adjacency information, the accuracy o f assignment totally relies on 

the scoring scheme. We can see that HBSS and Normal-Density scoring schemes are much 

better than the others. With the increasing o f adjacencies, the performance margin between 

different scoring schemes gets smaller. The reason for the catching up performance of other 

scoring schemes is that a string o f spin systems is considered as whole during mapping 

process and the possible mapping positions are evaluated by all spin systems on the string. 

It is more accurate than only considering individual spin system. However, even with 90% 

o f adjacent spin systems, in which case the adjacency information highly affects the feasible 

assignment solution space, HBSS and Normal still perform better than others.

For HBSS and Normal-Density scoring schemes, their performances are very close 

to each other for the string assignment process. They both can perform very well and 

the Bayesian based HBSS outperforms Normal-Density scoring scheme when adjacency 

information is available. Therefore, our application, PSAtip, allows users to choose one of 

them for their assignment request.

5.5 Impact of Secondary Structure Information on NMR Reso­
nance Assignment

To study the impact o f the secondary structure information o f a protein for improving the 

performance of string assignment, We conducted the second group of experiments.

Two scoring schemes, HBSS and Normal, can make use of the secondary structure in­

formation. Figure 5.3 and Figure 5.4 summarized the difference of precision and recall on 

scoring scheme HBSS and Normal with or without using the secondary structure informa­

tion, respectively. W e can see  that there is an average 5.59%  perform ance gain w hen  u sing  

the corresponding secondary structure in the string assignment. When connectivities are 

few, in which case the assignment is mainly determined by the chemical shifts, we can get 

above 10% improvement.

The secondary structure o f a protein contains important information about how the pro­

tein folds in the three-dimensional space. The type of the secondary structure of a residue
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Scoring scheme comparison
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Figure 5.2: Scoring schemes comparison, (a) average precisions of seven scoring schemes 
upon ten different connectivity percentage settings; (b) average recall o f seven scoring 
schemes upon ten different connectivity percentage settings.
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has an influence to the observed chemical shifts from NMR spectroscopy. If  we can use the 

secondary structure information to adjust the observed chemical shifts to neutralize this in­

fluence, we can get a better assignment. Therefore, PSAtip always requires users to provide 

the secondary structure information for the string assignment. Fortunately, third party tools 

such as PSIPRED can provide the prediction o f the secondary structure for a protein if  the 

secondary structure information is not available yet.
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Histogram Scoring Scheme
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Figure 5.3: Comparison o f two different scoring schemes with or without secondary struc­
ture information, (a) average precision for Histogram Based Scoring Scheme with or 
without secondary structure information, (b) average recall for Histogram Based Scoring 
Scheme with or without secondary structure information.
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Normal Scoring Scheme
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Figure 5.4: Comparison o f two different scoring schemes with or without secondary struc­
ture information, (a) average precision for Normal Scoring Scheme with or without sec­
ondary structure information, (b) average recall for Normal Scoring Scheme with or without 
secondary structure information.
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Chapter 6

Conclusions and Future Work
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6.1 Conclusions

String assignment is one o f the key steps in the protein NMR sequential resonance assign­

ment. Improving the performance of string assignment not only can provide high quality 

assignment results for the next step o f protein three dimensional structure determination 

task, but also can be used to evaluate the methods for peak grouping and connectivity de­

termination tasks. Many methods failed when protein sequences were long, the chemical 

shift data quality was low, or connectivity was complicated. In this thesis, we developed a 

new approach using integer programming for string assignment. Our idea could reduce the 

time of solving a string assignment from minutes/days to seconds. Even for a protein with 

731 amino acids in which case the total number o f variables and the number o f constraints 

for the integer programming are around 500,000 respectively, the string assignment can 

be solved within a few seconds. Some methods can only handle binary weights for map­

pings from spin systems to residues, i.e., either there is a mapping between a spin system 

and a residue or there is no such mapping existing. However, when the chemical shift data 

quality is low, it is hard to determine if  a spin system can be mapped to an amino acid or 

not. In this case, using a real number to indicate the likelihood of such mapping existing is 

more suitable. Integer programming approach can easily handle this situation and flexibly 

adopt scoring schemes with binary value or real numbers. W hat’s more, the amount of con­

nections between spin systems does not affect the speed very much. Therefore, the integer 

programming approach for string assignment is suitable for scenarios where a high through­

put application is required, such as web services, scoring scheme testing, and protein three 

dimensional structure determination on a high volume of data.

Not only our program runs in a fully automated fashion, it also has a great advantage in 

interactive scenarios because o f its high speed. It usually takes other approaches a long time 

to solve one NMR resonance assignment and makes them very difficult to interact with hu­

man. Biologists have to wait hours, even days to get the result for one single assignment. It 

may take weeks for biologists to get the final assignment if they want to change some input 

values and repeat the assignment process after they verified the previous assignment man­

ually. With the effectiveness of IP program, the required time can be greatly shorten. This 

not only saves the time, but also gives biologist more flexibility to try different adjustments 

during an assignment.
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6.2 Future Work

The integer programming approach can handle general connectivities; however, it still has 

its limitations. Currently, a step of verifying acyclic connections is required. Fortunately, 

cyclic connections occur rarely in practice, but when it happens, breaking a circle at a 

wrong place may decease the assignment accuracy. A good strategy for handling cyclic 

connections is desired.

Although the string assignment requires the output from the other two processes, peak­

ing grouping and connectivity determination, the assignment result can be used to refine 

the output of the other two processes (Wan, 2006). With the high performance integer pro­

gramming approach, it is possible to make these three processes run iteratively to further 

improve the accuracy o f final assignment. An analysis of the assignment result and input 

data could be made to provide the guiding information for the tasks o f peaking grouping 

and connectivity determination.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

Atreya, H. S., Chary, K. V. R., & Govil, G. (2002). Automated nmr assignments of proteins 
for high throughput structure determination: Tatapro ii. Current Science, 83, 1372-1376.

Bartels, C., Giintert, R, Billeter, M., & Wuthrich, K. (1997). Garant-a general algorithm for 
resonance assignment of multidimensional nuclear magnetic resonance spectra. Journal 
o f  Computational Chemistry, 18, 139-149.

Chen, Z.-Z., Lin, G., Rizzi, R., Wen, J., Xu, D., Xu, Y., & Jiang, T. (Mar 2005). More 
reliable protein nmr peak assignment via improved 2-interval scheduling. Journal o f  
Computational Biology, 12, 129-146.

Clote, P., & Backofen, R. (2000). Computational molecular biology - an introduction. John 
Wiley & Sons Ltd.

Coggins, B. E., & Zhou, P. (2003). Paces: Protein sequential assignment by computer- 
assisted exhaustive search. Journal o f  Biomolecular NMR, 26, 93-111.

Fox, M. S. (1986). Observations on the role of constraints in problem-solving. The Sixth 
Canadian Proceedings in Artificial Intelligence.

Giintert, P., Salzmann, M., Braun, D., & Wuthrich, K. (2000). Sequence-specific nmr 
assignment of proteins by global fragment mapping with the program mapper. Journal 
o f  Biomolecular NMR, 18, 129-137.

Hsu, W., Chang, J., Chou, W., Chen, J., Wu, K., Sung, T., Chang, C., Wu, W , & Huan, 
T. (2004). An iterative relaxation technique for the nmr backbone assignment problem. 
Bioinformatics and Bioengineering, 2004. BIBE 2004. Proceedings. Fourth IEEE Sym­
posium on (pp. 89-90).

Jung, Y.-S., & Zweckstetter, M. (2004). Mars - robust automatic backbone assignment of 
proteins. Journal o f  Biomolecular NMR, 30, 11-23.

Kumar, V. (1992). Constraint satisfaction methods in artificial intelligence. Artificial intel­
ligence Magazine, Spring, 32-44.

Mackworth, A. K. (1977). Consistency in networks o f relations. Artifici. Intell., 8, 99-118.

Nadel, B. A. (1986). The general consistent labeling (or constraint satisfaction) problem, 
technical report, dcs-tr-170 (Technical Report). Computer Science Department, Rutgers 
University.

Thornton, J. M., Todd, A. E., Milbum, D., Borkakoti, N., & Orengo, C. A. (2000). From 
structure to function: Approaches and limitations. Nature Structural Biology, 7, 991-994.

Wan, X. (2006). Automated sequential resonance assignment in nmr protein structure de­
termination. Doctoral dissertation, University of Alberta.

Wang, J., Wang, T., Zuiderweg, E., & Crippen, G. (2005). Casa: An efficient automated 
assignment o f protein mainchain nmr data using an ordered tree search algorithm. Journal 
o f  Biomolecular NMR, 33, 261-279.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Williamson, M. P., Havel, T. F., & Wuthrich, K. (1985). Solution conformation o f pro­
teinase inhibitor iia from bull seminal plasma by lh  nuclear magnetic resonance and 
distance geometry. Journal o f  Molecular Biology, Volume 182, Issue 2, Pages s295—315.

Wu, K.-P., Chang, J.-M., Chen, J.-B., Chang, C.-F., Wu, W.-J., Huang, T.-H., Sung, T.-Y., & 
Hsu, W.-L. (2006). Ribra - an error-tolerant algorithm for the nmr backbone assignment 
problem. Journal o f  Computational Biology, 13, 229-244.

Xu, Y., Xu, D., Kai, D., Olman, V., Razumovskaya, J., & Jiang, T. (2002). Automated as­
signment of backbone nmr peaks using constrained bipartite matching. IEEE Computing 
in Science and Engineering, 4, 50-62.

Zimmerman, D. E., Kulikowski, C. A., Huang, Y., Feng, W., Tashiro, M., Shimotakahara, 
S., Chien, C.-y., Powers, R., & Montelione, G. T. (1997). Automated analysis of pro­
tein nmr assignments using methods from artificial intelligence. Journal o f  Molecular 
Biology, 269, 592-610.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


