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Abstract

Water utilities faced with making improvements to the operation of their plants due to
stringent water quality standards, rising costs, limited revenues, and public scrutiny on
the aesthetics and safety of water are considering automating their plants. This thesis is
concerned with developing practical automation systems using artificial neural network

models (ANN’s), advanced controls, and remote monitoring techniques.

The research developed ANN models for Edmonton’s Rossdale water plant softening
clarifier with an average accuracy of 1% of actual performance. Practical ANN
applications developed included: softening cost estimation, inferential sensors, and real-

time advanced control of clarifiers.

For successful remote operation of smaller simpler plants, it was determined that reliable
on-line analyzers, remote communication, and SCADA systems are required. When
implementing remote operations for E.L. Smith (a larger more complex plant) both
automation as well as people issues required addressing. Finally, a pilot study evaluation

of five chlorine analyzers is also presented.
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1.0 INTRODUCTION

1.1 Thesis Organization

This thesis describes the development and use of automation techniques including
advanced process control and remote monitoring systems for improving the operation of

drinking water treatment plants. It is organized into six sections.

In the introduction section, a brief discussion on the topic is presented and the specific
objectives of the study are identified. In the second section, the development of full-scale
artificial neural network (ANN) based models for a lime softening process is presented.
The third section begins with a description of advanced model-based control (MBC)
techniques and methods for integrating ANN with real-time control systems. The section
concludes with an illustration of how the softening models developed earlier were

integrated using an MBC scheme with a plant real-time control system.

The fourth section discusses some of the challenges facing small isolated water systems
and how the use of on-line instrumentation and remote monitoring equipment can help
small systems improve their water quality. The fifth section describes the methodology
that was used to convert a large water treatment facility from a 24-hour on-site operation
to unattended operation for periods of time. In the final section, conclusions and

recommendations from this work are presented.

1.2 Background

Virtually all water utilities are faced with making improvements to the operation of their
plants due to increasingly more stringent water quality regulations, rising costs of
operation, limited revenues, and public scrutiny on aesthetics and safety of their water.
As aresult, utilities are beginning to look at automation as a means to manage their plants
more efficiently, reliably, and to produce better quality water. Automation entails

eliminating intermediate components or steps in a process, especially those involving

1



human intervention or decision-making, and replacing them with technologically more

advanced ones of which there are three general categories (Schlenger et al, 1996):

Supervisory Control: Operator directed control using information from laboratory
analysis and plant instrumentation. Based on skill level and established procedures, the
operator makes operating decisions and manually adjusts control devices to regulate
treatment process. It can be implemented with hard-wired instrumentation or with

computerized monitoring equipment.

Automatic Control: With appropriate instrumentation and control equipment provided,
adjustments are made automatically based on relatively simple operating rules. Typical
automatic controls include chemical feed flow pacing, pump start-stop, pressure control,
and level control. Operators monitor the process and take action when necessary.
Automatic control can be implemented with hard-wired relay logic and panel mounted

instruments, or as is more typical in newer systems, with computer control equipment.

Advanced Control: Implies the use of complex and sophisticated optimizers and
algorithms, process models, or artificial intelligence methods in making operating
decisions. Operators monitor the overall process and take action when required.

Advanced control is always implemented with a computerized process control system.

Furthermore, the level of operator staffing can also be generalized in three categories

(Schlenger et al, 1996):

Level 3: Fully attended. Water facility is staffed by at least one operator 24 hours per
day.

Level 1-2: Partially attended. For at least one shift each day, water is produced without
any operators on duty at the facility.

Level 0: Unattended for substantial periods of time. Routine operation of the facility

without any operators on duty although utility personnel may make regular visits.



As the degree of control required to reliably operate a plant increases, the level of
automation and/or staffing required increases as well. With increased pressures to reduce
costs of operation, operator staffing levels are becoming more difficult to increase and
may in fact be declining. When coupled with a lack of automation, operating plants
reliably becomes even more difficult. Automation can help by improving productivity
and to minimize staffing increases. However, for many small water plants (particularly
those that are remotely located and isolated), not only is the level of staffing level low
(unattended), but so is the level of automation in the plants. As a result, small water
plants tend to experience a higher incidence of water quality problems. A study of
drinking water quality in Northern Canada (Armstrong et al, 1996) found that small
systems in the study region had higher treated water turbidity than larger systems and
also had the highest percent of coliform positive samples. It was reported (USEPA,
2001) that 86% of systems in violation of the MCL (Maximum Contaminant Level — the
highest level of a contaminant allowed in drinking water set and enforced by the USEPA)
are also the ones that serve less than 3,300 people (i.e. small systems). By increasing the
level of automation through the use of on-line monitoring equipment and controls, and by
providing 24 hour a day monitoring from a central control center, it is thought that

improvements to water quality on a consistent basis can be achieved (Shariff et al, 2001).

When a plant’s automation level falls in the category of “automatic control”, traditional
control methods are generally utilized for controlling water and chemical feed flow rates,
level, pH, chlorine residuals, pressures, pumping, valve sequencing on filters, and so on.
Many plants also have unit processes such as alum clarification to control turbidity and
colour (organics), lime softening to reduce hardness, and filtration to remove a large
portion of the remaining turbidity. In automating these treatment process units
effectively, traditional control methods are generally inadequate due to the characteristics
that are inherently present in these processes such as non-linear dynamics, multiple
interacting control variables, and large dead (delay) times. Mechanistic models for these
processes are also either not available or are less than adequate in describing them.

Compounding this is that even if the individual process units could be optimized, it does



not always guarantee best overall performance in terms of finished water quality and

costs of production.

The use of only conventional controls can therefore be a limiting factor towards realizing
higher levels of water quality and efficiency at more sophisticated water plants. This is
especially true of plants that are subjected to a wide range in raw water quality and
especially if the changes in quality occur rapidly. In other process industries it has been
recognized that advanced process control techniques that incorporate models of processes
represent the most effective technology available today to meet the challenge of reducing

variable costs while maintaining product quality (Willis and Tham, 1994).

Advanced process control schemes are designed to better handle non-linear process
dynamics and time-delays. They can be made adaptive or self-correcting and many
incorporate models to predict set-points. These are known as model-based control
(MBC) schemes. Since accurate models are the cornerstone of every MBC scheme,
modeling of water treatment processes becomes a requirement when implementing

advanced controls.

A promising technique for developing robust models for water treatment processes is
artificial neural networks (ANN). It is gaining popularity and several models have been
developed for water treatment processes (Baxter et al, 2001). When coupled with real-
time systems, the ANN modeling technique is expected to play an important part in water
treatment plant operation, process optimization, plant-wide control and decision making

systems.

1.3 Objectives

The overall objective of this thesis is to develop some appropriate automation techniques
suitable for drinking water treatment plants to help utilities improve the quality and
consistency of water and costs. The techniques developed address a full spectrum of

plants from small 1solated production facilities that require only basic treatment to larger

4



more sophisticated plants that must deal with difficult treatment challenges and

increasing costs of production. To this end, the thesis is focused on two major areas of

automation: advanced control techniques and remote monitoring techniques.

The specific objectives of this work are:

1.

To model the full-scale lime softening process at EPCOR’s Rossdale Water
Treatment Plant in Edmonton, Alberta, Canada, using the artificial neural network
(ANN) modeling technology. To develop and illustrate the use of inferential

SENSors.

To develop computer process control methods for integrating ANN models into a
SCADA (Supervisory Control and Data Acquisition) system. To test in real-time
the softening models developed earlier using a model-based feed-forward control

scheme.

To develop reliable and cost effective automation and remote monitoring methods
for small remotely located and isolated water systems. To conduct a pilot study
evaluation of on-line chlorine analyzers to identify ones that would be most
suitable for these plants. To illustrate that with advances in on-line monitoring
equipment, SCADA systems, and communication systems, it is possible to
monitor and even operate small water systems remotely and that this can have a

significant impact in improving drinking water quality in small communities.

To implement unattended operation of a large conventional water treatment
facility, namely EPCOR’s E.L. Smith Water Treatment Plant in Edmonton,
Alberta, Canada.  To identify all issues (personnel, process, security,
communication, controls, redundancy, etc.) and determine solutions to mitigate

the issues within a fixed budget and time frame.
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2.0 LIME SOFTENING CLARIFIER MODELING WITH ARTIFICIAL NEURAL

NETWORKS

2.1 Introduction

Water softening involves the removal of multivalent dissolved metallic cations in water
also known as hardness. It is practiced in some drinking water treatment plants where the
level of hardness in the water is considered high. The term “hardness” is also used to
characterize water that does not lather well, causes a scum in bath tubs, and leaves hard,
white, crusty deposits (scale) on coffee pots, tea kettles, and hot water heaters (Davis and
Comwell, 1998). Higher levels of hardness require higher amounts of soap to produce

lather.

The pre-dominant cations present in water are calcium and magnesium and where this 1s
the case, the total hardness of water is simply the sum of the calcium and magnesium ions
expressed in mg/L as CaCOs equivalent. Waters are commonly classified in terms of the
degree of hardness — the higher the number, the more hard the water. Table 2-1
illustrates this further. '

TABLE 2-1  Degree of hardness of water (after Sawyer et al, 1994)

Hardness
mg/L as CaCO; Degree of hardness
0to75 S Oft
75 to 150 Moderately hard
150 to 300 Hard
300 up Very hard

The degree of hardness of water depends greatly on where the water originates. In
general, hard waters originate in areas where the topsoil is thick and there is a presence of
limestone formations whereas soft waters originate where the topsoil is thin and there is

an absence of limestone formations (Sawyer et al, 1994).



Aside from the obvious aesthetic value of softening for the general public, industries are
particularly concerned about the scale-forming potential of water in equipment such as
boilers, heaters and pipes. Scale formation in such equipment reduces heat transfer rates
and clogs pipes leading to lower efficiencies and increased energy costs. The hardness
ions can also contribute colour or influence the taste of products made from the water and

so industries often treat water beyond the standards of municipal water supplies (Droste,

1997).

The reduction of hardness is commonly done with a chemical precipitation process such
as the lime-soda ash process or through an ion exchange process (Benefield et al, 1982).
The chemical precipitation process using lime-soda ash requires large investments in
equipment and on-going operating costs. The investments can include equipment to
receive, prepare and inject the lime and soda ash chemicals, mixing of the chemicals,
flocculation, sedimentation, filtration, pH adjustment, recycling of solids, removal of
solids from the sedimentation basins, concentration of the solids in a thickener and/or
centrifuge and the final disposal of the sludge. Water treatment plant softening clarifiers
are typically operated in manual mode with corrections made when problems occur or if
the parameters such as hardness, pH, or turbidity are outside the operating range (which
are usually set quite wide). It is thought that optimization as well as consistent operation
of the softening process would improve the overall quality of the water, narrow the
operating range of the parameters and lead to better control of the costs of operation. To

achieve these goals, modeling of the softening process becomes necessary.

This chapter examines the application of the artificial neural network (ANN) modeling
technique to model a softening process at a full-scale drinking water treatment facility.
The modeling was done for the Rossdale Water Treatment Plant (WTP) operated by
EPCOR Water Services Inc. in Edmonton, Alberta, Canada.



2.1.1 Modeling of Processes

Modeling of water treatment plant processes can serve many purposes. In general,
modeling of processes becomes necessary for plants aiming to automate operations while
also optimizing water quality and costs. For a plant operator, a working model of the
process facilitates investigation of system response to a wide range of inputs without
jeopardizing actual system performance. For the controls engineer, an accurate depiction
of a process in real time, i.e., a dynamic model, is a necessity if the process is to be
placed on automatic control. For the design engineer, a model permits the development
of near optimal designs at minimal cost. For a researcher, models form a framework
upon which to build and test hypotheses. For plant management staff, models provide the
ability to test “what if” scenarios be they quality based (brought about by new
regulations), cost based (due to budget constraints), production based, or planning based

(both short and long term).

Forms of models range from the highly mechanistic type which are most useful for
understanding the system, to the highly empirical which are most useful to an operator
because they reflect the “real world” (Patry and Chapman, 1989). Empirical models are
based on an inductive or data-based approach while mechanistic models are based on a
deductive or theoretical approach involving theoretical relationships or organizing
principles (Chapra, 1997). Purely empirical models are highly system and/or site specific
and are therefore not easily adaptable to new situations. Accurate mechanistic types of

models are therefore more desirable but they can be difficult to develop.

According to Chapra (1997), for both empirical and mechanistic models, the cost of
modeling can become quite expensive and there also exists trade-off between model
complexity, uncertainty, and information as depicted in Figure 2-1. In this figure, the
straight line indicates (assumes) that with an unlimited budget available, a more complex
model will be more reliable. Since an unlimited budget is not generally available, one
must make do with limited data. This can produce two extreme outcomes: one occurs

when a model is so simple that it cannot produce reliable results and the other is when a
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model is so detailed that it outpaces available data. In both cases, the models are
unreliable. There does exist an intermediate point (shown as the middle trend in Figure
2-1) where the model is consistent with the available level of information. Therefore, one
needs to strive to develop the simplest model that is consistent with the data and the

problem requirements.
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FIGURE 2-1 Trade-off between model reliability and complexity (after Chapra, 1997)

For the water softening process in Edmonton, the use of both simpler models developed
in-house as well as available detailed software models (but limited in what site-specific
inputs it will accept) have led to inaccurate predictions to date. The use of the ANN
technique has not been applied to the softening process thus far and due to its ability to
easily accept more information that is site-specific to the plant, it was hoped that it will

provide predictions that are reliable and consistent with the data available.
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Regarding the inductive approach to modeling, it has been shown by Zhang (1996) that
an inductive learning process (learning from examples of its inputs and outputs such as
the ANN modeling approach) is possible if sufficient learning samples (data) are
provided. What remains then is to balance the need for sufficient data for the ANN with

the requirements of the problem to achieve a certain level of reliability.

2.1.2 Project History and Scope

In the spring of 1997, EPCOR Water Services Inc. (then known as Aqualta) Edmonton,
Alberta, Canada was contemplating increasing the target value of total hardness from an
approximate average of 115 mg/L to 135 mg/L (as CaCOs) or even higher in the drinking
water supply to its customers. EPCOR Water Services Inc. (EWSI) wanted to have an
idea of what the impact of this move might be in terms of the usage of lime, carbon
dioxide, and sludge production. To this end, a quick estimate was made with yearly

average data using the USEPA Water Treatment Plant Model software (USEPA, 1993).

Subsequent to the implementation of an increased effluent total hardness target at the
water treatment plants, it was observed that the estimate from the USEPA model was
substantially inaccurate. A more detailed estimate using the same USEPA model was
undertaken using daily plant data and it was found that this model did not accurately

reflect what was observed at the plant. Therefore, a better model was needed.

Around the same time, the Department of Civil and Environmental Engineering at the
University of Alberta had produced several models for EWSI using the ANN modelling
technique. One of the models was for the Rossdale WTP alum clarifier to predict effluent
turbidity. The ANN technique appeared well suited for water treatment processes and so
it was felt that it could be applied to model the softening clarifier at Rossdale as well. It
was hoped that the ANN model would predict results more accurately than the USEPA

model and could also be used in the day-to-day operation of the plant.
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The specific objectives of this project were:

e To develop a model (using the ANN technique) for the softening process at the
Rossdale WTP using historical daily average data for estimating, given a set of
input conditions, the effluent total hardness and the lime dose requirements.

e To compare the performance of the ANN model with the USEPA model.

e To produce run time versions of the model for conducting scenario testing, and

for monitoring in real time within the plant Supervisory Control and Data

Acquisition (SCADA) system.

2.2 Overview of the Rossdale Water Treatment Plant

EPCOR owns and operates two water treatment plants in Edmonton, Alberta, Canada,
which serve approximately 800,000 people in the area. The two plants, namely the
Rossdale WTP and the E.L. Smith WTP, draw water from the North Saskatchewan River,
a major tributary in the Saskatchewan-Nelson river system. Both plants utilize
conventional water treatment processes and up until the spring of year 2000, included
alum clarification, lime clarification, pH adjustment, chlorine disinfection, filtration,

fluoridation, on-site storage and pumping.

2.2.1 Raw Water Quality and Chemical Dosage Ranges

The annual range of raw water quality parameters and chemical dosing required to treat
the water at the Rossdale WTP is quite variable as shown in Table 2-2. Consequently, at
certain times of the year, very quick responses by operators to changing conditions are
required to maintain the stringent in-house water quality guidelines (see Table A-1 in

Appendix A).
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TABLE 2-2  Raw water quality and chemical dosages at the Rossdale WTP (prior to

spring 2000)

Raw Yvater quality parameters; Unit Low High Average
chemical dosages

Turbidity NTU 1 > 3500 40
Colour TCU 2 100 12
Alkalinity (as CaCOs) mg/L 96 155 130
Total Hardness (as CaCOs3) mg/L 9% 197 161
Temperature deg C 0 25 9
pH 7.8 8.6 8.2
Alum dose mg/L 9 280 43
Polymer (Allied Colloids LT27) dose mg/L 0.16 0.53 0.31
Powdered activated carbon dose* mg/L 5 195 15
Lime (CaO) dose mg/L 22 92 46
Chlorine dose mg/L 2.2 4.5 2.8
Fluoride dose mg/L 0.6 0.9 0.75
CO, mg/L 0 12 2.5
Agua ammonia mg/L 0.60 0.90 0.75

*Used during taste and odour events only

The highly variable raw water quality has been categorized by the plant operations staff
into six distinct raw water types as shown in Table 2-3. For each type of water, the plant
production capacity is different due to differences in treatment challenges. The most
difficult treatment occurs during the spring run-off (Type 2) condition due to a higher
level of organics and taste and odour compounds present in the raw water. The most

common type of raw water quality is summer normal (Type 5) accounting for 43% of the

total.
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TABLE 2-3  Typical raw water conditions and production rates for the Rossdale WTP’s
(prior to 2000)

Raw Plant1 | Plant 2 | Turbidity ;| Colour | Alkalinity Total Temp | pH Yo
Water hardness of
Type ML/d ML/d NTU TCU mg/L mg/L deg C time
1
winter 70 105 <25 >0 130 160 <5 8.1 37
2
spring 50 75 <25 > 35 110 130 <5 8.0 3
run-off
3
spring 75 115 >25 >0 120 150 <35 8.1 5
break-up
4
summer 70 105 50 - 200 >0 130 150 >5 8.2 4
rains
5
surmmer 105 155 <50 >0 110 150 >5 8§31 43
normal
6
summer 70 105 > 200 >0 120 150 >5 8.2 8
flood

2.2.2 Treatment Process Units

At the Rossdale WTP, two similar trains exist each with an alum clarification stage
followed by a softening clarification stage, recarbonation, disinfection, and filtration.
The two trains, known as Plant 1 and Plant 2, have a maximum production capacity of
120 ML/d and 170 ML/d, respectively. Each train comprises two square cross-flow
clarifiers with three tapered flocculation stages and a sedimentation stage with tube
settlers. Recarbonation and disinfection is carried out in stilling basins and then the water
from both trains is combined prior to filtration. The on-site storage capacity for treated

water is 100 ML. A process schematic for the Rossdale WTP is shown in Figure 2-2.
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FIGURE 2-2 Process schematic for the Rossdale Water Treatment plants (pre 2000)

Water treatment at the Rossdale WTP up until early 2000, was conducted in the

following six major process units:

e Low Lift Pumphouse
e Alum Clarifier

e Lime Clarifier

e Stilling Basin

e Filtration

e On-site reservoir and pumping station

A brief description of each major unit process is provided in the following sections.
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2.2.2.1 Low Lift Pumphouse

Raw water is drawn from the North Saskatchewan River into inlet wells located in the
Low Lift Pumphouse building. The raw water passes through a set of traveling water
screens to remove larger branches, twigs, and fish prior to it entering into pumping wells.

The raw water is pumped from the pump wells into the plants’ alum clarifiers.

2.2.2.2 Alam Clarifier

The first stage treatment occurs in a set of cross-flow square alum clarifiers. Prior to the
water entering the clarifier, liquid alum is injected into the water at a rapid mixer unit to
destabilize and coagulate the colloidal particles in the water. During taste and odour
events, powdered activated carbon is also added to the raw water at the rapid mixer. An
antonic polymer (Allied Colloids 1.T27) is added just before the coagulated water enters
the three tapered flocculation stages where gentler mixing of the water occurs to promote
floc formation. The water then flows to the sedimentation portion of the clarifier where
tube settlers assist with particle settling. A slow-moving rake at the bottom of the
clarifier moves the settled particles towards the center of the clarifier where they are
removed with pumps on an intermittent basis depending on the solids loading. The alum
dosage is varied based on the incoming raw water quality parameters such as turbidity
and colour and as well on the performance of the clarifier effluent and overall plant
performance after filtration. The dosage of alum required is estimated by the operators

based on jar tests and operator experience.
The total volume of the clarifier including the flocculation and sedimentation sections

and theoretical residence times are given in Table 2-4. Both the alum and lime clarifier

volumes in each plant are approximately the same size.
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TABLE 2-4  Clarifier volumes and residence times for the Rossdale WTP’s.

Plant 1 Plant 2
(alum or lime clarifier) | (alum or lime clarifier)
Volume (ML) 6.8 11.2
Residence time at 50 ML/d (min) 196 -
Residence time at 100 ML/d (min) 98 161
Residence time at 170 ML/d (min) - 95

2.2.2.3 Lime Clarifier

Once the water has been treated in the alum clarifier, the effluent is diverted to the lime
clarifier where another rapid mixer is located just prior to the flocculation section. At the
rapid mixer, lime, anionic polymer (Allied Colloids L.T27), and lime solids recycled from
the bottom of the lime sedimentation section are injected. The flocculation and
sedimentation sections are very similar to the alum clarifier described in section 2.2.2.2
including the volumes and residence times as given in Table 2-4. Settled solids not
recycled are pumped on an intermittent basis to a thickener followed by centrifugation

and final disposal.

2.2.2.4 Stilling Basin

The effluent from the softening clarifiers enters two stilling basins of equal volumes (6.1
ML). A number of chemicals are added at the inlet of the basins with very short delays in
between including (in order): Fluoride (as H,SiFs), CO, for pH adjustment, chlorine and
ammonia (NH4OH) for disinfection. The stilling basins provide additional settling time
for particles, disinfection contact time, improved water stabilization following pH

adjustment, and as well help buffer any upsets occurring in the softening clarifiers.

2.2.2.5 Filtration

The effluent from each stilling basin enters a common filter influent flume where the
water from each plant is allowed to mix prior to filtration. A total of nine mono-media

(crushed-quartz) rapid sand filters are available. Air scouring and backwashing of the
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filters is carried out if the effluent turbidity, particle counts, or on-line time exceeds a pre-

set value.

2.2.2.6 On-site Reservoir and Pumping Station

Filter effluent water is stored in two on-site underground 50 ML reservoirs prior to being
pumped out by the High Lift pumps into the distribution system where additional storage
and pumping stations divert the water where needed in the city. The on-site reservoirs
provide additional disinfection contact time and about half a days worth of treated water

production buffer volume.

2.2.3 Softening Clarifier Process Control

At the Rossdale water treatment plant, partial softening is carried out through chemical
precipitation in the second clarifier of each plant. At the rapid mixer influent to the

clarifier flocculation section, the following is injected:

e Lime slurry prepared on-site by converting quicklime powder (CaO) to slaked lime
(Ca(OH)y).

e An anionic polymer prepared on-site by batching the powdered form of the polymer
(Allied Colloids LT27) to liquid.

e A portion of the settled lime solids from the bottom of the sedimentation basin

(recycling).

2.2.3.1 Process Variables

The process variables managed by the operators include the softening clarifier effluent
total hardness and turbidity. It is desirable to keep the effluent turbidity at a value less
than 3 NTU. Higher values are an indication of poor overall performance of the
softening clarifier. This can lead to increased usage of CO; in the stilling basin for pH

adjustment and as well, filter performance problems. The effluent total hardness average
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target has typically been set to 115 mg/L in the past years although, in mid-1997, the
target was raised to about 135 mg/L. During challenging raw water conditions such as
spring runoff or break-up, the incoming raw water total hardness can be less than 100
mg/L and so the softening clarifier effluent hardness targets are not achieved during those

times.

2.2.3.2 Control Variables

The control variables that can be manipulated by the operators include:

e lime dose;

e polymer dose;

e recycle flow rate, waste flow rate, and density of solids;

e flocculator mixer speeds and tapering level between the three flocculator stages; and

e water flow rate through the clarifier.

The dosage of lime is mostly determined from operator experience and rules of thumb.
One rule is if the alum dose in the alum clarifier is increased by 2 mg/L then the lime
dose should be increased by 1 mg/L.. The dose is corrected as required based on the

measured effluent total hardness values.

The polymer dose is varied mostly on a trial-and-error basis based on solids settling and

effluent turbidity performance.

It has been observed by the plant operations staff that recycling of solids greatly improves
the efficiency of the softening reaction and the effluent turbidity of the cross-flow
clarifier. The solids recycle and waste rates are adjusted as required on a trial-and-error
basis to maintain a certain range of solids density (as measured by sludge volume index,

SVI, tests) and to improve the settling characteristics of the solids.
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The water flow rate through the clarifier is the same as the incoming raw water flow rate
to the plant. The water flow rate can be varied based on the capacity of the plant for a
given raw water type. Generally speaking, at higher flow rates the performance of the
clarifier can deteriorate. Although the raw water flow rates can be varied based on
clarifier performance, ultimately, the flow rates are dictated by the customer demand for

drinking water.

Once an acceptable level of performance is attained, the flocculator speeds are seldom
adjusted on a day-to-day basis. The speeds may be lowered or raised to balance
excessive settling in the floc chambers (due to low impeller speeds) with shearing of the

floc (due to high impeller speeds) which can lead to settling problems and floc carry over.

Overall, a visual inspection of the clarifier and solids quality along with hardness and pH
tests are used in making decisions about varying the control variables. It has also been
observed that the carry over of floc from the alum clarifier has an influence on the
softening clarifier. Some carry over can have beneficial results while excessive carry
over can be detrimental. However, control of carry over is not done in any systematic

manner.

2.3 Lime Softening

The primary goal of water softening is to reduce the dissolved minerals thereby reducing
scale-forming tendencies and consumption of household cleaning agents. There are

however other benefits (AWWA, 1998) including:

e removing radium 226 and 228;

e removing heavy metals;

e removing certain organic compounds and reducing total organic carbon (TOC);

e removing iron and manganese; and

e increasing the Langelier Saturation Index, useful for corrosion control in the
distribution system.
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The primary chemical used for water softening is lime (AWWA, 1998) which is also the
chemical used at the Rossdale WTP. Accurate determination of the required amount of
lime for a given situation in a plant environment can be difficult due to a number of
complex and dynamic chemical interactions that are involved in lime softening. For a
given removal of hardness in a water, the cost of lime and the associated costs for
residuals handling can be substantial and so optimization of the process can yield not

only improved costs of operation but also improved quality.
2.3.1 Classification of Hardness

Hardness can be classified in two ways: (1) with respect to the metallic ions such as Ca*",
Mg™" and (2) with respect to the anions associated with the metallic ions. Table 2-5

describes this further.

TABLE 2-5 Hardness definitions

Type of hardness Description

Hardness chemically tied with bicarbonate and carbonate

Carbonate hardness alkalinities (formerly known as temporary hardness).

Hardness that is in excess of carbonate hardness (formerly known

Non-carbonate hardness
as permanent hardness).

Calcium hardness The portion of the total hardness due to the calcium ion.
Magnesium hardness The portion of the total hardness due to the magnesium ion.
Total hardness Carbonate hardness + Non-carbonate hardness. Typically, total

hardness in water is the sum of the calcium and magnesium ions.

Alkalinity is a measure of the capacity to neutralize strong acid, and in natural waters, it
is mostly attributable to bases such as carbonate (CO3%), bicarbonate (HCOs'), and
hydroxyl (OH") (Snoeyink & Jenkins, 1980). Since alkalinity and hardness are both
expressed in terms of CaCQs, the following relationship between alkalinity and carbonate

hardness exists (Sawyer et al, 1994):
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If total alkalinity < total hardness then: Carbonate hardness = alkalinity

If total alkalinity > total hardness then: Carbonate hardness = total hardness

2.3.2 Chemistry of Softening

The carbonic acid system is important to the chemistry of softening and a graphical

representation of it is shown in Figure 2-3.
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FIGURE 2-3 Effect of pH on the species composition of a carbonic acid system (after
Benefield, 1982)

For most natural waters including Edmonton’s, the pH is around the neutral range and
assuming that the alkalinity in the water is mainly due to the carbonic acid system, the

dominant species, as seen in Figure 2-3, would be bicarbonate (HCO5") alkalinity. The
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goal of softening is to reduce hardness, of which carbonate hardness is the most
important for Edmonton’s water. The equilibrium equation for calcium carbonate

describes the major compound that is precipitated:

CaCO; ) = Ca®" g + COs* g (2.1)
Now, when lime (Ca(OH),) is added to water, it dissociates as follows:

Ca(OH), =N Ca®* + 20H (2.2)

The hydroxyl ion (OH") in Equation 2.2 elevates the pH of the water. Referring to Figure
2-3 again, this increase in pH will shift the equilibrium of the carbonic acid system so
that the dominant species (alkalinity) now becomes the carbonate ion (CO5%) instead of
bicarbonate (HCOj5"). Complete conversion of bicarbonate to carbonate occurs around a
pH of 12. The corresponding effect on Equation 2.1 with this increased level of
carbonate ion is governed by Le Chatelier’s principle and the equilibrium shifts to the
left. That is, more calcium carbonate (CaCOs) will precipitate and so a decrease in
soluble Ca®* must occur. The reduction of Ca®* ion is how the calcium hardness is

reduced in the softening stage.

The theoretical limit of calcium reduction using lime depends on the amount of carbonate
ions that can be generated to react in Equation 2.1. The amount of carbonate ions that
can be generated in turn depends on the amount of alkalinity (bicarbonate usually)
initially present in the water. Therefore, alkalinity plays a key role in softening reactions.
When lime is used for softening, it can only remove the carbonate portion of the total
hardness be it caused by the calcium or magnesium ions. To remove non-carbonate

hardness such as CaSQ,, carbonate ions from an external source such as soda ash

(Na,CO3) must be added.
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In terms of how much lime is required for softening, there is one more important reaction
that takes place before any softening can occur and that is the reaction of lime with the

dissolved CO, which is always present in water:

CO, +  CaOH), <« CaCOs¢,  + H,0 @2.3)

Equation 2.3 imparts an inijtial lime demand with no corresponding hardness reduction
and must be considered in lime dose calculations. Once this reaction is satisfied, the

following reaction summarizes the removal of calcium hardness with lime:

Ca(HCO;), +  CaOH), <  2CaCOsgl +  2H,0 (2.4)

Equation 2.4 shows that one equivalent of lime will remove one equivalent of carbonate

hardness.

In this discussion, removal of magnesium carbonate hardness was not covered. In order
to remove magnesium carbonate hardness with lime, the bicarbonate alkalinity in excess
of the amount associated with calcium carbonate hardness must first be neutralized before
the hydroxyl ion (OH") can be increased sufficiently for magnesium removal (Benefield
et al, 1982). This is represented by the higher-pH region in Figure 2-3. The overall
reaction for removal of magnesium carbonate hardness is as follows (Montgomery,

1985):
MgHCOs3); + 2Ca(OH), < Mg(OH)sl + 2CaCO0s) + 2H0  (2.5)
In normal operation at the Rossdale WTP, magnesium hardness removal is insignificant

due to the fact that generally the amount of hardness to be removed to meet plant effluent

criteria is less than the amount of calcium carbonate hardness present in the water.
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2.3.3 Lime Dose Calculations

Several methods are available that can be employed in the calculation of the chemical
dosages required for lime softening. Three of these methods are: stoichiometric
calculations, Caldwell-Lawrence diagrams, and equilibrium calculations (Benefield,
1982). The stoichiometric methods assume that the reactions represented by the
softening equations go to completion. The Caldwell-Lawrence diagrams are a graphical
method for arriving at chemical requirements based on equilibrium principles. The
equilibrium calculation method is an alternative to the Caldwell-Lawrence diagrams. It
applies basic equilibrium concepts to describe the mechanisms of the water softening and

neutralization processes as well as to calculate the required chemical dosages.

Computer software programs that incorporate the lime dose calculation methods
mentioned above are also available including one from the USEPA called the Water
Treatment Plant Model (USEPA, 1993). As mentioned earlier, this particular software
was tested prior to this study and it was found to inaccurately predict the lime dosage
values when compared to what the Rossdale plant clarifier actually used. One reason for
this 1s that the calculations that the software makes are at best an estimate of the actual
reactions. Another likely reason is the fact that the specific information about the plant
such as mixing efficiency, lime preparation efficiency and particle quality, sludge blanket
effects, operator preferences in running the clarifier, water flow-rates and rise rates, and
so on are not all available or quantifiable and even if they were, the software program is
not designed to accept all of this information. This was one of the reasons why the
artificial neural network modeling technique was envisioned as it is capable of learning
the actual performance of the plant first prior to making predictions of what the required
lime dosage would be for a given situation. The lime dose calculation based on this
method would be site specific and would likely not be usable at another water plant
without first providing it with specific performance examples of the new site. This
disadvantage is offset in that the more accurate predictions could lead to improved

process control, automation, and cost control.
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2.4 Artificial Neural Networks

2.4.1 Introduction

An Artificial Neural Network (ANN) is an artificial intelligence (Al) modeling technique
inspired by the structure and operation of a human brain (Rodriguez et al, 1997). Itis an
empirical model (as opposed to a mechanistic model) and is somewhat unique in that the

technique learns from representative historical data characterizing a given process.

Compared to conventional modeling approaches, the ANN approach to modeling has

several advantages (Zhang & Stanley, 1997, Rodriguez et al, 1997):

e No mathematical algorithms are required to build a model. The ANN self organizes
itself and learns from previous sample data.

e Models can be generated quickly compared to building physical models.

e Since the models are developed using actual process data, model scale-up is not
required and therefore the potential for inaccuracies created due to it is avoided.

e An ANN can handle non-linear relationships well due to its inherent non-linear data
structure and computational process. Thus it is able to identify the intricacies of a
process and discover and establish complex non-linear relationships between input
and output variables.

e ANN'’s tend to be inherently fault-tolerant due to the data structure being loosely

organized.

It is important to recognize that ANN modeling is appropriate in some situations and may
fail dramatically in others. Successful ANN applications tend to have the following
characteristics (Zhang & Stanley, 1997): (1) the algorithm to solve the problem is
unknown or expensive to discover; (2) heuristics or rules to solve the problem are
unknown or perhaps difficult to enunciate; and (3) the application is data-intensive and a

variety of data describing the subjects are available. On the other hand, ANN modeling
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will likely be unsuitable for cases where precise mathematical computations are required,
where computational procedures must be explained, or adequate representative data are

not available.

2.4.2 ANN Model Components

The fundamental processing elements of a neural network are neurons, which are highly
interconnected with each other within the network. The neurons are also organized in
three separate layers: an input layer, a hidden layer, and an output layer. In Figure 2-4, a
schematic of a simple ANN is shown which illustrates these two main features along with

an error back-propagation system, which 1s active during the learning phase.

Error Back-propagation

Erior
SN2,
Y.
A \ }‘1 “/
Inputs I 90 Outputs ——»

LI
L7

Input Layer Output Layer

Hidden Layer

FIGURE 2-4 A simple artificial neural network (after Zhang, 1996)
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2.4.2.1 Artificial Neurons

An artificial neuron, shown schematically in Figure 2-5, is comprise of input(s), a
processing unit, and output(s). Basically, the artificial neuron recetves inputs from other
sources, combines them in some way (weights), performs a generally non-linear
operation on the result (activation or transfer function), and then outputs the final result.
The inputs can come from other artificial neurons and the outputs are passed to the next

neurons.

Error Feedback

!

Transfer
Function

Input ———p T —p Output

Weight

FIGURE 2-5 An artificial neuron (after Zhang, 1996)

2.4.2.2 Network Layers

As shown in Figure 2.5, a simple but common type of artificial neural network consists of

three layers:

Input Layer — Represents the raw information that is fed into the network. The input

layer is connected to the hidden layer.

Hidden Layer — The activity of each hidden neuron is determined by the activities of the
input neurons and the weights on the connections between the input and hidden neurons.

The hidden layer is where the majority of the processing is done (Hasham, 1998).
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Output Layer — The behaviour of the output neurons depends on the activity of the hidden

neurons and the weights between the hidden and output neurons.

This simple representation of an ANN is interesting because the hidden neurons are free
to construct their own representations of the input. The weights between the input and
hidden neurons determine when each hidden neuron is active, and so by modifying these

weights, a hidden neuron can choose what it represents (Stergiou & Siganos, 1996).

2.4.2.3 ANN Learning with Error Back-propagation

Before the ANN model is usable, learning has to take place. There are two learning
techniques that can be used — supervised learning and unsupervised learning. The
supervised learning technique requires that both the input and its corresponding output
data are presented to the ANN. In unsupervised learning, there are no available actual
output values for a given set of inputs and so during the learning process, the network
adjusts 1tself to the statistical regularities of the input data so that is can form categories

(Stanley et al, 2000).

The most common supervised learning algorithm is the back-propagation algorithm, in
which a data set of system inputs and outputs are presented to a neural net having initial
connection weights assigned. An error is calculated from the network output, compared
with the known output, and the connection weights are modified to decrease the sum of
squared error. The process in repeated, as illustrated in Figure 2-6, until the ANN is
considered to have learned as tested by a previously unseen data set that gives an

acceptable small error (Boger, 1992).
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FIGURE 2-6 Data flow in error back-propagation training of ANN (after Boger 1992)

2.5 Model Development and Evaluation

One of the main goals of this study is to be able to predict, given a set of input conditions,
the total hardness (process variable) exiting the lime softening clarifier and as well the
required lime dose (control variable) to achieve a total hardness target value. This

requires that two types of models be developed — forward models and inverse models.
2.5.1 Forward and Inverse Models

Forward modeling of a process involves mapping the forward dynamics of the process.
The output of a forward model is the process variable, which for the softening process is
the effluent quality of the clarifier namely, total effluent hardness. Therefore, forward
modeling predicts the outcome of a unit process at some future time given a set of inputs

to the unit process.
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Inverse modeling of a process on the other hand involves mapping the inverse dynamics
of the process. The output of an inverse model is a control variable, which for the
softening process is the lime dose being applied at the inlet of the clarifier. Therefore,
inverse modeling of a softening process predicts a value of the control variable (lime
dose) that will be necessary to achieve some target value of the process variable (total

hardness).

Using the softening process for illustration, the inputs and outputs for forward and
inverse modeling are shown in Figure 2-7. In terms of integrating models into a control
system, the output from an inverse model can be integrated directly (direct control) as it
predicts the required value of the control variable (lime dose) directly which can be
passed over, as is, to the lime feeder controls. The output from a forward model cannot
be integrated directly in this way and an iterative process must be set up to determine the

control variable indirectly which can then be passed over to the lime feeders.

Inputs: Forward .
Alum, Lime dose , Influent Model of 'g'l'l‘tpu—tt total
total hardness, Alkalinity, Softening hgl ;:Z o
Temperature, Flow rate Clarifier .
11—112“—@; ) Inverse
Alum, Effluent tota Model of Output:
hardness, Influent total R . e

- Softening Lime dose
hardness, Alkalinity, Clarifi
Temperature, Flow rate anhier

FIGURE 2-7 Forward and inverse model architecture for a softening process
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2.5.2 Modeling Protocol

In developing ANN models, there is no set standard protocol that is predominantly in use.
Instead, researchers tend to develop their own methods based on what works best. There
are protocols that have been developed for drinking water treatment processes and river
water quality forecasting by Zhang (1996) and Stanley et al. (2000) that seem to work
well. In this study, a three step process that is somewhat similar to the protocol described
in the above references is followed, and includes source data analysis, model design, and

model evaluation.

Source Data Analysis

Before ANN modeling can begin, an analysis of the source data is the recommended first
step. Among other things, source data analysis helps with determining what data is
available and relevant and whether the ANN technique is appropriate for the problem at
hand. Potential input and output parameters can be chosen by identifying suspected
cause-effect relationships between parameters even though the actual mechanism may not
be fully understood. For example, it is known that the initial alkalinity present in an alum
clarification process affects the final effluent pH and so are potential cause-effect
parameters. In the source data analysis, data cleansing is done to identify and root out
data patterns that are unusable. This could be due to sensor failures, equipment servicing,
data patterns with only partial data, and unstable operational data such as during plant-

start-ups and shut-downs.

Model Design

In the model design stage, an appropriate ANN architecture is chosen to provide optimum
performance from the ANN models. This involves choosing the type of network (e.g.
back-propagation), learning methods (supervised versus unsupervised) and speed, the
number of inputs, outputs, hidden layers, and neurons, and the type of activation function

used by the neurons.
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To improve the capability of the ANN model to make accurate predictions, the available
data patterns are first separated into three sets prior to the onset of the ANN model

learning phase. The three sets of data are known as training, testing, and production sets.

The training set data is used by the ANN learning algorithm to train itself by repeatedly
processing the data and conducting error back-propagation corrections to optimize the

accuracy of the model.

The testing set data is also used by the ANN learning algorithm during the training phase
to periodically evaluate the model performance on a separate set of data, to ensure that
the model is not simply memorizing the data patterns in the training set, and to make
corrections to move away from this tendency. The testing set data is essential for the

calibration of the model.

The final set of data, known as the production set, is not used at all during the learning
phase of the ANN model. It is presented to the completed model to determine the ANN

model’s ability to predict accurate results on data that it has not seen before.

Model Evaluation

In the model evaluation step, the performance of the various models is reviewed. A
statistical analysis is completed and comparisons are made with other models that may be

available such as, for the softening problem, the USEPA water treatment plant model.

2.5.3 Source Data Analysis

At the Rossdale WTP, the SCADA system records real-time information from many
sensors and controls including the lime system and softening clarifier. This information
can be retrieved at a later date for further review. Source data analysis therefore begins

with a review of available parameters.
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2.5.3.1 Awvailable Parameters

The parameters considered available for the softening process for the Rossdale WTP are
those that are measured and recorded regularly by the SCADA system or the operations
staff i.e. at least once per 12 hour shift as these are the ones that the operators use to make
process decisions and ultimately would be the ones used by the ANN model to predict

results in real-time within the plant control system.

The parameters of interest include those related to water quality, chemical feed rates, and
plant flow rates. Both continuous measurements and discrete laboratory bench tests are
included in the available parameter list. A summary of measured parameters, their
accuracy and the frequency of collection are given in Table 2-6. The process flow

diagram given in Figure 2-2 shows the location of the various process units mentioned in

this table.
TABLE 2-6 Measured parameters, accuracy, and sampling frequency
Alum Softening Softening Stilling

Parameter Accuracy Clarifier Clarifier Clarifier Basin

Influent Influent Effiuent Effluent
Flow rate +3% Continuous - - -
pH +0.2 4 hours 4 hours 4 hours 4 hours
Temperature +2% Continuous - - -
Total hardness + 5 mg/L 4 hours - 4 hours 4 hours
Calcium hardness + 5 mg/L - - - 6 hours
Total alkalinity + 5 mg/L 12 hours - - 12 hours
Alum feed rate + 7% Continuous - - -
Polymer feed rate + 6% Continuous Continuous - -
Lime feed rate :S:i(;:;jé) % - Continuous - -
Recycle flow/density | +25% - Continuous - -

The next step is to determine which of the available parameters are most relevant for

modeling of the softening clarifier.
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2.5.3.2 Determination of Relevant Parameters

Since the model is for the softening clarifier, ideally the relevant inputs should be
measured frequently and as close to the softening clarifier influent as possible.
Otherwise, issues with lag time and water quality changes in the alum clarifier (upstream
of the softening clarifier) become important. However, this was not available for many
of the variables. For example, as shown in Table 2-6, alkalinity is measured for the
influent to the alum clarifier but not for the influent to the softening clarifier. When alum
is added to the alum clarifier, it consumes alkalinity as well as lowers the pH of the water
leaving the clarifier. This is illustrated in Equation 2.6 which indicates that theoretically,
each mg/L of alum added will consume about 0.5 mg/L of alkalinity (Benefield et al,
1982).

AIQ(SO4)3.14H20 + 3C&(HCO3)2 <>
2AI(0H); + 3CaSO; + 14H,0 + 6CO,  (2.6)

Therefore, the alkalinity available in the softening clarifier and pH will vary
considerably. The pH entering the softening clarifier is measured every 4 hours. If the
alkalinity entering the softening clarifier is also important, either the alum dose should be
included as one of the inputs so that the model may learn its impact or an estimate of

alkalinity could be made using Equation 2.7.

Alkalinity in the

softening clarifier _ Alkalinity in the raw 0.5 * Alum Dose
influent = water - (meq/L) 2.7
(meqg/L) 4

(megq/L)

The calcium hardness is not measured through the process until the effluent of the stilling
basin. Therefore, it cannot be used directly as an input to the model. In fact, the amount
of hardness contributed by calcium and magnesium in the influent water to the softening

clarifier is unknown from the available data set.
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Figures 2-8 and 2-9 show the variation of total hardness from the softening clarifier and
the corresponding lime dose. Note that the total hardness increased beginning June 1997.
This was due to a change in the target value of total hardness made by EPCOR Water
Services from 115 mg/L to approximately 135 mg/L.
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FIGURE 2-8 Softening clarifier effluent total hardness

36



100

90

N T
"M WAL
YR | IV N |
o ",

30 L\/\/\

20

Lime Dose (mg/L)

10

0 i 7 T
1-Jan-97 2-Feb-97 7-Mar-97 11-Apr-97 3-Jun-97 6-Jul-97 5-Aug-97

T T T

FIGURE 2-9 Seftening clarifier influent lime dose

The domain of study is a closed system as the area of study (softening) is understood
reasonably well and the cause-effect relationships for softening clarifier effluent hardness
are also reasonably known. For example, as the raw water hardness increases, the
softening clarifier effluent hardness will increase all else being equal. If the lime dose is

increased, the softening clarifier effluent hardness will decrease all else being equal.

From softening chemistry principles, the important parameters available from Table 2-6
to include in the model would be: lime dose, total hardness, alkalinity, temperature and
pH’s. From plant experience, recycle solids, alum dose and possibly flow rate would be
additional parameters to include. Since reliable data for recycle solids was not available,
this parameter was not included as an input.  Overall, it was envisioned that the

parameters given in Table 2-7 would be important in the design of the preliminary model.
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TABLE 2-7

Preliminary ANN model design parameters

Alum Softening Softening
Parameter Clarifier Clarifier Clarifier
Influent Influent Effluent
Flow rate Continuous - -
pH 4 hours 4 hours -
Temperature Continuous - -
Total hardness 4 hours - 4 hours
Total alkalinity 12 hours - -
Lime feed rate - Continuous -

2.5.3.3 Selection of Data Points

All the required modeling data were extracted from the plant SCADA historical data
reporting system. Daily average values of each input and output formed the patterns set
for the model. The historical data for the model spanned between January 1/1997 to
August 08/1997.

It is critical to ensure the integrity of the input/output data patterns as it can directly affect
the accuracy of the model. Therefore, careful examination of the data was conducted to
remove any which were questionable. For example, in the spring of 1997 between April
19 and May 9, a temporary feed system was set up to feed soda ash. The data during this
period was not used for modeling because the soda ash feed rates were not reliable and it
was felt that not enough data was available for the model to learn. Data was also not
used during times when the plant had just been restarted after a shutdown. For short
periods of time, chlorine was being injected into the softening clarifier and data during
this time was also not included in the model as it was observed that there was some
detrimental impact on the performance of the softening clarifier and not enough data was

available for the model to leamn.
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2.54 Model Design

Once all the data patterns have been identified, ANN modeling can begin. There are
many ANN modeling software available on the market today. The software utilized in
this research was the same as that used by the University of Alberta, Department of Civil
and Environmental Engineering in developing previous models of the alum clarifier for
the Rossdale WTP. The software is called NeuroShell2 (Ward Systems, 1996) and all

modeling was carried out on a standard Personal Computer.

In the model design phase, an appropriate ANN architecture needs to be chosen. There
are many to choose from including some proprietary ones. Once the architecture is
chosen, what remains is to determine the number of runs that are expected to be required

to achieve a reasonably accurate ANN model.
2.54.1 ANN Architecture

Many different topologies were initially tested including the recurrent network; three,
four and five layer standard back-propagation networks; jump connection networks; and
general regression networks; each with different activation functions, learning methods
and rates. Although standard back-propagation (BP) networks, particularly the 3-layer
network, were expected to perform the best as they have been applied to a wide variety of
practical problems with proven success in modeling nonlinear relationships (Bhat and
McAvoy, 1990), initial trials indicated that the 5-layer Ward network (a variation of the
standard back-propagation network) was more accurate for this problem. As depicted in
Figure 2-10, the network consists of 3-hidden layers, each with a different activation

function. The network details are given in Table 2-8.
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FIGURE 2-16 Ward S-layer BP neural network architecture (after Ward, 1996)

TABLE 2-8 Ward 5-layer BP neural network details

ANN design and criteria

Description
parameter
Topology Ward back-propagation network with 3 hidden slabs
Input Slab 1 Linear function with # of neurons = # of inputs
Hidden Slab 2 Gaussian function
Hidden Slab 3 Tanh function
Hidden Slab 4 Gaussian complement function

Neurons per hidden slab

#of hidden neurons = 1/2(Inputs + Outputs) + Sqrt(# of
Patterns)

Output Slab 5

Logistic function with 1 neuron

Learning rate factor

0.1 (i.e. slow)

Momentum factor 0.1 (i.e. low)

Initial weights 0.3

Pattern selection Random

Weight update method Momentum

Calibration Automatic with best fest set saved

Number of patterns for training set

65 % of total randomly extracted by NeuroShell2 program

Number of patterns test set

20 % of total randomly extracted by NeuroShell2 program

Number of patterns production set

15 % of total randomly extracted by NeuroShell2 program
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2.5.4.2 Determination of the Number of Runs

Having identified the important inputs and outputs and having fixed the network
topology, a set of runs was organized in a trial and error fashion. Basically, the first run
consisted of using all the inputs followed by runs with a reduced set of inputs. In order to
determine the influence of alkalinity reduction (due to alum) on softening, a new input:
alkalinity influent to the softening clarifier, was introduced. As described in Equation
2.6, this was estimated by assuming 0.5 mg/L of alkalinity expressed as CaCO; will be

consumed for every 1 mg/L of alum added.

In addition, a new neural network for predicting pH influent to the softening clarifier was
also developed even though there was already data available for pH. This new network,
it was envisioned, would be needed when the overall model is executed in real-time
because the plant did not have an on-line pH meter influent to the softening clarifier.
One would have to wait for a bench test to be completed before the model could predict
the future requirements for lime dose. In essence, the pH Neural Network was designed
to be a virtual pH analyzer and whenever the alum dose or raw parameters changed, it
would predict the pH influent to the softening clarifier immediately thereby providing a

quicker prediction of lime dose.

With the above in mind, sixteen trial runs for the overall softening process model were
proposed while for the virtual pH meter neural network, a total of six trial runs were
proposed. Each trial run was a unique neural network in that the combination of inputs
and outputs was dissimilar. An equal number of forward and inverse models were
developed. In Tables 2-9, 2-10, 2-11, and 2-12, the various trial runs are identified in

terms of the neural network model inputs and outputs.
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TABLE 2-9  Forward modeling trial runs for the overall softening process

ANN Inputs SF-1 | SF-2 | SF-3 | SF-4 | SF-5 | SF-6 | SF-7 | SF-8 ANN
Output
Flow rate X X X X X p:4 X
Alum dose X X X X X
Temperature X X X X X X X X
pH - alum clarifier influent. X X X X
Total Hardness — alum <
clarifier influent X X x * * % x
Alkalinity — alum clarifier <
influent x % x
Total hardness — softening
clarifier effluent X
Lime dose X X X X X X X X
pH -~ softening clarifier
influent X X X X X X X X
Alkalinity (estimated) —
softening clarifier influent X
TABLE 2-10 Inverse modeling trial runs for the overall softening process
ANN
ANN Inputs SI-1 | SI-2 | SI-3 | SI4 | SE-5 | SI-6 | SI-7 | SI-8
Output
Flow rate X X X X X X X
Alum dose X X X X X
Temperature X X X X X X X X
pH — alum clarifier influent. X X X X
Total Hardness — alum <
clarifier influent X x * % x * X
Alkalinity — alum clarifier < < <
influent x
Total hardness — softening <
clarifier effluent X x * X X X X
Lime dose X
pH ~ softening clarifier
t X X X X X X X X
influent
Alkalinity (estimated) —
softening clarifier influent X
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TABLE 2-11 Ferward modeling trial runs for the alum clarifier process (Virtual pH)

ANN Input pHF-1 pHF-2 pHF-3 oﬁﬁ .
Flow rate

Alum dose X X X

pH — softening clarifier influent X
Temperature

pH — alum clarifier influent.

Alkalinity — alum clarifier influent

TABLE 2-12 Inverse modeling trial runs for the alum clarifier process

ANN Input pHF-1 pHF-2 pHF-3 Oilfgl "
Flow rate X

Alum dose X

pH — softening clarifier influent

Temperature

pH - alum clarifier influent.

Lol T I

R M

Alkalinity — alum clarifier influent

2.5.5 Model Evaluation

In the ensuing discussion, the accuracy of the models have been quoted with the R? error
statistical indicator which is what the ANN software uses (Ward Systems Group Inc.,

1996). An R? value of 1 implies a perfect fit. The formula for R? that was used is:

R = 1 - SSE (2.8)
SSyy
where SSE = X(Y- Yoredict)’
SSyy = XY - Yinew)’
Y = actual value of output
Yoredict = predicted value of Y
Yiean = mean of all the Y actual values
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Once all the trial runs were completed, statistical indicators (described in section 2.5.5.5)
were calculated to assess model performance. A summary of the performance of each of
the twenty two models was prepared (Table 2-13) and are discussed in the ensuing

sections.

TABLE 2-13 Performance of candidate ANN models

Run #of |MinAvg|MinAvg. R? Mean square efrror Mean absolute error | Maximum absolute error

F=Forward} Epochs| Error { Error | all |test|trainfprod.] all | test | train |prod.] all | test | train |prod.} all | test | train | prod.
I=inverse |reached; Train | Test

SF-2 15,126 | 0.0003 | 0.0030 [0.92]0.94{0.94/0.83| 55 | 59 | 3.8 |128] 1.7 § 1.9 | 1.5 | 27 | 109| 6.1 | 9.3 | 10.9
SF-3 15,331 0.0004 | 0.0049 [0.91/0.89{0.93]0.84| 66 | 9.7 } 45 (1171 20| 24 | 1.7 [ 28 | 99 | 89| 71} 9.9
SF-4 17,408 | 0.0002| 0.0047 [0.90/0.80{0.92{0.84| 6.7 | 9.2 | 49 |14} 20| 23| 1.7} 26| 9.1 ] 6.7 | 8.8 | 9.1
SF-5 17,676 { 0.0004 | 0.0033 (0.92|0.83]0.93]10.85] 58 | 64 | 44 |11.2) 18} 21| 1.6 | 24 1104 50 | 89 | 104
SF-6 18,376 ] 0.0003 | 0.0051 (0.88|0.89[0.80/0.84] 83 | 101} 70 | 118} 22 | 25| 21 | 261101} 7.4 | 8.8 | 10.1
SF-7 19,654 | 0.0001 [ .0.0033 {0.92{0.83[0.93;0.84| 6.0 | 66 | 45 121} 19§ 20| 1.7 ({ 26 | 106 53 { 8.6 | 106
SF-8 12,3921 0.0002 | 0.0034 10.92|0.93(0.93}0.86| 58 | 661 46 |105] 19t 211 17| 25) 96| 54| 951 9.2

Predict C4 effluent total
hardness

8i-2 10,3411 0.0001{ 0.0012 [0.94/0.94{0.93]094 82 | 62190} 73| 23| 21| 24| 237862} 78] 54
SI-3 20,308 0.0001} 0.0018 [0.94]0.91{0.94}0.92} 8.1 | 87 | 7.7 | 93| 22| 24| 21| 23 [10.7] 6.1 | 107} 85
Sl4 8,399 | 0.00021 0.0016 {0.92{0.92{0.91}0.93]10.3} 80 | 115 7.8 | 26| 24| 27| 24 | 80 | 69 | 80 | 58
SI-5 4,578 | 0.00031 0.0014 [0.95{0.93]0.961092] 60| 67 | 49 [ 98 | 19| 21 | 1.7 | 25| 85 | 66 | 85| 6.2
Si-6 5,737 | 0.0003| 0.0021 |0.92/0.89/0.93/092| 99 [ 106{ 96 | 99| 24| 25124 | 23} 92| 74] 81] 82
SI-7 7,674 [ 0.0002} 0.0012 (0.95}0.94/096/093; 61 | 58 | 57 85| 19} 20|17 ]| 24| 83| 49|83/ 56
SI-8 11,667 0.0007 | 6.0011 [0.96{0.94/1097|093) 52 1 57 145|791 181 20| 16| 23160|56]860] 51

Predicts C4 lime dose
requirment

C3pH

pHF-2 {138,145{ 0.0001 | 0.0011 10.98]0.97{0.99} 0.97{0.002|0.003{0.001/0.002]0.031]0.042[0.028{0.034{0.133]0.1186{0.133{0.117
pHF-3_ 110,103 0.0003| 0.0012 [0.97(0.87]0.98] 0.96{0.00210.003/0.002(0.003}0.03810.046/0.035/0.041{0.12710.122/0.127|0.121

pHi-2 | 23,183 ] 0.0001} 0.0005 }0.98|0.98{0.9810.98] 27.0124.7} 298| 16.7| 3.8 | 41 | 3.9 | 3.0 {20.7|10.8]| 207} 9.2
pHI-3 | 18,231 0.0001{ 0.0006 j0.98{0.98/0.9810.98]1244126.0{250)|195] 34 | 38 | 33 | 33 |178]1119]17.8]105

C3 alum

Highlighted rows are best models.

All runs have the following in common

Topology - 5-layer backpropagation Ward Network

Activation Functions: Slab 1 - Linear <-1,1>, Slab 2 - Gaussian; Slab 3 - Tanh; Slab 4 - Gaussian complement; Slab 5 - Logistic
Number of Neurons in hidden layers - 5 per layer

Learning - Momentum/Random

Test set - 20% extracted randomiy once - same set used for all runs

Production set - 15% extracted randomly once - same set used for all runs
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2.5.5.1 Alum Clarifier ANN Model Resualts

For the alum clarifier, all the models look promising with pHF-1 and pHI-1 appearing to
be the best. For predicting effluent pH, pHF-1 gave an R” value of 0.98 for all the
patterns and 0.97 for the production set while for predicting alum dose, pHI-1 gave an
impressive R? value of 0.99 for all the patterns as well as for the production set. The
actual and predicted values of pH and alum dose are plotted on Figures 2-11 and 2-12,

respectively.
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FIGURE 2-11 Alum clarifier effluent pH ANN
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2.5.5.2 Softening Clarifier ANN Model Results

For the softening clarifier, several models appear to predict the total hardness (forward
model) and lime dose (inverse model) similarly. It appears that the best model for
predicting hardness is SF-1. It had an R? value of 0.92 for all patterns and 0.84 for the
production set. For predicting the lime dose, SI-1 stands out better having an R* value of
0.96 for all patterns and a 0.95 value for the production set. Since the discrepancy
between actual and predicted values is greater for the forward model compared to the
inverse model, particularly for the production set data, it indicates that the model still
requires more optimization. The actual and predicted values of total hardness and lime

dose are plotted on Figures 2-13 and 2-14, respectively.
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2.5.5.3 Performance Comparison with the USEPA WTP Model

For comparison purposes, the USEPA WTP Model was used to make direct predictions
for the softening clarifier effluent total hardness using the same plant actual data used to
generate the ANN model. The model requires the user to “build” the plant electronically
into the software and then enter appropriate data for the plant. In Appendix A, Figures
A-1 to A-5 show examples of the various input forms that were filled out and the
resulting output. The model was manually run for each data point used for developing
the ANN model and the results are graphed in Figure 2-15. The USEPA WTP Model
gave an R” value of 0.41 compared with the value of 0.92 achieved with the ANN model.
It is apparent when reviewing all the results in Table A-2 in Appendix A that the USEPA
Model has particularly large and seemingly unpredictable errors during times when the
raw water quality is more challenging and higher values of alum dosages are being

applied to the process. This was not the case with the ANN model predictions.
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2.5.5.4 On-line Execution of ANN Models in Real-time

Once the ANN models for pH and lime softening were completed, run time models were
created so that scenario testing could be conducted with either actual historical data (as
was used to generate the graphs in the earlier sections), with new data from the plant in

an off-line mode, or with new on-line plant data in real-time.

On-line execution of the ANN models requires porting of the run-time models to the
SCADA system so that a two-way communication link can be formed between the model
and the control system. The details of how this was accomplished are provided in the
next chapter of this thesis. A partial set of the results from on-line testing on the
Rossdale Plant #2 softening clarifier using the SCADA system is graphed in Figure 2-16.
The results for both the forward model (predicting total hardness) and the inverse model

(predicting lime dose) are shown in this figure.
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Although the ANN predicted lime dose during on-line testing was, except for a brief
period, not used to automatically control the plant’s lime feed system, porting of the
ANN models to the SCADA system can certainly facilitate this. This will be described in
more detail in the next chapter where advanced model-based control schemes utilizing
both the forward and inverse models is proposed for improving the overall performance

and control of the softening clarifier.
2.5.5.5 Error Sources and Analysis

In order to check the goodness of fit for the ANN models, a residual analysis of the data
is also recommended (Zhang, 1996). A plot of the residuals versus actual effluent total

hardness and actual lime dosages is shown in Figures 2-17 and 2-18, respectively.
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In both instances, the mean of the residuals is close to zero (0.28 mg/L for effluent total
hardness and —0.40 mg/L for lime dose) and the standard deviation is relatively low (2.30
mg/L and 2.29 mg/L, respectively). For both graphs, no special trends are discernable
although densities of the residuals are different in some regions. For the total effluent
hardness, there are two distinct locations where the density is high, one at about 112
mg/L and the second one at around 128 mg/L.. This is due to the effluent target hardness
value being increased by EPCOR Water Services in the latter part of the data set (see also
Figure 2-8). For the lime dose residual graph, a higher density of residuals exists around
50 mg/L but this is due to more data being available in this region because the plant
operates in this region more often. Overall, the models appear adequate based on

residuals analysis.

Many sources of errors could have contributed towards the overall fit of the model to the
actual process. Not using an important input such as clarifier solids concentration has
been mentioned earlier. Other sources of errors could include such things as inaccurate

and or imprecise lime feed rates. As shown in Table 2-6, the estimated lime feed
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accuracy is = 10 to 20%. Compounded with this is the fact that the lime feed equipment
at the Rossdale WTP tends to be a high maintenance item and on a weekly basis, the lime
feeders are switched during which time the lime slakers get cleaned. During these events,
the exact feed rates of lime are very questionable. Other errors can be related to lab
analyses and data entry. Not using a large enough data set for the model may also be a

contributing factor.
2.6 Discussion and Applicability of ANN Models

The ANN models developed in this work include the softening clarifier model and the
alum clarifier pH model. The exercise of developing ANN models not only provides the
model itself but also yielded significant information about the process that is being
modeled. For example, an interesting feature that was observed on most of the models
for the softening clarifier was the high contribution factors from alum and raw water
flow. Initially, it was thought that the main effect of alum was a reduction of alkalinity
available to the softening clarifier and a lowering of the pH in the alum clarifier effluent.
Originally, when the alum clarifier effluent pH was not used as an input, the contribution
of alum in the models was very significant as one would expect. However, after the pH
was included as an input (this is the case for every model shown in this chapter), the
contribution of the alum clarifier effluent pH was high but the contribution of alum
stayed high as well. The plant operations staff have mentioned that the carry-over of
alum from the alum clarifier to the softening clarifier affects the solids density, quality
and consistency in the softening clarifier and the performance of the softening clarifier as
a whole. The contribution of incoming raw water flow rate appears to be much higher
than observed by the plant operator and this requires some more investigation. It is
possible the amount of dead time in the clarifier could be an important input for the ANN
model as it affects how much time it takes for a change at the inlet of a clarifier to be
measured at the exit of the clarifier. Although not used as an input in this research, it is
known that the amount of dead time in the clarifier varies with raw flow rate (an input
that was used) and so in this situation, the contribution that raw water flow rate has made

to the ANN model is more pronounced.
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The ANN based models developed for the Rossdale Water Treatment Plant #2 were
shown to be much more accurate than the USEPA WTP Modeling software. They could
be useful at other plants with similar processes as the architecture and methodology
developed in this research can be re-applied thereby greatly reducing the time required to
develop the models. The ANN models would be updated using historical data specific to
the other plant. The improved accuracy of the ANN model over the USEPA model
provides clear advantages when it comes to the application of the models to improve
plant operation and efficiency. Some of the areas that can benefit from accurate models

include:

Chemical Budgeting

The softening ANN model predicts the lime dose required for a given set of input
conditions. The model can be also utilized to predict gross amounts of lime required on a
monthly or yearly basis depending on the type of data available. This would help with
preparing chemical budgets. It also facilitates conducting “what if” scenarios such as
what would be the expected amount of lime required and the impact on the budget if the
target effluent total hardness were to be raised or lowered. Indeed, this type of scenario
testing was the main reason that the ANN model was developed in this project. While
the USEPA model was only able to predict total hardness to an accuracy of 15 mg/L on
average with gross errors as high as 70 mg/L, the ANN model was within 0.5 mg/L on
average with gross errors reaching only 9 mg/L. In addition, the average lime dose
accuracy using the ANN model was less than 0.5 mg/L. Clearly, the ANN model is

much more acceptable for use in predicting lime costs for budgeting purposes.

Plant Process Control

The ANN models that have been developed are particularly suited for making minute-by-
minute predictions of lime requirements based on a target value of effluent total hardness.

This capability can be applied in various ways to assist with plant operations. If the ANN
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models were to be integrated with the plant SCADA system, the prediction of lime
dosages can occur in real-time. The operators can use this information to make
adjustments to the lime feed rate (manual control) on an intermittent basis. If the ANN
models were further integrated with the SCADA system such that they become part of an
automatic control scheme such as feed-forward control, the lime dose predictions would
be directly passed over to the lime feed system thereby providing automatic control of the
softening clarifier. Several benefits can be realized with such an integration of ANN
models with process control systems. Real-time automatic control ensures quick
response to any changes occurring in the softening process thereby improving control and
stability of the process. Improved control helps to narrow the operating boundaries of the
process and improves consistency of water quality and operation, predictability of
chemical usage, and sludge production. It can also save costs by ensuring that over-
softening is reduced as is commonly done by operators who prefer to keep a buffer
between target values and operating values for effluent hardness. Over-softening
increases lime usage, sludge production, and pH adjustment chemicals all leading to

higher costs.

Inferential Sensing and Alarming

The ANN based virtual pH meter developed in this project is not only useful as an input
to the lime softening ANN model but is also useful for alarming. This is accomplished
by comparing in real-time the value predicted by the virtual pH meter with a real on-line
pH meter. If the difference between the two exceeds a preset value, an alarm can be
generated notifying the operator. The operator would then investigate the cause which
could be due to several things such as incorrect alum feed rates, erroneous readings from
other on-line analyzers or bench tests, and failure of the actual pH meter itself.
Corrective actions can then be made. Inferential sensing can therefore provide early

warning of impending problems.
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2.7 Conclusions

The results of this research indicate that ANN modeling can reasonably predict the
performance of a full-scale drinking water treatment plant softening process. The fact
that the production set R? values for the forward models are inferior compared to those
for the inverse models warrants further investigation. It is probable that another input
such as solids content in the clarifier (for which reliable data was not available) may be
important. Still, the inverse model, which predicts lime dose, when considered by itself,
is accurate and balanced between different data set patterns. The inverse model was of
more interest from the outset since it gives a feed-forward value i.e. a lime dose value for
a change in raw water conditions or alum dosages, and can be used by the plant operator

for predicting lime dosages.

It was shown that the predictions for total hardness made by the USEPA WTP Modeling
software were less than adequate. This was particularly true during times when the raw
water quality was more challenging and was changing often and higher values of alum
dosages were being applied to the process. This was not the case for the ANN based

model predictions and thus the ANN model is much more accurate in this case.

The model for alum clarifier effluent pH (virtual pH meter) turned out to be very accurate
in this research. It was developed in this study just to use as an input for the lime model

when “what if” scenarios were conducted.

It was also shown that when the ANN models are integrated into the plant SCADA
system such that the models interact with on-line systems, real-time predictions of lime
dosages and effluent total hardness are possible. The performance of the ANN models in
real-time turned out to be reasonable as well. Because of this, implementing an
automated model-based control system for the softening clarifier is a distinct possibility.
Prior to this endeavour however, a few additional checks and systems would be desirable.
A more accurate model, perhaps developed with more historical data, additional on-line

analyzers such as pH, total hardness, alkalinity, and a control strategy such as IMC
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(internal model control) or the more tunable MPC (model predictive control) (Shinskey,
1996) would make the automatic system more feasible. Other issues such as dead time
introduced by the process and from discrete-type sampling analyzers would have to be

resolved as well.

It should be mentioned that subsequent to this research, beginning in the year 2000,
EPCOR Water Services stopped softening Edmonton’s drinking water. The ANN models
for the softening clarifier were no longer required although the ANN based virtual pH
meter can still be used. The experience gained in developing ANN models is however

being applied by EPCOR to other processes and other externally operated plants.
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3.0 INTEGRATION OF ARTIFICIAL NEURAL NETWORKS WITH REAL-TIME

PROCESS CONTROL SYSTEMS

3.1 Introduction

Virtually all water utilities are looking at improving the operation of their plants to keep
control of costs and to meet stringent water quality regulations. Water quality
improvements, increased productivity, and minimization of energy and chemical usage
can be achieved through automation and optimization of plant processes. Automation
entails eliminating intermediate components or steps in a process, especially those
involving human intervention or decision-making, and replacing them with

technologically more advanced ones (Schlenger et al, 1996).

Traditional control schemes are generally inadequate and advanced control techniques
become necessary when automating certain water treatment processes such as turbidity,
organics, or hardness removal in a clarification process. At the cornerstone of advanced
control techniques is a model of the process being controlled, which can be developed
using Artificial Neural Networks (ANN’s). However, implementing advanced controls
and reaping the benefits of automation first requires that effective integration of ANN

based models with the plant real-time process control systems be done.

This chapter begins with an examination of advanced process control techniques and
methods that were developed to integrate ANN based models with a real-time control
system. It ends with an example of an advanced control system running in real-time for
the softening process at the Rossdale Water Treatment Plant in Edmonton, Alberta,

Canada.
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3.2 Artificial Neural Network Models in Process Control

Models of processes support most modern control approaches and depending on the form
of model developed, different types of controllers can be synthesized. Using models for
systems or processes reduces the need for real experimentation and facilitates the
achievement of many different purposes at reduced cost, risk and time (Willis and Tham,

1994).

In process control, models can be useful for simulating processes to help train operators
and for conducting “what-if” scenarios in an off-line manner prior to making adjustments
to the process. They are also useful for continuous on-line monitoring of the process by
making predictions of what will occur in the near future, for developing virtual
instrumentation (also known as inferential sensing) or validating existing ones, and to

implement advanced controls for automation and cost control.
3.2.1 Conventional Process Control Schemes

The most common type of controller utilized to implement conventional process control
schemes are known as the Proportional-Integral-Derivative or PID controllers. General
equations for PID type controllers are shown in Equations 3.1 and 3.2 (VanDoren, 1998)

although many variations including proprietary versions exist.

In theory
CO@M) =Peet) +  Te( emdt) +  De(ddte)) (3.1)

In practice

CO(t) =Pe [e(t) + 1/Tye ( Je(t)dt) - Tp e ((d/dt PV(t)) ] (3.2)
where:
COo@) = Controller output at time t.
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PV() = Process variable value at time t.
e(t) = Error value at time t = SP(t) — PV(t).

where: SP(t) = Setpoint value at time t.

P = Proportional term tuning constant.
LT = Integral term tuning constant.
D, Tp = Derivative term tuning constant.

The output of a PID controller is determined by observing the error between a desired
set-point and a measurement of the process variable. The error can be generated by an
operator changing the value of the set-point intentionally, or when the value of the
process variable changes due to load changes. In either case, the PID controller
compensates for the error by making changes to its output to drive the process back
towards the desired set-point. The value of a PID controller output (corrective action)
comprises the addition of the current error, the integral of the error over a recent time
period, and the current derivative of the error signal each multiplied by a corresponding

tuning constant.

On the average, PID controllers account for 80% of all feed-back controllers installed in
plants and are well suited for linear processes that have little or no time delays (Willis
and Tham, 1994). Most control loops in a process plant can be classified into five
categories: flow, pressure, liquid level, product quality, and temperature (Shinskey,
1996). Thus, many of these control loops are controlled with PID controllers. Examples
in water treatment plants include: water and chemical flow control, distribution pressure
control, tank and reservoir level control, chlorine and pH residual control, and sometimes

raw water temperature control.

However, PID controllers are not suitable for all control loops, particularly those that are
related to the category product quality which is typically the most important and difficult
loop to tune in a process plant (Shinskey, 1996). Water treatment processes tend to be
non-linear and can change with time and if a PID controller is used, the tuning parameters

would require frequent changes. In addition, water treatment processes such as
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clarification have large time delays (also known as transportation delay or dead-time)
which make PID controllers less suitable for control. A third problem that is difficult for
conventional control schemes to handle is related to multivariable control (i.e. when more
than one process variable requires regulation). In conventional control schemes, multiple
PID loops would be developed, each designed to regulate just one process variable.
When the regulation of one process variable affects another process variable, loop
interaction is said to exist and unless the PID loops are de-tuned or made less sensitive

(which leads to sluggish performance), instability may occur.

Therefore, using conventional control schemes for control of water treatment plant
processes such as clarification can lead to poor performance. Advanced control schemes
are designed to handle many of the difficulties mentioned and are discussed in the next

section.

3.2.2 Advanced Process Control Schemes

Unlike conventional control schemes, advanced process control schemes are designed to
better handle non-linear process dynamics and time-delays. They can be made adaptive
or self-correcting and many incorporate models to predict set-points. In an advanced
control strategy known as Model Based Control (MBC), a process model is explicitly
used to predict future process behaviour. The same model is also implicitly used

(essentially inverted) to calculate the control action necessary to satisfy a set-point.

3.2.2.1 Forward and Inverse Modeling

The two types of models used in MBC as described above are known as a forward model
(otherwise known as a process model) and an inverse model. Forward modeling involves
mapping the forward dynamics of a process and therefore the output is a prediction of the
future value of the process variable. - Similarly, inverse modeling involves mapping the

inverse dynamics of a process and the output is a prediction of the value of the control
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variable that will be required to meet a target value of the process variable. Figure 3-1

further illustrates the two types of models.

Inputs:
Process parameters (flow, Forward Output:
temperature, on-line quality -~~~ Model of |———p s

. Process Variable(s)
analyzer readings, etc.), a Process
Control Variable(s)
Inputs:
Process parameters (flow, Inverse Output:
temperature, on-line quality ———————>| Model of |———p ~wput:

. Control Variable(s)
analyzer readings, etc.), a Process
Process Variable(s)

FIGURE 3-1 Forward and inverse models

3.2.2.2 Direct and Indirect Control Methods

In process control applications, forward and inverse models can be incorporated into
controllers either indirectly or directly. Forward models are used for the indirect method.
Since a forward model does not directly predict the value of the control variable, an
iterative method is required to arrive at a value for the control variable to meet a process
variable target set-point. In the direct method, the inverse model is utilized. Since an
inverse model directly predicts the value of the control variable required to meet a
process variable target set-point, it can be incorporated directly into a controller, usually

as a feed-forward control scheme.

According to Psichogios (1991) there are advantages and disadvantages of both direct

and indirect control methods. The main advantage of direct control is the ability to
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quickly determine the control action (variable). However, not all process models can be
rigorously inverted. For example, in a given process, there may be more than one value
of the control variable that can yield the same value of the process variable. Furthermore,
when the ANN modeling technique is used to map the inverse dynamics of a process, it
can result in incorrect learning if the underlying process is not invertible, and therefore
may not necessarily provide the same results as that predicted by inverting the forward
process model. An alternative method then is to invert the forward process model on-
line. As mentioned earlier, this requires an iterative approach at arriving at a solution for
the control variable. It also takes more processing time and may give convergence
problems. However, this method offers more flexibility including the ability to

incorporate constraints more easily and in general gives better performance (Psichogios,

1991).

3.2.2.3 Model Based Control Schemes

The models required for implementing MBC schemes can be particularly difficult and
expensive if not impossible to develop if traditional methods of modeling such as
mechanistic or experimental are used. The ANN modeling technique on the other hand
can be used to quickly develop both forward and inverse models provided that historical
data regarding the performance of the process is available. Many modern water treatment
plants collect and store a large amount of information from on-line sensors. The ANN
technique therefore opens up the possibility of testing MBC schemes for water treatment

processes without a large initial investment of capital.

In the following discussion, two control schemes are described to illustrate how MBC can
provide automatic process control. The first scheme is known as the Ideal Model Based
Control Scheme and the second scheme, which is much more complex, is called the

Internal Model Control Scheme.
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Ideal Model Based Control (MBC) Scheme

An ideal MBC scheme is shown in Figure 3-2 where an inverse model is incorporated in
a feed-forward fashion. The inverse model receives the desired set-point of the process
variable and along with other relevant model inputs, calculates an appropriate value of

the control variable which is then passed over to the front (feed-forward) of the plant.

Inverse A .
Desired Output Predicted Setpoint Actual Process Output
Model
> p > Plant b
e.g. effluent hardness © e.g. lime dose e.g. eff. hardness
Process

FIGURE 3-2 Ideal model-based (feed-forward) control scheme for a softening clarifier

Assuming that the inverse model is very accurate, the oufput of the process will always
match the desired output. That is to say that model-based control has the potential to
provide perfect control. This is not the case with traditional PID feed-back control where
control action only occurs when there is an error between the process and control
variable. In reality though, perfect control with MBC is very difficult to achieve due to
such things as inaccuracies in sensor readings that are used as inputs to the model and
errors in the model itself. Therefore, modern control techniques are being developed to
address this issue. One such technique known as the Internal Model Control (IMC)

scheme is described in the next section.

Internal Model Control (IMC) Scheme

An important subject in modern control engineering is that of robust control or robustness
of a controller. Simply put, it is the ability of a system to continue performing

satisfactorily despite variations in plant dynamics. Morari and Zafirious (1989) define a
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controller to be “robust” if it will maintain stability while at the same time achieve a

specified performance over the desired operating conditions.

Robust control therefore is typically formulated as a compromise between achieving
performance and ensuring stability under assumed process uncertainties.  The
compromise between the two is necessary because each can affect the other in a
detrimental manner. Willis and Tham (1994) describe this compromise as follows: in
order to achieve performance objectives, a sensitive controller is required. However, a
very sensitive controller will also be sensitive to process uncertainties which can create
stability problems. An insensitive controller on the other hand will have poorer
performance with sluggish response. Shinskey (1996) further describes robustness as
follows: in general, the higher the performance of a controller, the lower the robustness.
However, the reverse is not necessarily true - just because a loop has low robustness does

not mean that the controller performance is necessarily high.

In water treatment processes, process uncertainties, non-linearities, and large dead-times
make it more difficult to design robust controllers. Modeling of the water treatment
.process helps but a control scheme that is designed to impart a higher level of robustness

is also required.

The design of robust controllers involves what is called the “internal model” principle
which states that unless a control scheme contains a description (model) of the controlled
process (either implicitly or explicitly), then either the performance or stability criterion,
or both, will not be achieved (Willis and Tham, 1994). Based on this principle, the
Internal Model Control design shown in Figure 3-3 is a control scheme that is designed to

impart robustness and theoretically, perfect control.
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FIGURE 3-3 Example of an Internal Model Control scheme

Both forward and inverse models are integrated in the IMC control scheme. As was done
in the ideal model based control scheme (Figure 3-2), the inverse model is used to predict
the value of the control variable. In the IMC scheme, this control variable is not only
passed to the plant but also to the forward process model, which in turn makes a
prediction of the process variable. This value is compared with the actual process
variable value from the plant and the difference is fed back to the beginning of the control
scheme where it in turn is subtracted from the desired set-point. This value then forms
the new set-point for the inverse model. The function of the filter is to moderate
excessive control action and to achieve a desired degree of robustness (Stanley et al,
2000). The internal model principle which the IMC scheme is based upon is a very
powerful concept and is the essence of MBC and all model based controllers can be

designed within its framework (Willis and Tham, 1994).
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3.2.2.4 Process Optimization and Plant-Wide Control

The benefits gained from modeling of processes and subsequently implementing
advanced controls to automate the processes can be extended plant-wide by optimizing
overall plant operations. Plant-wide control systems incorporate an optimizer (see Figure
3-4) which, through the use of an overall plant model, minimizes raw material usage and
maximizes profits. In achieving this, the optimizer takes into consideration the costs and
overall quality targets before generating set-points for individual process control systems

that are not necessarily optimum for them individually but optimum for the overall plant.

Economic Set-points Process
Factors and Process Inputs and
Outputs Outputs

FIGURE 3-4 Structure of an optimization scheme (after Willis and Tham, 1994)

An example of how plant-wide control can be useful is shown in Figure 3-5. The figure
depicts roughly the E.L. Smith WTP in Edmonton, which has clarification and filtration
stages and various chemicals to treat the water. If only individual models for the
clarification and filtration stages were developed, each stage could be optimized
individually. However, it is known that the performance of the filtration stage is greatly
dependent on the performance of the clarification stage and the chemicals applied prior to
and after the clarification stage. The lowest clarifier effluent turbidity does not always
necessarily mean that best filtration performance will occur or that the lowest chemical
and filter back-washing costs will be incurred. To optimize the operation of the overall
plant while attempting to minimize costs, an overall plant model can be developed that
links both models and/or processes together. The overall plant model would then be

used by an optimizer which would generate the operating ranges or set-points for such
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things as the clarifier effluent turbidity. The various control systems would be directed
by the optimizer to follow the operating ranges which again, may not be optimum for an
individual process unit but would be optimized to meet both the overall business and

local plant operating objectives.

Alum $38
Polymer Polymer | $3$
Carbon
3! CLARIFICATION : > FILTRATION e}

Raw Flow Turbidity Turbidity
Turbidity, Counts Counts Counts
pH, Colour Colour, pH THM
Alkalinity

\ Clarification Modet g , Filtration Model |

I »| [ g

Overall Plant Model

le 3]
N

Optimizer Constraints
Water Quality Specification, Cost Guideline,
Production (setpoint, maximum production etc.)

FIGURE 3-5 Overall plant control strategy example

3.2.3 Inferential Sensing

In the previous discussion on model-based control schemes, it was assumed that all the
required data for model development and for execution of the control schemes in real-
time was available and reasonably accurate. In practice, more often than not, this may

not be the case due to a few major reasons:

Lack of On-line Instrumentation — due to affordability (initial purchase cost and

subsequent ongoing costs of maintenance), or because an on-line analyzer for the
parameter in question does not exist. This can lead to reliance on infrequent and
irregularly conducted laboratory tests and long delays in analysis resulting in difficulties

with implementing process control.
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Reliability of On-line Instrumentation — due to drifts, fouling, reduced maintenance

frequency to save costs, sampling difficulties, and sampling delays.

Even if a required on-line instrument is available and is reliable enough for use when
automatic control is active, an early estimate of what its reading might be may be
important when what-if scenarios or simulation studies are being conducted. A case
study where an early estimate of a softening clarifier influent pH reading was required is

described later on in this section.

Through a methodology known as inferential measurement, the equivalent of an on-line
instrument reading can be predicted. This is done by developing a relationship between a
primary variable (the “missing” on-line instrument) and secondary variables (readily
available on-line readings that affect the primary measurement). The relationship
between the primary and secondary variables can be developed through modeling. Any
modeling paradigm including first principles models can be used although development
of data based (time series, ANN, genetic programming) inferential measurement can be
less difficult and less time consuming (Tham, 2000). For non-linear types of inferential
measurements, the use of ANN’s are particularly suited and are sometimes known as
“neural analyzers” (Deshpande, 1997). Other phrases that are used to describe inferential
measurement include: inferential sensor, virtual sensor, virtual instrument, and soft-

sensor (software sensor).

Once an inferential sensor has been developed and proven to be accurate in an on-line
situation, it can be used for control applications including actually becoming part of an
actively running control loop. Figure 3-6 illustrates how inferential measurement can be
used as a “soft-sensor” to quickly estimate the value of the primary output variable using

secondary outputs and then pass those values as delay free feed-back.
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FIGURE 3-6 Using a “soft-sensor” as part of a control loop (after Tham, 2000)

A practical example of where an inferential sensor can be useful is illustrated in
Figure 3-7. An ANN model for the softening process at the Rossdale Water Treatment
Plant was developed. All the important inputs to the model are those measured at the
influent to the alum and the influent to the lime clarifiers. The overall ANN model for
the softening process is shown at the bottom of Figure 3-7. Of particular interest is the
input called “pH lime influent”. Since an on-line pH meter to measure this input was not
installed at the plant, its value had to be estimated in real-time. Using operator lab test
data for pH lime mfluent, a virtual or soft-sensor was developed using ANN as shown in
the middle portion of Figure 3-7. To predict the lime dose requirements for the softening
process, the virtual pH meter ANN model is executed first and its output is fed directly to
the lime dose ANN model.
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FIGURE 3-7 Modeling the lime softening clarifier and virtual pH meter (after Stanley et
al, 2001)

It should be mentioned that even if an on-line pH meter had been available for the
example in Figure 3-7, a virtual pH meter would still be necessary to conduct simulation
tests for the lime softening ANN model. Although pH lime influent is an input to the
overall softening model, its value is dependent on other independent inputs such as
temperature, alkalinity, raw water pH, and alum dose. Therefore, during simulation, the
value of pH lime influent must be determined after the other input values have been

chosen.



Inferential sensing can also be useful for validating existing on-line analyzers. Basically,
the readings from both the on-line and inferential sensors are compared in real-time and
when the difference between the two exceeds a pre-set value, an alarm would be
generated to alert the plant operator. An investigation can then carried out to determine
the cause. Validation of analyzers in real-time not only provides early detection of an
impending problem but can also assist with controlling the costs of maintenance of the
instrument by ensuring that the analyzers do not get serviced excessively even if they are

performing well.

3.2.4 Issues with On-line ANN Execution

One fact that may be evident from the previous topics in this chapter is that all control
schemes require data to make them function properly. Therefore, data must be carefully
checked during model building and during model execution. These and other issues that

are important when ANN models are used on-line are discussed further below.

Sampling Frequency

When an ANN model is developed, the data used may have a sampling frequency and
smoothing or averaging factors that are quite different from what the developed model is
subjected to during on-line execution. For example, ANN models that were developed
for the Rossdale WTP softening process (and as well, models for other processes
developed by other researchers at the University of Alberta, Department of Civil and
Environmental Engineering) used daily averaged values. During on-line testing, the
models were executed essentially in real-time at about a one-minute frequency. In the
case of the softening process ANN model, the accuracy of predictions were about the
same as during model development but some smoothing of the output (lime dose) values
was required to reduce excessive changes of the lime feed rates. When a model is
executed at a faster or slower frequency than at the development stage, an accuracy check

should be conducted to confirm its validity prior to using it for automatic control.
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Data Conditioning

When real-time data from on-line instrumentation is fed to the ANN model, it is
important to condition the data where necessary. Conditioning could mean a reduction of
spikes and noise with filters, identification and removal of suspicious data points, and
detection of analyzer failures through built-in alarms generated by the analyzer itself or
through an inferential sensor operating in parallel. The automatic control system should
be programmed to deactivate and generate an alarm when failures occur so as not to

negatively affect the process.

On-line Analyzer Performance

The reliability and accuracy of data from on-line analyzers used by the control system
depends to a large degree on the commitment of resources to a quality assurance program
(Shanff et al, 2001). Most on-line analyzers used in the water treatment industry, for
example, require regular maintenance to keep them functioning well. For critical
locations, duplicate or even triplicate analyzers may be warranted to ensure that accurate

readings are being used by the control system.

Out of Domain Inputs

During ANN model development, the data set provided to the model forms the domain
within which subsequent predictions by the model are considered valid. As long as the
values of each of the input parameters fall within the range of values on which the models
were developed, the ANN model will interpolate well and accurate predictions can be
made (Baxter et al, 2001). Predictions made outside the domain can be inaccurate and
therefore must be detected on-line so that the control system is able to react by de-
activating its output and alerting the plant operator of the situation. To detect an out-of-
domain condition, a classification technique such as a Kohonen classifier can be
employed (Stanley et al, 2001). Briefly, the method is as follows: before the input set is
read by the ANN models, it is first passed through a Kohonen classifier ANN model
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which categorizes the new inputs into one of several known categories. If the input set
does not fit any of the known categories, the input set is flagged as an out-of-domain
condition and an alarm occurs which prevents the process models from outputting their

values to the rest of the control system.

Model Accuracy with Time

Once an ANN model has been developed from a historical data set, it can be used to
make accurate predictions as long as no significant changes occur that place the ANN
model in an out-of-domain predicament. Significant changes to the raw material, quality
of the incoming feed to the process, the process itself, and other environmental factors

could all affect model accuracy.

What is important for on-line implementation is to be able to actively detect that model
drift is occurring. One method to detect the drift is described by Bhat and McAvoy
(1990) which used two ANN models running side-by-side. Initially, both models are
exactly the same as they are trained on the same historical data set. Then one model is
frozen and is used on-line while the second model is re-trained as soon as enough new
historical data is acquired. Both models make predictions and the two are compared
frequently. In addition, the accuracy of the re-trained model is also monitored as it could
decline should significant process changes occur such as the use of a new chemical. In
this case, the model may need to incorporate new inputs prior to re-training. If the
accuracy of re-trained model is satisfactory and is significantly superior to the frozen
model, the frozen model is removed and replaced with the re-trained model and the

process is then repeated.

People Issues

As with any new technology implementation, acceptance by stake-holders is critical to
ensure a favourable result. Since ANN models are black-box type models (Zhang, 1996),

it is even more difficult to convince users of its validity as there are no equations to show
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how a solution is arrived at. It is therefore imperative to work closely with users and
show them how and why this technology works followed by examples showing it
working. It has been the author’s experience that operators tend to accept new ideas if

one can show that it works and will help them run the plant better.

3.3 ANN Model Integration with Real-time Control Systems

A natural follow up to the development of process models and their inclusion in advanced
control scheme designs is integration with plant control systems. Plant control systems
operate in real-time to monitor, control, collect data, generate alarms, perform safety
protocols, and execute control commands from operators or automatically through a
control program. Integrating ANN models with a real-time control system either as a
standalone system or via advanced control schemes can greatly extend the benefits of the
ANN modeling technique. This is because the system would be able to continuously
predict optimum set-points and if automated, optimize process parameters, costs, and

attain other plant objectives.

For ANN models to work effectively within a real-time control system, various systems
are required. These requirements are discussed further in the ensuing section. Following
this is an illustration of how a softening clarifier lime dose prediction ANN model
(developed in chapter 2 of this thesis) was integrated with EPCOR’s Rossdale WTP

control system to run in real-time using a feed-forward control scheme.
3.3.1 Integration Requirements

The integration of ANN models with real-time control systems requires that several
systems such as on-line analyzers, computer hardware and software, and communication
network systems work together in harmony. Furthermore, to make the integration more
useful, the needs of the different users within a company should be incorporated at the
design phase. For example, plant operations personnel would have needs for both on-line

and off-line models for process control, simulation and training, virtual analyzers, cost
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control and optimization. Other users’ needs may include scenario testing and longer
term forecasting for such items as water demands and chemical usage. Thus, information
needs to flow to and from the different users and this can affect how the various systems
mentioned earlier are integrated. Once implemented, user training of the ANN system is

a critical requirement to the overall success of the system.

In addition to having appropriate systems, procedures and protocols such as those
identified earlier in this chapter, there are two key additional items that facilitate the
integration of ANN’s in a real-time control system: SCADA systems and ANN

Interfaces.

3.3.1.1 SCADA Systems

A central part of many control systems in modern plants is the Supervisory Control and
Data Acquisition (SCADA) system. SCADA systems really describe two separate
functions — supervisory control is the remote control of devices such as pumps and valves
while data acquisition is the acquisition of data such as flow, pressure, and turbidity from

remote sensors (Gotoh et al, 1993).

SCADA systems typically run continuously and in real-time and are a very useful tool for
operating plants as they can be used to monitor and control equipment, record data,
rapidly identify problems, alert operators through alarms, and automatically activate
shutdown or startup sequences (Shariff et al, 2002). The vast amount of data stored by
the SCADA system is not only useful for preparing reports and to assist in
troubleshooting, but also for studying the performance of plant processes, in developing

models, and to help optimize costs and quality.

The various components that make up a SCADA system include communication
networks, computer systems including hardware and software, Programmable Logic
Controllers (PLC’s), and on-line instruments. An example layout of a SCADA system

for a water treatment plant illustrating these components is shown in Figure 3-8.
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FIGURE 3-8 SCADA system layout for a generic water treatment plant

Plant operators interact with SCADA systems through an HMI (human machine
interface) which is typically a computer. Both monitoring and control can be done via

the HMI. Several HMI units may be installed throughout a plant to provide quick and
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easy access to SCADA information. This is accomplished by networking the various
hardware components together so that they can communicate. In modern plants, the
communication networks can extend to the business side as well (and in fact to the
internet if necessary) thereby making it possible to provide real-time SCADA
information corporate wide. When a SCADA system is set up in this way, it can reach all
types of users such as operators, engineers, researchers, maintenance personnel,
managers, inventory control personnel, and others. In essence, a SCADA system is not
only a monitoring and control system but in today’s plants, due to more involvement by

various users, it is also a powerful real-time communication and decision making tool.

The various capabilities and user reach of SCADA systems make them an ideal platform
to integrate ANN models effectively for real-time monitoring and control purposes.
Although HMI’s provide an effective general interface for users to interact with the
SCADA system for basic plant operation, specific interfaces need to be developed and
implemented for ANN models. These (ANN) interfaces integrate with the control system
as well as the HMI.

3.3.1.2 ANN Interfaces

The second key requirement for successful integration of ANN with control systems is
ANN interfaces. ANN interfaces are important because they tie all the necessary
elements (such as runtime ANN models’, SCADA system, HMI, control schemes,
instrumentation, applications, and so on) together such that reliable, safe, and effective
interaction occurs between the operator and control system. This step is crucial to the
success of ANN based automatic control of plant processes. As such, the ANN interface

can be said to have two basic components: the control interface and the user interface.

" A runtime ANN model is one that no longer learns from previous examples, is portable as it does not
require most of the software that was originally used to develop it, and is capable of making predictions

with new input data.
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Control Interface

The control interface component interacts in real-time with the SCADA system and when
required to, with the user interface. It incorporates the ANN runtime model(s), a control
scheme such as the IMC described earlier in this chapter, and conducts input/output

operation including accepting control commands from the user interface.

The control interface is the heart of an ANN control system where decisions can be made
somewhat autonomously and in real-time. The interface can therefore become quite
complex in nature especially if optimization routines (which can require trial-and-error
and searching methods to arrive at solutions) are also incorporated. Stability and
reliability are therefore some of the important considerations in the design of control
interfaces. These features are usually included in advanced control interface designs
where additional capabilities are also incorporated. These can include an error handling
system (to identify and respond to erroneous data), early detection of problems and
alarming, and deactivation of automatic control or even the shutting down of systems if

problems escalate beyond established limits.

User Interface

The user interface component is designed to interact with the users of the ANN control
system. Through it, users can monitor performance and issue control commands that
affect how the ANN control system operates. An effective user interface is one that
conceals the more complex nature of the control interface from the user while
incorporating user-friendly features for quick and easy interaction. Unlike the control
interface which runs continuously, the user interface can be turned on or off without

affecting the performance of the ANN control system.

The user interface can be accessed by different types of users depending upon how it is
implemented in terms of hardware and software utilized and configured and what access

rights the users have been granted. Plant operators would require on-line real-time

81



interaction with the ANN control system and so would likely utilize a user interface
viewable on their HMI computers where improved stability, reliability and security are
more assured. Other users would not be allowed to issue control commands but may still
need real-time monitoring capabilities. User interfaces designed to provide real-time
monitoring but not control capability would be more suitable for these users. Figure 3-9
illustrates how the flow of information between the SCADA system, the various

interfaces, and users could occur.

ANN output ANN

Interface

Business
USers

"\ ANN output

. output
Instruments >
and SCADA
Computer
1 .
Controls nput ANN output

Data
Extraction/Import
Mechanism

FIGURE 3-9 ANN control system integration information flow

As mentioned, in developing and implementing ANN interfaces, both hardware and
software is utilized. Considering the ever increasing power and affordability of personal
computers, it is the hardware of choice for most situations. On the software side, many
applications and programming languages are available to handle the task especially for
standalone use and off-line execution of ANN models. For real-time applications, more
thought must be given to the selection of software especially if the interface will be used

for automatic control. In this case, reliability and compatibility of the interface software
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with SCADA software is a must. The use of common infrastructure and more open
communication standards can be very beneficial in developing interfaces as they help to
reduce the complexity of the interface (while presumably improving reliability), the
development time and expertise level required, and the initial and future support costs of
the interface. The use of open standards also makes the interface accessible to more users

in an organization.

The spreadsheet software called Microsoft Excel® which is commonly available in many
organizations can be used to develop ANN interfaces. Many of today’s SCADA software
use open standards to facilitate communication of information to other applications
including with Excel. The Excel software also has a built-in VBA (Visual Basic for
Applications) programming capability and so sophisticated algorithms can be developed.
With real-time connectivity, user familiarity, advanced programming capability, the
versatility of an electronic spreadsheet, and quick development times, Excel is an
excellent first choice for developing ANN interfaces. This is especially true during the
initial development and testing stages of the ANN control system where changes may

occur frequently.

When stability, security, reliability and control beyond the capabilities of Excel are
desired, specialized software such as the programming software Visual Basic (VB) or C™
can be used to develop custom ANN interfaces. The development time is usually much
higher when using programming languages but there is more flexibility in how the
interface works and looks. The development time can be reduced somewhat if Excel was
used initially to develop the interface because the VBA code in Excel can be largely
reused in the VB programming language. Both Excel and VB can be used to develop the
control as well as the user interfaces that make up the ANN interface. In addition, both

can be used for executing ANN models in real-time or in an off-line standalone mode.

A third system, primarily useful in developing user interfaces, is a web-based system. In
this system, the user interface is located on a web page in the company’s intranet web

server. Since the intranet web site can be accessed with web browsers which are
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typically built into most computer operating systems, web-based user interfaces can
potentially reach all staff in an organization. In addition, since the system is centralized,
there is no need to visit the users’ desktops to install the interface. Updates to the
interface can be deployed quickly and again without visiting the users. This feature alone
can greatly reduce the support costs of the ANN interface. Since the web-based interface
is primarily useful as a user interface, it needs to interact with a control interface that is

developed using either Excel or VB or some other application.

An example of an early development of a VB based and web-based off-line standalone
user interface is shown in Figures B-1 and B-2 located in Appendix B. An Excel based
real-time ANN interface which includes the control and user interfaces is developed in

the following section.

3.3.2 Lime Softening ANN Model Integration with Control System

After ANN models for the Rossdale WTP lime softening clarifier were developed as
described in Chapter 2, the models were ported to the Rossdale WTP SCADA system for
on-line testing and performance evaluation. Both forward and inverse models of the lime
and alum clarifiers were integrated so that real-time predictions of pH, alum dose, total

hardness and lime dose requirements could be done.

An ANN interface was developed which included the control interface and the user
interface. The control interface ran the four ANN models mentioned above in real-time.
For predicting and automatically controlling lime dosages given a total hardness target
set-point, a model-based feed-forward control scheme was programmed in the control
interface. The scheme also included an integrated real-time inferential (virtual) sensor
based pH meter. The need for such a sensor was described earlier in section 3.2.3 and
illustrated in Figure 3-7. All the predicted values in the control interface were read back
by the SCADA system so that when desired, continuous control of the lime feed dosage

could be done automatically.
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Although automatic control of the lime dose for the Rossdale WTP Plant 2 clarifier was
tested, it was only done for short periods of time to confirm that technically the ANN
control system was performing as expected. Instead, for the most part, the ANN control
system for the lime softening clarifier ran in a predictive mode twenty-four hours a day
making predictions of lime dosages given the actual plants present total hardness value
and also what the total hardness should be given the actual plants present lime dose. The
real-time predicted values were displayed on the SCADA system HMI and also historized

so that the ANN control system’s performance could be evaluated at a future date.

The following discussion deals with the design details of the ANN control system and

ANN interfaces that operate in a standalone manual mode or automatically in real-time.

3.3.2.1 ANN Interface for the Lime Softening Clarifier

Integration of ANN models with control systems can begin once the learning process has
been completed. A runtime version of the model is required at this stage. Ideally, the
runtime model is compatible with familiar Windows applications such as Excel and

Visual Basic.

Fortunately, the NeuroShell2 software that was used in developing all the softening ANN
models is capable of generating runtime versions of the ANN models and computer code
that can be used with minor modification by many different applications including Excel,
Visual Basic programming language and Web pages. An example of the computer code
generated by the NeuroShell2 software for predicting the alum clarifier pH is shown in
Figure 3-10.

The code was added to an Excel VBA program and a function called pH (flow, alum,
temp, raw pH, alkalinity) was created for the pH ANN model. This function can be
called and manipulated inside an Excel spreadsheet cell much like many other built-in
functions such as sin(x) or average(x). Once a function of the ANN runtime model has

been created in Excel, an ANN interface can be built. The interface could run in a
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standalone manual mode or, if integrated with a SCADA system, it could run

automatically in real-time.

Function tanh(netsum As Double) &z Doukle
tanh = (Exp{netaum) - Bxp(~netaum}) / ({Exp(netswm) + Exp(~netsum)))

| End Function

S T ¥ T PN

B A R LR R NS S E RS B ek b s

B R e s b kAR RIS EEE g
Function pH{inarrayl As Doubls, inarrayZ &= Double, inerray3 &4s Double, inarrayf As Doubls, inarrey5 4s Doubls) As Double
Din netszum As Double

Diwm featureZ{6) is Doubls _
Din feature3(6) As Double w F .

Din festured (6) As Double Visual Basic Code in Excel
Dim outarray(l) A= Double
Dim mycounter 2s Integer

pH (fiow,alum,temp,raw pH, alkalinity)

¥ imay kR
T oouteryay (i) is pHOd

Tf (inarrayl < 70) Than inarrayl = 70
If (inarrayl > 141) Then inarrayl = 141
inarrayl = 2 * (inarrayl - 70) / 71 - 1

| If (inarvayZ2 < 9) Then inarrey2 = 9
If {inarray? > 182) Then insrray2 = 182

S

FIGURE 3-10 Visual Basic code (partial listing) in Excel of a runtime pH ANN model

Standalone Manual Mode ANN interface

Developing an ANN model to run in a standalone manual fashion in Excel is relatively
straightforward. Figure 3-11 illustrates how this could be done for predicting pH and
lime dose. The required inputs for each model are entered manually in the table. As the
values are entered, the ANN model functions in cells 121 for pH and 125 for lime update.
Note that for the lime model, the pH ANN model (cell 121) is also an input and it would

not be possible to predict the lime dose without it. The standalone manual ANN interface
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is useful for determining intermittently the value of lime dose. For continuous control

however, an ANN interface running in real-time is required.
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FIGURE 3-11 Standalone manual ANN interface for pH and lime dose

Real-time ANN interface

The standalone manual mode ANN interface can be adapted to run in real-time if it were
possible to have the inputs vary automatically and in real-time (as opposed to being
manually entered). For example, if the input cells could be linked to the plant
Furthermore, if the ANN
model predictions could be read back by the plant control system then automatic control
Achieving all this

functionality really depends upon whether appropriate instrumentation exists and whether

instruments then the ANN models would run in real-time.

using advanced model-based control would be accomplished.
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a compatible SCADA system is available to move information back and forth between it

and the Excel interface.

At the Rossdale WTP, there exists appropriate instrumentation and compatible SCADA
system software (FIX32 by Intellution®) such that development of a real-time interface
can be attempted. The design of such an interface begins with an illustration of how

information flows between the various systems as shown in Figure 3-12.

ANN Runtime Computer

Excel Interface using DDE

Field input output Real-time Inputs
Instruments, ¢ from SCADA
Laboratory i
Measurements,

and SCADA ANN Runtime
Controls Computer Seftening Model
e.g. pH,
termperature, )
alum and lime |, OutPut _ input Real-time Qutput
flowrates | ) to SCADA

FIGURE 3-12 Real-time information flow path for the softening ANN control

The Intellution® SCADA software provides a communication protocol based on a
Windows standard known as Dynamic Data Exchange (DDE). This allows the exchange
of information to occur between the Excel based ANN interface and the SCADA in a
two-way real-time manner with update rates of less than one second. Consequently when
data from the field instruments is received by the SCADA, it can be passed over to the
Excel interface almost instantaneously. The ANN runtime models therefore also update
almost instantaneously generating predicted values for lime dose, total hardness, pH, and
alum dose. These values can be read by the SCADA software as analog inputs (see

Figure B-3 in Appendix B) using the same DDE protocol for display on the HMI or for
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automatic control of the lime feed dose. The real-time interface of the softening clarifier
is shown Figure 3-13. The data in all the cells are either inputs or outputs and each one

updates in real-time.
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FIGURE 3-13 Real-time ANN interface for pH and lime dose

The real-time ANN interface developed thus far incorporates both the Control and the
User interfaces as defined in section 3.3.1.2. An enhancement to the user interface would
be to have it displayed and controllable from any HMI computer by an operator. Since
the data is already available in the SCADA, a screen can be developed displaying the
appropriate information and controls. This is shown in Figure B-4 in Appendix B. Note
the Auto/Manual control mode feature in the screen display. By selecting Auto or
Manual mode, an operator can decide whether lime dose control should be done
automatically with the model-based control system using ANN or by the operator

manually entering values.
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The data generated by the ANN Control system can also be historized in the plant
SCADA system for future performance evaluation. The results for the on-line ANN
control system for the softening process have been previously discussed in Chapter 2. A
trend of the lime dose and total hardness actual and predicted values was extracted from

the SCADA historian and is shown in Figure B-5 in Appendix B.

3.4 Looking to the Future

It has been said that one of the major challenges facing process engineers is the reduction
of variable costs while still maintaining product quality, and that advanced process
control is the most effective technology available to realize this objective (Willis and
Tham, 1994). In the future, artificial neural networks are likely to play a larger role in
process industries by fulfilling one of the main requirements for implementing model-

based advanced controls — accurate models of processes.

For water treatment plants, the ability to model processes more accurately and affordably
will improve the possibility of implementing plant-wide control and management
systems. These are systems that link multiple models (process, energy use, production
capability, demand forecasting, quality, costs) into a constraint based decision making
system. Essentially, plant-wide control and management systems relate directly to
overall plant management objectives by linking business objectives with local unit

operations.

With increasing use of models, advanced control systems, plant-wide control and
management systems, and efficient interfaces, sharing of mmformation by the various
systems and users across the whole corporation in a reliable, secure, efficient, and timely
manner becomes a necessity. Therefore the use of more open systems (as opposed to
proprietary solutions) especially in the data communication field, and standards for

hardware, software and programming techniques will become more important.
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As drinking water quality regulations become more and more stringent, not only average
target values but also instantaneous target values for parameters such as turbidity and
particle counts are decreasing. This increases the need for tighter controls to prevent
water quality violations. Due to large time delays inherent in water treatment processes,
there is greater need to have accurate and continuous feed-forward type control at various
stages of the process so that adjustments can be made on a timely basis. On-going
training of operators to manage the more sophisticated plant-wide controls is also
important. Fortunately, once models have been developed for the plant, they can be used
not only for automatic control but also for simulating the plant which can be a very useful
tool for training operators to deal with especially difficult water treatment conditions (e.g.

spring runoff).

The role of SCADA Historians which collect and store plant information is increasing
from basic report preparation and trending to becoming an integral part in the
development of models and in providing data in near real-time for enhancing control.
The use of historical data for developing models in an off-line manner has been shown in
Chapter 2. However, models could also be developed on-line automatically using data
from the historian. On-line updating of models could improve the response to out-of-
domain data. One caveat to on-line ANN model development is the need to identify and
remove erroneous data as this may decrease the accuracy of the models and degrade
control. A possible method to improve responsiveness while still maintaining accuracy is
by developing long-term and short-term models. Long term models would be developed
off-line and geared towards accuracy, reliability and robustness while short-term models
would be developed on-line to be more responsive to changes in the process. Final
outputs would be determined by first comparing the outputs from both models and then
applying appropriate techniques for making a final decision (the technique could be as
simple as averaging the outputs of each model). Should large differences in the
predictions between the models occur, appropriate alarming could be generated. If the
difference continues for a longer period, it could indicate that the long-term model

requires re-training.
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3.5 Conclusions and Recommendations

This chapter has described the inadequacies of traditional PID controllers for controlling
some water treatment processes, and the growing need for using model-based advanced
control techniques for improving process control, automation, and costs. A major
requirement of model-based control techniques is accurate models of processes and this is

where ANN can be used.

A vital step towards the implementation of advanced controls is the successful integration
of ANN based models with plant real-time process control systems. This can be done by
first choosing a control scheme such as the ideal model-based control scheme or the more
sophisticated IMC (internal model control) scheme. Additional requirements for real-
time integration include a SCADA system, communication networks, on-line
instrumentation, and an ANN interface. It should be pointed out that advances and
expertise developed with these technologies has also led to applications for remote
operation of plants. This is described in detail in the following two chapters of this

thesis.

It was shown that ANN models for water treatment can be integrated with real-time
control systems to make continuous predictions and to control processes. An actual ANN
control system for the Rossdale WTP softening process was developed and tested. ANN
models developed in Chapter 2 were integrated into the plant SCADA system using a
feed-forward model-based control scheme with a real-time pH inferential sensor. An
Excel based ANN interface was developed to execute the scheme and to interface with
operators. It is also possible to develop interfaces using a VB programming language or
web pages. Web-based interfaces are particularly useful as they make ANN interfaces
more easily available to users corporate wide. However, proper security measures must

be applied to web-based systems particularly if the interface allows control capability.

The main goal of this phase of work was to develop and test a real-time ANN control

system and so, except for brief periods of time for testing the automatic control of lime
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feed dosages, the system was run in a predictive mode. Based on feedback from users
and the performance of the model, this phase of work was successful and the experience
gained shows that continuous automatic control is viable and should be the logical next
step for testing. It should be mentioned that this is no longer possible at Edmonton’s

WTP’s due to the stoppage of softening in early year 2000.

The techniques developed in Chapter 2 in developing softening models should be useful
for developing models for other softening plants. The integration techniques developed
in this chapter are not unique for the softening process and so they could be applied to
many other process automation problems. Since an on-line analyzer for measuring total
hardness was not available at the Rossdale WTP, feed-back control using the more
advanced IMC scheme was not attempted. It is recommended that if other trials are done,
such an analyzer should be acquired as it may provide finer control. Finally, maintaining
reliability and accuracy of the ANN control system with time is an important area for
further research. Specifically, out-of-bound input detection, error detection and data
handling techniques, model drift detection methods, and long-term/short-term ANN

modeling systems are areas that need to be investigated further.
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4.0 REMOTE MONITORING AND OPERATION OF ISOLATED SMALL WATER

FACILITIES IN COLD REGIONS

4.1 Introduction

Many small communities in Canada are isolated which poses unique problems in
operation and maintenance of water treatment and supply systems. As a result of this
isolation, availability of manpower and technical expertise to operate and maintain water
treatment systems can be a challenge. Regular access to facilities may also be difficult

during winter conditions and because facilities may be long distances apart.

In Chapters 2 and 3, it was shown that several technologies such as ANN modeling, on-
line analyzer systems, SCADA systems, data historians, and communication systems
must be integrated and work in harmony when implementing advanced automation
techniques. Consequently, these technologies have been advancing and the expertise
developed in those areas has also led to applications for remote facilities including the
development of QA programs for testing and proving on-line analyzers, remote
communication systems to monitor the performance of the remote plants, and utilization
of SCADA systems (local and wide area) to provide monitoring, control, and data
historization. These technologies are expected to have a significant impact in improving
drinking water quality and consistency in remotely located plants particularly those that

are small and isolated (Shariff et al, 2001).

This chapter describes the benefits and challenges of remote monitoring and operation of
isolated small water facilities. A pilot study of commercially available on-line chlorine

residual analyzers is also covered in this chapter.

4.2 Background

Approximately 85% of all community water systems (CWS) in the United States serve
less than 3,300 people (USEPA, 2001). Most small utilities face significant resource
97



challenges and their systems typically lack on-line monitoring and control equipment,
alarming systems, and automatic shutdown systems to protect water quality. Qualified
operators are also difficult to acquire and keep, particularly in isolated regions. As a
result, small systems have performance problems and much higher incidences of water
quality violations. A study of drinking water quality in Northern Canada (Armstrong et
al, 1996) found that small systems in the study region had higher treated water turbidity
than larger systems and also had the highest percent of coliform positive samples. The
USEPA (2001) reports that 86% of systems in violation of the MCL (maximum

contaminant level) are also the ones that serve less than 3,300 people.

The most common source for small systems is groundwater and many treatment facilities
rely solely on chlorination for the treatment of the potable water. Figure 4-1 illustrates a

simple groundwater chlorination treatment system.

Chiorine
Injection

Clearwell

Well —r>

To Distribution

v
Chlorine Residual
Sample Point

FIGURE 4-1 Groundwater source plant using free chlorine

For many small utilities, the current monitoring practice consists of employees
conducting manual chlorine residual tests once a day during the week with an absence of
any type of monitoring or testing on the weekends. In the event of a chlorinator
breakdown, it may be up to 72 hours before employees are even aware that a problem

exists and are able to respond. Indeed, there is a possibility that non-ideal quality water is
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being pumped unknowingly at any time due to undetected intermittent variations in water
flow and chlorine feed rates. The effects of a bacterial outbreak in a water distribution
system due to a lack of chlorination can have devastating effects (for example,

Walkerton, Ontario in year 2000).

In northern locations, there are additional risks due to cold air temperatures and
accessibility issues. Reliability of equipment can be an issue due to power failures being
more common in cold climates. Controls equipment can be adversely affected by low
temperature or high humidity and needs to be protected in special cabinets (Smith et al,
1986). A lack of available manpower, isolation, and obstructed facility access during
cold conditions mean that delays in visiting the plants are possible on any given day

which further increases the risk of violations.

To summarize, the challenges faced by small systems in cold regions include:

o Long distances between facilities.

o  Obstructed access during bad weather conditions.

e Low reliability of equipment in cold air environment.

e Low performance from sensor equipment in cold water temperatures.
e High turnover of staff.

e Treatment challenges due to cold water temperatures.

e High rates of water quality violations.

e Low technical, financial, and managerial capacity.

To gain improvements in water quality and consistency, the application of technology
can help small water systems just as it does larger water plants. Early detection and
prompt response to problems would help reduce the risk of non-ideal water (water that is
not meeting quality guidelines) from entering the distribution system. For example, if
non-ideal water could be detected in time, the plant could be shut-down automatically or

the water could be diverted to waste. Assuming that there was enough available storage
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capacity (a prudent strategy), water supply could be maintained for a period of time while

the problem is getting addressed.

Additional monitoring and control equipment along with a commitment to maintain small
systems can be very beneficial but in some cases can be very expensive. In general, the
initial cost of equipment is not as important as its reliability and this is especially true in
cold regions due to challenging conditions (Smith et al, 1986). The overall challenge
then is to come up with systems that are reliable, maintainable, produce acceptable
quality water, and are affordable. Three components are presented next which can help
meet some of the challenges faced by small systems, and in particular, small systems in

cold, isolated regions. They are:

e Continuous water quality monitoring and control using on-line analyzers.
e Remote communication systems.
e SCADA (supervisory control and data acquisition) systems for alarming, control,

data logging, reporting, troubleshooting, and to assist with process improvements.

4.2.1 On-line Analyzer Systems

Regular and frequent water quality monitoring is an important aspect of water plant
operations that helps prevent non-ideal water from entering the water supply system.
Consequently, the use of on-line analyzers is growing, especially in medium to large
sized water plants. In fact, regulators are beginning to require continuous monitoring of
water quality parameters such as residual chlorine, turbidity, pH and others (Shariff and
Thomas, 2001). - The number of vendors supplying on-line analyzer equipment also
seems to be increasing leading to increased competition which benefits end users in terms

of cost and performance of the analyzers

The alarms generated by on-line analyzers can be used to trigger the shutdown of a

system or the plant. When the continuous data produced by the on-line analyzers is
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integrated with control systems such as chlorine residual control, the consistency of water

quality is improved and problems are prevented.

When selecting a specific water quality monitoring and control device, certain features

need to be considered (Pollack et al, 1999):

e Sensitivity. Is the sensor able to measure the parameter at the lower limit of the
regulatory requirement?

e Reliability. Is the sensor able to supply stable and reliable performance over an
extended period of time? Are there any previous users or literature that support
this?

e Maintenance Requirements. Does the sensor require extensive maintenance?
Are there any consumables, such as probe solutions, that demand frequent manual
replenishment?

e On-line design. Can it be incorporated such that on-line calibration and remote
validation of performance is possible?

e Amenability/Compatibility. = Are the sensor power demands and signal
inputs/outputs compatible with other components?

e Cost. Is the cost of the sensor such that the overall expense of the remote
monitoring system makes it a viable option compared with manual site

monitoring?

For an on-line analyzer system to perform successfully, especially one that is depended
on for extended periods of time without re-calibration, a commitment of resources to a
quality assurance program is necessary. Many larger water plants have an in-house
contingent of maintenance and quality assurance personnel along with the equipment
necessary to conduct quality assurance on basic and sophisticated analyzers. Analyzers
located in remote locations, however, are likely to not have this luxury due to cost and
practical limitations. Analyzers that are better suited for these locations are the ones that
require less maintenance and are simpler to calibrate and fix while providing readings

that are precise and reasonably accurate at all times.
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For small water plants, chlorination is the preferred method of disinfection and
measurement of residual free chlorine is therefore required. There are several
manufacturers of continuous on-line analyzers measuring free chlorine residual using
different measurement techniques including amperometric, iodometric, polargraphic, and
DPD colorimetric. Some use reagents while others do not and the frequency of servicing

and costs vary substantially.

The cost of chlorine analyzers including installation was recently (2001) determined to be
between $6,500 and $13,000 (Shariff et al, 2001). Depending on the instrument picked,
the yearly operating costs (servicing, reagents, travel) can vary substantially as well —
between $600 to $4,000. The quality of the water in the various systems can affect the
performance of on-line analyzers. High levels of calcium carbonate can cause deposits
on electrodes which will increase the frequency of routine cleaning. The presence of
bromide in water causes interference due to bromine responding as chlorine and can
decrease the accuracy of colorimetric on-line chlorine analyzers due. Fluctuation in pH
can also affect the accuracy of some chlorine analyzers. Finding the right analyzer for a
particular application requires study of the water quality, and operating costs. A pilot test
of different analyzers for the application in question prior to purchasing is strongly

recommended.

Turbidity measurement in small treatment facilities is also common. There are various
technologies for continuous measurement of turbidity including light scattering at 90
degrees, infrared LED’s and detectors, and the ratiometric four-beam method. For lower
values of turbidity measurement, there are sensors available that can measure turbidity
accurately for longer periods between servicing and calibration than, for example,

residual chlorine analyzers.
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4.2.2 Remote Communication Systems

Remote communication systems allow information to flow between the remote sites and
a centralized location thus allowing monitoring and control without having to travel to
the facility. Many alternatives for communication systems exist today and newer,
cheaper, and faster methods are being developed all the time. The internet is beginning
to be used more and more to transmit and receive information from site to site and/or to
distribute live information anywhere in the world. The ubiquitous dial-up telephone
system is still being used extensively due to its extensive range and simplicity. The
various technologies being used for data transmission have been summarized by Pollack

et al. (1999) and include:

Telephone. Readily available, easily deployed, extensive range, and generally low cost
per call but can increase dramatically if dedicated or long distance lines are used with
continuous data flow.

Cellular. Uses the cellular network. Range is growing with time but may not be feasible
for very remote sites. Cost per call higher than regular telephone.

Radio waves. Fast response time and continuous monitoring, does not require any wires.
Startup and maintenance costs higher, low range, line of sight required.

Satellite. Extensive range. Start-up and per call costs high but expected to decline in the

next few years.

The final choice as to which communication system is used will depend on what is
available at the facility and costs. It should be mentioned that as more and more reliance
gets placed on remote communication systems for operating plants, backup systems and
procedures must be in place to handle failures. These may include redundant
communication links, local automatic plant shut-down systems in case water quality is

compromised during a communication outage, and emergency response plans.
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4.2.3 Supervisory Control and Data Acquisition (SCADA) Systems

SCADA refers to two separate functions — supervisory control is the remote control of
devices such as pumps and valves while data acquisition is the acquisition of data as such
flow, pressure, speed, or on-line analyzer readings from remote sensors (Gotoh et al,
1992). The reader is referred to Chapter 3 where a detail description of SCADA systems

has been provided.

With the advent of personal computers and off the shelf software, SCADA systems have
become more affordable than in the past. Still, it is a difficult cost to bear for many small
community water plants and consequently, many of them either do not have one or have a
very limited system. There are ongoing requirements for hardware, software and support
by technical experts that are necessary to keep a SCADA system functioning properly
and this can also become a burden that is difficult to manage by small communities,
primarily due to budgetary constraints. Yet, the advantages of having a SCADA system
are being recognized more and more by smaller utilities to improve monitoring and safety

of their water.

Clearly, a more affordable system would go a long way towards helping smaller
communities to ensure their water is safe at all times. Newer technologies and the
leveraging of existing ones such as the internet are thought to help with this situation.
The concept of a 24-hour manned central control center through which monitoring and
control of multiple remote small water plants is done will make the SCADA system
function available to small systems at a lower cost due to economies of scale (Shariff et
al, 2002). Reliable on-line analyzers can permit extended unattended operation which
would help reduce manpower and transportation costs for daily on-site visits. These

concepts are explored further in the pilot study described below.

104



4.3 Pilot Study

In late 2000, a proposal was put forward by EPCOR Water Services (Edmonton, Alberta,
Canada) to design a system that could monitor several small water treatment plants in
remotely located communities. The plants in question did not have any on-line analyzers
and were only being monitored once a day during weekdays (no monitoring on the
weekends). The proposal suggested installation of on-line analyzers and remote
communication systems at the various plants with centralized 24-hour a day monitoring
from the main control room located at one of EPCOR’s water plants in Edmonton. A
feasibility study was completed which indicated that the concept could be financially
acceptable and beneficial for small communities. A pilot study was initiated in early
January 2001 to assess the reliability and costs of operation of on-line analyzers, remote

communication, and SCADA operations.

4.3.1 Objectives

The types of analyzers suited for small systems in cold regions are the ones that are less
prone to failure in low air and water temperature environments, require infrequent upkeep
and servicing, are not very complex so that they can be serviced by local staff,
consistently provide accurate data, and have low operating costs.  Remote
communication systems also need to be less complex so that they can be easily fixed
should a problem occur. Remote communication systems that require less infrastructure

at the remote sites would be ideal.

The specific objectives of the pilot free chlorine analyzer test were:

e To test a variety of commercially available on-line chlorine residual analyzers for use
in unattended remote water plants.
1. identify analyzers that can reliably measure chlorine residual for at least 10
days at a time without requiring servicing.

ii.  determine the accuracy of the analyzer.
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1. determine the cost of operation and maintenance of the analyzer.
iv.  determine the skill levels necessary to maintain the analyzer.
v.  make recommendation for selecting analyzers with the above considerations
in mind.
e To document the capital and operating costs of the various means of communicating
with the remote water plants. To test the option of remote communication using the
internet.

e To look at options for SCADA for managing the remote water plants.
4.3.2 Pilot Setup

A pilot test setup was installed at one of EPCOR’s water treatment plants and consisted
of five different chlorine analyzers. A review of the different units was conducted and
suppliers were contacted to see if they would loan a unit for testing. Each supplier was
asked to assist in the initial setting up, startup and calibration (where necesséry) of their
equipment. This was meant to ensure all analyzers were equally ready to go from the

start.
4.3.2.1 On-line Chlorine Residual Analyzers

Although there are several methods to measure chlorine residual on-line, two methods are
used most commonly in water plants: amperometric and colorimetric DPD (N,N-diethyl-
p-phenylenediamine sulphate) (Shariff and Thomas, 2001). Amperometric measures a
potential generated at three electrodes while the colorimetric DPD measures a colour
change when an indicator is added to the liquid sample. Both methods require periodic
refilling with buffer or electrolyte solution. The amperometric has the potential for faster
response since it is measuring continuously, but this depends on configuration and flow

rate through the analyzer (Shariff and Thomas, 2001).

Amperometric analyzers require a pH meter to properly estimate the chlorine residual.

The advantage of this is that pH is being measured continuously which can be useful.
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The disadvantage is that it could cause erroneous chlorine residual readings if the pH
meter is not working properly. The colorimetric DPD method uses a buffer solution to
adjust the pH before taking the measurement, and therefore does not require a separate
pH meter. A disadvantage of the colorimetric DPD method is that other oxidants apart
from free chlorine (such as bromine) will be registered in the analysis if they are present

in the water.
Four of the units used in the pilot test were amperometric and one was colorimetric DPD.
Table 4-1 shows the specifications of each analyzer while Table 4-2 provides additional

built-in or optional features of each analyzer.

TABLE 4-1  Specification of each analyzer as quoted by the manufacturer

Range Quoted Accuracy| Response
Analyzer Type (mg/l) (mg/L) Time (s)
ProMinent Amperometric 0-2 0.01 1
W & T Depolox 3+ Amperometric 0-5 0.01 20
Swan FAM Trides Amperometric 0-3 0.06 60
HACH CL17 Colorimetric 0-5 5% 150
Endress & Hauser (E & H) | Amperometric 0-5 0.01 1

TABLE 4-2  Additional built-in or optional features of each analyzer

Analyzer Measarement Other features
Type

pH electrode to compensate for small pH changes in the
ProMinent Amperometric |sample.
Flow meter to measure sample flow rate.

Test unit did not have a pH compensation system

W & T Depolox 3+ | Amperometric although it is possible to equip the unit with one.

pH electrode to compensate for pH changes.
Swan FAM Trides | Amperometric |Flow control system for sample flow regulation.
Two temperature compensation probes.

HACH CL17 DPD Colorimetric{Uses a buffer to eliminate the need for pH compensation.

Endress & Hauser Amperometric |pH electrode to compensate for pH changes.

107



4.3.2.2 Pilot Design and Experimental

The pilot trial took place in the analyzer room at the Rossdale WTP located beside the
filter gallery. A board was set up and all five analyzers were mounted side by side. A
common header was used to feed water to analyzers. Several trials were done to test
different chlorine concentrations. Free chlorine is used in most communities. The
treated water in Edmonton is chloraminated, so water for the test had to be obtained prior

to the ammonia injection point.

The concentration of free chlorine within the Edmonton plant is typically > 2 mg/L which
is likely higher than many plants that use free chlorine as their sole disinfectant. To
mitigate this, an independent loop was created allowing free chlorine levels to fluctuate to
the analyzers. A tank was set up that could be filled with water from the effluent line of
one of the filters (filter #5) prior to ammonia addition. The water in the tank could then
be recirculated to reduce water loss and track the steady decrease in chlorine residual
over time. To reduce water loss, water from the four amperometric meters was returned
to the tank. Photographs of the pilot setup are shown in Figures C-1 and C-2 in Appendix

C while Figure 4-2 illustrates the general mechanical and communication connections.
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FIGURE 4-2 Schematic of chlorine analyzer pilot test

The analyzers were connected directly to one of the plant’s PLC’s (Programmable Logic
Controllers) and as well to two RTU (Remote Terminal Unit) test units manufactured by
ROM COMM Systems, which also contained an integrated cellular communication
system to transmit data on an hourly basis to a centrally located server on the internet.
Any alarms generated by the RTU were transmitted immediately to the server and could
potentially be also used to shut off equipment (auto-shutdown) on an actual water plant.
The information from the internet and from the local PLC’s was integrated with the main

water plant’s SCADA system so that the data could be compared side by side.

The RTU with the built-in cellular communication system is very easy to install and
commission, and costs less than $1,000 with monthly cellular link charges around $50.

The real-time data from each analyzer can be displayed on a web browser on any
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computer with an internet connection with appropriate user rights. In addition, the
analyzer readings can be incorporated into a centrally located SCADA system. As more
and more remote sites are integrated, the advantages of a SCADA system can be brought
to small remote plants at a much lower cost. Figure 4-3 depicts the layout of the internet

based communication link for the pilot study.

Remote Water Plants Data Collection Centre internet Control Centre

Cellular ftp, http, e-mail

Cellular

Pager or
Celi Phone

Any computer
with
access rights

FIGURE 4-3 Pilot Study Internet Communication Layout

For comparison purposes between the on-line analyzers and bench meters, grab samples
were taken three times a day and measured on a bench chlorine analyzer. A Wallace and
Tiernan amperometric bench titrator (see Figure C-3 in the Appendix) similar to that used
by the Rossdale Operators and Laboratory personnel to measure Edmonton’s drinking

water free chlorine residual was used for the bench analysis.
4.3.3 Results

The raw data from the pilot trial of on-line chlorine analyzers and the bench chlorine
meter is given in Table C-1 and plotted in Figure C-4 located in Appendix C. The results
are tabulated in Table 4-3. The two most accurate meters based on R?, absolute error,
and standard deviation when compared to the bench chlorine meter are the HACH CL17

and the Endress & Hauser.
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TABLE 4-3 Summary of beach versus on-line analyzers

Test Bench 2 Absolute Stm.ldi.'rd
. duration samples R error vs. deviation
Chlorine Analyzer bench vs. vs. bench
taken on-line bench (mg/L)
(days) #H (mg/L)
ProMinent 131 83 0.856 0.17 0.19
W & T Depolox 3+ 131 88 0.898 0.18 0.17
Swan FAM Trides 131 91 0.869 0.24 0.23
HACH CL17 131 82 0.999 0.04 0.02
Endress & Hauser 100 64 0.981 0.10 0.07

Figure 4-4 compares the on-line trends for the two best meters (HACH and E&H) and the
worst (Swan) over a three day span. The initial rise at the beginning is due to the
depleted tank being slowly filled with chlorinated water from the Rossdale WTP Filter
#5. At just after 6 AM on June 28/01, the chlorinated feed was stopped and the residual
began to steadily decline for all three analyzers. Both the HACH and E & H analyzers
closely matched each other, while the Swan analyzer read too high at the higher residuals

and too low at the lower residuals.
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FIGURE 4-4° Three days of historical data from SCADA for the Swan, HACH, and
Endress and Hauser free chlorine analyzers

In addition to performance, there were several other important parameters of concern:
ability to run unattended, cost of the meter, cost of operation and maintenance, time and
skill level necessary to operate and maintain the meter, compatibility with control options

and remote communication methods.

Four of the five meters had a cost within two thousand dollars of each other, making it
less important in meter selection. Recommended maintenance of the meters varied from
45 minutes per week to 1 hour per month. The colorimetric DPD meter had higher costs
due to the consumables it required but this was balanced by its low maintenance
requirement. Maintenance requirements vary depending on the type of meter and
between manufacturers. The colorimetric meter requires chemical replacement once per
month, sample cell cleaning every 1 - 4 months and tubing replacement once per year.
The amperometric meters require replacement of electrolyte every 6-18 months and

membrane replacement every 12 months or longer. All of these tasks require a minimum
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skill level to perform. The cost of the analyzer, its installation costs, ongoing operating
cost, and annual life cycle costs were estimated in Table C-2 in Appendix C (Penny,
2001).

In terms of calibration, the colorimetric analyzer is self calibrating, requiring no
maintenance or time. The amperometric analyzers must be manually calibrated.
Depending on the performance of the analyzers, calibration intervals varied from an
initial calibration at the start of the trial to frequent recalibration. The calibration
procedure can be initially confusing, and would require training or careful following of

the instructions in the respective manuals.

All of the analyzers tested were capable of generating alarms that could be used to trigger
automatic shut-down of other systems. This feature is useful to help prevent non-ideal
water from leaving the water treatment plant. The analyzers were also compatible with
typical control systems and remote communication equipment and so data can be easily

transferred where needed.

The results from the on-line chlorine analyzer pilot test show that there are chlorine
analyzers available in the market place that are capable of operating ten days and even
longer without requiring any sort of calibration or other maintenance. In the case of the
HACH CL17 analyzer, the duration of thirty days between probe cleaning (a
straightforward procedure that plant operators could be easily trained to do) coupled with
the accuracy of the analyzer makes it an ideal choice for unattended operation. The
analyzer also generates an alarm when the probe requires cleaning but will continue to
work effectively for some time after before it generates a probe failure alarm. This
feature is also helpful for unattended operation if operators are not on site when the probe

clean alarm activates.

As far as the remote communication system is concerned, the quickest to install and
configure and likely the least costly solution appears to be the internet based system as

shown in Figure 4-3. It can provide data not only to the central control center but also to
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any staff member who has an internet connection. Because this system integrates the
RTU and communication functions in one package and does not require any additional
communication infrastructure at the (remote) site, it is the least complex and could be

supported by the local staff.

4.4 Conclusions

The challenges faced by small isolated water plants in Canada are significant and include
a lack of manpower and technical expertise to operate and maintain plants, difficulty in
accessing the plants during severe weather conditions, and water quality violations. The
public health effects of improperly treated water can be serious and preventing such

failure must be the highest water quality objective.

By using on-line monitoring equipment, remote communication, and SCADA systems, it
is possible to have the plants run reliably unattended with monitoring and control from a
centralized location. The impact of applying this technology to isolated plants is
expected to improve the quality, consistency, and safety of water. However, the cost of
installing and managing this technology, if done with traditional methods, can be

prohibitively expensive for smaller plants.

The results from the pilot test of on-line chlorine analyzers show that they are capable of
operating for much longer than ten days at a time without requiring attention. It was
shown that both the colorimetric and amperometric based analyzers were capable of
meeting accuracy requirements however not all brands of analyzers performed well. The
results of the pilot test concluded that the colorimetric based analyzer was the overall best

performing unit in terms of meeting the objectives.

The wide area SCADA system concept and centralized control center presented in this
chapter provides smaller isolated water plants with many of the functions that larger
plants take for granted. These include 24-hour monitoring, control, alarming, data

logging, daily, monthly, and yearly report generation. As the number of remote plants
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being monitored increases, the costs to individual plants become more favourable
because all plants would be sharing the costs of the common equipment and its support.
Centralization also makes it convenient to bring technical expertise at a lower cost when

required to small water plants to handle problems with water quality, operation, and

optimization.
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5.0 AUTOMATION AND UNATTENDED OPERATION OF THE E.L.. SMITH

WATER TREATMENT PLANT

5.1 Introduction

EPCOR owns and operates two conventional water treatment plants in Edmonton,
Alberta, Canada each capable of producing over 250 ML/d. A philosophy of continuous
improvement in operating the plants has led to a steady increase in overall efficiency and
water quality over the past number of years. Investments in process optimization,

process control and automation have been partly responsible for this.

Due to changing work priorities from conducting repetitive types of tasks to higher skill
and more diverse tasks, and to help reduce night shift work, an initiative was put forward
in 2000 to pilot test unattended operation of the E.L. Smith Water Treatment Plant for
certain periods of time. This would free up some operator time and allow them to
develop the multiple skills necessary, especially in the area of maintenance, to meet the
future needs of the organization. In turn, this would also allow the maintenance staff to
focus on the more sophisticated type of work. A skill-based pay structure is also part of

this program and has been implemented.

To achieve unattended operation successfully, it was identified early on that not only
technical issues but also people issues would have to be addressed (Shariff et al, 2001).
This chapter presents EPCOR’s experience in converting from on-site to off-site control a
large conventional water treatment plant producing high quality water through
coagulation, flocculation, sedimentation, filtration, disinfection, and water pumping
facilities. The steps taken to achieve this goal, the challenges involved in implementation

and the benefits realized are also described.
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5.1.1 Scope

The major objectives of this project were:

e Identify and modify systems, procedures and schedules to allow reliable
unattended operation of the E.L. Smith WTP.

e Conduct a pilot test of operating the E.L. Smith WTP plant from the Rossdale
WTP control room between November 19th, 2000 and February 19th, 2001.

e During the pilot test period, conduct unattended operation for up to 6 hours at a
time between the hours of 01:00 and 7:00 am.

e Identify and analyze all events during the pilot phase that adversely affect reliable
unattended operations. |

e DPrepare a report on the results of the pilot project and submit to Alberta
Environment with recommendations.

e If recommended to continue, develop a strategy for extending the duration of

unattended operation and include as part of regular plant operation.
5.2 Overview of the E.L. Smith Water Treatment Plant

EPCOR owns and operates two water treatment plants in Edmonton, Alberta, Canada
which serve approximately 800,000 people in the area. The two plants, namely the
Rossdale WTP and the E.L. Smith WTP, draw water from the North Saskatchewan River.

5.2.1 Treatment Processes

Both plants utilize conventional water treatment processes including clarification (alum,
polymer, powdered activated carbon), disinfection (free and combined chlorine),
filtration (filter-aid polymer), pH adjustment (caustic soda), on-site storage and pumping.
A process flow diagram of the E.L. Smith WTP is shown in Figure 5-1. The annual

range of raw water quality parameters and chemical dosing is quite wide (see Table 5-1)
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and therefore, at certain times of the year, very quick response to changing conditions

becomes a necessity in order to maintain the stringent in-house water quality guidelines.

ON-SITE

v

RESERVOIRS

River Water

Distribution System

Alum Chlorine Chlorine Ammonia
Polymer Polymer Caustic Soda
Carbon Fluoride Chlorine

FIGURE 5-1 E.L. Smith WTP process flow diagram (2000)

TABLE 5-1 Range of raw water quality and chemical dosages at the E.L. Smith WTP

Raw water quality

parameters; chemical Unit Low High Average
dosages

Turbidity NTU 1 > 2500 30
Colour TCU 2 120 12
Temperature deg C 0 25 8
Alum mg/L 17 315 56
Polymer mg/L 0.08 0.50 0.25
Powdered Activated Carbon* mg/L 5 200 15
Chlorine mg/L 2.25 3.80 2.90
Fluoride mg/L 0.7 0.8 0.75
Caustic Soda mg/L 2 60 | 11
Aqua Ammonia mg/L 0.59 0.83 0.75

*Used during taste and odour events only
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5.2.2 Control Systems

Prior to implementation of unattended operation at the E.L. Smith WTP, both plants were
staffed twenty-four hours per day by operators on rotating 12-hour shifts. Each of the
plants has a central control room from which remote monitoring and control of plant
systems as well as the distribution system can be done. The SCADA systems themselves
have been networked to integrate with the business side to the extent that real-time
mformation is available instantly to anyone in the corporation, and in a similar graphical
format as on the operator stations. A push towards improved efficiencies in the areas of
power and chemical consumption along with tighter water quality regulations has put
greater emphasis on automation, modeling, computer systems, information integration,

and staff retraining.

The control systems for the water treatment plants and distribution operations are PLC-
PC based and all three use the same SCADA software, Intellution® FIX-DMACS running
on a Windows NT operating system. An Ethernet local area network is used to network
the computers at each plant while dedicated high speed underground fibre optic cabling is
used to network the plants together to form a wide area network. The ability to monitor
all sites from any computer station is readily available. The two plants are approximately
24 km (18 km by river). Figure 5-2 illustrates the process control network at each plant

and how the two are connected.

One of the key questions to be answered was whether unattended operation of the E.L.
Smith WTP could be achieved without compromising finished water quality and supply
to customers and without having excessive call-outs to the plant due to inadequate
process control systems or general performance of equipment. Although EPCOR has had
previous experience in remote operation of plants (Cochrane, Alberta — approximately
300 km away), that much smaller (10 ML/d) plant was designed from the ground up to
operate automatically and unattended and did not have the wide raw water quality and

chemical dosage range experienced at the E.L. Smith WTP. This was the main reason
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that the initial phase of unattended operation at the E.L. Smith WTP was conducted as a

pilot project.
Business
Network and
Internet
Underground Fiber Optic Cable
Router/Firewall Router/Firewall

SCADA Remote Sites PLC SCADA Remote Sites PLC
Switch Switch Switch Switch Switch Switch

i -

ROSSDALE WTP EL SMITH WTP

FIGURE 5-2 EPCOR Water Services control system layout

5.3 Methodology

Early into the project, it became apparent that there were various opinions, both negative
and positive, as to the feasibility of the project and the amount of investment necessary to
complete the yet to be determined modifications to the various systems. In addition,
there was some scepticism about even being able to complete the necessary changes, as

only six months of time was available.
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In order to complete the project in time and within the available budget, it was clear that
the most important item was the current state of automation at the plant followed by a list
of recommendations for modifications. Based on the findings of this assessment, a time

frame for completing the project could then be established.

A document entitled “Policy on Automated/Unattended Operation of Surface Water
Treatment Plants” (10 State Standards, 1997) was found to be of great assistance and
was used as a guideline in this project. It is recommended reading for anyone who is
contemplating instituting unattended operation. The document can be ordered from the
web site www.hes.org and includes a list of fifteen information/criteria items that should
be included in an engineering report prior to commencing unattended operations. A brief

summary of these items is given here:

1. Identify critical features to be monitored electronically. Provide a description of
automatic plant shut-down controls. Dual or secondary alarms.

2. Provide automated monitoring of all critical functions. Provide automated plant
shutdown on all major alarms. Prohibit automated start-up of plant after
shutdown due to a major alarm. Provide control system with capability of
challenge testing of major and minor alarms.

3. Provide capability of manual operation of all treatment plant equipment and
process function.

4. Provide a plant flow diagram showing critical features, alarms, and automated

controls.

Provide description of off-site control stations with ability to control operation.

Ensure a certified operator is available on “standby duty.”

Inspect plant locally at least once per day.

Identify operator training requirements.

I N

Provide an operations manual and emergency procedures.
10. Conduct a six month demonstration period to prove reliability of procedures,
equipment and surveillance systems.

11. Develop a schedule for maintenance of critical equipment.
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12. Ensure sufficient finished water storage is available to meet CT requirements in
the event of production interruption.

13. Provide sufficient staffing to operate and maintain all aspects of the treatment
plant.

14. Conduct weekly checks on communication and control system to ensure
reliability.

15. Ensure provision is made for adequate security of the treatment facility.

Incorporate intrusion alarms.

With the above in mind, the following was identified as functions and work that would be
the required ingredients for a successful implementation of unattended operation of the

E.L. Smith WTP.

Implementation Committee

An implementation committee was formed early on in the project. The function of the
committee was to address issues related not only to technical items but also shift schedule
and operator job function changes, training requirements, manpower requirements,
setting clear protocols for such things as plant shutdowns/startups, and communicating
information to the various departments. In essence, the implementation committee was
empowered to review and as well, make final decisions on any item related to the project.
Due to the fact that the nature of this project affected most departments in one way or
another, the committee membership reflected this and included personnel from
operations, maintenance, process services, network services, engineering, controls,

safety, training, laboratory, and marketing.

Assessment of Systems

An assessment of plant systems as shown in Table 5-2 was done to determine the current

level of automation, redundancy, and remote monitoring and control.
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TABLE 5-2  Plant systems assessment list

Alum, aqua ammonia, polymer, carbon, chlorine, fluoride, caustic

Chemical feed systems
soda

Electrical, instrument air, fire alarms, UPS, emergency power
Power, air, fire systems, availability of systems after power bumps through remote
resets

Raw water pumping, clarifier operation, filter operation, on-site

Process and pumping finished water reservoirs and pumping

Availability and performance of pH, turbidity, particle count,

On-line analyzers . . . .
¥ colour, chorine residual, and fluoride residual analyzers

Auto-shutdown Automated shutdown capability of equipment on major alarms
Control system SCADA, remote communication
Security Intrusion alarms, video surveillance

Operator Training, Shift changes, and Communication

Operator training was identified as an important aspect to the success of this project
particularly with respect to operating systems solely from a remote site through a
computer system. To improve the level of understanding for operators on current and
newer systems to be deployed as a result of this project, the Training and Manuals Group
conducted a review of the accuracy of the Operator Training Manual with the goal of

updating critical sections and utilizing them to train operators.

A special sub-committee was set up to review the impact on operator work schedules and
life-style as a result of unattended operation. The committee consisted of members from
the plant operations staff and union representatives. The committee was also responsible
for communicating with the rest of the operator staff and to recommend the best possible

solution for operator schedules.

Accurate and timely communication to the internal staff, the Union, the media and the

public at large was considered to be vital to the overall success of this project. A plan
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regarding communications was developed by the marketing and business development

personnel.

Approval (license) to Operate

The E.L. Smith WTP Approval to Operate granted to EPCOR by Alberta Environment
was reviewed in detail with the regulator to ensure that EPCOR would not inadvertently
violate any of its requirements while conducting unattended operations. Some of the
areas that were to be reviewed were related to the use of on-line analyzer readings as
opposed to bench tests for regulatory reporting, remote operator certification level,

reaction times, and protocols to be followed should failures occur.

Once the above mentioned functions had been reviewed and changes implemented, a two
week trial run was planned to help identify any outstanding issues that needed addressing

prior to commencing unattended operations.

5.4 Implementation

Following the completion of the various assessments, a large number of
recommendations were produced and it became clear that not all recommendations could
be implemented nor was it necessary to do so. To assist the members of the
implementation committee in prioritizing the recommendations based on the overall
objectives to be met and to ensure that the recommendations that do not get implemented
do not adversely affect water quality or otherwise impart undue risk to water supply and
overall safety, a straight forward and simple rating system was developed as shown in

Table 5-3.

Once the recommendations had been prioritized, all the A* and A items required
implementation. The work was completed through in-house resources as well as outside
electrical and mechanical contractors. The various designs for the changes necessary,

contract administration and supervision of the contractors were done by in-house staff.
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The role of in-house expertise in many areas was vitally important to meeting the
completion date of the project. A summary of the work that was done is described in the

following sections.

TABLE 5-3  Rating of recommendations

Recommendation Tmplication
Rating
Critical recommendation - must be implemented prior to onset of
A* unattended operation. An example would include such things as

remote control of filter operation or post-filter bypass; on-line chlorine
or fluoride residual analyzers, security system related recommendation.

Highly desired functionality that needs to be implemented as soon as
possible i.e. if not prior to onset of unattended operation then shortly
thereafter. For example, remote resetting capability of the low lift
A pumps after a power bump; remote switching of chemical feed
equipment due to failure. These types of occurrences, if not alleviated
remotely, will likely require a plant shutdown and subsequent operator
and/or maintenance call-out.

Desirable improvement or functionality to be implemented in the long
run especially if the duration of unattended operation is increased or
occurs during worsening raw water conditions. The recommendation
would improve the overall system efficiency and performance; reduce
risk of failure; improve water quality beyond current targets; further
improve security and so on. Some of the recommendations falling in
the B category may already have been included in the company’s long-
term capital improvement program. Examples: a new polymer feed
system; additional redundant analyzers; advanced process control
techniques.

Likely will not be implemented at all unless additional justification can
be provided.

5.4.1 Chemical Feed Systems

The desired minimum level of automation for each chemical feed was automatic flow
pacing to the incoming water flow rate based on a given dose set-point. The ability to
switch to a backup system remotely was also a preference. Based on this, the following

changes were made:

e Alum — improve flow control and remote control of feed system.
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e Aqua Ammonia — install remotely controllable isolation valves.

e Chlorine — extensive upgrades to the feed system required. New mass flow meters
added, remote switchover capability for chlorinators and eductors and various piping
redesign, analog leak detector sensor installed to help gauge severity of leaks, and
upgraded automatic flow, dose and residual controls programmed.

e Polymer — add remote batch initiation switches, remotely controllable service water
isolation valves, and wire additional alarms to the SCADA system.

e Caustic Soda — install remotely controllable isolation valves.

5.4.2 Electrical, UPS, Power, Fire alarms

e When intermittent power bumps occur, much of the equipment installed at the plant
requires resetting locally before the affected equipment can be restarted. Therefore,
remote resets which allow resetting of the equipment from the SCADA system were
desirable and were installed for the low-lift and high-lift pumps, clarifier recirculators
and rakes.

e UPS power replenished by the onsite emergency generator was connected to the
SCADA local and wide area network communication equipment.

e Upgraded SCADA screens for the power system and other electrical changes were
prepared.

e Connection of fire alarms to the plant SCADA system.

5.4.3 Filters

The existing filter controls were outdated and required extensive rework in terms of
control hardware (PLC’s) and control programming. This had been identified earlier
during the year. The implementation committee recommended and helped design a
highly automated system which gave full remote control capability of individual filters to

the operator via the SCADA system.
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5.4.4 On-line Analyzers

An extensive array of on-line analyzers already existed at the plants. Key additional
analyzers installed were new fluoride residual analyzers that had been tested for accuracy
by the plants on-line analyzer committee, and additional chlorine analyzers for improved
control and as well, redundant analyzers were bought and installed. Sample line designs
and changes were also done. An on-line QA/QC web based database showing statistical
process control charts for each analyzer along with procedures for maintaining the

analyzers was also developed and implemented.

5.4.5 Automatic Shutdown Systems

To further protect finished water quality, existing automatic shutdown systems were
enhanced and new ones were developed and implemented. The systems were designed to
activate even when remote communication was lost or if the main SCADA computer
crashed. All individual filter effluent quality was protected by an automatic filter
shutdown system which activated whenever the effluent particle counts or turbidity
exceeded a preset value. Shutdown systems were also added for protecting the on-site
reservoir finished water quality with automatic closure of valves based on out of range

values of chlorine residual, fluoride residual, pH, and turbidity.

5.4.6 SCADA Systems

The E.L. Smith WTP SCADA system host can be accessed from the Rossdale control
room via an existing high-speed redundant dedicated fibre optic cable network.

Additional changes included:

e Installation of additional operator stations at the Rossdale control center.
e Installation of a backup E.L. Smith SCADA host computer at the Rossdale control
center which could be activated by an operator during failures. To provide this

capability, the E.L.. Smith PLC communication network required conversion from a
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proprietary and less compatible system to a more modern and open Ethernet based
system that was compatible with the existing high speed fibre optic link between the
plants.

e Backup communication path between control rooms.

e Additional operator screens to aid with monitoring the plant systems more
quickly/efficiently. An example of a new screen created specifically for unattended
operations is a comprehensive graphic of the E.L. Smith plant (shown in Figure D-1
in Appendix D) that shows important statuses of most systems, alarms, and important

control set-points.

54.7 Security Systems

An extensive review of the security system was performed and a large number of

recommendations were made of which a few are mentioned here:

e Complete review of all doors including re-defining the function of each door and re-
keying. Upgrades included repairs to all doors and hatches, and installation of door
locks.

e Improved intrusion detection capability by installing additional door alarms and
motion sensors and repairing existing alarms.

e Repairs to the fence, new signage, and control of the main gate from the SCADA
system.

e Installation of networking equipment to allow real-time viewing and control of all
security cameras from the Rossdale control room computers. A tape system for
recording video from all cameras.

e Establishing procedures for routine checking of various security systems.

e (Cell phones for shift charge operators.
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5.4.8 Training

A major effort was undertaken to ensure that the operations manuals were up to date and
that the operators were trained on the procedures. To accomplish this, a web based
operations manual was set up and as well, a practical training program for the operators
with written exams was implemented. For complex systems such as filter controls,

simulation software was used to aid in the training process.

5.4.9 Communication

A communication plan was prepared to ensure accurate information was being

transferred in a timely manner. Several methods were used:

e Regular newsletters were prepared and attached with the employee pay-cheques. The
newsletters (see example in Figure D-2 in Appendix D) were prepared in a question
and answer format and covered a variety of issues such as time frames, reasons for
testing unattended operation, shift schedule impact, benefits to staff, technical
information, risks involved and how they would be mitigated and so on. A example

e Information was also presented on the company intranet web site.

e Regular meetings with the operations staff were held.

e Implementation committee meetings were held.

e Updates were provided to corporate staff during presentations by the president of
EPCOR Water Services.

e Updates and presentations were provided to the regional customers during regularly
scheduled meetings.

e An information pamphlet was prepared for release to the media if required.

5.4.10 Shift Changes

A separate committee was established to review the impact of unattended operation on

operator’s staff lifestyles. Prior to unattended operations, the plants were operated on
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two twelve-hour shifts — one starting at 7 am and ending at 7 pm, and the second starting
at 7 pm and ending at 7 am. The shift committee worked very closely with the operators

and a consensus was reached with the addition of a new shift between 2 pm and 2 am.

5.4.11 Approval to Operate

The Approval to Operate (formerly known as License to Operate) is prepared by Alberta
Environment (AEnv) and lists all the requirements that must be met by the utility in
operating its water treatment plants. Discussions were held with the approvals engineer
which led to the suggestion by the engineer that the unattended operation of the E.L.
Smith WTP should initially be done as pilot project. As long as all the required
monitoring and reporting criteria as stated in the approval were not being compromised,
no amendments to the Approval would be required. A report following termination of
the pilot project would be prepared and after review, a decision would be made as to

whether any amendments would be required in the future.

5.4.12 Departure/Security/Alarm Response Procedures

e A check-list was prepared for the operator to review every time the plant was left
unattended. It included items such as checking of equipment to ensure it was
available for control remotely to ensuring that all the security systems were left in a
functional order. On any given night, unattended operation would not proceed if key
systems were not working, could not be monitored or controlled from the SCADA
system, or if challenging treatment conditions occurred.

e A policy was outlined regarding plant startup after an unscheduled shutdown. During
unattended operation, it was stated that the plant could be restarted and all systems
activated remotely with the exception of the on-site finished water reservoir inlet
valves. These valves could only be opened after an operator had conducted a site

visit and confirmed that all was in order.
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5.4.13 Electronic L.og Books

Electronic log books became a necessity as personnel began to monitor the plants
remotely. Web based log books were developed in-house and these were made available

to any user through the local intranet server.
5.4.14 Pilot Trial

Once all systems were considered ready, a 2-week trial run of unattended operation was
conducted. During the trial phase, operators were to stay on-site in the control room for
the duration and only monitor the plant through the SCADA system. Any events that
required attention would be responded to through the SCADA system only unless it was
not possible to alleviate the problem and the event could cause a major issue. The
purpose of the trial run was to determine if there were any outstanding issues that had not
been identified in the earlier assessments. The trial phase identified a couple of items that

required attention during the trial phase:

e The post filter automatic bypass system tended to activate intermittently. It was
determined that very short lived spikes from the chlorine and particle count analyzers
were triggering the closure of the finished water inlet valves. The programming was
adjusted accordingly.

e Some of the door alarms switches began to malfunction and required replacements.

e A few minor computer related glitches required attention.

Once the trial run was completed, the unattended operation pilot project officially began

starting November 19™, 2000 and ending on February 19", 2001.
5.5 Results and Discussion

The overall results from the pilot trial phase of unattended operations of the E.L. Smith

WTP were very encouraging. The operations staff soon became comfortable in
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monitoring and controlling all equipment remotely including washing of the filters,

making chemical adjustments, and turning pumps on and off.

Since it was required for the charge operator (most experienced operator) to drive for
thirty minutes or so to the Rossdale plant at 01:30 am to complete his/her shift whenever
unattended operation was being conducted, some of the operators were not too keen on

this as it meant driving late and in some cases, a longer drive home.

A few call-outs were made during the trial phase. One was due to an intermittent faulty
analyzer reading triggering the post filter bypass, and the second due to a suspicion that a
small chemical leak had started and was entering the on-site sanitary tank as detected by
a high pH reading. In both cases, improvements were made to reduce the chance of the
problem from occurring again. There had also been intermittent problems with the video
camera system. In summary, events, call-outs, or cancellations during the 3 month trial

included:

e High pH reading in Sanitary Tank — valve in boiler room leaking.

¢ Post filter bypass activated due to faulty particle count sensor.

e UPS power failure — affected SCADA and Filter PLC — unattended operations was
cancelled for one night.

e Process problems after plant shutdown — unattended operations was cancelled for one
night.

e Motion Sensor in the Chemical Feed building activated but nothing could be viewed
on the camera. The Highlifts were shut off and the police were called. Nothing was
found. A faulty / dirty motion sensor or flickering of lights may have caused the

alarm.

5.5.1 Other Observations:

e The use of the intranet for such things as the log books, operations manual, and

QA/QC database for on-line analyzers has also had the effect of improving
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communication between the different areas including the operations staff at the two
plants and between the maintenance and operations staff. The web based approach
provides a single source of information for all staff at any time and its use is expected
to grow.

e The presence of the E.L. Smith WTP operators at the other plant on a regular basis
has also improved communication, teamwork, and learning of other systems.

e Due to the fact that the E.L. Smith plant is now operated unattended, all new
installations of equipment and systems must meet a minimum standard for
automation. This has affected engineering designs and projects that are implemented
at that plant.

e The criticality of repair for equipment has also been affected somewhat. There is
now an increased urgency to have equipment repaired much sooner for such things as
on-line analyzers, security systems, controls, and any equipment that cannot be
operated remotely due to a break-down. Failure to do so could mean that unattended
operation may not be possible on that day thereby requiring an after hours operator at
a premium rate. The operations staff are now more proactive in identifying problems
and conveying them to the maintenance staff and ensuring that they understand the
priority of a given piece of equipment. -Backup systems can no longer be left
unavailable for extended periods due to a breakdown.

e The experience in operating a sophisticated plant such as the E.L. Smith WTP from a
remote location has given not only the operations staff a higher level of confidence
but also the other affected groups as well including the management staff. It is a
milestone for the company and it has provided an understanding of what is required
and what is important when it comes to unattended operation. This experience will
help with future endeavours in operating out of town plants in a reliable and cost

effective manner.
5.5.2 Post Implementation Review

Following the pilot trial phase which ended on February 19%, 2001, a review was

conducted. Based on the success of the trial, it was determined that to make it more
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effective, the duration of unattended operations needed to be extended to 12-hours at a

time which is the current length of operator shifts.

A report on the pilot trial which included the proposed new duration of unattended
operation was presented to AEnv. Upon approval from AEnv, EPCOR Water Services
implemented Phase I of the project and unattended operation (what is now commonly
referred to as remote operations) of the E.L.. Smith WTP was officially formalized and
made part of normal plant operations beginning late November, 2001. The latest
synopsis of unattended operations of the E.L.. Smith WTP is very positive and very few

minor incidents have been encountered.

In Phase II, system improvements that were implemented were designed to improve

security, water quality measurements, and power recoverability. Briefly, they included:

e Additional motion sensors and door alarm contacts in the clarifier, chemical feed,
and the on-site treated water reservoir buildings.

e Additional cameras including an external camera overseeing most of the plant
site.

e Improved system for controlling the E.L. Smith camera from Rossdale and for
recording the video from each camera for future viewing.

e An on-line colour meter for raw water and a Streaming Current Detector (SCD)
meter.

e Improved automatic power recoverability system for Highlift pump #4 (one of
two large finished water pumps) to help ensure that customers are provided with
adequate water pressure and supply as soon as possible after power outages.

e Various control and redundancy improvements.

136



5.6 Conclusions

This chapter has presented EPCOR’s experience with converting one of its two
conventional water treatment plants from a fully staffed operation to unattended
operation for periods of time. The project was successful and has provided the company
and its staff with valuable experience and confidence in its ability to reliably operate
treatment facilities with multiple processes that have highly variable raw water

conditions.

The time frame required and capital investment necessary to convert a plant to
unattended operation depends on the type of treatment and its present state of automation.
The E.L. Smith WTP was not originally designed with unattended operation in mind, but
some of the newer systems had been designed and operated with automation in mind over
the past several years. This helped to speed up the conversion to unattended operation
not only due to fewer systems requiring changes but more significantly due to the
availability and use of experience that the in-house staff had gained over the years from

designing and operating automated systems.

Finally, it is recommended that utilities that are considering unattended operation for
their plants must conduct a pilot phase approach as described in this document. It allows
the utility to assess what works and what requires changes. It also helps the staff to

become acquainted and comfortable with the new method of operation.
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6.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

6.1 Conclusions

The overall objective of this thesis was to develop appropriate automation techniques for
drinking water treatment plants to improve water quality and consistency and costs. The
techniques were to address a full spectrum of plants from small isolated production
facilities that require only basic treatment to larger more sophisticated plants that must
deal with difficult treatment challenges and increasing costs of production. To this end,
the thesis was focused on two major areas of automation: advanced control techniques
and remote monitoring techniques. These were developed in four separate study

sections:

1. Development of ANN models for a full-scale lime softening process at the
Rossdale WTP.

2. Development of computer process control methods for integrating ANN models
into a SCADA system.

3. Development of reliable and cost effective automation and remote monitoring
methods for small remotely located and isolated water systems.

4. Implementing unattended operation of a large conventional water treatment

facility namely the E.L. Smith WTP.

It was found that artificial neural network (ANN) based models for the Rossdale WTP
lime softening process yielded much more accurate results compared to actual plant
performance then the USEPA WTP modeling software. For example, the USEPA model
was only able to predict total hardness to an accuracy of 15 mg/L on average with gross
errors reaching as high as 70 mg/L.. The ANN models on the other hand predicted to an
accuracy of within 0.5 mg/L on average with gross errors reaching only 9 mg/L.. In
addition, the average lime dose accuracy using the ANN model was within 0.5 mg/L.
The ANN meodels could also be useful at other plants with similar processes as the

architecture and methodology developed in this research can be re-applied thereby
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greatly reducing the time required to develop the models. Furthermore, integration of
ANN, model-based control schemes, and real-time control systems to achieve advanced
control is a viable solution for water treatment processes where a higher degree of control

is required.

For simpler plants, particularly small isolated facilities, the use of on-line monitoring,
remote communication, and SCADA systems can provide reliable unattended operation
with monitoring and control from a centralized location. The impact of applying this
technology to isolated plants is expected to improve the quality, consistency, and safety

of water.

For larger, more sophisticated plants with challenging raw water conditions such as the
E.L. Smith WTP, implementing unattended operation is a much more involved process
and both technology and people issues must be addressed. The success of this project
was largely due to an empowered Implementation Committee that was formed early in
the project to manage both technology and people issues. The Implementation
Committee also created sub-committees as necessary to review specific areas (e.g. shift
schedules). Through this process, all stake-holder’s input was received and operator buy-
in and acceptance was achieved which helped to smooth out tensions once unattended
operation was started. Other benefits included an increased level of confidence in
managing plants remotely for operations staff, other affected groups and the management
staff. The experience gained has helped EPCOR with future endeavours in operating out
of town plants in a reliable and cost effective manner. On the technology side, it is
expected that advanced controls will likely be installed first in larger more sophisticated

plants in the near future.

Other findings from this research were:

1. Tt was illustrated that an accurate inferential or virtual sensor for predicting the
alum clarifier effluent pH can be developed with ANN. It was developed in this

study to serve as an input for the lime ANN model when conducting “what if”

140



scenarios. It was also shown that the virtual sensor can become part of an actively
running control loop where real-time predictions are required.

To further improve the accuracy of the softening ANN meodels and to make the
accuracies of the forward and inverse models match more closely, other relevant
input parameters such as solids content in the clarifier and sludge recycle flow
rates need to be identified and evaluated. However, it may be difficult or even
impossible to obtain reliable data for all the desired input parameters (as was the
case in this study).

A vital step towards the implementation of advanced controls is the successful
integration of ANN based models with plant real-time process control systems.
This can be done by first choosing a control scheme such as the ideal model-based
control scheme or the more sophisticated IMC (internal model control) scheme.
Additional requirements for real-time integration include a SCADA system, on-
line instrumentation, and an ANN interface.

It was shown for the lime softening process models that once the ANN models are
integrated with real-time control systems, continuous predictions can be made and
that these can be used for automatic control of lime dosages.

The results from the pilot test of on-line chlorine analyzers showed that they are
capable of operating for much greater than ten days at a time without requiring
attention (the target of ten days was chosen to make sure that the analyzers could
be depended upon should site visits to the plants be reduced to every 7 to 10
days). It was shown that both the colorimetric and amperometric based analyzers
were capable of meeting accuracy requirements however not all brands of
analyzers performed well. The results of the pilot test concluded that the
colorimetric based analyzer was the overall best performing unit in terms of
meeting the objectives.

The wide area SCADA system and centralized control center concept was shown
to be capable of providing smaller isolated water plants with many of the
functions that larger plants take for granted. These include 24-hour monitoring,
control, alarming, data logging, and daily, monthly, and yearly report generation.

As the number of remote plants being monitored increases, the costs to individual
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plants are more favourable because all plants wéuld be sharing the costs of the
common equipment and its support.

The time frame required and capital investment necessary to convert a plant to
unattended operation depends on the type of treatment and its present state of
automation.

The use of contemporary automation techniques to treat water does increase its
safety and consistency when compared to the traditional reactionary method of

treating water.

Finally, it can be concluded that as utilities face increased pressures to manage costs and

maintain quality, the degree of control required to run the plants efficiently will increase

too, which will likely lead to an increase in the use of automation.

6.2 Recommendations for Future Study

The recommendations for future study that are made here are based on observations and

results achieved during the study phase.

L.

Maintaining  reliability @ and  accuracy of the ANN  control
system with time is an important area for more research. Specifically, out-of-
bound input detection, error detection and data handling techniques, model drift
detection methods, model robustness, and long-term/short-term ANN modeling
systems are areas that need to be investigated. The feasibility and practicality of a
system that would automatically update ANN models on-line needs to be

researched further as well.

The ability to model processes more accurately and affordably improves the
chances of implementing plant-wide control and management systems. These are
systems that link multiple models (process, energy use, production capability,
demand forecasting, quality, costs, and so on) into a constraint based decision

making system. More research is required in this area to help water treatment
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facilities attain plant-wide control to reap important benefits in water quality and

consistency and costs of production.

Development of more on-line inferential sensors for the water treatment process
would be very useful for validating existing on-line instruments, for use in control
schemes, and for producing real-time predictions for parameters whose values are

only determined infrequently and not at the time of sampling.

For remote monitoring of plants, reliable, affordable and low maintenance on-line
analyzers do exist for certain parameters but more work is required for others

such as colour.

To improve the availability of the communication systems used for remote
monitoring, redundant links that can be quickly and easily activated during
failures either automatically or by the operations staff through their computer

systems need to be developed.
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APPENDIX A Lime Softening Clarifier Modeling with

Artificial Neural Networks
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TABLE A-1 Water quality guidelines for EPCOR plants in Edmonton (1997 version)
| HOUALTA/EDRONTON) LI STA

Water Quality Objective/Warning Limit Control Limit Approval " Aqualta ?
Parameter Min Max Min Max Requirement Shutdown Levels
Turbidity
Clarifier Effluents 3 10
Individuat Filter 0.1 0.3 <1.0 {<2.0)® >0.5
Combined Effluent 0.1 0.2 <0.8 @ >0.5
High Lift Pumps 0.1 0.3 >0.5
Distribution System 1
i aste at ELS

Combined Chiorine
Pre-Reservoir 1.8 2.3 1.7 2.4 <1.6 or »>2.5
High Lift Pumps 1.8 2.3 1.7 2.4 >0.5 and <2.5 <1.6 or >2.5
Field Reservoirs 1.5 2.4 >1.0 and <2.5 <1.0 or >2.5
Distribution System 1.0 2.4 >0.5 and 2.5 <0.5 or>2.5
Log Removal (Giardia)
Hourly Average per Piant 3.2 3.1 >3.0 <31
Bacteria (After Filtration)
HPC/t mt 10 500
Total Coliforms/100 ml 0 0 <10 in 1st sample >0 in 2nd sample
Fecal Coliforms/100 mi 0 0 0 >0
pH
High Lift Pumps 8.0 8.5 7.5 8.7 >6.5 and <9.0 <6.5 or >9.0
Post Filter 8.0 8.5 7.5 8.7 <7.5 or >9.0
Lime Waste at ELS >6.0 and <9.0 <6.0 or >9.0
Fluoride
Daily @ HLP 0.95 1.05 0.9 1.1 08-1.2 <0.9 or >1.1
Monthly @ HLP 0.95 1.05 0.9 1.1 09-11 <0.9 or »1.1
Volatile Organics
Raw >0.100
Post Filter >0.020
Trihalomethanes
Post Filter 0.02 0.05 <0.1 >0.1
Colour (TCU)
@ HLP 2 5 15 >10
Taste and Odour
Post Filter Inoffensive Inoffensive Inoffensive
Total Hardness
@ HLP
CCPP
Conductivity (umhos/cm) Anytime contamination is
suspected.

- parameters in log books exceeding the exceeding warning range should b

(1) Approval Requirements

- daily average values, unless otherwise indicated

- according to Alberta Environment Approval, parameters outside these limits represent violations of the approval to operate.
(2) SHUT DOWN

- instantaneous values.

- See Emergency Manuat for additional details on shutdown criteria.

(3) Individual filter turbidity shall be less than 1 NTU 99% of the time(daily), and never exceeding 2 NTU.
Combined filter turbidity shall not exceed 1 NTU if raw > 2.5 NTU, 0.8 NTU if raw 1.6-2.5 NTU or 50% of raw if < 1.6 NTU.

{4) Individual filter turbidity >5 NTU, shutdown HLP's and notify the Plant Director for further action.

- ail units are mg/L unless listed separately, changes from last version highlighted

T. Wetmore / R. Welz
o

File: pragmalfirwelzWQ_STO.XLS
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FIGURE A-2 USEPA WTP modeling software input screen 2
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FIGURE A-3 USEPA WTP modeling software input screen 3

FIGURE A-4 USEPA WTP modeling software input screen 4
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Table 2
Predicted Vater Socftening Under Awverage Conditions

Bl Ak Caleiwn{l)} MHagnesium{2} Sludge
Hardmness Floc®* Hardness Floc¥

jLocatlion (-} (mg/L} (my/L CaC03) (mgfLy  (mgdL)  {mg/L)
Influent 8.4 128 116 ¢.0 48 0.8 8.0
Bl um 7.2 112 1ie B.0 38 0.8 8.0
pid Mix 7.2 112 116 4.0 38 0.0 8.0
Flocculation 7.2 112 116 8.0 48 0.0 0.0
Settling Basin 7.2 112 116 5.8 18 6.0 62.2
7.8 78 177 94.6 a3 6.8 62.2

Rapid Mix 7.9 78 177 93.6 48 g.0 62.2
Softening Basin 7.9 78 130 47.3 48 0.0 16%.5
Settliing Pasin 7.9 78 332 3.5 48 8.9 147.3
arbon Ploxide 7.5 1] 92 0.0 48 0.8 147.3
hlorine 7.3 83 92 0.0 18 0.0 147.3
pnia 7.4 &6 92 8.0 38 g.9 147.3
1ltration 7.4 173 92 6.0 48 0.0 147.3
learwell 7.4 86 92 8.0 a8 8.8 147.3
P Effluent 7.4 13 92 0.0 48 4.0 117.3
Settling Basin 7.3 13 92 g.8 43 B.0 127.3
pizt. Sample 7.4 1 92 6.0 a8 b.9 137.3
Bnd of System 7.3 13 92 a.8 a8 8.0 147.3

1) Floc* iz Cali3 preciplitate plus swper-saturated CaCi3. The precipitate
iz removed by a Softening Basin while the super-satwrated CaC03 will
pass throwgh the kasin. Simllar for Mg({DH)2 Flock.

| 2} Hagnesium hardness (mg/L as CaC03) and Floc* (mg/L as Mg(OH)2).

FIGURE A-5 USEPA WTP modeling software resuits screen
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TABLE A-2  Actual Rossdale WTP plant 2 process data and model results

Al Li USEPA
Raw water quality Chemicals Cla:rf::zr a ;?ﬁzr ANN model predictions model

prediction

pate 1 3 Al Lime clarifi Lime clarifi

ELS Raw : Lime um ime clarifier ime clarifier

temp pH ha:(c)!t:;ss alkalinity Caicium ‘g‘g‘g I;;gz doseas| pH haIg::ss clarifier Alum dose total Lime dose total

Hardness Ca(OH), pH hardness hardness
1-Jan-97 6 7.9 187 141 1314 14 65 85.8 7.69 11563 7.7 12.8 1121 €4.3 18
2-Jan-97 5 7.9 188 145 130.1 12 64 845 7.76 1123 7.7 98 112.8 64.5 118
3-Jan-97 6 79 180 142 1262 12 66 87.1 7.73 115.0 7.7 1.0 112.4 855 118
4-Jan-97 | 82 79 194 153 130.0 12 69 91.1 737 112.9 78 102 113.4 705 119
5-Jan-97 7 79 195 155 1333 14 70 92.4 7.72 113.5 7.7 124 1133 734 119
6-Jan-97 8 8 194 151 135.0 14 72 85.0 7.72 114.1 7.7 16.1 110.8 704 113
7-dan-97 8 8 196 151 135.1 11 72 95.0 7.78 1123 7.8 134 111.1 69.8 113
8-Jan-97 7 8 186 149 136.3 13 68 89.8 7.82 114.7 7.7 111 113.0 69.2 120
S-Jan-g7 9 79 180 152 1325 13 70 92.4 7.83 1139 7.8 9.0 1129 67.8 113
10-Jan-97| 10 79 188 149 132.1 10 69 91.1 7.8 1134 7.8 95 11241 67.3 109
11-Jan-97) 94 7.9 187 140 132.0 9 &3 83.2 7.76 1120 78 10.3 112.0 4.8 115
12-Jan97{ 96 7.9 185 139 126.7 10 63 83.2 7.75 115.9 7.8 10.7 111.7 62.4 114
13-Jan-97] 63 79 184 132 1265 9 61 80.5 7.76 109.3 7.8 120 1.4 61.1 16
14-Jan-97 | 7.4 8 182 129 1247 9 58 7686 7.74 1129 7.8 124 110.2 57.5 115
15-Jan-97| 7 8 182 149 129.3 10 58 766 7.77 115.1 78 13.8 110.9 62.9 116
16-Jan-97 8 8 181 142 1204 10 &8 76.6 7.75 1104 7.8 13.2 1102 61.3 115
17-Jan-97] @ 8 181 139 1243 10 56 73.9 7.78 111.3 7.8 1.5 1109 59.2 118
18-Jan-97( 9 8 179 135 1229 10 55 7286 7.81 1121 7.8 10.0 110.6 55.6 M7
19-Jan97| 6 8 178 132 1203 13 55 726 7.82 1134 78 10.5 1113 54.4 119
22-Jan-97| 88 8 177 135 1228 10 50 66.0 7.82 1113 77 9.0 116.1 513 122
23-Jan-97| 8 8 175 134 120.2 10 50 66.0 7.79 110.7 7.7 90 115.3 50.2 120
24-Jan-97 8 7.9 172 130 116.3 10 48 63.4 737 110.8 77 90 1135 481 121
25-dan-971 7 7.9 170 126 117.9 10 45 59.4 7.74 1133 7.7 110 11286 46.1 123
28-Jan-97} 7 7.9 171 128 119.5 10 45 59.4 7.75 115.5 7.7 103 113.4 46.8 124
27-Jan-97| 7 7.9 170 129 119.6 10 47 62.0 7.73 11386 7.7 11.2 112.6 46.7 121
28:Jan-97 8 8 173 133 1224 9 49 64.7 7.81 116.1 1.7 9.0 1149 48,1 118
29-Jan-97| 7.3 8 177 135 119.1 1 48 64.7 7.82 114.4 7.7 9.0 117.3 51.1 124
30-Jan-87| 7 8 178 126 122.0 12 50 66.0 7.71 114.2 77 113 115.6 52.1 124
31-dan-87| 7.5 8 180 135 127.0 15 52 8.6 7.66 117.0 7.7 15.0 114.3 55.2 126
1-Feb-97 | 7.3 8 176 137 1226 15 54 713 7.64 113.6 7.7 16.4 1116 537 120
2-Feb-97 | 66 8 176 135 120.5 15 54 713 7.64 111.8 7.7 15.9 111.6 £3.8 120
3-Feb-97 6 8 170 133 1183 15 49 84.7 7.63 108.9 7.7 16.2 110.7 49.8 121
4-Feb-97 [ 8 169 129 116.5 16 48 63.4 7.61 1135 7.7 16.8 110.4 485 122
5-Feb-97 5 8 168 132 113.8 20 52 88.6 7.55 1084 76 21.0 109.8 511 120
6-Feb-97 7 7.9 185 129 111.6 20 52 68.6 7.52 107.1 7.6 28.0 108.1 49.2 118
7-Feb-97 | 94 79 165 127 114.0 20 52 68.6 7.51 1021 76 29.1 106.6 50.4 M7
8-Feb-97 8 8 168 130 1183 20 82 68.6 7.5 108.4 7.6 25.0 108.1 518 119
9-Feb-97 | 586 8 170 134 119.8 20 51 67.3 7.83 108.5 7.6 232 110.7 52.6 123
10-Feb-97| 56 8 170 134 1204 20 51 87.3 7.59 108.6 7.8 19.2 1127 516 123
11-Feb-97{ 58 8 172 132 120.1 20 52 68.6 7.68 1121 76 19.9 113.6 52.8 123
12-Feb-97| 5 7.9 172 132 116.4 20 53 70.0 7.59 1163 76 215 114.8 524 124
13-Feb-07| 6 8 168 131 110.9 20 50 66.0 7.57 110.3 7.6 202 112.0 50.5 122
14-Feb-97} 55 8 164 132 114.6 20 52 £68.6 7.54 11141 76 228 110.4 48.5 116
15-Feb-97} 55 3 167 129 1166 19 52 68.6 7.57 107.3 76 201 122 49.9 "7
16-Feb-97{ 6 8 169 130 1185 21 51 67.3 7.58 118.1 78 19.5 113.0 50.2 122
17-Feb-97{ 55 8 168 128 118.0 20 54 73 7.56 1213 7.6 20.6 112.4 48.8 117
18-Feb-87} 67 8 166 126 118.9 20 49 64.7 7.57 110.3 76 19.7 112.4 49.1 121
19-Feb-971 57 8 172 133 1184 20 50 86.0 7.57 1141 76 20.8 1136 528 126
20-Feb-97{ 85 8 168 133 113.8 20 50 66.0 7.58 113.8 78 208 110.6 50.6 121
21-Feb-97f 8 8 165 125 1130 20 47 62.0 7.53 1102 7.6 224 108.3 49.5 122
22-Feb-97] 6 8 160 124 114.2 20 43 56.8 7.56 1115 76 20.1 1108 458 123
23-Feb-97} 6 8 164 126 119.0 20 45 59.4 7.57 115.3 7.6 19.6 112.0 473 124
24-Feb-97| 4 8 165 127 119.0 25 50 66.0 7.52 1152 7.5 24.8 114.3 50.3 123
28-Feb-97{ 0.5 8 158 121 113.0 15 46 80.7 7.63 107.5 7.6 191 116.5 42,6 114
1-Mar-97 { 0.5 8 160 131 114.8 15 45 58.4 7.61 116.0 7.6 19.8 118.0 43.8 118
2-Mar-97 | 0.5 8 160 129 1150 15 47 62.0 7.62 114.3 76 18.2 116.2 437 115
3-Mar-97 1 8 165 124 1201 15 49 647 7.63 114.6 7.6 18.4 1182 46.2 117
4-Mar-97 5 8 168 127 118.8 15 50 66.0 7.61 1152 76 17.6 1143 49.0 118
5-Mar-97 7 8 169 130 1203 15 52 68.8 7.59 110.8 7.6 18.2 111.6 506 116
6-Mar-g7 | 7.2 8 167 129 1194 15 46 60.7 7.61 110.7 7.6 17.6 1123 49.2 121
7-Mar-97 | 8.1 8 168 132 121.4 14 48 634 783 114.6 77 171 111.8 49.3 119
8-Mar-97 | 65 8 173 135 118.9 15 80 66.0 7.63 1167 7.6 17.7 114.6 523 125
9-Mar-97 | 53 8 171 140 118.0 15 5 67.3 7.62 116.3 786 19.5 114.0 51.4 120
10-Mar-g7| 686 8 170 131 119.5 15 50 86.0 7.64 114.3 76 16.0 113.8 50.1 119
13-Mar-97| @ 8 159 126 113.2 14 47 62.0 7.62 108.7 7.7 16.5 108.2 453 M
14-Mar-97| 8.3 8 160 123 116.1 14 46 60.7 7.62 110.5 7.7 16.0 109.2 45.6 113
15-Mar-97| 86 8 162 126 115.3 14 46 60.7 7.65 113.3 7.7 14.6 1104 46.2 115
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Table A-2 continued

. . Alum Lime - USEPA
Raw water guality Chemicals Clarffier| clarifier ANN model predictions madel
prediction
pate 1 3 Al Lime clarifi Lime clrifi
ELS Raw . Lime um ime clarifier ime clarifier
temp pH ha:gtféss alkalinity  Calcium ggz ;‘o";: doseas| PpH harglt:a’ss clarifier. Alum dose total Lime dose total
Hardness Ca(OH), pH hardness hardness
16-Mar-97{ 84 8 163 119 115.3 14 45 594 7.87 112.9 7.7 125 111.6 465 118
17-Mar97} 10 8 162 122 115.3 15 47 620 7.7 1126 7.7 1.2 1104 46.4 115
18-Mar-977 9.6 8 161 121 1104 17 48 63.4 7.66 108.5 7.6 141 110.5 439 114
22-Mar-97| 7 8 164 17 1111 28 48 634 742 105.9 75 325 106.8 473 117
23-Mar-97{ 6 8 151 110 107.8 26 46 807 7.43 1101 75 3t.9 107.2 44.2 115
24-Mar-97| 6 8 148 115 105.3 25 42 554 7.49 107.8 7.5 257 107.4 42.1 117
25-Mar-97| 0.7 8 149 124 107.8 23 40 528 75 110.1 7.6 28.1 113.6 42.2 120
26-Mar-97f 0.5 8 150 118 108.0 22 38 502 7.51 1151 7.5 27.9 114.3 420 123
27-Mar97{ 05 8 152 117 106.5 25 41 54.1 7.52 116.4 7.5 273 116.2 43.3 123
28-Mar-97| 0.5 8 152 118 109.3 41 48 647 7.36 113.2 73 43.0 114.0 47.9 127
29-Mar-97|. 0.5 8 154 131 110.0 67 60 792 7.23 116.2 72 60.8 113.4 57.1 137
30-Mar-97| 05 8 147 127 1059 83 63 832 7.03 114.6 7.1 91.8 117 61.6 140
31-Mar-97y 05 8 137 120 a9r.7 94 63 83.2 6.94 112.8 7.0 1031 111.4 60.1 139
1-Apr-97 1 79 125 108 86.6 138 58 7686 6.88 111.8 6.8 1274 111.3 60.8 173
2-Apr-97 1 7.9 123 107 87.7 117 50  66.0 6.78 113.7 6.8 131.3 111.6 57.0 163
3-Apr-97 1 8 127 108 90.1 120 70 924 6.71 115.3 6.8 119.3 114.1 66.1 143
4-Apr-97 | 3.6 8 132 113 94 1 118 70 924 6.71 115.5 6.8 1187 113.8 70.9 145
5-Apr-97 | 7.6 8 137 114 99.1 106 69 g1.1 6.82 118 6.8 110.6 1112 702 140
6-Apr-97 | 4.1 8 141 125 102.7 91 68 898 6.92 1126 6.9 89.9 110.5 68.5 133
7-Apr-97 1 8 152 121 1100 75 66 871 7.05 112.9 7.0 733 1145 65.0 134
8-Apr-97 1 8.1 156 131 110.0 75 75 990 7.02 114.3 7.1 78.7 1131 69.6 124
9-Apr-97 1 8 153 132 109.0 79 70 924 7 109.9 74 87.4 111.5 70.3 133
10-Apr-97 1 8 156 127 109.1 70 &5 85.8 7.04 1133 7.1 79.5 1128 66.8 135
11-Apr-97 | 1 8.1 160 129 110.2 56 62 818 7.13 110.1 7.2 64.4 112.9 64.7 129
12-Apr-97 1 8.1 162 135 115.2 54 56 739 721 112.8 72 58.0 1124 63.0 137
13-Apr-97 1 8.1 162 136 112.8 54 58 766 7.256 116.6 7.3 555 112.5 60.8 134
14-Apr-971 1.2 81 146 135 102.6 72 55 728 717 111.0 71 63.7 1111 584 138
15-Apr-97 | 1.4 8 136 117 97.0 92 57 75.2 6.96 113.8 6.9 90.4 111.5 58.5 144
16-Apr-97 | 1.3 8 130 110 879 107 59 77.9 8.9 1108 6.8 97.4 113.0 60.8 149
17-Apr-97] 1.4 8 120 102 90.5 114 57 752 6.75 1131 6.7 112.6 113.9 58.0 147
18-Apr-971 1 8 116 102 84.0 118 58 766 8.71 113.3 6.8 121.4 113.1 56.8 146
10-May-97| 134 83 166 133 1156 60 66 a7.1 7.23 106.6 7.3 718 108.9 67.4 128
11-May-97| 145 83 172 139 1185 61 64 845 7.24 1116 73 67.7 112.0 68.1 137
12-May-97¢ 14.8 - 8.4 173 141 118.3 56 83 83.2 7.27 1128 7.4 63.2 113.4 65.8 134
13-May-271- 14.8 84 171 141 116.5 56 85 85.8 7.32 111.0 7.4 58.0 1111 64.9 129
14-May-97| 162 84 169 136 119.0 58 65 85.8 7.28 1106 7.3 59.7 111.9 65.8 129
15-May-87| 178 83 173 137 118.0 60 70 924 7.3 11338 7.3 58.0 112.7 68.5 128
16-May-897{ 19 B84 174 138 1213 53 68 898 7.31 1116 73 56.3 1126 67.4 125
17-May-97| 17 84 178 137 123.0 47 68 898 7.39 1109 7.4 50.5 112.6 68.1 124
18-May-97| 14 84 177 139 12241 52 86 87.1 7.33 1M2.2 7.4 573 1137 708 131
19-May-97{ 12 = 84 176 137 1226 48 64 845 7.39 116.0 74 54.6 112.8 66.1 129
20-May-97] 11 84 178 142 1233 41 63 832 7.52 113.7 75 454 112.8 61.2 126
23-May-97| 10 83 173 136 118.0 50 65 85.8 7.42 1144 7.4 50.2 1119 62.2 128
24-May-97| 9.9 83 168 140 114.7 70 67 884 7.25 115.1 7.2 67.3 111.8 68.0 138
25-May-97| 106 83 165 141 111.9 98 74 977 7.02 115.5 7.0 92.3 115.4 77.9 150
26-May-87| 11 8.3 163 140 114 101 75 99.0 6.94 113.9 7.0 101.2 114.8 797 149
27-May-97| 12 .82 162 135 111.2 107 83 1096 | 6.92 117.4 6.9 1102 115.1 79.14 144
28-May-97] 13 83 159 128 1117 88 78 103.0 7.01 110.0 7.0 91.0 109.8 742 130
29-May-97| 14 83 161 133 114.8 82 68 B98 7.13 112.8 74 78.7 1121 69.1 139
30-May-97| 166 8.3 162 130 1124 78 64 B45 713 1115 74 79.3 114.8 68.1 142
31-May-97} 182 83 157 128 115.0 79 55 728 7.06 119.5 74 89.4 123.1 60.6 148
1-dun-97 | 187 83 157 127 1124 79 52 686 7.08 1257 7.1 87.2 126.5 552 153
2-Jun-97 | 188 83 161 13 1111 74 51 67.3 7.14 128.3 7.2 80.2 127.8 53.8 153
3-Jun-97 | 181 83 161 133 109.1 74 53 700 7.22 126.8 7.2 70.8 126.3 531 151
4-Jun-97 | 17.2 83 160 129 1113 72 46 607 7.21 1.7 7.2 69.5 130.5 49.7 157
5Jun-97 { 167 83 164 129 116.5 87 53 70.0 7.25 127.2 7.2 64.4 123.3 534 148
6-Jun-97 | 17 84 173 134 1185 68 57 752 7.24 126.7 7.2 65.1 127.7 603 152
7-un-97 | 18 84 180 140 120.4 61 59 779 7.32 126.4 73 58.5 126.9 61.5 150
8-Jun-97 19 84 178 140 122.4 51 56 739 7.41 126.5 74 50.86 125.2 56.0 143
9-Jun-97 | 196 85 176 141 1244 46 49 647 748 126.8 7.4 443 129.2 52.0 144
10-Jun-97 12023 85 173 136 1227 46 52 686 7.41 125.8 74 47.7 1252 50.6 138
11-Jun-97| 205 84 172 134 118.0 48 51 67.3 7.4 1264 7.4 488 126.1 49.6 141
12-Jun-97| 206 85 175 129 1188 40 50 66.0 7.39 1226 75 471 125.0 51.3 138
13-Jun-97| 20 85 174 132 177 4 46 607 7.54 1258 7.6 37.7 1265 45.8 137
14-Jun-S7| 20 84 168 130 1179 39 47 820 7.53 1231 75 38.1 124.5 452 135
15-Jun-97| 20 8.3 168 129 1155 42 47 620 7.46 122.9 75 43.0 1227 47.2 138
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Table A-2 continued

) . Alum Lime . USEPA
Raw water quality Chemicals Clarifier| clarifier ANN model predictions model

prediction

pate t 3 Al Lime clarifi Lime clarifi

ELS Raw : Lime Lm ime clarifier ime clarifier!

temmp halt'(oifé'ess alkalinity  Catcium 'gg"sr; :;‘(;rs]: doseas| pH ha:é)::ss clarifier Alum dose total Lime dose total

Hardness Ca(OH), pH hardness hardness
16-dun97} 21 83 163 128 112.0 68 52 686 7.3 1255 7.2 58.6 126.7 50.3 149
17-Jun-97{ 22 84 167 138 1128 79 60 792 714 1326 7.4 76.9 129.8 56.7 150
18-Jun-97] 204 84 158 123 115.8 80 63 832 7.07 1225 7.0 77.8 1217 57.9 140
19-Jun-97| 197 84 167 134 1131 71 58 766 7.15 1271 7.2 74.4 125.9 57.6 147
21-Jun-97} 16.7 84 160 122 111.2 53 85 726 7.33 4203 7.3 55.0 119.0 53.9 129
22-Jun-971 158 84 147 121 1137 56 48 634 7.32 1252 73 56.9 1228 475 128
24-4un-971 154 81 158 130 105.7 164 77 1016 | 6.84 126.8 6.8 159.8 126.0 78.2 197
25-Jun-97| 17 82 151 133 102.0 182 79 1043 | 6.58 1331 6.7 177.3 133.2 80.8 200
256-3un-97( 18 82 156 135 103.4 175 84 1109 | 6.57 134.0 6.6 175.6 131.2 81.9 193
27-4un-97| 17.8 82 153 133 103.4 162 85 1122 | 6.62 1233 6.7 170.8 125.2 82.9 179
28-Jun-97{ 174 83 155 129 103.0 140 74 977 6.75 12686 6.7 1318 1316 78.0 175
29-Jun-97| 17 83 157 130 107.8 21 72 95.0 6.82 1255 6.8 1214 126.3 746 163
30-Jun-97{ 165 83 165 130 112.8 101 85 85.8 6.9 130.1 7.0 109.8 1282 89.9 163
1-Jul-97 17 84 171 137 112.8 86 68 898 7.06 1314 7.1 85.8 1233 65.7 154
3-Jul-97 18 85 169 135 1149 72 61 80.5 7.18 1246 7.2 69.5 125.4 61.14 145
4-Jul-97 18 84 168 126 110.8 65 53 779 747 126.1 72 70.6 1220 574 142
5-Jul-97 20 85 167 132 115.6 45 50 66.0 7.37 121.9 7.4 50.9 123.0 510 134
6-Jul-97 21 85 164 131 114.4 42 47 62.0 7.43 124.5 7.4 459 123.8 47.0 132
7-du-97 | 211 85 164 133 1141 44 46 607 7.45 1247 7.4 44.9 125.8 47.0 135
8-Jul-97 | 21.8 84 167 139 1143 46 48 634 7.43 129.9 74 494 1266 46.2 138
8-Jul-97 | 214 84 168 137 116.8 38 47 62.0 7.51 124.4 7.5 423 124.8 46.2 133
10-Jul-87 | 20 84 168 136 1174 41 45 594 7.49 1266 75 431 127.3 46.0 139
11-Jul-87 19 8.5 164 131 1201 44 48 63.4 7.42 1248 7.4 48.7 123.8 46.7 133
12-Juk-97 | 18 84 161 132 111.2 44 45 594 7.41 1245 75 48.2 1243 45.1 135
13-Jul-97 17 8.4 156 129 107.7 53 46 60.7 7.38 124.4 7.4 50.8 125.0 46.0 137
14-Jul-97 18 8.3 158 133 113.9 103.4 606 80.0 7.07 129.6 7.0 92.2 128.9 60.9 163
15-du-97 } 20 8.4 156 133 1153 | 1188 684 903 6.92 130.0 6.9 107.6 131.1 67.0 162
16-Jul-97 | 207 84 154 140 1142 111 893 915 6.9 127.7 6.9 113.0 125.8 66.0 153
17-Jul-97 | 206 84 152 136 110.4 83 587 775 7.01 1209 741 97.0 122.8 586 141
18-Jul97 | 20 B4 153 124 107.2 594 418 553 717 125.0 73 70.2 128.0 46.9 144
19-Jul-97 | 202 84 159 128 108.7 842 424 56.0 7.24 1348 72 63.1 1323 443 153
20-Jul-97 { 218 84 154 129 108.9 599 456 602 7.22 131.5 7.3 65.3 128.0 414 140
21-Jul97 § 22 83 157 126 110.1 737 475 627 714 1295 7.2 787 130.5 47.7 153
22-Jut-97 | 23 8.5 161 134 114.7 643 455 60.1 7.25 1375 7.2 60.3 134.2 433 149
23-Jul-97 | 22.6 844 163 138 1174 63.6 455 60.1 7.29 1373 73 58.6 135.7 436 151
24-Jul-97 § 217 85 161 133 1133 583 434 573 7.31 133.9 7.3 53.8 1341 417 147
25-Jul-97 | 207 85 161 131 114.5 46.8 411 543 7.39 1319 74 47.0 131.4 38.0 140
26-Jul-97 | 193 B48 160 128 112.0 439 376 498 7.41 1300 74 45.6 131.7 387 142
27-Jul-97 1 189 84 160 132 118.6 422 38 502 7.38 132.6 75 493 131.1 37.8 140
28-gul-97 | 199 8.5 160 130 1118 379 355 469 7.45 1339 7.5 427 131.9 358 139
29-Jul-97 | 214 B5 163 131 114.1 331 352 465 7.58 130.7 7.6 345 1318 364 138
30-Jul-97 1 22 84 165 134 117.4 339 328 433 7.6 132.14 7.6 345 134.6 36.8 144
HM-Jul97 | 22 85 162 136 1154 435 357 474 7.39 137.0 7.5 479 135.0 37.4 144
1-Aug-97 | 229 85 165 138 114.8 397 365 482 7.46 1375 7.5 433 134.8 374 143
2-Aug-97 | 231 85 163 136 1142 385 372 494 75 133.1 75 40.1 133.6 369 139
3-Aug-97 { 23 8.5 164 133 117.0 343 364 480 7.55 133.1 7.6 36.4 132.4 36.1 138
4-Aug-97 | 235 85 164 132 116.7 344 352 465 7.57 1316 75 35.0 133.0 36.3 139
5-Aug-97 | 241 85 164 130 1182 331 359 474 7.57 1313 7.6 34.5 132.1 35.9 138
6-Aug-97 | 25.2 844 164 128 1164 327 344 454 7.53 1348 76 37.0 133.6 34.1 140
7-Aug-97 | 249 85 164 132 116.4 332 328 433 7.53 131.9 7.5 371 135.5 35.0 141
8-Aug-97 | 22.7 842 159 132 1124 377 315 416 7.56 1312 75 36.1 135.8 343 143
9-Aug-97 | 20 85 155 122 109.8 346 285 378 7.53 1331 7.5 36.3 133.1 32.1 140

'"The raw water calcium hardness data is required for the USEPA model and was retrieved from

the E.L. Smith plant because it is not measured at Rossdale.

*Since the USEPA WTP model requires lime dose as Calcium Hydroxide and the plant measures

lime as Calcium Oxide, the following equation was used to make the conversion:

Ca0 + H,0 = Ca(OH),

Calcium hydroxide dose = Calcium Oxide dose *1.32
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APPENDIX B Integration of Artificial Neural Networks with

Real-time Process Control Systems
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. Neuroshell 2 Interactive Runtime Network Example

cinsiraindetiaciedrunl 13 def
" cneurainiefiles\carndol et

FIGURE B-1 A Visual Basic off-line user interface for ANN
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FIGURE B-2 A web-based off-line user interface for ANN
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| Tag Name: [A-NN-LIME-P2-MODELG NextBlock |
Descriptian: [Lin ennée predict C4 - ANNmodel Cdrun110
¥ Start Bloek On Scan
Sean Time: |1 &
Smoothing: 0
. Hardware 3pétﬁﬁn'aﬁuyﬁkéﬂ~ e
|

[ Enable Alarming
Alarm Argas:

i
‘
5
§
|
s

| Devies: i o
3Har&ware Oplions: o
: |

| 1J0 Address: :|da a'aqrsnA 3 | High High:
i : - | Rate of Change: {0,

FIGURE B-3 Analog input read-back configuration on SCADA database
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FIGURE B-4 Real-time ANN interface on plant SCADA HMI
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Rossdale Plant 2 Softening Clarifier
Neural Hetwork Model Performance
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FIGURE B-5 Lime dose and total hardness actual and ANN predicted values from the

SCADA historian
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APPENDIX C Remote Monitoring and Operation of Isolated
Small Water Facilities in Cold Regions
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FIGURE C-1 Chlorine analyzer pilot test layout at the Rossdale Water Treatment Plant
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FIGURE C-3 Chlorine analyzer pilot test —

bench chlorine residual measurement
equipment
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TABLE C-1 Raw data from the on-line chlorine analyzer pilot test (all values are in mg/LL
free chlorine) (after Penny, 2001)

Original Measurement Data
Reading | Bench Average | ProMinent D1C | W & T Depolox 3+ | Swan FAM Trides | Hach CL17 | Endress & Hauser

1 2.23 2.25 2.21 2.28

2.09 2.02 1.97 2.10
3 2.24 2.11 2.14 2.25
4 2.30 2.16 213 2.30
5 2.33 2.24 2.13 2.36
6 2.18 2147 2.10 1.87 2.22
7 2.10 217 2.08 2.12 2.10
8 2.12 2147 2.00 2.01 2.16
9 2.11 2.12 1.98 2.02 2.15
10 2.34 2.12 2.16 2.35 2:43
11 2.34 212 2.15 2.36 2.42
12 2.18 2.12 1.99 2.24 2.21
13 1.82 2.12 1.79 2.01 1.97
14 2.37 1.92 2.37 2.38 2,42
15 2.39 1.92 2.31 2.38 2.43
16 2.35 1.92 2.33 2.39 2.39
17 2.35 1.92 2.28 2.39 2.40
18 2.26 1.92 2.19 2.22 2.33
19 2.21 1.92 2.15 2.20 2.32
20 2.24 1.92 2.12 2.20 2.28
21 2.24 1.92 2.13 2.28 2.29
22 2.28 1.92 2.14 2.58 2.31
23 2.25 1.92 2.47 246 2.34
24 2.38 1.92 2.52 3.71 2.47
25 1.70 1.90 1.85 1.82 1.77
26 1.50 1.77 1.74 1.77 1.58
27 1.12 1.18 1.13 1.41 1.17
28 0.97 1.00 0.97 1.24 1.01 1.07
29 0.63 0.65 0.60 0.87 0.66 0.68
30 0.50 0.53 0.47 0.73 0.52 0.56
31 0.98 0.83 0.49 0.51 1.02 0.83
32 0.54 0.51 0.44 0.52 0.58 0.52
33 1.27 1.32 1.92 1.50 1.30 1.29
34 1,186 1.21 1.14 1.16 1.21 1.18
35 0.96 0.99 0.89 0.97 0.99 0.96
36 0.23 0.23 0.11 0.21 0.25 0.25
37 1,03 1.19 115 1.22 1.07 1.23
38 0.94 0.88 0.85 0.85 0.97 0.90
39 0.68 0.58 0.51 0.53 0.72 0.62
40 0.60 0.49 0.41 0.45 0.62 0.54
41 0.38 0.30 0.23 0.27 0.39 0.34
42 0.34 0.28 0.18 0.23 0.34 0.31
43 0.66 0.80 1.09 0.62 0.69 0.85
44 0.57 0.61 0.52 0.51 0.58 0.51
45 0.81 0.77 0.43 0.43 0.86 0.68
486 1.20 1.96 1.68 2.04 1.26 1.26
47 1.15 1.80 1.52 1.88 1.18 1.18
48 0.96 1.48 1.30 1.30 1.02 1.02
49 1.40 1.60 1.30 1.36 1.46 1.50
50 0.70 0.53 0.42 0.27 0.75 0.62
51 0.32 0.23 0.19 0.07 0.36 0.29
52 0.64 0.71 0.59 0.49 0.67 0.70
53 0.24 0.17 0.15 0.04 0.27 0.22
54 1.41 2.64 2.54 7.59 1.46 1.53
55 0.42 0.31 0.31 0.16 0.44 0.40
56 0.93 0.63 0.54 0.32 0.95 0.83
57 0.62 0.37 0.34 0.16 0.64 0.54
58 022 0.10 0.10 0.00 0.22 0.19
59 0.47 0.24 0.20 0.08 0.49 0.43
60 0.60 0.60 0.65 0.50 0.64 9.75
61 0.61 0.50 0.32 0.13 0.65 0.58
62 1.08 0.90 0.45 0.23 1.13 0.98
63 0.62 0.75 0.53 0.26 0.66 0.69
64 0.23 0.18 Q.12 0.00 0.23 0.22
65 0.85 0.43 0.86 0.80
66 0.67 0.35 0.68 0.64
67 0.41 0.33 0.44 0.44
68 1.56 0 1.44 1.61 1.61 1.72
69 1.54 1.50 1.42 1.60 1.60 1.71
70 1.54 1.50 1.40 1.58 1.57 1.69
71 1.56 1.50 1.49 2.02 1.63 1.71
72 1.57 1.50 1.48 2.04 1.64 1.70
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FIGURE C-4 Trend of raw data from the on-line chlorine analyzer pilot test

TABLE C-2  Cost analysis of various on-line chlorine analyzers
Analyzer Capital Cost Annual 1st year 2nd year | Annual Life Cycle
(including Operating investment | investment | Costs (no interest
$2000 Costs and (assuming a accounted for)
instailation | Maintenance | staff wage of
allowance) Time $30.00/hour)
. $200 plus 30
ProMinent $8,500 min/week $9,500 $1000 $1,850
$400 plus 45
W & T Depolox 3+ 36,800 min/week $8,400 $1,600 $2,300
Swan FAM Trides $12,500 13 hours/year $12,900 $400 $1,650
$760 plus 1
HACH CL17 $6,300 hour/month $7,400 $1,100 $1,750
Endress & Hauser $6,900 1 hour/month $7,300 $360 $1,050
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APPENDIX D Automation and Unattended Operation of the
E.L. Smith Water Treatment Plant
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FIGURE D-1 Comprehensive SCADA graphic of the E.L. Smith WTP
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Water Services Inc. INTERNALNEZEWSLETTER #1

Remote Operation of E.L. Smith Water Treatment Plant

Epcor Water Services. is continually striving for
opportunities to improve operational efficiencies
and build on our existing strengths and assets'
. through flexibility and innovation. One such

initiative is a pilot project involving the remote
operation of the E.L. Smith Water Treatment
Plant, planned for November 2000 to Februaryj
2001.

This newsletter is intended to keep staff informed
on the status of the Remote Operation Project.
Regular updates will be provided to ensure that all
questions and concerns are addressed.

Question #2 When will this take place?

A pilot test period will take place daily from November 2000 to February 2001, between the]
hours of 2:00 am and 7:00 am. During this time E.L. Smith will be monitored and controlled|
from Rossdale, ensuring that our high water quality standards will continue to be met. Based|
on the results of the pilot test, the hours of remote operation from Rossdale may be extended.

Question #3 What is the future of remote operations?

Remote operation of facilities is a growing trend in the water industry and this process will
allow Epcor to efficiently manage other treatment plants throughout Western Canada. For
example, in 1998 we remotely operated the Cochrane WTP during off-hours. Similarly, we
are looking at plans to remotely monitor our client communities (Canmore, Strathmore, Port
Hardy) during evenings and weekends.

Question #4 Why are we going to remote gperations at E.L. Smith?

Remote operation of E.L. Smith Water Treatment Plant will accommodate changing work]
priorities and help to reduce night shifts. Increased plant automation now handles repetitive)
tasks and this allows staff to focus on higher skill work and more diverse tasks. For example,
as part of Epcor’s "Future Directions multi-skilling initiatives", operators are being trained in
day-to-day plant maintenance skills. This will allow maintenance staff to concentrate on more
sophisticated equipment and procedures. It also makes more staff available for maintenance
work during peak periods. Reducing night shift work is also an objective. The success of this|

FIGURE D-2a E.L. Smith Remote Operations Newsletter #1 Page 1 of 2
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Question #6 What has been done so far?

An Implementation committee (staff from Operations, Maintenance, Engineering, Lab, and Process
Services) is reviewing and recommending changes related to technical issues, as well as staffing and
training. Shift change issues are being handled at the Charge Operators meetings and through the
Implementation committee.

The systems (chemical, electrical, on-line analyzers, pumping, security and controls) have been
reviewed and work has begun on any recommended changes. For example, the filter controls are
currently being automated.

"Policy on Automated/Unattended Operation of Surface Water Treatment Plants” (10 States
Standards; Recommended Standards for Water Works 1997 edition) is being used as a guideline for
this project.

Question #7 Will this initiative affect the current operator shift schedule?

Yes. Since the Plant will be unmanned for 4 —~ 6 hours, a change in shift schedule is required. A new
shift schedule is being proposed with the addition of a 12 hour shift between 2:00 pm. and 2:00 am.
However, creative ideas for a new shift schedule are welcome. Please contact the Implementation
Committee.

Question #8 How will this initiative benefit staff?

This program will benefit staff in two ways:

Night shift work will be reduced.
There will be increased opportunity to train and expand technical skills in other areas.

Question #9 Will this initiative result in job losses?

No.. There are no expectations or plans to reduce the existing staff levels as a result of this project. In
fact, multi-skill trained staff will have increased opportunities as our business continues to grow and
evolve.

Contacts
Riyaz Shariff Christian Madsen Rick Corscadden Dan Sliwkanich
Rudy Welz Dave Wong (Lab) Rob Towstego Dennis Lavallee
Woytec Stachowski Norm Spitzer Tina Mendes Howard Preston
Denis Lavoie Andy Chichak Scott Evjen Clayton Ernst

FIGURE D-2b E.L. Smith Remote Operations Newsletter #1 Page 2 of 2
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