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Abstract

In this thesis, we study the problem of detecting small objects on low-

resolution (LR) satellite imagery. Small-object detection is a challenging

problem, especially from LR images. To tackle the challenge, we propose a

method to generate super-resolution images from low-resolution images and

simultaneously detect objects from the super-resolution images. A genera-

tive adversarial network (GAN)-based model called enhanced super-resolution

GAN (ESRGAN) shows remarkable image enhancement performance, but

reconstructed images miss high-frequency edge information. Therefore, object

detection performance degrades for the small objects on recovered noisy and

low-resolution remote sensing images. Inspired by the success of edge enhanced

GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution

GAN (EESRGAN) to improve the image quality of remote sensing images and

used different detector networks in an end-to-end manner where detector loss is

backpropagated into the EESRGAN to improve the detection performance. We

propose an architecture with three components: ESRGAN, Edge Enhancement

Network (EEN), and Detection network. We use residual-in-residual dense

blocks (RRDB) for both the GAN and EEN, and for the detector network,

we use the faster region-based convolutional network (FRCNN) (two-stage

detector) and single-shot multi-box detector (SSD) (one stage detector). Exten-

sive experiments on a public (car overhead with context) dataset and another

self-assembled (oil and gas storage tank) satellite dataset show superior per-

formance of our method compared to the standalone state-of-the-art object
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detectors. While working with the detection problem, we create a GUI tool

to label, train, and detect objects from remote sensing images that cover a

large area. This GUI makes it easier to create small image tiles from the large

satellite images, training the state-of-the-art object detection models, running

the detection, and finally obtaining the output geolocation for the detected

objects.
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Chapter 1

Introduction

1.1 Introduction

Object detection on remote sensing imagery has numerous prospects in

various fields, such as environmental regulation, surveillance, military [11], [80],

national security, traffic, forestry [16], oil and gas activity monitoring. There

are many methods for detecting and locating objects from images, which are

captured using satellites or drones. However, detection performance is not

satisfactory for noisy and low-resolution (LR) images, especially when the

objects are small [54]. Even on high-resolution (HR) images, the detection

performance for small objects is lower than that for large objects [64].

Current state-of-the-art detectors have excellent accuracy on benchmark

datasets, such as ImageNet [62] and Microsoft common objects in context

(MSCOCO) [46]. These datasets consist of everyday natural images with

distinguishable features and comparatively large objects.

On the other hand, there are various objects in satellite images like vehicles,

small houses, small oil and gas storage tanks etc., only covering a small area

[54]. The state-of-the-art detectors [45], [49], [59], [60] show a significant
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performance gap between LR images and their HR counterparts due to a

lack of input features for small objects [25]. In addition to the general object

detectors, researchers have proposed specialized methods, algorithms, and

network architectures to detect particular types of objects from satellite images

such as vehicles [70], [77], buildings [66], and storage tanks [53]. These methods

are object-specific and use fixed resolution for feature extraction and detection.

To improve detection accuracy on remote sensing images, researchers have

used deep convolutional neural network (CNN)-based super-resolution (SR)

techniques to generate artificial images and then detect objects [25], [64]. Deep

CNN-based SR techniques such as single image super-resolution convolutional

networks (SRCNN) [13] and accurate image super-resolution using very deep

convolutional networks (VDSR) [30] showed excellent results on generating

realistic HR imagery from LR input data. Generative Adversarial Network

(GAN)-based [19] methods such as super-resolution GAN (SRGAN) [36] and

enhanced super-resolution GAN (ESRGAN) [73] showed remarkable perfor-

mance in enhancing LR images with and without noise. These models have

two subnetworks: a generator and a discriminator as depicted in the figure

1.1. Both subnetworks consist of deep CNNs. Datasets containing HR and

LR image pairs are used for training and testing the models. The generator

generates HR images from LR input images, and the discriminator predicts

whether generated image is a real HR image or an upscaled LR image. After

sufficient training, the generator generates HR images that are similar to the

ground truth HR images, and the discriminator cannot correctly discriminate

between real and fake images anymore.
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Figure 1.1: A diagram of GAN. It has a generator and a discriminator. The
generator generates a fake image from random noise and the discriminator tries
to differentiate between the fake image from the generator and the real image
from the training set [19].

Although the resulting images look realistic, the compensated high-frequency

details such as image edges may cause inconsistency with the HR ground truth

images [27]. Some works showed that this issue negatively impacts land cover

classification results [26], [71]. Edge information is an important feature for

object detection [79], and therefore, this information needs to be preserved in

the enhanced images for acceptable detection accuracy.

In order to obtain clear and distinguishable edge information, researchers

proposed several methods using separate deep CNN edge extractors [51], [75].

The results of these methods are sufficient for natural images, but the perfor-

mance degrades on LR and noisy remote sensing images [27]. A recent method

[27] used the GAN-based edge-enhancement network (EEGAN) to generate

a visually pleasing result with sufficient edge information. EEGAN employs

two subnetworks for the generator. One network generates intermediate HR

3



images, and the other network generates sharp and noise-free edges from the

intermediate images. The method uses a Laplacian operator [29] to extract edge

information and in addition, it uses a mask branch to obtain noise-free edges.

This approach preserves sufficient edge information, but sometimes the final

output images are blurry compared to a current state-of-the-art GAN-based

SR method [73] due to the noises introduced in the enhanced edges that might

hurt object detection performance.

Another important issue with small-object detection is the huge cost of

HR imagery for large areas. Many organizations are using very high-resolution

satellite imagery to fulfill their purposes. When it comes to continuous moni-

toring of a large area for regulation or traffic purposes, it is costly to buy HR

imagery frequently. Publicly available satellite imagery such as Landsat-8 [35]

(30 m/pixel) and Sentinel-2 [63] (10 m/pixel) are not suitable for detecting

small objects due to the high ground sampling distance (GSD). Detection of

small objects (e.g., oil and gas storage tanks and buildings) is possible from

commercial satellite imagery such as 1.5-m GSD SPOT-6 imagery but the de-

tection accuracy is low compared to HR imagery, e.g., 30-cm GSD DigitalGlobe

imagery in Bing map.

We also need a proper labeling tool to annotate satellite imagery. There

are are many labeling tools to label satellite imagery. ArcGIS [4], labelbox [33],

and ENVI [14] software have some tools to annotate and detect objects from

satellite imagery, and also, it can train and test models using the annotated data.

They are resource extensive or very costly. There are also open-source labeling

tools such as Labelimg [72] and computer vision annotation tool (CVAT) [12].

But they lack the facility to load large satellite imagery, create small tiles for

annotation and train/test options. Therefore, a light-weight annotation tool

with the train/test facility for large satellite imagery can be a good addition to
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the open-source research community.

1.2 Thesis Statement

We have identified two main problems to detect small-objects from satellite

imagery. First, the accuracy of small-object detection is lower compared to

large objects, even in HR imagery due to sensor noise, atmospheric effects,

and geometric distortion. Secondly, we need to have access to HR imagery,

which is very costly for a vast region with frequent updates. Therefore, we need

a solution to increase the accuracy of the detection of smaller objects from

LR imagery, and the solution would resolve both the problems that we have

identified. To the best of our knowledge, no work employed both SR network

with edge-enhancement and object detector network in an end-to-end manner,

i.e, using joint optimization to detect small remote sensing objects.

In this thesis, we propose an end-to-end architecture where object detection

and super-resolution is performed simultaneously. Figure 1.2 shows the signifi-

cance of our method. State-of-the-art detectors miss objects when trained on

the LR images; in comparison, our method can detect those objects. The detec-

tion performance improves when we use SR images for the detection of objects

from two different datasets. Average precision (AP) versus different intersection

over union (IoU) values (for both LR and SR) are plotted to visualize overall

performance on test datasets. From figure 1.2, we observe that for both the

datasets, our proposed end-to-end method yields significantly better IoU values

for the same AP. Our proposed architecture consists of two parts: EESRGAN

network and a detector network. Our approach is inspired by EEGAN and

ESRGAN networks and showed a remarkable improvement over EEGAN to

generate visually pleasing SR satellite images with enough edge information.
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We employed a generator subnetwork, a discriminator subnetwork, and an

edge-enhancement subnetwork [27] for the SR network. For the generator and

edge-enhancement network, we used residual-in-residual dense blocks (RRDB)

[73]. These blocks contain multi-level residual networks with dense connections

that showed good performance on image enhancement.
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(I) LR image (II) SR image (III) AP vs IoU curves

Figure 1.2: Detection on LR (low-resolution) images (60cm/pixel) is
shown in (I); in (II), we show the detection on generated SR (super-
resolution) images (15 cm/pixel). The first row of this figure represents
the COWC (car overhead with context) dataset [52], and the second
row represents the OGST (oil and gas storage tank) dataset [57]. AP
(average precision) values versus different IoU (intersection over union)
values for the LR test set and generated SR images from the LR images
are shown in (III) for both the datasets. We use FRCNN (faster region-
based CNN) detector on LR images for detection. Then instead of using
LR images directly, we use our proposed end-to-end EESRGAN (edge-
enhanced SRGAN) and FRCNN architecture (EESRGAN-FRCNN)
to generate SR images and simultaneously detect objects from the
SR images. The red bounding boxes represent true positives, and
yellow bounding boxes represent false negatives. IoU=0.75 is used for
detection.

We used a relativistic discriminator [28] instead of a normal discriminator.
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Besides GAN loss and discriminator loss, we employed Charbonnier loss [8]

for the edge-enhancement network. Finally, we used different detectors [49],

[60] to detect small objects from the SR images. The detectors acted like the

discriminator as we backpropagated the detection loss into the SR network

and, therefore, it improved the quality of the SR images.

We have created a software to label, train, and detect objects from remote

sensing images that cover a large area. The interface of our software makes

it easier to create small image tiles from the large satellite images, training

the state-of-the-art object detection models, running the detection, and finally

obtaining the output geolocation for the detected objects.

We created the oil and gas storage tank (OGST) dataset [57] from satellite

imagery (Bing map), which has 30 cm and 1.2 m GSD. The dataset contains

labeled oil and gas storage tanks from the Canadian province of Alberta, and

we detected the tanks on SR images. Detection and counting of the tanks are

essential for the Alberta Energy Regulator (AER) [1] to ensure safe, efficient,

orderly, and environmentally responsible development of energy resources.

Therefore, there is a potential use of our method for detecting small objects

from LR satellite imagery. The OGST dataset is available on Mendeley [57].

In addition to the OGST dataset, we applied our method on the publicly

available car overhead with context (COWC) [52] dataset to compare the

performance of detection for varying use-cases. During training, we used HR

and LR image pairs but only required LR images for testing. Our method

outperformed standalone state-of-the-art detectors for both datasets.

1.3 Thesis Contribution

Our work in this thesis has the following contributions.
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• We show a super-resolution network with object detector networks im-

prove object detection performance on low-resolution images compare

to standalone object detectors, and performance is further improved by

end-to-end training. We also create an oil and gas tank storage dataset

to show the improvement.

• We provide empirical evidence that edge-enhancement helps to get im-

provement for object detection results.

• We create a tool to create small tiles of images from large satellite imagery,

create labels, and train/test the images with different object detection

models and also generate detection results with geolocation.

We make our tool and the end-to-end network available to the community

through GitHub.

1.4 Organization of the Thesis

This thesis is organized as follows.

• Chapter 1. Introduction

The problem related to object detection on low-resolution remote sensing

images and related solutions are discussed in this chapter. We also discuss

our labeling and detection tool here. We provide the thesis statement and

contribution in solving the problem related to the detection of objects

from satellite imagery.

• Chapter 2. Related Works

We reviewed works related to our research on object detection, image

super-resolution, simultaneous object detection with super-resolution,

and similar labeling tools for object detection.
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• Chapter 3. A Tool for Labeling and Detection

We give a short description of our GUI tool and include the steps to

create labels, and train/test the images with different object detection

models.

• Chapter 4. An End-to-End Deep Learning Architecture for

Small-Object Detection in Remote Sensing Images

We present our end-to-end small-object detection framework in this chap-

ter. We depict our method, internal network components, and derive our

final loss functions here. We provide the details of the training procedure,

dataset description, experimental results, and show the effectiveness of

our end-to-end method.

• Chapter 5. Conclusion and Future Work

We conclude our thesis in this section. We discuss the results of our

method and suggest some ideas to improve our method as future work.
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Chapter 2

Related Works

Our work consists of an end-to-end edge enhanced image super-resolution

network with an object detector network and an image annotation tool with

GUI. In this section, we discuss some research related to our method.

2.1 Image Super-Resolution

Many methods were proposed on SR using deep CNNs. Dong et al. proposed

super-resolution CNN (SRCNN) [13] to enhance low-resolution image in an end-

to-end training outperforming previous super-resolution techniques. The deep

CNNs for super-resolution evolved rapidly later on, and researchers introduced

residual blocks [36], densely connected networks [67], and residual dense block

[82] for improving super-resolution results. Ledig et al. introduced a framework

called SRGAN [36] that was capable of generating photo-realistic natural images

for 4× upscaling factors. Authors proposed a perceptual loss function, which

was a combination of an adversarial loss and a content loss. The adversarial loss

helped a generator to generate a SR image similar to the original photo-realistic

image and helped a discriminator network to differentiate between the SR

images and original photo-realistic images. The authors also used a content
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loss of perceptual similarity. Figure 2.1 shows the architecture of the SRGAN.

It contains a generator and a discriminator network, and the network diagrams

of them are also shown.

Figure 2.1: Architecture of SRGAN: network diagram of generator and dis-
criminator with corresponding kernel size (k), number of feature maps (n) and
stride (s) shown for each convolutional layer [36].

The generator generates fake images, and the discriminator tries to differ-

entiate between the real and fake images. The generator has residual blocks

[82] with skip connection and parametric ReLU [21] as the activation function.

Residual blocks have 3× 3 kernels [32], 64 feature maps, and stride of 1 for the

convolutional layers. The generator also has upsampling layers to upsample the

low-resolution images. The discriminator has convolutional blocks with leaky

ReLu [74] and a fully connected layer with a final sigmoid activation. In the

discriminator, 3×3 kernels are used with different numbers of feature maps and

strides. He et al. [22] and Lim et al. [43] used deep CNNs without the batch

normalization (BN) layer and observed significant performance improvement
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and stable training with a deeper network. These works were done on everyday

natural images.

Liebel et al. [42] proposed deep CNN-based super-resolution network for

multi-spectral remote sensing imagery. Authors got superior results compared

to the conventional interpolation methods. A method was proposed by Yuan

et al. [78] that can create high-resolution hyperspectral images from low-

resolution images through transfer learning. They used natural images to

train their model and used transfer learning to infer results for hyperspectral

images. A method based on the transferred generative adversarial network

for satellite image super-resolution was proposed in [50]. Authors removed

the batch normalization layers from the generator to reduce the memory

consumption and the computational time. The model used transfer learning

for the insufficiency of training data in many application related to remote

sensing imagery.

Jiang et al. [27] proposed a new super-resolution architecture for satellite

imagery that was based on GAN. They introduced an edge-enhanced network to

acquire smooth edge details in the final SR image and used Laplacian operator

[29] to extract edge information from satellite images. Liu et al. [47] proposed

a multi-task deep neural network for remote sensing image super-resolution and

colorization simultaneously. Authors incorporated natural images with satellite

imagery for colorization. They proposed a multi-scale deep encoder-decoder

symmetrical network for the image super-resolution. Another super-resolution

architecture named local-global combined networks based on deep CNN’s was

proposed by Lei et al. [37]. The architecture learned multilevel representations

of satellite imagery, including both local details and global environmental

priors.
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2.2 Object Detection

Deep learning-based object detectors can be categorized into two subgroups,

region-based CNN (R-CNN) models that employ two-stage detection and

uniform models using single stage detection [69]. Two-stage detectors comprise

of R-CNN [18], Fast R-CNN [17], Faster R-CNN [60] and the most used single

stage detectors are SSD [49], You only look once (YOLO) [59] and RetinaNet

[45]. In the first stage of a two-stage detector, regions of interest are determined

by selective search or a region proposal network. Then, in the second stage,

the selected regions are checked for particular types of objects and minimal

bounding boxes for the detected objects are predicted. In figure 2.2, a high

level architecture of faster R-CNN [60] is shown with two stages.

Figure 2.2: Faster R-CNN: A two-stage detector with region proposal and
classification network [60].

In contrast, single-stage detectors omit the region proposal network and run
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detection on a dense sampling of all possible locations. Therefore, single-stage

detectors are faster but, usually less accurate. RetinaNet [45] uses a focal loss

function to deal with the data imbalance problem caused by many background

objects and often showed similar performance as the two-stage approaches.

Many deep CNN-based object detectors were proposed on remote sensing

imagery to detect and count small objects, such as vehicles [3], [39], [70]. Tayara

et al. [70] introduced a convolutional regression neural network to detect vehicles

from satellite imagery. Furthermore, a deep CNN-based detector was proposed

[39] to detect multi oriented vehicles from remote sensing imagery. A method

combining a deep CNN for feature extraction and a support vector machine

(SVM) for object classification was proposed [3]. Ren et al. [61] modified the

faster R-CNN detector to detect small objects in remote sensing images. They

changed the region proposal network and incorporated context information

into the detector. Another modified faster R-CNN detector was proposed by

Tang et al. [68]. They used a hyper region proposal network to improve recall

and used a cascade boosted classifier to verify candidate regions. This classifier

can reduce false detection by mining hard negative examples.

An SSD-based end-to-end airplane detector with transfer learning was

proposed, where, the authors used a limited number of airplane images for

training [9]. They also proposed a method to solve the input size restrictions

by dividing a large image into smaller tiles. Then they detected objects on

smaller tiles and finally, mapped each image tile to the original image. They

showed that their method performed better than the SSD model. In [58],

the authors showed that finding a suitable parameter setting helped to boost

the object detection performance of convolutional neural networks on remote

sensing imagery. They used YOLO [59] as object detector to optimize the

parameters and infer the results.
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In [16], the authors detected conifer seedlings along recovering seismic lines

from drone imagery. They used a dataset from different seasons and used faster

R-CNN to infer the detection accuracy. There is another work [40] related to

plant detection, where authors detected palm trees from satellite imagery using

sliding window techniques and an optimized convolutional neural network.

Some works produced excellent results in detecting small objects. Lin et

al. [44] proposed feature pyramid networks, which is a top-down architecture

with lateral connections. The architecture could build high-level semantic

feature maps at all scales. These feature maps boosted the object detection

performance, especially for small object detection, when used as a feature

extractor for faster R-CNN. Inspired by the receptive fields in human visual

systems, Liu et al. [48] proposed a receptive field block (RFB) module that

used the relationship between the size and eccentricity of receptive fields

to enhance the feature discrimination and robustness. Hence, the module

increased the detection performance of objects with various sizes when used as

the replacement of the top convolutional layers of SSD.

A one-stage detector called single-shot refinement neural network (Re-

fineDet) [81] was proposed to increase the detection accuracy and also enhance

the inference speed. The detector worked well for small object detection. Re-

fineDet used two modules in its architecture: an anchor refinement module

to remove negative anchors and an object detection module that took refined

anchors as the input. The refinement helped to detect small objects more

efficiently than previous methods. In [41], feature fusion SSD (FSSD) was

proposed where features from different layers with different scales were con-

catenated together, and then some downsampling blocks were used to generate

new feature pyramids. Finally, the features were fed to multibox detector for

prediction. The feature fusion in FSSD increased the detection performance
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for both large and small objects. Zhu et al. [85] trained single-shot object

detectors from scratch and obtained state-of-the-art performance on various

benchmark datasets. They removed the first downsampling layer of SSD and

introduced root block (with modified convolutional filters) to exploit more

local information from an image. Therefore, the detector was able to extract

powerful features for small object detection.

All of the aforementioned works were proposed for natural images. A

method related to small object detection on remote sensing imagery was

proposed by Yang et al. [76]. They used modified faster R-CNN to detect

both large and small objects. They proposed rotation dense feature pyramid

networks (R-DFPN), and the use of this network helped to improve the detection

performance of small objects.

There is an excellent review paper by Zhao et al. [83], where the authors

showed a thorough review of object detectors and also showed the advantages

and disadvantages of different object detectors. The effect of object size was

also discussed in the paper. Another survey paper about object detection

in remote sensing images by Li et al. [38] showed review and comparison of

different methods.

2.3 Simultaneous Super-resolution with Object

Detection

The positive effects of SR on object detection tasks was discussed in [64]

where the authors used remote sensing datasets for their experiments. Simulta-

neous CNN-based image enhancement with object detection using single-shot

multibox detector (SSD) [49] was done in [5]. Haris et al. [20] proposed a

deep CNN-based generator to generate a HR image from a LR image and
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then used a multi-task network as a discriminator and also for localization

and classification of objects. These works were done on natural images, and

LR and HR image pairs were required. In another work [25], a method using

simultaneous super-resolution with object detection on satellite imagery was

proposed. The SR network in this approach was inspired by the cycle-consistent

adversarial network [84]. A modified faster R-CNN architecture was used to

detect vehicles from enhanced images produced by the SR network.

2.4 Labeling Tools

There are many labeling tools to label ground and satellite imagery. ArcGIS

[4] software has a tool to annotate and detect objects from satellite imagery,

and also it can train/test models using the annotated data. Labelbox [33] is

another software that provides similar types of services like the ArcGis tool and

services are provided online. ENVI [14] also provides similar types of services as

the two previously mentioned software. ArcGis and ENVI are heavy in terms

of resource allocation and all the three software charge users for the services.

There are also open-source labeling tools such as LabelImg [72] and computer

vision annotation tool (CVAT) [33]. They are easy to use and light-weight, and

users can annotate small to medium size images.
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Chapter 3

A Tool for Labeling and

Detection

3.1 Introduction

We have created a GUI tool called Label-Detect [24]. It is a graphical image

annotation tool and a user can also train and test large satellite images. Users

can create small tiles of images from a large remote sensing image, annotate it,

create training and testing data, select model, and train-test the model. The

final detection results can be generated as geographical coordinate files, which

is very helpful in plotting the results on many remote sensing software.

The annotations (labeling) part of this application is based on LabelImg

[72] GitHub repository. It is written in Python and uses Qt for its graphical

interface. Tensorflow object detection API [23] is used for training and testing

the models.

Annotations are saved as XML files in PASCAL VOC [15] format, the

format used by ImageNet [62]. Users can use many deep learning models, such

as Faster RCNN [60] with Resnet [44] or SSD [49] with VGG [65]. We show an
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example of the options of our tool and detection of objects on large satellite

imagery in figure 3.1 and 3.2. Labeling, training, and testing procedures are

described and depicted in the next sections.

Figure 3.1: Our labeling tool - Label-Detect.

Figure 3.2: Detection of objects on a large satellite image.
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3.2 How to Use the Tool

3.2.1 Annotation

Steps (PascalVOC Style Annotation)

• Build and launch using the instructions in the GitHub repository [24].

• Select ‘Change default saved annotation folder’ in Menu/File to save the

annotation files from user specified directory.

• Select ‘Open Dir,’ and users can see the images from the selected directory.

• Select ‘Create RectBox’ to create annotation.

• Click and release the left mouse to select a region to annotate the ‘rect

box.’

Figure 3.3: An Example of labeling of an object is shown here.
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Users can use right mouse button to drag the ‘rect box’ to copy or move it.

An example screenshot of labeling is shown in figure 3.3.

3.2.2 Training

Steps

• Select ‘File →Open Image and Slice’ [Ctrl+i]

• Select the desired satellite Image and then enter the tile/slice height and

width. The default value is 512 pixels.

• Then select ‘Start Slicing’.

• After slicing the big image into small tiles, users can see a new directory

on the image’s directory, and within it, users can see image tiles/slices.

• Annotate the images and save the .xml files according to the ‘Annotation’

section discussed above.

• Select ‘File →Select Directory to Create TFrecords’ [Ctrl+t] and select

the directory that contains all the .xml files.

• Then TFRecords files for training and testing will be created under

TFrecords folder within the directory selected in the previous step.

• Select ‘Start Training’ [Ctrl+Shift+t]

• Select the TFRecord file for training, which is ‘train.record’.

• Select ‘detection.pbtxt’ and a ‘.config’ file from ‘Label-Detect/Training config’

directory. If users want to use Faster R-CNN ResNet-101 then they can

select the corresponding file otherwise one can select the ‘.config’ file for

SSD MobileNet. Apart from these two models, other models available in

the object detection API also can be used.
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• Download the Faster R-CNN Resnet-101 model, extract it and select

the ‘model.ckpt.index’ file for the model file. Users can also use SSD

MobileNet or other models.

• If users want to use other models they can download from the tensorflow

object detection API repository and the corresponding .config files from

the same repository.

• Then one can start training, and after the completion of the training

users can get ‘frozen inference graph.pb’ file, and this file can be used for

testing images.

• By default, the training is for three labels which are in ‘detection.pbtxt’

file. If users want to create their own labels, they can edit the ‘detec-

tion.pbtxt’ file, give an item id starting from value 1 and give it a name.

The format must be the same as the given ‘detectin.pbtxt’ file.

• In the config files that are provided in the repository in ‘Label-Detect/Training config’,

users can find ‘num steps: 20000’. This is the number of training steps.

Users can change the steps to their desired values.

We train different models using our tool. In figure 3.4, we show a screenshot of

selecting different files required for training.
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Figure 3.4: Selection of required files before training.

3.2.3 Testing

Steps

• Select ‘File →Load Test Image to Get the Results’

• For testing large images, the images must be sliced into small overlapping

tiles for detection. Therefore, users need to enter the height and width of

the slices. The default size is 512 for height and width.

• Then select the ‘frozen inference graph.pb’ file that is created in the

training phase.

• Then after some processing time (slicing, detection of objects, conversion

of local coordinates of the detected bounding box to the global coordinate

and application of non-max suppression to the overlapped detection), the

final labeled image with bounding boxes can be seen within the tool. The

files with geolocation of the bounding boxes are also generated.
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In figure 3.5, we show some example detections with labels.

Figure 3.5: An Example of the detections of objects is shown here.
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Chapter 4

An End-to-End Deep Learning

Architecture for Small-Object

Detection in Remote Sensing

Images

4.1 Method

In this thesis, we aim to improve the detection performance of small objects

on remote sensing imagery. Towards this goal, we propose an end-to-end

network architecture that consists of two modules: A GAN based SR network

and a detector network. The whole network is trained in an end-to-end manner

and HR and LR image pairs are needed for training.

The SR network has three components: generator (G), discriminator (DRa),

and edge-enhancement network (EEN). Our method uses end-to-end training

as the gradient of the detection loss from the dectector is backpropagated into

the generator. Therefore, the detector also works like a discriminator and
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encourages the generator G to generate realistic images similar to the ground

truth. Our entire network structure can also be divided into two parts: A

generator consisting of the EEN and a discriminator, which includes the DRa

and the detector network. In figure 4.1, we show the role of the detector as a

discriminator.

Figure 4.1: Overall network architecture with a generator and a discriminator
module.

The generator G generates intermediate super-resolution (ISR) images, and

then final SR images are generated after applying the EEN network. The

discriminator (DRa) discriminates between ground truth (GT) HR images and

ISR. The inverted gradients of DRa are backpropagated into the generator

G in order to create SR images allowing for accurate object detection. Edge

information is extracted from ISR, and the EEN network enhances these edges.

Afterwards, the enhanced edges are again added to the ISR after subtracting

the original edges extracted by the Laplacian operator and we get the output
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SR images with enhanced edges. Finally, we detect objects from the SR images

using the detector network.

We use two different loss functions for EEN: one compares the difference

between SR and ground truth images, and the other compares the difference

between the extracted edge from ISR and ground truth. We also use the

VGG19 [65] network for feature extraction that is used for perceptual loss [73].

Hence, it generates more realistic images with more accurate edge information.

We divide the whole pipeline as a generator, and a discriminator, and these

two components are elaborated in the following.

4.1.1 Generator

Our generator consists of a generator network G and an edge-enhancement

network EEN. In this section, we describe the architectures of both networks

and the corresponding loss function.

4.1.1.1 Generator Network G

Figure 4.2: Generator G with RRDB (residual-in-residual dense blocks), con-
volutional and upsampling blocks.

We use the generator architecture from ESRGAN [73], where all batch

normalization (BN) layers are removed, and RRDB is used. The overall
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architecture of generator G is shown in figure 4.2, and the RRDB is depicted

in figure 4.3.

Inspired by the architecture of ESRGAN, we remove BN layers to increase

the performance of the generator G and to reduce the computational complexity.

The authors of ESRGAN also state that the BN layers tend to introduce

unpleasant artifacts and limit the generalization ability of the generator when

the statistics of training and testing datasets differ significantly.

(a) RRDB from generator.

(b) Dense block from RRDB.

Figure 4.3: Internal diagram of RRDB (residual-in-residual dense blocks).

We use RRDB as the basic blocks of the generator network G that uses a

multi-level residual network with dense connections. Those dense connections

increase network capacity, and we also use residual scaling to prevent unstable

conditions during the training phase [73]. We use the parametric rectified linear

28



unit (PReLU) [22] for the dense blocks to learn the parameter with the other

neural network parameters. As discriminator (DRa), we employ a relativistic

average discriminator similar to the work represented in [73].

In equation 4.1 and 4.2, the relativistic average discriminator is formulated

for our architecture. Our generator G depends on the discriminator DRa, and

hence we briefly discuss the discriminator DRa here and then, describe all

details in section 4.1.2. The discriminator predicts the probability that a real

image (IHR) is relatively more realistic than a generated intermediate image

(IISR).

DRa(IHR, IISR) = σ(C(IHR)− EIISR
[C(IISR)]) −→ 1 More Realistic than fake data?

(4.1)

DRa(IISR, IHR) = σ(C(IISR)− EIHR
[C(IHR)]) −→ 0 Less realistic than real data?

(4.2)

In equation 4.1 and 4.2, σ, C(·) and EIISR
represents the sigmoid function,

discriminator output and operation of calculating mean for all generated

intermediate images in a mini-batch. The generated intermediate images are

created by the generator where IISR = G(ILR). It is evident from equation

4.3 that the adversarial loss of the generator contains both IHR and IISR and

hence, it benefits from the gradients of generated and ground truth images

during the training process. The discriminator loss is depicted in equation 4.4.

LRa
G = −EIHR

[log(1−DRa(IHR, IISR))]− EIISR
[log(DRa(IISR, IHR))] (4.3)

LRa
D = −EIHR

[log(DRa(IHR, IISR))]− EIISR
[log(1−DRa(IISR, IHR))] (4.4)

We use two more losses for generator G: one is perceptual loss (Lpercep), and

another is content loss (L1) [73]. The perceptual loss is calculated using the
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feature map (vggfea(·)) before the activation layers of a fine-tuned VGG19 [65]

network, and the content loss calculates the 1-norm distance between IISR and

IHR. Perceptual loss and content loss is shown in equation 4.5 and equation

4.6.

Lpercep = EILR
||vggfea(G(ILR)− vggfea(IHR)||1 (4.5)

L1 = EILR
||G(ILR)− IHR||1 (4.6)

4.1.1.2 Edge Enhancement Network EEN

The EEN network removes noise and enhances the extracted edges from an

image. An overview of the network is depicted in figure 4.4. In the beginning,

Laplacian operator [29] is used to extract edges from the input image. After

the edge information is extracted, it is passed through convolutional, RRDB,

and upsampling blocks. There is a mask branch with sigmoid activation to

remove edge noise as described in [27]. Finally, the enhanced edges are added

to the input images where the edges extracted by the Laplacian operator were

subtracted.

Figure 4.4: Edge-enhancement network where input is an ISR (intermediate
super-resolution) image and output is a SR (super-resolution) image.

The EEN network is similar to the edge-enhancement subnetwork proposed

in [27] with two improvements. First, we replace the dense blocks with RRDB.
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The RRDB shows improved performance according to ESRGAN [73]. Hence,

we replace the dense block for improved performance of the EEN network.

Secondly, we introduce a new loss term to improve the reconstruction of the

edge information. In [27], authors extracted the edge information from IISR and

enhanced the edges using an edge-enhancement subnetwork which is afterwards

added to the edge-subtracted IISR. To train the network, [27] proposed to

use Charbonnier loss [8] between the IISR and IHR. This function is called

consistency loss for images (Limg cst) and helps to get visually pleasant outputs

with good edge information. However, sometimes the edges of some objects are

distorted and produce some noises and consequently, do not give good edge

information. Therefore, we introduce a consistency loss for the edges (Ledge cst)

as well. To compute Ledge cst we evaluate the Charbonnier loss between the

extracted edges (Iedge SR) from ISR and the extracted edges (Iedge HR) from

IHR. The two consistency losses are depicted in equation 4.7 and equation 4.8

where ρ(·) is the Charbonnier penalty function [34]. The total consistency loss

is finally calculated for both images and edges by summing up the individual

loss. The loss of our EEN is shown in equation 4.9.

Limg cst = EISR
[ρ(IHR − ISR)] (4.7)

Ledge cst = EIedge SR
[ρ(Iedge HR − Iedge SR)] (4.8)

Leen = Limg cst + Ledge cst (4.9)

Finally, we get the overall loss for the generator module by adding the losses

of the generator G and the EEN network. The overall loss for the generator

module is shown in equation 4.10 where λ1, λ2, λ3, and λ4 are the weight

parameters to balance different loss components. We empirically set the values

as λ1 = 1, λ2 = .001, λ3 = .01, and λ4 = 5.
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LG een = λ1Lpercep + λ2L
Ra
G + λ3L1 + λ4Leen (4.10)

4.1.2 Discriminator

As described in the previous section, we use the relativistic discriminator

DRa for training the generator G. The architecture of the discriminator is

taken from ESRGAN [73] which employs the VGG-19 [65] architecture. We use

Faster R-CNN [60] and SSD [49] for our detector networks. The discriminator

(DRa) and the detector network jointly act as discriminator for the generator

module. We briefly describe these two detectors in the next two sections.

4.1.2.1 Faster R-CNN

The Faster R-CNN [60] is a two-stage object detector and contains two

networks: a region proposal network (RPN) to generate region proposals from

an image and another network to detect objects from these proposals. In

addition, the second network also tries to fit the bounding boxes around the

detected objects.

The task of the RPN is to return image regions that have a high probability

of containing an object. The RPN network uses a backbone network such

as VGG [65], ResNet, or ResNet with feature pyramid network [44]. These

networks are used as feature extractors, and different types of feature extractors

can be chosen based on their performance on public datasets. We use ResNet-

50-FPN [44] as a backbone network for our faster R-CNN. We use this network

because it displayed a higher precision than VGG-19 and ResNet-50 without

FPN (especially for small object detection) [44]. Even though the use of a

larger network might lead to a further performance improvement, we chose

ResNet-50-FPN due to its comparably moderate hardware requirements and
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more efficient convergence times.

After the RPN, there are two branches for detection: a classifier and a

regressor. The classification branch is responsible for classifying a proposal to

a specific object, and the regression branch finds the accurate bounding box of

the object. In our case, both datasets contain objects with only one class, and

therefore, our classifier infers only two classes: the background class and the

object class.

4.1.2.2 SSD

The SSD [49] is a single-shot multibox detector that detects objects in a

single stage. Here, single-stage means that classification and localization are

done in a single forward pass through the network. Like Faster R-CNN, SSD

also has a feature extractor network, and different types of networks can be used.

To serve the primary purpose of SSD, which is speed, we use VGG-16 [65] as a

feature extractor network. After this network, SSD has several convolutional

feature layers of decreasing sizes. This representation can seem like a pyramid

representation of images at different scales. Therefore, the detection of objects

happens in every layer, and finally, we get the object detection output as class

values and coordinates of bounding boxes.

4.1.2.3 Loss of the discriminator

The relativistic discriminator loss (LRa
D ) is already described in the previous

section and depicted in equation 4.4. This loss is added to the detector loss to

get the final discriminator loss.

Both Faster R-CNN and SSD have similar regression/localization losses

but different classification losses. For regression/localization, both use smooth

L1 [60] loss between detected and ground truth bounding box coordinates
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(t∗). Classification (Lcls frcnn) and regression loss (Lreg frcnn) and overall loss

(Ldet frcnn) of Faster R-CNN are given in the following:

Lcls frcnn = EILR
[− log(Detcls frcnn(GG een(ILR)))] (4.11)

Lreg frcnn = EILR
[smoothL1(Detreg frcnn(GG een(ILR)), t∗)] (4.12)

Ldet frcnn = Lcls frcnn + λLreg frcnn (4.13)

Here, λ is used to balance the losses, and it is set to 1 empirically. Detcls frcnn

and Detreg frcnn are the classifier and regressor for the Faster R-CNN. Classifi-

cation (Lcls ssd), regression loss (Lreg ssd) and overall loss (Ldet ssd) of SSD are

as following:

Lcls ssd = EILR
[− log(softmax(Detcls ssd(GG een(ILR))))] (4.14)

Lreg ssd = EILR
[smoothL1(Detreg ssd(GG een(ILR)), t∗)] (4.15)

Ldet ssd = Lcls ssd + αLreg ssd (4.16)

Here, α is used to balance the losses, and it is set to 1 empirically. Detcls ssd

and Detreg ssd are the classifier and regressor for the SSD.

4.1.3 Training

Our architecture can be trained in separate steps or jointly in an end-to-end

way. We discuss the details of these two types of training in the next two

sections.

4.1.3.1 Separate Training

In separate training, we train the SR network (generator module and discrim-

inator DRa) and the detector separately. Detector loss is not backpropagated
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to the generator module. Therefore, the generator is not aware of the detector

and thus, it only gets feedback from the discriminator DRa. For example, in

equation 4.11, no error is backpropagated to the GG een network (the network

is detached during the calculation of the detector loss) while calculating the

loss Lcls frcnn.

4.1.3.2 End-to-End Training

In end-to-end training, we train the whole architecture end-to-end that

means the detector loss is backpropagated to the generator module. Therefore,

the generator module revceives gradients from both detector and discriminator

DRa. We get the final discriminator loss (LD det) as following:

LD det = LRa
D + ηLdet (4.17)

Here, η is the parameter to balance the contribution of the detector loss and

we empirically set it to 1. Detection loss from SSD or Faster R-CNN is denoted

by Ldet. Finally, we get an overall loss (Loverall) for our architecture as follows.

Loverall = LG een + LD det (4.18)

4.2 Experiments

As mentioned above, we trained our architecture separately and in an

end-to-end manner. For separate training, we first trained the SR network until

convergence and then trained the detector networks based on the SR images.

For end-to-end training, we also employed separate training as pre-training step

for weight initialization. Afterwards SR and object detection networks were

jointly trained, i.e., the gradients from the the object detector were propagated
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into the generator network.

In the training process, the learning rate was set to 0.0001 and halved

after every 50k iterations. The batch size was set to 5. We used Adam [31]

as optimizer with β1 = 0.9, β2 = 0.999 and updated the whole architecture

weights until convergence. We used 23 RRDB blocks for the generator G and 5

RRDB blocks for the EEN network. We implemented our architecture with the

PyTorch framework [55] and trained/tested using two NVIDIA Titan X GPUs.

The end-to-end training with COWC took 96 hours for 200 epochs. The average

inference speed using faster R-CNN was approximately 4 images/second and 7

images/second for SSD. Our implementation can be found in GitHub [56].

4.2.1 Datasets

4.2.1.1 Cars Overhead with Context Dataset

Cars overhead with context (COWC) dataset [52] contains 15 cm (one

pixel cover 15 cm distance at ground level) satellite images from six different

regions. The dataset contains a large number of unique cars and covers regions

from Toronto in Canada, Selwyn in New Zealand, Potsdam and Vaihingen in

Germany, Columbus and Utah in the United States. Out of these six regions,

we used the dataset from Toronto and Potsdam. Therefore, when we refer to

the COWC dataset, we refer to the dataset from these two regions. There are

12651 cars in our selected dataset. The dataset contains only RGB images,

and we used these images for training and testing.

We used 256-by-256 image tiles, and every image tile contains at least one

car. The average length of a car was between 24 to 48 pixels, and the width

was between 10 to 20 pixels. Therefore, the area of a car was between 240 to

960 pixels, which can be considered as a small object relative to the other large
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satellite objects. We used bi-cubic downsampling to generate LR images from

the COWC dataset. The downscale factor was 4×, and therefore, we had 64

pixels to 64 pixels size for LR images. We had a text file associated with each

image tile containing the coordinates of the bounding box for each car.

(a) LR image (b) HR image (c) GT image

Figure 4.5: COWC (car overhead with context) dataset: LR-HR (low-resolution
and high-resolution) image pairs are shown in (a) and (b) and GT (ground
truth) images with bounding boxes for cars are in (c).

Our experiments considered the dataset having only one class, car, and did

not consider any other type of object. Figure 4.5 shows examples from the

COWC dataset. We experimented with a total of 3340 tiles for training and

testing. Our train/test split was 80%/20%, and the training set was further

divided into a training and a validation set by an 80% to 20% ratio. We trained
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our end-to-end architecture with an augmented training dataset with random

horizontal flips and ninety-degree rotations.

4.2.1.2 Oil and Gas Storage Tank Dataset

The oil and gas storage tank (OGST) dataset has been complied in Alberta

Geological Survey (AGS) [2], a branch of the Alberta Energy Regulatory (AER)

[1]. AGS provides geoscience information and support to AER’s regulatory

functions on energy developments to be carried out in a manner to ensure public

and environmental safety. To assist AER with sustainable land management

and compliance assurance [10], AGS is utilizing remote sensing imagery for

identifying the number of oil and gas storage tanks inside well pad footprints

in Alberta.

While the SPOT-6 satellite imagery at 1.5 m pixel resolution provided by

the AGS has sufficient quality and details for many regulatory functions, it is

difficult to detect small objects within well pads, e.g., oil and gas storage tanks

with ordinary object detection methods. The diameter of a typical storage

tank is about 3 m and their placements are usually vertical and side-by-side

with less than 2 m. To train our architecture for this use-case, we needed a

dataset for providing pairs of low and high-resolution images. Therefore, we

have created the OGST dataset using free imagery from the Bing map [6].

The OGST dataset contains 30 cm resolution remote sensing images (RGB)

from the Cold Lake Oil Sands region of Alberta, Canada where there is a high

level of oil and gas activities and concentration of well pad footprints. The

dataset contains 1671 oil and gas storage tanks from this area.

We used 512-by-512 image tiles, and there was no image without any oil and

gas storage tank in our experiment. The average area covered by an individual

tank was between 800 to 1600 pixels. Some industrial tanks were large, but
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most of the tanks covered small regions on the imagery. We downscaled the

HR images using bi-cubic downsampling with the factor of 4×, and therefore,

we got a LR tile of size 128-by-128 pixels. Every image tile was associated with

a text file containing the coordinates of the bounding boxes for the tanks on a

tile. We have showed examples from the OGST dataset in figure 4.6.

(a) LR image (b) HR image (c) GT image

Figure 4.6: OGST (oil and gas storage tank) dataset: LR-HR (low-resolution
and high-resolution) image pairs are shown in (a) and (b) and GT (ground
truth) images with bounding boxes for oil and gas storage tanks are in (c).

As with the COWC dataset, our experiments considered one unique class

here, tank, and we had a total of 760 tiles for training and testing. We used a

90%/10% split for our train/test data. The training data was further divided

by 90%/10% for the train/validation split. The percentage of training data
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was higher here compared to the previous dataset to increase the training data

because of the smaller size of the dataset. The dataset is available at [56].

4.2.2 Evaluation Metrics for Detection

We obtained our detection output as bounding boxes with associated

classes. To evaluate our results, we used average precision (AP), and calculated

intersection over union (IoU), precision, and recall for obtaining AP.

We denote the set of correctly detected objects as true positives (TP ) and

the set of falsely detected objects of false positives (FP ). The precision is now

the ratio between the number of TP s relative to all predicted objects:

Precision =
|TP |

|TP |+ |FP |
(4.19)

We denote the set of objects which are not detected by the detector as false

negatives (FN). Then, the recall is defined as the ratio of detected objects

(TP ) relative to the number of all objects in the data set:

Recall =
|TP |

|TP |+ |FN |
(4.20)

To measure the localization error of predicted bounding boxes, IoU computes

the overlap between two bounding boxes: the detected and the ground truth

box. If we take all the boxes that have an IoU ≥ τ as TP and consider all

other detections as FP , then we get the precision at τ IoU. AP at a specific

IoU is calculated by averaging precision values from different recall values. If

we now vary τ from 0.5 to 0.95 IoU with a step size of 0.05, we receive ten

different precision values which can be combined into the average precision

(AP) at IoU=0.5:0.95 [60].

Let us note that in the case of multi-class classification, we would need to
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compute the AP for object each class separately. To receive a single performance

measure for object detection, the mean AP (mAP) is computed which is the

most common performance measure for object detection quality.

In this thesis, both of our datasets only contain single class, and hence, we

used AP as our evaluation metric. We mainly showed the results of AP at

IoU=0.5:0.95 as our method performed increasingly better compared to other

models when we increased the IoU values for AP calculation. We show this

trend in section 4.2.3.4.

4.2.3 Results

4.2.3.1 Detection without Super-Resolution

We ran the two detectors to document the object detection performance on

both LR and HR images. We used SSD with vgg16 [65] network and Faster

R-CNN (FRCNN) with ResNet-50-FPN [44] detector. We trained the two

models with both HR and 4×-downscaled LR images. Testing was also done

with both HR and LR images.

In table 4.1, we show the results of the detection performance of the detectors

with different train/test combinations. When we only used LR images for both

training and testing, we observed 64% AP for Faster R-CNN. When training

on HR images and testing with LR images, the AP dropped for both detectors.

We also added detection results (using LR images for training/testing) for both

the datasets using SSD with RFB modules (SSD-RFB) [48], where AP slightly

increased from the base SSD.

The last two rows in table 4.1 depict the AP of both detectors when training

and testing on HR images. We have achieved up to 98% AP with the Faster

R-CNN detector. This, shows the large impact of the resolution to the object
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detection quality and sets a natural upper bound on how close a SR-based

method can get when working on LR images. Mundhenk et al. [52] reported

similar types of detection results using the COWC dataset. In the next sections,

we demonstrate that our approaches considerably improve the detection rate on

LR imagery and get astonishingly close to the performance of directly working

on HR imagery.

Table 4.1: Detection on LR (low-resolution) and HR (high-resolution) images
without using super-resolution. Detectors are trained with both LR and HR
images and AP (average precision) values are calculated using 10 different IoUs
(intersection over union).

Model

Training
image

resolution -
Test image
resolution

COWC
Dataset

(Test Results)
(AP at

IoU=0.5:0.95)
(single class -

15cm)

OGST
Dataset

(Test Results)
(AP at

IoU=0.5:0.95)
(single class -

30cm)

SSD
LR - LR 61.9% 76.5%

HR - LR 58% 75.3%

FRCNN
LR - LR 64% 77.3%

HR - LR 59.7% 75%

SSD-RFB LR - LR 63.1% 76.7%

SSD HR - HR 94.1% 82.5%

FRCNN HR - HR 98% 84.9%

4.2.3.2 Separate Training with Super-Resolution

In this experiment, we created 4× upsampled images from the LR input

images using bicubic upsampling and different SR methods. Let us note that

no training was needed for applying bicubic upsampling since it is a parameter

free function. We used the SR images as test data for two types of detectors.

We compared three GAN architectures for generating SR images, our new
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EESRGAN architecture, ESRGAN [73] and EEGAN [27]. Each network was

trained separately on the training set before the object detector was trained.

For the evaluation, we again compared detectors being trained on the SR

images from the particular architecture and detectors being directly trained on

the HR images.

Table 4.2: Detection on SR (super-resolution) images with separately trained
SR network. Detectors are trained with both SR and HR (high-resolution)
images and AP (average precision) values are calculated using 10 different IoUs
(intersection over union).

Model

Training
image

resolution -
Test image
resolution

COWC
Dataset

(Test Results)
(AP at

IoU=0.5:0.95)
(single class -

15cm)

OGST
Dataset

(Test Results)
(AP at

IoU=0.5:0.95)
(single class -

30cm)

Bicubic + SSD
SR - SR 72.1% 77.6%

HR - SR 58.3% 76%

Bicubic +
FRCNN

SR - SR 76.8% 78.5%

HR - SR 61.5% 77.1%

EESRGAN +
SSD

SR - SR 86% 80.2%

HR - SR 83.1% 79.4%

EESRGAN +
FRCNN

SR - SR 93.6% 81.4%

HR - SR 92.9% 80.6%

ESRGAN +
SSD

SR - SR 85.8% 80.2%

HR - SR 82.5% 78.9%

ESRGAN +
FRCNN

SR - SR 92.5% 81.1%

HR - SR 91.8% 79.3%

EEGAN + SSD
SR - SR 86.1% 79.1%

HR - SR 83.3% 77.5%

EEGAN +
FRCNN

SR - SR 92% 79.9%

HR - SR 91.1% 77.9%
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In table 4.2, the detection outputs of the different combinations of SR

methods and detectors are shown with the different combinations of train/test

pairs. As can be seen, our new EESRGAN architecture displayed the best

results already getting close to the detection rates which could be observed

when working with HR images only. However, after training EESRGAN can be

directly applied to LR imagery where no HR data is available and still achieved

very good results. Furthermore, we could observe that other SR methods

EEGAN and ESRGAN have already improved the AP considerably when used

for preprocessing of LR images. However, for both data sets, EESRGAN have

outperformed the other two methods.

4.2.3.3 End-to-End Training with Super-Resolution

We trained our EESRGAN network and detectors end-to-end for this

experiment. The discriminator (DRa), and the detectors jointly acted as a

discriminator for the entire architecture. Detector loss was backpropagated to

the SR network, and therefore, the loss contributed to the enhancement of LR

images.

At training time, LR-HR image pairs were used to train the EEGAN part,

and then the generated SR images were sent to the detector for training. At

test time, only the LR images were fed to the network. Our architecture first

generated a SR image of the LR input before object detection was performed.

We also compared our results with different architectures. We used ES-

RGAN [73] and EEGAN [27] with the detectors for comparison. Table 4.3

clearly shows that our method delivers superior results compared to others.
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Table 4.3: Detection with end-to-end SR (super-resolution) network. Detectors
are trained with SR images and AP (average precision) values are calculated
using 10 different IoUs (intersection over union).

Model

Training
image

resolution -
Test image
resolution

COWC
Dataset

(Test Results)
(AP at

IoU=0.5:0.95)
(single class -

15cm)

OGST
Dataset

(Test Results)
(AP at

IoU=0.5:0.95)
(single class -

30cm)

EESRGAN +
SSD

SR - SR 89.3% 81.8%

EESRGAN +
FRCNN

SR - SR 95.5% 83.2%

ESRGAN +
SSD

SR - SR 88.5% 81.1%

ESRGAN +
FRCNN

SR - SR 93.6% 82%

EEGAN + SSD SR - SR 88.1% 80.8%

EEGAN +
FRCNN

SR - SR 93.1% 81.3%

4.2.3.4 AP versus IoU curve

We have calculated the AP values on different IoUs. In figure 4.7, we plot

the AP versus IoU curves for our datasets. The performance of EESRGAN-

FRCNN, end-to-end EESRGAN-FRCNN, and FRCNN is shown in the figure.

The end-to-end EESRGAN-FRCNN network has performed better than the

separately trained network. The difference is most evident for the higher IoUs

on the COWC dataset. Our results indicate excellent performance compared

to the highest possible AP values obtained from standalone FRCNN (trained

and tested on HR images)
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Figure 4.7: AP-IoU (average precision-intersection over union) curves
for the datasets. Plotted results show the detection performance of
standalone faster R-CNN on HR (high-resolution) images and our
proposed method (with and without end-to-end training) on SR (super-
resolution) images.

The OGST dataset has displayed less performance variation compared to

the COWC dataset. The object size of the OGST dataset is larger than that

of the COWC dataset. Therefore, the performance difference was not similar

to the COWC dataset when we compared between standalone FRCNN and

our method on the OGST dataset. To conclude, training our new architecture

in an end-to-end manner has displayed an improvement for both the datasets.

4.2.3.5 Precision versus Recall

In figure 4.8, precision-recall curves are shown for both of our datasets.

The precision-recall curve for COWC dataset is depicted in 4.8a and 4.8b

represents the curve for OGST dataset. For each dataset, we plot the curves

for standalone faster R-CNN with LR training/testing images, and our method

with/without end-to-end training. We used IoU=0.5 to calculate precision and

recall.
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Figure 4.8: Precision-recall curve for the datasets. Plotted results
show the detection performance of standalone faster R-CNN on LR
(low-resolution) images and our proposed method (with and without
end-to-end training) on SR (super-resolution) images.

The precision-recall curves for both datasets show that our method has

higher precision values in higher recall values compared to the standalone faster

R-CNN models. Our models with end-to-end training performed better than

our models without the end-to-end training. In particular, the end-to-end

models have detected more than 99% of the cars with 96% AP in the COWC

dataset. For the OGST dataset, our end-to-end models have detected more

than 81% of the cars with 97% AP.

4.2.3.6 Effects of Dataset Size

We trained our architecture with different training set sizes and tested

with a fixed test set. In figure 4.9, we plot the AP values (IoU=0.5:0.95)

against different numbers of labeled objects for both of our datasets (training

data). We used five different dataset sizes: {500, 1000, 3000, 6000, 10000(cars)}

and {100, 200, 400, 750, 1491(tanks)} to train our model with and without the
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end-to-end setting.

We got the highest AP value of 95.5% with our full COWC training dataset

(10000 cars), and we used the same test dataset (1000 cars) for all combinations

of the training dataset (with end-to-end setting). We also used another set of

1000 labeled cars for validation. Using 6000 cars, we got an AP value near to

the highest AP, as shown with the plot of AP versus dataset size (COWC).

The AP value decreased significantly when we used only 3000 labeled cars as

training data. We got the lowest AP using only 500 labeled cars, and the trend

of AP was further decreasing as depicted in figure 4.9a. Therefore, we can

infer that we needed around 6000 labeled cars to get precision higher than 90%

for the COWC dataset. We observed slightly lower AP values for all sizes of

COWC datasets when we did not use the end-to-end setting, and we observed

higher differences between the two settings (with and without end-to-end) when

we used less than 6000 labeled cars.

The OGST dataset gave 83.2% AP (with end-to-end setting) using the full

training dataset (1491 tanks), and we used 100 labeled tanks as test and same

amount as validation data for all combinations of the training dataset. We

got high AP values with 50% of our full training dataset as depicted in 4.9b.

AP values dropped below 80% when we further decreased the training data.

Similar to the COWC datasets, we also got comparatively lower AP values for

all sizes of OGST datasets. We observed slightly higher differences between

the two settings (with and without end-to-end) when the dataset consisted of

less than 400 labeled tanks, as shown in the plot of AP versus dataset size

(OGST dataset).

We used 90% of the OGST dataset for training while we used the 80% of

the COWC dataset for the same purpose. The AP of the testing data (OGST)

slightly increased when we added more training data, as depicted in figure 4.9b.
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Therefore, we used a larger percentage of training data for the OGST dataset

than for the COWC dataset, and it slightly helped to improve the relatively

low AP of the OGST test data.
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(a) COWC dataset
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Figure 4.9: AP (average precision) with varying number of training
sets from the datasets. Plotted results show the detection performance
of our proposed method (with and without end-to-end training) on SR
(super-resolution) images.

4.2.3.7 Enhancement and Detection

In figure 4.10, we have shown our input LR images, corresponding gener-

ated SR image, enhanced edge information and final detection. The image

enhancement has helped the detectors to get high AP values and also makes

the images visually good enough to identify the objects easily. It is evident

from the figure that the visual quality of the generated SR images is quite

good compared to the corresponding LR images, and the FRCNN detector has

detected most of the objects correctly.
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(a) Input LR
image

(b) Generated
SR image

(c) Enhanced
edge

(d) Detection

Figure 4.10: Examples of SR (super-resolution) images that are gener-
ated from input LR (low-resolution) images are shown in (a) and (b).
The enhanced edges and detection results are shown in (c) and (d).

4.2.3.8 Effects of Edge Consistency Loss (Ledge cst)

In EEGAN [27], only image consistency loss (Limg cst) was used for enhancing

the edge information. This loss generated edge information with noise, and

as a result, the final SR images became blurry. The blurry output with noisy

edge using only Limg cst loss is shown in figure 4.11a. The blurry final images

gave lower detection accuracy compared to sharp outputs.

Therefore, we have introduced edge consistency loss (Ledge cst) in addition
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to Limg cst loss that gives noise-free enhanced edge information similar to the

edge extracted from ground truth images and the effects of the Ledge cst loss

is shown in figure 4.11b. The ground truth HR image with extracted edge is

depicted in figure 4.11c.

(a) Final SR
image and
enhanced edge
with Limg cst

loss

(b) Final SR
image and
enhanced edge
with Limg cst

and Ledge cst

losses

(c) Ground
truth HR image
with extracted
edge

Figure 4.11: Effects of edge consistency loss (Ledge cst) on final SR (super-
resolution) images and enhanced edges compared to the extracted edges
from HR (high-resolution) images.

4.3 Discussion

The detection results of our method presented in the previous section have

indicated that our end-to-end SR-detector network improved detection accuracy

compared to several other methods. Our method outperformed the standalone

state-of-the-art methods such as SSD or faster R-CNN when implemented

in low-resolution remote sensing imagery. We used EESRGAN, EEGAN,
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and ESRGAN as the SR network with the detectors. We showed that our

EESRGAN with the detectors performed better than the other methods and

the edge-enhancement helped to improve the detection accuracy. The AP

improvement was higher in high IoUs and not so much in the lower IoUs. We

have also showed that the precision increased with higher resolution. The

improvement of AP values for the OGST dataset was lower than that for the

COWC dataset because the area covered by a tank was slightly bigger than

that of a car, and tanks sizes and colors were less diverse than the cars.

Our experimental results indicated that AP values of the output could

be improved slightly with the increase of training data. The results also

demonstrated that we could use less training data for both the datasets to get

a similar level of accuracy that we obtained from our total training data.

The faster R-CNN detector gave us the best result, but it took a longer

time than an SSD detector. If we need detection results from a vast area, then

SSD would be the right choice sacrificing some amount of accuracy.

We had large numbers of cars from different regions in the COWC dataset,

and we obtained high AP values using different IoUs. On the other hand, the

OGST dataset needed more data to get a general detection result because we

used data from a specific area and for a specific season and this was one of the

limitations of our experiment. Most likely, more data from different regions

and seasons would make our method more robust for the use-case of oil and

gas storage tank detection. Another limitation of our experiment was that

we showed the performance of the datasets that contain only one class with

less variation. We would be looking forward to exploring the performance of

our method on a broader range of object types and landscapes from different

satellite datasets.

We have used LR-HR image pairs to train our architecture, and the LR
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images were generated artificially from the HR counterparts. To our knowledge,

there is no suitable public satellite dataset that contains both real HR and real

LR image pairs and ground truth bounding boxes for detecting small objects.

Therefore, we have created the LR images which do not precisely correspond

to true LR images. However, improvement of resolution through deep learning

always improved object detection performance on remote sensing images (for

both artificial and real low-resolution images), as discussed in the introduction

and related works section of this thesis [64]. Impressive works [7], [84] exist in

literature to create realistic LR images from HR images. For future work, we

are looking forward to exploring the works to create more accurate LR images

for training.
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Chapter 5

Conclusion and Future Work

In this thesis, we propose an end-to-end architecture that takes LR satellite

imagery as input and gives object detection results as outputs. We also create

a tool that makes it easy to label, train, and detect objects from remote

sensing images that cover a large area. Our proposed architecture contains a

SR network and a detector network. We have used a different combination

of SR systems and detectors to compare the AP values for detection using

two different datasets. Our experimental results show that the proposed SR

network with faster R-CNN has yielded the best results for small objects on

satellite imagery. However, we need to add more diverse training data in the

OGST dataset to make our model robust in detecting oil and gas storage tanks.

We also need to explore diverse datasets and the techniques to create more

realistic LR images.

Our proposed method solved some problems related to small-object detec-

tion. Large satellite imagery has another notable problem in the case of object

detection: many image regions without any object of interest. Therefore, we get

many image tiles generated from a large image without any object for detection.

Consequently, our model might generate false detections for those tiles, and
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total inference time increases. For future work, we are looking forward to

implementing a tiny model incorporated with our end-to-end architecture for

filtering out the undesired image tiles during inference time. We need both

types of tiles (with and without an object of interest) for the training process.

It might increase the precision and decrease the total inference time for large

satellite images.

In conclusion, our method has combined different strategies to provide a

better solution to the task of small-object detection on LR imagery.
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