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Abstract

Process measurements collected from daily industrial plant operations are essential for pro-

cess control and optimization. However, due to various reasons, the process data are always

corrupted by errors, so that process model constraints representing the mass balance and

energy balance are not satisfied with measured data. If the data with errors are used in

process control or optimization, the results may not be appropriate for the system, and can-

not achieve the desired target, or even worse, it may be hazardous to the system and even

cause damage and break-down. Random errors and gross errors are two major sources of

errors, and techniques are needed to detect and eliminate the errors from the measurements

to obtain clean data for further use.

Even after the processing of the data, there remain some uncertainties in the data. After

passing the data to optimization problems, due to the existence of uncertainty in the data, the

deterministic optimization formulation can no longer be utilized in order to avoid suboptimal

or infeasible solutions. Optimization with uncertainty becomes an important topic in both

research and applications.

In this thesis, a technique is first developed to detect the gross errors and reconcile the

data simultaneously to remove the errors from the data. A hierarchical Bayesian algorithm

is used to formulate a unified framework to detect the gross errors, estimate the magnitude

of the gross errors, determine the covariance matrix of the random errors, and reconcile the

data.

Among various approaches for optimization with uncertainty, chance constraint problem
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is a natural way to quantify the reliability of the solutions by setting a restriction on the level

of the probability that the constraints are satisfied. In the case that multiple constraints

should be satisfied simultaneously, joint chance constraint is appropriate to model the un-

certainties. However, joint chance constraint problem is generally intractable and a variety

of methods are available to approximate it into tractable forms. Robust optimization with

the distribution-free property is an approach with computational advantage. In this thesis, a

novel framework is proposed to approximate the joint chance constraints using robust opti-

mization and improve the approximation results using a two-layer algorithm to optimize two

types of important variables. There are always correlations between different measurements

or data. It is necessary to consider the correlations in the data uncertainty. In this thesis,

the robust optimization formulation based on the uncertainty set incorporating correlations

of uncertainties is studied. Furthermore, nonlinearity is commonly seen in practical process

models. This thesis develops a novel robust optimization framework to consider the uncer-

tain nonlinear optimization problems. The thesis provides practical applications as well. An

economic optimization problem is investigated for steam generation and water distribution

for SAGD (steam-assisted-gravity-drainage) process. The uncertainty in oil production ca-

pacity is considered and the proposed robust optimization algorithms are utilized to solve

the optimization problems that contain uncertainty.
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Chapter 1

Introduction

1.1 Motivation

In the process industry, a typical plant usually consists of a large number of process units such

as reaction vessels, distillation columns, storage tanks, etc. These units are interconnected

by a complicated network of streams. There are hundreds and even thousands of variables,

such as flow rates, temperatures, pressures, levels, and compositions. Process variables are

routinely measured and automatically recorded for the purpose of process control, optimiza-

tion, and process monitoring. The large amount of information can be exploited from the

process data, and applied in various practical fields. Figure 1.1 shows a summary of the

industrial applications associated with data.

Figure 1.1: Summary of the industrial applications associated with data
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However, process measurements are inevitably contaminated by errors. There are two

types of errors that contribute to the total error in a measurement: random errors can be

referred to as noise and they exist in any measurements; gross errors are nonrandom errors

caused by malfunctioning, miscalibration, fault of sensors, etc. To obtain reliable process

data, it is necessary to remove the errors from the measurements. Usually, random errors

and gross errors are addressed separately by data reconciliation and gross error detection.

Data reconciliation is used to enhance the accuracy of measurements by reducing the

influence of random errors. Its objective is to estimate the true value of the measurements

that satisfy the process models. In general, data reconciliation is based on the assumption

that there are only random errors in the measurements. The data reconciliation problem

can be formulated as an optimization problem [1]. Mah[2] provided an overview of the basis

of data reconciliation.

The existence of gross errors will invalidate the statistical basis of data reconciliation.

Hence, gross errors must be detected and removed/compensated before data reconciliation.

In practice, we are not only interested in detecting the presence of gross errors but also want

to identify the locations of gross errors as well as to estimate the sizes of them. Generally,

the gross error detection and data reconciliation technique are taken in separate steps, and

few methods can deal with the two problems simultaneously, which motivates the work in

this thesis to implement gross error detection and data reconciliation simultaneously in a

unified framework. When component balance or energy balance is included in the process

model, nonlinear data reconciliation problem needs to be addressed. In this thesis, both

linear and nonlinear formulations are considered in the simultaneous gross error detection

and data reconciliation framework.

From Figure 1.1, it can be observed that in chemical process, optimization also plays an

important role. The optimization technique is widely used to achieve business objectives,

for example, it can be utilized to determine how to design or operate the process to obtain

more products with lower cost. In the optimization framework, the process is modeled using
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equality constraints to represent the process model and inequality constraints for opera-

tion conditions and other requirements. There are a lot of parameters in the optimization

model and in many optimization applications, it is assumed that the data are known and

certain. However, due to the random nature of process data, measurement noise or other

reasons, uncertainties are commonly observed in parameters. There are plenty of sources

of the uncertainties; for instance, for a chemical process, the amount of the raw materials

as well as the price may contain uncertainty depending on the availability of the suppliers.

Similarly, uncertainties may arise in the demand and the price of the products according

to the market. Also, uncertainties exist in the process itself. For instance, in a blending

process, the concentration of the inputs may have uncertainty due to the measurement noise

or the operation of the process which is not completely removed from the data rectification

step. Furthermore, as shown in Figure 1.1, the models used in optimization may be obtained

by learning from the process data. The estimated parameters in the model always contain

uncertainty. If we ignore the uncertainties while solving the optimization problem, it may

lead to solutions which are suboptimal or even infeasible for practical applications. Thus, it

is of great importance to deal with the uncertainty in parameters.

Many process design problems can be formulated as nonlinear optimization problems

involving system parameters. It is common to see uncertain parameters in those models due

to the errors or noise in the data used for estimation of the parameters.

In this thesis, the main focuses are on both the data rectification and the optimization

with uncertainty. In the first part, a unified framework is utilized for simultaneous gross

error detection and data reconciliation. In the second part, the optimization problem with

uncertainty for both linear and nonlinear systems are studied. The correlations in uncer-

tainties are also considered in the formulation to incorporate more information from the

available process data.

Another important target of this thesis is to consider economic optimization of water

flow network in steam-assisted-gravity-drainage (SAGD) process. The proposed algorithms
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are also demonstrated on the steam-assisted-gravity-drainage (SAGD) process in oil sands

industry. SAGD is an important technique to extract the oil buried deep underground.

Steam is used in SAGD to heat the bitumen and then the oil can be extracted out in a

mixture with water from the production well. The strategy of steam generation and water

distribution should be optimally determined to avoid waste and high production cost.

1.2 Literature Review

1.2.1 Data Rectification

In this thesis, gross error detection and data reconciliation are implemented simultaneously.

However, in the literature, most of the methods treated the two problems separately.

Several statistical tests have been utilized for gross error detection by linear model under

steady state, such as global test [3], measurement test [4, 5], nodal test [3, 6], generalized

likelihood ratios [7], Bonferroni tests [8], and principle component tests [9], etc.

In practice, identifying the locations of gross errors as well as estimating the sizes of them

is also an important task. These targets can be fulfilled by different strategies combined with

statistical tests. Serial elimination strategy [10, 11, 12] detects each measurement one by

one, recomputes the statistical tests and then finally eliminates the gross error candidates.

Serial compensation strategy [7] can be used to estimate the sizes of gross errors. In this

strategy, gross errors are estimated and the measurements are compensated in turn. It is

applicable to all kinds of gross errors but its results rely on the accuracy of estimated size

of gross errors [8]. Collective compensation strategy [8, 13, 14] has also been proposed to

estimate all gross errors simultaneously. This method is more accurate than others [14, 15].

However, it is computationally expensive.

Some researchers have proposed methods to combine the gross error detection and data

reconciliation and address them simultaneously [16, 17]. The objective is to remove the

random errors as well as the gross errors and to obtain clean data.
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When nonlinearity exists in the gross error detection and data reconciliation framework,

the usual procedure is to first perform a linearization of the process model. Sequential

quadratic programming technique solves a nonlinear optimization problem by successively

solving a series of quadratic programming problems [18, 19, 20]. Tjoa and Biegler used a new

distribution function considering both contributions from random errors and gross errors and

proposed a hybrid sequential quadratic programming method to solve the nonlinear gross

error detection and data reconciliation problem simultaneously [16].

1.2.2 Optimization with Uncertainty

In this thesis, optimization with uncertainty is also considered and a critical issue in the

problem is how to quantify or model the uncertainty in the optimization problems. Various

approaches have been proposed in the past to address uncertainty in optimization problems,

such as robust optimization, stochastic programming with recourse, and chance constraints.

A natural way to quantify the solution reliability under parameter uncertainty is to place

a restriction on the probability of constraint satisfaction. Such a constraint is known as

chance/probabilistic constraint [21]. According to the number of constraints on which we

enforce for constraint satisfaction, the chance constraint can be classified as individual chance

constraint (ICC) and joint chance constraint (JCC). General challenges of chance constrained

problem include the difficulty in checking the feasibility of the probabilistic constraint and

the non-convexity of the feasible region determined by the distributions. There are merely a

few cases that a deterministic equivalent model can be obtained. Specially, for multivariate

normal distribution, individual chance constrained problem can be formulated as a second-

order cone optimization problem, which is computationally tractable [22]. Furthermore, if the

random parameters follow uniform distributions over a convex symmetric set, the individual

chance-constrained problem is convex and tractable as shown by Lagoa [23]. In addition,

Calafiore and El Ghaoui [24] presented that the individual chance constrained problem can

be converted to a second-order cone optimization problem under the condition that the
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random parameters follow radial distributions. However, chance constrained problems are

computationally intractable under general distributions [25][26].

It is even more complicated to handle the joint chance constrained optimization problem

because it enforces that several constraints are satisfied simultaneously under parameter

uncertainty and it models the uncertainty correlation in different constraints. Prekopa [27]

showed that a joint chance constrained problem is convex only when the distributions are log-

concave. Due to the intractability of joint chance constrained problem, it is generally solved

through approximations. There are mainly two ways to approximate the chance constrained

problem: sampling based approach and analytical approximation approach.

Sampling approximations are based on the assumption that it is possible to draw ob-

servations from the given distribution of the uncertain parameters. These observations are

then used to approximate the probability of constraint satisfaction or violation. Important

contributions in the area of sampling based approximation methods have been made by

Calafiore and Campi [24], Leudtke [28], Nemirovski and Shapiro [29] and Pagnoncelli et al.

[30]. Sampling based approximation methods include scenario approximation and sample

average approximation. The main idea of scenario approximation is to generate a set of

samples of the random parameters and approximate the chance constraint with a set of

constraints corresponding to each sample. However, the approximation itself is random and

it may be infeasible or the solution may not satisfy the chance constraint. Sample average

approximation generalizes the scenario approximation and only requires that constraints are

satisfied under part of the samples. Such kind of approximation method can be found in

Luedtke [31], Ahmed et al. [32], and Pagnoncelli et al. [30]. However, sampling based

approximation methods requires the size of the samples to be large enough to ensure the

quality of the approximation. It may take more computational efforts to solve the resulting

problems with a large sample size and the effectiveness of the sampling based approximation

is limited.

Other than the sampling based approximation, analytical approximation methods try to
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approximate the chance constrained problem with a deterministic optimization formulation.

There are various ways to achieve the approximation. For example, probabilistic inequalities

(e.g., Chebyshev [33], Bernstein [34] and Hoeffding [35]) were applied to provide deterministic

approximation to the individual chance constraint. In addition, Nemirovski and Shapiro [29]

and Hong et al. [36] studied convex approximations of chance constraint. Among all the

analytical approximation methods, robust optimization has received an increasing attention

recently. The advantage of the robust optimization approximation is that it is a distribution-

free approach and the data uncertainties are described using uncertainty sets.

Besides the chance constraints, robust optimization is also a method to deal with op-

timization problem with uncertainty. Robust optimization addresses the parameter uncer-

tainty based on an uncertainty set which covers part or the whole region of the uncertainty

space. The target of robust optimization is to select the best solution that remains feasi-

ble for any realizations of the uncertain parameters in the uncertainty set. Compared to

other methods for addressing uncertainty in optimization problems, one of the significant

advantages of robust optimization is the computational tractability. The robust counterpart

generally does not increase much in model size compared to the deterministic model, and

the convexity of the constraint can also be preserved.

The uncertainty set induced robust optimization framework has been investigated by

many studies in past decades and it has been applied to various decision making problems.

One of the earliest work by Soyster [37] studying robust optimization considered simple per-

turbations in the data and reformulated the original linear programming problem so that

the solution would be feasible under all possible perturbations. However, the approach is

very conservative since it ensures feasibility for all potential realizations of the uncertainty.

Robust optimization received more attention since the 1990s. El-Ghaoui and Lebret [38]

studied least-squares problems with uncertainty. El-Ghaoui et al. [39] investigated un-

certain semidefinite problems with robust optimization framework. A number of valuable

formulations and applications in linear programming and general convex programming have
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been proposed by [40], [41], [42] and [43]. Ben-Tal and Nemirovski [40][41] pointed out that

robust formulation becomes a conic quadratic problem for a linear constraint with ellipsoidal

uncertainty set. Ben-Tal et al. [44] proposed an approach for linear programming problems

where some of the decision variables must be determined before the realization of uncertain

data, while the other decision variables can be set after realization. Bertsimas and Sim [45]

derived a robust formulation for uncertain linear programming problems using budget pa-

rameter which can control the degree of conservatism of the solution. Bertsimas et al. [46]

studied the robust counterpart of linear programming problems based on the uncertainty set

defined by a general norm. By generalizing the symmetric uncertainty sets, Chen et al. [47]

investigated asymmetrical set induced robust optimization.

Li et al. [48] conducted an extensive study on different types of uncertainty set and stud-

ied the robust counterpart optimization techniques for linear optimization and mixed integer

linear optimization problems. Chen et al. [49] [50] developed different tractable approxima-

tions to individual chance constrained problems via robust optimization and extended the

idea to joint chance constrained problems.

Besides the above contributions made by the operations research community, robust op-

timization also received attention by the process systems engineering researchers. Li and

Ierapetritou [51] studied the application of various robust optimization formulations to pro-

cess scheduling problem under uncertainty. Lin et al. [52] and Janak et al. [53] studied

robust optimization for mixed integer linear optimization problems with uncertainty under

both bounded and several known probability distributions. Verderame and Floudas [54]

applied the robust optimization framework to operational planning problems.

The issue of robust solution quality also received attention in several recent works. To

improve the solution quality of a robust optimization problem, the main issue is to find an

appropriate uncertainty set size. To be more specific, a small set size is preferred while the

solution reliability is met, because it leads to less conservative solution. The traditional

way of determining the set size is based on the a priori probability bound, which is a
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function of the set size. Li et al. [55] proposed various a priori and a posteriori probability

bounds. Based on that, Li and Floudas [56] proposed an iterative method to improve the

robust solution quality by iteratively adjusting the set size until the probability of constraint

satisfaction reaches the desired level. In another work, Li and Li [57] proposed a method to

identify the smallest set size with the least conservative solution through an optimal set size

identification algorithm.

Most of the robust optimization algorithms mentioned above are for linear optimization

problems [41, 45, 48], second-order cone programming [38, 58], and semi-definite program-

ming [59, 39]. On the other hand, general nonlinear robust optimization has received less

attention in the past. In the literature, a linearization of the uncertainty set was employed to

approximate robust formulation [60]. A general robust optimization method has been studied

based on linearization around nominal value of the uncertain parameter [61]. However, both

of the papers used linearization around a single point, so the methods are only effective for

the optimization problem under uncertainty with small perturbation. A sequential convex

bilevel programming algorithm was proposed to numerically solve the min-max problems in

the robust optimization framework [62], but this method can only deal with the inequality

constrained nonlinear optimization problem. Recently, robust counterparts of nonlinear un-

certain inequalities have been derived based on convex analysis including support function,

conjugate functions, Fenchel duality and conic duality, and in this paper, both simple and

complex types of uncertainty set have been studied[63].

1.3 Thesis Outline

After reviewing background on previous developed algorithms for gross error detection and

data reconciliation as well as optimization with uncertainty, the remainder of this thesis is

organized as follows:

In Chapter 2, gross error detection and data reconciliation are implemented simulta-

neously in a unified framework using the hierarchical Bayesian inference technique. The
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framework fulfilled multiple targets: First, it detects which measurements contain gross

errors, i.e., it can locate the gross errors. Second, the magnitudes of the gross errors are esti-

mated. Third, the covariance matrix of the random errors is also determined. Finally, data

reconciliation is performed using the maximum a posteriori estimation. Chapter 2 considers

the linear and nonlinear systems working at steady state. Serial identification technique

is modified to combine with the proposed hierarchical Bayesian framework to improve the

gross error detection results. The conditional probability ratio of a measurement containing

gross error and not containing gross error is compared to identify a list of suspect gross error

candidates. Numerical examples representing both linear and nonlinear cases are provided

to demonstrate the effectiveness of the proposed approach.

In Chapter 3, joint chance constraint problem is studied and approximated by robust

optimization. First, the joint chance constraint is divided into individual chance constraint

using the maximization operator. Second, the individual chance constraints are approxi-

mated by the robust optimization formulation through a series of probability inequalities.

Finally, different robust optimization formulations are derived based on box, ellipsoid, poly-

hedral, interval+polyhedral and interval+ellipsoid types of uncertainty set. A two-layer

optimization algorithm is proposed to further improve the solution. In the inner layer, the

set size of the uncertainty set is optimized to meet the probability of constraints satisfaction

and in the outer layer, the variable that controls the upper bound of the approximation

is optimized to improve the objective value. The proposed formulation and algorithm are

tested using multiple examples.

In Chapter 4, correlations in uncertainties are taken into consideration. The informa-

tion contained in the correlation is incorporated into the design of the uncertainty set with

different types. Robust optimization formulations are derived based on the different types

of uncertainty set with correlation information. In the numerical examples, different lev-

els of the correlations are considered and the corresponding results are compared to verify

the necessity of considering uncertainty correlations into the traditional robust optimiza-
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tion method. Other than the numerical examples, a production planning example is used

to test the proposed formulations. A brief study for the correlated uncertainty in multiple

constraints is taken in Section 4.5. Two types of uncertainty set named “constraint-wise”

and “global” according to the uncertainty set construction idea are compared in the aspect

of objective values. Different correlation structures are considered in the comparison, and

the conclusion obtained from the robust optimization formulation is tested using numerical

examples.

In Chapter 5, a novel nonlinear robust optimization framework is proposed to address

general nonlinear problems with uncertain parameters. The proposed method is based on

piecewise linearization with respect to the uncertain parameters around multiple realizations

of the uncertainty. The points used for piecewise linearization are selected using an iterative

algorithm. Three cases of problems are considered. In the first case, the uncertainty only

exists in inequality constraints. In the second case, design variables and state variables

are coupled by equality constraints, and both inequality and equality constraints contain

uncertain parameters. In the third case, some of the variables called control variables can

be adjusted after the realizations of the uncertainties are available. The proposed algorithm

is applied to different optimal design problems representing the three cases.

In Chapter 6, the economic optimization of steam generation and water distribution is

studied for the SAGD process operation under steady state. A long term planning problem is

studied for distribution of steam to well pads which start working at different years. First, the

deterministic formulation is solved and then, the uncertainty in oil production rate capacity

is considered and modeled by JCC. The proposed robust optimization framework in Chapter

3 is used to approximate JCC and the two-layer algorithm is implemented to improve the

approximation results.

Chapter 7 concludes the thesis and presents the future works. Some theoretical and

practical improvements which can be further considered in further studies are introduced.
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1.4 Main Contributions

The main contributions in this thesis can be summarized as follows:

1. Developing a unified framework for gross error detection and data reconciliation and

estimating the magnitudes of the gross errors and the covariance matrix of the random errors.

2. Providing a robust optimization framework to approximate the joint chance constraints

problem and further improving the approximation results by a proposed two-layer algorithm.

3. Considering correlations in uncertainties and incorporating the correlation information

into the definition of the uncertainty set for the robust optimization derivation.

4. Addressing the general nonlinear uncertain optimization problem using robust opti-

mization and “piecewise” linearization technique and applying the algorithm into optimal

design problems.

5. Applying the proposed algorithms into economic optimization of steam generation

and water distribution for SAGD process.
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Chapter 2

Bayesian Method for Simultaneous

Gross Error Detection and Data

Reconciliation

2.1 Introduction

Process measurements collected from daily industrial plant operations are essential for pro-

cess control and optimization. However, those measurements are generally corrupted by

errors, and the measured data cannot satisfy the mass balance and energy balance which

represent the process model. If the data with errors are used in process control or opti-

mization, the results may not be appropriate for the system and the final target cannot be

reached, or even worse, it may be hazardous to the system and cause damage and break-

down. Thus, it is of great importance to process the data and reduce or eliminate the errors

in the data. Random errors and gross errors are two major types of errors existing in the

measured data. Neither the magnitude nor the sign of the random errors can be predicted

or known with certainty and the only possible way to characterize them is to use probability

distributions. Random errors can also be regarded as noise in the measurements. Data rec-

onciliation is a powerful way to reduce or remove the random errors in the data. However,
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data reconciliation is effective based on the assumption that the gross errors are already

removed from the data. Gross errors are caused by nonrandom events, which implies that at

any given time they have certain magnitude and sign. Gross error detection is a companion

technique to data reconciliation which has been developed to identify and eliminate gross

errors in process data.

Generally, gross error detection and data reconciliation are implemented in different steps,

i.e., gross error detection technique is taken in the first place followed by data reconciliation.

This chapter is devoted to the issue of combining gross error detection and identification

problem with data reconciliation problem within a hierarchical Bayesian framework to detect

and eliminate the gross errors and reconcile the data simultaneously. Hierarchical Bayesian

framework has been applied to various problems. For instance, MacKay[64] first proposed

the heuristic Bayesian evidence framework and this framework was applied to neural network

modeling by MacKay[65]. The hierarchical Bayesian procedure was used to address the image

modeling and restoration problem by Molina et al.[66] and Galatsanos et al. [67]. Kwok [68]

and Suykens et al. [69] derived the probabilistic formulation of the least squares support

vector machine (SVM) within a hierarchical Bayesian evidence framework. The hierarchical

Bayesian framework was utilized for process identification with outliers in the data-set by

Khatibisepehr and Huang[70].

The final goal of gross error detection and data reconciliation is to obtain the clean data

which satisfy the process model, e.g., mass balance and energy balance. Generally, mass

balances have simple linear form, while if energy balances are also involved in the problem,

nonlinearity will be introduced. This chapter focuses on the system working at steady state

which can be both linear and nonlinear. New strategies based on hierarchical Bayesian

combining with serial identification and collective estimation of gross errors are proposed.

Instead of using statistical tests method, (e.g., Sáchez et al. [14], Jiang and Bagajewicz [71]),

the proposed approach compares the conditional probability ratio of containing gross error

and not containing gross error, so as to identify a list of suspect gross error candidates. The
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proposed algorithm performs gross error detection and data reconciliation simultaneously,

and also estimates the magnitudes of the gross errors. Furthermore, the proposed approach

does not assume that the covariance matrix of random errors is known. Instead, the proposed

approach estimates the covariance matrix.

The rest of the chapter is organized as follows. Section 2.2 provides the problem state-

ment. Then, in Section 2.3, the simultaneous gross error detection and data reconciliation

problem is formulated in a hierarchical Bayesian framework, where different variables are

estimated in different layers. In Section 2.4, the gross error exact detectability issue will be

discussed and a serial strategy is adopted for gross error identification to improve the results.

Numerical examples are provided to demonstrate the effectiveness of the proposed approach

for both linear and nonlinear cases in Section 2.5, which is followed by conclusion in the final

section.

2.2 Problem Statement

The objective of simultaneous gross error detection and data reconciliation can be stated

as follows. First, detect which measurements contain gross errors; second, estimate the

magnitudes of gross errors as well as the covariance matrix of the random errors; finally,

apply data reconciliation to estimate the correct value of the data.

In this chapter, the system under consideration is assumed to be time invariant and

operating under steady state. According to mass balance or energy balance the system

model can be expressed as

f(x, u) = 0

where x is an n× 1 vector of true values of measured variables, n is the number of measured

variables, and u is a vector of unmeasured variables.

In the real process, the process data are automatically sampled and recorded at regular

time intervals. It is assumed that a gross error persists in a measurement (if it exists) during
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a measurement period consisting of m sampling points. According to the above assumptions,

the measurement data is organized as follows

D =



y11 y12 ... y1m

y21 y22 ... y2m

... ... ... ...

yn1 yn2 ... ynm


=

(
Y1

C Y2
C ... Ym

C

)
=



Y R
1

Y R
2

...

Y R
n


where Y C

j , j = 1, ...,m, is the data at each sampling point and Y R
i , i = 1, ..., n, is the data

for each variable. The data are assumed to be mutually independent.

At each sampling point, the measurement model can be described as

Y C
j = x+ ηδ + ε, j = 1, ...,m

where η is an n×n matrix which indicates whether there is a gross error in the measurement

or not (0 means no gross error and 1 means gross error), δ is an n× 1 vector which denotes

the magnitudes of the biases, ε is the random error vector which follows a multivariate

normal distribution, i.e., ε ∼ N (0,Σ), and Σ is the n× n covariance matrix. Notice that η

is constructed as a diagonal matrix with the elements on the diagonal to be the gross error

indicators for each measurements:

η =



η1 0 ... 0

0 η2 ... 0

... ... ... ...

0 0 ... ηn


Since the measurements are obtained from different instruments it can be assumed that
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the measurement noise is mutually independent. Then Σ is a diagonal matrix:

Σ =



σ2
11 0 ... 0

0 σ2
22 ... 0

... ... ... ...

0 0 ... σ2
nn


For the purpose of simplification, the precision is introduced as αi = σ−2

ii .

It is known that finding estimates of parameters using maximum likelihood estimation

(MLE) may lead to an ill-posed problem since the estimation can be underdetermined and

is also sensitive to the noise in the data[64]. A useful way to avoid that is to combine the

information from the data with some additional knowledge concerning the distribution of

the parameters called prior distribution. In this chapter, the priors for the magnitudes of

biases δ and the correct values of measurements x are considered. Specifically, a uniform

distribution is introduced as the prior distribution of δ. A normal distribution is introduced

as the prior distribution of x, i.e., x ∼ N (µ0,Σ0), where hyperparameter µ0 is a n× 1 vector

and Σ0 is the covariance matrix. If any hyperparameter of those prior distributions is not

known a priori, its value can be estimated by an intermediate step of the whole process.

For instance, the hyperparameters µ0 and Σ0 are not known a priori in this chapter. The

estimation of x in the current iteration is taken as the estimation of µ0 in the next step

and Σ0 is estimated by maximizing the posterior distribution over it. In this chapter, it is

assumed that the correct values of x are independent and Σ0 is a diagonal matrix:

Σ0 =



σ2
11,0 0 ... 0

0 σ2
22,0 ... 0

... ... ... ...

0 0 ... σ2
nn,0


and the precision for σii,0 is introduced as αi0 = σ−2

ii,0.
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2.3 Proposed Hierarchical Bayesian Framework

In the simultaneous gross error detection and data reconciliation problem, five different

parameters (x, δ, η, Σ, Σ0) are considered. In the proposed Bayesian framework, maximum

a posteriori (MAP) is used to estimate the parameters. To obtain MAP estimates for

the five parameters simultaneously, the joint probability density function P (x, δ,Σ,Σ0, η|D)

should be maximized. However, maximizing such a posterior probability density functions

is complex. The corresponding optimization problem is difficult to solve directly. To avoid

the difficulties in direct maximization of P (x, δ,Σ,Σ0, η|D), a layered solution framework is

proposed. Based on the chain rule, the joint probability density function is factorized into

three parts

P (x, δ,Σ,Σ0, η|D) = P (x, δ|Σ,Σ0, η,D)P (Σ,Σ0|η,D)P (η|D)

The proposed method includes three levels according to the above factorization. The

correct values of the measurements x and the magnitudes of gross errors δ are estimated

at Level 1. The covariance matrix Σ of the random error and the hyperparamter Σ0 are

estimated at Level 2 and the gross error indicator matrix η is addressed at Level 3. The

overall procedure of the Bayesian algorithm is summarized as follows:

Level 1: Inference of x and δ

max
x,δ

P (x, δ|Σ,Σ0, η,D) = max
x,δ

P (D|x, δ,Σ,Σ0, η)P (x, δ|Σ,Σ0, η)

P (D|Σ,Σ0, η)

Level 2: Inference of Σ and Σ0

max
Σ,Σ0

P (Σ,Σ0|η,D) = max
Σ,Σ0

P (D|Σ,Σ0, η)P (Σ,Σ0|η)

P (D|η)

Level 3: Inference of η

max
η
P (ηi|D) = max

η

P (D|η)P (η)

P (D)
= max

η
P (D|η)P (η)
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Each level of the above Bayesian framework has the following form

Posterior =
Likelihood

Evidence
× Prior

It is easy to see that the likelihood at a certain level is equal to the evidence at the

previous level. In this way, the three levels are connected to each other. The procedure is

iterated until convergence.

2.3.1 First Layer: Inference of x and δ

Given the collected data D, the hyperparameters Σ and Σ0, and the matrix of gross error

indicators η, the MAP estimates of the correct values of measurements x and the magnitudes

of the biases δ are obtained by maximizing the posterior density function P (x, δ|Σ,Σ0, η,D).

Using Bayes rule, the formulation in the first layer of the hierarchical framework is:

P (x, δ|Σ,Σ0, η,D) =
P (D|x, δ,Σ,Σ0, η)P (x, δ|Σ,Σ0, η)

P (D|Σ,Σ0, η)
(2.1)

As stated in the above section, the following prior distributions for x and δ are slected:

a normal distribution is introduced for x and a uniform distribution is set for δ. It is also

assumed that x and δ are independent. For the correct value of x, it can be considered to

be independent of Σ and η, and dependent on its hyperparameter Σ0. The magnitudes δ of

the gross errors can be considered to be independent of Σ, η and Σ0.

P (x, δ|Σ,Σ0, η) = P (x|Σ0)P (δ)

= (2π)−n/2|Σ0|−1/2 exp{−1
2
(x− µ0)TΣ0

−1(x− µ0)}
(2.2)

Given x and δ, the sampled data D would be independent of hyperparameter Σ0, and the

likelihood can be directly obtained from the measurement model, i.e. P (D|x, δ,Σ,Σ0, η) =
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P (D|x, δ,Σ, η)

P (D|x, δ,Σ,Σ0, η) = P (D|x, δ,Σ, η) =
m∏
j=1

P (Y C
j |x, δ,Σ, η)

= (2π)−mn/2|Σ|−m/2 exp

{
−1

2

m∑
j=1

(Y C
j − x− ηδ)

T
Σ−1(Y C

j − x− ηδ)

} (2.3)

The posterior probability of x and δ can be calculated by combining Equations (2.2) and

(2.3):

P (x, δ|Σ,Σ0, η,D) ∝ P (D|x, δ,Σ,Σ0, η)P (x, δ|Σ,Σ0, η)

= (2π)−(m+1)n/2|Σ|−m/2|Σ0|−1/2

× exp

{
−1

2

[
m∑
j=1

(Y C
j − x− ηδ)

T
Σ−1(Y C

j − x− ηδ) + (x− µ0)TΣ−1
0 (x− µ0)

]}
∝ exp {−J1(x, δ)}

(2.4)

where

J1(x, δ) =
1

2

m∑
j=1

(Y C
j
− x− ηδ)TΣ−1(Y C

j
− x− ηδ) + (x− µ0)TΣ0

−1(x− µ0) (2.5)

All positive constants in Equation (2.4) are neglected, since they do not affect the optimal

solution of MAP problem. To estimate the most probable values of x and δ, denoted as

xMP and δMP , the posterior probability should be maximized, or equivalently, the negative

logarithm of Equation (2.4) should be minimized:

max
x,δ

P (x, δ|Σ,Σ0, η,D) = min
x,δ

J1(x, δ) (2.6)

Since the correct value of the measurement x must satisfy the material or/and energy

balances, constraints f(x, u) = 0 are added to this optimization problem. Then the opti-
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mization problem for estimating x and δ becomes:

min
x,δ

J1(x, δ)

s.t. f(x, u) = 0

(2.7)

2.3.1.1 Linear Case

Assume the system model with only measured variables is represented as Axx = 0 (matrix Ax

is obtained by decomposing the measured and unmeasured parts). Lagrange multipliers can

be introduced to the above optimization problem. The observable unmeasured variables can

be calculated through the system model after the gross error detection and the redundant

measured variables are reconciled.

L = J1(x, δ) + λTAxx (2.8)

Based on the following optimality condition:

∂L

∂x
= (x− µ0)TΣ0

−1 −
m∑
j=1

(Yj − x− ηδ)TΣ−1 + λTAx = 0 (2.9)

∂L

∂δ
= −

m∑
j=1

(Yj − x− ηδ)TΣ−1 = 0 (2.10)

∂L

∂λ
= Axx = 0 (2.11)

The analytical expression for the estimations, xMP and δMP , can be derived:

xMP = (I −mR(I −W )Σ−1η)−1R(I −W )(Σ0
−1µ0 + Σ−1

m∑
j=1

Y C
j
− Σ−1η

m∑
j=1

Y C
j

) (2.12)

δMP = η(
1

m

m∑
j=1

Y C
j − x) (2.13)

where R = (Σ0
−1 +mΣ−1)−1 and W = ATx [AxRA

T
x ]−1AxR.
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2.3.1.2 Nonlinear Case

If component balance and energy balance are considered, nonliear model can be obtained.

If analytical solutions for the optimization problem in Equation (2.7) cannot be derived,

numerical methods can be used to solve the nonlinear optimization problem to get solution

for xMP and δMP . The unmeasured variables can be calculated through the system model

f(x, u) = 0 with the values of xMP .

2.3.2 Second Layer: Inference of Hyperparameters Σ and Σ0

Hyperparameters Σ and Σ0 can be estimated in the second layer. The posterior distribution

of the hyperparameters is expressed as

P (Σ,Σ0|η,D) =
P (D|Σ,Σ0, η)P (Σ,Σ0|η)

P (D|η)
(2.14)

Based on the assumption that the measurements are independent of each other, the like-

lihood can be separated and the posterior distribution corresponding to each measurement

can be written as

P (σ2
ii, σ

2
ii,0|ηi, Y R

i ) =
P (Y R

i |σ2
ii, σ

2
ii,0, ηi)P (σ2

ii, σ
2
ii,0|ηi)

P (Y R
i |ηi)

(2.15)

For prior distributions, it is assumed that σ2
ii and σ2

ii,0 are independent, so P (σ2
ii, σ

2
ii,0|ηi) =

P (σ2
ii|ηi) × P (σ2

ii,0|ηi). Using the precisions defined for σ2
ii and σ2

ii,0, it can be written that

P (σ2
ii, σ

2
ii,0|ηi) = P (αi, αi0|ηi) = P (αi|ηi)P (αi0|ηi). If there is no a priori information for the

hyperparameters, a uniform distribution can be used to describe appropriate non-informative

priors. To incorporate the prior knowledge, conjugate priors are commonly assigned so that

the resulting posterior distribution can be conveniently evaluated and an analytical solution
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can be obtained. In this layer, gamma distributions are considered as hyperpriors:

P (αi|ηi) =
si
kiαi

ki−1

Γ(ki)
exp(−siαi) ∝ αi

ki−1 exp(−siαi) (2.16)

P (αi0|ηi) =
si0

ki0αi0
ki0−1

Γ(ki0)
exp(−si0αi0) ∝ αi0

ki0−1 exp(−si0αi0) (2.17)

P (αi, αi0|ηi) = P (αi|ηi)P (αi0|ηi) ∝ αi
ki−1 exp(−siαi)αi0ki0−1 exp(−si0αi0) (2.18)

where kj is the shape parameter and sj is the inverse scale parameter. Both parameters are

positive real numbers. The reason that gamma distribution is selected as hyperpriors is that

the gamma distribution is the conjugate prior to the likelihood.

The likelihood P (Y R
i |σ2

ii, σ
2
ii,0, ηi) is actually the evidence separated according to each

measurement in the first layer in Equation (2.1). To get the expression of the evidence in

the first layer, the joint probability (which is the product of likelihood and priors in the first

layer) can be integrated over the unknown parameters x and δ. According to whether there

is a gross error or not, the problem can be addressed in two different cases:

P (Y R
i |αi, αi0, ηi) = P (Y R

i |σ2
ii, σ

2
ii,0, ηi)

=



(2π)(−m+1)/2(αi)
(m−1)/2m−1/2 exp

−αi
2

 m∑
j=1

y2
ij − 1

m

(
m∑
j=1

yij

)2
 ,

if ηi = 1

(2π)−m/2(αi)
m/2α

1/2
i0 (αi0 +mαi)

−1/2 exp


µ2i0αi0

−2
+

αi
m∑
j=1

y2ij

−2

−
(
µi0αi0+αi

m∑
j=1

yij

)2

−2(αi0+mαi)

 ,

if ηi = 0

(2.19)

Substituting Equation (2.18) and Equation (2.19) into Equation (2.15), the posterior
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probability of the hyperparameters can be written as

P (αi, αi0|ηi, Y R
i ) = P (σ2

ii, σ
2
ii,0|ηi, Y R

i ) ∝ P (Y R
i |σ2

ii, σ
2
ii,0, ηi)P (σ2

ii, σ
2
ii,0|ηi)

=



αi
(m−1)/2 exp


m∑
j=1

y2ij−
1
m

(
m∑
j=1

yij)
2

−2
αi

αi
ki−1 exp(−siαi)αi0ki0−1 exp(−si0αi0),

if ηi = 1

αi
m/2αi0

1/2(αi0 +mαi)
−1/2 exp

−1
2

µ2
i0αi0 + αi

m∑
j=1

y2
ij −

(
µi0αi0+αi

m∑
j=1

yij

)2

αi0+mαi




×αiki−1 exp(−siαi)αi0ki0−1 exp(−si0αi0), if ηi = 0

(2.20)

In order to find the posterior mode, the above posterior distribution can be maximized,

or equivalently, the negative logarithm of the posterior probability can be minimized. It

leads to the following optimization problem:

max
αi,αi0

P (αi, αi0|ηi, Y R
i ) = min

αi,αi0
J2(αi, αi0) (2.21)

where

J2(αi, αi0)

=



−m−1
2

logαi +

m∑
j=1

y2ij−
1
m

(
m∑
j=1

yij)
2

2
αi − (ki − 1) logαi + siαi − (ki0 − 1) logαi0 + si0αi0,

if ηi = 1

−m
2

logαi − 1
2

logαi0 + 1
2

log(αi0 +mαi) + 1
2

µ2
i0αi0 + αi

m∑
j=1

y2
ij −

(
µi0αi0+αi

m∑
j=1

yij

)2

αi0+mαi


−(ki − 1) logαi + siαi − (ki0 − 1) logαi0 + si0αi0, if ηi = 0

(2.22)

Since αi and αi0 are positive variables, logarithm can be taken on them. The gradient of
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the cost function J2(αi, αi0) is:

∂J2(αi,αi0)
∂ logαi

=



−m
2

+ 1
2

+ 1
2
[
m∑
j=1

yij
2 − 1

m
(
m∑
j=1

yij)
2]αi − (ki − 1) + siαi if ηi = 1

−m
2

+ mαi
2(αi0+mαi)

+ 1
2

m∑
j=1

yij
2αi − (ki − 1) + siαi if ηi = 0

−
2(µi0αi0+

m∑
j=1

yijαi)(αi0+mαi)
m∑
j=1

yijαi−(µi0αi0+
m∑
j=1

yijαi)
2

mαi

2(αi0+mαi)
2

(2.23)

∂J2(αi,αi0)
∂ logαi0

=



−(ki0 − 1) + si0αi0 if ηi = 1

−1
2

+ αi0
2(αi0+mαi)

+ 1
2
µi0

2αi0 − (ki0 − 1) + si0αi0 if ηi = 0

−
2(µi0αi0+

m∑
j=1

yijαi)(αi0+mαi)µi0αi0−(µi0αi0+
m∑
j=1

yijαi)
2

αi0

2(αi0+mαi)
2

(2.24)

Since it is difficult to get the analytical solution of αi and αi0, numerical optimization

method (e.g., Newton’s method, etc.) is used to find the solution of Equation (2.21). The

variance σ2
ii and σ2

ii,0 can be obtained by taking inverse of αi and αi0, respectively. After

calculating σ2
ii and σ2

ii,0 for each measurement, the covariance matrix Σ and Σ0 can be

constructed.

The posterior distribution given by Equation (2.20) is complex in general so that it can-

not be directly applied in the three-layered optimization framework. An approximation of

the posterior distribution is a key to simplify the calculation in the hierarchical Bayesian ap-

proach. MacKay[64] introduced a method called Laplace Approximation which can approx-

imate posterior using a normal distribution. To approximate the posterior distribution by a

normal distribution, the logarithm of the posterior distribution is approximated by its second

order Taylor expansion around the most probable estimation, ΘMP = (logαMP
i , logαMP

i0 ),
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and the posterior distribution can be approximated by:

logP (logαi, logαi0|ηi, Y R
i ) ≈ logP (logαi, logαi0|ηi, Y R

i )|logαMP
i

,logαMP
i0

+∇ logP (logαi, logαi0|ηi, Y R
i )|logαMP

i
,logαMP

i0

+1
2
zTi ∇∇ logP (logαi, logαi0|ηi, Y R

i )|logαMP
i

,logαMP
i0
zi

(2.25)

where zi = [logαi − logαMP
i

, logαi0 − logαMP
i0

]T . Since logαMP
i and logαMP

i0 correspond to

a maximum of the logarithm of the posterior distribution, the second term on the right

hand side of Equation (2.25) equals to zero. Using Laplace Approximation, the posterior

distribution can be approximated by a normal distribution as following:

P (logαi, logαi0|ηi, Y R
i ) ≈ P (logαMP

i
, logαMP

i0
|ηi, Y R

i ) exp(−1
2
zi
TQizi)

= (2π)−1/2
√

detQi × exp(−1
2
zTi Qizi)

(2.26)

where Qi is the Hessian matrix of the cost function J2 evaluated at logαMP
i and logαMP

i0 :

Qi = −∇∇ logP (logαi, logαi0|η,D)|logαiMP ,logαi0
MP (2.27)

The Hessian matrix Qi can be calculated as:

Qi =

 Qi,11 Qi,12

Qi,21 Qi,22

 =

 ∂2J2
∂ logαi2

∂2J2
∂ logαi∂ logαi0

∂2J2
∂ logαi0∂ logαi

∂2J2
∂ logαi02

 (2.28)

2.3.3 Third Layer: Inference of the Indicator ηi

In the above derivations, it is assumed that the gross error indicators are known. In the

third layer, the objective is to identify the indicators. Applying Bayes rule and separating

the posterior corresponding to each measurement, the posterior distribution is obtained as

following:

P (ηi|Y R
i ) =

P (Y R
i |ηi)P (ηi)

P (Y R
i )

∝ P (Y R
i |ηi)P (ηi) (2.29)
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For priors, it is assumed that each instrument has a probability pi to contain a gross

error, then the probability of ηi given pi can be expressed as:

P (ηi|pi) = pi
ηi(1− pi)1−ηi (2.30)

and the prior for pi is set to be a Beta distribution:

P (pi) =
Γ(ri + βi)

Γ(ri)Γ(βi)
pi
ri−1(1− pi)βi−1 (2.31)

Then, by integrating out pi, the prior distribution for ηi is obtained:

P (ηi) =
1∫
0

P (ηi|pi)P (pi)dpi

=
1∫
0

Γ(ri+βi)
Γ(ri)Γ(βi)

pi
ηi+ri−1(1− pi)1−ηi+βi−1dpi

= Γ(ri+βi)
Γ(ri)Γ(βi)

Γ(ri+ηi)Γ(1−ηi+βi)
Γ(ri+βi+1)

(2.32)

The likelihood in the third layer is equal to the evidence in the second layer in Equation

(2.15). Since the problem is divided into two cases according to whether there is a gross

error or not in the second layer, the likelihood in the third layer can be handled in two cases

by substituting Equation (2.18), Equation (2.19) and Equation (2.26) in Equation (2.15).

However, for simplicity, the likelihood is written in a general form as following:

P (Y R
i |ηi) =

P (Y R
i |αi, αi0, ηi)P (αi, αi0|ηi)
P (logαi, logαi0|ηi, Y R

i )
(2.33)

Since the left hand side is not relevant to αi and αi0, the right hand side has no relationship

with αi and αi0, which means that the values of αi and αi0 have no influence on the value of

the likelihood. The MAP of αi and αi0 is taken to simplify the calculation:

P (Y R
i |ηi) =

P (Y Ri |αi,αi0,ηi)P (αi,αi0|ηi)
P (logαi,logαi0|ηi,Y Ri )

|αMP
i

,αMP
i0

≈ P (Y Ri |αi,αi0,ηi)P (αi,αi0|ηi)√
detQi

|αMP
i

,αMP
i0

(2.34)
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After the above derivations, P (ηi = 1|Y R
i ) and P (ηi = 0|Y R

i ) are both calculated. They

are further compared to determine the value of ηi. The indicator matrix η can be obtained

after the value of the indicator for each measurement is decided.

2.3.4 Simultaneous Gross Error Detection and Data Reconcilia-

tion Procedure

The implementation procedure of the hierarchical Bayesian approach is outlined as Algo-

rithm 1.

Algorithm 1 Bayesian Method for Simultaneous
Gross Error Detection and Data Reconciliation

input: Sample data D, and selected initials for indicator matrix η

initialize: Variance of the random error: σ
(0)
ii = MAD/0.6745,

hyperparameters: a large value for σ
2(0)
ii,0 and the reconciled data for µ

(0)
0

while the estimations of the parameters do not change within tolerance do

Step 1. In the first layer, maximize P (x(k), δ(k)|D,Σ(k−1),Σ
(k−1)
0 , η(k−1)) to

updatethe MAP estimates of x and δ, x(k) and δ(k) using Equations
(2.12) and (2.13).

Step 2. Update µ
(k)
0 as the estimates of x, i.e. µ

(k)
0 = x(k).

Step 3. In the second layer, maximize P (α
(k)
i , α

(k)
i0 |η(k−1)

i
, Y R

i ) for each
measurement to update the MAP estimates of hyperparameters,

α
(k)
i and α

(k)
i0 .The variance can be obtained by taking an inverse of

αi and αi0.
Step 4. In the third layer, evaluate the posterior probability of each measurement,

P (ηi = 1|Y R
i ) and P (ηi = 0|Y R

i ). Compare the values of them. If the value

of P (ηi = 1|Y R
i ) is larger, set η

(k)
i = 1, otherwise, set η

(k)
i = 0.

Step 5. Update the estimated values of Σ(k), Σ
(k)
0 and η(k) and use them in the

next iteration.
end while

return: Estimations of different parameters x̂, δ̂, Σ̂, Σ̂0 and η̂

The principle of the initial value selection is discussed as following. σ
(0)
ii = MAD/0.6745

is utilized to calculate the robust variance. This equation is commonly used in robust regres-

sion. The constant 0.6745 makes the estimate of σ2
ii unbiased for the normal distribution.

MAD is the median absolute deviation of the residuals; a large value is set for σ
2(0)
ii,0 to reduce
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the influence of not setting an accurate initial value for µ
(0)
i0 . µ0 is the mean value in the

hyperprior for x.

In Algorithm 1, Step 1 to 5 will be repeated iteratively until no further improvements

(the estimations of the parameters do not change) are gained. The flow chart of Algorithm

1 is shown in Figure 2.1.

Figure 2.1: Flow chart of Algorithm 1

While Algorithm 1 can be directly applied for gross error identification, it may lead to

too many mispredictions. To improve the performance of the proposed simultaneous gross

error detection and data reconciliation approach, a serial strategy is introduced in the next

section.
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2.4 Serial Strategy for Improved Performance

Algorithm 1 may lead to many mispredictions, which is mainly due to the smearing effect

[1]. All the variables are related through the constraints according to the network of the

system. A gross error in one measurement may influence other measurements, so that the

probability P (ηi = 1|Y R
i ) can be larger than P (ηi = 0|Y R

i ) for a process measurement

without gross error. There are many factors influencing the degree of smearing, such as

the level of redundancy, the size of the standard deviations of the random error and the

magnitudes of the gross errors [1, 72].

Furthermore, simultaneous gross error estimation and data reconciliation cannot be

solved for an arbitrary set of gross error candidates due to the existence of equivalent sets

[73]. The concept of equivalent sets is defined as follows: if two sets of gross errors have the

same effect in data reconciliation, they are regarded as equivalent sets, which means that

when simulating either one, they both lead to the same objective function value of data

reconciliation. Equivalent sets exist when candidate streams are in the same loop in an aug-

mented graph consisting of the original graph representing the flowsheet with the addition

of environmental node. The environment node is an additional node of the flowsheet so that

all process feeds and products can connect to it. It is impossible to distinguish the equiva-

lent sets and this leads to the conditions of exact detectability in simultaneous gross error

detection and data reconciliation problem. There are mainly two rules for this detectability

problem [73]:

(1) The maximum number of gross errors that can be simulated in an open system is

equal to the number of process units (blocks in the diagram).

(2) A set of gross errors can be exactly detected only if no subset of these variables forms

a loop with an additional stream. In other words, a set of gross errors can be exactly detected

only if the corresponding set of columns of the incidence matrix A does not form a linearly

dependent set with any other additional column.

To address the above issues and improve the performance of Algorithm 1, a serial
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strategy is adopted. The serial strategy identifies gross errors in a sequential mode. This

strategy is based on the assumption that for any system, the probability of containing k

gross errors is larger than the probability of containing k+ 1 gross errors. This strategy can

detect the minimum possible number of gross errors and solve data reconciliation problem

and estimation problem with all suspects. The strategy is outlined as Algorithm 2 [73]:

Algorithm 2: Serial Strategy for Simultaneous Multiple Gross Error Detection
and Data Reconciliation

Input: Sample data D
Initialize: Create two lists: one is for gross error candidates (GEC) and another is

for the final gross errors (FGE). Set them empty at first. Set the initial
values for ηi to be all 1s

Step 1. Run Algorithm 1 once to get the gross error candidates.
if there are r variables in suspect ( r > 0 )

go to step 2.
else

declare no gross error and stop.
end if-else

Step 2. Put all r variables detected in step 1 in GEC.
if GEC and FGE have same elements

erase them in GEC.
end if

while GEC is not empty do
Step 3. Run Algorithm 1 with the initial values to be all the members in

FGE and onemember of the GEC at a time. If there are r variables in
GEC, then Algorithm 1 is taken r times.

Step 4. Calculate the ratio
P (ηi=1|Y Ri )

P (ηi=0|Y Ri )
. For each run find the value of the ratio

correspondingto the simulated member in GEC. Compare these values
and determine which memberof the GEC leads to the largest value of

ratio
and get the corresponding gross errorcandidates. Add that variable to the.
FGE Empty set GEC.

Step 5. Add the gross error candidates obtained in step 4 into the GEC. If any
members inthe GEC are in the same loop with the members in the FGE,
erase the member in theGEC with the smallest ratio and also eliminate
the member which is already in the FGE.

end while
Step 6. Determine all equivalent sets.
return: Estimations of different parameters x, δ, Σ, Σ0 and η.

If there are equivalent sets for the gross errors, the equivalent sets are also
returned.
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The flow chart of Algorithm 2 is shown in Figure 2.2.

Figure 2.2: Flow chart of Algorithm 2

32



2.5 Simulation Study

2.5.1 Linear Case

In this section, simulated data-sets are used to study the effectiveness of the proposed

Bayesian approach for simultaneous gross error detection and data reconciliation. The pro-

cess network shown in Figure 2.3 is considered. There are 4 units and 7 flow rates.

Figure 2.3: Diagram of process network

From the above process network, the flow rates satisfy the following material balance:

x1 − x2 + x4 = 0

x2 − x3 + x6 = 0

x3 − x4 − x5 = 0

x5 − x6 − x7 = 0

All the variables are assumed to be measured and the above equations can be further
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written as Ax = 0, where x = [x1, x2, ..., x7]T and the incidence matrix A is:

A =



1 −1 0 1 0 0 0

0 1 −1 0 0 1 0

0 0 1 −1 −1 0 0

0 0 0 0 1 −1 −1


The data are generated randomly using MATLAB. The vector of the correct values of

the flow rates is set as x =

[
1 2 3 1 2 1 1

]T
. In order to avoid confusion between

the gross errors and the noise (random error), the value of the covariance matrix Σ cannot

be too large.

2.5.1.1 Case 1: Single Gross Error

In this case, only one gross error is introduced in the first measurement x1 and the magnitude

of the gross error is set to δ1 = 2. Since there are no gross errors in other measurements, the

magnitudes of other gross errors are set to zeros.

The results with two different standard deviations(variance) of the measurements are

compared:

(1) Σ = 0.0016I, , where I is identity matrix, the standard deviations are around 1.3%−

4% of the measurements.

(2) Σ = 0.1I, the standard deviations are around 11%− 32% of the measurements.

A set of simulated measurement data with the two different standard deviations are

plotted in Figure 2.4 and Figure 2.5, respectively.
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Figure 2.4: Data plot with gross error in the first measurement, Σ = 0.0016I
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Figure 2.5: Data plot with gross error in the first measurement, Σ = 0.1I

To evaluate the performance of the proposed method, 50 sets of simulated measurement
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data are generated and used for gross error detection and data reconciliation. With Algo-

rithm 2, Figure 2.6-2.8 show the histograms of the estimated value of x, the estimated value

of δ and the estimated value of the standard deviation σ with Σ = 0.0016I, respectively.

Figure 2.9-2.11 show the histograms of the estimated value of x, the estimated value of δ

(for both cases δ1 = 2, δ2 = δ3 = δ4 = δ5 = δ6 = δ7 = 0) and the estimated value of the

standard deviation σ with Σ = 0.1I, respectively.
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Figure 2.6: Histogram of the estimated value of x, Σ = 0.0016I (50 Runs)
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Figure 2.7: Histogram of the estimated value of δ1, Σ = 0.0016I (50 Runs)
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Figure 2.8: Histogram of the estimated value of σ, Σ = 0.0016I (50 Runs)
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Figure 2.9: Histogram of estimated value of x, Σ = 0.1I (50 Runs)
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Figure 2.10: Histogram of the estimated value of δ1, Σ = 0.1I (50 Runs)
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Figure 2.11: Histogram of the estimated value of σ, Σ = 0.1I (50 Runs)

The performances of Algorithm 1 and Algorithm 2 are compared for all the cases of

one gross error introduced. For each case, one of the seven measurements contains one gross

error and the simulation is performed for 50 runs using Algorithm 1 and Algorithm 2,

respectively.

A performance measure−−correct rate is defined for performance evaluation:

Correct Rate =
Number of Runs that All the Gross Errors are Correctly Identified

Total Number of Runs

Table 2.1 displays the correct rates of Algorithm 1 and Algorithm 2. The results with

different standard deviations of measurements are also compared.
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Table 2.1: Comparison of correct rates (50 runs)
Measurement Correct Rate Correct Rate Correct Rate
number (Algorithm 1, (Algorithm 2, (Algorithm 2,

Σ = 0.1I) Σ = 0.0016I) Σ = 0.1I)
1 48/50=96% 50/50=100% 50/50=100%
2 46/50=92% 50/50=100% 49/50=98%
3 23/50=46% 50/50=100% 48/50=96%
4 35/50=70% 50/50=100% 50/50=100%
5 46/50=92% 50/50=100% 49/50=98%
6 34/50=68% 50/50=100% 48/50=96%
7 49/50=98% 50/50=100% 50/50=100%

It can be seen from Table 2.1 that Algorithm 1 has more mispredictions than Algo-

rithm 2. Since in this case only single gross error is considered, according to the flowsheet

there is no equivalent set for each case. The mispredictions may be caused by smearing

effect. The confusion between the random error and the gross error may lead to the mispre-

dictions (the magnitude δ of the gross error is only slightly larger than the 3σ). Algorithm

2 enhances the correct rate of gross error detection and estimation. It is worth mention-

ing that the existing methods generally handle small standard deviations. For example,

the standard deviations of the measurements are chosen to be 2% of each measurement by

Bagajewicz and Jiang[74]. The proposed method in this chapter can deal with much larger

standard deviations. The proposed approach also works well with small standard deviation

as expected. Algorithm 2 leads to 100% correct rate for Σ = 0.0016I. Even though the

standard deviations are increased to 13%−32% of the measurements, the correct rate shows

that Algorithm 2 is still efficient to detect the gross error. Since the proposed method can

handle large standard deviation in the data, only Σ = 0.1I is considered in the rest of the

case studies.

2.5.1.2 Case 2: Multiple Gross Errors without Equivalent Sets

In this case, multiple gross errors in the data are investigated. First, the case that no

equivalent set exists in the gross errors is studied. Algorithm 2 is illustrated using the
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simulation example under different scenarios. Table 2.2 and 2.3 below show the results in

each steps following the procedure of the serial strategy. The gross error initial values for

Algorithm 1 are shown in the second column of the tables. The third column of the tables

provides the estimations of the magnitudes of the gross errors. The values of the ratio

P (ηi=1|Y Ri )

P (ηi=0|Y Ri )
are listed in the fourth column. The last column shows the variables as gross error

candidates flagged by Algorithm 1.

Table 2.2: Algorithm 2 with gross error in x2(magnitude: 3) and x7 (magnitude: 1)
Step Gross Error Magnitude of Gross Ratio Variables flagged

Number Initials Error Estimated by Algorithm 1
step 1 All 2, 6
step 2 GEC: 2, 6 FGE: Empty
step 3 2 1.8× 1017 2, 7

6 3.2× 103 1,2,3,4,5,6
step 4 FGE: 2
step 5 GEC: 7
step 3 2,7 46.8 2, 7
step 4 FGE: 2,7 2 (magnitude: 3.0)

7 (magnitude: 1.0)
step 5 GEC: Empty
step 6 Equivalent sets: none

Table 2.2 shows the solution procedure for two gross errors in x2 and x7 with magnitudes

δ2 = 3 and δ7 = 1, respectively. In the first step, the initial values for indicator ηi are set

to be all 1s, and the gross errors candidates flagged by Algorithm 1 are 2 and 6. In the

second step, the flagged gross error candidates (2 and 6) are put into GEC. In the third

step, Algorithm 1 is run twice since there are two elements in the GEC. The initial values

of indicator ηi are set as η2 = 1 (others are set to zero) for the first run and η6 = 1 (others

are set to be zero) for the second run. In the fourth step, the ratio
P (η2=1|Y R2 )

P (η2=0|Y R2 )
and

P (η6=1|Y R6 )

P (η6=0|Y R6 )

are calculated for the two runs in step 3 and compare them. The run with initial η2 = 1

has a larger ratio, so element 2 in GEC is identified as a variable with gross error (i.e., the

second measurement is detected to contain a gross error). Element 2 is added to the FGE.

The GEC is set empty. In the fifth step, the gross error candidates corresponding to element
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2 are obtained, which are 2 and 7 and put them in the GEC. Since 2 is already in the FGE,

it is eliminated in the GEC and GEC has only one element 7 at this time. The GEC is

not empty so the algorithm goes to step 3; Algorithm 1 is taken with initials to be all the

members in the FGE (2) and one member of GEC (7). The gross error candidates flagged

by Algorithm 1 are 2 and 7. In the second step 5, the GEC is empty and the algorithm

is stopped. Even though the gross error in the seventh measurement is not flagged by the

Algorithm 1 in step 1, the gross errors are still successfully identified. The number of

iterations that is needed to detect all the gross errors in Algorithm 2 is 2 which is the same

as the number of gross error introduced. Using Algorithm 2, the gross errors are exactly

detected. Then the magnitudes of the gross errors can be estimated. After the gross errors

are successfully detected and the magnitudes of the gross errors are estimated, the correct

values of x and the covariance matrix Σ of the random errors can be estimated.

The final estimated values are:

x̂ =

[
0.9749 2.0105 3.0604 1.0356 2.0248 1.0499 0.9749

]T
,

δ̂2 = 3.0, δ̂7 = 1.0, δ̂1 = δ̂3 = δ̂4 = δ̂5 = δ̂6 = 0,

σ̂2
11 = 0.0918, σ̂2

22 = 0.1085, σ̂2
33 = 0.1109, σ̂2

44 = 0.1117, σ̂2
55 = 0.0919, σ̂2

66 = 0.0878,

σ̂2
77 = 0.0845.
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Table 2.3: Algorithm 2 with gross error in x1 (magnitude: 2), x2(magnitude: 3) and x5

(magnitude: 4)
Step Gross Error Magnitude of Gross Ratio Variables flagged by

Number Initials Error Estimated Algorithm 1
step 1 All 2,3,5,7
step 2 GEC: 2,3,5,7 FGE: Empty
step 3 2 7.1× 1013 1,2,3,4,5,6,7

3 8.8× 1021 2,3,4,5,6,7
5 2.2× 1023 1,2,3,4,5,6,7
7 8.1× 1013 1,2,3,4,5,6,7

step 4 FGE: 5
step 5 GEC: 1,2,3,6,7
step 3 5,1 80.0 1,2,3,4,5,6,7

5,2 1.3× 1018 1,2,5
5,3 1.2× 1010 1,2,3,4,5,6,7
5,6 1.3× 1010 1,2,4,5,6,7
5,7 8.5× 106 2,3,5,6,7

step 4 FGE: 2,5
step 5 GEC: 1
step 3 1,2,5 8.9× 106 1,2,5
step 4 FGE: 1,2,5 1 (magnitude: 1.9)

2 (magnitude: 3.1)
5 (magnitude: 3.9)

step 5 GEC: Empty
step 6 Equivalent sets: none

In Table 2.3, three biases are considered with δ1 = 2, δ2 = 3 and δ5 = 4. The procedure

is similar to Table 2.2. Since the number of gross errors introduced is larger than the above

cases, Algorithm 2 takes 1 more iteration to identify all the gross errors successfully.

The final estimated values are:

x̂ =

[
1.0092 1.9142 2.9036 0.9050 1.9986 0.9894 1.0092

]T
,

δ̂1 = 1.9, δ̂2 = 3.1, δ̂5 = 3.9, δ̂3 = δ̂4 = δ̂6 = δ̂7 = 0,

σ̂2
11 = 0.0721, σ̂2

22 = 0.1150, σ̂2
33 = 0.0935, σ̂2

44 = 0.0838, σ̂2
55 = 0.0973, σ̂2

66 = 0.1180,

σ̂2
77 = 0.1168.

In Table 2.2 and Table 2.3, the number of the gross errors introduced is less than the

number of the units in the process network and none of them form a loop with an addi-

tional variable, which means that the gross errors introduced satisfy the condition of exact
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detectability.

2.5.1.3 Case 3: Multiple Gross Errors with Equivalent Sets

In this case, multiple gross errors are investigated under the situation that equivalent sets

exist. Here, two biases are introduced as δ2 = 3 and δ3 = 4. In the first step, the initial values

for indicator ηi are set to be all 1s and the gross errors candidates flagged by Algorithm

1 are 3 and 4. Since there are two suspects, it proceeds to step 2. In the second step, the

flagged gross error candidates 3 and 4 are put into GEC. In the third step, Algorithm

1 is run twice since there are two elements in the GEC. The initial values of indicator ηi

are different for different runs, that is, η3 = 1 (others are set to be zero) for the first run

and η4 = 1 (others are set to be zero) for the second run. In the fourth step, the ratio

P (η3=1|Y R3 )

P (η3=0|Y R3 )
and

P (η4=1|Y R4 )

P (η4=0|Y R4 )
are calculated for the two runs in step 3 and compare them. The

run with initial η4 = 1 has the largest ratio, so element 4 in GEC is determined to be the

final gross errors, which means that the fourth measurement is detected to contain a gross

error. Element 4 is added in the FGE. The GEC is set empty. In the fifth step, the gross

error candidates corresponding to element 4 are obtained, which are 3 and 4 and put them in

the GEC. Since 4 is already in the FGE, it is eliminated in the GEC and GEC has only one

element 3 at this time. The GEC is not empty so the algorithm goes to step 3; Algorithm

1 is taken with initials to be all the members in the FGE (4) and one member of GEC (3).

The gross error candidates flagged by Algorithm 1 are 3 and 4. In the second step 5, the

GEC is empty and the algorithm is stopped. Since the second measurement and the third

measurement form a loop with an additional stream 4, the gross errors introduced violate

the second condition of exact detectability. It is difficult to identify the gross errors exactly

in this case, but the equivalent sets are detected, as shown in Table 2.4.
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Table 2.4: Algorithm 2 with gross error in x2 (magnitude: 3) and x3(magnitude: 4)
Step Gross Error Magnitude of Gross Ratio Variables flagged

Number Initials Error Simulated by Algorithm 1
step 1 All 3,4
step 2 GEC: 3,4 FGE: Empty
step 3 3 8.3× 109 2,3,4

4 7.6× 1018 3,4
step 4 FGE: 4
step 5 GEC: 3
step 3 3,4 23.9 3,4
step 4 FGE: 3,4 3 (magnitude: 0.9)

4 (magnitude: -3.2)
step 5 GEC: Empty
step 6 Equivalent sets: 2(3.2),

3(4.1) and 2(-0.9),4(-4.1)

2.5.2 Nonlinear Case

The nonlinear programming problem in the first layer for both examples is solved in GAMS

with solver CONOPT.

2.5.2.1 Case 1: Example from Pai and Fisher

This problem from Pai and Fisher [75] consists of 8 variables, 5 of them are measured and 3

of them are unmeasured. There are 6 nonlinear constraints which are shown as follows:

0.5x2
1 − 0.7x2 + x3u1 + x2

2u1u2 + 2x3u
2
3 − 255.8 = 0

x1 − 2x2 + 3x1x3 − 2x2u1 − x2u2u3 + 111.2 = 0

x3u1 − x1 + 3x2 + x1u2 − x3
√
u3 − 33.57 = 0

x4 − x1 − x2
3 + u2 + 3u3 = 0

x5 − 2x3u2u3 = 0

2x1 + x2x3u1 + u2 − u3 − 126.6 = 0
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The exact values of the 8 variables are:

xexact = [4.5124, 5, 5819, 1.9260, 1.4560, 4.8545]T

uexact = [11.070, 0.61467, 2.0504]T

In this example, the effectiveness of the proposed simultaneous gross error detection and

data reconciliation algorithm (Algorithm 1) is demonstrated and the results are compared

with the results of Tjoa and Biegler [16]. Following the same procedure provided by Tjoa

and Biegle, the data are generated with the mean equal to the exact values and Gaussian

noise level is 0.1. The algorithm is tested for 100 runs. 20% of all measured variables are

assumed to be shifted and the effect of location of gross errors is tested in three different

situations. In situation 1, 5 blocks with 20 gross errors in each block are added in sequence

from x1 to x5. In situation 2, all the measured variables are added with gross errors in every

fifth run and no gross errors in other runs. In situation 3, one gross error is added for each

run in sequence from x1 to x5 in rotation. The magnitudes of gross errors are +0.4, +1, and

+4, respectively.

For the case that the magnitude of gross errors is +0.4 (only 4σ), it is easy for the

algorithm to be confused between the random error and gross error. The results are shown

and compared in Table 2.5.

Table 2.5: Results of Algorithm 1 for gross error detection (δ = +0.4)

Situation
x1 x2 x3 x4 x5

R W R W R W R W R W
1 (Algorithm 1) 5 2 20 6 20 - 20 2 20 5
1 (Tjoa) 8 3 19 - 20 - 9 - 17 1
2 (Algorithm 1) 8 - 20 1 20 - 15 - 20 -
2 (Tjoa) - - 20 - 20 2 - - 20 1
3 (Algorithm 1) 3 2 20 8 20 - 20 2 20 -
3 (Tjoa) 4 - 18 - 20 1 9 - 14 2
Note: R =Right; W= Wrong.

In Table 2.5, the number of a gross error correctly detected and the number of false

alarm of a gross error for each variables are listed. From these numbers, we can see that
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the number of a gross error correctly detected obtained by Algorithm 1 is larger than

Tjoa’s method while the times of false alarm by Algorithm 1 is also larger than Tjoa’s

method. This is because that the correctly detected number of gross error and the false

alarm are intimately related. If the probability of false alarm is allowed to be larger, the

correct detected number of gross error will increase. For Algorithm 1, we can balance them

by setting some hyperparameters, such as the hyperparameters for the prior distribution of

pi. However, the results show that Algorithm 1 is sufficient to detect the gross errors for

the case that the magnitude of gross error is not easily distinguished from the random error.

Next, the case when the magnitude of gross errors is set as δ = 1 is considered. This is

a more typical case of gross error detection and the results are shown in Table 2.6.

Table 2.6: Results of Algorithm 1 for gross error detection (δ = +1)

Situation
x1 x2 x3 x4 x5

R W R W R W R W R W
1 (Algorithm 1) 20 2 20 - 20 1 20 1 20 2
1 (Tjoa) 19 - 20 1 20 - 19 1 20 2
2 (Algorithm 1) 10 - 20 - 20 - 19 - 20 -
2 (Tjoa) 12 - 20 - 20 1 20 1 17 1
3 (Algorithm 1) 20 1 20 2 20 2 20 2 20 1
3 (Tjoa) 20 2 20 - 20 - 19 - 20 1
Note: R =Right; W= Wrong.

In Table 2.6, the number of a gross error correctly detected increases compared with the

case of δ = 0.4 while the number of false alarm decreases. This means that Algorithm 1 is

more powerful for the case that the gross error can be distinguished from the random error.

The performance of Algorithm 1 is very close to Tjoa’s method. Situation 3 will be used

for the studying of estimations of the magnitudes δ of gross errors, the estimations of the

variance σ2 and the estimations of the values of both measured and unmeasured variables

(x and u). The estimated values listed below are the means for 100 runs.

For the case that δ = +1, the final estimated values are:
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x̂ = [4.5354, 5.5749, 1.9231, 1.4963, 4.8236]T

û = [11.1733, 0.6200, 2.1344]T

δ̂ = [0.9717, 0.9969, 0.9995, 1.0000, 0.9931]T

σ̂2
11 = 0.0103, σ̂2

22 = 0.0101, σ̂2
33 = 0.0107, σ̂2

44 = 0.0095, σ̂2
55 = 0.0100

For the case that δ = +4, the final estimated values are:

x̂ = [4.5439, 5.5539, 1.9228, 1.4094, 4.9022]T

û = [11.1428, 0.6128, 2.0728]T

δ̂ = [4.0102, 3.9862, 3.9975, 4.0028, 3.9951]T

σ̂2
11 = 0.0102, σ̂2

22 = 0.0102, σ̂2
33 = 0.0100, σ̂2

44 = 0.0102, σ̂2
55 = 0.0104

It is shown that for all the cases, the estimated values are very close to the exact values.

From the results shown above, we can see that the proposed algorithms are good for gross

error detection and data reconciliation problem. If further improvement is needed for the

problem, the serial strategy introduced above can be taken for exact detection of the gross

error.

Furthermore, the performance of Algorithm 1 relies on the redundancy of the measure-

ments. Since nonredundant variables can be adjusted only by the objective function not

through the constraints. They may converge to the initial values (in the first layer). If the

nonredundant variables contain gross errors, the reconciled data may be inaccurate and since

the unmeasured variables are obtained through the constraints they may be influenced. The

hyperparameter µ0 is taken as the estimation of x and it is used in the third layer, so the

performance of the gross error detection in the third layer may also be influenced. However,

the redundancy of variables is related to both sensor network and the system constraints.

Some existing methods can be applied to check the redundancy and the readers are referred

to some related references [76, 77, 78].
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2.5.2.2 Case 2: Example from Swartz

The second example for nonlinear system is first described by Swartz [78] for data recon-

ciliation. The flow sheet of the process is shown in Figure 2.12. Standard deviations of

the measurements for flow rate and temperature are 2% and 0.75 degree, respectively. The

model is more complex than the first example. There are 16 measured variables, 14 un-

measured variables and 17 constraints. The constraints are obtained by considering mass

and heat balances around the heat exchangers, splitting and mixing junctions. To see the

effectiveness of gross error detection, 10 degree is added to measurement TA7 as a gross

error. Algorithm 1 can detect TA7 as a gross error and the final estimated values of both

measured and unmeasured variables are shown in Table 2.7. The results are very close to the

results obtained by Tjoa’s method[16]. And the computation time depends on the number of

iterations of Algorithm 1 and the CONOPT solver. As an average, Algorithm 1 finishes

in around 4 seconds within 10 iterations.

Figure 2.12: Flow sheet of the process for Swartz’s example[16]
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Table 2.7: Estimated variables for Swartz’s example with TA7 as a gross error
Variable Estimates of Estimates of variables Estimated σ
tagname variables (Tjoa) (Algorithm 1) (Algorithm 1)

FA1 968.38 963.84 21.75
TA1 466.33 466.31 0.8301
FA2 968.38 963.84 -
TA2 481.79 478.01 -
FA3 406.71 408.39 9.0927
TA3 481.79 478.01 0.6939
FA4 406.71 408.39 -
TA4 530.09 530.08 0.5892
FA5 406.71 408.39 -
TA5 616.21 613.58 0.6807
FA6 561.71 555.45 9.7999
TA6 481.79 478.01 -
FA7 561.67 555.45 -
TA7 614.38 617.79 0.6912
FA8 968.38 963.84 -
TA8 615.15 611.77 0.9952
FB1 253.20 253.30 4.8389
TB1 618.11 618.22 0.7844
FB2 253.20 253.30 -
TB2 543.86 545.76 -
FB3 253.20 253.30 -
TB3 486.58 492.65 -
FC1 308.10 307.02 8.0189
TC1 694.99 695.49 0.8827
FC2 308.10 307.02 -
TC2 594.21 605.98 –
FD1 680.88 688.01
TD1 667.86 668.84 0.8884
FD2 680.88 688.01 12.4112
TD2 558.33 564.28 0.6693

2.6 Conclusions

Gross error detection and data reconciliation problem is studied in this chapter. A unified

framework is proposed to simultaneously estimate the true values of process variables x and

u, the magnitudes of the gross errors δ, the covariance matrix Σ of the random error and

the gross error indicator matrix η. In order to reduce the solution complexity of directly
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solving the MAP problem, a hierarchical Bayesian framework is developed. The layered

scheme allows us to obtain MAP estimates of the correct values of the measurements x, the

magnitudes of the gross errors δ in the first layer, the covariance matrix Σ of the random

error in the second layer and the gross error indicator matrix η in the third layer. To enhance

the performance of the hierarchical Bayesian algorithm, the serial strategy is combined with

the hierarchical Bayesian algorithm. The proposed method is not very sensitive to noise so

that it can handle a large standard deviation of the noise. The proposed method is applicable

to both linear and nonlinear cases. For linear case, the analytical forms of estimated values

of the correct values of variables and magnitudes of gross errors are obtained. For nonlinear

case, there is no need to do linearization or approximation in the proposed method.

The effectiveness of the proposed Bayesian approach and the serial strategies for simulta-

neous gross error detection and data reconciliation problem are demonstrated on simulated

data-sets. In the linear case, it is shown that the serial strategy is able to improve the perfor-

mance under this situation. The results show that if the gross errors are correctly detected,

the estimations of other variables will be very close to the exact values.
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Chapter 3

Robust Optimization Approximation

for Joint Chance Constrained

Optimization Problem

3.1 Introduction

In many optimization applications, it is assumed that the problem data are known and

certain. However, uncertainties exist in almost every different realistic problem due to the

random nature of the process data, measurement errors or other reasons. If the uncertainties

are ignored while solving the optimization problem, it may lead to suboptimal or even

infeasible solutions for practical applications. Thus, handling uncertainties in optimization

problem becomes a crucial issue in both the academic and practical fields. Chance constraints

and robust optimization are two popular ways to model and solve the optimization problems

with uncertainty. Chance constraints quantify the uncertainty using probability distribution,

which place a restriction on the probability of constraint satisfaction. On the other hand,

robust optimization is a distribution-free approach to solving optimization problems with

uncertainty. The main idea of robust optimization is to include the uncertainty in a given

uncertainty set such that all the realizations in the uncertainty set will satisfy the constraints.
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Chance constraint problem with a single constraint lying in the probability term is referred

to as ICC, which has been studied and proved to be tractable with specific distributions

and conditions [22, 23, 24]. However, if there are multiple constraints inside the probability

term, which is known as JCC problem, the problem cannot be directly solved in general,

and approaches should be developed to approximate JCC into tractable problems.

In this chapter, the application of the robust counterpart optimization to approximate the

joint chance constrained problem is studied. First, the joint chance constraint is transformed

into an individual chance constraint with the aid of the maximization operator. Then, the

individual chance constraint is approximated by the robust optimization formulation through

probability inequalities. Finally, different formulations of robust optimization are derived

based on different types of uncertainty set. To improve the approximation and reduce the

solution conservativeness, a two-layer optimization algorithm is proposed. The inner layer

aims to reduce the size of the uncertainty set while satisfying the desired solution reliability,

and the outer layer optimizes over a parameter t used for upper bounding the indicator

function. The performance of the robust optimization approximation and the proposed

improvement method is demonstrated through different examples.

The rest of this chapter is organized as follows. In Section 3.2, the joint chance con-

strained problem under investigation is presented with a general form. In Section 3.3, the

joint chance constraints are approximated by uncertainty set induced robust counterpart

optimization formulation based on different types of uncertainty set. In Section 3.4, a two-

layer algorithm is proposed to improve the robust optimization approximation. An iterative

algorithm is applied to select the appropriate set size in the inner layer. The outer layer

performs optimization over the parameter t which is used in indicator function upper bound-

ing. A norm optimization problem and a probabilistic transportation problem are studied

to demonstrate the performance of the proposed method in Section 3.5. The chapter is

concluded in Section 3.6.
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3.2 Problem Statement

A general chance constrained optimization problem takes the following form:

min
x∈X

f(x)

s.t. P {G(x, ξ) ≤ 0} ≥ 1− ε
(3.1)

where G(x, ξ) = [g1(x, ξ) · · · gn(x, ξ)]T , ξ is a random vector with support Ξ ⊆ Rm. The

above constraint is an individual chance constraint with n = 1, and a joint chance constraint

with n > 1.

In this chapter, the following linear joint chance constraint is considered

P

(
yi0 +

m∑
k=1

yikξk ≤ 0, i = 1, 2, ..., n

)
≥ 1− ε (3.2)

The vector form representation of the joint chance constraint in (3.2) is as follows:

P
(
yi0 + (yi)

T
ξ ≤ 0, i = 1, 2, ..., n

)
≥ 1− ε (3.3)

where yi = [yi1 y
i
2 · · · yim]T , and ξ = [ξ1 ξ2 · · · ξm]T . In this chapter, without loss of general-

ity, it is assumed that the uncertain parameters ξk are normalized from random variable X.

The normalization is (X − µ)/σ for unbounded distribution using the mean µ and standard

deviation σ, or (X −Xmin)/(Xmax −Xmin) for bounded distribution using upper and lower

bounds.

Robust optimization approximation for the joint chance constraint (3.3) will be derived

in the subsequent section.
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3.3 Robust Optimization Approximation

3.3.1 Approximation of JCC

Joint chance constraint (3.3) can be transformed into an individual chance constraint problem

by introducing the maximization operator. The equivalent expression of (3.3) is

P
(

max
i

{
yi0 + (yi)

T
ξ
}
≤ 0
)
≥ 1− ε (3.4)

or

P
(

max
i

{
yi0 + (yi)

T
ξ
}
> 0
)
≤ ε (3.5)

The general robust optimization approximation model for the joint chance constraint

(3.3) can be further derived based on the above individual chance constraint, and the ap-

proximation is given by the following property.

Property 1. An inner approximation of chance constraint (3.5) is given by



φ+
∑
i

γi ≤ εt

φ ≥ u0 + max
ξ∈U

ξTu

φ ≥ 0

γi ≥ vi0 + max
ξ∈U

ξTvi ∀i

γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.6)

where t > 0, αi > 0, i = 1, 2, ..., n, U is the support of uncertainty for random vector ξ,

w = [w1 w2 · · · wm]T , u = [u1 u2 · · · um]T , yi = [yi1 y
i
2 · · · yim]T and vi = [vi1 v

i
2 · · · vim]T .
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Figure 3.1: Illustration of the upper bound on the indicator function

Proof. The proof follows the idea introduced by Chen et al. [49]. First, Inequality (3.5)

is equivalent to the following Inequality (3.7) by introducing auxiliary variable αi > 0,

i = 1, 2, .., n

P
(

max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}
> 0
)
≤ ε (3.7)

Define η = max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}

, Inequality (3.7) can be rewritten as

P {η > 0} ≤ ε (3.8)

The left hand side of Inequality (3.8) can be equivalently written as follows using indicator

function,

P {η > 0} = E
[
1(0,+∞) (η)

]
(3.9)

Apply an upper bound 1
t
[η + t]+ (with t > 0, [u]+ takes value u if u is positive and 0

otherwise) on the indicator function 1(0,+∞) (η) as shown in Figure 3.1, it is obtained that

P {η > 0} = E
[
1(0,+∞) (η)

]
≤ E

{
1

t
[η + t]+

}
=

1

t
E
{

[η + t]+
}

(3.10)

Applying the relation in Inequality (3.10) to Inequality (3.7),

P
(

max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}
> 0
)
≤ 1

t
E

[(
max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}

+ t
)+
]

(3.11)
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Next, the right-hand-side of the above equation is further approximated with the Meilij-

son and Nadas inequality on the expected maximum [79] :

E

[(
max
i
Xi + t

)+
]
≤ E

[
(Y + t)+]+

∑
i

E
[
(Xi − Y )+] for any r.v. Y (3.12)

where Xi are random variables. Let Y = w0 + wTξ, where w = [w1 w2 · · · wm]T , and apply

the above inequality for the expectation term in Inequality (3.11),

E

[(
max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}

+ t
)+
]

≤ E
[(
w0 + wTξ + t

)+
]

+
∑
i

E

[(
αiy

i
0 + αi(y

i)
T
ξ − w0 −wTξ

)+
] (3.13)

Define u0 = w0 + t, u = w, vi0 = αiy
i
0 − w0 and vi = αiy

i −w, Inequality (3.13) can be

written as

E

[(
max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}

+ t
)+
]

≤ E
[(
u0 + uTξ

)+
]

+
∑
i

E

[(
vi0 + (vi)

T
ξ
)+
] (3.14)

which is equivalent to

E

[(
max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}

+ t
)+
]

≤ E
[(
u0 + ξTu

)+
]

+
∑
i

E
[(
vi0 + ξTvi

)+
] (3.15)

As introduced by Chen and Sim [50], when U is the support of uncertainty, an upper

bound of the expectation term in (3.15) is given by

E
[
(µ0 + ξTµ)

+
]
≤ (µ0 + max

ξ∈U
ξTµ)+ (3.16)
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Based on Inequality (3.15) and (3.16), the following relation holds

E

[(
max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}

+ t
)+
]

≤ (u0 + max
ξ∈U

ξTu)+ +
∑
i

(vi0 + max
ξ∈U

ξTvi)
+

(3.17)

and after applying Inequality (3.17) to Inequality (3.11),

P
(

max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}
> 0
)

≤ 1
t

{
(u0 + max

ξ∈U
ξTu)

+
+
∑
i

(vi0 + max
ξ∈U

ξTvi)
+
} (3.18)

So an inner approximation to P
(

max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}
> 0
)
≤ ε is

1

t

{
(u0 + max

ξ∈U
ξTu)

+
+
∑
i

(vi0 + max
ξ∈U

ξTvi)
+

}
≤ ε (3.19)

which is further equivalent to

(u0 + max
ξ∈U

ξTu)+ +
∑
i

(vi0 + max
ξ∈U

ξTvi)
+ ≤ εt (3.20)

Defining auxiliary variables φ = (u0 + max
ξ∈U

ξTu)+ and γi = (vi0 + max
ξ∈U

ξTvi)+, Inequality

(3.20) is simplified as

φ+
∑
i

γi ≤ εt (3.21)

where the (·)+ terms can be further removed in the following equivalent formulation,



φ+
∑
i

γi ≤ εt

φ ≥ u0 + max
ξ∈U

ξTu

φ ≥ 0

γi ≥ vi0 + max
ξ∈U

ξTvi ∀i

γi ≥ 0 ∀i

(3.22)
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To summarize, a safe approximation to the chance constraint (3.5) is given by



φ+
∑
i

γi ≤ εt

φ ≥ u0 + max
ξ∈U

ξTu

φ ≥ 0

γi ≥ vi0 + max
ξ∈U

ξTvi ∀i

γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.23)

In Property 1, probability bounds, in Inequality (3.10), Inequality (3.13) and Inequality

(3.16), are used to approximate the original joint chance constraints. A convex piecewise

linear function is used in Inequality (3.10) to upper bound the indicator function, which

can keep the problem convex. In Inequality (3.13), the Meilijson and Nadas inequality

shown in Inequality (3.11) are used to upper bound the expected maximum to eliminate

the maximizing term. In Inequality (3.16), an upper bound on the expected term was used,

which connects the approximation to uncertainty set induced robust optimization.

One of the major advantage of using these bounds is that finally the uncertainties are still

in affine structure of the robust optimization formulation, which can be effectively solved.

By adjusting the set size parameter ∆ and the intercept parameter t with the proposed

two-layer algorithm, the bounds can be further tightened and the solutions can be improved.

Based on Property 1, different formulations of uncertainty set induced robust counterpart

optimization can be derived based on different types of uncertainty set U .
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3.3.2 Robust Optimization Approximation Formulations

While the uncertainty set U covers the whole support of uncertainty distribution, it leads to

the worst case scenario approximation for joint chance constraint (3.5). Correspondingly, any

feasible solution of the robust optimization problem will be a feasible solution to the original

joint chance constrained problem. However, the solution can be too conservative if the set U

is designed to cover the full uncertainty space. To seek trade-off between conservativeness and

robustness, the uncertainty set U can be designed based on the desired level of constraint

satisfaction probability. Li et al. [48] investigated different types of uncertainty set for

robust optimization, including box, ellipsoidal, polyhedral, interval+ellipsoidal (IE), and

interval+polyhedral (IP), etc. They also developed different formulations of the robust

counterpart corresponding to each type of uncertainty set.

For the following uncertain constraint

∑
j

ξjxj ≤ b, (3.24)

the uncertainty set induced robust counterpart optimization constraint is

max
ξ∈U(∆)

∑
j

ξjxj ≤ b (3.25)

For example, with box uncertainty set Ubox = {ξ | |ξj| ≤ ∆,∀j }, the robust counterpart

optimization constraint (3.25) is equivalent to:

∆
∑
j

|xj| ≤ b (3.26)

where the absolute value operator can be further eliminated and the equivalent formulation

is 
∆
∑
j

pj ≤ b

−pj ≤ xj ≤ pj ∀j
(3.27)
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The above robust counterpart optimization formulations can be applied to the robust

optimization approximation model (3.6) for the joint chance constrained problem as shown

in the following property.

Property 2. For the joint chance constraint (3.3), with a box type uncertainty set defined

as Ubox = {ξ | |ξk| ≤ ∆, k = 1, ..,m}, the corresponding robust optimization approximation

model (3.6) is equivalent to 

φ+
∑
i

γi ≤ εt

φ ≥ u0 + ∆
∑
k

pk

−pk ≤ uk ≤ pk ∀k

φ ≥ 0

γi ≥ vi0 + ∆
∑
k

qik ∀i

−qik ≤ vik ≤ qik ∀i, k

γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.28)

where ∆ is the adjustable set size of the box, and pk and qik are the auxiliary variables.

Following the same idea, the robust optimization approximation model (3.6) can be

reformulated based on the type of uncertainty set following the derivation provided by Li et

al. [48]. They are given in the following properties.

Property 3. For the joint chance constraint (3.3), with a polyhedral type uncertainty set de-

fined as Upolyhedral =

{
ξ

∣∣∣∣ m∑
k=1

|ξk| ≤ ∆

}
, the corresponding robust optimization approximation
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model (3.6) is equivalent to 

φ+
∑
i

γi ≤ εt

φ ≥ u0 + ∆z0

z0 ≥ pk ∀k

−pk ≤ uk ≤ pk ∀k

φ ≥ 0

γi ≥ vi0 + ∆zi ∀i

zi ≥ qik ∀i, k

−qik ≤ vik ≤ qik ∀i, k

γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.29)

Property 4. For the joint chance constraint (3.3), with an ellipsoidal type uncertainty set

defined as Uellipsoid =

{
ξ

∣∣∣∣ m∑
k=1

ξ2
k ≤ ∆2

}
, the corresponding robust optimization approximation
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model (3.6) is equivalent to



φ+
∑
i

γi ≤ εt

φ ≥ u0 + ∆
√∑

k

u2
k

φ ≥ 0

γi ≥ vi0 + ∆
√∑

k

(vik)
2 ∀i

γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.30)

Property 2-4 are appropriate for joint chance constraint under unbounded uncertainty

distribution, since the uncertainty set size ∆ can be sufficiently large (while the robust

optimization problem is still feasible) to achieve the desired probability level of constraint

satisfaction. The following two properties provide robust optimization approximations for

joint chance constraint under bounded uncertainty distribution. without loss of generality,

it is assumed that the uncertain parameters ξk distribute in the range [-1, 1].

Property 5. For the joint chance constraint (3.3), with a interval+polyhedral type uncer-

tainty set defined as Uin+poly =

{
ξ

∣∣∣∣ m∑
k=1

|ξk| ≤ ∆, |ξk| ≤ 1, k = 1, ..m

}
, the corresponding
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robust optimization approximation model (3.6) is equivalent to



φ+
∑
i

γi ≤ εt

φ ≥ u0 + ∆z0 +
∑
k

s0
k

z0 + s0
k ≥ pk ∀k

−pk ≤ uk ≤ pk ∀k

z0 ≥ 0, s0
k ≥ 0, φ ≥ 0

γi ≥ vi0 + ∆zi+
∑
k

sik ∀i

zi + sik ≥ qik ∀i, k

−qik ≤ vik ≤ qik ∀i, k

zi ≥ 0, sik ≥ 0, γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.31)

Property 6. For the joint chance constraint (3.3), with a interval+ellipsoidal type uncer-

tainty set defined as Uin+ellip =

{
ξ

∣∣∣∣ m∑
k=1

ξ2
k ≤ ∆2, |ξk| ≤ 1, k = 1, ...,m

}
, the corresponding
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robust optimization approximation model (3.6) is equivalent to



φ+
∑
i

γi ≤ εt

φ ≥ u0 + ∆
√∑

k

(r0
k)

2
+
∑
k

|uk − r0
k|

φ ≥ 0

γi ≥ vi0 + ∆
√∑

k

(rik)
2
+
∑
k

|vik − rik| ∀i

γi ≥ 0 ∀i

u0 = w0 + t

u = w

vi0 = αiy
i
0 − w0 ∀i

vi = αiy
i −w ∀i

(3.32)

Due to the bilinear terms involving variables αi, the robust formulations based on the

above five uncertainty sets are non-convex problems. However, with fixed value of αi, the

robust formulations based on box, polyhedral and interval+polyhedral uncertainty sets are

linear optimization problem, and the robust formulations based on ellipsoidal and inter-

val+ellipsoidal uncertainty sets are second order cone programming problem.

For fixed parameter t and ∆, the complete robust optimization approximation model and

solution for the joint chance constraint problem (3.2) is given as

xRO(t,∆) = arg min
x∈X
{f(x), s.t.(32)or(33)or(34)or(35)or(36)}

fRO(t,∆) = f(xRO)
(3.33)

With the robust solution, the probability of joint chance constraint satisfaction can be

estimated with Monte Carlo sampling technique: if N samples are tested on the joint con-

straint, then the estimation is given by

psatisfactionRO (t,∆) =
1

N

N∑
s=1

1(0,∞)

(
max
i

{
yi0 + (yi)

T
ξ(s)
}
≤ 0
)

(3.34)
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For the robust optimization approximation problem with a fixed type of the uncertainty

set, the relationships between the optimal objective value and the size of the uncertainty

set, the probability of constraint satisfaction and the size of the uncertainty set are shown

in the following example.

Example 1

Consider the following joint chance constrained problem:

max 8x1 + 12x2

s.t. P

 ã1x1 + ã2x2 ≤ 140

ã3x1 + ã4x2 ≤ 72

 ≥ 1− ε

x1, x2 ≥ 0

(3.35)

There are uncertainties in the constraint coefficients, which are described as ã1 = 10+ξ1,

ã2 = 20 + 2ξ2, ã3 = 6 + 0.6ξ3, and ã4 = 8 + 0.8ξ4. It is assumed that ξ1, ξ2, ξ3 and ξ4

follow independent uniform distributions in the range [−1, 1]. The reliability level is set as

ε = 0.2 (i.e., the desired probability of satisfaction is 0.8) and the corresponding joint chance

constrained problem is studied.

To write the joint chance constraint in this example into the general form, it can be

observed that the uncertainties in this example are in a linear structure. For a general for-

mulation of the linear structured uncertainties, we have the following constraint representing

each constraint in a joint chance constrained problem:

(a0
1 + a1

1ξ1 + · · ·+ am1 ξm)x1 + (a0
2 + a1

2ξ1 + · · ·+ am2 ξm)x2 + · · ·

+
(
a0
p + a1

pξ1 + · · ·+ amp ξm
)
xp ≤ (b0 + b1ξ1 + · · ·+ bmξm)

(3.36)

where akj and bk (j = 1, ..., p, k = 0, ...,m) are known constants, and ξk (k = 1, ...,m) are

uncertain parameters, p and m are the number of decision variables and the number of

uncertain parameters, respectively.
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Constraint (3.36) can be rearranged as

(
a0

1x1 + a0
2x2 + · · ·+ a0

pxp − b0
)

+ (a1
1x1 + a1

2x2 + · · ·+ a1
pxp − b1)ξ1 + · · ·

+(am1 x1 + am2 x2 + · · ·+ amp xp − bm)ξm ≤ 0
(3.37)

Define

y0 =
p∑
j=1

a0
jxj − b0

yk =
p∑
j=1

akjxj − bk, k = 1, ...,m
(3.38)

Then constraint (3.37) becomes

y0 +
m∑
k=1

ykξk ≤ 0 (3.39)

With the above procedure, the joint chance constraints with linear combination of uncer-

tainties can be reformulated into the general form considered in this chapter (see Inequality

(3.3)). In this example, the joint chance constraint can be reformulated as

P
(

max
i

{
yi0 + (yi)

T
ξ
}
> 0
)
≤ ε with the following definitions:

y1
0 = 10x1 + 20x2 − 140

y2
0 = 6x1 + 8x2 − 72

y1 =

[
x1 2x2 0 0

]T
y2 =

[
0 0 0.6x1 0.8x2

]T
(3.40)

Since this problem contains bounded uncertainties, the robust counterpart optimization

constraints can be formulated using the box, IP, and IE type of uncertainty set, respectively.

Figure 3.2 shows the relationships between the objective value/probability of satisfaction and

the set size. It is observed that the objective value decreases as the set size increases, which

means that a larger set size leads to a more conservative robust optimization approximation.

On the other hand, the probability of satisfaction (simulated with 100,000 samples) is higher
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with a larger set size. There is a trade-off between the optimal objective value and the

probability of constraint satisfaction. For all the three types of approximations, the solution

of the robust optimization approximation can satisfy the desired target 0.8 with a set size

value less than 1, which verifies that it is not necessary to design the uncertainty set U to

cover the whole uncertainty space. Moreover, the box uncertainty set leads to the most

conservative approximation among the three types and the IE uncertainty set provides the

least conservative approximation.
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Figure 3.2: Robust optimization approximation with different uncertainty sets

The above robust optimization approximation framework contains several factors that

affect the conservativeness of the approximation: the size of the uncertainty set ∆, the value

of t and the values of αi. Introducing α in the maximizing term in Inequality (3.7) is to add

a weight on different constraints. Optimizing α is similar as optimizing εi (
∑
i

εi ≤ ε) for

each individual constraint in Bonferroni’s inequality approximation. It would improve the

performance of the robust optimization approximation framework if α is treated as design

variables rather than as parameters. However, if parameters αi are considered as variables,

the robust optimization approximation problem includes bilinear terms and become non-

convex. To make the approximation problem tractable, the simplest way is to set αi =

1, i = 1, 2, ..., n, which is the similar idea as in Bonferroni’s inequality approximation setting

εi = ε/n. This chapter focuses on the optimization over the size of the uncertainty set ∆

and the value of the parameter t. The influence of the selection of α will be discussed using

example 2.
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3.4 Improve the Robust Optimization Approximation

To improve the robust optimization approximation for the joint chance constrained problem,

the optimal objective value should be improved while the robust solution satisfies the target

reliability. This can be represented by the following optimization problem.

min
t,∆

fRO(t,∆)

s.t. psatisfactionRO (t,∆) ≥ 1− ε
(3.41)

The distribution about the uncertainty is applied in calculating the simulated probability of

satisfaction (explained in Equation (3.34)). The simulated probability of satisfaction is im-

portant in adjusting the set size and the value of t for the proposed two-layer algorithm which

aims to find the best objective value that meets the probability of satisfaction requirement.

This is the step where the comprehensive distribution information is applied.

Since the objective function and the constraint rely on the solution of the robust opti-

mization problem, a two-layer algorithm is proposed for the above problem. In the inner

layer, the set size ∆ is adjusted with a fixed parameter t. In the outer layer, the value of t

is optimized.

3.4.1 Optimization over Uncertainty Set Size ∆

The joint chance constrained problem has been approximated by the uncertainty set in-

duced robust optimization with different formulations corresponding to different types of

uncertainty set in Section 3.3. As shown in Example 1, for the same type of uncertainty set,

when the set size increases (leading to a smaller feasible region for the robust optimization

problem), the optimal objective value of the robust optimization problem will decrease (for

a maximizing problem). That is, a larger set size leads to a more conservative solution for

the chance constrained problem. In other words, to reduce the conservativeness, the set size

should be as small as possible. However, a too small set size cannot cover enough informa-
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tion about the uncertainties, which will violate the desired solution reliability of the original

chance constrained problem. Uncertainty set size design is a crucial issue for the trade-off

between conservativeness and robustness.

Table 3.1: Algorithm for optimization over the set size

Algorithm for set size optimization

Fix t, initialize the lower bound and the upper bound for the set size [lb, ub] = [a, b],
set size = 0.5(a+ b)
set reliability level ε
while (|Psat − (1− ε)| > tolerance)

Solve robust optimization problem and evaluate the probability of
satisfaction Psat
if (Psat < 1− ε)

lb = size
else(Psat > 1− ε)

ub = size
end
size = 0.5(lb+ ub)

end

Li and Floudas [56] proposed an iterative algorithm to select the proper uncertainty set

size. There is a desired degree of constraint satisfaction in the joint chance constrained

problem. The main idea of the iterative method is to reduce the gap between the desired

satisfaction level and the true probability of satisfaction by adjusting the set size through

iterations. In each iteration, the set size is adjusted based on solution validation. For the

current robust solution, if the probability of constraint satisfaction is greater than the desired

level, the set size is decreased, and if the probability of constraint satisfaction is less than

the desired level, the set size will be increased. The adjustment is repeated until the gap

between the desired satisfaction level and the actual probability of satisfaction is within a

pre-defined tolerance. The algorithm is shown in Table 3.1.

Example 1 (continued)

The set size optimization algorithm is applied to design the size of the uncertainty set. The

box uncertainty set based robust approximation model is applied here. The algorithm stops
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after six iterations and it takes two seconds. Figure 3.3 shows the changes of the probability

of constraint satisfaction, the optimal objective value and the set size with the iterations,

respectively. The final solution satisfies the joint constraint with probability 0.8089. At the

end of the iterative algorithm, a relatively small set size 0.5690 is found and the corresponding

optimal objective value is 94.62, which is improved from value 80.0 of the first iteration.
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Figure 3.3: Iterative solution procedure for set size optimization

3.4.2 Optimization over the Parameter t

For the robust optimization approximation of the joint chance constraint problem proposed in

section 3.3, some upper bounds on P
(

max
i

{
αiy

i
0 + αi(y

i)
T
ξ
}
> 0
)

are used to approximate

the original joint chance constraint, which makes the approximation problem conservative.

If we can make the upper bounds tighter by adjusting some of the parameters, the problem

will be less conservative and the solution will become better. In Inequality (3.10), an upper

bound is used to approximate the indicator function and a parameter t is introduced. As

illustrated in Figure 3.1, parameter t controls the upper bounding function 1
t
[(η + t)]+ of

the indicator function 1(0,+∞) (η). If t varies, the difference between the upper bound and

71



the indicator function changes accordingly. The key point is to find the best value of t that

makes the approximation least conservative. Example 2 is used to illustrate the above idea.

Example 2

This example is taken from Pagnoncelli et al. [30]. Two types of materials are blended to

generate products A and B. The demands for product A and B are 7 and 4, respectively.

The problem is formulated in (3.42). Parameter ω1 and ω2 are subject to uncertainties. It is

assumed that they are independent continuous random variables following uniform distribu-

tion in [1, 4] and [1/3, 1] respectively. The objective is to minimize the total amount of the

materials used.

min x1 + x2

s.t. P

 ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

 ≥ 1− ε

x1, x2 ≥ 0

(3.42)

Analytical solution is available for this problem. For ε ∈ [0.5, 1]

x∗1 =
18

9 + 8(1− ε)
, x∗2 =

2(9 + 28(1− ε))
9 + 8(1− ε)

(3.43)

For ε ∈ [0, 0.5]

x∗1 =
9

11− 9(1− ε)
, x∗2 =

41− 36(1− ε)
11− 9(1− ε)

(3.44)

Our goal is to find the effect of t on the solution of robust optimization approximation.

The reliability level ε is set as 0.5. Different values of t (i.e., 0.01, 0.5, 1, 2.5) are tested for

different runs and the results are plotted in Figure 3.4. For each case, the set size varies from

0 to 1 and the robust optimization problem (3.28) (based on box uncertainty set) is solved

and the solution is plotted. The true solutions under different ε are also plotted in Figure

3.4 for comparison.

Figure 3.4 shows the relationship between the probability of satisfaction and the optimal
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Figure 3.4: Effect of parameter t in the robust optimization approximation

objective value. The dotted line represents the analytical solution of the original chance

constrained problem. The solid lines represent the robust approximations. It is shown that

for different values of t, the conservativeness of the results are different. As t increases from

0, the line approaches to the target line until t equals 1 and then the line goes away from

the target line as t increases from 1 to 5. The line for t = 1 almost coincides with the true

solution curve, which means that the performance of the corresponding robust optimization

approximation is closest to the true solution among the different t values tested.

The task here is to find the best value of t. For a joint chance constrained problem,

the desired probability of satisfaction is specified by the user. So to find the line closest

to the target line is to find the value of t which achieves the best possible objective value

with the desired probability of constraint satisfaction. According to the above observation,

the optimal objective of the robust model can be improved when t is adjusted (while sat-

isfying the same probability level). Some scalar optimization algorithm, such as the golden

section search algorithm can be applied to search the optimal value of t. The following al-

gorithm is proposed to adjust the parameter t such that the probability is satisfied and the

approximation is improved at the same time. The algorithm is summarized in Table 3.2.

The algorithm is taken for Example 2 with ε = 0.5 and the results are shown in Figure 3.5
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Table 3.2: Algorithm for optimization over t
Algorithm for optimization over parameter t

Initialization [lb, ub] = [lb1, ub1], set k = 1 and τ =
√

5−1
2

l = t0 = lb1 + (1− τ)(ub1 − lb1), r = t1 = lb1 + τ(ub1 − lb1)
while(ubk − lbk < tolerance)

Evaluate f(l) and f(r) using set size optimization
algorithm with fixed set size l and r
if (f(r) < f(l))

lbk+1 = l, ubk+1 = ubk, l = r
r = tk+1 = lbk+1 + τ(ubk+1 − lbk+1)

else (f(r) > f(l))
lbk+1 = lbk, ubk+1 = r, r = l
l = tk+1 = lbk+1 + (1− τ)(ubk+1 − lbk+1)

end
k = k + 1

end

and Figure 3.6. Figure 3.5 shows the procedure of the outer layer of the algorithm proposed.

The evolutions of the value of t, the current best objective value and the corresponding

probability of satisfaction along the iterations are plotted separately. The objective value

decreases (improves) as the algorithm goes on since the blending example is a minimization

problem. The probability of satisfaction reaches the desired level (0.5 in the example) accord-

ing to the adjustment of the set size in each iteration at the end of the algorithm. Figure 3.6

shows the changes of the probability of constraint satisfaction, the optimal objective value

and the set size with the inner iterations for the final outer layer iteration. The probability

of satisfaction converges to the desired satisfaction level 0.5 according to the adjustment of

the uncertainty set size as the iteration goes on. At the end of the iterative algorithm, a

relatively small set size is found and the corresponding optimal objective value is 4.95, which

is improved (from 100 at the first iteration) and it is very close to the analytical objective

value of 4.92.
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Figure 3.5: Solution procedure for the outer layer
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Figure 3.6: Solution procedure for the inner layer (at the last iteration of outer layer with
t=0.7)

In this example, the effect of the selection of αi is also tested. The two-layer algorithm

is taken to solve the problem with different values of αi, and the value of ε is set as 0.5. The

results are summarized in Table 3.3.
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Table 3.3: Results for different selections of αi
α1 α2 α1/α2 Objective value
1 1 1 4.95

0.2 0.2 1 4.95
1 5 0.2 5.07

0.2 1 0.2 5.07
1 0.2 5 4.93
5 1 5 4.92

From the above table, the following observations can be obtained. First, the values of αi

will influence the solutions of the proposed robust formulation and the two-layer algorithm.

Second, since αi are the weights on different constraints, the proportions between different

αi rather than the absolute values of αi are taking effects. For example, while the proportion

α1/α2 is the same, and the optimal objective value obtained is the same even the values of α1

and α2 are different. So proper selection of the proportions between αi can further improve

the performance of the proposed method.

3.5 Case Studies

In this section, numerical studies are performed to further investigate the proposed method.

The proposed optimization algorithms over set size ∆ and parameter t are implemented

in MATLAB. The robust problems are all formulated with box type uncertainty set. The

norm optimization problem is a nonlinear problem and it is solved using IPOPT solver. The

transportation problem is a linear problem and it is solved by CPLEX solver in GAMS 23.9.
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3.5.1 Norm Optimization Problem

Consider the following norm optimization problem [36]:

max
d∑
j=1

xj

s.t. P

{
d∑
j=1

ζ2
ijx

2
j ≤ 100, i = 1, ...,m

}
≥ 1− ε

xj ≥ 0, j = 1, ..., d

(3.45)

where x = (x1, ..., xd)
T ∈ Rd, ζ ∈ Rd×m, ζij are independent and identically distributed

random variables with standard normal distribution. The above norm optimization problem

has an analytical solution. The optimal solution is x1 = . . . = xd = 10√
F−1

χ2
d
[(1−ε)1/m]

, where

F−1
χ2
d

is the inverse cumulative distribution function of chi-square distribution with d degrees

of freedom. The joint probability of constraint satisfaction can be evaluated as
[
F
χ2
d

(
100
x21

)]m
.

Let ξij = ζ2
ij, then ξij is subject to chi-squared distribution with one degree of freedom,

i.e., ξij ∼ χ2
1. Furthermore, we can introduce auxiliary variable zj to replace x2

j and to make

a linear chance constraint. The equivalent model is

max
d∑
j=1

xj

s.t. P

{
d∑
j=1

ξijzj ≤ 100, i = 1, ...,m

}
≥ 1− ε

x2
j ≤ zj, j = 1, ..., d

xj ≥ 0, j = 1, ..., d

(3.46)

The above problem can be solved using the proposed robust optimization approximation

method. In this example, it is selected as d = 10,m = 10. For this example, it is found that

solutions do not change as the value of t varies. Thus, for this example, the optimization

over set size ∆ is sufficient to find the optimal solution. The solutions obtained by robust

optimization approximation and set size optimization converge to the true solutions deter-

mined analytically. For instance, it is set that ε = 0.05, t = 1 and the uncertainty set size
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is changed from 1 to 4. The results obtained from the analytical solution and by robust

optimization approximation are plotted in Figure 3.7 for comparison.

The result shown in Figure 3.7 shows that the solution obtained by the proposed robust

optimization formulation coincide with the analytical solution, which implies that those

bounding approximations are tight.
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Figure 3.7: Fix the value of t = 1 and change set size from 1 to 4

Table 3.4: Results for norm optimization problem
Optimal solution of JCC Solution of RO approximation (t = 1)

ε Objective Probability of Set size Objective Probability of CPU time
satisfaction ∆ satisfaction (sec)

0.05 19.9508 0.95 2.4931 19.9300 0.9522 7.28
0.2 21.8932 0.8 2.0731 21.8700 0.7992 6.18
0.5 24.0076 0.5 1.7235 23.9800 0.5012 8.22

For fixed t = 1, the solutions of several different reliability levels (ε is set as 0.05, 0.2 and

0.5) are reported in Table 3.4. In Table 3.4, the optimal solutions of the robust optimization

approximation are obtained using only the inner layer (optimization over the set size), and the

true optimal solutions are listed for comparison. The results show that for each value of ε the

probability of constraint satisfaction (which can be evaluated analytically for this example)

reaches the desired reliability. Furthermore, the final objective value of the proposed method

is very close to the true optimal objective value, which implies that the proposed algorithm
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can lead to the optimal solution of this problem.

3.5.2 Probabilistic Transportation Problem

The problem considered here is taken from Luedtke et al. [80]. The products are transported

from suppliers to customers. There is a limited capacity Mi for each supplier and each cus-

tomer has a demand bj. The demand bj is assumed to follow independent normal distribution

N (1000, 10). The transportation cost of shipping a unit of product from supplier i to cus-

tomer j is denoted by cij. The objective is to minimize the total cost of transportation. The

transportation problem is formulated as a joint chance constrained problem in (3.47).

min
∑
i,j

cijxij

s.t. P

{∑
i

xij ≥ bj, ∀j
}
≥ 1− ε∑

j

xij ≤Mi, ∀i

xij ≥ 0,∀i, j

(3.47)

Consider a case with 40 suppliers and 100 customers. The limited capacities Mi are all

set as 2550. Different reliability levels are considered (ε is set as 0.05, 0.1, 0.15 and 0.5).

The results are displayed in Table 3.5.

Table 3.5: Results for transportation problem
ε t Set size Objective Probability of Reliability CPU time

∆ value (×105) satisfaction upper bound (sec)
0.05 0.9268 3.0156 1.2689 0.9547 0.0492 230.69
0.1 2.0007 2.4973 1.2675 0.8962 0.1000 224.86
0.15 1.8943 2.4511 1.2668 0.8539 0.1433 267.46
0.5 2.1072 2.1315 1.2638 0.5043 0.4997 313.16

The transportation problem is a cost minimization problem. It is shown from above

results that as the allowed violation level ε increases, the required size of the box uncertainty

set decreases and the corresponding total transportation cost decreases. The final value of
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the parameter t varies for the different cases. The fifth column in Table 3.5 lists the simulated

probabilities of constraint satisfaction (with 100,000 samples) for the robust solution obtained

by the proposed method. The simulated probability of satisfaction is very close to the desired

level for each case of ε, so the solution is not conservative. For this example, the solution

reliability upper bound is also calculated (on the probability of constraint violation) using

the methods introduced in Section 4 of [25]. When calculating the reliability upper bound,

90% confidence level is considered and 100000 samples are generated from the distribution of

uncertainty. It is shown that they are all less than the corresponding target violation level,

which means that the solutions obtained by the robust optimization approximation and the

two-layer algorithm are reliable at the 90% confidence level.

3.6 Conclusion

This chapter investigates the robust optimization approximation method for solving joint

chance constrained optimization problems. Different formulations of uncertainty set induced

robust counterpart optimization are derived based on the type of the uncertainty set. To

avoid a worst-case scenario approximation and improve the quality of robust solution while

satisfying the target solution reliability, a two-layer algorithm is proposed. In the inner

level, an iterative method is used for the set size design, with the objective of selecting the

minimum possible set size that leads to the target probability of constraint satisfaction. In

the outer layer, the parameter t (used for upper bounding the indicator function) is adjusted

to improve the quality of the robust optimization approximation. The value of t is optimized

with a golden section method. For each fixed value of t, an inner set size optimization problem

is solved. The proposed method has the advantage that the robust optimization problem is

tractable and the computational complexity only relies on the solution of multiple tractable

robust optimization problems. The performance of the robust approximation algorithm

is demonstrated in a norm optimization problem and a transportation problem. While

calculating the simulated probability of constraint satisfaction, the distribution information
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about the uncertainty is unrestricted. So the proposed method is applicable to general

distributions. The proposed formulations can be applied to linear joint chance constraint

with both continuous and integer variables. This can be seen from the derivations where no

integrality restriction on variables is required.

The proposed framework can be directly applied or extended to address correlation in the

joint chance constraint: 1) If the same uncertain parameter appears in multiple constraint

of the JCC, the problem can be addressed using the proposed framework; 2) If there is

correlation between different uncertain parameters appearing in the joint constraints, the

proposed framework can be extended by applying robust optimization for single constraint

under correlated uncertainty.
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Chapter 4

Robust Optimization under

Correlated Uncertainty: Formulations

and Computational Study

4.1 Introduction

In Chapter 3, the importance of considering uncertainty in optimization has been discussed.

With the advantages of distribution-free, simple formulation and tractability, robust opti-

mization has been demonstrated to be an effective way to deal with uncertainty in opti-

mization problem. Although considerable progress has been made in the area of robust

optimization, in the existing methods, independence is generally assumed among uncertain-

ties in the parameters. However, in practice, correlations may arise in the uncertainties. For

instance, the price and demand of crude oil are correlated, which may affect the refinery

planning decision making. As shown by the computational studies of this chapter, the tra-

ditional robust optimization methods that ignore the correlation may lead to a conservative

solution. Hence, it is of great importance to consider the correlation among uncertainties in

robust optimization.

In this chapter, novel results are presented for robust optimization under correlated un-
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certainties. In Section 4.2, the robust optimization framework is proposed for correlated

uncertainty within a single constraint. Based on five different types of uncertainty set, the

corresponding robust counterpart optimization formulations are derived. Specifically, for un-

bounded and correlated uncertainties, box, polyhedral and ellipsoidal type of uncertainty sets

are selected to derive the set-induced robust optimization formulations, and for bounded cor-

related uncertainties, “interval+polyhedral” and “interval+ellipsoidal” types of uncertainty

set are applied to derive the set-induced robust optimization formulations. In Section 4.3, nu-

merical examples are studied to investigate the proposed robust optimization framework for

correlated uncertainty within a constraint. Different levels of the correlations are considered

to demonstrate the necessity of incorporating uncertainty correlations into the traditional

robust optimization approach. In Section 4.4, the proposed method is further applied to a

production planning example. Moreover, in Section 4.5, the uncertainties are considered to

be presence in multiple constraints and two types of uncertainty set, i.e., “constraint-wise”

and “global” uncertainty set, are applied to formulate the robust optimization. Different

assumptions about the correlations in uncertainties are studied and their influence in the

robust formulation and solution is discussed. The chapter is concluded in Section 4.6.

4.2 Robust Counterpart Optimization Formulations

Consider the following linear optimization problem with uncertain constraint coefficients

max
x∈X

cx

s.t. ãTx ≤ b
(4.1)

where x ∈ Rn represents the decision variables, ã is an n × 1 vector with entries ãj,

j = 1, · · · , n, i.e., ã = [ã1, ..., ãn]T , n is the number of decision variables. Without loss
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of generality, the uncertainties in the coefficients can be modeled as

ãj = aj + uj, j = 1, ..., n (4.2)

where aj is the nominal (most expected) value of ãj, and uj is the random part following a

distribution with zero mean. Separating the deterministic part and the uncertain part, the

constraint becomes

aTx+ uTx ≤ b (4.3)

where u = [u1, ..., un]T . To ensure the constraint satisfaction under the worst-case scenario

of an uncertainty set U , the constraint with uncertainty is rewritten as

aTx+ max
u∈U

uTx ≤ b (4.4)

The above constraint (4.4) is the robust counterpart of the uncertain constraint (4.3).

Its explicit expression depends on the uncertainty set U . Robust counterpart optimiza-

tion problem of (4.1) can be obtained by replacing the uncertain constraint with its robust

counterpart. In this work, five types of uncertainty set including box, ellipsoid, polyhedral,

interval+ellipsoidal, and interval+polyhedral. The design of uncertainty set is related to the

distribution of the uncertainty. If the uncertainty is subject to unbounded distribution, then

the box, ellipsoidal and polyhedral type of uncertainty set is appropriate to be used in the

robust optimization framework, where the size of the uncertainty set is not restricted. In-

stead, if the uncertainty is subject to bounded distribution, then the bounds information can

be involved in the uncertainty set as intervals to avoid an unnecessarily large uncertainty set

(which will lead to more conservative solution). Hence, the interval+ellipsoidal uncertainty

set and the interval+polyhedral uncertainty set are appropriate for bounded uncertainty dis-

tribution. In the following subsections, explicit robust counterpart constraint formulations

of (4.4) will be investigated based on different uncertainty sets.
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4.2.1 Robust Formulations for Bounded Uncertainty Distribution

Property 7. (Box uncertainty set). The robust counterpart optimization formulation

for constraint (4.4) under the box type uncertainty set Ubox = {u |‖Mu‖∞ ≤ ∆} is


aTx+ ∆

n∑
k=1

yk ≤ b

−yk ≤
n∑
j=1

mkjxj ≤ yk, ∀k = 1, ..., n
(4.5)

where mkj is the element of M−T =


m11 ... m1n

... ... ...

mn1 ... mnn

, M is an invertible matrix and

M−T is the inverse transpose of M .

Proof. Under the given uncertainty set, the inner maximization problem in constraint (4.4)

is formulated as

max
u

{
uTx : ‖Mu‖∞ ≤ ∆

}
(4.6)

which can be further rewritten as

max
u

{
uTx : P∞u+ p∞ ∈ K∞

}
(4.7)

where P∞ =

 Mn×n

01×n

 , p∞ =

 0n×1

∆

, and K∞ = {(θn×1; t)|‖θ‖∞ ≤ t} is a norm cone.

The inner maximization problem is a conic programming problem. Define dual variables

y = [wn×1; τ ] ∈ K∗∞, where K∗∞ is the dual cone of K∞ and K∗∞ = {(θn×1; t)|‖θ‖1 ≤ t}.

Apply conic duality to problem (4.7), the problem can be formulated as:

min
y

{
∆τ : y ∈ K∗∞,MTw = −x

}
= min

y

{
∆τ : ‖w‖1 ≤ τ,MTw = −x

}
(4.8)

Since the above is a minimization problem, τ can be replaced by its lower bound ‖w‖1
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and the problem becomes

min
y

{
∆‖w‖1 : MTw = −x

}
(4.9)

w can be further replaced by w = −M−Tx, and then the problem is reduced to

min
y

{
∆
∥∥−M−Tx

∥∥
1

}
= ∆

∥∥M−Tx
∥∥

1
(4.10)

The inner maximization term is replaced by ∆
∥∥M−Tx

∥∥
1

and the constraint with uncer-

tainties becomes

aTx+ ∆
∥∥∥M−Tx

∥∥∥
1
≤ b (4.11)

Consider the element-wise representation of M−T

M−T =


m11 ... m1n

... ... ...

mn1 ... mnn


Constraint (4.11) can be further written as

aTx+ ∆

∥∥∥∥∥∥∥∥∥∥∥


n∑
j=1

m1jxj

...
n∑
j=1

mnjxj



∥∥∥∥∥∥∥∥∥∥∥
1

≤ b (4.12)

which is equivalent to

aTx+ ∆
n∑
k=1

∣∣∣∣∣
n∑
j=1

mkjxj

∣∣∣∣∣ ≤ b (4.13)

Next, a new variable yk is introduced to eliminate the absolute term, and the robust
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counterpart of the constraint with box uncertainty set is


aTx+ ∆

n∑
k=1

yk ≤ b

−yk ≤
n∑
j=1

mkjxj ≤ yk, ∀k = 1, ..., n
(4.14)

Remark 1. If M is a diagonal matrix Diag{â−1
1 , . . . , â−1

n }, where âj, j = 1, · · · , n are the

perturbation amplitudes, the robust counterpart constraint becomes

n∑
j=1

ajxj + ∆
n∑
j=1

âj |xj| ≤ b (4.15)

which is the same as the box type uncertainty set induced robust counterpart constraint pre-

sented by Li et al [48]. This represents the robust counterpart constraint without correlation

consideration.

Remark 2. The major motivation of the chapter is to incorporate correlation of uncertainties

into the robust optimization formulation. Hence, the matrix M is selected based on the

covariance matrix and it is assumed that the inevitability of M will hold. Specifically, if M

is set as M = Σ−1/2, where Σ is the covariance matrix of the uncertainties ã1, · · · , ãn, then the

correlations of the uncertainties are incorporated into the robust optimization formulation.

This is illustrated later using a 2-dimensional example.

Property 8. (Ellipsoidal uncertainty set). The robust counterpart optimization model

for constraint (4) under the ellipsoidal type uncertainty set Uellipsoid = {u|‖Mu‖2 ≤ ∆} is

aTx+ ∆

√√√√ n∑
k=1

(
n∑
j=1

mkjxj

)2

≤ b (4.16)

where mkj is the element of M−T .
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Proof. The inner maximization problem of (4.4) is formulated as

max
u

{
uTx : ‖Mu‖2 ≤ ∆

}
(4.17)

According to the definition of norm cone, the inner maximization problem can be rewritten

as

max
u

{
uTx : P2u+ p2 ∈ K2

}
(4.18)

where P2 =

 Mn×n

01×n

 , p2 =

 0n×1

∆

 , K2 = {(θn×1; t)|‖θ‖2 ≤ t}. The inner maximization

problem is a conic programming problem. Define dual variables y = [wn×1; τ ] ∈ K∗2 , where

K∗2 is the dual cone of K2. Since is self-dual, K∗2 = K2 = {(θn×1; t)|‖θ‖2 ≤ t}. Apply conic

duality to problem (4.18), the problem can be formulated as:

min
y

{
∆τ : y ∈ K2,M

Tw = −x
}

= min
y

{
∆τ : ‖w‖2 ≤ τ,MTw = −x

}
(4.19)

Since the above is a minimization problem, τ can be replaced by its lower bound ‖w‖2

and the problem becomes

min
y

{
∆‖w‖2 : MTw = −x

}
(4.20)

w can be further replaced by w = −M−Tx, and then the problem is reduced to

min
y

{
∆
∥∥−M−Tx

∥∥
2

}
= ∆

∥∥M−Tx
∥∥

2
(4.21)

The inner maximization term is replaced by ∆
∥∥M−Tx

∥∥
2

and the constraint with uncer-

tainties becomes

aTx+ ∆
∥∥∥M−Tx

∥∥∥
2
≤ b (4.22)
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Consider the element-wise representation of M−T

M−T =


m11 ... m1n

... ... ...

mn1 ... mnn


Constraint (4.22) can be further written as

aTx+ ∆

∥∥∥∥∥∥∥∥∥∥∥


n∑
j=1

m1jxj

...
n∑
j=1

mnjxj



∥∥∥∥∥∥∥∥∥∥∥
2

≤ b (4.23)

which is equivalent to

aTx+ ∆

√√√√ n∑
k=1

(
n∑
j=1

mkjxj

)2

≤ b (4.24)

which is a second order conic programming (SOCP) problem.

Remark 3. If M is a diagonal matrix Diag{â−1
1 , . . . , â−1

n }, where âj, j = 1, · · · , n are the

perturbations, the robust counterpart of the constraint becomes

n∑
j=1

ajxj + ∆

√√√√ n∑
j=1

â2
jx

2
j ≤ b (4.25)

which is the robust counterpart constraint without correlation modeling.

Remark 4. If M is set as M = Σ−1/2, where Σ is the covariance matrix of the uncertainties

ã1, ..., ãn, it can be used to formulate the correlations of the uncertainties. The ellipsoidal

uncertainty set can be represented as the following ellipsoidal

Uellipsoid = {u |‖Mu‖2 ≤ ∆} =
{
u
∣∣uTMTMu ≤ ∆2

}
=

{
u

∣∣∣∣uT Σ−1

∆2
u ≤ 1

}
(4.26)
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For the ellipsoidal defined above, the center of the ellipsoidal is the origin; the lengths of the

semi-axes of the ellipsoidal are given by
√
λi∆, where λi are the eigenvalues of Σ.

Property 9. (Polyhedral uncertainty set).The robust counterpart optimization model

for constraint (4.4) under the polyhedral type uncertainty set Upolyhedral = {u|‖Mu‖1 ≤ ∆}

is 
aTx+ ∆τ ≤ b

−τ ≤
n∑
j=1

mkjxj ≤ τ, ∀k = 1, .., n
(4.27)

where mkj is the element of M−T .

Proof. The inner maximization problem of (4.4) is formulated as

max
u

{
uTx : ‖Mu‖1 ≤ ∆

}
(4.28)

According to the definition of norm cone, the inner maximization problem can be rewritten

as

max
u

{
uTx : P1u+ p1 ∈ K1

}
(4.29)

where P1 =

 Mn×n

01×n

 , p1 =

 0n×1

∆

 , K1 = {(θn×1; t)|‖θ‖1 ≤ t}. The inner maximization

problem is a conic programming problem. Define dual variable y = [wn×1; τ ] ∈ K∗1 , where

K∗1 is the dual cone of K1 and K∗1 = K∞ = {(θn×1; t)|‖θ‖∞ ≤ t}. Apply conic duality to

problem (4.29), the problem can be formulated as:

min
y

{
∆τ : y ∈ K∞,MTw = −x

}
= min

y

{
∆τ : ‖w‖∞ ≤ τ,MTw = −x

}
(4.30)

Since the above is a minimization problem, τ can be replaced by its lower bound ‖w‖∞

and the problem becomes

min
y

{
∆‖w‖∞ : MTw = −x

}
(4.31)
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Since w can be further replaced by w = −M−Tx, the problem is represented as

min
y

{
∆
∥∥−M−Tx

∥∥
∞

}
= ∆

∥∥M−Tx
∥∥
∞ (4.32)

The inner maximization term is replaced by ∆
∥∥M−Tx

∥∥
∞ and the constraint with uncer-

tainties becomes

aTx+ ∆
∥∥∥M−Tx

∥∥∥
∞
≤ b (4.33)

Consider element-wise representation of M−T

M−T =


m11 ... m1n

... ... ...

mn1 ... mnn


Constraint (4.33) can be further written as

aTx+ ∆

∥∥∥∥∥∥∥∥∥∥∥


n∑
j=1

m1jxj

...
n∑
j=1

mnjxj



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ b (4.34)

which is equivalent to

aTx+ ∆ max
k

∣∣∣∣∣
n∑
j=1

mkjxj

∣∣∣∣∣ ≤ b (4.35)

Introduce a new variable τ to replace the maximization terms in constraint (4.35), the

robust counterpart of the constraint with polyhedral uncertainty set is


aTx+ ∆τ ≤ b

τ ≥

∣∣∣∣∣ n∑j=1

mkjxj

∣∣∣∣∣ ,∀k = 1, .., n
(4.36)

The absolute operator in (4.36) can be further eliminated and the above formulation is
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equivalent to (4.27).

Remark 5. If M is a diagonal matrix Diag{â−1
1 , . . . , â−1

n }, where âj, j = 1, · · · , n are the

perturbations, the robust counterpart of the constraint becomes


n∑
j=1

ajxj + ∆τ ≤ b

−τ ≤ âjxj ≤ τ, ∀j
(4.37)

which represents the robust counterpart constraints without correlation modeling.

Remark 6. If M is set as Σ−1/2, where Σ is the covariance matrix of the uncertainties

ã1, · · · , ãn, it can be used to formulate the correlations of the uncertainties.

4.2.2 Robust Formulations for Bounded Uncertainty Distribution

If the uncertainty u is subject to a bounded distribution, an interval set can be used to

make sure the uncertainty lies in the bounds, which are modeled using matrix M1 here.

Correlation between uncertainties can be formulated in the polyhedral uncertainty set by

matrix M2. The interval+polyhedral uncertainty set is the intersection of the interval set

and the polyhedral uncertainty set:

Uin+poly = {u |‖M1u‖∞ ≤ 1, ‖M2u‖1 ≤ ∆}

Property 10. (Interval+polyhedral uncertainty set). The robust counterpart op-

timization model for constraint (4.4) under the interval+polyhedral type uncertainty set

Uin+poly = {u |‖M1u‖∞ ≤ 1, ‖M2u‖1 ≤ ∆} is


aTx+

n∑
j=1

yj + ∆τ ≤ b

−yj ≤ m
(1)
j (xj − zj) ≤ yj, ∀j = 1, .., n

−τ ≤
n∑
j=1

m
(2)
kj zj ≤ τ, ∀k = 1, ..., n

(4.38)
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where M1 is a diagonal matrix and m
(1)
j is the diagonal element of M−T

1 , and m
(2)
kj is the

element of M2
−T =


m

(2)
11 ... m

(2)
1n

... ... ...

m
(2)
n1 ... m

(2)
nn

.

Proof. The inner maximization term in constraint (4.4) needs to be eliminated. The inner

maximization problem is formulated as

max
u

{
uTx : ‖M1u‖∞ ≤ 1, ‖M2u‖1 ≤ ∆

}
(4.39)

According to the definition of norm cone, the inner maximization problem can be rewritten

as

max
u

{
uTx : P∞u+ p∞ ∈ K∞, P1u+ p1 ∈ K1

}
(4.40)

where

P∞ =

 M1,n×n

01×n

 , p∞ =

 0n×1

1

 , K∞ = {(θn×1; t)|‖θ‖∞ ≤ t} ,

P1 =

 M2,n×n

01×n

 , p1 =

 0n×1

∆

 , K1 = {(θn×1; t)|‖θ‖1 ≤ t} .

The inner maximization problem is a conic programming problem. Defining dual variables

y1 =
[
w1(n×1); τ1

]
∈ K∗∞ and y2 =

[
w2(n×1); τ2

]
∈ K∗1 . K∗∞ is the dual cone of K∞, and K∗1

is the dual cone of K1, K∗1 = K∞ = {(θn×1; t)|‖θ‖∞ ≤ t}. Applying conic duality to (4.40),

the problem can be formulated as:

min
y1,y2

{
τ1 + ∆τ2 : y1 ∈ K∗∞, y2 ∈ K∗1 ,MT

1 w1 +MT
2 w2 = −x

}
= min

y1,y2

{
τ1 + ∆τ2 : ‖w1‖1 ≤ τ1, ‖w2‖∞ ≤ τ2,M

T
1 w1 +MT

2 w2 = −x
} (4.41)

Since the above is a minimization problem, τ1, τ2 can be replaced by its lower bound
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‖w1‖1, ‖w2‖∞ and the problem becomes

min
y1,y2

{
‖w1‖1 + ∆‖w2‖∞ : MT

1 w1 +MT
2 w2 = −x

}
(4.42)

And w2 can be further replaced by w2 = −M−T
2 (x+MT

1 w1). The problem is represented

as

min
w1

{
‖w1‖1 + ∆

∥∥M−T
2 (x+MT

1 w1)
∥∥
∞

}
(4.43)

The inner maximization term is replaced by min
w1

{
‖w1‖1 + ∆

∥∥M−T
2 (x+MT

1 w1)
∥∥
∞

}
and

since the minimization term is on the left hand side of a “less or equal to” constraint, the

minimization operator can be removed from the constraint

aTx+ ‖w1‖1 + ∆
∥∥M−T

2 (x+MT
1 w1)

∥∥
∞ ≤ b (4.44)

Introduce an auxiliary variable z = x+MT
1 w1, the constraint becomes

aTx+
∥∥M−T

1 (x− z)
∥∥

1
+ ∆

∥∥M−T
2 z

∥∥
∞ ≤ b (4.45)

Consider element-wise representation of M−T
1 and M−T

2

M−T
1 =


m

(1)
1 ... 0

... ... ...

0 ... m
(1)
n

 , M−T
2 =


m

(2)
11 ... m

(2)
1n

... ... ...

m
(2)
n1 ... m

(2)
nn


Constraint (4.45) can be further written as

aTx+
n∑
j=1

∣∣∣m(1)
j (xj − zj)

∣∣∣+ ∆

∥∥∥∥∥∥∥∥∥∥∥


n∑
j=1

m
(2)
1j zj

...
n∑
j=1

m
(2)
nj zj



∥∥∥∥∥∥∥∥∥∥∥
∞

≤ b (4.46)
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which is equivalent to

aTx+
n∑
j=1

∣∣∣m(1)
j (xj − zj)

∣∣∣+ ∆ max
k

∣∣∣∣∣
n∑
j=1

m
(2)
kj zj

∣∣∣∣∣ ≤ b (4.47)

Introduce a new variable yj to eliminate the absolute term in the second term on the left

hand side and a new variable τ to eliminate the maximization term



aTx+
n∑
j=1

yj + ∆τ ≤ b

−yj ≤ m
(1)
j (xj − zj) ≤ yj, ∀j = 1, .., n

τ ≥

∣∣∣∣∣ n∑j=1

m
(2)
kj zj

∣∣∣∣∣ ,∀k = 1, ..., n

(4.48)

After eliminating the absolute operator in (4.48), it is equivalent to (4.38).

Remark 7. If M1 and M2 are both diagonal and M1 = M2 = Diag{â−1
1 , . . . , â−1

n }, where

âj, j = 1, · · · , n are the perturbations, the robust counterpart of the constraint becomes


aTx+

n∑
j=1

yj + ∆τ ≤ b

−yj ≤ âj(xj − zj) ≤ yj,∀j = 1, .., n

−τ ≤ âjzj ≤ τ, ∀j = 1, ..., n

(4.49)

which is the robust counterpart constraint without correlation consideration.

Remark 8. If M1 is diagonal matrix Diag{â−1
1 , . . . , â−1

n }, where âj, j = 1, · · · , n are the

perturbations and M2 is set as M2 = Σ−1/2, where Σ is the covariance matrix of the uncer-

tainties ã1, · · · , ãn, the robust optimization formulation (4.38) can be used to formulate the

correlations of the uncertainties.

Similar to the interval + polyhedral type of uncertainty set, the interval + ellipsoidal type

of uncertainty set is also applicable to bounded uncertainty. An interval set can be used to

make sure the uncertainty lies in the range in all dimensions and it is represented by matrix
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M1. Correlation between uncertainties can be formulated in the ellipsoidal uncertainty set

by matrix M2. The interval+ellipsoidal uncertainty set is the intersection of the interval set

and the ellipsoidal uncertainty set Uin+ellip = {u |‖M1u‖∞ ≤ 1, ‖M2u‖2 ≤ ∆}.

Property 11. (Interval+ellipsoidal). The robust counterpart optimization model for con-

straint (4.4) under the interval + ellipsoidal type uncertainty set given by:

Uin+ellip = {u |‖M1u‖∞ ≤ 1, ‖M2u‖2 ≤ ∆}

is as follows: 
aTx+

n∑
j=1

yj + ∆

√√√√ n∑
k=1

(
n∑
j=1

m
(2)
kj zj

)2

≤ b

−yj ≤ m
(1)
j (xj − zj) ≤ yj,∀j = 1, .., n

(4.50)

where M1 is a diagonal matrix and m
(1)
j is the element of M−T

1 , and m
(2)
kj is the element of

M2
−T .

Proof. The inner maximization term in constraint (4.4) needs to be eliminated. The inner

maximization problem is formulated as

max
u

{
uTx : ‖M1u‖∞ ≤ 1, ‖M2u‖1 ≤ ∆

}
(4.51)

According to the definition of norm cone, the inner maximization problem can be rewritten

as

max
u

{
uTx : P∞u+ p∞ ∈ K∞, P2u+ p2 ∈ K2

}
(4.52)

where

P∞ =

 M1,n×n

01×n

 , p∞ =

 0n×1

1

 , K∞ = {(θn×1; t)|‖θ‖∞ ≤ t} ,

P2 =

 M2,n×n

01×n

 , p2 =

 0n×1

∆

 , K2 = {(θn×1; t)|‖θ‖2 ≤ t}
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The inner maximization problem is a conic programming problem. Define dual variables

y1 =
[
w1(n×1); τ1

]
∈ K∗∞ and y2 =

[
w2(n×1); τ2

]
∈ K∗2 . K∗∞ is the dual cone of K∞, K∗∞ =

K1 = {(θn×1; t)|‖θ‖1 ≤ t} and K∗2 is the dual cone of K2, . Apply conic duality to problem

(4.52), the problem can be formulated as:

min
y1,y2

{
τ1 + ∆τ2 : y1 ∈ K∗∞, y2 ∈ K∗2 ,MT

1 w1 +MT
2 w2 = −x

}
= min

y1,y2

{
τ1 + ∆τ2 : ‖w1‖1 ≤ τ1, ‖w2‖2 ≤ τ2,M

T
1 w1 +MT

2 w2 = −x
} (4.53)

Since the above is a minimization problem, τ1, τ2 can be replaced by its lower bound

‖w1‖1, ‖w2‖2 and the problem becomes

min
y1,y2

{
‖w1‖1 + ∆‖w2‖2 : MT

1 w1 +MT
2 w2 = −x

}
(4.54)

Since w2 can be further replaced by w2 = −M−T
2 (x+MT

1 w1), the problem is represented

as

min
w1

{
‖w1‖1 + ∆

∥∥M−T
2 (x+MT

1 w1)
∥∥

2

}
(4.55)

The inner maximization term is replaced by min
w1

{
‖w1‖1 + ∆

∥∥M−T
2 (x+MT

1 w1)
∥∥

2

}
and

since the minimization term is on the left hand side of a “less or equal to” constraint, the

minimization operator can be removed from the constraint

aTx+ ‖w1‖1 + ∆
∥∥M−T

2 (x+MT
1 w1)

∥∥
2
≤ b (4.56)

Introduce an auxiliary variable z = x+MT
1 w1, the constraint becomes

aTx+
∥∥M−T

1 (x− z)
∥∥

1
+ ∆

∥∥M−T
2 z

∥∥
2
≤ b (4.57)
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Consider element-wise representation of M−T
1 and M−T

2

M−T
1 =


m

(1)
1 ... 0

... ... ...

0 ... m
(1)
n

 ,M−T
2 =


m

(2)
11 ... m

(2)
1n

... ... ...

m
(2)
n1 ... m

(2)
nn


Constraint (4.57) can be further written as

aTx+
n∑
j=1

∣∣∣m(1)
j (xj − zj)

∣∣∣+ ∆

∥∥∥∥∥∥∥∥∥∥∥


n∑
j=1

m
(2)
1j zj

...
n∑
j=1

m
(2)
nj zj



∥∥∥∥∥∥∥∥∥∥∥
2

≤ b (4.58)

which is equivalent to

aTx+
n∑
j=1

∣∣∣m(1)
j (xj − zj)

∣∣∣+ ∆

√√√√ n∑
k=1

∣∣∣∣∣
n∑
j=1

m
(2)
kj zj

∣∣∣∣∣
2

≤ b (4.59)

Introduce a new variable yj to eliminate the absolute term in the second term on the left

hand side 
aTx+

n∑
j=1

yj + ∆

√√√√ n∑
k=1

(
n∑
j=1

m
(2)
kj zj

)2

≤ b

−yj ≤ m
(1)
j (xj − zj) ≤ yj,∀j = 1, .., n

(4.60)

Remark 9. If M1 and M2 are both diagonal matrices M1 = M2 = Diag{â−1
1 , . . . , â−1

n },

where âj, j = 1, · · · , n are the perturbations, the robust counterpart of the constraint becomes


aTx+

n∑
j=1

yj + ∆

√
n∑
j=1

â2
jzj

2 ≤ b

−yj ≤ âj(xj − zj) ≤ yj,∀j = 1, .., n

(4.61)

which is the robust optimization formulation without correlation consideration.
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Remark 10. If M1 is set as Diag{â−1
1 , . . . , â−1

n }, where âj, j = 1, · · · , n are the perturbations

and M2 is set as M2 = Σ−1/2, where Σ is the covariance matrix of the uncertainties, it can

be used to formulate the correlations of the uncertainties.

4.2.3 Illustration of Uncertainty Sets

To illustrate the uncertainty set design for unbounded uncertainty distribution, consider the

following constraint with uncertain parameters u1 and u2 in the constraint coefficients

(10 + u1)x1 + (20 + u2)x2 ≤ 140 (4.62)

Assume the uncertainty u = [u1, u2] follows a multivariate Gaussian distribution with

zero mean and covariance Σ (i.e., u ∼ N (0,Σ)), where

Σ =

 σ2
11 σ12

σ21 σ2
22

 =

 34 −1.5

−1.5 0.5


To incorporate the correlation into the uncertainty set definition, define

M = Σ−1/2 =

 0.1740 0.0601

0.0601 1.5171

 and M−T =

 5.8264 −0.2310

−0.2310 0.6683


Then, the box, ellipsoidal and polyhedral uncertainty set can be defined as following:

Ubox = {u ||0.174u1 + 0.0601u2| ≤ ∆, |0.0601u1 + 1.5171u2| ≤ ∆}

Uellip =
{
u
∣∣0.0011u2

1 + 0.2034u1u2 + 5.3135u2
2 ≤ ∆2

}
Upolyhedral = {u ||0.174u1 + 0.0601u2|+ |0.0601u1 + 1.5171u2| ≤ ∆}

Notice that for the ellipsoidal set, it centers at origin, and the lengths of the semi-axes of
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0.658∆ and 5.8367∆.

Figure 4.1 shows the three uncertainty sets, where the set sizes of box, ellipsoid and

polyhedron are set as ∆ = 1. In the same figure, 1000 samples are drawn from the assumed

multivariate Gaussian distribution N (0,Σ).

Figure 4.1: Visualization of uncertainty set for unbounded uncertainty in 2-dimensional
space.

Since the uncertainty is assumed to follow a multivariate Gaussian distribution and ac-

cording to the “3σ-rule” for Gaussian random variables, the samples will lie within the range

around [-18, 18] and around [-2, 2] in the two dimensions, respectively. And with the defi-

nition of the three types of uncertainty set and set size , the uncertainty set will only cover

part of the samples. Compared with uncertainty sets without considering correlations be-

tween uncertainties in Li et al. [48], the box, ellipsoidal and polyhedral uncertainty sets are

distorted by the correlations.

To illustrate the bounded uncertainty distribution case, assume the uncertainty u follows

a truncated multivariate Gaussian distribution with zero mean, covariance Σ, perturbations
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â1 = 3 and â2 = 0.25, i.e., u ∼ N (0,Σ), u1 ∈
[
−3 3

]
, u2 ∈

[
−0.25 0.25

]
, where

Σ =

 σ2
11 σ12

σ21 σ2
22

 =

 34 −1.5

−1.5 0.5


To incorporate the correlation into the uncertainty set definition, define

M1 =

 â−1
1 0

0 â−1
2

 =

 0.33 0

0 4

 , M2 = Σ−1/2 =

 0.1740 0.0601

0.0601 1.5171


The interval+polyhedral and interval+ellipsoidal uncertainty sets are used for illustration

of the bounded uncertainty. The definition of the two types of uncertainty set are given as

Uin+ellip =
{
u
∣∣|u1| ≤ 3, |u2| ≤ 0.25, 0.0011u2

1 + 0.2034u1u2 + 5.3135u2
2 ≤ ∆2

}
Uin+poly = {u ||u1| ≤ 3, |u2| ≤ 0.25, |0.174u1 + 0.0601u2|+ |0.0601u1 + 1.5171u2| ≤ ∆}

In Figure 4.2, the set size of box, ellipsoidal and polyhedral types of uncertainty set is set

as ∆ = 0.54 and 1000 samples are drawn from the assumed truncated normal distribution

N (0,Σ), u1 ∈
[
−3 3

]
, u2 ∈

[
−0.25 0.25

]
.

Figure 4.2: Visualization of uncertainty set for bounded uncertainty in 2-dimensional space.

As the assumption of the bounded uncertainty in this example, the samples lies within an

rectangle representing the boundary of the uncertainty. Since the interval+polyhedral (inter-
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val+ellipsoid) uncertainty set is defined by combination of interval and polyhedral(ellipsoid),

the shape of the uncertainty set is the intersection of the rectangle reflecting the boundary

of the uncertainty and a polyhedral (an ellipsoid) distorted by the correlations. Since the set

size is set as ∆ = 0.54, and according to the definition of the uncertainty set, the intersection

covers part of the samples.

4.3 Computational Study

In this section, computational studies are performed on the following numerical example to

investigate the proposed robust optimization formulation under correlated uncertainty.

max 8x1 + 12x2

s.t. (10 + u1)x1 + (20 + u2)x2 ≤ 140

6x1 + 8x2 ≤ 72

x1, x2 ≥ 0

(4.63)

Two uncertainties u1, u2 exist in the first constraint. Both bounded and unbounded

uncertainties are considered, and corresponding uncertainty sets are used for robust coun-

terpart formulation. Based on different types of uncertainty set, the robust formulation

optimization problems with different values of uncertainty set size are solved in GAMS 23.9.

The robust formulations based on box, polyhedral and interval+polyhedral uncertainty sets

lead to linear programming (LP) problem and the selected solver is CPLEX. Robust formu-

lations based on ellipsoidal and interval+ellipsoidal uncertainty sets result in second order

conic programming (SOCP) problem and are solved by BARON. After solving the opti-

mization problems, the optimal objective value corresponding to different set size can be

obtained. All the computations in this paper are performed on a desktop PC with an Intel

i5-3570K core processor with 3.40 GHz CPU and 8GB RAM.

By changing the size of the uncertainty set, a series of robust solutions can be obtained
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by solving the robust optimization problem. For each robust solution, the probability of

constraint satisfaction is evaluated in MATLAB through the following steps. First, N =

100000 samples are generated from the assumed distribution of uncertainty; second, for a

known robust solution, the number of times n that the uncertain constraint is satisfied is

counted; finally, the simulated probability of constraint satisfaction is calculated as n/N .

In the subsequent computational studies, it is aimed to investigate: 1) the effect of the un-

certainty set size on the robust solution and the probability of constraint satisfaction; 2) the

effect of modeling (accurate) uncertainty correlation in the robust optimization framework.

In order to demonstrate the importance of considering correlations in robust formulation,

different covariance matrices with the same variance and different levels of correlation (from

no correlation to exact correlation) are studied.

4.3.1 Unbounded Uncertainty Distribution

For unbounded uncertainty, assume the true uncertainty distribution is u =

 u1

u2

 ∼
N (0,Σ) with Σ =

 34 −4

−4 0.5

. The robust counterpart formulations based on box, ellip-

soidal and polyhedral uncertainty set can be obtained by property 7, 8 and 9, respectively. If

the covariance matrix used in robust formulation is the true covariance matrix in the assump-

tion of the uncertainty i.e., M = Σ−1/2, the box uncertainty set based robust counterpart of

the constraint with uncertainty is

10x1 + 20x2 + ∆(y1 + y2) ≤ 140

−y1 ≤ 5.7932x1 − 0.6621x2 ≤ y1

−y2 ≤ −0.6621x1 + 0.2483x2 ≤ y2

the ellipsoidal uncertainty set based robust counterpart of the constraint with uncertainty is

10x1 + 20x2 + ∆
√

34x2
1 − 8x1x2 + 0.5x2

2 ≤ 140
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and the polyhedral uncertainty set based robust counterpart of the constraint with uncer-

tainty is

10x1 + 20x2 + ∆τ ≤ 140

τ ≥ |5.7932x1 − 0.6621x2|

τ ≥ |−0.6621x1 + 0.2483x2|

Four different covariance matrices are considered when formulating the robust counter-

part, i.e., Σ1 =

 34 0

0 0.5

 (no correlation), Σ2 =

 34 −1.5

−1.5 0.5

 (small correlation),

Σ3 =

 34 −3.2

−3.2 0.5

 (large correlation), Σ4 =

 34 −4

−4 0.5

 (true correlation). The rela-

tionships between the simulation probability and objective, between the simulation proba-

bility and set size, and between the objective value and set size are shown in Figures 4.3-4.7

corresponding to different types of uncertainty set, respectively.

4.3.2 Uncertainty Set for Bounded Uncertainty

For bounded uncertainty, assume the uncertainty u follows a truncated normal distribu-

tion with zero mean, covariance Σ =

 34 −4

−4 0.5

, and bounds u1 ∈
[
−7 7

]
, u2 ∈

[
−1 1

]
. In the uncertainty set definitions, it is set thatM1 =

 â−1
1 0

0 â−1
2

 =

 1/7 0

0 1

.

The robust counterpart formulations can be obtained by property 10 and 11. If the covari-

ance matrix used in robust formulation is the true covariance matrix Σ in the assumption of

the uncertainty, the interval + polyhedral uncertainty set based robust counterpart of the
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constraint with uncertainty is

10x1 + 20x2 +
2∑
j=1

yj + ∆τ ≤ 140

−y1 ≤ 7(x1 − z1) ≤ y1

−y2 ≤ x2 − z2 ≤ y2

−τ ≤ 5.7932z1 − 0.6621z2 ≤ τ

−τ ≤ −0.6621z1 + 0.2483z2 ≤ τ

and the interval + ellipsoidal uncertainty set based robust counterpart of the constraint with

uncertainty is

10x1 + 20x2 +
2∑
j=1

yj + ∆
√

34z2
1 − 8z1z2 + 0.5z2

2 ≤ 140

−y1 ≤ 7(x1 − z1) ≤ y1

−y2 ≤ x2 − z2 ≤ y2

The four different covariance matrices used in Section 4.3.1 were also used here to formulate

robust optimization problem. The corresponding results are reported in Figure 4.6 and 4.7.

4.3.3 Discussion

Based on the results of the different types of uncertainty set and different covariance matrices

for each type of uncertainty set, the following observations can be made. First, from the

relationships between the probability of satisfaction and set size and between objective value

and set size shown in Figure 4.3-4.7, it is observed that as the set size increases (e.g. box

type, from 0 to 3.5), the probability of satisfaction increases (e.g., box type, from around

0.73 to 1), whereas the objective value becomes worse (i.e., decreases for a maximization

problem). This observation shows the trade-off between the optimality and the solution

reliability.

Second, as shown in Figure 4.3-4.7, the solutions obtained with different covariance ma-
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trices vary from each other for all types of uncertainty set. The diagonal elements (variances)

of the four covariance matrices are the same and the differences lie in the correlation of the

uncertainties. The correlation level between the uncertainties were set as 0 (0), 0.36 (-1.5),

0.78 (-3.2), and 0.97 (-4), respectively. Notice that for a maximization problem, given a

desired level of probability of satisfaction, a solution with larger objective value means less

conservative solution and it is preferred. It is observed from Figure 4.3-4.7 that if the true

correlation (off-diagonal element is -4) of the uncertainties is considered when formulating

the robust counterpart, the result is the best (i.e., under the same probability level of con-

straint satisfaction, the optimal objective value is the largest). While the correlation used in

robust counterpart formulation deviates more from the exact correlation of uncertainties, the

result becomes worse (i.e., more conservative). And the result obtained by the robust formu-

lation without considering correlation (off-diagonal element is 0) is the worst. For instance,

as shown in Figure 4.3, given the desired level of probability of satisfaction as 0.9 (shown as

pink dash line), the optimal objective value obtained from robust formulation with true cor-

relation (off-diagonal element is -4) is 84.5 (shown as red dot), which is the best (largest for

a maximum problem). While the optimal objective value obtained from robust formulation

without considering correlation (off-diagonal element is 0) is 80 (shown as blue dot), which

is the worst. As the correlation level considered in robust formulation deviates more from

the true correlation (off-diagonal element -1.5 deviates more from -4 than -3.2), the optimal

objective value becomes worse (from around 84 to around 82.5). This observation reflects

the importance of considering accurate correlations in the robust formulation.
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Figure 4.3: Box type uncertainty set induced robust optimization results.
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Figure 4.4: Robust optimization results (ellipsoidal set).

Figure 4.5: Robust optimization results (polyhedral set).
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Figure 4.6: Robust optimization results (interval + polyhedral set).

Figure 4.7: Robust optimization results (interval + ellipsoidal set).
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Finally, for polyhedral and interval + polyhedral types of uncertainty set, there is a big

jump of the probability of satisfaction around the set size 0.55 shown in Figure 4.5 and 4.6.

This is caused by the change of the robust counterpart optimization solutions and this only

happens when the correlation used for robust counterpart formulation is very different from

the exact correlation of the uncertainties.

4.4 Production Planning Example

In this section, the robust optimization formulation under correlated uncertainties is applied

to solve robust production planning problem introduced by Ravindran [81]. In this problem,

a production plan needs to be made in a company for the coming year that is divided into 6

periods. In the first period, operations begin with an initial stock of 500 tons of the product,

and the same amount of the product in storage is required at the end of the year. The

objective is to maximize the sales. The following constraints are applied: the total cost

is less than or equal to a given budget, the inventory material balances, the final stored

product requirement, the production capacity limitations and the demand upper bounds.

The production planning problem is formulated as a linear optimization model:

max
∑
j

Pjzj

s.t.
∑
j

Cjxj +
∑
j

Vjyj ≤ 400, 000

500 + x1 − (y1 + z1) = 0

yj−1 + xj − (yj + zj) = 0 ∀j = 2, ..., 6

y6 = 500

xj ≤ Uj ∀j = 1, ..., 6

zj ≤ Dj ∀j = 1, ..., 6

xj, yj, zj ≥ 0 ∀j = 1, ..., 6
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where the symbols are explained as following and Table 4.1 displays the detailed parameter

values:

j index, period

Pj parameter, price of product

Cj parameter, production cost

Vj parameter, storage cost

Uj parameter, capacity limitation of production

Dj parameter, market demand

xj variable, the amount of manufactured product during period j

yj variable, the amount of stored product at the end of period j

zj variable, the amount of sold product during period j

Table 4.1: Production planning problem data
j Pj Cj Vj Uj Dj

1 180 20 2 1500 1100
2 180 25 2 2000 1500
3 250 30 2 2200 1800
4 270 40 2 3000 1600
5 300 50 2 2700 2300
6 320 60 2 2500 2500

Assume the production costs C̃j contain uncertainties and have a maximum of 50%

perturbation around the nominal values listed in Table 4.1. It is assumed that the costs in

different periods have correlations with each other. Assume the uncertain parameters C̃j are

represented as C̃j = Cj +uj, where uj follow a truncated multivariate Gaussian distribution,

i.e., uj ∈ [−0.5Cj, 0.5Cj] , uj ∼ N (0,Σ). Considering the correlations of uncertainty (with

known covariance matrix) in the robust optimization formulation and using “interval +

polyhedral” type of uncertainty set, the robust counterpart constraints under correlated
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uncertainty are written as



∑
j

Cjxj +
∑
j

Vjyj +
∑
j

pj + ∆τ ≤ 400, 000

−pj ≤ m
(1)
j (xj − qj) ≤ pj,∀j

−τ ≤
∑
j

m
(2)
kj qj ≤ τ, ∀k

where m
(1)
j are elements of the matrix M−T

1 representing the perturbation, i.e., m
(1)
j = 0.5Cj,

m
(2)
kj are elements of the matrix M−T

2 representing the correlations, and M2 = Σ−1/2. On

the other hand, if we do not consider correlations (covariance matrix is unknown) and only

consider perturbations in the robust optimization formulation and still select “interval +

polyhedral” type of uncertainty set, the original constraint with uncertainty is written as



∑
j

Cjxj +
∑
j

Vjyj +
∑
j

pj + ∆τ ≤ 400, 000

−pj ≤ m
(1)
j (xj − qj) ≤ pj,∀j

−τ ≤ m
(1)
j qj ≤ τ, ∀j

Both linear robust optimization problems were solved using CPLEX solver in GAMS

23.9. It only takes around 0.5 second to solve the robust optimization problem, which reflects

the fact that the robust optimization method is efficient. Furthermore, the probabilities of

constraint satisfaction are simulated using 100,000 samples in MATLAB. The relationships

between the simulation probability and objective value for both cases (with and without

considering correlations in robust optimization formulation) are shown in Figure 4.8.

It can be observed that for a given probability of satisfaction level, the robust opti-

mization formulation considering correlations between uncertainties outperforms the robust

optimization formulation considering independent perturbations. This is because a larger

objective value is obtained from the correlated robust optimization model under the same

level probability of constraint satisfaction. It can be concluded that if more information,

such as the covariance matrix, is available for the uncertain parameters, considering them
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Figure 4.8: Objective value versus simulated probability of satisfaction.

in the formulation of the robust optimization problem can improve the performance of the

robust optimization solution.

4.5 Comparison of Robust Optimization Formulations

Based on Constraint-Wise and Global Uncertainty

Set

In this section, linear optimization problems with parameter uncertainty are studied for

multiple constraints and with out loss of generality, uncertainty is assumed to appear only

in the constraints. The general form of the constraints used in Chapter 3 can be represented

as follows:

yi0 + (yi)Tξi ≤ 0, i = 1, ..., n (4.64)
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where n is the number of constraints. In each constraint, the uncertainty vector can be

written as ξi = (ξi1, ..., ξ
i
si

)T , where si is the number of uncertainties in the ith constraint.

The structure of the uncertainty in different constraints is classified into three cases in this

section:

1. Uncertainties in different constraints are exactly the same.

2. Uncertainties in different constraints are completely different.

3. Uncertainties in different constraints are partly the same.

Robust optimization formulations based on “constraint-wise” and “global” uncertainty

set are considered. “Constraint-wise” uncertainty set is constructed for the uncertainties

in each individual constraint, separately. Hence, the correlations of the uncertainties from

different constraint cannot be captured in the uncertainty sets. When constructing the

“global” uncertainty set, the uncertainties from all the constraints are collected together

into one set with eliminating the repeated elements, and a unique uncertainty set is defined

on the augmented set of uncertainties.

For the ith constraint, the “constraint-wise” uncertainty set is defined as follows:

Uξi =
{
ξi
∣∣∥∥Mξi×ξiξ

i
∥∥ ≤ ∆i

}
(4.65)

where ξi is the uncertainty vector containing all the uncertainties in the ith constraint.

The “global” uncertainty set is defined as follows:

Uξ = {ξ |‖Mξ×ξξ‖ ≤ ∆} (4.66)

where ξ is the augmented uncertainty vector for the uncertainties from all the constraints

with eliminating the repeated ones.
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4.5.1 Derivation of Robust Optimization Formulation

In this section, the robust optimization (RO) formulations are derived based on the two types

of uncertainty set: “global” set for all the constraints together and “constraint-wise” set for

each individual constraint. And the three cases of uncertainty structure listed above are

considered. Since in the first case of uncertainty structure, it is obvious that RO formulations

based on “constraint-wise” and “global” uncertainty set are the same, only the cases that

uncertainties in different constraints are completely different and uncertainties in different

constraints are partly the same are considered.

4.5.1.1 Different Constraints with Different Uncertainties

In this subsection, the case that uncertainties in different constraints are different is consid-

ered. The correlation between any two uncertainties are defined using the subscript ξij × ξi
′

j′ .

The RO formulation based on the two types of uncertainty set can be obtained using

Property 7-9 in Section 4.2.

a). RO formulation based on “global” uncertainty set is

yi0 + ∆
∥∥M−Tyiaug

∥∥
∗ ≤ 0, i = 1, ..., n (4.67)

where M−T = Σ1/2, Σ is the covariance matrix for the augmented uncertainty vector ξ =

(ξ1; ...; ξn) and yiaug is the augmented vector corresponding to yi containing n blocks with

the ith block to be yi and other blocks to be all zeros, i.e., yiaug = (0; ...0; yi; 0; ...; 0). ‖·‖∗

represents the dual norm for ‖·‖. Matrix M−T can be written as

M−T =


Mξ1×ξ1 ... Mξ1×ξn

... ... ...

Mξn×ξ1 ... Mξn×ξn


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b). RO formulation based on “constraint-wise” uncertainty set is

yi0 + ∆i
∥∥∥M−T

i yi
∥∥∥
∗
≤ 0, i = 1, ..., n (4.68)

where M
−T
i = Σ

1/2
i , Σi is the covariance matrix for uncertainty ξi in the ith constraint,

and M
−T
i = Mξi×ξi . For the “constraint-wise” uncertainty set, since matrix M−T

i only

contains the information about the uncertainty ξi in the ith constraint, the correlation of

the uncertainty in different constraints has no influence on the formulation and the final

results.

Three shapes of uncertainty set, i.e., box, ellipsoidal and polyhedral can be represented

by infinite norm, 2-norm and 1-norm, respectively. For both “global” and “constraint-wise”

uncertainty set, in order to illustrate, it can be denoted that M−Ty = (x1, ..., xN)T with N

to be the number of uncertainties. Write the norms in the RO formulation into explicit form

with respect to different types of uncertainty set as follows:

Box uncertainty set: Ubox = {u |‖Mu‖∞ ≤ ∆}

∥∥M−Ty
∥∥

1
=
∥∥∥(x1, ..., xN)T

∥∥∥
1

=
N∑
i=1

|xi|

Ellipsoidal uncertainty set: Uellipsoid = {u |‖Mu‖2 ≤ ∆}

∥∥M−Ty
∥∥

2
=
∥∥∥(x1, ..., xN)T

∥∥∥
2

=

√√√√ N∑
i=1

xi2

Polyhedral uncertainty set: Upolyhedral = {u |‖Mu‖1 ≤ ∆}

∥∥M−Ty
∥∥
∞ =

∥∥∥(x1, ..., xN)T
∥∥∥
∞

= max
i=1,...,N

|xi|

Since (
N∑
i=1

|xi|

)2

=
N∑
i=1

x2
i +

N∑
i=1,i6=j

N∑
j=1

|xi| |xj| ≥
N∑
i=1

x2
i
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It can be obtained that
∥∥M−Ty

∥∥
1
≥
∥∥M−Ty

∥∥
2
. And it is obvious that

∥∥M−Ty
∥∥

2
≥∥∥M−Ty

∥∥
∞. Then, it can be concluded that with the same uncertainty set size ∆, the RO

formulation based on box uncertainty set is the most conservative since it has the highest

protect level of the constraint, while polyhedral uncertainty set is the least conservative.

Next, different relationships of the uncertainties across different constraints are consid-

ered.

(I). Uncertainties in different constraints are independent

In this case, it is considered that the uncertainties in different constraints are independent,

i.e., the elements in the matrices Mξi×ξj , i 6= j are zeros. It can be obtained that

∥∥M−Tyiaug
∥∥
∗ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0

...

Mξi×ξiy
i

...

0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∗

=
∥∥Mξi×ξiy

i
∥∥
∗

=
∥∥∥M−T

i yi
∥∥∥
∗

which implies that in this case, with same uncertainty set size ∆ the RO formulation based

on global uncertainty set represented in Eq.(4.67) is the same as the RO formulation based

on constraint-wise uncertainty set in Equation(4.68) with box, ellipsoidal, polyhedral shapes

of uncertainty set.

(II). Uncertainties in different constraints are correlated

In this case, the uncertainties in different constraints are considered to be correlated. First,

the relationship between matrix M and covariance matrix Σ is explicitly written as follows:


m11 ... m1N

... ... ...

mN1 ... mNN




m11 ... m1N

... ... ...

mN1 ... mNN

 =


σ2

11 ... σ1N

... ... ...

σN1 ... σ2
NN

 = Σ
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where M−T =


m11 ... m1N

... ... ...

mN1 ... mNN

.

If uncertainties are independent, the off-diagonal elements of matrix Σ and matrix M−T

are zeros, and σii = m
′
ii, i = 1, ..., N . If the uncertainties are correlated, it can be obtained

that

σ2
ii =

N∑
j=1

m2
ij = m2

ii +
∑
j 6=i

m2
ij, i = 1, ..., N (4.69)

It is obvious that the diagonal elements of matrix M−T with independent uncertainties are

always larger than those with correlated uncertainties, i.e.,

m
′

ii > mii, i = 1, ..., N (4.70)

The relationship shown in (4.70) will be used for the following comparisons.

Box uncertainty set:

For the box uncertainty set, the norm part in “global” RO formulation is

∥∥M−Tyiaug
∥∥

1
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Mξ1×ξiy
i

...

Mξi×ξiy
i

...

Mξn×ξiy
i



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

=
∥∥Mξi×ξiy

i
∥∥

1
+

N∑
j=1,j 6=i

∥∥Mξj×ξiy
i
∥∥

1
(4.71)

Since in “constraint-wise” RO formulation, the uncertainties in different constraints can

be regarded as independent, the term
∥∥Mξi×ξiy

i
∥∥

1
in “constraint-wise” RO formulation

shown in Equation(4.68) is always larger than the first term in (4.71), and the second term

in (4.71) has nonnegative value. With the influence of both the two terms, there is no definite

relationship of the conservativeness of constraint-wise and global RO formulation with box

shape.
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Ellipsoidal uncertainty set:

The norm part in global RO formulation can be explicitly written as

∥∥M−Tyiaug
∥∥

2
=
√

(yiaug)
TΣyiaug =

√√√√√√√√√√√√√√√√



0

...

yi

...

0



T 

Σξ1×ξ1 ... Σξ1×ξi ... Σξ1×ξn

... ... ... ... ...

Σξi×ξ1 ... Σξi×ξi ... Σξi×ξn

... ... ... ... ...

Σξn×ξ1 ... Σξn×ξi ... Σξn×ξn





0

...

yi

...

0



=

√√√√√√√√√√√√√√√√



(yi)
T

Σξi×ξ1

...

(yi)
T

Σξi×ξi

...

(yi)
T

Σξi×ξn



T 

0

...

yi

...

0


=
√

(yi)TΣξi×ξiy
i =

∥∥Mi
−Tyi

∥∥
2

It can be concluded that for ellipsoidal shape uncertainty set, the “global” and “constraint-

wise” formulation is the same although correlation exists in the uncertainties across different

uncertainty.

Polyhedral uncertainty set:

The norm part in “global” RO formulation is as follows

∥∥M−Tyiaug
∥∥
∞ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Mξ1×ξiy
i

...

Mξi×ξiy
i

...

Mξn×ξiy
i



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

= max
j=1,...,n

∥∥Mξj×ξiy
i
∥∥
∞
≥
∥∥Mξi×ξiy

i
∥∥
∞

(4.72)

When the “ = ” sign holds in (4.72), according to relation (4.70), the term
∥∥Mξi×ξiy

i
∥∥
∞

in

“constraint-wise” RO formulation is always larger than that in (4.72) due to the independence
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of uncertainties in different constraints in constraint-wise formulation. It can be concluded

that the “global” formulation is less conservative than the “constraint-wise” formulation. If

the “ = ” does not hold in (4.72), there is no definite relationship of the conservativeness of

“constraint-wise” and “global” RO formulations.

4.5.1.2 Different Constraints with Partly Same Uncertainties

Due to the definition of uncertainty set in this work, the matrix M is required to be invert-

ible. When constructing the augmented uncertain vector, the repeated elements should be

eliminated, so this case of uncertainty structure can be regarded as special cases in the case

represented in subsection 4.5.1.1.

1. The unrepeated elements are independent

This case is actually equivalent as the case when the uncertainties in different constraints

are completely different and the uncertainties are independent across constraints ((I) of

section 4.5.1.1). In this case, the “global” RO formulation is the same as the “constraint-

wise” RO formulation.

2. Only the distinguished elements are correlated

This case can be regarded as the case that uncertainties in different constraints are

completely different when uncertainties are correlated among constraints ((II) of section

4.5.1.1). The conclusion is that the “global” and “constraint-wise” formulations are the

same for ellipsoidal shape uncertainty set while for box and polyhedral shape, there is no

definite relationship.

3. Correlations exist in the same constraints and across different constraints

This case is the most complicated one, not only the correlation across different constraints

but also the correlation within the same constraint influence the final comparison results.
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4.5.2 Illustrative Examples

4.5.2.1 Numerical Example (LHS Uncertainty)

The uncertainty exists on the left-hand-side (LHS) of the constraints and the case is that

different multiple uncertainties appear in different constraints.

max 8x1 + 12x2

s.t. (10 + ξ1)x1 + (20 + ξ2)x2 ≤ 140

(6 + ξ3)x1 + (8 + ξ4)x2 ≤ 72

x1, x2 ≥ 0

(4.73)

The uncertainties are assumed to follow normal distribution with zero mean, and the variance

of the uncertainties are 4, 25, 16, and 9.

1. The conclusion in (I) of section 4.5.1.1 is tested by assuming that ξ1 is independent

with ξ3 and ξ4 and ξ2 is independent with ξ3 and ξ4. Correlation between ξ1 and ξ2, and

between ξ3 and ξ4 will not influence the results, a correlation of them is considered for

generality. The correlation matrices for “global” and “constraint-wise” formulations are

R =



1 0.5 0 0

0.5 1 0 0

0 0 1 0.5

0 0 0.5 1


, R1 =

 1 0.5

0.5 1

 , R2 =

 1 0.5

0.5 1



The relationship of set size and optimal objective value is plotted in Figure 4.9
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Figure 4.9: Set size vs. optimal objective value ((I) of section 1.1)

This figure can also be used to show the relationship of the RO formulations based on

box, ellipsoidal, polyhedral shapes of uncertainty set. It can be observed that with the

same set size, the objective value of the box formulation is the smallest and the objective

value of the polyhedral formulation is the largest, which implies the conclusion that the RO

formulation with box uncertainty set is the most conservative (smallest objective value for a

maximization problem). For all the three shapes of uncertainty set, the lines for “constraint-

wise” and “global” uncertainty set coincide, which means that when the uncertainties from

different constraints are independent the RO formulations are the same.

2. The conclusion in (II) of section 4.5.1.1 is tested for box shape uncertainty set first.

It is assumed that ξ1 is correlated with both ξ3 and ξ4 and ξ2 is correlated with both ξ3 and

ξ4. In order to consider the influence of correlation from different constraints, it is assumed

that ξ1 is independent of ξ2 and ξ3 is independent of ξ4. The correlation matrices for “global”

and “constraint-wise” formulations are

R =



1 0 0.5 −0.5

0 1 −0.5 0.5

0.5 −0.5 1 0

−0.5 0.5 0 1


, R1 =

 1 0

0 1

 , R2 =

 1 0

0 1


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Figure 4.10: Set size vs. optimal objective value ((II) of section 4.5.1.1 box)

It can be observed that with the same set size, the objective value of the “constraint-

wise” formulation is larger than the one of “global” formulation at most of the times, but

when the set size is around 1.5, the two lines coincide, which means that there is no certain

conclusion on the conservativeness of the RO formulation for the two types of uncertainty

set with box shape under the condition that the uncertainties from different constraints are

correlated.

3. The conclusion in (II) of section 4.5.1.1 is tested for ellipsoidal shape uncertainty set.

The matrices are considered as the same as case 2.
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Figure 4.11: Set size vs. optimal objective value ((II) of section 4.5.1.1 ellipsoidal)

In this figure, the two lines coincide, which implies that the ellipsoid shape uncertainty
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has the property that even when the uncertainties from different constraints are correlated,

the “constraint-wise” and “global” RO formulation have the same results.

4. The conclusion in (II) of section 4.5.1.1 is tested for polyhedral shape uncertainty set.

Two sets of assumption of the uncertainty structure are considered. First, correlations exist

between ξ1 and ξ3, and between ξ2 and ξ4. The correlation matrices are shown as follows:

R =



1 0 0.5 0

0 1 0 0.5

0.5 0 1 0

0 0.5 0 1


, R1 =

 1 0

0 1

 , R2 =

 1 0

0 1



The second assumption considers the same correlation matrices as case 2.
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Figure 4.12: Set size vs. optimal objective value ((II) of section 4.5.1.1 polyhedral)
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Figure 4.13: Set size vs. optimal objective value ((II) of section 4.5.1.1 polyhedral)

Figure 4.12 shows that “constraint-wise” formulation is more conservative, while Figure

4.13 shows that “global” formulation is more conservative. It implies that similar to the box

shape uncertainty set, the results from the ‘constraint-wise” and “global” uncertainty set

are not certain for the case that the uncertainties from different constraints are correlated.

4.5.2.2 Numerical Example (Repeated Uncertainties)

In this example [82], uncertainty only appears on the right-hand-side (RHS) of the con-

straints. The numbers of uncertainties in different constraints can be different, and part of

the uncertainties in each constraint can be the same.

min x1 + 2x2

s.t. x1 + x2 ≥ ξ1 + ξ2

x2 ≥ ξ2

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 5

(4.74)

ξ1 and ξ2 are assumed to follow normal distribution with mean 1 and 2, standard deviation

0.1 and 0.2. First, ξ1 and ξ2 are assumed to be independent (case 1 in section 4.5.1.2). This

case is the same as (I) of section 4.5.1.1, and the “global” and “constraint-wise” formulations
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should be the same, which is demonstrated in Figure 4.14.
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Figure 4.14: Set size vs. optimal objective value ( case 1 in section 4.5.1.2 )

Second, ξ1 and ξ2 are considered to be correlated and this is the same as the third case

in section 4.5.1.2, which is shown in Figure 4.15.
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Figure 4.15: Set size vs. optimal objective value (case 3 in section 4.5.1.2)

4.6 Conclusion

This chapter investigates robust optimization under correlated uncertainties. Specifically,

correlated uncertainty within a single constraint is studied and the robust counterpart op-
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timization formulations are derived based on five different types of uncertain set: box, el-

lipsoidal, polyhedral, interval+ellipsoidal, and interval+polyhedral. Computational studies

and application example both demonstrate the advantage of modeling correlations in robust

optimization framework. That is, less conservative solution can be obtained when more ac-

curate correlation is incorporated into the robust optimization framework. Then, in Section

4.5, the RO formulations for multiple constraints with correlated uncertainties are considered

and compared based on “constraint-wise” and “global” uncertainty set. Simple numerical

examples are used to test the results with different conditions for the correlations between

uncertainties. The conservativeness can be compared for specified conditions of correlation,

e.g., when correlation only exist within the same constraints and the uncertainties from

different constraints are independent. However, the conservativeness cannot be directly ob-

served from the formulations for complicated correlation conditions. But the formulations

can still give a hint on how to select a better uncertainty set in RO formulation.
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Chapter 5

Nonlinear Robust Optimization for

Process Design

5.1 Introduction

Robust optimization has become an active research area for considering uncertainty in op-

timization problems. Most of the available approaches in this area focus on linear program-

ming, second-order cone programming and semi-definite programming problems. Chapter 3

and Chapter 4 study robust optimization for linear problems as well. However, nonlinearity

reveals in most of the practical problems, for instance, many process design problems can

be formulated as nonlinear optimization problems involving system parameters.

In this chapter, a novel nonlinear robust optimization framework is proposed to address

general nonlinear problems under uncertainty. The proposed method is based on linearization

with respect to uncertain parameter around multiple realizations and an iterative algorithm.

The problems to be addressed can be classified as three categories. In the first case, the un-

certain parameters are only involved in the inequality constraints, which is the simplest case

of nonlinear optimization problems. It is commonly seen in process design or operations op-

timization problem with only static decisions. Here the objective is to find a robust decision

that is feasible to all the possible uncertainty realizations in an uncertainty set. Lineariza-
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tion can be directly applied to the nonlinear inequality constraint and robust counterpart

optimization formulation is then applied. In the second case, the nonlinear optimization

problem involves design variables and state variables coupled by equality constraints, and

inequality constraints are enforced for some state variables. In such optimization problems,

there will be equality constraints containing uncertain parameters and the traditional robust

optimization method cannot be directly applied. However, the state variables can be deter-

mined after the design variables as well as the uncertain parameters are fixed. Using the

Implicit Function Theorem, the state variables can be replaced by a function of uncertain

parameters and design variables. Then the robust optimization formulation can be applied

through linearization of the inequality constraints. Third, the nonlinear problem involves

design variables, operation (control) variables and state variables. Generally, the design

variables should be determined before the exact realizations of the uncertain parameters are

available, but the operation (control) variables can actually adjust themselves with respect

to the real values of the uncertain parameters during the process. For this type of problem,

the operation (control) variables can be adjusted based on the realizations of the uncertainty.

Correspondingly, a local affinely adjustable decision rule is adopted for the operation (con-

trol) variables (i.e., an affine function of the uncertain parameter). The decision rule will be

applied in the nonlinear problem and the problem can be reduced to the second case. The

corresponding adjustable robust optimization (ARO) for linear programs has been proposed

by Ben-Tal and et al. [44]. The idea of ARO has been applied in scheduling problem of

continuous industrial processes providing interruptible load [83] and multi-stage ARO for

process scheduling under uncertainty has also been studied [84].

The rest of the chapter is organized as follows: In Section 5.2, the problems considered

in this chapter are formally presented. In the Section 5.3, the robust counterpart formula-

tions are derived for all the three classes of problems addressed in this chapter, respectively.

In Section 5.4, the formulation based on linearization with respect to uncertain parameter

around multiple realizations of uncertainty is provided. The iterative algorithm is also de-
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scribed in this section. In Section 5.5, the proposed method is demonstrated through three

different applications corresponding to each case of the problem and finally the chapter is

concluded in last section.

5.2 Problem Statement

In this chapter, three categories of problems, classified according to the complexity, are

considered. The simplest case only contains inequality constraints associated with uncertain

parameters, which is expressed in (5.1) as follows:

min
u∈U

φ(u)

s.t. G(u, s) ≤ 0
(5.1)

where s ∈ RNs represents uncertain parameters, u ∈ RNu represents design variables which

are constrained in a feasible set U , and Ns and Nu represent the number of the uncertain

parameters and design variables, respectively. G = (g1, ..., gm)T ∈ Rm, and m is the number

of inequality constraints.

In the second case, state equations are involved in the formulation to represent the process

model. The design variables and the state variables are coupled by the equality constraints,

and uncertain parameters exist in equality constraints as well. The optimization problem is

expressed as follows:

min
y,u∈U

φ(y, u)

s.t. F (y, u, s) = 0

G(y, u, s) ≤ 0

(5.2)

where y ∈ RNy represents state variables, Ny represents the number of the state variables, and

F (y, u, s) = 0 is known as the state equation. The size of the state variables y and the number

of the state equations F should be equal so that the state variables can be determined by

the design variables and uncertain parameters through the state equations. Throughout this
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chapter, it is assumed that the function F and G are continuously differentiable. Function

φ, F and G are general nonlinear functions.

In the final case, part of the variables, known as operation (control) variables, can be

adjusted according to the realizations of the uncertain parameters during the process. The

optimization problem is formulated as follows:

min
y,z,u∈U

φ(y, z, u)

s.t. F (y, z, u, s) = 0

G(y, z, u, s) ≤ 0

(5.3)

where z ∈ RNz represents operation (control) variables, Nz represents the number of the

operation (control) variables.

5.3 Robust Optimization Formulation

In this section, the robust optimization formulation for the nonlinear optimization problem

is developed. As the simplest case, the inequality-only constrained model (5.1) is considered

first and then the results can be extended to the case with both equality and inequality con-

straints as shown in (5.2), as well as the general case involving operation (control) variables

as expressed in (5.3). Defining an appropriate uncertainty set for the uncertain parameters is

of great importance in robust optimization. Different robust counterpart formulations can be

derived based on different types of uncertainty set [48]. The simplest type of uncertainty set

is defined by p norm and the corresponding nonlinear robust optimization formulation has

been derived [85], which is more suitable for unbounded uncertainty. However, for bounded

uncertainty, constructing an uncertainty set which exceeds the bounded uncertain region is

too conservative. It is more meaningful to define an uncertainty set considering the infor-

mation of the bounded uncertainty region. While the uncertainty region is determined only

by the bounds (i.e., interval) of each parameter, the corresponding robust optimization for-
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mulations for linear optimization problem were derived by Li and et al. [48] for independent

uncertainty and in Chapter 4, the robust optimization formulations for correlated uncertain-

ties are derived. In this chapter, a more general type of uncertainty set is considered, which

is defined as the intersection of two norm-induced uncertainty sets:

Sintersect =
{
s|‖M1(s− s1)‖p1 ≤ ∆1, ‖M2(s− s2)‖p2 ≤ ∆2

}
(5.4)

where M1 and M2 are invertible matrices representing information such as perturbation and

correlation of the uncertainty, s1 and s2 are the center points of the two sets, p1 and p2 are

norm parameters used in the two sets, and ∆1 and ∆2 are the set sizes.

Figure 5.1: Illustration of the uncertainty set

Figure 5.1 illustrates the shape of the defined uncertainty set. The black and blue dots

represent the center points of each set. The rectangle and ellipsoid in solid line in (a) and

(b) are the confidence interval and joint confidence region. Confidence interval does not

consider the correlations between different variables, while the joint confidence region does.

Thus, the ellipsoid is rotated by the covariance matrix. The shapes in dash line are the other

set selected by the designer. In Figure 5.1, ellipsoid type and box type set are selected in

(a) and (b), respectively. If the designer would like to consider the correlations of different

uncertainties, the covariance matrix can be incorporated in the uncertainty set as displayed

on the right side of (a) and (b). The circle and rectangle on the left side of (a) and (b)
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represent the selected sets without correlation information.

5.3.1 Inequality-Only Case

The main idea of robust optimization is to enforce the constraints to be satisfied for all the

realizations of the uncertainty within the pre-defined uncertainty set Sintersect, which can be

shown as:

G(u, s) ≤ 0,∀s ∈ Sintersect (5.5)

which is equivalent to

max
s∈Sintersect

gi(u, s) ≤ 0, i = 1, ...,m (5.6)

Before applying the robust optimization formulation, the nonlinear function gi is lin-

earized. Taking the first-order Taylor approximation in a small region around point s∗, it is

obtained that

gi(u, s) ≈ gi(u, s∗) + (s− s∗)T∇sgi(u, s∗)

= gi(u, s∗)− s∗T∇sgi(u, s∗) + sT∇sgi(u, s∗) ≤ 0
(5.7)

where ∇sgi denotes the gradient of gi with respect to s. The robust constraint (5.6) can be

approximated as

max
s∈S

gi(u, s)

≈ gi(u, s∗)− s∗T∇sgi(u, s∗) + max
s∈Sintersect

sT∇sgi(u, s∗) ≤ 0
(5.8)

Property 12. With the uncertainty set defined by (5.4), the robust counterpart constraint

(5.8) is equivalent to the following form:

gi(u, s∗)− s∗T∇sgi(u, s∗)

+s1
T∇sgi(u, s∗) + (s2

T − s1
T )r

+∆1

∥∥M−T
1 (r −∇sgi(u, s1))

∥∥
q1

+ ∆2

∥∥M−T
2 r

∥∥
q2
≤ 0

(5.9)

Proof. Apply the uncertainty set in Equation (5.4), the inner maximization problem in (5.8)
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can be formulated as

max
s

 sT∇sgi(u, s∗) :

‖M1(s− s1)‖p1 ≤ ∆1, ‖M2(s− s2)‖p2 ≤ ∆2

 (5.10)

The inner maximization problem is a conic programming problem. According to the defini-

tion of norm cone, write the inner maximization into the standard form of conic programming

as follows:

max
s

{
sT∇sgi(u, s∗) : Pp1s+ pp1 ∈ Kp1 , Pp2s+ pp2 ∈ Kp2

}
(5.11)

where Pp1 =

 M1(n×n)

0(1×n)

 , pp1 =

 −M1(n×n)s1(n×1)

∆1

 , Kp1 =
{

(θ(n×1); t)|‖θ‖p1 ≤ t
}

, and

Pp2 =

 M2(n×n)

0(1×n)

 , pp2 =

 −M2(n×n)s2(n×1)

∆2

 , Kp2 =
{

(θ(n×1); t)|‖θ‖p2 ≤ t
}

.

Defining dual variables y1 =
[
w1(n×1); τ1

]
∈ K∗p1 and y2 =

[
w2(n×1); τ2

]
∈ K∗p2 . K∗p1 is

the dual cone of Kp1 , K
∗
p1

= Kq1 =
{

(θ(n×1); t)|‖θ‖q1 ≤ t
}

, and K∗p2 is the dual cone of Kp2 ,

K∗p2 = Kq2 =
{

(θ(n×1); t)|‖θ‖q2 ≤ t
}

. q1 and q2 are dual norm parameters, which satisfy

1/p1 + 1/q1 = 1, 1/p2 + 1/q2 = 1.

Applying conic duality, the problem can be formulated as the following minimization

problem:

min
y1,y2

 −s1
TMT

1 w1 + ∆1τ1 − s2
TMT

2 w2 + ∆2τ2 :

y1 ∈ K∗p1 , y
2 ∈ K∗p2 ,M

T
1 w1 +MT

2 w2 = −∇sgi(u, s∗)


= min

y1,y2

 −s1
TMT

1 w1 + ∆1τ1 − s2
TMT

2 w2 + ∆2τ2 :

‖w1‖q1 ≤ τ1, ‖w2‖q2 ≤ τ2,M
T
1 w1 +MT

2 w2 = −∇sgi(u, s∗)


(5.12)

Since the problem (5.12) is a minimization problem, τ1 and τ2 can be replaced by their
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lower bounds ‖w1‖q1 and ‖w2‖q2 , respectively. The problem (5.12) can be reformulated as

min
y1,y2

 −s1
TMT

1 w1 + ∆1‖w1‖q1 − s2
TMT

2 w2 + ∆2‖w2‖q2 :

MT
1 w1 +MT

2 w2 = −∇sgi(u, s∗)

 (5.13)

And w2 can be further replaced by w2 = −M−T
2 (∇sgi(u, s∗) +MT

1 w1), then the problem

is represented as

min
w1

{
−s1

TMT
1 w1 + ∆1‖w1‖q1 + s2

T (∇sgi(u, s∗) +MT
1 w1)

+∆2

∥∥M−T
2 (∇sgi(u, s∗) +MT

1 w1)
∥∥
q2

} (5.14)

The inner maximization term is replaced by the minimization term above and since the

minimization term is on the left hand side of a “less than or equal to” constraints, the

minimization operator can be removed from the constraint, then the original constraint with

uncertainty can be formulated as the following:

gi(u, s∗)− s∗T∇sgi(u, s∗)

−s1
TMT

1 w1 + s2
T (∇sgi(u, s∗) +MT

1 w1)

+∆1‖w1‖q1 + ∆2

∥∥M−T
2 (∇sgi(u, s∗) +MT

1 w1)
∥∥
q2
≤ 0

(5.15)

Introducing an auxiliary variable r = ∇sgi(u, s∗) +MT
1 w1, constraint (5.9) can be obtained.

Combine all the constraints and the objective function, the robust optimization formu-

lation for the original problem (5.1) can be represented as follows

min
u∈U

φ(u)

s.t. gi(u, s∗)− (s1
T − s∗T )∇sgi(u, s∗) + (s2

T − s1
T )r

+∆1

∥∥M−T
1 (r −∇sgi(u, s1))

∥∥
q1

+ ∆2

∥∥M−T
2 r

∥∥
q2
≤ 0

i = 1, ...,m

(5.16)
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5.3.2 Equality-with-State-Variables Case

In the second case, state variables and equality constraints are involved in the nonlinear

optimization problem. The state variables can be determined as a function of design variables

and the uncertain parameters under the Implicit Function Theorem. First, Fy(y, u, s) is

defined as the partial Jacobian of F (y, u, s) with respect to y, i.e.,

[Fy(y, u, s)]kl =
∂Fk(y, u, s)

∂yl
, k, l = 1, 2, ..., Ny (5.17)

and Fs, Gy, Gs, ys are defined similarly.

Property 13. With the uncertainty set defined by (5.4), the robust formulation of problem

(5.2) is obtained as follows:

min
y,u∈U

φ(y, u)

s.t. F (y, u, s∗) = 0 (5.18a)

Fyys + Fs = 0 (5.18b)

gi(y, u, s∗) + (s1
T − s∗T )(Gyys +Gs)

T ei + (s2
T − s1

T )r

+∆1

∥∥M−T
1 (r − (Gyys +Gs)

T ei)
∥∥
q1

+ ∆2

∥∥M−T
2 r

∥∥
q2
≤ 0

i = 1, ...,m

(5.18c)

where ei is the ith column of the identity matrix, and Fy, Fs, Gy, and Gs take value at s∗.

Proof. The state variable y can be implicitly defined as a function y(u, s) through the state

equation F (y, u, s) = 0. Applying the implicit function y(u, s) in the inequality constraint,

it is obtained that

G(u, s) = G(y(u, s), u, s) (5.19)

Differentiating both sides of the equation F (y(u, s), u, s) = 0 with respect to s leads to

the matrix equation

Fy(y, u, s)ys + Fs(y, u, s) = 0 (5.20)
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Notice that y(u, s) is an implicit function, and it is not necessary to get an explicit

expression of ys. ys is treated as variable in the formulation. Differentiating G(u, s) with

respect to s, it can be represented that

Gs(u, s) = Gy(y, u, s)ys +Gs(y, u, s) (5.21)

For each individual inequality constraint i, the derivative is obtained as

∇sgi(u, s)
T = eTi Gs(u, s) = eTi [Gy(y, u, s)ys +Gs(y, u, s)] (5.22)

Substituting Equation (5.22) into the robust optimization formulation for inequality con-

straints shown in Equation (5.9) and combining it with the constraint shown in Equation

(5.20), the robust optimization (5.18) is obtained.

5.3.3 General Case

In the general case, the problem (5.3) is considered with a new type of variables called

operation (control) variables. Operation (control) variables can be adjusted to satisfy the

design specifications during the operation of the process. In this case, since only the design

variables remain fixed and the operation (control) variables are properly manipulated for the

realizations of the uncertain parameters, the final design will be less conservative. In robust

optimization framework, formulations with adjustable variables are referred to as adjustable

robust counterpart (ARC). However, ARC is computationally intractable in most cases. In

this chapter, the affine adjustable robust optimization algorithm proposed by Ben-Tal et al.

[44] is applied to represent the relationship between the operation (control) variables and

the uncertain parameters using an affine function, which is shown as follows:

z = As+ b (5.23)
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where A is an Nz by Ns matrix, and b is a vector of dimension Nz.

It is worth pointing out that the above affine decision rule is reasonable because it is

applied to the small uncertainty set around a selected point. In this local region, the nonlinear

constraints are linearized and the operational variable decision rule is assumed to be affine

function of the uncertain parameters.

Property 14. With the uncertainty set defined by (5.4) and the affine function of the op-

eration (control) variables with respect to the uncertain parameter in (5.23), the robust op-

timization formulation of problem (5.3) is obtained as follows:

min
y,z,u∈U

φ(y, z, u)

s.t. F (y, z, u, s∗) = 0 (5.24a)

Fyys + FzA+ Fs = 0 (5.24b)

gi(y, z, u, s∗) + (s1
T − s∗T )(Gyys +GzA+Gs)

T ei + (s2
T − s1

T )r

+∆1

∥∥∥M−T
1 (r − (Gyys +GzA+Gs)

T ei)
∥∥∥
q1

+ ∆2

∥∥M−T
2 r

∥∥
q2
≤ 0

i = 1, ...,m

z = As+ b

(5.24c)

where Fz, Gz are defined similarly as in Equation (5.17), and Fy, Fz, Fs, Gy, Gz, and Gs

take value at s∗.

Proof. The explicit affine function of the operation (control) variables z is represented as z(s).

The state equation F (y, z, u, s) also involves the operation (control) variables. However, after

substituting the explicit function z(s), only state variables and design variables remain in

the state equation. Similar to Equation (5.19), it can be obtained that

G(u, s) = G(y(z(s), u, s), u, s) (5.25)

Differentiate both sides of the state equation F (y(z(s), u, s), u, s) = 0 with respect to the
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uncertainty s, the following equation is obtained:

Fy(y, z, u, s)ys + Fz(y, z, u, s)A+Fs(y, z, u, s) = 0 (5.26)

where A is the derivative of function z(s) with respect to s according to the affine function

in Equation (5.23). And differentiating G(u, s) with respect to s, it can be written that

Gs(u, s) = Gy(y, z, u, s)ys +Gz(y, z, u, s)A+Gs(y, z, u, s) (5.27)

The derivative form for each individual inequality constraint i can be expressed as

∇sgi(u, s)
T = eTi Gs(u, s) = eTi [Gy(y, z, u, s)ys +Gz(y, z, u, s)A+Gs(y, z, u, s)] (5.28)

Substituting Equation (5.28) into Equation (5.9), and including the equality constraint

in Equation (5.26) and Equation (5.23), the robust optimization for the general case in (5.24)

is obtained.

5.4 Iterative Algorithm

Due to the limitation of the first-order Taylor linearization that it is effective only in a small

range around a single point, the robust optimization formulation derived in the third section

works well only under uncertainty with small perturbation. If the perturbation is large, the

so-called “piecewise” linearization will be taken. The first-order Taylor expansion will be

applied around multiple realizations of the uncertain parameter. The robust optimization

formulation for the inequality-only case is summarized in (5.29)

min
u∈U

φ(u)

s.t. extending (5.9) with index j

∀j, i = 1, ...,m

(5.29)
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In (5.16), the nonlinear functions are linearized around a single point, while in the “piecewise”

linearization robust optimization formulation the functions are linearized around different

points represented by index j. Therefore, the parameters and variables (s∗, s1, s2, r, ∆1, ∆2,

q1, q2, M1, M2) associated with the points should also be extended with index j in (5.29).

Similarly to (5.29), the robust optimization formulation for the equality-with-state-variable

case using “piecewise” linearization is shown as follows:

min
ym,u∈U

φ(ym, u)

s.t. extending (5.18a), ∀j

extending (5.18b), ∀j

extending (5.18c), ∀j, i = 1, ...,m

yj ≤ ym,∀j

(5.30)

Not only the parameters and variables involved in (5.29) but also the state variable y as well

as the derivatives with respect to y are extended with index j in (5.30).

And the robust optimization formulation with “piecewise” linearization for the general

case is expressed in the following form:

min
ym,zm,u∈U

φ(ym, zm, u)

s.t. extending (5.24a), ∀j

extending (5.24b), ∀j

extending (5.24c), ∀j, i = 1, ...,m

yj ≤ ym, ∀j

zj=Ajsj∗ + bj,∀j

zj ≤ zm,∀j

(5.31)

The control variable z and the derivatives associated with z are extended with index j as

well in (5.31).

All the constraints and corresponding variables in mdoel (5.16), (5.18) and (5.24) are
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extended with respect to the multiple points around which the “piecewise” linearization is

taken. The design variable u remains the same for all the points. As shown in (5.30) and

(5.31), if the state variables and operation (control) variables exist in the objective function,

they are replaced by their maximum ym and zm among all the multiple points.

In the proposed nonlinear robust optimization framework, the “piecewise” linearization is

taken around multiple realizations of the uncertain parameter. An important issue is how to

select proper points. In this chapter, an iterative algorithm is applied to solve the problem.

The algorithm is shown in Figure 5.2.

Figure 5.2: The iterative algorithm for solving the problem

In each iteration of the proposed iterative algorithm, there are mainly three steps. First,
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a single point is randomly generated within the uncertainty region, and it is assumed that

the uncertain parameter is uniformly distributed in the uncertainty region. The second

step is called feasibility test, and in this step, whether the design variables obtained in the

previous iteration are feasible for the process under the generated realization of the uncertain

parameter is tested. The third step in each iteration is to solve the robust optimization

problem (formulation (5.29), (5.30), and (5.31) corresponding to three cases) with all the

points selected for “piecewise” linearization.

5.4.1 Feasibility Test

Next, the details for the feasibility test step are discussed. For the general case, in order to

test the feasibility of the design variables, the following problem is solved

min
y,z

t

s.t. F (y, z, u∗, s∗) = 0

gi(y, z, u∗, s∗) ≤ t, i = 1, ...,m

(5.32)

In the above formulation, t is a slack variable added to each inequality constraint, s∗ is the

randomly generated realization of the uncertainty, and u∗ is the design variable fixed as the

value obtained in the previous iteration. The slack variable is minimized, and if the value t is

larger than 0 the design is not feasible at the current realization of the uncertain parameter

and the corresponding point is selected for “piecewise” linearization, otherwise, the design

is feasible and a new point should be generated. There are infinite number of points in the

uncertainty region, but only up to N number of samples are generated in each iteration.

This number reflects how much the uncertainty region is covered by the samples. Larger

number of samples represents the region better; however, they will increase the computation

burden.

For the equality-with-state-variable case, formulation (5.32) can still be used for feasibility

test (by eliminating the control variables). Furthermore, another strategy can be applied to

142



test the feasibility. Since the number of state variables and the number of state equations

are the same, with fixed design variable and uncertain parameter, the state variable can be

directly obtained by solving the state equations F (y, u, s) = 0. Then, the state variable,

design variable, and uncertain parameter are substituted into each inequality constraint

gi(y, u, s) ≤ 0. If any of the inequality constraints is violated, the design is infeasible under

the current realization of the uncertainty. For the inequality-only case, there is no need to

solve (5.32), and the design variable and uncertain parameter are directly substituted into

the inequality constraints to test the feasibility.

5.4.2 Illustrative Example

For an illustration, let us consider a simple optimization with only one inequality constraint

and one uncertain parameter as follows:

min (x1 − 2)2 + (x2 − 0.2)2

s.t. (4.8− 5 sin(π
√
t)/(1 + t2))x2

1 − x2 ≤ 0,∀t ∈ [0, 0.5]

x1 ∈ [−1, 1], x2 ∈ [0, 0.2]

(5.33)

The nominal value of t is 0.25, which means that the perturbation of the uncertainty is

25%. First, the example is used to show the iterative algorithm step by step. The set sizes

of uncertainty set in all the iteration are set as 0.01. Initially, problem (5.33) is solved at

the nominal value t = 0.25, and it is obtained that u∗ = x∗ = [1, 0.2]. Then, the samples are

uniformly generated within the range [0, 0.5]. In the first iteration, a point s∗ = t∗ = 0.0266

is selected since the left-hand-side (LHS) of the constraint (4.8−5sin(π
√
t∗)/(1+t2∗))x1∗−x2∗

is calculated as 2.1491 which violates the “≤” constraint. Next, setting s1 = s∗ = 0.0266,

and solving the corresponding robust optimization problem, the design u∗ is updated as u∗ =

[0.2688, 0.2]. In the second iteration, the selected point is s∗ = 0.0122 with 0.0238 as the value

of LHS. With s1 = 0.0266 and s2 = s∗ = 0.0122, solving the robust optimization problem,

the updated design is u∗ = [0.2305, 0.2]. In the third iteration, point s∗ = 0.0036 is selected

143



with 0.0054 as the value of LHS. With the three points together, the design obtained by

solving robust optimization is u∗ = [0.1969, 0.2]. In the next iteration, N = 1000000 samples

are generated, but none of the samples violates the constraints with design u∗ = [0.1969, 0.2],

and the algorithm stops. The final solution obtained in this run is u∗ = [0.1969, 0.2]. The

reason a large number N is used is that this problem is simple and the computational time

for each step is very short. In order to cover more space of the uncertainty using the samples,

a large number N is used. Figure 5.3 shows the shape of the function of the uncertainty t

and the points selected for “piecewise” linearization in each iteration.
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Figure 5.3: Points used for linearization in each iteration

In the proposed algorithm, the set size ∆ can be selected by the decision maker. In

the general robust optimization framework, the set size can influence the robustness of the

solution in that larger size leads to more robust solution while the objective value may

get worse. Next, the influence of different set sizes (0.01, 0.05, 0.1) on the results of the

nonlinear robust optimization method is studied, and the results are summarized in Table

5.1. “Ave”, “Max”, “Min”, “Obj”, and “Num” represents average value, maximum value,

minmum value, objective value, and number of points used for “piecewise” linearization,

respectively. Monte Carlo simulation with 100 runs are taken for each set size case.

Table 5.1: Results for illustrative example
Size Obj Num
∆ Ave Max Min Ave Max Min

0.01 3.3397 3.6007 3.2152 3.82 7 1
0.05 3.4667 3.8440 3.2214 2.6 4 1
0.1 3.4932 3.844 3.2178 2.07 3 1
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It can be observed that as the set size increases, the objective value gets worse (larger

for a minimization problem), while the number of points used for “piecewise” linearization

decreases. The relationship between the number of points and the objective value is also

studied. Since the number of points is not large for all different set size cases, the aver-

age objective value is calculated corresponding to each possible number of points used for

linearization and the results are plotted in Figure 5.4.
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Figure 5.4: Relationship between the objective value and the number of points used for
“piecewise” linearization for illustrative example

It can be seen that approximately, with fixed set size, the trend is that when the number

of points used for linearization increases, the objective value gets worse. This is because that

if more points are used for “piecewise” linearization, the robust formulation will be more

conservative.

5.4.3 Discussion about the Iterative Algorithm

In the proposed iterative algorithm, two nonlinear optimization problems are solved in the

second step (feasibility test) and the third step (robust optimization). In the feasibility

test step, the problem is required to be solved for the global solution, because that the local

solution may cause missed detection of the infeasible point. While in the robust optimization

step, local solution is accepted, since the goal of this step is to find a design to be robust

under the uncertainty with a lower objective function value. A global solution in this step can

lead to better objective value, e.g., lower cost, but will increase the computational burden.

In the algorithm, the first step (sampling) and the feasibility test step together find the

145



infeasible points with respect to the current design. If the pre-decided number N is selected

to be large enough, the sampled points can cover almost the entire uncertain region and the

design passing the feasibility test step for all the N points can be regarded as the robust

design for the entire uncertain region. The algorithm converges when the robust design for

the entire uncertain region is found. However, since the samples are randomly generated,

there is no guarantee for the optimality regarding the objective function value (design cost)

of the final robust design for a single run.

Most of the computation time is spent on the feasibility test step due to the global

solution requirement and the computation time is affected by different aspects. First, as

the number N increases, the computation time will certainly increase. Second, the fact that

larger number of the points were kept for final linearization leads to longer computation time,

since this number implies the times of repeats of the three steps in the iterative algorithm.

Third, the order of the points among the N sampled points that are found to be infeasible

will influence the computation time as well. For instance, the time when the 5th point is

found to be infeasible is shorter than the time when the 55th point is infeasible, since the

order of the points implies the times that the feasibility test step is taken. However, the last

two aspects cannot be controlled due to the randomness of the sampling points.

The sampling and feasibility test step are actually taken to find the infeasible points of

the current design and in the literature there are some available methods to deal with this

kind of problem, including vertex search methods [86, 87, 88], active set with mixed-integer

optimization strategies [89], and global optimization with mixed-integer optimization strate-

gies [90]. All these methods are deterministic methods, but they still have certain drawbacks.

The vertex search methods assume that the infeasible points correspond to vertices, and this

will influence the reliability of the solution. Moreover, it involves enumeration of the vertices

and if the dimension of the uncertainty is high the computation burden is also high. The

other two methods are applied by solving a mixed-integer nonlinear optimization problem.

The main step in the active set strategy is to find all the active sets of the constraints to
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fix the integer values and reduce the problem to multiple nonlinear optimization problems.

The active set strategy can guarantee global optimality for only certain types of problems.

The global optimization strategy is based on αBB algorithm and includes multiple steps in

the whole strategy, which makes the algorithm complicated. However, it can be a future

research direction to improve the deterministic strategies and combine it with the iterative

algorithm proposed in this chapter to avoid the randomness issue.

5.5 Example Problems

In this section, three optimal design problems corresponding to the three categories of prob-

lems considered in this chapter are studied to test the effectiveness of the proposed method-

ology. The optimal heat exchanger design problem only contains inequality constraints and

the optimal reactor design problem contains both inequality and equality constraints as-

sociated with uncertain parameters. The final example is the reactor and heat exchanger

network problem which contains inequality as well as equality constraints and also the oper-

ation (control) variables which can be adjusted with respect to the realizations of uncertain

parameter. In the simulation, the samples are generated in MATLAB. All the optimization

problems are solved in GAMS 23.9. For the feasibility test step, in the second example, it

is accomplished in MATLAB by solving the state equation, and in the third example, prob-

lem (5.32) is solved using BARON. The robust optimization formulations in the iterative

algorithm are all NLP problems and solved using local solver such as CONOPT, IPOPT.

5.5.1 Heat Exchanger Network

Figure 5.5 shows the diagram of the heat exchanger network problem. Three hot streams

with different known inlet temperatures THj,in, j = 1, 2, 3 are used to heat one cold stream

from 100◦F to 500◦F . The goal is to minimize the overall total area of the heat exchangers.
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Figure 5.5: Heat exchanger network

The mathematical model for this problem can be written as [91]

min(A1 + A2 + A3)

s.t.

TC,1 + TH1,out − TC,in − TH1,in ≤ 0,

−TC,1 + TC,2 + TH2,out − TH1,in ≤ 0,

TH3,out − TC,2 − TH3,in + TC,out ≤ 0,

A1 − A1TH1,out + FCp
U1
TC,1 − FCp

U1
TC,in ≤ 0,

A2TC,1 − A2TH2,out − FCp
U2
TC,1 + FCp

U2
TC,2 ≤ 0,

A3TC,2 − A3TH3,out − FCp
U3
TC,2 + FCp

U3
TC,out ≤ 0,

100 ≤ A1 ≤ 10000, 1000 ≤ A2, A3 ≤ 10000,

10 ≤ TC,1, TC,2 ≤ 1000,

10 ≤ TH1,out, TH2,out, TH3,out ≤ 1000,

(5.34)

Only inequality constraints exist in the formulation of this problem. The known paramter

is FCp = 105 ,and the uncertain parameter are the heat transfer coefficient, i.e., s =

(U1, U2, U3). The nominal value of the uncertain parameter is ŝ = (Û1, Û2, Û3) = (120, 80, 40).

The perturbation of the uncertainty is assumed to be 30%, i.e., Ui = Ûi+30%Ûiξ, i = 1, 2, 3,

where ξ is the random variable lying in the range [−1 1].

The uncertainty set was defined in Equation(5.4), for the sampled point of uncertainty
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in the jth iteration, with M j
1 = M j

2 = I(identity matrix), sj1 = ŝ (nominal value), sj2 =

sj∗ (sampled point), pj1 = pj2 = ∞, and ∆j
2 = 0.3 representing the perturbation of the

uncertainty. The uncertainty set Sintersect is explicitly written as Equation(5.35), which is

the intersection of a designed box type uncertainty set with the same set size ∆ for all the

sampled points and the interval representing the lower and upper bound of the uncertainty:

Sjintersect =
{
s|
∥∥s− sj∗∥∥∞ ≤ ∆, ‖s− ŝ‖∞ ≤ 0.3

}
, ∀j (5.35)

The uncertainty set will reduce to the interval set when the designed box type uncertainty

set is completely covered by the interval set. This usually happens since the set size ∆ cannot

be too large in order to ensure the effectiveness of the first-order Taylor approximation around

each sampled point.

Different sizes (0.01, 0.05, 0.1 and 0.2) are used in this example. Since the points used

for “piece-wise” linearization in each iteration are randomly selected, the results for different

runs will be different. Therefore, Monte Carlo simulations with 100 runs are applied for each

set size. As discussed in the previous section, in each iteration, at most N samples are used

for the feasibility test. If all the N samples pass the feasibility test, the algorithm is forced

to stop. The number N is set as 1000 in this example.

For each set size, the relationship between the objective value and the number of points

used for “piecewise” linearization is plotted in Figure 5.6.

From Figure 5.6, it can be observed that for most of the runs, as the number of the

points used for “piecewise” linearization increases, the corresponding objective value also

increases. However, the relevance level is different for different set size. For the case with set

size 0.05, the relationship is quite prominent, while for other cases, it is not very obvious.

This observation is similar as in the illustrative example.

The average value (Ave), the maximum value (Max), and the minimum value (Min) of

the objective value (Obj) and the number of points (Num) used for “piecewise” linearization
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Figure 5.6: Relationship between the objective value and the number of points used for
“piecewise” linearization for heat exchanger example

among 100 Monte Carlo runs are listed in Table 5.2.

Table 5.2: Results for heat exchanger example
Size Obj Num
∆ Ave Max Min Ave Max Min

0.01 10395 10395 10393 32.68 59 17
0.05 10395 10395 10394 32.38 69 18
0.1 10395 10395 10392 31.92 54 19
0.2 10395 10395 10393 31.33 57 18

From Table 5.2, it can be observed that the average value, the maximum value, and the

minimum value of the objective value for different set size ∆ are almost the same, which

implies that changing the set size has no influence on the final results in this example. For

each set size, although the minimum case and the maximum case of the points used for

linearization are quite different, there is only slight difference in the average value. This

implies that in this example the number of points used for linearization does not affect the
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final results significantly. For the iterative algorithm, as long as no point within 1000 samples

fails in the feasibility test, the solution converges to the similar results.

The objective value obtained by linearization around only the nominal point is obtained

as 7556.7[85], which is smaller than the solutions obtained by the “piecewise” linearization

method. This is because that using multiple points for linearization will introduce conser-

vatism.

Another important issue is the robustness of the solutions, and it is evaluated by testing

the feasibility of the design under different points of uncertain parameter. 10,000 samples

of the uncertain parameter are generated from the uncertain space to test the robustness

of the solution for both the “piecewise” linearization formulation and the “single-point”

linearization (only around nominal point). The solutions from all the 100 Monte Carlo runs

for different set sizes are tested. The number of samples violating the constraints is counted

for each case, and results are summarized in Table 5.3.

Table 5.3: Results of robustness for heat exchanger example
Size # of runs with Min # of Max # of Ave # of
∆ no violation violations violations violations

0.001 44 1 7 1.875
0.005 44 1 8 2.2143
0.01 44 1 7 2
0.02 44 1 5 1.8929

From the second column of Table 5.3, it can be seen that for all set sizes, nearly 50%

out of 100 Monte Carlo runs satisfy the constraints with all the samples. The fourth and

fifth columns of Table 5.3 show the maximum number and the average number of samples

under which the design violates the constraints. The maximum number among all the sizes

is 8 and the average numbers are all around 2 (out of 10,000 samples). This shows great

robustness of the design with respect to the uncertainty. However, the solution obtained

by the “single-point” linearization causes 8726 samples to violate the constraints, which is

significantly worse than the results of the “piecewise” linearization method. This is because

that the first-order Taylor approximation is only effective in a small range, and when the
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perturbation (30% in this example) of the uncertainty is large, the “single-point” linearization

cannot provide robust solution under the uncertainty.

5.5.2 Reactor-Separator System

A reactor design problem is shown in Figure 5.7 [92, 93].

Figure 5.7: Reactor-separator flow sheet

The purpose of the system is to convert reactant A to product C via the following reaction

system which consists of four first-order elementary reactions.

The uncertain parameters considered in this example are the reaction rates ki, i = 1, ..., 4

with units of time−1, i.e., s = (k1, k2, k3, k4)T . Three variables are regarded as design vari-

ables, the volume V of the reactor (m3), the fraction δ of species A and B that is recycled

back to the reactor, and the fraction β of species D and E that are recycled back to the

reactor, i.e., u = (V, δ, β)T . There are six state variables. They are the flow rate F out of the
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reactor (mol/time), and the mole fractions of each species xa, xb, xc, xd, xe at the reactor

outlet, i.e., y = (F, xa, xb, xc, xd, xe)
T . The final goal of the optimal design is to minimize

the total cost, and the following optimization problem is formulated:

min 10V 2 + 5F

s.t.

Fa0 − xaF (1− δ)− ca0V (k1 + k3)xa = 0

− xbF (1− δ) + ca0V (k1xa − (k2 + k4)xb) = 0

− xcF + ca0V k2xb = 0

− xdF (1− β) + ca0V k3xa = 0

− xeF (1− β) + ca0V k4xb = 0

xa + xb + xc + xd + xe = 1

xcF ≥ 40

0 ≤ δ ≤ 1, 0 ≤ β ≤ 1

(5.36)

In the above formulation, uncertain parameters exist in equality constraints. The inlet

flow rate Fa0 = 100mol/time and the concentration of species A at the inlet (the molar con-

centration throughout the entire system as well) ca0 = 10mol/m3 are the known parameters.

The detailed information including the nominal value and the variation about the uncertain

parameters can be found in the paper written by Rooney and Biegler [92]. Two types of un-

certainty region which can be referred to as individual confidence region and joint confidence

region are considered in this example. The uncertainty sets defined by Equation(5.4) are

constructed for both types of the confidence region which are represented in Equation(5.37)

and Equation(5.38), respectively:

Sjintersect =
{
s|
∥∥s− sj∗∥∥∞ ≤ ∆, ‖s− ŝ‖∞ ≤ t1−(α/2),n−pσ

}
, ∀j (5.37)

where σ is the standard derivation of the uncertain parameter, t1−(α/2),n−p is the value of the
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Student-t distribution, α is the desired confidence level, p is the number of uncertain param-

eters, and n is the number of data points used in the estimation problem. The individual

confidence region is a box set.

Sjintersect =

 s |‖s− sj∗‖∞ ≤ ∆,∥∥Σ−1/2(s− ŝ)
∥∥

2
≤ (pF1−α,n−p)

1/2

 ,∀j (5.38)

where Σ is the covariance matrix of the uncertain parameters, and F1−α,n−p is the value of

the F -distribution. The joint confidence region is an ellipsoidal set.

The solutions obtained by the “single-point” linearization are shown in Table 5.4 [93].

Table 5.4: “Single-point” linearization [93]
Set V δ β Cost
type (m3)
Box 20.71 0.992 0.000 6632

Ellip. 19.57 0.978 0.000 5983

In this example, the influence of set size ∆ is also studied. ∆ = 0.005, 0.01, 0.02, 0.05

for individual confidence region and ∆ = 0.005, 0.01, 0.02 for joint confidence region are

considered. For each set size, Monte Carlo simulations with 100 runs are taken. The results

for individual confidence region and joint confidence region are listed in Table 5.5 and Table

5.6, respectively. “Ave”, “Min”, “Max”, “Obj”, and “Num” are defined in the same way as

in the heat exchanger example.

Table 5.5: Results for reactor-separator example (individual confidence region)
Size Obj Num
∆ Ave Max Min Ave Max Min

0.005 6393.1 6645 6221 3.68 5 1
0.01 6388.3 6672 6171 2.64 4 1
0.02 6375.5 6681 6108 1.86 3 1
0.05 6403.1 6769 6133 1.8 3 1
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Table 5.6: Results for reactor-separator example (joint confidence region)
Size Obj Num
∆ Ave Max Min Ave Max Min

0.005 6195.1 6490 5865 2.04 3 1
0.01 6182.8 6674 5800 1.41 2 1
0.02 6290.2 6616 5922 1 1 1

From Table 5.5 and Table 5.6, it can be seen that for both the individual confidence

region and joint confidence region, as the set size increases, the number of points needed

for linearization decreases. However, the average of the objective value does not have the

monotonic trend, and as the size increases it decreases first and then increases. The best

results according to the average of objective value for the individual confidence region case

is obtained at size 0.02, and for the joint confidence region case it is obtained at size 0.01.

This is because that if the set size is too large, the linearization around each selected point

is not accurate. From the optimal objective value point of view, the results show that the

size ∆ can be optimized to obtain better results.

Comparing the results in Table 5.5 and Table 5.6 with Table 5.4, it can be observed

that for the individual confidence region case, the maximum objective value (6769) obtained

by the “piecewise” linearization among all the set size cases is only slightly larger than the

objective value (6632) by “single-point” linearization. Furthermore, the largest average value

(6403.1) among all the set size cases is apparently smaller than the results in the literature.

However, for the joint confidence region case, the objective value (5983) in the “single-point”

linearization is better than the results obtained by “piecewise” linearization.

The robustness of the solutions is tested using 100 samples. The simulation results are

plotted in Figure 5.8 and Figure 5.9. The design used for plotting the results corresponds

to the design leading to the average objective value.

For the individual confidence region case, there is no sample violating the constraints

for both the “piecewise” linearization method with all the set sizes and the “single-point”

linearization method. While for the joint conficence region case, the number of samples
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Figure 5.8: Simulation results for individual confidence region

violating the constraints by the “single-point” linearization method is 12. The numbers of

violation point for “piecewise” linearization method with different set sizes are still all zero.

Although in the joint confidence region case, the objective for the “single-point” linearization

is better than the one for “piecewise” linearization, the robustness is worse.

For the constraints, the less conservative solutions have the corresponding curve which

is closer to the threshold. In Figure 5.8, the lines for size 0.01, 0.02, and 0.05 coincide and

they are slightly more conservative than the results for size 0.005. In Figure 5.9, as the

size increases, the results become more conservative with respect to the constraints. This

observation can be another aspect which is useful for selection of the set size.

5.5.3 Reactor and Heat Exchanger Network

In this example, a reactor and heat exchanger system shown in Fig.5.10 is studied.

The reaction is the first-order exothermic reaction using material A to generate product

B. The optimal design of the reactor volume V and the area of the heat exchanger A

need to be determined to guarantee a minimum of 90% conversion of the reactant, i.e.,

u = (V,A). The commercial design objective is to minimize the total plant cost consisting
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Figure 5.9: Simulation results for joint confidence region

of the investment and operating cost. In this problem, the flow rates F1 and Fw can be

manipulated for the realizations of the uncertain parameters, and they are classified as

the operation (control) variables, i.e., z = (F1, Fw). The parameters considered to contain

uncertainty are the Arrhenius rate constant k0 and the feed flow rate F0, i.e., s = (k0, F0).

The statistical data for these uncertain parameters are given in Table 5.7. The values for

the known parameters are provided in Table 5.8.

Table 5.7: Uncertain parameters
Parameter F0(kmol · h−1) k0(h−1)
nominal value 45.36 12
positive deviation 22.68 1.2
negative deviation 22.68 1.2
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Figure 5.10: Reactor-cooler system

Table 5.8: Parameter values
Parameters Values
concentration of A in the feed stream CA0 32.04 kmol/m3

feed temperature T0 333 K
cooling water inlet temperature Tw1 300 K
overall heat transfer coefficient U 1635 kJ/(m2 · h ·K)
ratio of activation energy to perfect gas constant E/R 555.6 K
molar heat of reaction −∆HR 23260 kJ/kmol
reactant heat capacity cp 167.4 kJ/(kg ·K)
cooling water heat capacity cpw 4.184 kJ/(kg ·K)

Defining xA = (CA0 − CA1)/CA0, the design problem can be formulated as the following
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nonlinear programming problem:

min 691.2V 0.7 + 873.6A0.6 + 1.76Fw + 7.056F1

s.t. F0xA − k0 exp (−(E/RT1))CA0(1− xA)V = 0

F0cp(T0 − T1)− F1cp(T1 − T2) + (−∆HR)F0xA = 0

F1cp(T1 − T2) = AU∆Tln

∆Tln = (T1−Tw2)−(T2−Tw1)
ln((T1−Tw2)/(T2−Tw1))

F1cp(T1 − T2) = Fwcpw(Tw2 − Tw1)

311 ≤ T1 ≤ 389

311 ≤ T2 ≤ 389

300 ≤ Tw2 ≤ 380

T1 − T2 ≥ 0

Tw2 − Tw1 ≥ 0

T1 − Tw2 ≥ 11.1

T2 − Tw1 ≥ 11.1

xA ≥ 0.9

(5.39)

The uncertainty set is represented in Equation(5.40), for the sampled point of uncertainty in

the jth iteration, withM j
1 = I, M j

2 = [(22.68/45.36)−1 0; 0 (1.2/12)−1] = [2 0; 0 10]

representing the perturbations of the uncertainty, sj1 = ŝ (nominal value), sj2 = sj∗ (sampled

point), pj1 = pj2 = ∞, ∆j
2 = ∆ which is the set size designed by the decision maker, and

∆j
2 = 1.

Sjintersect =

s|∥∥s− sj∗∥∥∞ ≤ ∆,

∥∥∥∥∥∥∥
 2 0

0 10

 (s− ŝ)

∥∥∥∥∥∥∥
∞

≤ 1

 , ∀j (5.40)

Set sizes 0.01, 0.03, 0.05 are considered in this example. Number N is set as 1000. Monte

Carlo simulations with 100 runs are taken for each set size, and the results are shown in Table

5.9.
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Table 5.9: Results for reactor and heat exchanger example
Size Obj Num
∆ Ave (104) Max (104) Min (103) Ave Max Min

0.01 1.1477 1.9098 9.2688 7.31 36 1
0.03 1.1322 1.3233 9.3092 7.18 48 1
0.05 1.1577 1.3593 9.2109 8.80 47 2

Table 5.9 shows that the difference between the maximum and minimum objective value

is large. This is because the difference of the number points used for linearization is also

very large. The influence of the set size in this example is similar to the reactor network

example in the sense that there is a middle point of the set size corresponding to which the

solution is better. The feasibility is tested using 100 samples with the design corresponding

to the minimum, maximum, and average objective value respectively, and the numbers of

violations for the three designs are all zeros.

In order to demonstrate the advantage of considering manipulation of control variables

with respect to the realizations of uncertain parameter, the formulation regarding F1 and

Fw as design variables is also studied, i.e., u = (V,A, F1, Fw). The design F1 and Fw will

remain unchanged for all the realizations of uncertainty. In this case, only set size 0.01 is

considered for comparison. The results compared with the formulation with consideration

of control are shown in Table 5.10.

Table 5.10: Results for comparison of considering and not considering control variables
Formulation Obj Num

Ave (104) Max (104) Min (103) Ave Max Min
With Control 1.1477 1.9098 9.2688 7.31 36 1

Without Control 1.5550 9.7521 9.8075 17.2 43 1

It can be seen that the number of points used for linearization and the objective value for

the case without control variables are both larger than the case considering control variables

in the formulation. This is because that if the control variables are manipulated according

to the realizations of uncertainty, more information about the uncertainty is considered in

the formulation. Then, the solutions are less conservative than the case that the control
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variables also remain unchanged.

To compare the results in the aspect of feasibility, the design solutions obtained from the

formulation without control variable corresponding to the minimum, maximum, and average

objective value are also tested using the same 100 samples as the case considering control

variables, and the numbers of violations for the three designs are all zeros. The comparison

of the two formulations with design corresponding to average objective value is plotted in

Figure 5.11.
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Figure 5.11: Comparison of the feasibiliby for considering and not considering control vari-
ables

Figure 5.11 shows that the curve corresponding to the case without control variables is

above the one for the case considering control variables, which implies that the solutions

obtained without considering control variables are more conservative.

Another issue known as price of robustness is also compared for the two formulations.

The price of robustness is calculated based on the cost (objective value) of the “ideal” case

where the realizations of uncertain parameter are known in advance of the design decision.
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100 samples of the uncertainty are used to calculate the price of robustness, and the results

are summarized in Table 5.11. The designs corresponding to the minimum, maximum, and

average objective value are tested.

Table 5.11: Results for comparison of price of robustness
Min Max Ave Ideal

With Without With Without With Without
Mean (Cost 104) 0.8020 0.9810 0.8767 9.7521 0.9667 1.5206 0.5021

Price of Robustness 0.60 0.95 0.75 18.42 0.93 2.03

It can be observed that the price of robustness of the formulation considering control

variables are all smaller than the solutions without control variables, which shows that

manipulating the control variables with respect to the realizations of the uncertain parameter

reduces the conservatism of the robust optimization formulation. Although in general the

information of the uncertain parameter is not available at the beginning of the design, if it is

available during the process, considering it in the formulation can improve the final results

significantly.

5.6 Conclusion

In this chapter, a novel nonlinear robust optimization framework is proposed to solve the

nonlinear process design problems. The robust counterpart formulation is derived based on

a general type of uncertainty set defined by the intersection of two uncertainty sets. In

order to deal with uncertainty with larger perturbation, “piecewise” linearization is taken

around multiple realizations of the uncertain parameter and an iterative algorithm is applied

to solve the problem. The framework is applicable to the optimization problems with only

inequality constraints as well as the problems with equality constraints associated with un-

certain parameter. Furthermore, the control variables which can be manipulated under the

realizations of uncertainty are also considered in the robust optimization formulation based

on an affine relationship between the control variables and the uncertain parameters. Three
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application examples including the optimal design of a heat exchanger system, a reactor-

separator system and a reactor-cooler system are studied to demonstrate the effectiveness

of the proposed methodology. The proposed method has higher level of robustness than the

“single-point” linearization method. In addition, while the results have the similar robust-

ness level, the proposed method leads to less conservative robust solution. By comparing the

results obtained from the formulation considering control variables and that obtained from

not considering control variables, it is demonstrated that with consideration of the control

variable, the solutions become less conservative.
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Chapter 6

Economic Optimization of Water

Flow Network in SAGD Operations

6.1 Introduction

This chapter focuses on economic optimization of the water flow network in SAGD operations

under steady state. Uncertainties always exist in model parameters in any optimization

problem, for instance, the demand of the steam for a steam generator cannot be known in

advance and the prediction of it may not be accurate, and the uncertainties can also arise

from the parameter estimation. Lack of considering uncertainties in optimization problem

may cause suboptimal or even infeasible solutions of the real process. In this chapter,

both deterministic formulation and formulation with uncertain model parameters of the

optimization problems are considered. The background information of SAGD process and

the objective of this chapter are introduced in Section 6.2. Section 6.3 considers a long-term

planning problem for the steam distribution to different well pads starting at different times.

The process models for different units are built based on the efficiency, e.g., the model of

steam generators is built based on steam quality, and the model of well pads is built based

on steam-to-oil-ratio (SOR) and water-to-oil-ratio (WOR). The efficiencies can be obtained

using different techniques, such as soft sensor, empirical formulas or from historical data. In
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Section 6.3, the capacity of the oil produced in the wells is predicted using empirical formulas

from the literature. The formulas are based on the operation conditions in the reservoir, and

since there will be environment disturbances, the prediction will contain some uncertainties.

In Section 6.3, the uncertainty is considered in the predicted oil production rate capacity and

quantify the uncertainty in the optimization problem through joint chance constraint (JCC).

In order to solve the optimization problem with JCC, the proposed method in Chapter 3 is

used to approximate the JCC to deterministic formulation.

6.2 Problem Statement

SAGD is known as steam assisted gravity drainage. The majority resources of Alberta oil

sands are in deep underground and extracted by SAGD technique. In a typical SAGD

process, two horizontal wells are drilled in parallel. Steam is injected to the upper injection

well to generate a high-temperature vapor chamber where the surrounding bitumen can

be heated, and the viscosity of it is reduced to let it be drained by gravity to the lower

production well. The mixture of oil and water is pumped out to the ground and is sent to the

separator. After the separation, the oil is transported to upgrader for further treatment and

the produced water is sent to water treatment plants for purification and then is generated

to become steam for injection to the well. The produced water and steam in SAGD process

form a cycle. A brief overview of SAGD process is shown in Figure 6.1.
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Figure 6.1: Overview of general SAGD process

In the current SAGD process, there normally exist five phases of operations: Start-up,

ramp-up, chamber spread, ramp-down and blow down, which is displayed in Figure 6.2. In

different stages of operations, the oil production rate as well as the requirement of the steam

injection rate is different.

Figure 6.2: SAGD stages[94, 95]

At the initial conditions of reservoir, the oil is not able to be drained due to the high

viscosity and lack of mobile water. In the start-up stage, the thermal and/or hydraulic

communication between the injection well and production well is established and the mixture
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of oil and water can be pumped out from the production well. There are different techniques

for start-up stage, such as water dilation, steam dilation, solvent soak and steam circulation.

The techniques can be selected based on the reservoir quality and presence of thief zones.

In general, the start-up phase lasts one year approximately.

After establishment of the communication between injection well and production well by

start-up stage, steam is continuously injected into the injection well at constant pressure and

the mixture of oil and water is continuously removed from the production well at constant

temperature in the ramp-up stage. In this stage, the SAGD chamber grows vertically until

it reaches the reservoir top which may be a thick shale or some lower permeability facies,

and at the same time the oil production rate peaks.

In the chamber spread phase, the SAGD chamber grows laterally and due to the widening

of the chamber, overburden heat losses increas to consume more heat energy from injected

steam. Thus, the oil production rates decline with steady steam rates, and if we want to

keep steady oil rates, the steam rates should be increased. Ramp-up and chamber spread

are the two major stages to produce oil and generally they will persist five to ten years.

The ideal transition from chamber spread stage to ramp-down stage is made by injection

of the mixture of gas and steam. In this stage, the individual chambers of the well pairs on a

pad will coalesce with each other and become one common SAGD chamber across the entire

pad. Steam injection will be reduced during this stage and the pressure in SAGD chamber

is supported by the injection of gas. Since this is a transitional stage, it only lasts nearly

one year.

The final operation stage of SAGD process is blow-down. In this stage, the injection of

steam stops while the gas is injected to maintain the pressure, and with declining production

rate the bitumen production continues until the rate reaches an uneconomic point. One of

the main purposes of ramp-down and blow-down stages is to reduce the CSOR (cumulative

steam to oil ratio) of the well pairs. A full blow-down stage usually takes more than five

years.
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Optimizing the consumption of the water as well as the generation of steam is of great

importance to the commercial target. In the long term process operations, the steam is

distributed to different well pads starting at different times. Since the well pads are operated

at different stages, the requirement of steam injection differs and it is necessary to build an

optimal plan of steam generation and distribution to reduce waste of the steam as well as

the cost of steam generation while producing as much oil as possible. Optimizations are the

powerful techniques utilized in this chapter to achieve the commercial goals.

The water treatment and steam generation network is shown in Figure 6.3. According

to the functionality of the units, they can be classified as PW (produced water) tank, WP

(water treatment) plant, BFW (boiler feed water) tank and SG (steam generator). The

details about the units are discussed in the following subsections.

Figure 6.3: Water treatment and steam generation network

6.2.1 Water Treatment Plants

De-oiled water obtained by separating produced water from bitumen contains soluble con-

taminants including silica, hardness (calcium,magnesium, iron, etc.), total dissolved solids,

organic carbon and dissolved oxyen. The contaminants in de-oiled water is removed in the

water treatment plants with different methods.
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Warm lime softening (WLS) is a traditional process to remove silica and hardness via

physical-chemical treatment. Followed by a filtration system, WLS removes silica and hard-

ness with addition of certain chemical compounds and produces insoluble sludge which can

be separated from the treated water by the filter. Finally, filtered water is transported to

WAC (weak acid cation) tanks where the majority of hardness is removed using weak acid

cation resins. Water with very high amounts of total dissolved solids (TDS>7000 ppm) can-

not be treated by WLS, however; it is cheaper to operate due to less requirement of energy

compared to evaporators.

Evaporation is an alternative technique for water treatment, which convert the water

content in the mixture into water vapor to separate the impurities. This process can handle

water with high amounts of total dissolved solids and the output treated water has high

quality. The only disadvantage is that it consumes more energy than WLS.

6.2.2 Steam Generators

After treatment, water is used for steam generation generally using two types of steam

generators: OTSG (one through steam generator) and co-generator.

In OTSGs, pressurized water is fed into hot tubes at one end and superheated steam is

produced at the other end. The advantage of OTSGs is that they can handle water with high

levels of total dissolved solids (TDS) and silica. Steam produced by OTSGs has 70 − 80%

quality and a series of vapor-liquid separators are needed to separate the water from the

steam to produce 100% quality steam for injection to the reservoir.

Co-generator or heat recovery steam generator (HRSG) can generate electricity using

excess heat from hot gas steam during the steam generation. Startup and shutdown in

Co-generator are slower than in OTSGs.
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6.2.3 Tanks

Tanks are installed followed by water treatment and steam generator units for temporal

storage of the water. PW tanks and BFW tanks are placed upstream of water treatment

plants and steam generators, respectively. In long term problem, the dynamics in the tanks

can be ignored and they are reduced to connectors for different streams.

6.3 Long-Term Planning

In this section, the long-term planning problem for distribution of steam to well pads starting

at different times is addressed. First, the deterministic formulation of the optimization

problem is studied and then, the uncertainty in oil production rate capacity is considered and

formulated by JCC. Robust optimization is applied to approximate the JCC. The solutions

obtained from deterministic and uncertain formulations are compared.

6.3.1 Deterministic Formulation

In the long-term planning problem, the models for water treatment plants, steam generators

and well pads are considered. Due to the long time period considered, the dynamics in buffer

tanks is not taken into consideration while the status (on/off) of steam generators can be

optimized. Operation conditions, e.g., lower and upper limitation of each unit, need to be

satisfied. The optimization model is formulated in the following subsections.

6.3.1.1 Plant Models

The input of water treatment plants is water with contaminants and the useful output is

the purified water while the contaminants are the loss which is usually difficult to measure.

The model of water treatment plants can be built through the treatment efficiency of the

plants such that the output of purified water is the total input of water multiplying by the
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efficiency: ∑
(i,j)∈Pair

F t
i,j = ηWP

i ×
∑

(j,i)∈Pair

F t
j,i i ∈ UWP , t = 0, ..., H (6.1)

where F t
i,j is the flowrate from unit i to unit j at time t, and η is the efficiency. The set Pair

contains all the possible connections between two units. H is the total time horizon. The

purified water is injected into the steam generators and steam is produced. Since the steam

quality is not 100%, the water is separated from steam and recycled back, which is known

as blowdown. The steam generators follow mass balance:

∑
(j,i)∈Pair

F t
j,i =

∑
(i,j)∈Pair

F t
i,j i ∈ USG, t = 0, ..., H (6.2)

The steam generated can be modeled through the steam quality:

∑
(i,j)∈Pair,j∈UWell

F t
i,j=η

SG
i ×

∑
(j,i)∈Pair

F t
j,i i ∈ USG, t = 0, ..., H (6.3)

The real process of well pads is complicated and a rough model is utilized in this chapter

to approximate the behaviour of the well pads in different operation stages using SOR and

WOR. The SOR and WOR can be predicted using historical data and empirical formulas.

The steam injected to each well pad is

∑
(j,i)∈Pair,j∈USG

F t
j,i = SORt

i ×Oilti i ∈ UWell, t = 0, ..., H (6.4)

The produced water pumped out from the well pad is

Waterti = WORt
i ×Oilti i ∈ UWell, t = 0, ..., H (6.5)

Since the dynamics of the buffer tanks are not considered for long-time period optimiza-

tion, the model for the tanks is reduced as a connector following mass balance that the total

input equals to the total output. The inputs of PW tanks include makeup water, produced
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water from the wells, and the streams from other units. The makeup water is used as an

compensation when the produced water is not adequate due to loss in the reservoir and in

the separation step. The model for PW tanks is shown as follows:

M t
i +

∑
(j,i)∈Pair

F t
j,i =

∑
(i,j)∈Pair

F t
i,j i ∈ UPW , t = 0, ..., H (6.6)

where M t
i is the amount of makeup water used in PW tank i at time t. The model for BFW

tanks is simpler:

∑
(j,i)∈Pair

F t
j,i =

∑
(i,j)∈Pair

F t
i,j i ∈ UBFW , t = 0, ..., H (6.7)

6.3.1.2 Status of Steam Generators

In the long-term planning problem, it is necessary to consider the on/off status of each

steam generator since if the steam required by the well pads is not intensive, some of the

steam generators can be shut down to save energy and during the shut-down time, the steam

generators can be cleaned or maintained, or sometimes due to the malfunctioning of certain

steam generator, it must be shut down. The operation status and switch of a steam generator

are formulated in the following equations:

ST t+1
i = ST ti + SW t

i − 2ST ti × SW t
i i ∈ USG, t = 0, ..., H (6.8)

where ST ti and SW t
i are the status (on/off) and switch condition of SG i at time t, respec-

tively.
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6.3.1.3 Operation Conditions

The water treatment plant has a maximum capability of treating the water and it is defined

on the total input of water, which is shown in (6.9):

∑
(j,i)∈Pair

F t
j,i ≤ Caupi i ∈ UWP , t = 0, ..., H (6.9)

Similarly, the steam generators also have a maximum ability to generate steam. Moreover,

due to safety consideration, it also has a lower production condition:

Caloi × ST ti ≤
∑

(j,i)∈Pair

F t
j,i ≤ Caupi × ST ti i ∈ USG, t = 0, ..., H (6.10)

The oil production for each well pad should satisfy lower and upper bounds:

Oillo,ti ≤ Oilti ≤ Oilup,ti i ∈ UWell, t = 0, ..., H (6.11)

where Oillo,ti and Oilup,ti are the lower and upper bound of oil production rate Oilti. In this

section, the lower bound of the oil production is assumed to be 90% of the full capacity, i.e.,

Oillo,ti = 0.9×Oilup,ti .

Due to the loss of water in the reservoir and separation step, the amount of water pro-

duced from the well is larger than the amount of water distributed to the PW tanks:

∑
i∈UPW

∑
(j,i)∈Pair,j∈UWell

F t
j,i ≤

∑
j∈UWell

Watertj t = 0, ..., H (6.12)

6.3.1.4 Objective Function

The objective function of the long-term planning problem consists of three parts. First, the

total production of oil is maximized. Second, the total usage of make-up water is minimized.

Finally, since frequently switching the steam generators will cause additional cost, the total
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number of switches should be minimized.

max
H∑
t=1

∑
i∈UWell

Oilti −
H∑
t=1

∑
i∈UPW

M t
i −

H∑
t=1

∑
i∈USG

SW t
i (6.13)

An additional penalty term of the loss of the produced water can also be minimized by

deducting the term
H∑
t=1

(
∑

i∈UPW

∑
(j,i)∈Pair,j∈UWell

F t
j,i −

∑
j∈UWell

Watertj) in the objective function.

6.3.1.5 Prediction of Oil Production Capacity and SOR

A crucial part in the long term planning problem is to predict the oil production rate and

theoretical methods in the literature can be used for the prediction. The models utilized

in this chapter are for the rising steam chamber (ramp-up) stage and the lateral-spreading

steam chamber (chamber spread) stage, and the transition between the two stages. The

prediction model during the rising period from Butler et al. [96] is shown as follows:

qr =
4γ

3

(
9

4

β

γ2

)2/3

(ϕ∆S0)1/3

(
kgα

mνs

)2/3

t1/3 (6.14)

Due to the depletion, the oil rate will decline in the chamber spread stage and the model

from Butler et al. [96] can be expressed as:

qd = 2

√
akgα∆S0h

mνs
− 2

t2

w2

(kgα/mνs)
3/2

(bϕ∆S0h)1/2
(6.15)

The description and value of the parameters in the above two equation are listed in Table

6.1. ∆S0 which is the displaceable oil saturation, is the only one that varies with time and

it is estimated using (6.16) which was developed by Cardwell and Parsons [97]:

∆S0 = S0 − 0.43

(
νsϕh

kgt

)0.4

(6.16)

There is also an intermediate stage between the ramp-up stage and the chamber stage

when the steam chamber reaches the top of the reservoir and begins to grow laterally. Neither
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the model in (6.14) nor the model in (6.15) can represent the transition stage well. Guo et

al. [98] proposed a weighting method based on the model in (6.14) and (6.15) which is shown

as follows:

qoilt = ydqd + yrqr (6.17)

where the weighting factor yr decreases from 1 to 0, while the weighting factor yd increases

from 0 to 1. The weighting factors are modeled by the Dose Response function in (6.18) and

(6.19):

yr =
1

1 + 10ur(vr−t)
(6.18)

yd =
1

1 + 10ud(vd−t)
(6.19)

Table 6.1: Parameters used for oil rate prediction
Parameter Description Value
w(m) Half well spacing 75
k(µm2) Effective permeability 2.5
α(m2s−1) Reservoir thermal diffusivity 7.06× 10−7

m Viscosity-temperature relation parameter 4
νs(mm2s−1) Kinematic viscosity of oil at steam temperature 10
S0 Initial oil saturation of the reservoir 0.8
ϕ Porosity 0.35
h(m) Effective drainage height 26.5
a Empirical constant 1.93
b Empirical constant 0.66
β Empirical constant 0.264
γ Shape factor of the rising steam chamber 0.132
ur Constant -0.556
ud Constant 0.864
vr Constant 2.9
vd Constant 2.125

The predicted oil rate is plotted in Figure 6.4. It can be observed that at the beginning of

the operation, the ramp-up stage model dominates in the combined model, while at the end

of the operation the chamber spread model plays the important role, and in the intermediate

stage both of the models describe the transition model partially. In [99], the authors directly
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used the predicted oil rate in the optimization model to avoid nonlinearity in the prediction

model, while in this chapter the predicted oil production rate acts as the capacity (upper

bound) of the real oil production.
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Figure 6.4: Predicted oil production rate

Butler et al. [96] also provided simple formulas for estimation of the oil-steam ratio as

follows:

osr =
1769ϕ∆S0

(TS − TR)
(

1 + 0.558
√
t/h2

) (6.20)

where the unit of t is day, TS = 467◦F is the temperature in the steam chamber, and

TR = 76◦F is the initial temperature. SOR is calculated by taking the inverse of the oil-

steam ratio and the plot of the predicted SOR is shown in Figure 6.5.
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Figure 6.5: Predicted SOR

It can be observed that the thinner reservoir has larger SOR since the vertical heat losses

from the heat input are larger. And as stated before, in chamber spread stage as the chamber

widens heat losses increases, which leads to larger SOR.

The WOR used in this chapter is obtained from the open source of the company shown

in reference [94].

6.3.1.6 Simulation Results

In this chapter, the total time horizon is assumed to be 15 years (H = 15) and the number of

well pads is three. They are assumed to start working at the beginning of the time horizon,

at the fourth year and at the sixth year, respectively. The blow down stage of the three pads

starts in the seventh year, the tenth year and the twelfth year, respectively, which means

that the steam injection stops in the given years since the predicted oil production rate

declines more than 50% of the maximum rate. The profile of the oil production capability

is predicted using (6.17). The problem is formulated as a mixed integer linear programming

(MILP) problem and is sovled in GAMS 23.9 using solver CPLEX. The optimal objective
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value is obtained as 125872.56.

Figure 6.6 displays the oil production rate, steam injection rate and the produced water

rate in each year of each well pad. It can be observed that the oil production rate reaches

the capacity. The steam injection to the three well pads stops in the seventh year, tenth

year and twelfth year as given, respectively.
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Figure 6.6: Oil production, steam injection and production water for each well pad

Figure 6.7 shows the statuses as well as the working conditions of the steam generators.

The black dash lines are the upper and lower bounds of the steam generators. It can be seen

that after twelfth year, the statuses of all the steam generators are off since the steam injection

stops for all the three pads. Furthermore, it is not necessary for all the steam generators

to be working all the time and the statuses of them can be optimized. As determined only

from the sixth year to the ninth year, all the three well pads work, so most of the steam

generators are open during these years. However, at the beginning and the end of the time

horizon, there is only one well pad working and only a few steam generators are operational.
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Figure 6.7: Statuses of steam generators

6.3.2 Optimization with Uncertainty

In the deterministic formulation, the capacity of the oil production rate is predicted using

formulas which rely on the conditions in the reservoir. These conditions may not be satisfied

perfectly during the operations. Moreover, the shape factor of the rising steam chamber

γ is calculated by curve fitting in the formulas [98] which also involves uncertainties. In

this section, instead of taking deterministic values, the capacity of oil production rate is

considered to contain uncertainties. The uncertainties are quantified using joint chance

constraints by setting a desired level of the probability of satisfying the constraints.

6.3.2.1 Formulation and Solution of Uncertain Optimization Problem

The capacity of the oil production rate is assumed to vary 5% around the nominal value,

i.e., Oilup,ti = Ôilup,ti + 0.05Ôilup,ti ξ, where ξ ∈ [−1 1] is uniformly distributed. Three JCCs

are formulated corresponding to each well pad during the time when the well pad is working,
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which is shown as follows:

For i representing the first well pad

P
(
0.9×Oilup,ti ≤ Oilti ≤ Oilup,ti , t = 1, ..., 9

)
≥ 1− ε (6.21)

For i representing the second well pad

P
(
0.9×Oilup,ti ≤ Oilti ≤ Oilup,ti , t = 4, ..., 12

)
≥ 1− ε (6.22)

For i representing the third well pad

P
(
0.9×Oilup,ti ≤ Oilti ≤ Oilup,ti , t = 6, ..., 14

)
≥ 1− ε (6.23)

The JCCs are approximated using the proposed robust optimization framework in Chapter

3. The box type uncertainty set is utilized since it leads to linear form in the optimization

formulation. The violation for each set of JCC is set as 0.1 in this section. The approximated

optimization formulation is solved using the proposed two-layer algorithm. The weights for

each constraints are all set as 1, and the uncertainty set size is optimized in the inner level

to ensure that the probability of all the constraints being satisfied simultaneously is reached.

One slight modification is made to optimize the variable controlling the upper bound of the

approximations in Chapter 3. In Chapter 3, the variable is optimized in the outer using

golden section algorithm. However, due to the exsitence of three sets of JCC in this section,

the golden section method cannot be used and the genetic algorithm (GA) is utilized instead,

since the objective of this problem is a black-box function.

6.3.2.2 Simulation Results

Using robust optimization based on box type uncertainty set to approximate the JCCs, the

formulated optimization problem is still MILP. The robust optimization problem is solved
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in GAMS 23.9 using solver CPLEX. The two-layer algorithm to optimizing the set size and

the variable controlling the upper bound of approximation is implemented in MATLAB.

First, it is assumed that the uncertainties are mutually independent. Using GA, the

optimal values for the upper bound of the approximation of the three sets of JCC are obtained

as 0.8439, 0.6325, and 0.6969, respectively. Figure 6.8 shows the evolution of the objective

value from GA, since the GA function in MATLAB is implemented for minimizing problem

and the problem in this section is maximization, a negative sign is added to the objective

function. It can be observed that GA converges to the best value of -119861, which means

that the optimal objective value of the long term planning problem considering uncertainty

in oil production capacity is 119861. The value is smaller than the one (125872.56) obtained

from the deterministic formulation in Section 6.3.1.
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Figure 6.8: Objective value evolution in GA

With the fixed optimal value of variables that control the upper bound of the approxi-

mation, the set size is optimized using the iterative algorithm and Figure 6.9. (a), (b), (c)

plots the evolution of objective value, probability of satisfaction, and set size, respectively.

In some iterations, the robust optimization is infeasible and the objective is 0 which is not

plotted in (a), and the corresponding probability of satisfaction is forced to be 1 in (b). Since

the three JCCs have the same constraints inside except for the time index, the probability
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of satisfaction and set size change are the same, and only one of the lines is plotted in (b)

and (c).
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Figure 6.9: Prcedure for optimal set size selection

Similar as in Section 6.3.1, the oil rate production rate, steam injection rate and the

produced water rate in each year of each well pad are displayed in Figure 6.10. The three

black solid lines represent the oil production capacity with lower bound of perturbation,

nominal value, and upper bound of perturbation. Since robust optimization always considers

the worst case, the real oil production reaches the lowest level within the perturbation, i.e.,

Ôilup,ti − 0.05Ôilup,ti , which is the reason that the optimal objective of the optimization

problem with uncertainty is worse than the one of the deterministic formulation.
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Figure 6.10: Oil production, steam injection and water production for each well pad

Figure 6.11 shows the statuses and the working conditions of the steam generators.
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Figure 6.11: Statuses of steam generators

Second, it is assumed that there are correlations between the uncertainties and all the

correlation coefficients are assumed to be 0.5. Using GA, the optimal values for the upper

bound of the approximation of the three sets of JCC are obtained as 0.6321, 0.5997, and

0.6332, respectively. The optimal objective is 119947 which is a little larger than the one

obtained from the independent uncertainty case (119861).

The probability of JCC satisfaction is estimated with Monte Carlo sampling technique
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with 100,000 samples using Equation (3.34). Different assumptions of the correlation between

the uncertainties are considered and the results are summarized in Table 6.2.

Table 6.2: Comparison of the probability of JCC satisfaction

Optimization Correlation coefficients used for
Formulation calculation of simulated probability

0 (independent) 0.5 (correlated)
RO with

correlation 0.8481 0.8411 0.8461 0.8925 0.8910 0.8926
RO without
correlation 0.8920 0.8955 0.8886 0.9223 0.9230 0.9209

Deterministic 0.0021 0.0021 0.0017 0.1004 0.0996 0.1013

It can be observed that, for both assumptions of the correlation between the uncertainties

the results obtained from deterministic formulation have very low probabilities of constraints

satisfaction. If we assume that the uncertainties are mutually independent, the RO formula-

tion without considering correlation can reach the desired level of probability of satisfaction

(0.9), while with the solution from the RO formulation considering correlations, the joint

probabilities of satisfaction are lower than the desired level. If the correlation coefficients

between uncertainties are assumed to be 0.5, considering the exact correlations in RO formu-

lation leads to the solution that satisfies the desired probability of constraints satisfaction.

The joint probabilities of satisfaction exceed the desired level with the solution of RO for-

mulation without considering correlations. It can be concluded that in this application, if

there is no correlations in the uncertainties, then considering correlations in RO formula-

tion will lead to the solutions that violate the probability of satisfaction. However, if there

are correlations in the uncertainties and without considering them in RO formulation will

make the solutions more conservative, which can also be observed from the objective value

(119947 from RO with correlations and 119861 from RO without correlations). Thus, if the

information of the correlations is not available it is safer to not incorporate correlations in

RO formulation, while if the correlations are known, considering them in RO formulation

can provide better results.
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6.4 Conclusion

In this chapter, the economic optimization of steam generation and water distribution for

SAGD process is studied. In the long term planning problem, the optimal distribution

of the steam to the well pads which start working at different years is considered. The oil

production rate capacity and SOR are predicted using empirical formulas from the literature.

Due to the inaccuracy of the conditions in the reservoir, the predicted capacity may contain

uncertainty. For each well pads, one set of JCC is constructed to model the uncertainty

and there are three sets of JCCs in total. The proposed algorithm in Chapter 3 is applied

to approximate JCC into tractable forms and the two-layer algorithm is used to improve

the performance of the robust optimization approximation. The uncertainties are assumed

into two cases: mutually independent and with correlation coefficients 0.5. The results

from the RO formulation with and without considering correlations are compared with the

aid of simulated joint probability of satisfaction. It is concluded that if the information of

correlations is not available, it is safer to not consider them in RO formulation, while if it is

available, it is better to incorporate the information in RO formulation.
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Chapter 7

Concluding Remarks and Future

Works

In this chapter, the conclusions from the previous chapters of the thesis are briefly summa-

rized. Moreover, possible improvements of the methods discussed in this thesis and future

works are introduced.

7.1 Concluding Remarks

With the aid of the development of modern computers, the collection and processing of a

great volume of data become possible. Various information can be extracted from the data

for multiple use including process control, optimization, process monitoring and process

economic evaluation. Great benefits can be achieved by considering more information in the

industrial applications. However, process data with errors will lead to inaccurate information

of the process and using data with errors is hazardous for operation of the system.

Chapter 2 provides a unified framework based on Bayesian inference to detect the gross

errors and reconcile the data to produce cleaned data. In this framework, gross errors are

detected, the magnitudes of the gross errors and the covariance of random errors are esti-

mated and the data are reconciled to satisfy the process model, e.g., mass balance and/or
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energy balance. The framework is combined with serial gross error identification strategy

with slight modifications. Instead of using statistical test, the probability ratio of a mea-

surement containing gross error and not containing gross error is compared to generate a

set of gross error candidates. The strategy can improve the effectiveness of the gross error

detection technique. The developed framework is suitable for both linear and nonlinear sys-

tem models, and the algorithms are tested using multiple examples. It can be observed that

if there is only one gross error in the network, the proposed framework without the serial

strategy is already efficient to detect the gross errors. While for multiple gross errors, due

to the increasing of complexity in the network, the modified serial identification strategy is

necessary and can be effective to detect the gross errors.

Optimization is a powerful technique to help operate the process, especially with some

economic targets. Data is important in the optimization problems, for instance, process

data can be used to build models for the optimization and the economic data such as the

price and tax can be used to formulate the objective or the requirement in the optimization

framework. Due to the nature of measured data, uncertainty inevitably exists in the data.

The uncertain data may make the deterministic optimization solution fail since it can be

suboptimal or infeasible due to the ignorance of the uncertainty in the data. In this thesis,

optimization with uncertainty has been studied in various chapters.

Chapter 3 uses joint chance constraints to model the uncertainty in optimization prob-

lems and investigates the robust optimization approximation method for solving joint chance

constrained problems. Different formulations of uncertainty set induced robust counterpart

optimization are derived based on different types of the uncertainty set. To avoid a worst-case

scenario approximation and improve the objective value by reaching the desired probability

level of constraints satisfaction, a two-layer algorithm is implemented. In the inner level,

an iterative method is used for the optimally selection of the uncertainty set size, whose

goal is to select the minimum possible set size that leads to the target probability of con-

straint satisfaction. In the outer layer, the parameter used for upper bounding the indicator
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function is adjusted by a golden section method to improve the quality of the robust opti-

mization approximation by optimizing the objective value. The advantage and effectiveness

of the proposed method has been demonstrated using multiple examples including a norm

optimization problem and a transportation problem. The robust optimization problem is

tractable and the computational complexity only relies on the solution of multiple tractable

robust optimization problems. The probability information is only used for calculating the

simulated probability of satisfaction. Thus, the algorithm is applicable to general distribu-

tions of the uncertainty. Furthermore, the proposed formulations can be applied to linear

JCC with both continuous and discrete variables.

In Chapter 4, correlations in uncertainties are considered for the design of uncertainty

set. Robust optimization formulations are derived based on different types of uncertain set:

box, ellipsoidal, polyhedral, interval+ellipsoidal, and interval+polyhedral. Numerical exam-

ples are studied with different correlation levels to reveal the importance of incorporating

correlation information into uncertainty set design. A production planning example is used

to test the proposed method. Both the numerical studies and application example demon-

strate the advantage of modeling correlations in robust optimization framework. That is, less

conservative solution can be obtained when more accurate correlation is incorporated into

the robust optimization framework. Then, in Section 4.5, a brief study of RO formulations

for multiple constraints with correlated uncertainties is considered. The RO formulations

are compared based on “constraint-wise” and “global” uncertainty set. Simple numerical

examples are used to test the results with different correlation conditions between uncertain-

ties. The brief study can still give a hint on how to select a better uncertainty set in RO

formulation.

In Chapter 5, nonlinear process design problems are studied and a novel nonlinear robust

optimization framework is developed. The robust counterpart formulation is derived based on

a general type of uncertainty set defined by the intersection of two uncertainty sets. Three

cases of optimization problems are considered including the optimization problems with
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only inequality constraints as well as the problems with equality constraints associated with

uncertain parameter. Furthermore, the control variables which can be manipulated under the

realizations of uncertainty are also considered in the robust optimization formulation based

on an affine relationship between the control variables and the uncertain parameters. In order

to deal with uncertainty with larger perturbation, “piecewise” linearization is taken around

multiple realizations of the uncertain parameter and an iterative algorithm is applied to

select appropriate points for linearization. Three application examples including the optimal

design of a heat exchanger system, a reactor-separator system and a reactor-cooler system

are studied to demonstrate the effectiveness of the proposed methodology. The proposed

method has higher level of robustness than the “single-point” linearization method. In

addition, while the results have the similar robustness level, the proposed method leads to

less conservative robust solution. This is because the “single-point” linearization utilizes

first Taylor expansion around only one point and the performance of this method is only

good when the perturbation of the uncertainty is small. Comparing the results obtained

from the formulation considering control variables and that obtained from not considering

control variables, it can be demonstrated that with consideration of the control variable, the

solutions become less conservative.

In Chapter 6, the economic optimization of steam generation and water distribution

is studied for SAGD process. The long term planning problem is considered to optimally

distribute the steam to the well pads starting at different years. The oil production rate

capacity is predicted using empirical formulas from literature. Due to the inaccuracy of the

conditions in the reservoir, the predicted capacity may contain uncertainty, and multiple sets

of JCC are used to model the uncertainty for each well pads. The proposed algorithm in

Chapter 3 is applied to approximate JCC into tractable forms and the two-layer algorithm

is used to improve the performance of the robust optimization approximation. Since there

are multiple sets of JCC, when the outer layer optimizes the variable controlling the upper

bound of the approximation, golden section is no longer available. Genetic algorithm is
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used instead since it can handle multivariate optimization problem with black-box objective

function.

7.2 Future Works

7.2.1 Data Rectification

In Figure 1.1, it can be seen that change point detection also belongs to data rectification

since it acts as data segmentation to divide the data into different parts according to different

steady states. The formulation is similar to the gross error detection and data reconciliation

work (without indicator for gross errors) and it can also be solved using Bayesian inference

technique. In practice, it is meaningful to assume the number of changes is unknown and

needs to be determined.

7.2.2 Optimization with Uncertainty

In Chapter 3, the influence of the weights of each constraints on the quality of robust

solution has been studied by comparing the results obtained using different combinations of

the weights. However, it did not provide an algorithm to select the weights. The idea of

risk allocation can be borrowed to optimally determine the weights and the quality of robust

solutions can be further improved.

The uncertainty sets used in Chapter 3-6 have norm induced form. The uncertainty sets

are symmetric and have simple form which has little room to incorporate more information of

the uncertainty. Sometimes, the distribution of the uncertainty may not have regular shapes,

e.g., mixture Gaussian distribution. In this case, asymmetric uncertainty set is useful to

better capture the shape of the uncertain region. Due to the availability of historical data,

the uncertainty set can be learnt from the process data.
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7.2.3 Optimization Application in SAGD

In Chapter 6, the model for the well pads are built using simple linear model based on

SOR and WOR. A more accurate model is needed to model the behaviour of the well pads

to make the optimization result more reliable. Furthermore, the starting and ending time

of different well pads are assumed to be known in Chapter 6. To be more practical, the

starting and ending point should be considered as variables and can be determined under

the optimization framework.

Large amount of historical data is available in practice, and the data can be used to

built data-driven models for different units including water treatment plants and steam

generators. The data-based model can be more accurate than the models used in Chapter 6,

especially when the units have nonlinear behaviour. If the data-driven model has a nonlinear

structure, and if the uncertainty in parameter estimation is considered, the proposed method

in Chapter 5 can be applied.
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