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Abstract

Introduction of a fiber of appropriate material into an aqueous solution containing
dispersed oil droplets may lead to deposition of small oil droplets onto the fiber surface,
depending on their interactions. Such deposition process is governed by at least two
types of colloidal interactions between the oil droplets and the fiber surfaces across the
aqueous phase, based on the well-known Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory, and possibly external force fields as well. The colloidal interactions represent the
van der Waals (vdW) and the electrical double layer (EDL) interactions. This thesis
focuses on understanding and experimentally determining the colloidal interactions and
the deposition process.

A general theoretical method is presented to determine the retarded vdW
interaction between a spherical particle and a cylinder. The detailed numerical predictions
indicate that the widely used flat plate approximation may seriously overestimate the vdW
interaction for the sphere-cylinder system. An approximate integral solution is also
obtained for the EDL interaction between a spherical particle and a cylindrical surface.
This numerical solution shows that the curvature effect of cylinder on the EDL
interaction can not be neglected at smaller separation distances.

In order to determine the Hamaker constant involved in the vdW interaction, a
novel contact angle measurement technique has been developed. This experimental
method determines the contact angle by analysis of the capillary profile around a cylinder
(ACPAC). The contact angles as measured by the ACPAC technique agree very well with
those measured by the Wilhelmy plate technique and the axisymmetric drop shape analysis

(ADSA) technique for the sessile drop case, respectively. To determine the EDL



interaction, a new electrical suspension method is devised to measure the C-potentials of
small liquid droplets dispersed in another immiscible liquid and the streaming potential
technique is applied by using a parallel-plate microchannel to measure the {-potentials of
gEss surfaces in contact with an aqueous phase.

Both the analytical and numerical solutions of 1-D mass transfer equation have
been obtained. The 2-D numerical model is also developed, in which both the colloidal
interactions and the external force fields can be accounted for. In particular, the effects
of the gravitational field and the electric field on the deposition process have been
examined using the 2-D model. A systematic deposition experiment was conducted to
examine the effects of the colloidal interactions on the deposition processes of silicone oil
droplets onto two kinds of glass surfaces in a variety of aqueous solutions. The
deposition data for the bare glass surface (hydrophilic) is in an excellent agreement with
the numerical predictions of the 1-D model. However, the measured deposition rates for
the FC725-precoated glass surface (hydrophobic) are found to be significantly higher
than the numerical predictions. The latter differences are attributed to the attractive

hydrophobic interaction.
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Notations
A

Aj3z, Agwr

A

Nomenclature

ratio of the radius of cylinder to the radius of oil droplet or particle, or
cross-sectional area of two electrodes (m?)

cross-sectional area of microchannel (m?)

dimensionless adhesion number

Hamaker constant for the interaction between phase i and phase j across
vacuum (air) (J)

Hamaker constant for the interaction between an oil droplet (phase 1) and
a fiber (phase 2) across aqueous solution (medium 3) (J)

Hamaker constant for the interaction between phase i and phase j across
medium k (J)

radius of oil droplet or particle (m)

constant as defined in Equations (6.25a) and (6.25b)

ratio of the length of cylinder to its radius

function of a as defined in Equation (6.14)

constant as defined in Equations (6.25a) and (6.25b)

potential coefficient defined in Equation (3.1) (J m"/molecule?), or
constant as defined in Equation (5.15) (Vz/m3), or dimensionless constant
as defined in Equations (6.25a) and (6.25b)

constant as defined in Equation (6.2) (m™)

constant as defined in Equation (6.5) (m™)

dimensionless constant as defined in Equation (6.9)

constant-volume specific heat capacity of aqueous phase (kcal’kg/°C)

mole concentration (M or mole/l)

constant as defined in Equations (6.25a) and (6.25b)

droplet diffusion coefficient tensor (mz/s)

separation distance between a particle and a cylinder (m), or

dimensionless constant as defined in Equations (6.25a) and (6.25b)

interfacial contact separation distance, D¢=0.165 nm
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Q Ohmic heating per unit time (J/s or W), or volume flux (m’/s)

q net charge on oil droplet (C)

Qe electrostatic charge on per unit surface area of oil droplet (C/m?)

R radius of the three-phase contact circle, or radius of cylindrical fiber, or
the principal radius (m), or electrical resistance (Q or S™)

r radial cylindrical coordinate, or radius of circular capillary, or separation
distance (m)

To separation distance from the primary energy minimum (PEM) region (m)

o an "infinite" separation distance (m)
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correlation coefficient

actual deposition area (m?)

dimensionless constant as defined in Equation (3.20)

Sherwood number
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absolute temperature (k)
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Va dimensionless vdW interaction potential between a sphere and an
infinitely long cylinder

Vi,Va,Vs dimensionless vdW interaction potentials for the sphere-flat plate system

Veo electroosmotic velocity (m/s)

VAy) z-directional velocity profile along y-direction (m/s)

v(r) intermolecular vdW interaction potential (J/molecule?)

\2 vdW interaction potential between a molecule and a finitely long cylinder
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va vdW interaction potential between a molecule and an infinitely long
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w width of rectangular cell or microchannel (m), or specific potential energy
between planar surface (J/m?)

X, x x-coordinate (m)
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; dimensionless y-coordinate

z axial coordinate or distance from the symmetric center in width direction
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z dimensionless axial coordinate
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Greek Symbols

€ dielectric constant (C/V/m or F/m)

€0 dielectric constant of vacuum, £,=8.854x10"'2 C/V/m or F/m

& dimensionless or relative dielectric constant

A London characteristic wavelength or retardation parameter (m), or molar
conductivity (m? S/mole)

Ab electrical conductivity in the bulk (S/m)

As specific surface conductivity (S)

A dimensionless retardation parameter
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surface energy/tension or interfacial tension (J/m?)

radial coordinate or local radius of curvature of the three-phase contact
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density of oil phase (kg/m’)

density of aqueous phase (kg/m3 )

density difference between the oil and aqueous phases (kg/m”)

density difference between the aqueous and oil phases (kg/m’)

density difference between the liquid and vapor phases (kg/m’)
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measured capillary rise height (m)

pressure drop, AP<0 (N/m?)

pressure drop, AP,>0 (N/m?)

temperature increase (°C)
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electrical voltage applied across two electrodes (V)

dimensionless new variable as defined in Equations (6.13) and (6.21a)
local inclination angle (deg) or dimensionless new variable as defined in
Equation (6.21b)

contact angle or azimuthal angle (deg)

supplementary contact angle (deg)

contact angle with no line tension effect (deg)

Debye-Hiicke!l parameter (m™')
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Chapter 1

Introduction

1.1 Motivation and Background

Introduction of a fiber into a liquid phase (e.g. water) containing dispersed
droplets of another liquid phase (e.g. oil) may result in deposition of the oil droplets onto
the fiber surface, depending on their interactions. A comprehensive study of such
deposition phenomenon not only is of intrinsic interest in the field of colloid and interface
science, but also has numerous direct and potential applications in industry.

Physically, the deposition process is governed by at least two types of colloidal
forces and possibly external forces between the oil droplets through the aqueous phase
and the fiber surface. According to the well-known Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory (Derjaguin and Landau, 1941; Verwey and Overbeek, 1948), here, the
colloidal forces represent the van der Waals (vdW) and the electrical double layer (EDL)
interaction forces. In colloid and interface sciences, theoretically, the vdW force can be
quantitatively described by the van der Waals-Lifshitz theory (Lifshitz, 1956;
Dzjalosinskij et al., 1961) or by semi-empirical approaches included in the acid-base
theory (Fowkes and Patrick, 1967). The EDL force can be determined using the
Derjaguin’s theory (Derjaguin, 1934). The external forces can be the electrical force
caused by the externally applied electric field through the liquid phase and the
gravitational force exerted on the droplets (Adamczyk and van de Ven, 1981b).

The deposition process of liquid droplets onto a solid surface, both of which are
immersed in another liquid, is involved in many industrial processes. The most
significant applications are in petroleum, paper, fiber, textile and cosmetic industries. For
example, how to efficiently separate oil droplets from the oil-in-water (O/W) emulsions,
or the water droplets from water-in-oil (W/Q) mixtures has been one of the critical
problems for many years in the oil industry, especially in the oil sands and heavy oil
industries (Masliyah, 1994). In the textile industry for finishing, silicone oils are usually
padded onto a fabric from emulsion dispersions and then cured to form a durable

elastometric coating which provides improved resistance to wrinkling or staining.



Chapter 1

Deposition of oils or polymers dispersed and stabilized with surfactants in aqueous
medium is widely used in textile and paper industries to modify the binding and adhesive
properties of fabrics and cellulose. On the other hand, removal of the dirty oil droplets
attached to fabrics in textile detergency will solely depend on whether a proper surfactant
solution capable of solubilizing the oils can be found (Carroll, 1988). Modification of the
surface properties of solid substrates such as fibers by deposition of silicone and other
oils from aqueous emulsions is also employed in textile and cosmetic industries (Carroll,
1988; Jachowicz and Berthiaume, 1989). In cosmetics, silicone oils are used as
lubricating and/or hydrophobic agents in almost all hair and skin care formulations. The
performance of these products is determined by the ability of the dispersed phase to
interact with and adhere onto the keratinous fiber surface, by the total area coverage
percentage and thickness distribution of the deposited silicone oil layer, and by the
durability (i.e., resistance to detergents) of treatment (Jachowicz and Berthiaume, 1989;
Berthiaume and Jachowicz, 1991; Jachowicz and Berthiaume, 1993).

In addition, deposition phenomenon of liquid droplets onto a solid surface is also
frequently encountered in composite material and biomaterial engineering. For instance,
interlaminar shear strength (ILSS) of fiber-reinforced plastic (FRP) is important in fiber
composite material industry, and closely related to wetting of the fibers by the matrix
polymer (Penn and Jutis, 1989; Ogawa and lkeda, 1993; Drzal et al., 1994). Fiber
assemblies are extensively used to filter a dispersed phase in emulsions, e.g., to purify
contaminated water by filtration (Rajagopalan and Tien, 1979; Tien, 1989. Carroll,
1988). Another potential application of considerable interest is deposition of a liquid
phase onto the surface of a bare optical fiber (Kawahara et al, 1983). When the
deposited phase has a different refractive index from that of the fiber, light transmitted
along the fiber will alter because the contact zones on the fiber act as optical windows.
Based on the above mechanism, a variety of useful instruments can be developed. For
instance, a new monitor was suggested by Kawahara et al. (1983) to detect and quantify
oil pollutant concentrations in O/W mixtures. In the past decade, cellular deposition to
solid surfaces has become a particularly popular subject because of its significance in
many biotechnological and physiological applications (Stewart et al., 1989; Truskey and
Pirone, 1990; Lahooti, et al., 1993; Ramsden et al., 1994; Ruardy et al., 1995).
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1.2 Literature Review

Many theoretical, numerical and experimental studies of interactions between
colloidal particles and solid substrates were accomplished and can be found in a
prqliferation of publications. In the past, the major focus was on either deposition of
solid particles on solid substrates such as fibers, or the interaction between the particles
themselves, i.e. liquid droplet coalescence, mutual coagulation of solid particles dispersed
in liquid medium. The first kind of research topic, for example, is directly related to the
surface treatment of pulp fibers used in papermaking (Alince, 1989; Alince et al., 1991;
Alince and van de Ven, 1993) or engineering fibers used in fiber composites (Penn and
Jutis, 1989), while the second is closely associated with the stability of colloidal
emulsions (Okada and Akagi, 1987; Okada et al.,, 1990a; 1990b; Sanders et al., 1995;
Deshiikan and Papadopoulos, 1995a; 1995b) or suspensions (Bochkarev et al., 1995). In
contrast, few papers were devoted to elucidating the complex mechanism of interaction
between liquid dispersions and solid substrates in aqueous solutions (Adamczyk and van
de Ven, 1981b; Jachowicz and Berthiaume, 1989; Berthiaume and Jachowicz, 1991).
There is an apparent lack of detailed technical information describing the interactions
between a liquid droplet and a solid when both are submerged in various aqueous
solutions. This fact may be partly caused by insufficient knowledge on the surface
properties and the electrical properties of the liquid droplets dispersed in different
emulsions. In practice, it is still practically difficult to accurately determine the vdW and
EDL interaction forces. The unfortunate imbalance in emphasis results in the inevitable
application of the theory of solid particle-solid surface interaction to liquid droplet-solid
surface systems, though these two systems are rather different. As was described
previously, a variety of industrial processes and applications rely inherently on a
thorough understanding of the colloidal and external forces between a liquid droplet and
a solid surface. Academically, it is not clear whether the existing DLVO theory, which
was originally derived for describing coagulation of colloidal dispersions, is accurate
enough or even suitable for describing the interactions between a liquid droplet and a
solid surface.

A literature review will be given as follows on deposition of liquid droplets onto a

solid surface submerged in another liquid, as well as its wide applications. A thorough
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literature search shows that there have been some preliminary attempts to understand the
basic aspects governing the deposition and spreading kinetics of emulsion droplets onto a
solid surface. Some main findings and existing problems in the literature will be
summarized below in order to highlight why and how this thesis project is designed and

what major research objectives are conceived in the present work.

1.2.1 The DLVO Theory

In terms of the DLVO theory of colloidal dispersions, there are two kinds of
interaction forces between the colloidal particles and a solid surface, the vdW force and
the EDL force. These two types of colloidal forces are discussed in many publications.

Generally speaking, there are essentially two methods to calculate the vdW
interaction between approaching particles and a solid surface as a function of their
separation distance (Gregory, 1981; Israelachvili, 1985). In the first, due largely to
Hamaker (Hamaker, 1937), the interaction formula is derived by a pairwise summation of
all the relevant intermolecular interactions. The second, more rigorous, method is based
on the Lifshitz theory (Lifshitz, 1956; Parsegian, 1975) and depends entirely on their
dielectric constants and refractive indices of the interacting media. It should be pointed
out that, nevertheless, all the formulae for the vdW forces between large bodies of
different shapes derived in terms of the Hamaker theory remain valid even within the
Lifshitz’s framework. The only thing that changes is the way in which the Hamaker
constant is determined. Despite a number of shortcomings, the older Hamaker method
continues to be quite widely used. This is mainly because of its great convenience and
the fact that, for many practical systems, the Hamaker constants can be readily calculated
by relating them properly to their surface and/or interfacial tensions.

It should be noted that, in the past, the computation of the vdW interaction
between a spherical particle and a cylindrical surface was, however, usually performed
under the assumption of a sphere interacting with an infinitely large flat plate (Adamczyk
and van de Ven, 1981a; 1981b; Sanders, et al., 1995). Such a simple model neglects the
possible large curvature and finite-size effects on the vdW interaction between a sphere
and a finitely sized cylinder. In the literature, exact and approximate analytical

expressions are available for the vdW interaction potentials between bodies of
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appropriate geometric combinations, such as two parallel flat plates, spheres, parallel
cylinders, crossed cylinders, and a sphere and a flat plate (Israelachvili, 1985). Recently,
Zeman and Wales (1981) and Papadopoulos and Kuo (1990) presented numerical
methods to determine the vdW interaction energy for a spherical particle in a pore
geometry. Bhattacharjee and Sharma (1995) obtained general and asymptotic analytical
expressions for the same geometric configuration using the Hamaker microscopic
approach. They all found that a commonly used simple model of a sphere interacting
with a semi-infinitely large flat plate is reasonable only for very small particles close to
the inner wall of a cylindrical pore, but in all other cases, it seriously underestimates the
interaction energy. However, there is no similar work to consider the curvature and the
finite-size effects on the vdW interaction between a sphere and a cylinder where the
sphere is located outside of the cylinder. Theoretically, it is not clear how large an error
will be caused by the sphere-flat plate approximation when it is used to calculate the vdW
interaction between a spherical particle and a finitely sized (both the length and the
radius) cylinder at an arbitrary separation distance. Therefore, a general theoretical
method is required to obtain the accurate vdW interaction potential and force between a
spherical particle and a cylinder without invoking the sphere-flat plate approximation.

On the other hand, the electrical double layer (EDL) interaction between an
approaching sphere and a cylinder as a function of separation distance also plays an
important role in the flow of colloidal emulsions or suspensions through a filter
composed of many cylinders of fibers or other materials. This kind of interaction
sometimes becomes essential to the problems of colloidal stability and particle deposition
onto a cylindrical collector. In the past, similar to the case for the van der Waals (vdW)
interaction, the computation of the EDL interaction between a spherical particle and a
cylindrical surface, was, however, performed using the assumption of a sphere interacting
with an infinitely large flat plate (Hogg, et al., 1966; Adamczyk and van de Ven, 1981b;
Masliyah, 1994; Sanders et al., 1995). Regardless of possible large curvature effects that
the cylindrical surface may cause, the flat plate approximation is often applied for
simplicity. In the literature, the exact or approximate analytical expressions are available
only for the EDL interaction potentials between two similar or dissimilar EDLs of

appropriate geometric combinations, such as two parallel flat plates, two spheres, a
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sphere and a flat plate. When either radius of the two spheres is chosen to be infinity, the
EDL interaction formula between two spheres becomes the widely used HHF (Hogg,
Healy and Fuerstenau, 1966) expression for a sphere interacting with an infinitely large
flat plate. It is obvious that the flat plate approximation always overestimates the EDL
interaction between a sphere and a cylinder. However, a thorough literature search
indicates that there has been no effort made yet to account for the curvature effect of the
cylindrical EDL for this case. In fact, it has become common practice to employ the flat
plate approximation for this geometry without any justification. It is not clear how large
an error this approximation may cause when it is used to calculate the EDL interaction
between a sphere and a cylinder at an arbitrary separation distance.

Recently, Miklavcic et al. (1994; 1995) performed some calculations of the EDL
interaction between a charged spherical particle and a charged collector through a liquid
medium. Nevertheless, the validity of their numerical data needs to be investigated.

In summary, a general theoretical method is needed to calculate the vdW and
EDL interaction forces between a spherical particle and a cylinder without invoking the
widely used sphere-flat plate approximation. Furthermore, the wettability of the solid-
liquid-liquid systems and the C-potentials of oil droplets and the solid surface in an
aqueous solution should be accurately measured in order to determine accurately the vdW

and EDL forces, respectively.

1.2.2 Deposition Kinetics

So far a literature search has not yielded systematic studies covering the static
deposition and slow spreading phenomena of small emulsion droplets onto a collector. In
the literature, there are some papers focusing on cellular deposition onto solid surfaces
and the subsequent spreading process (Stewart et al., 1989; Lahooti et al., 1993; Ruardy
et al, 1995). These processes, nevertheless, are considerably different from those
occurring in usual colloidal systems consisting of liquid droplets and solid surfaces in
another liquid phase because of cell dimensions, its special properties and different liquid
properties. Hence, these results may not be applicable to these emulsion systems.

Some experimental efforts to achieve fundamental understanding of the

deposition kinetics of silicone oils from the O/W emulsions onto keratin fibers were
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made by Jachowicz and Berthiaume (Jachowicz and Berthiaume, 1989; Berthiaume and
Jachowicz, 1991). Specifically, the effects of various factors such as type of oil, type of
emulsifier, pH value, and presence of electrolyte on the deposition process were partially
studied. They also explored to certain extent the contributions of other parameters
inéluding oil viscosity, emulsifier concentration and its ionic features to the deposition.
However, their purely experimental work only allowed a less quantitative discussion of
the overall deposition process. Secondly, they determined the amounts of the deposited
silicone oils on fibers by the difference of oil droplet concentrations before and after
deposition occurred, which were calculated from a calibration of solution turbidity versus
oil droplet concentration. Generally, it is difficult to estimate the overall accuracy of
such an indirect measurement method. Thirdly, they could not explain why the measured
deposition was not decelerated or sometimes even accelerated by the repulsive EDL
potential barrier created after an oil film on the fiber surface was formed. Neither
quantitative comparison nor reasonable agreement was found between their experimental
results and any theoretical or numerical predictions.

It becomes an obvious fact that thorough knowledge of the interactions of the
liquid droplets through another liquid phase with a solid surface in static (or stationary)
case in general is prerequisite to one’s full understanding of the colloidal system. A
comprehensive numerical model based on the complete mass transport governing
equation of the deposition process should be developed. Then a complete mechanistic
study of the static deposition occurring in different liquid phases has to be carried out to
verify the numerical simulations based on the suggested model and to examine the
validity of the DLVO theory.

In the past two decades, a number of publications were concentrated on the
dynamic deposition kinetics of colloidal particles onto collectors of several typical shapes
by using various numerical or experimental methods (Payatakes et al., 1974; Rajagopalan
and Tien, 1977; Rajagopalan and Kim, 1981). With the progress in modern numerical
simulation methods, such numerical solutions proliferated in recent years. They can be
exemplified by the numerical results for deposition of colloidal particles onto cylindrical
collectors (Adamczyk and van de Ven, 1981b). Numerical results are also available for

the spherical collectors (Prieve and Ruckenstein, 1974), rotating-disk (Dabros et al.,
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1977; Dabors and Adamczyk, 1979) and parallel-plate and cylindrical channels
(Adamczyk and van de Ven, 1981a). An excellent and comprehensive review paper on
this topic was published by Adamczyk et al.,, 1983a. However, there remain some
shortcomings with respect to these results. First of all, most of them had to employ
certain assumptions in order to derive simple analytical relations for specific cases.
Therefore, some of these theoretical results lack generality and may be valid only to a
limited extent for practical applications. Secondly, the values of some important
parameters used in these parametric studies were chosen and changed arbitrarily without
any practical justifications. In these numerical simulations, it is common practice that
each parameter is changed separately and thus its individual effect on the deposition
kinetics is examined. In practice, it is an apparent fact that alternation of a factor might
simultaneously cause appreciable changes on the values of several parameters. For
instance, it is well known that changes on electrolyte type and concentration will
definitely cause variations of several parameters such as the Hamaker constant, the zeta
potentials of the solid-liquid-fluid system, in additional to the Debye-Hiickel thickness.
Finally, to date, there has not been relevant experimental data to verify most of these
theoretical or numerical results. One exception is the good agreement reported between
these predictions and experimental results for the dynamic deposition case in impinging

jet flow (Dabros and van de Ven, 1983; 1987; Sanders et al., 1995).

1.3 Research Objectives

Based on the current status of the above research areas, this investigation is
designed to fill the gap and establish a bridge between the theoretical model and the
physics of deposition process. More specifically, this thesis will concentrate on
understanding the deposition phenomenon of small oil droplets onto fiber surfaces in
aqueous solutions. The main strategy employed in the project is to utilize proper
experimental techniques to determine the relevant parameters required in the vdW and
EDL interactions and then use the experimental deposition data to examine the numerical
predictions based on the existing DLVO theory. Accordingly, this project is divided into

three steps, which are then tackled chronologically.
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1. Theoretical derivations of the vdW and EDL interactions between a spherical
particle and a cylindrical fiber

Briefly, based on the Hamaker approach, a general method is developed to compute
the retarded vdW interaction potential and force between a spherical particle and a cylinder
(Gu and Li, 1998h). The effects of the relative dimensions of the sphere to the cylinder are
examined by this general method. First, the unretarded vdW interaction potential between
these two bodies is obtained by pairwise summation of all the relevant intermolecular
interactions and evaluated by accurate multiple numerical integrals. The interaction
potential is then modified to account for the retardation effect by incorporating a correction
factor, which depends on the separation distance and the characteristic wavelength of the
interactions. Since the spherical particles are small relative to the cylindrical collector, the
correction factor for the sphere-plate interaction potential used in the well-known SHH
equation (Suzuki, Ho and Higuchi, 1969) is used to calculate the retarded vdW force for
the present case.

The curvature effect of the cylinder on the total EDL interaction is also studied in
a similar fashion. The procedure used by Hogg, Healy and Fuerstenau (HHF) (1966) in
deriving the EDL interaction potential between two spherical EDLs is followed. First,
the EDL interaction potential between two differential surface elements, one on the
spherical EDL and the other on the cylindrical EDL, is approximated by that between two
parallel overlapping flat EDLs at the same separation distance. Then the Derjaguin’s
integration method (Derjaguin, 1934) is extended to evaluate the total EDL interaction
potential between a spherical particle and a cylindrical collector. Hence, the effect of
curvature of the cylinder on the total EDL interaction can be accounted for by the present
configuration. Since the final solution is expressed by a two-dimensional integral
equation that can not be integrated analytically, accurate numerical integration has to be
sought. Eventually, the numerical predictions of the EDL interaction force for the
sphere-cylinder system are compared with the analytical results of the EDL interaction
force for the sphere-flat plate system at various separation distances. Consequently, the
validity of the widely employed sphere-flat plate approximation can be assessed

quantitatively.
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2. Experimental determinations of the parameters involved in the vdW and EDL
interactions between a spherical particle and a cylindrical fiber in a variety of aqueous
solutions

After the curvature and finite size effects and the retardation effect on the vdW
interaction are considered, the remaining task is to determine the Hamaker constant in the
vdW force equation. By following the Hamaker method (Hamaker, 1937) and relating
the Hamaker constant to the surface and interfacial tensions of the deposition system
(Israelachvili, 1985), this constant can be determined experimentally. Currently, the
surface tensions and interfacial tensions of liquid-fluid interface can be measured with
satisfactory accuracy using existing advanced experimental techniques, such as the
axisymmetric drop shape analysis (ADSA) technique developed by Neumann and co-
workers (Rotenberg et al., 1983; Cheng et al., 1990; Li et al., 1992). Then in terms of the
equation of state for interfacial tensions (Li and Neumann, 1992), the interfacial tensions
of solid-fluid interface can be calculated from the relevant surface/interfacial tensions and
contact angles of the solid-liquid-fluid systems, both of which can be measured by the
ADSA technique. A new contact angle measurement technique is also developed in the
course of this project. It can be used to accurately measure the contact angle by analysis
of capillary profile around a cylinder (ACPAC) and will be described in detail in Chapter
4 (Gu et al,, 1997a; Gu and Li, 1998a; 1998b).

The EDL interaction between a spherical particle and a flat collector can be well
described by the general HHF expressions named after Hogg, Healy and Fuerstenau
(1966). However, some effort is made in order to account for the curvature effect of the
cylindrical collector on the resulting EDL interaction. The next tasks are to accurately
measure the zeta-potentials (&p) of oil droplets dispersed in a variety of aqueous solutions
(Gu and Li, 1997b; 1997c; 1998c; 1998d; 1998g) and to accurately measure the zeta-
potentials ({.) of fiber surfaces in contact with varying aqueous phases (Gu, et al,
1999a). The Debye-Hiickel constant (k) also needs to be determined properly. These
three quantities are directly involved in the EDL interaction expressions.

Once such experimentally determined colloidal forces (vdW and EDL forces) are

available, the deposition kinetics can be predicted by substituting the interaction forces

10
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into the general mass transfer equations and numerically solving the differential
equations.

3. Numerical simulations and experimental measurements of deposition kinetics

A thorough theoretical study on the deposition kinetics is carried out by
nuinerically solving the mass transport equations for one-dimensional (1-D) and two-
dimensional (2-D) cases. An experimental set-up is devised to implement a systematic
investigation of the deposition processes of silicone oil droplets onto different fiber
surfaces in a variety of aqueous solutions. With the numerical and experimental results
(Gu and Li, 1999b), quantitative comparisons can be made and the existing DLVO theory
can be justified. In particular, the effects of both surface properties of fiber material and
liquid properties of the aqueous phases used on the deposition kinetics can be identified
numerically and experimentally.

After going through the above numerical and experimental studies, the following
principal research objectives are conceived to achieve a fundamental knowledge of the
overall deposition processes of small oil droplets onto solid surfaces in aqueous
emulsions: 1. To derive the general formulas for calculating the vdW and EDL forces
between a spherical particle and a cylindrical collector; 2. To devise experimental
techniques to determine the important parameters in vdW and EDL force equations, and
thus to correctly predict overall deposition kinetics; 3. To conduct systematic numerical
and experimental studies on the fiber-oil-water deposition systems; and to compare the
experimental results with the numerical predictions of deposition kinetics.

In order to state the contents of this project clearly, it is composed of the
following four main parts: 1. Introduction to the thesis research topic and the literature
review of its current status (Chapter 1); followed by deriving the general mass transport
equations which include the colloidal and possibly external forces (Chapter 2); 2.
Theoretical derivations (Chapter 3) and experimental determinations of the vdW
interaction (Chapter 4) and the EDL interaction (Chapter 5) between a spherical particle
and a cylindrical fiber in varying aqueous solutions; 3. Numerical simulations of the mass
transport equations for the 1-D and 2-D cases (Chapter 6), their comparison with the
deposition test data and discussions (Chapter 7); and 4. Summary of major conclusions

and some suggestions on future research following this thesis research (Chapter 8).

11
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Chapter 2
Mass Transport Equations

2.1 Introduction

When a fiber of suitable material is introduced into a deposition cell containing
liquid phase (e.g. water) containing dispersed droplets of another liquid phase (e.g. oil),
deposition and spreading of the oil droplets onto the fiber surface occur. The mass
transfer of such Brownian oil droplets from the bulk oil-in-water (O/W) emulsions
toward the fiber surface is governed by the continuity equation, which can be expressed

in the following form:

a_"+v.j=0 Q.10
ot =

where, n is oil droplet number volume concentration and t is time, j is droplet flux vector.

Equation (2.1) is more generally called the mass transport equation. It is valid for a dilute
mono-dispersion such that the interactions between the emulsion droplets themselves are
negligible. In this study, the silicone oil was used as the only dispersed phase and all the
oil-in-water (O/W) emulsions were made by suspending 0.25% (v/v) silicone oil in the
aqueous solutions. The poly-disperse droplet effects are not present. Hence, the
deposition process of the O/W emulsion droplets onto a cylindrical surface can be

described by Equation (2.1). For a steady state, the first term in Equation (2.1) drops off,
Le., _gtﬂ =0, the general mass transport equation becomes:

V-j=0 (2.2)

Further, the droplet flux vector, j, can be decomposed into three contributions, fluid

convection, Brownian diffusion, and migration effect under various force fields as

follows:

n
i=un—D-Vn+D-F — (2.3)

({»)
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where u is the droplet velocity, D is droplet diffusion coefficient tensor, F, is the total

forces acting on the oil droplets, k is the Boltzmann constant and T is the absolute

temperature. Generally, F, is composed of the colloidal forces and the external forces,

£=F:'al

+F,, (2.4)

For a static deposition process, i.e., there is no appreciable bulk convection flow
of the O/W emulsions, then u=0. Thus, there are no hydrodynamic forces and torque

acting on oil droplet. The mass transfer Equation (2.2) becomes:
V'l=V'['2'V"+2'(Q+QL):—T]=O (2.5)

It can be seen from the above equation that, for the steady static deposition case, the
deposition process is controlled by the gradient of oil droplet number concentration near
the fiber, and the colloidal and external forces acting on the droplets. Here a further
restriction is that the droplet velocity induced by the action of the colloidal forces and the
external forces at the position far from the fiber surface must be so small that the
undisturbed emulsion phase can be assumed stationary. Thus the bulk migration effect is

negligible and the above mass transport equation is applicable.

2.2 Colloidal Forces
There are two kinds of the colloidal forces involved in the mass transfer process:
the van der Waals (vdW) interaction force and the force caused by two overlapped
electrical double layers (EDLs). The latter is simply called the EDL force. Thus,
Fo =Faw + Fep, (2.6)

col

Their specific expressions and accurate determinations will be given in details in Chapter
3, respectively. It is noted that these two forces always act between the oil droplet and
the fiber in the radial direction. The interactions between droplets themselves are
assumed to be negligible for diluted emulsions. They can be inward or outward,
depending on whether they are attractive or repulsive. Their magnitudes are dependent
only on the separation distance between the oil droplet and the fiber surface. For the

deposition cell illustrated in Figure 2.1, due to the axisymmetry in the system, a
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cylindrical coordinate system (r, ¢, ) is chosen and shown in Figure 2.2. Then the total
colloidal force acts along the chosen radial direction only, i.e.,

Fo = F,(r)i, 2.7)
where, F.o(r) is module of the total colloidal force& and i, is a unit vector that points

outwards along the radial direction.

2.3 One-dimensional (1-D) Mass Transport Equation

In order to derive a one-dimensional (1-D) mass transport equation, three
assumptions are made as follows. First, for a dilute mono-dispersion such as the O/W
emulsions studied in this work, the silicone oil droplets are assumed to be much smaller
than the glass fibers. For the case of small particles with the sizes in the range of 0.1-10
um (Adamczyk and van de Ven, 1981b; van de Ven, 1989) and a large collector
(Masliyah, 1994; Sanders et al., 1995), the interactions between the oil emulsion droplets
themselves can be negligible. Secondly, the effect of the presence of the cylinder on the
droplet diffusion coefficient is neglected. Thirdly, there are no external forces involved
in the deposition systems. As will be shown in Section 2.5, if the first assumption is kept
but the remaining two assumptions are discarded, the deposition process can be described
by a two-dimensional (2-D) mass transport equation. Physically, the first two
assumptions mean that the droplet diffusion coefficient is not affected by the presence of
surrounding droplets and solid surface. Therefore, it becomes independent of position
and orientation of one droplet relative to another or cylinder, i.e.,

D=D.[ (2.8)

where, 1 is a unit tensor and D, is the droplet diffusion coefficient in the bulk emulsions

and is given by the well-known Stokes-Einstein equation for a dilute dispersion:

kT

= 2.
P 2.9)

£

where, u is viscosity of the bulk emulsion and q is the radius of an oil droplet. Strictly
speaking, Equation (2.9) is valid for an infinite dilution only. The detailed discussion on
the various forms of the diffusion coefficient as influenced by the approximity of other

particles can be found elsewhere (van de Ven, 1989).
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The third assumption indicates that only colloidal forces need to be considered.

Then for the static deposition case, the droplet flux vector in Equation (2.3) becomes:

j=—D'x:V" +Dn1:col L
= —KkT

Further substituting the above expression into Equation (2.5) gives the mass diffusion

equation:

V=D, [Vt oV (1F)]=0 (2.10)

As shown above, F_ =F_(r)i,and thus n=n(r), i.e., the droplet number

concentration only changes along the radial direction in the cylindrical coordinate system
(r, ¢, z) in Figure 2.2. Equation (2.10) can be rewritten as:

1 d dn(r)y rn(r)F,_,(r)
——[-r +
rdr dr kT

Equation (2.11) is a second-order ordinary differential equation, which is valid for the

1=0 (2.11)

static deposition case without the external forces. In this case, Equation (2.5) reduces to
the one-dimensional (1-D) mass transport equation as shown by Equation (2.11).
Detailed derivations of the analytical and numerical solutions of the 1-D mass transport

equation will be described in Chapter 6.

2.4 External Force Fields

All the above derivations are obtained in the absence of external forces. Since the
colloidal forces are oriented only in the radial direction and their magnitudes depend only
on the gap width between the oil droplet and the fiber surface, the general mass transport
Equation (2.2) reduces to a one-dimensional second-order ordinary differential equation,
i.e., Equation (2.11). Nevertheless, if the external force fields are present, the local mass
transfer rate will depend not only on the magnitudes of these fields but also on their
orientation relative to the fiber surface. However, the deposition of droplets in arbitrarily
oriented external fields can not be readily analyzed numerically because the usually

on

'67|0=0.x

adopted “symmetry” boundary conditions, i.e., =0, are not satisfied. Hence,

only the external forces that are vertically directed either downward or upward will be
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investigated, assuming that the fiber is placed horizontally inside the deposition cell.
Under this restriction, the external forces do not depend on the z coordinate. In
additional to universally existing colloidal forces, the deposition process is also studied in

the presence of the two frequently encountered external force fields.

2.4.1 Gravitational Field

A net gravity and buoyancy force F, on a spherical droplet can be expressed by
the following formula:

4
F, =§7ra3Apg

il 4
where Ap=po-pw is the density difference between the oil and aqueous phases, and g is

the gravitational acceleration vector. Depending on the density difference, the net

gravitational force, F,, can be either upward (p,<pw) or downward (po>pw). It is

worthwhile mentioning that, if Ap is small or the fiber is purposely placed vertically, the
gravitational field will not affect the deposition process of oil droplets onto the fiber
surface.

Referring to the cylindrical coordinate system (r, ¢, z) depicted in Figure 2.2,

F, can be easily decomposed into two components, one is perpendicular and the other is
tangent to the collector surface,

4 :
F = 3;ra’Apg(—cosqsi, +singi,) (2.12)

where, ¢ is the azimuthal coordinate and i, is a unit vector along the azimuthal direction.

2.4.2 Electric Field

It has long been experimentally observed that oil droplets dispersed in an aqueous
emulsion are usually charged to some extent. If an external electric filed of intensity E
(directed either downward or upward) is applied intentionally, there are electrical forces

acting on these charged droplets whose magnitude is determined by the equation

F, = qE = +g|E|(~ cos¢i, +sin ¢i,) (2.13)
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where g is a net charge on the oil droplet, Iglreprcsents the magnitude of the electric
field vector, E, and the “+” signs represent the cases in which the electric filed is applied
downward (+) or upward (-). If the influence of the fiber surface on the externally
applied electric field is considered, the electrical force becomes (Adamczyk and van de
Ven, 1981b)

F, = q|E[[~(1+ Pr~ )cos¢i, +(1-Pr )sing i, ] (2.14)

- r . } ) ) . E.—E,
where, r = E , [ 1s the radial coordinate and R is the radius of fiber, P = —< , € and &,
E +€

c r

are the dimensionless dielectric constants of the cylinder and the aqueous medium

respectively. In case P=0 (e==¢,) or the oil droplet is located far away from the fiber

surface (;» 1), Equation (2.14) will reduce to Equation (2.13) that takes no account of the

intrusion of the fiber body into the applied electric field. For the thin non-conducting
fibers studied here, their effect on the externally applied electric field is negligible.

Combining F, in Equation (2.12) and £, in Equation (2.13) together, the sum of
the external forces is equal to:
Fou = (578" 80g £ gIE(—cosgi, +5ingi,) = Fur, @i, + Furg @Y, (215)

It can be seen from the above expression that, in fact, the two external forces act together
on an oil droplet as a joint external force. They either strengthen or counteract each
other, depending on the directions they exert on the droplet. It is also noted that the total
external force depends only on the orientation of the droplet relative to the cylindrical
collector, regardless of its separation distance from the fiber surface. This is because

these two external force fields are both conservative.

2.5 Two-dimensional (2-D) Mass Transport Equation

In the previous sections, it has been mentioned that the total colloidal force acts
along the radial direction only and its magnitude depends only on the separation distance
between the oil droplet and the collector surface. On the other hand, the total external

force of the gravitational field and the electric field force depends only on the orientation

17



Mass Transport Equations

of the droplet relative to the cylindrical collector, regardless of its separation distance
from the fiber surface. Therefore, the deposition predictions in the presence of the
colloidal forces and external forces become a two-dimensional boundary value problem.

If the O/W emulsion is still assumed to be dilute mono-dispersion such that the
interactions between the oil emulsion droplets can be negligible and the droplet diffusion
coefficient becomes independent of position and orientation of one droplet relative to
another. However, the droplet diffusion coefficient tensor depends on its relative position
to the fiber surface if the presence of the collector surface is taken account. Using the
correction method developed by van de Ven (1989) and Masliyah (1994) for the sphere-
flat plate geometry, the diffusion coefficient tensor for the present case can be
approximated as (Sanders et al., 1995):

d, 0
D=D_"" (2.16)

where D(r)=Daxdr= Dwofi(r) and Dyy(r)=Dwxdye= D«fa(r). The parameters fi(r) and fi(r) in
the above expressions represent the universal hydrodynamic correction coefficients
(UHCC), where f; was developed by Brenner (1961) and f; was given by Goldman et al.
(1967a; b). These two coefficients account for the deviation of the actual droplet
diffusion coefficient from D, that is determined from the Stokes-Einstein Equation (2.9),
because of the presence of the collector surface. Their values were given in tabular form
by the above researchers, respectively. In order to incorporate their values, as functions
of dimensionless separation distance of oil droplets from the collector surface, directly
into the subsequent numerical calculations, it is advantageous to curve fit each of the
UHCC functions so that they can be represented by analytical expressions. The results of
these curve fits were given by Masliyah (1994) and are listed as follows:

f,(H)=1.00 —0.3990exp(-0.14869H ) — 0.6010exp(—1.2015H°***")  (2.17a)
f(H)=1.00-1.23122exp(-0.2734H) + 0.8189exp(-0.1750H ')  (2.17b)

where, H is the dimensionless gap width between the oil droplet and the fiber surface,

H=r-R-a.
a
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When Equation (2.16) is substituted into the general droplet flux formula,
Equation (2.3), for the static deposition case, i.e., u=0, the following explicit expressions

for j, and j4 can be obtained:

. _ on n
J.=-D_/, (’)—ar + Dmf.(r)F,(r,d’)—kT (2.18a)
s Si(r) On n
Jo =D, = % +D‘f‘(')F‘(¢)—kr (2.18b)

where F(r, $) and F¢(¢) are the components of all the colloidal and external forces acting

on an oil droplet in the radial and azimuthal directions, respectively.

F(r,)=F (r+F,, (®)=F,,(r- (gm’Apg +g|E|)cos¢  (2.19a)

F,@#) = F..,®) = (Gna’Apg £ gEsin¢ (2.19)

Noting that j,=0 in the present case. Again referring to the chosen cylindrical coordinate
system (r, ¢, z), the general mass transport Equation (2.2), can be explicitly expressed as:

10, . 19,
= —— +——"= 2.20
1 rar('y') r 0¢ ( )

By bringing Equations (2.18-2.19) into the above equation and introducing the following

<

dimensionless variables and parameters:

pe . gr-R-a £ gy Fun R 2.21)
n kT a

n —_—

a
where n, is the oil droplet volume concentration in the bulk emulsion at an "infinite”

distance r=r. from the fiber surface, it can be derived that:

é’n

o*n on on -
+ g.(”#)gﬁ-gz(H,¢)g¢;—g3(H,¢)n + g‘(H)EF =0 (2.22)

OH’

where:

g.(H,) =3‘;7{ln[f.(ﬂ)g(ﬂ)]}—F~(H,¢) ,

SA(H)Fs(d)
fi(H)g(H)’

g:,(H.¢)=
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dF i (H) , JulH) (Gr £ Ef)cosé
dH f(H) g(H)

g;(H,$)=Fu(H, ¢) {ln[ﬂ(H)g(H)]}

JJ(H)
4 H = R L]
&) = ) (H)
g(H)=H +1+ A4,

FuH,¢) =L ’:‘;’,m:;‘:w:(ﬂ)-(GrtEf)costp is the component of the total
a

dimensionless force in i,, direction,

Fe @)= ‘ (¢) =(Gr £ Ef)sin ¢ is the component of the total dimensionless force in i,
T{
direction,
— F_(r) . . . . ..
Fo(H)= %— is the total dimensionless colloidal force that has a component in iy,
a

direction only,

4 3
37 (P, =P8
Gr= KT is the dimensionless gravity number,

a

E
and Ef = %[—l is the dimensionless electric field number.

a
Equation (2.22) as it stands is a linear homogeneous elliptic (Note: gs(H)20)
second-order 2-D partial differential equation (PDE) whose solution might be achieved
only by using proper numerical methods. As expected, it can be shown that this 2"-order
PDE will reduce to the 1-D mass transfer Equation (2.11) if one sets Gr=Ef=0 and

fi(H=L(H)=1.
2.6 Simplified 2-D Mass Transport Equation

Mathematically, Equation (2.22) represents an elliptic 2".order 2-DS PDE which

is very difficult to solve, even by use of sophisticated numerical methods (Adamczyk and
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van de Ven, 1981b). Therefore, as stated before, this study will only deal with the
external forces that are perpendicular to the axis of the fiber cylinder. Under this

5=

restriction, the coefficient of the angular diffusion term 24;: in the PDE, ie.,

f(H) 1

= , which depends on H and A only, is usually
fi(H)g*(H) (H+1+4)

g4(H)=

negligible since in most practical cases A» 1. Thus, if this term is neglected, the elliptical
PDE becomes a parabolic 2"%-order PDE whose numerical solution can be pursued

relatively easily,

2- n —
:H—';+g|(H,¢)§—;-gz(ﬂ,¢)g—;-g3(ﬂ,¢)n =0 (2.23)

The same strategy was utilized by Adamczyk and van de Ven (1981b) to simply their

P

-

elliptical PDE. However, it should be emphasized that the whole term, g,(H )ZT'_,', is

omitted solely because A2 in the multiplier g,(H) is small. Such omission does not
y p g,

N—
<

imply on ~0. Inother word, n should not be considered to be a linear function of ¢.
o*

As will be presented in details in Chapter 6, Equation (2.23) together with proper
boundary conditions can be numerically solved by using the well-known implicit Crank-
Nicolson method (Hoffman, 1992). This numerical method is two-level, single-step,
second-order, six-point, unconditionally stable and convergent. In the literature,
Adamczyk and van de Ven (1981a; 1981b) have successfully applied the Crank-Nicolson
method to solving the mass transport equations in the case of parallel-plate and
cylindrical channels. Nevertheless, some efforts should be made in order to improve the
accuracy and flexibility of this method. This is because Equation (2.23) is characterized
by a rapid change (stiff problem) of coefficients at small separation distances due to the
presence of terms describing the colloidal forces. It is also expected that the
dimensionless variable H changes a few orders and that ¢ ranges from 0 to n. In this

study, two special transforming functions are implemented to enable a continuous
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changing of the mesh sizes in the new radial coordinate and the new azimuthal
coordinate, respectively.

Since the Crank-Nicolson approximation method is unconditionally stable, the
new mesh sizes do not affect the stability of numerical solution and thus are chosen
purely based on accuracy requirements. The accuracy of the numerical solutions is then
checked by varying the mesh sizes respectively and only results which are insensitive to
these changes (i.e., exhibiting relative differences less than 0.01%) are considered
accurate. The specific transforming functions and the numerical procedures and results,
as well as their direct comparison with the experimental results and discussion will be

presented in details in Chapter 6 and Chapter 7 respectively.
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Oil-in-Water Emulsion

Figure 2.1 A schematic diagram of oil droplet-fiber deposition cell

|

Figure 2.2 Cylindrical coordinate system (r,$, z) used for deriving the general
mass transport equation of oil droplet-fiber deposition problem
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Chapter 3
The van der Waals (vdW) Interaction and the Electrical
Double Layer (EDL) Interaction between a Spherical Particle
and a Cylindrical Fiber

3.1 The van der Waals (vdW) Interaction

The van der Waals (vdW) interaction between a colloidal particle and a solid
surface as a function of separation distance is important in studying the flow of colloidal
emulsions or suspensions and macromolecular solutions through porous media or a filter
composed of fiber materials. This kind of interaction also plays an essential role in
problems of colloidal stability and particle deposition onto a solid collector (Adamczyk
and van de Ven, 1981a; 1981b; Jachowicz and Berthiaume, 1989; Berthiaume and
Jachowicz, 1991). In the past, there are numerous publications focusing on the vdW
interaction (see Chapter 1 for details). However, there remain several issues that warrant
further investigating. First, the computation of the vdW interaction between a spherical
particle and a cylindrical surface was usually performed under the assumption of a sphere
interacting with an infinitely large flat plate (Adamczyk and van de Ven, 1981a; 1981b).
Such a simple model completely ignores the possible large curvature and finite-size
effects of the cylindrical collector on the vdW interaction between a sphere and a finitely
sized cylinder. Secondly, owing to the electromagnetic nature of the interaction, the
actual vdW interaction between two interacting macroscopic bodies is reduced at large
distances because the time of the electric field propagation from one body to another
body and back is such that the fluctuating electric moments become slightly out of phase.
The reduction of the vdW interaction due to the finite speed of light is often called the
retardation effect (Israelachvili, 1985; Bhattacharjee and Sharma, 1995). Thirdly, it is
rather difficult to determine the Hamaker constant experimentally and thus to calculate
the vdW interaction accurately for many practical applications.

In this chapter, a general method will be presented to compute the unretarded

vdW interaction potential and force between a spherical particle and a cylinder (Gu and
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Li, 1998h). Therefore, the effects of the curvature and the length of the cylinder on the
vdW interaction can be explored quantitatively. However, it is noted that, in this study,
the spherical particles or the oil droplets are assumed to be rigid such that their
deformation effects on the vdW interaction are not included in the curvature effects.
Then the interaction potential is modified to account for the retardation effect by
incorporating a correction factor, which depends on the separation distance and the
characteristic wavelength of the interaction. Next, for the practical deposition systems,
their unknown Hamaker constants can be related to the known ones, which are obtained
directly from the relevant surface and/or interfacial tensions. At present, the surface
tensions and interfacial tensions of liquid-fluid interfaces can be measured with
satisfactory accuracy by using some existing advanced experimental techniques, such as
the axisymmetric drop shape analysis (ADSA) technique developed by Neumann and co-
workers (Rotenberg et al., 1983; Cheng et al., 1990; Li et al.,, 1992). According to the
equation of state for interfacial tensions (Li and Neumann, 1990a; 1992a), the interfacial
tensions of solid-fluid interfaces can be determined from the relevant surface/interfacial
tensions and contact angles of the solid-liquid-fluid systems, both of which can be
measured by the ADSA technique. However, it has long been noted that the ADSA
technique and most other widely used contact angle measurement techniques require a
flat solid surface. Hence, they cannot be utilized to measure contact angles on curved
surfaces, such as a cylindrical fiber surface, though the determination of contact angles or
wettability on fibre is of practical importance in composite materials, textile and cosmetic
industries. In the course of this work, a new contact angle measurement technique has
been developed (Gu et al., 1997a; Gu and Li, 1998a; 1998b). This method can be used to
accurately measure the contact angle of a liquid-fluid interface by analyzing the capillary
profile around a cylinder (ACPAC). As will be described separately in details in the next
chapter, the ACPAC technique is a powerful alternative tool to the existing ADSA
technique for accurate measurements of contact angles of any liquid-fluid interfaces on
cylindrical surface. It will be particularly useful in studying the wetting, spreading and
deposition processes of a liquid drop on fiber surfaces. A general user-oriented computer

program code to implement this technique is also developed.
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3.2 Mathematical Formulations of the Unretarded vdW Interaction
between a Spherical Particle and a Cylindrical Fiber

In the literature, exact and approximate analytical expressions are available only
for the vdW interaction potentials between bodies of appropriate geometric combinations,
such as two parallel flat plates, spheres, infinitely long parallel cylinders, infinitely long
crossed cylinders, and a sphere and an infinitely large flat plate (Israelachvili, 1985).
Recently, Zeman and Wales (1981) and Papadopoulos and Kuo (1990) presented
numerical methods to determine the vdW interaction energy for a spherical particle in a
pore geometry. Bhattacharjee and Sharma (1995) obtained asymptotic analytical
expressions for the same geometric configuration using the Hamaker microscopic
approach. They all found that a commonly used simple model of a sphere interacting
with a semi-infinitely large flat plate is reasonable only for very small particles close to
the inner wall of a cylindrical pore. But in all other cases, it seriously underestimates the
interaction energy.

However, there is no similar effort made yet to consider the curvature and the
finite-size effects on the vdW interaction between a sphere and a cylinder for the case in
which the sphere is located outside of the cylinder. In such a case, it has become a
common practice to employ the sphere-flat plate approximation without any justification.
Theoretically, it is not clear how large an error will be created by this approximation
when it is used to calculate the vdW interaction between a spherical particle and a finitely
sized (both the length and the radius) cylinder at an arbitrary separation distance.

There are two practical methods to determine the vdW interaction between
approaching bodies as a function of their separation distance. The first, referred to as the
Hamaker approach (Hamaker, 1937), determines the vdW interaction of two macroscopic
bodies by carrying out the so-called Hamaker-type integration of all the intermolecular
interactions. The second approach, based on the Lifshitz theory (Lifshitz, 1956;
Parsegian, 1975), is more rigorous and gives the vdW interaction energy as a function of
macroscopic electrodynamic properties of the interacting media, such as their dielectric
permittivities and their refractive indexes (Israelachvili, 1985). In practice, the Hamaker

approach is much more widely used mainly because of its simplicity and applicability.

26



Chapter 3

In this section, a general theoretical method is presented to obtain the vdW
interaction potential and force between a spherical particle and a cylinder without
invoking the sphere-flat plate approximation. Based on the well-known Hamaker
approach and pairwise summation of all the relevant intermolecular interactions
(Hamaker, 1937; Israelachvili, 1985), this method determines the vdW interaction from
evaluation of total four multidimensional integrals. As will be seen later, the integrand
after the first analytical integration becomes so cumbersome that it is impossible to derive
any meaningful asymptotic analytical expressions for any situations of interest.
Therefore, accurate numerical integration is performed for the remaining three integrals.

Specifically, on the bases of the Hamaker approach and pairwise additivity, the
total vdW interaction potential is evaluated by integrating the pair interaction potential
between two molecules, one in the sphere and the other in the cylinder. Therefore, the
first step is to obtain the interaction potential between a molecule in the sphere and the
whole cylinder. Then the total interaction potential between the sphere and the cylinder
can be evaluated by integrating the molecule-cylinder interaction potential over all the
differential volume elements in the sphere, i.e. performing the Hamaker-type integration

for the configuration.

3.2.1 Molecule-Cylinder Interaction Potential
Generally, the unretarded pair potential between two interacting molecules

separated by a distance r can be assumed to be of the power-law form:

wrn=-<, 3.1)

L

where C is their potential coefficient and n depends on the specific potential model used
for the inter-molecular potential. For the van der Waals (vdW) interaction discussed
here, C is the Lifshitz-vdW potential coefficient and n=6 (Israelachvili, 1985;
Bhattacharjee and Sharma, 1995). As will be seen later, C is directly related to the well-
known Hamaker constant. Then, with the further assumption of the pairwise additivity.
the vdW interaction potential of a molecule and a solid cylinder, as schematically shown
in Figure 3.1a, is the sum of its interactions with all the molecules in the cylinder of

radius R and length L. For an infinitesimal differential volume element of cross-sectional
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area pd¢dp and vertical height dz, the element volume is pd¢dpdz, and the total number
of molecules in the element is n.pd¢dpdz, where n is the number density of molecules in
the cylinder. Referring to Figure 3.1b, geometrically, the distance between the molecule

and the differential volume element is equal to,

r=[z"+(D+ R+ pcos¢d)’ + p’sin’ ¢I%
By choosing the cylindrical coordinate system (p, ¢, z) and noting the symmetries in the z
and ¢ directions, the total vdW interaction potential between the molecule and the
cylinder at a separation distance D away from the cylinder surface is, using Equation

3.1

L4

vi(D,R,L) = -4Cn, | {f( d

[z +(D+ R+ pcosg)’ + p*sin’ ¢]

)pdpidé (3.2)

c‘-.nql{s

In order to generalize these integrals, three nondimensional parameters are

introduced as follows:

A= R , the ratio of the cylinder radius to the sphere radius,
a

B= % , the ratio of the cylinder length to its radius, therefore, L_ AB,
a

D . . . .
H = —, the dimensionless separation distance.
a

Correspondingly, the integration variables are nondimensionalized as follows:

=— and B:—e.
a

N

N

Substituting these nondimensional parameters and new integration variables into

Equation (3.2) gives:
ﬁ
T A__ _2 d
’jd¢_[pdpj‘ -2 - 2, T2 .2 413
o o o [z +(H+ A+ pcos¢g) +p sin® @]

(SN

4Cn
@

v,(H,A,B) =~ (3.3)

It is also noted that the proper choice of the integration sequence may result in a simple

analytical expression for the subsequent integrals. In the present case, the integration
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with respect to z is simpler and thus is chosen first. After some mathematical

manipulations regarding the integration over the z direction, Equation (3.3) becomes:

4C z A - .
vi(H,A4,B) = - a:’f [de[p.(@.p.H,4,B)pdp, (3.4)
0 1}
where,
- 2AB
p|(¢’p’H’A’B)= —_ 2 —2 . 4 2 2 - 2 -2 . 5 2
[(H+ A+ pcosd)’ +p sin¢]{4°B° +4[(H + A+ pcos¢)” + p sin” ¢]}°
. 3AB
4[(H + A+ pcosg)’ + P sin? @ {A2B* + 4[(H + A+ pcosg)’ + P sin @]}
3 AB
+ — s-arctan{ — — l}
8[(H + A+ pcos¢)’ + p sin’ ¢]? 2[(H + A+ pcos¢)’ + 5’ sin’ 9]’

Here, in the function p.(d),;,H,A,B), H is the nondimensional separation distance but at

this stage it is irrelevant to these integrals; whereas A and B are the nondimensional

parameters which depend merely on the dimensions of the sphere and ihe cylinder as
defined previously. As seen from Equation (3.4), ¢ and p are the rémaining integration

variables. However, the complicated integrals in Equation (3.4) have to be performed
numerically. Equation (3.4) is a general integral equation for calculating the vdW
interaction potential between a molecule and a cylinder of a finite nondimensional radius,

A, and a finite nondimensional length, AB, at a nondimensional separation distance, H.

. L . A
If the cylinder is sufficiently long, i.e. B = —E»l, then the first two terms in the function,

pi(9, p .H,A,B), become negligible. In the extreme case for an infinitely long cylinder,

B=c0, Equation (3.4) can be simplified as:

- r A N
vi(H, 4) =~ 2= [ g edp L)

° OS[H+ A+ pcosd)’ +p sin? 9)?

3.2.2 Sphere-Cylinder Interaction Potential
The next step is to calculate the total vdW interaction potential between a sphere

and a cylinder. First of all, as shown in Figure 3.lc, the interaction between an
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infinitesimal differential circular disk of cross-sectional area nx? and thickness dy in the
sphere and the cylinder is considered. From the elementary geometry, it is known that
x*=a*-(a-y) =(2a-y)y

Thus, the volume of the circular element disk is nx’dy=n(2a-y)ydy, and the number of
molecules in this differential volume element is n,t(2a-y)ydy, where n, is the number
density of molecules in the spherical particle. Since all these molecules in the thin disk
are at the same separation distance (D+y) away from the cylinder surface, the overall
vdW interaction potential between this element and the cylinder is
vi(D + y,R,L)ngn(2a-y)ydy, where v,(D,R,L) is given in Equation (3.2). Further

employing the previously defined nondimensional parameters, the function,

p1(¢,; ,H,A,B), and ; = -"i, the total vdW interaction potential between the sphere and
a
the cylinder is equal to:
2 = A
Vi(H, 4,B) =~41Cn,n_[([ d6[ p,(6.p,H + y,4,B)pd p}2-)ydy  (3.6)
¢ 0 0

The Hamaker constant for interaction between two bulk bodies is defined as
(Israelachvili, 1985):
A, =7Cn,n,. (3.7

where A,; is the Hamaker constant for the interaction between phase ‘1° (say, spherical
particle) and phase ‘2’ (the cylindrical collector) in vacuum. Here, n; and n; are the
densities of phase 1 and phase 2, respectively, in number of molecules per unit volume.
The parameter C is the interaction energy parameter specified in Equation (3.1) for van
der Walls interaction between a molecule of phase 1 and a molecule of phase 2. For
obtaining the Hamaker constant A;;;, namely, the Hamaker constant for interaction
between ‘1’ and ‘2’ through medium ‘3’ (the aqueous phase, in the present case),
combining relations outlined in Section 3.5.1 are used. Using the Hamaker constant to
nondimensionalize V(H,A,B) in Equation (3.6) yields
Vi(H,A,B)

12

Vi(H,A, B)= (3.8a)
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— vV —
Vowi(H, A, B) = "’L’T“”” =22 7\(H,4.8). (3.8b)
where,
_ 4 2 x A _ _ - o
VI(H,A,B)=-‘;I[Id‘#jpl(d’,P,H+}’,A,B)PdP](2—)’)ydy (3-93)
00 [}]

A

2 x
V.ani(H, A, B) == 222 [[[ o[ p,(6, 5. H + 3.4, BYpdp)2 - y)3dy  (3.95)
0 0 0

In accordance with the definition of the total dimensionless colloidal force,
I:col(H)
kT
a

Fm/(H )= , given in Section 2.5, another nondimensional vdW interaction

V.(H, A4, B)
kT

potential, expressed by Vaw i (H,A,B) = , is also defined in Equation (3.8b)

and its formula is also given in Equation (3.9b) for comparison. Nevertheless, such
defined dimensionless vdW potential will not be further referred for the following two
reasons. First, as shown in the above equations, these two nondimensional vdW

potentials are based on different references and thus differ only by a dimensionless

multiplier, :';_ . Secondly, at this stage, the vdW potential nondimensionlized by A2,

Vi(H, 4, B)

12

1e., 7x(H ,AB)= , is preferred because A, is unknown. How to determine

the Hamaker constant, A;,, will be described later in Section 3.5. The vdW potential

nondimensionlized by KT will be used in Chapter 6 in order to be consistent with usual

definition of the dimensionless adhesion number, 4, = -é:—("T (Adamczyk and van de Ven,

1981b; Sanders et al., 1995).

Similarly, the total nondimensional vdW interaction potential between a sphere
and an infinitely long cylinder (B=) can be written as, using Equation (3.5),
V,(H, A)

12

Vi(H,A) = (3.10)

where,
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_ 3 2 A -, _

Va(H, ) =3 [ ([ do £ Je-yydy  GAD
© 0 O[H +y+A+pcosp) +p sin’ @)’

Later on, these two nondimensional total interaction potential functions for a sphere and a

cylinder in two cases, VI(H ,A,B) and i’-z(H , A) , will be compared with those between

a sphere and a flat plate.

3.2.3 Analytical Solutions for the Sphere-Flat Plate vdW Interaction Potential
With the molecule-flat plate interaction potential obtained by integrating the
molecule-molecule pair potential, Israelachvili (1985) derived the sphere-flat plate vdW

interaction potential, which, in the nomenclature used here, can be expressed by

= 1 Q-v)dy
V == 7 3.12
3(H) e (3.12)

The exact analytical solution for V3;(H) can be obtained by performing the above

integration:
1 H+2

_ o1
Vi) =—clg+ 2 I

If the third term on the right-hand side of Equation (3.13) is expanded in a Taylor’s series

)] (3.13)

by using

x-1 1 x-1 1 x—1
Inx=2 +— i
x I:Jc+l 3(x+l) 5(.t+l

) +--]. (x>0)

and choosing x = H_H*ﬁ’ then an excellent approximation to Equation (3.13) over all the

range of H can be achieved by truncating the In x expansion up to the third order and
substituting the resultant expression into Equation (3.13),

2H® +3H +3
OH(H +1)’(H +2)

Mathematically, it can be readily proved that Equation (3.14) will approach the following

(all H values) (3.149)

Vi(H) = -

two limiting solutions:

V,(H)=-_6'F, (Hal) (3.15)

for small separation distances and
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2
9H’

for large separation distances, respectively. These two asymptotic expressions are also

Vs(H)=—- , (H»1) (3.16)

given by Israelachvili (1985).

3.2.4 The vdW Interaction Force
After the vdW interaction potential formulae are derived, the vdW interaction
forces can be easily related to the vdW interaction potentials by the following relation:

av(D)
dD

Accordingly, two different dimensionless vdW interaction forces can be defined as:

F(D) __dV(H)

F(D)=-

F(H) = y 7 (3.17a)
22
a
_— F D .
FMW(H)=—'£T—)= :‘T F(H) (3.17b)
a

As was mentioned previously, F .aw (H)defined in Equation (3.17b) is the dimensionless

vdW interaction force defined in Section 2.5. By differentiating the dimensionless vdW

interaction potentials expressed by Equations (3.9a), (3.11), (3.13), (3.15) and (3.16) with

respect to H and then bringing the resultant equations into Equation (3.17a), respectively,

the dimensionless vdW interaction forces for different cases can be summarized as

follows:

(F, (H,A,B) (between a sphere and a finitely long cylinder)

F_‘_z( H,A) (between a sphere and an infinitely long cylinder)

F(H)={ Fis(H) (all H values) (3.18)
Fi(H) (small H values) ( between a sphere and a flat plate)

~ Fs(H ) (large H values)

where:

_ 3 2 n A _ _ . o
F.(H,A,B)=—i’i%;ﬁﬂ=%j[jd¢jf,(¢,p,ﬂ+y,A,B)pdp](z—y)ydy
0 0 0
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- ap|(¢,;,H,A,B)
(¢.p.H,A,B)= =
fi(g.p ) H
_ 10AB(H + A+ pcos¢)
[(H+ A+ pcosg)’ +p sin’ @ {4°B> +4{(H + A+ pcosp)’ + p_sin’ ¢]}’
_ 32AB(H + A + p cos¢)
[(H+A+pcosg)’ +p sin’¢]{A>B> +4[(H + A+ pcosp)’ + p_sin’ ¢]}°
_ 1SAB(H + A + pcos¢)
4[(H + A+ pcos¢)’ + p_sin’ ¢ {42B> + 4[(H + A+ pcosd)’ + p_sin’ ¢]}
15(H—+A+pcos¢) _arctan AB — 1}
8[(H + A+ pcosg)’ + p sin’ @]’ 2[(H + A+ pcosg)’ + p sin’ @]
= dV.(H, A H+y P pdp — ==
Fz(H,A)z———QL——) lsj'{j'dqu' (H+y+A+rpcos)pdp 45 _%)3dy
o o [(H+y+A+pcos¢) +p sin” ¢]2
F}(H)z_dVg(H)z_ ’ 2 2
dH 3H*(H +2)
R(H):_dla(ﬂ) _ 1 ’
dH 6H?
F;(H):-‘W’(”) __ 24
dH IH

For comparison, the analytical solutions for the vdW interaction forces between a

sphere and a flat plate are also included in Equation (3.18). As expected. the exact
solution for this case, F3(H), will approach the asymptotic solutions, Fs(H) for Hal,
and FS(H ) for H»l, respectively. It is seen from the equations for V,~Vs and Fi~Fs

that these ten functions are all dependent on the nondimensional separation distance H.

some of which are also dependent on the nondimensional geometric parameters A and B.

Furthermore, the vdW interaction potential V(H ) and force F(H ), which are
nondimensionlized by Aj; and - Ay , respectively, are always negatively valued at any
a

separation distances.
To evaluate the exact nondimensional vdW interaction potential and force

between a sphere and a cylinder at any arbitrary nondimensional separation distances, H,

the integral equations for V.(H,A,B) and Fi(H,A,B), Vi(H,A) and Fi(H, A) are
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numerically integrated by using a second-order trapezoid rule method (Hoffman, 1992).
More specifically, since these integrands are found to be extremely stiff functions, the
adaptive integration technique is also applied. The minimum integration step size for

each integration variable is chosen properly in order to satisfy a pre-specified error

criterion. The overall accuracy of the three remaining integrals with respect to ; , ¢, and

y is improved by evenly taking a smaller step size for each integration variable until the
numerical results exhibit relative difference less than 0.01% between the two successive

integration steps.

3.3 Retarded van der Waals (vdW) Interaction

So far all the above expressions for the vdW interaction potentials and forces are
derived based on an implicit assumption that the speed of light is infinite. Thus they are
often referred to as the unretarded vdW potentials and forces. Owing to the
electromagnetic nature of the interaction, the actual vdW potential between two
interacting macroscopic bodies is reduced at large separation distances because the time
of the electric field propagation from one body to another body and back is such that the
fluctuating electric moments become slightly out of phase. The reduction of the vdW
interaction due to the finite speed of light is called the retardation effect (Israelachvili,
1985; Bhattacharjee and Sharma, 1995). Such effect may become very pronounced for
macroscopic bodies at separation distances larger than about 5 nm (Nir and Vassilieff,
1988). For fairly large particles (1 um or greater), omission of the retardation has been
proved to lead to a serious overestimate of the vdW interaction (Gregory, 1981).
However, in practice, a full treatment of the retardation effect presents a rather intractable
task for complex geometries (Israelachvili, 1985; Nir and Vassilieff, 1988), and is thus
rarely pursued.

Unlike the Lifshitz approach, the original Hamaker approach does not include the
retardation effect. Nevertheless, as was suggested by Gregory (1981), in principle, this
approach can be modified to account for the retardation by multiplying the unretarded

intermolecular vdW interaction potential given in Equation (3.1) by a correction factor:

v(r)=—;(';f(p), (3.19)
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2nr

where the correction function, f(p), depends on the reduced distance only, p = =

and A is the “London characteristic wavelength™ of the interaction and is often assumed
to be about 100 nm (Gregory, 1981; Dabros and van de Ven, 1983; Masliyah, 1994).
Nonetheless, a difficulty with this correction method arises from the lack of a convenient

single formula for f(p) over the entire range of separation distances (Casimir and

Polder, 1948; Overbeek, 1952; Schenkel and Kitchener, 1960; Gregory, [981).
Alternatively, after making a complete comparison, Gregory (1981) suggested several
simple approximations for retarded vdW interaction between plates, between spheres, and
between a sphere and a plate. Furthermore, Gregory (1981) concluded that introducing
the simpler approximations for retarded interactions, such as an appropriate correction
factor, gives even better agreement with exact predictions.

In this study, all the expressions derived heretofore are only for the unretarded
interactions, i.e. the zero-frequency component of the vdW interactions. Therefore, a
proper correction to the retardation effect is warranted in order to account for the nonzero
frequency components of the vdW interactions. Following the approach of Gregory
(1981), this is attempted by incorporating a correction factor, which is a function of the
separation distance, H, and the “London characteristic wavelength™ of the interaction, A,
into these unretarded vdW interaction equations. It should be noted that, at larger
distances, when the retardation correction becomes significant, the vdW interaction itself
becomes insignificant compared with other forces such as hydrodynamic force and the
electrical double layer (EDL) force (Hoffmann and Stein, 1992).

Since the spherical particles are usually so much smaller than the cylinder, as a
first-order approximation, the existing correction factor for the sphere-plate interaction
potential may be the most suitable one to account for the retardation effect on the sphere-
cylinder system. This correction factor is given by (Suzuki, Ho and Higuchi, 1969;
Gregory, 1981; Adamczyk and van de Ven, 1981b; Masliyah, 1994):

T A
A)=———, 3.20
S(H,2) T (3.20)
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- A . . . . - .
where, A == is the dimensionless retardation parameter and s is a constant equal to
a

11.116 (Suzuki, Ho and Higuchi, 1969) or 14.0 (Gregory, 1981). Multiplying the non-
dimensional unretarded vdW interaction potentials by f(H ,A) yields the approximate

nondimensional retarded vdW interaction potentials, i.c.,

v.(H)= ( )V (H) (i=1~5) 3.21)

Accordingly, the non-dimensional retarded vdW forces can be found by differentiating

Equation (3.21) with respect to H:

=—Rert -
—er dv.” (H) A 1s .
Fi (H)=- F. —————V.- H =1~5 3.22
(H) 7H (}.+s YFi(H)+ T +3H) (H) ( )« )

Equations (3.21) and (3.22) can be directly employed to correct the unretarded vdW
interaction potentials and forces between a sphere and a cylinder, VI(H .A.B) and
Vi(H,A), Fi(H,A,B) and F:(H,A) given in Equations (3.9a), (3.11), and (3.18),

respectively. For the sphere-flat plate system, the analytical expressions for retarded
vdW potentials and forces in different cases can be easily derived as follows, using

Equations (3.13), (3.15), (3.16) and (3.18), respectively,

r f—

— Ret l H+2
v -1
’ +sH H el Syl
—Rel A.
H)=——
(H) ( sH
— 2 F
VRer - -~
s M=o Son
4 and (3.23)
F R i 2 1 Zs | 1 H+2
H)=- —— —+ —In
() (/1 H)3H 2(H +2)* 6_(&+s}_‘l)2[H H+2 (H )]
F*(H) = - A(’A.:-Z{H)7
6H (A +3H)’
FSRn(H)=_21(43_l_+41sHZ
L OH (A +sH)
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In the above equation, if s in Ve "(H) is taken to be 11.116, this expression will be

identical to the so-called SHH expression, due to Suzuki, Ho and Higuchi (1969). Such

SHH expression for the retarded vdW interaction force, Ff"(H ), has been employed by

others to determine the retarded vdW interaction force between a sphere and a flat plate
(Adamczyk and van de Ven, 1981b; Sanders et al., 1995).

3.4 Retardation Effect and Curvature and Finite Size Effects

The general theoretical method described above can determine the van der Waals
interaction potential and force between a spherical particle and a cylinder at any
separation distances. Equations (3.9a), (3.10) and (3.18) give the nondimensional
unretarded vdW potentials and forces as functions of dimensionless geometric
parameters, A and B, for a cylinder of finite dimensions, or A only for an infinitely long
cylinder. Here, A is defined as the ratio of the radius of the cylinder to the radius of the
sphere, and B is defined as the ratio of the length of the cylinder to its radius. Thus B
depends only on the dimensions of the cylinder itself. In the numerical computations, the
nondimensional separation distance, H, is chosen to vary from 0.001 to 100. As will be
discussed in Chapter 6, such a range for H includes all the interesting cases of significant
interactions. The typical values for A and B are chosen as 1, 10 and 100. Two orders of
change in A and B cover practically all situations as well. Particular attention is given to
the vdW interactions in the following three rather different ranges of H, ie., H«l
(H=0.001~0.1), H~1 (H=0.1~10) and H»1 (H=10~100).

Such calculated unretarded vdW interaction potentials are modified to take

account of the retardation effect by introducing a correction factor, f(H A), given in
Equation (3.20). In f (H,I), the “London characteristic wavelength”, A, and the

constant, s, are taken to be 107 m (Suzuki, Ho and Higuchi, 1969; Gregory, 1981) and
11.116 (Suzuki, Ho and Higuchi, 1969), respectively. A typical value of the
dimensionless retardation parameter, 2, is chosen as 0.01, i.e. a=~10um, in the present
numerical simulations. As was indicated by Adamczyk and van de Ven (1981b). the

dimensionless retardation parameter when changed within the limits of 0.1~1.0 affected
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the deposition rates of the Brownian particles onto cylindrical collectors by only 0.5%.
The detailed numerical results will be discussed and compared with those based on the
flat plate approximation.

Figure 3.2 shows the variations of the unretarded (empty symbols and dotted
lines) and the retarded (solid symbols and solid lines) vdW forces, FI(H, A,B) and

—Rer

F\ (H,A,B) between a sphere and a finitely sized cylinder (A=l and B=1) and

F1(H,A)and -fgt'(H,A), between a sphere and an infinitely long cylinder (A=1 and
B=w0) with the nondimensional separation distance, H. It is seen from the log-scale plot
that the vdW interactions decay by approximately twenty orders of magnitude as the
nondimensional separation distance, H, changes by five orders from 0.001 to 100. At the
two extremes, either H«l (H=0.001~0.1) or H»1 (H=10~100), the vdW interactions
decrease approximately linearly as H increases, but with considerably different slopes.
Between these two limiting cases, there is an obvious transition region for the vdW
interactions near Hx1 (H=0.1~10). These facts suggest that it is actually difficult to find
a single simple formula for the vdW interaction force between a sphere and a cylinder
over the entire range of the separation distances as considered here.

Figure 3.2 also clearly shows that, at small separation distances, H«l
(H=0.001~0.1), the retardation effect is negligible. However, when H>0.1, the difference
between the unretarded and retarded vdW interactions becomes much more pronounced
as the sphere and the cylinder are separated by a large distance. Hence, complete neglect
of the retardation effect results in unacceptably overestimated vdW interactions at larger
separation distances. Fortunately, the vdW interactions themselves become much weaker
at larger separation distances. As a matter of fact, at such large separation distances,
other driving forces such as the hydrodynamic force and the EDL force might become
dominant (Hoffmann and Stein, 1992).

The comparison of the vdW forces for the sphere-cylinder systems (A=1, B=l.
and A=1, B=w) and for the sphere-flat plate system is presented in Figure 3.3. At He«l,
the vdW forces between a sphere and a cylinder, whether the cylinder is finitely or
infinitely long, are essentially the same as those calculated from the flat plate

approximation. Nevertheless, when H>1, the vdW forces for the sphere-cylinder systems
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deviate significantly from that for the sphere-flat plate system. It becomes obvious that,

at large separation distances, the flat plate approximation and its asymptotic solution

_P:f”(H ) for H»1 give a serious overestimation of the vdW interactions for the sphere-
cylinder systems. Furthermore, as expected, at H» 1, the vdW interaction force between a
sphere and an infinitely long cylinder (B=w) is stronger than that between a sphere and a

finitely long cylinder (B=1). Figure 3.3 also indicates that the asymptotic expression

—Ret . . .
Fi (H) is an excellent approximation to the exact vdW force between a sphere and a

flat plate at H«l, whereas F:”(H )is a good approximation to the exact solution of the
sphere-flat plate model at H»1. At the intermediate separation distances, H=1, however,
both of them slightly overestimate the vdW interaction between a sphere and a flat plate.

Thus, at Hxl, neither of them can be justifiably used to substitute the exact solution

F;M(H ) given in Equation (3.23).

Figure 3.4 shows the curvature effect of the cylinder, represented by the
dimensionless geometric parameter, A, on the vdW force between a sphere and an
infinitely long cylinder (B=w). It is found that the curvature of cylinder has a strong
influence on the vdW force at H>1, especially when A is small. Only when A>10, the
vdW force for the sphere-cylinder system approaches its limiting case, the exact solution
for the sphere-flat plate system.

The length effect of cylinder, expressed by the dimensionless geometric
parameter, B, on the vdW force between a sphere and a finitely sized cylinder is shown in
Figure 3.5a for A=1, Figure 3.5b for A=10 and Figure 3.5¢ for A=100, respectively.
Clearly, at large separation distances (H>1), the vdW force decreases as B (the cylinder
length) decreases. It is also noticed that B has an appreciable effect only when A<10 and
H>1, as shown in Figures 3.5a and 3.5b. Figure 3.5c shows that, when A=100, the vdW
force between a sphere and a cylinder can be well estimated by the flat plate
approximation at any separation distances. Physically, this fact indicates that the retarded

vdW interaction between a small spherical particle and a very thick cylinder can be

adequately approximated by using Fy “(H)in Equation (3.23) over the range of

H=0.001~100.
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3.5 Determination of the Hamaker Constant A3,

The previous sections deal with the vdW interaction potential V(H)and
force F(H)nondimensionlized by A;; and i'l respectively. However, when the
a

numerical solutions (Chapter 6) of the general mass transport equation (Chapter 2) are
pursued, it is required to determine the Hamaker constant in order to quantify the effect
of the vdW interactions on the deposition processes of fiber-oil-water systems. For the
fiber-oil-water deposition systems, the well-known Hamaker constant (see Section 3.2.2)
can be defined as (Israelachvili, 1985):

A, =n*Cn,n,, (3.24)
where subscript o identifies the oil phase and subscript fthe fiber.

Since the number densities of molecules of most materials are unkrown, it
becomes hardly possible to determine their Hamaker constants directly from Equation
(3.24). On the other hand, in principle, on the basis of the Lifshitz theory (Lifshitz, 1956;
Parsegian, 1975; Israelachvili, 1985), the Hamaker constants can be easily related to the
static dielectric constants and the refractive indexes of the media involved. However, it is
also very difficult to accurately measure these electrodynamic properties of the
interacting media under a variety of practical conditions. Alternatively, in the present
study, it is attempted to obtain the unknown Hamaker constants in terms of those, which
can be determined directly from the known surface energies y of solids and liquids. For
an interface formed between a liquid and its vapor, y is usually referred to as its surface
tension, whereas for an interface formed between a liquid and a fluid or between a solid

and a fluid, y is strictly referred to as the interfacial tension.

3.5.1 Combining Relations

The combining relations or combining laws are frequently used for the cases in
which the exact value of the unknown Hamaker constant either is difficult to determine or
can not be found directly in the literature but it can be related to known ones by the
combining laws. A glance at Equation (3.24) indicates that A,3> can be related to A3,

and A3, via:
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Ay, =% |A|3|Am | 3.25)

where A;3; is the Hamaker constant for the interaction between phase 1 (spherical oil
droplet) and phase 2 (cylindrical fiber) across medium 3 (aqueous phase), as shown in
Figure 3.1c. The "+" sign is to be chosen such that positive A;3; is for the attractive vdW
interaction force and negative A3, stands for the repulsive vdW interaction force. For
the fiber-oil-water deposition system, A;3; represents the Hamaker constant for two oil
droplets interacting across water medium and A3, represents the Hamaker constant for
two fiber surfaces interacting across water medium. Therefore, it is seen from its
definition that A;3;; depends on the physical properties of the oil droplet and the fiber
surface and the aqueous solution separating them in terms of A3, and A,3;. Furthermore,
these two Hamaker constants can be related to the following Hamaker constants
(Israelachvili, 1972):

(Iniimheln
where, A;j is Hamaker constant for media i and j interacting across vacuum (air), i, j=1, 2,

3. Substituting Equation (3.26) into Equation (3.25) gives:
Ay =2 [I(A,, + A, =24, Ay + A, —24,)] (3.27)

Here, for convenience, the subscripts, 1, 2 and 3 for the Hamaker constants are replaced
by the subscripts, o, f and w, which represent the oil phase, the fiber phase and the water

medium respectively.

3.5.2 Relations between the Hamaker Constants and the Surface Energies

It has been proved that the unretarded van der Waals interaction potential between

: . A,
two planar surfaces at a distance D apart is equal to "T2aD”
D’

(Israelachvili, 1985). Further, the specific potential energy W(D) of the two planar

for per unit area

surface at a distance D apart may be written as (Israelachvili, 1985):

A4, | 1
( 2 2
127 D, D

W (D) = ) per unit area (3.28)
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where, Dy is the separation distance at which the two surfaces are actually in contact, i.e.,
at D=Dy, W(Dg)=0. Dy is sometimes also called either the interfacial contact separation
distance or a "cut-off" distance. Physically, the surface energy y can be defined as either
the energy required to create a new surface of unit area or hailf the energy needed to
separate two surfaces from contact (D=Dy) to infinity (D=w0). Hence, the first term on the
right-hand side of Equation (3.28) is equal to the total surface energy 2y of the two
identical surfaces, each of which has a unit surface area. The specific potential energy

W(<0) for the two identical isolated surfaces can thus be related to the surface energy by:

W () =2y (3.29a)

=ﬁ
or

A, =24nDly (3.29b)

With the known Hamaker constants, Israelachvili (1985) gives the predicted

surface energies of a variety of compounds using the above equation with the same cut-
off separation distance of Dy=0.165 nm. It is shown that D¢=0.165 nm yields values for y
in such good agreement with those measured, even for very different liquids and solids.
Only for highly polar H-bonding liquids, such as methanol, glycol and water, does
Equation (3.29b) always underestimate their surface energies determined from the known
Hamaker constants or overestimate their Hamaker constants determined from the
measured surface energies. Furthermore, it has been concluded that, taking the cut-off
separation distance Dy as a "universal constant" (Do=0.165 nm), Equation (3.29b) can be
used to determine the unknown Hamaker constants from the measured surface energies or
vice verse for non-H-bonding solids and liquids (Israelachvili, 1985). Therefore, in this
study, the unknown Hamaker constants for silicone oil (close to dodecane and
hexadecane) and the glass fiber surface (close to mica) can be determined from the
measured surface energies using Equation (3.29b) with Dx=0.165 nm. Strictly speaking,
it is not suggested to use Equation (3.29b) to relate the Hamaker constant with the surface
energies for highly polar H-bonding liquids such as the aqueous solutions tested in this
work. However, on the one hand, the Hamaker constants for the oil-water-fiber systems
studied here can not be found in the literature. On the other hand, as will be described in

the next section and Chapter 4 in detail, all the relevant surface energies of the oil-water-
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fiber systems can be measured properly. Hence, Equation (3.29b) is still used to
determine the individual Hamaker constants on the right side of Equation (3.27). In
Section 4.7, it will be shown that such determined overall Hamaker constants Aour (see
Tables 4.8 and 4.9 for details) for the oil-water-fiber systems are in a reasonable range in
comparison with those published values for oils (dodecane and hexadecane), mica and
metals (Ag, Au and Cu) interacting across water (Israelachvili, 1985).

For the present deposition system, using Equation (3.29b) to rewrite Equation
(3.27) yields:

Ay = +247D 1 (700 +7 o =27 XY o + Vo = 27 )| (3.30)

where, Yov, Ywv and Yow represent the surface tensions of the oil-vapor and the water-vapor
interfaces and the interfacial tension of the oil-water interface, while yr and yr are the
surface tension of the fiber-vapor interface and the interfacial tension of the fiber-water
interface, correspondingly. As will be mentioned in Chapter 7, it is found from the
deposition tests that, in this study, deposition of the oil droplets onto the fiber surface
always occurs to some extent, regardless of the liquid properties of the aqueous solutions
and the polarity characteristics of the EDL interaction. This experimental observation
requires that the vdW interaction be always attractive in this study. Accordingly, the "+"
sign is chosen in Equation (3.30) in order for Awr to be always positive. It should be
noted that, in principle, the vdW interaction between any two different phases across a
medium rather than vacuum (air) can be either attractive (A;32>0) or repulsive (A132<0),
depending on the static dielectric constants and the refractive indexes of the three media
involved (see Equations (11.13a,b) for details, Israelachvili, 1985).

As indicated by Equations (3.26) and (3.27), in this study, the combining laws
were employed to relate the overall Hamaker constant Aour to the Hamaker constants for
the media i and j interacting across vacuum (air) to Ajj, i,j=1, 2, 3. In principle, it is not
recommended to use Equation (3.30) for non-pure aqueous systems. Nevertheless, it will
be shown in Chapter 4 in detail that, the surface energies, ywv and yow, always decrease if
the pH value of the aqueous phase deviates from the equilibrium value (pH=6.50) or if an
electrolyte/ionic surfactant is added into the aqueous phase (see Tables 4.8 and 4.9).
Based on the above discussion on the interfacial contact separation distance Do, it can be

inferred that the Hamaker constants calculated for the non-pure aqueous phases, such as

44



Chapter 3

the aqueous solutions with different pHs, or electrolyte/ionic surfactant solutions, should
at least have the same accuracy as that for the pure water-oil-fiber system. Furthermore,
in order to avoid dealing with very complicated aqueous solutions, in this study, the
effects of pH value, electrolyte and ionic surfactant on the deposition of the oil droplets
onio the fiber surfaces were studied individually. Each aqueous solution was prepared by
adding a different chemical each time into the pure DIUF water.

It is well known that the surface energies of any liquid-fluid interfaces can be
experimentally measured, e.g., based on its deformation under the gravitational field. For
instance, the surface energies of the liquid-fluid interfaces, Yov, Ywv and Yow required in
Equation (3.30), can be measured easily and accurately by using the axisymmetric drop
shape analysis (ADSA) technique for the pendant drop case. The detailed technical
descriptions on the ADSA technique were given by Neumann and co-workers (Rotenberg
et al., 1983; Cheng et al., 1990; Li et al,, 1992). However, the surface energy of any
solid-fluid interfaces, such as yr and ys required in Equation (3.30), can not be measured
directly because rigid solid surface prevents any deformation of the solid-fluid interfaces.

Thus an indirect method has to be sought.

3.6 Equation of State for Interfacial Tensions of Solid-Liquid Systems
The equation of state for interfacial tensions of solid-liquid systems is probably
the most widely used method to determine the surface energies of the solid-fluid
interfaces from the directly measured surface energies of the liquid-fluid interfaces and
the contact angle (wettability) of the solid-liquid-fluid system (Li and Neumann, 1990a;

1992a). For the fiber-oil-water system considered here, this equation can be written as:

COSO =—1+ 2 ﬁe-o.ml247(r"",’p\ ¥y (3.3 la)
u Yy

where, 0 is the contact angle of water drop formed on the fiber surface. This angle
represents the wettability of the water-vapor interface on the fiber surface. In Equation
(3.31a), yuwv and O for fiber-water-vapor system can be accurately measured by using the
ADSA technique for the flat fiber surfaces. Once the values of y.. and 6 are measured,

the fiber surface tension ys can be calculated from the equation of state for the solid-
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water-vapor system by iteration. Furthermore, the interfacial tension of the fiber-water
interfaces, ysw, can be determined from the following classical Young equation:

Yur €OSO =y 4 —7 4, (3.31b)
Nevertheless, it has long been noted that the sophisticated ADSA technique for

the sessile drop case can be used to measure the wettability () of any liquid-fluid
interface on a flat solid surface only. Hence, a new contact angle measurement technique
has to be devised in order to measure the contact angles on curved surfaces, such as
cylindrical fiber surfaces studied here. In this study, a novel contact angle measurement
technique is developed during the course of this thesis research. It determines the contact
angle of a solid-liquid-fluid system by analyzing the capillary profile around a cylinder
(ACPAC) and will be described in detail in Chapter 4.

3.7 The Electrical Double Layer (EDL) Interaction

According to the well-known DLVO theory (Derjaguin and Landau, 1941;
Verwey and Overbeek, 1948), the colloidal interaction force required in the general mass
transport Equation (2.4) consists of the van der Waals (vdW) and the electrical double
layer (EDL) interaction forces. In additional to the vdW interaction, the electrical double
layer (EDL) interaction between an approaching spherical particle and a cylindrical
surface as a function of separation distance also plays an important role in the flow of
colloidal emulsions or suspensions through a filter composed of many cylinders of fibers
or other materials. This kind of interaction sometimes becomes essential to the problems
of colloidal stability and particle deposition onto a cylindrical collector. In the past,
similar to the case for the vdW interaction, the computation of the EDL interaction
between a spherical particle and a cylindrical surface was, however, performed using the
assumption of a sphere interacting with an infinitely large flat plate (Hogg, Healy and
Fuerstenau (HHF), 1966; Adamczyk and van de Ven, 1981b; Masliyah, 1994; Sanders et
al,, 1995). Regardless of possible large curvature effect that the cylindrical surface may
have, the sphere-flat plate approximation is often used without justification because of its
simplicity.

In the literature, the exact or approximate analytical expressions are available only

for the EDL interaction potentials between two similar or dissimilar EDLs of appropriate
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geometric configurations, such as those between two parallel flat plates and between two
spheres. Then by letting either radius of the two spheres be infinity, the EDL interaction
potential between the two spheres (HHF, 1966) will become the EDL interaction
potential between a sphere and a flat plate. However, it is an obvious fact that the sphere-
flat plate approximation always overestimates the EDL interaction between a spherical
particle and a cylindrical surface. A thorough literature search indicates that there has not
been effort made yet to account for the curvature effect of the cylindrical EDL for this
case. In fact, one has no option but to employ the sphere-flat plate approximation for the
sphere-cylinder configuration. At present, it is not quite clear how large an error this
approximation may cause when it is used to calculate the EDL interaction between a
sphere and a cylinder at an arbitrary separation distance.

Irrespective of the methods used to determine the EDL interaction between any
two EDLs, usually, its determination requires the exact information about the potential
distribution between these two interacting EDLs. Obviously, the potential distribution
between the two approaching EDLs differs considerably from each individual potential
distribution around each EDL when it is far away from the other. The potential
distribution between the two interacting EDLs strongly depends on the extent to which
they are overlapped. As will be shown later, with invoking the well-known Debye-
Hiickel (D-H) approximation, i.e., taking potential as small in magnitude, it is easy to
derive an analytical expression for the potential distribution between two overlapped flat
EDLs. In fact, mathematically, the D-H approximation enables the Poisson-Boltzmann
(P-B) equation to become a linear 2" order ordinary differential equation (ODE). Thus
the potential distribution between the approaching flat EDLs simply equals to the
addition of each potential distribution around each EDL. It is also relatively easy to
obtain the general formula for the EDL interaction potential between the two flat EDLs
once the potential distribution between them is obtained under the D-H approximation.

The general analytical solution of the potential distribution around a single
spherical or cylindrical EDL is available if the Debye-Hiickel approximation is invoked
(Hunter, 1981). However, for these kinds of geometrical combinations, the governing P-
B equation of the potential distribution is extremely difficult to be solved even

numerically because of their geometrical complexities. Therefore, it becomes practically
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impossible in the present case to directly derive an exact EDL interaction potential
between a spherical EDL and a cylindrical EDL. Altemnatively, in a later section, an
attempt is made to obtain an approximate integral solution of the EDL interaction
potential between a spherical EDL and a cylindrical EDL. In this study, the same
procedure used by HHF (1966) in deriving the EDL interaction potential between two
spherical EDLs will be followed. First, the EDL interaction potential between two
differential surface elements, one on the spherical EDL and the other on the cylindrical
EDL, is approximated by that between two parallel overlapped flat EDLs at the same
separation distance. Then the Derjaguin’s integration method (Derjaguin, 1934) is
extended to evaluate the total EDL interaction potential between a spherical particle and a
cylindrical surface. Hence, the effect of curvature of the cylinder on the total EDL
interaction can be accounted for the present configuration. Since the final solution is
expressed by a two-dimensional integral equation that can not be integrated analytically,
accurate numerical integration has to be pursued. Eventually, the numerical predictions
of the EDL interaction force for the sphere-cylinder system are compared with the
analytical results of the EDL interaction force for the sphere-flat plate system at various
separation distances. Consequently, the validity of the widely employed sphere-flat plate
approximation can be assessed quantitatively.

In the subsequent sections, after a brief review on the HHF expressions for the
sphere-sphere and extended sphere-flat plate configurations, first, an approximate integral
solution for the EDL interaction between a spherical particle and a cylinder will be
presented. Based on this numerical solution, the effects of the curvature of the cylindrical
surface on the EDL interaction can be studied. It is worthwhile noting that, similar to the
case for the vdW interaction, in this study, the spherical particle or the oil droplet is
assumed to be rigid such that its deformation effects on the EDL interaction are not
considered. The numerical predictions of the EDL interaction force between a sphere and
a cylinder are then compared with the analytical solution for the EDL interaction force
between a sphere and a flat plate at rather different separation distances. Finally, the

validity of the widely employed sphere-flat plate approximation will be examined.
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3.8 The HHF Expressions for the EDL Interaction between a Spherical
Particle and a Flat Plate

It has long been observed in numerous experiments that, when dispersed in a
liquid solution, a colloidal particle may be charged and thus surrounded by the ions of
opposite polarity from the bulk solution. The overall arrangement of the electric charge
on the particle, together with the balancing charge in the bulk phase, is often referred to
as the electrical double layer (EDL) of the particle. Generally, the EDL can be well
characterized by its strength and polarity, £, the zeta-potential, and its thickness, k', the
Debye-Hiickel reciprocal length parameter. The parameter « is very important in colloid
science and is usually referred to as the Debye-Hiickel parameter named after these two
workers. It can be expressed as follows (Hunter, 1981):

2 2
= (LN K
g, kT

(3.32)

9

where, e is the electron charge (e=1.602x10""° C, in this thesis, all the fundamental

physical constants are quoted from Weast et al., 1989); n/is the number of ions of type i

per unit volume (number density or concentration) in the bulk solution and z is the
valence of ion of type i, €. is the dimensionless dielectric constant or relative dielectric
permittivity of the solution (&~80 for water at T=295.15 K) and &, is the permittivity of
vacuum (£,=8.854x10"2 CV'm™' or Fm™), k is the Boltzmann constant (k=1.381x10"** J
K") and T is the absolute temperature (at room temperature, 22°C, T=295.15 K). It is
seen from Equation (3.32) that the EDL thickness, x"', mainly depends on the ionic
properties (z;) and concentrations (n,) of the dispersing medium.

According to the Gouy-Chapman theory (Gouy, 1910; Chapman, 1913) for a

diffuse electrical double layer around a colloidal particle, the potential distribution at any

point in the system is governed by the Poisson-Boltzmann (P-B) equation (Hunter, 1981):

0
- 2n’ze sinh(zew), (3.33)

VZ
v £, kT

where, v is the potential and V? is the Laplacian operator. At this point, it should be
pointed out that Equation (3.33) is the simplified P-B equation for the case where the

supporting electrolyte is symmetric, i.e., in the bulk solution, the cations and anions have
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the same valence. Thus, n’ =n® =n° and z. = -z= z, where n’ is the ion number density

of the bulk phase and z is the valence of ions and the counterions. In reality, it turns out
to be possible to treat most electrolytes as though they were symmetric for the reasons
clearly stated by Hunter (1981, see Section 2.3.1.3). If the colloidal particle is far from
another interface (or another EDL), its potential distribution can be easily determined by
solving the P-B equation either analytically (with invoking the D-H approximation) or
numerically (without invoking the D-H approximation). The boundary conditions for the
P-B equation are that, at the particle surface, the potential is equal to the zeta-potential {p
of the particle and that, in the bulk phase at infinity, the potential vanishes. However, if
the particle approaches another interface or vice verse, for instance, another EDL is in the
vicinity, the original EDLs surrounding these two interfaces will become overlapped and
thus will interact each other. This leads to the so-called EDL interaction. When these
two EDLs approach each other, the potential distribution between the two EDLs will be
modified and thus differ from that around each single EDL, though in either case the
potential distribution is still governed by the same P-B equation, Equation (3.33).
Apparently, the determination of the EDL interaction between the two overlapped EDLs
requires the specific information regarding the modified potential distribution. Such
modified potential distribution depends on their separation distances, their geometrical
sizes and configurations, and their {-potentials and thickness as well. Furthermore. since
the above physical properties of the two EDLs strongly depend on the ionic properties
and concentrations of the bulk medium between the two interacting EDLs, such EDL
interaction certainly depends on the liquid properties as well.

Verwey and Overbeek (1948) solved Equation (3.33) graphically for the potential
distribution as a function of separation distance between two infinite plates subject to the
boundary conditions that the surface potentials of the two plates are equal, i.e., for similar
particles. Derjaguin (1954) obtained similar solutions for the more general case of
different particles, having surface potentials that differ in both sign and magnitude.
However, all these solutions are extremely unwieldy. Later on, a simplified analytical
solution was achieved by Hogg, Healy and Fuerstenau (1966), which is usually called
HHF expression or formula named after them. In the literature, the HHF formula is

widely used to provide a general relation expressing the EDL interaction potential
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between the electrical double layers surrounding any two similar or dissimilar colloidal

particles, which is expressed as follows:

_ 2reg4a,a,8,8, 1 + exp(—«xD) (glz + gzz) _ _
V(D)= @ +a,) {ll'l[l —exp(—xD)] + 22, In[1 — exp(—2xD)}}, (3.34a)

where, Vg(D) is the interaction potential between the two EDLs on the two particles; a,
and a,, §; and (; are the radii of the two particles and the zeta-potentials of their EDLs,
respectively; and D is their separation distance. With Equation (3.34a), the HHF
expression for the EDL interaction potential between a particle and a flat plate can be
readily derived by letting the radius of one particle be a,=a, and the other's be infinity,
a,=co, in the equation,

l+exp(—tH)]+ &:+¢2)

In[1 - exp(— .34b
1 —exp(—tH) 26 ,¢. [1=exp(=2cH)]}, (3.34b)

Vi(H) =2re,64a,6 ¢ {In]

where, V,(H) is the interaction potential between the EDL on the particle and the EDL on
the flat plate; £, and (. are the zeta-potentials of the EDLs on the particle and on the flat

plate collector, respectively; t = ka, is the ratio of the radius of the particle to the EDL

thickness, sometimes simply called the reduced radius of the particle; H=D/a, is the
dimensionless separation distance.

Since the detailed derivations of Equation (3.34a) were presented by Hogg., Healy
and Fuerstenau (1966), here, only the applicability of Equation (3.34a), and of course
Equation (3.34b) as well, will be addressed briefly. In principle, the relationship
expressed by the Equation (3.34a) only holds exactly for values of {; and/or &, of less

than 25 mV (i.e.

ﬁ'ﬂ <1.0) and for the liquid conditions such that the thickness of the

EDLs, x"', is small compared with the particle sizes, a, and a,, ie. r, =xa,»l, and
T, =ka,»l. Theoretically, the first requirement is necessary condition for the use of the
well-known D-H approximation because these two workers used the same approximation
in their theory of strong electrolytes, i.e. taking y as small in magnitude. Consideration

is confined to the case where the potential is always small ( l\y|<25 mV) and the

electrolyte is symmetric. = Under these conditions, a mathematical linearization
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approximation, sinh(%;'—) = z:;_’ , can be applied. Therefore, the HHF expressions

represented by Equations (3.34a,b) are based on the linear approximation. For the liquid
solution containing symmetric electrolyte and small potentials, Equations (3.32) and

(3.33) reduce to:

2

2.0
= (2% (3.352)
€,6,kT
and
Vzw = xzq/ (3.35b)

Thus, using the D-H approximation, an analytical solution of Equation (3.35b) can be
found not only for a single flat, or spherical, or cylindrical EDL (Hunter, 1981), but also
for two overlapped flat EDLs (Hogg, Healy and Fuerstenau, 1966). The second
assumption, i.e. T, = xa,»l, and 7, =kKa,»l, is required in order to use the Derjaguin’s
integration method to obtain the total EDL interaction potential between two spherical
particles from that between two differential flat surface elements. However, as was
shown by HHF (1966), Equation (3.34a) is a good approximation for ; and C; up to less
than 50~60 mV. In addition, Verwey and Overbeek (1948) showed that the Derjaguin’s
integration method gives a good approximation for the EDL interaction provided that
7,>10 and 1,>10, and that the approximation is not too bad for t;>5 and 1;>5. In
summary, Equation (3.34b) should be a good expression for calculating the EDL
interaction potential between a particle and a flat collector as long as ; and & <60 mV

and the reduced radius of the particle t =xa,>5.

Using kT to nondimensionalize the EDL interaction potential V,(H) between a

particle and a flat plate in Equation (3.34b) yields:

= V.(H)Y DI 1 +exp(-tH)
Vi(H) =220 o 22 a2 =X 00 —exp(- .
1(H) T 5 {ln[l —exp(-rH)] +(Da + 1) In{l —exp(-2tH)]}, (3.36)
where,
D1 = 608,656 (3.37a)
kT
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_r 32
pa e &80 (3.37)
2,8

T =ka, (3.37¢)
DI is the dimensionless EDL parameter, and Da is the dimensionless EDL asymmetry
parameter. The latter represents the portion of the EDL interaction attributable to the
difference between the -potential of the spherical particle and that of the flat collector.
T =xa,, as defined previously, is the ratio of the radius of the particle to the EDL
thickness and sometimes it is also simply called the reduced radius of the particle. The
dimensionless EDL interaction force between a particle and a flat plate can be readily
derived from the above dimensionless EDL interaction potential by using the following

relation:

F(H) __dVi(H) _ DIt exp(~tH) _ , _exp(-2tH)
kT dH 1+ exp(—tH) 1 - exp(-2tH)
a

Fi(H)= ] (3.38)

14
It is seen from Equations (3.36) and (3.38) that the dimensionless EDL interaction

between a particle and a flat collector depends only on the dimensionless separation

distance H, and the dimensionless physical parameters of the EDLs, DI, Da and 7 =«ka,

given in Equations (3.37a,b,c). Two of these three parameters, DI (through &) and t
(through x) are functions of the liquid properties of the bulk medium separating the two

EDLs. As will be shown in Chapter 5, Dl and Da (through ;, and &) strongly depend on
the liquid properties as well. All the above Vg(D), V(H), 7|(H ) and F:(H )
expressions given in Equations (3.34a), (3.34b), (3.36) and (3.38) are often simply called

HHF expressions. In Section 3.10, the HHF expression for the EDL interaction force
between a spherical particle and a flat collector, Equation (3.38), will be used as an
asymptotic analytical solution to compare with the numerical results of the EDL

interaction force between a spherical particle and a cylindrical collector.
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3.9 The EDL Interaction between a Spherical Particle and a Cylindrical
Fiber

3.9.1 Potential Distribution between Two Charged Flat Plates

If a spherical particle and a cylindrical collector are close enough and thus their
EDLs start to overlap, the potential distribution between two differential surface
elements, one on the spherical EDL and the other on the cylindrical EDL, can be
approximated by that between two differential surface elements on two parallel flat

plates. Inthe Cartesian coordinate system, Equation (3.35b) can be expressed as:

2
dx“; =xy, (3.39)
since the potential varies only in the separation direction, X, as shown in Figure 3.6a. The

analytical solution of Equation (3.39) satisfying the following two boundary conditions

on the both surfaces:

W(X) x=0=gp (3.40)
W(-")l x=d = gc
can be derived and expressed as follows:
¢.—¢, coshkd
sinh xd

Equation (3.41) describes the potential distribution as a function of separation distance x

)sinhxkx (0<x<d) 3.41)

y(x)=¢, coshxx +(

(0<x<d) between the two differential surface elements shown in Figure 3.6a, one on a
spherical particle surface (x=0) of the zeta potential {;, and the other on a cylinder surface

(x=d) of the zeta potential ..

3.9.2 Specific EDL Interaction Potential between Two Flat EDLs

The EDL interaction potential of per unit surface area between two flat EDLs,
v(d), can be simply called the specific EDL interaction potential. Thermodynamically,
v(d) is equal to the change in the Gibbs free energy of the EDL system when the two
differential surface elements are brought closer from infinity to a specific separation

distance d. Thus,
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wd)=AG=G,-G_, (3.42)
where G4 and G, are the corresponding Gibbs free energies of the EDL system when the
two elements are separated by distances of 4 and infinity respectively. For a single EDL
when it is in the thermal equilibrium (dT=0) and mechanical equilibrium (dP=0) with the
surrounding aqueous solution, Verwey and Overbeek (1948) have shown that its Gibbs

free energy is given by:

G= —%o-g , (for small constant () (3.43a)

where o is the surface charge density. It is noted that Equation (3.43a) is valid for an
individual EDL whose C-potential can be assumed to be constant (Type I EDLs named by
Verwey and Overbeek, 1948) and small so as to satisfy the D-H approximation (Verwey
and Overbeek, 1948). Therefore, Gq, the Gibbs free energy of the present EDL system, is

equal to the sum of the free energies of the two separate EDLs, i.e.,
1
G, =—E(ap4',, +0.(.), (3.43b)

where 6, and o. are the surface charge densities of the EDLs on the spherical surface
element and the éylindrical surface element respectively.

Physically, from the electric charge balance condition when a flat element of EDL
is in an equilibrium state with a bulk solution, its surface charge density can be related to

its surface potential gradient by (Verwey and Overbeek, 1948; Hunter, 1981):

=+ av
o =zg,6,(—)

Hence, differentiating Equation (3.41) with respect to x and evaluating the resultant

at each surface

equation at x=0 and x=d respectively yield:
d

o, =—€,£ (%ﬂ c=0=—E,Eok({ cosechxd — & ,cothkd)  (3.44a)
and

C. = +£,&, (%’)] wea =+ E,6,k({ cothxd — ¢ ,cosechkd)  (3.44b)
Substituting the above two expressions for o, and o. into Equation (3.43b) produces:

_E,EK
2

G, [2¢ & cosechxd - (¢, +&2) cothkd] (3.45a)
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As the separation distance of the flat EDLs becomes infinity, i.e., d = o, Equation (3.45a)

becomes:
£
G.=-"2 g} +¢D) (3.45b)
Thus bringing Equations (3.45a) and (3.45b) into Equation (3.42) and rearranging it gives
¢, +6.
v(d) = £,€,x¢ ¢ [cosech xd + —2£§—§L( 1 —cothxd)] (3.46)
poc

Equation (3.46) expresses the specific EDL (per unit surface area) interaction potential of
two flat EDLs as a function of their separation distance, d, their {-potentials, {; and ., as
well as the dimensionless dielectric constant, €, and the Debye-Hiickel parameter, x. It is
worthwhile reiterating that the ionic properties and concentrations of the liquid medium
separating the two flat EDLs will affect the specific EDL interaction potential through &,
and x, even though the {-potentials were assumed to be independent of the liquid

properties.

3.9.3 Total EDL Interaction Potential and Force between a Spherical Particle and a
Cylindrical Fiber

In the derivation of Equation (3.34a), HHF (1966) employed the Derjaguin’s
integration method that has been used in many publications. Derjaguin (1934; 1939)
considers that provided that the thickness of the EDLs is small compared with the particle
size, the interaction between EDLs on two spherical particles may be assumed to be made
up of contributions from infinitesimally small parallel rings, each of which can be
considered as a flat plate. With the above derived specific EDL interaction potential
between two parallel flat EDLs, v(d), given in Equation (3.46), in this study, the
Derjaguin’s integration method is extended to evaluate the total interaction potential
between an EDL on a spherical particle and the other EDL on a cylindrical collector. As
schematically shown in Figure 3.6a, the differential surface element chosen on the
spherical particle has surface area of yd6dy at separation distance, d, from the
corresponding differential surface element on the cylindrical fiber. Thus, the total
interaction potential between the two EDLs can be expressed as follows, noting the

axisymmetry involved in the coordinate system,
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V(D) = 4 ( dyyay e, (3.47)

where D is the separation distance between the particle and the cylinder. Referring to

Figures 3.6a-c for details, the following geometrical relations can be readily established:

d=D+aP—1/a,2, —yr+ L1,

L=R-\R*-y?,

I=yR* - y*sin>6 —|R* - y*.

Therefore,

d=D+a,-\Ja2-y* +R—JR* - y*sin* 6 (3.48)
Substituting Equation (3.46) into Equation (3.47) yields

x

2 9 2 2
V,(D) =4¢,£, ¢, ‘! { !: [cosechkd + 42" §+§‘

poc

(1 - cothxd)]ydy}d9 (3.49)

where d is a function of both y and 0 variables, i.e. d=d(H,y,08) given in Equation (3.48),
here H can be considered as a parameter, which at this point is nothing with respect to the
integration in the above integral equation. Further using the previously defined
dimensionless parameters and nondimensionalizing the both sides of Equation (3.49) by

kT produce:

ViH)=

D!t

© Cammyra | 34

l — — —_—
Dl ([ p,(H.5.6)5dy1db, (3.50)
0

where,

p,(H,y,0) = cosechtd + (Da +1)(1 - cothrd),
E:—d—=l-1+l—\/1—;2 + A= 4* -}’ sin?6
a
P

;:L
a,
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Similar to the definition given in Section 3.2.1, 4 =i is equal to the ratio of the

a,

cylinder radius to the sphere radius. Thus, the dimensionless EDL interaction force can

be derived by directly differentiating Equation (3.50) with respect to H:

Fan =B _ 4V _ Ly (if p1,5.005a )6, @3.5D)
— 00
a

P

where,

fz(H,;,O) = _91%11_;1122 = r[cothtz cosechtd —(Da + l)(cosechrz)z]

3.10 Numerical Results and Discussion

Based on the Debye-Hiickel approximation and the Derjaguin's integration
method, the general solutions of the EDL interaction between a spherical particle and a
cylindrical fiber are obtained and expressed in Equation (3.50) for the dimensionless
EDL interaction potential and in Equation (3.51) for the dimensionless EDL interaction
force. These two integral equations can be integrated only numerically. This is
performed by using a second-order trapezoid rule method (Hoffman, 1992). The adaptive
integration technique is applied and the minimum integration step size for each
integration variable is chosen properly in order to satisfy a pre-specified accuracy
criterion. In the numerical calculations, the overall accuracy of the two remaining

integrals with respect to ; and O is improved by evenly reducing the step size of each

integral variable until the numerical results exhibit the relative difference less than 0.01%
between the two successive integration steps. The numerical predictions are carried out
for the following chosen values of the relevant parameters: A=1, 10, 100, =5, 10, 100,
DI=+1000, and Da=0, 0.25, 0.50, 0.75, which should cover the most practical situations
of interest. Since the dimensionless EDL force is proportional to the dimensionless EDL
parameter, DI, as shown by Equations (3.38) and (3.51), the direct influence of the EDL
parameter on the EDL interaction is thus not examined here. It is worthwhile mentioning

that, in this numerical study, only the repulsive EDL interaction forces are examined, i.e.
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Cp and Cc have the same polarity. This is because, physically, the repulsive (DI>0 and
Da>0) EDL interaction potentials and the attractive (DI<0 and Da<0) EDL interactions
(forces and potentials) should follow similar trends. The detailed numerical results will
be obtained for the nondimensional repulsive EDL interaction force between a spherical
particle and a cylindrical fiber, using Equation (3.51). These results will be further
compared with the analytical solutions expressed by the HHF expression, Equation (3.38)
for the nondimensional EDL interaction force between a spherical particle and a flat plate
under the same conditions (t, DI and Da). Particular attentions are focused on the EDL
interaction forces for these two configurations in the following three rather different
ranges of the dimensionless separation distances H, ie., H«l (H=0.001~0.1), H=l
(H=0.1~10) and H»1 (H=10~100).

The curvature effect of the cylindrical fiber, represented by the dimensionless
geometric parameter, A=R/a,, on the dimensionless EDL force is shown in Figure 3.7.
This figure clearly indicates the strong curvature effect of cylinder on the EDL force
between a sphere and an infinitely long cylindrical fiber from H=0.001 to H=1 above
which the EDL interaction quickly diminishes. Hence, the curvature effect on the
calculated EDL interaction force can not be neglected at the smaller separation distances.
Even for A=100, there is still a noticeable difference (more than 10%) of the EDL forces
between the sphere-cylinder and the sphere-flat plate configurations. Therefore, below
H=1, the flat plate approximation, i.e. the HHF expression for the sphere-flat plate system
given in Equation (3.38), will considerably overestimate the EDL interaction between a
sphere and a cylinder.

Figure 3.8 shows the effect of 7 = xa,, the ratio of the radius of the particle to the

EDL thickness, on the EDL forces for the sphere-cylinder configuration and the sphere-
flat plate system. Again it is seen from the figure that the flat plate approximation
overestimates the EDL interaction between a spherical particle and a cylindrical fiber for
A=10. Clearly, at small separation distances, i.e. H«l (H=0.001~0.1), the EDL force is
nearly proportional to t as predicted by Equations (3.38) and (3.51). However, around
H=~1 (H=0.1~10), the EDL forces for larger values of t decrease more quickly and

become even smaller than those for smaller values of t. Furthermore, for rather larger
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separation distances, H»1 (H=10~100), as expected, all the EDL forces are small and
negligible. Here, some proper understanding of the EDL interaction is required in order
to explain the predictions shown in this plot. Physically, the EDL interaction between the
two approaching EDLs depends not only on the extent (the dimensionless separation
distance H) to which these two EDLs are overlapped, but also on the specific potential
distribution between them. The latter is strongly affected by their potential gradients on
the solid surfaces and particularly represented by t, see Equations (3.44a) and (3.44b) for
details.

Two systems can be compared with each other, in which the radii of the spheres
are same but their Debye-Hiickel parameters (k) are quite different, still assuming that all
the other parameters such as A, DI and Da are identical. For instance, there are two
solutions, one has higher electrolyte concentration than the other. Thus their reduced

radii of the particles, T = xa,, are rather different. From Equation (3.32), it is known that

the medium containing higher electrolyte concentration has a larger r =xa,. It can also

be seen from Equations (3.43) through (3.46) that the slopes of potential on the solid
surfaces (or the surface charge densities) are greater if k is larger. Hence, at same smaller
separation distances H, the EDL interaction will strongly depend on the potential
gradients only as long as the two EDLs can sufficiently interact with each other
(adequately overlapping). Furthermore, the larger the T =xa, is, the stronger the EDL
interaction will be between these two EDLs. At this point, it becomes feasible to
approximately determine the upper limit of the separation distances below which the

above variation tendency of the EDL interaction with 7 =xg, remains wvalid.

Mathematically, the separation distance for an adequate overlapping between the two
approaching EDLs can be estimated as below. By solving Equation (3.35b), Hunter
(1981) has shown that the potential distribution remains appreciable (say about 25% of its
surface potential) at separation distances up to about 1.5« from a flat plate surface.
Thus the maximum separation distance between the EDLs should be around D=3.0x" in
order for them to interact with each other appreciably. Correspondingly, the upper limit

of the dimensionless separation distance is equal to:
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H, =—=—"==2 (3.52)

If H>Hpmax, the EDL interaction between the two EDLs of the system having larger

T = ka, will decrease much more quickly and become even smaller because they can not

effectively interact with each other. Based on Equation (3.52), Hnax is equal to 0.03 for
=100 and 0.3 for t=10. The above inference is well supported by the numerical
predictions given in Figure 3.8. More specifically, when H>0.03, the EDL force for t=10
becomes stronger than that for t=100. At H>0.3, the EDL force for =5 is stronger than
that for =10 as well.

Finally, the effect of the dimensionless EDL asymmetry parameter, Da, (see
Equation (3.37b) for its definition), on the EDL interaction is also studied. The detailed
numerical results at the different values of Da=0, 0.25, 0.50 and 0.75 are plotted in Figure
3.9 for the EDL forces of the sphere-cylinder configuration and sphere-flat plate
configurations. This figure, as well as Figures (3.7) and (3.8), shows that the EDL forces
are always repulsive (positive) as long as Da=0. Physically, a repulsive EDL interaction
always exists between two EDLs whose (-potentials are the same in magnitude and
polarity, i.e. for symmetric EDLs (£p=C.).

However, it is unexpected to find that, at smaller separation distances, the EDL
interaction can become attractive (negative) between the asymmetric EDLs (Da>0), even
though their C-potentials have the same polarity. Here, Da>0 means that the C-potentials
on the EDLs differ in strength, i.e., #C., but have the same polarity. One possible
interpretation is furnished as follows. The following discussion is focused on the case in
which both & and & are positive for simplicity, though a similar argument holds valid for
the case in which both {; and . are negative. Generally, the potential distribution around
a positively charged EDL (£>0) is established such that the potential is equal to its C-
potential of the EDL at the interface and gradually reduces to zero as the separation
distance from the EDL increases. Thus if the {-potentials on two EDLs are the same
(Da=0), the potential distribution between these two EDLs is established such that the
potential reaches the minimum at the middle point between them. It is seen from

Equations (3.44a, b) that the surface charge densities on the both EDLs, o, and o, are
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positive (noting that (%)IM <0 and (%)lx:d > 0in this case) and have the same

polarity as their {-potentials (refer to Figure 3.6a for the configuration and coordinate
system). Consequently, their EDL interaction is always repulsive, see Figure 3.9 for the
results of Da=0. Nevertheless, if the {-potential on an EDL is larger than that on the
other side (larger Da) and if the two EDLs are at much smaller separation distances
(H<0.3 in Figure 3.9), the potential distribution between them may be quite different. In
this case, the potential distribution will be established such that the potential closer to the
EDL having larger C-potential decreases while the potential closer to the other EDL
having smaller C-potential has to increase in order to have a continuous potential profile.
Again referring to Equations (3.44a, b), the surface charge density on the EDL having
larger C-potential will be positive while the surface charge density on the other EDL
having smaller {-potential will be negative. Therefore, the total EDL interaction may
become attractive (negative). However, at larger separations, the potential distribution
between the two interacting EDLs resumes a shape resembling that between two EDLs
whose {-potentials are same and thus the EDL interaction becomes repulsive again as
shown in Figure 3.9. At even larger separations, the EDL interaction vanishes. All the
calculations for Da#0 given in the figure follow the similar pattern. In addition, this
figure indicates that the larger Da is, the stronger the attractive EDL interaction at H«l
(H=0.001~0.1) but the weaker the repulsive EDL interaction at H=1 (H=0.1~10) and H»l
(H=10~100).
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0]
D
Figure 3.1a Schematic diagram of the van der Waals interaction between
a molecule and a cylinder
r
D R
o M

Figure 3.1b The distance between a molecule at point O and a differential
volume element at point P in a cylinder, where N is the projection point of the
differential volume element P on the OMN plane, and oPN is in the cross-
sectional plane (dotted line), which is normal to the OMN piane, oP=p,
oN=pcos¢ and PN=psin¢, MN=z, OM=D+R+pcosd, ON2=Z2+(D+R+pcosd)?,
and P=ON2+PN2=Z2+(D+R+pcosé)’+p’sin’d
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Figure 3.1c The total van der Waals interaction (Hamaker constant A3)
between a spherical particle (Phase 1) and a cylindrical solid (Phase 2) across

an aqueous solution (Medium 3)
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Figure 3.6a The front view of the two differential surface elements representing the electrical
double layer (EDL) interaction between a spherical particle and a cylindrical fiber
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Figure 3.6b The top view of the differential surface element on the cylindrical fiber surface

Figure 3.6c The side view of the differential surface element on the cylindrical fiber surface
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Chapter 4
A Novel Contact Angle Measurement Technique Based on
Analysis of the Capillary Profile Around a Cylinder (ACPAC)

4.1 Introduction and Brief Literature Review

The contact angle is an important quantity in many areas of applied science and
engineering. Physically, the contact angle of a liquidon a solid provides a basis for studying
the interaction between the two phases. Changes in the angle reflect changes in net
interactions across their interface and changes of compositions and environmental
conditions of bulk phases forming the interface. It is well known that the studies of
wettability, deposition, adsorption and flotation require knowledge of the contact angle
(Adamson, 1982; Neumnann et al., 1983a; 1983b; Chen, 1988; Padday, 1968; 1992; Good,
1992). Measurement of contact angle can also be used to determine the solid surface
tensions (Li and Neumann, 1990a; 1992a) and study thin-liquid film phenomena (Marmur,
1992; Toshev and Platikanov, 1992; Li and Neumann, 1992b) and line tension effects (Good
and Koo, 1979; Gaydos and Neumann, 1987, Yekta-Fard and Ponter, 1988; Wallace and
Schiirch, 1990; Li and Neumann, 1990b; Duncan et al,, 1995:; Li, 1996; Gu et al., 1996; Gu
and Li, 1998i).

There have been many experimental techniques available for contact angle
measurements. Review of these methods can be found in a number of references ( Ambwani
and Fort, 1979; Neumann and Good, 1979; Wu, 1982; Adamson, 1982; Neumann et al.,
1983b; Padday, 1968; 1992; Good, 1992). Of all the methods employed to measure contact
angles, the direct measurement from the sessile drops is probably the most popular
approach. The measurement is performed by using a telescope equipped with a goniometer
eyepiece. The contact angle is determined by aligning a tangent with the drop profile at the
point of the three-phase contact circle on the solid surface. In addition to its experimental
simplicity, the sessile drop method requires only small quantities of liquid and solid surface.
However, there are some difficulties remaining with the simple sessile drop method
whenever high accuracy and consistency are nceded. A precision of £2° is usually claimed.

Alignment of the tangent is subjective and depends on the experience of the operator. In
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recent years, a sophisticated sessile drop method, the Axisymmetric Drop Shape Analysis
(ADSA) technique (Rotenberg et al., 1983; Cheng et al., 1990; Li et al., 1992) was
developed to determine the contact angles and the interfacial tensions simultaneously. The
accuracy of the ADSA technique is about 0.1° for contact angle measurements and 0.05
mJ/m’ for the interfacial tension measurements. However, it has long been found that, in the
sessile drop method, the measured contact angles are dependent on the drop size, a
phenomenon often referred to as the drop size dependence of contact angles or the line
tension effect (Li, 1996; Gu et al., 1996; Gu and Li, 1998i). For example, the measured
contact angles can decrease as much as 3-10° as the base radius of the sessile drop on the
solid substrate changes, say, from 1 to S mm (Gaydos and Neumann, 1987; Li and
Neumann, 1990b; Duncan et al,, 1995; Li, 1996). Therefore, the sessile drop method can
not be used to directly measure the contact angles, 0., which is the contact angle of an
infinitely large drop with no line tension effect. A concise discussion on the line tension
effect and its determination from the measured contact angles will be given later.

The Wilhelmy plate technique (Neumann, 1974; Neumann and Good, 1979;
Adamson, 1982; Budziak and Neumann, 1990) is an alternative method in which the contact
angle is determined by measuring the height of capillary rise at a vertical flat plate. In this
method, the contact angle is determined from the height of capillary rise at a vertical plate,
according to:

Apgh @.1)
2 ylv

sing.=1-—
where Ap=pi-pv is the density difference between the liquid phase and the vapour phase; g is
the gravitational acceleration; v, is the surface tension of the liquid(l)-vapour(v) interface; h
is the capillary rise height and 6. is the contact angle of the capillary rise profile on the
vertical plate. The best precision of contact angles obtained by this technique is about +0.1°.
The Wilhelmy plate method can avoid the line tension effect on contact angles, as the three-
phase contact line in this case is a straight line.
However, it has long been noted that the sessile drop method, exemplified by the
ADSA technique, the Wilhelmy plate method and most other widely used contact angle
measurement techniques require a flat solid surface. They cannot be utilized to measure

contact angles on curved surfaces, such as a cylindrical fiber surface. However, the
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determination of contact angles or wettability on fiber is of practical importance in
composite materials, textile and cosmetic industries. The Wilhelmy-Gravitational method is
probably the only existing technique suitable for this kind of measurement. In this method,
a fiber hanging on an electrobalance is immersed partially into a testing liquid. The contact
angle is determined by measuring the force, F, which is required to balance the fiber
according to the following equation (Neumann and Good, 1979):

F =Py, cos@ —-VApg 4.2)
where P is perimeter of the fiber; V is the liquid volume displaced by the fiber, or the
volume of the fiber immersed in the liquid. The major limitation of this method is that the
accurate values of P, yiv, V and Ap have to be known. For non-porous fibers with a smooth
surface such as a glass fiber, P and V can be measured and remain constant during the
experiment. Thus the reproducibility of contact angle results may be satisfactory in this
case. Nevertheless, fibers usually do not have constant diameters, ie., their perimeters
change along their axial directions. Furthermore, for a porous fiber, the perimeter and the
volume of the fiber will change during the measurement because of the penetration of liquid
into the fiber and hence the fiber's shape changes (swelling). The contact angle results
therefore are generally difficult to reproduce by using the Wilhelmy-Gravitational method.

In the course of this thesis research project, a new contact angle measurement
technique has been developed (Gu et al., 1997a; Gu and Li, 1998a; 1998b). This method
can be used to measure accurately the contact angle of a liquid-fluid interface by analysis
of the capillary profile around a cylinder (ACPAC). As will be described in details in the
present chapter, the ACPAC technique is a powerful alternative tool to the existing
ADSA technique for accurate measurements of contact angles of any liquid-fluid
interfaces on cylindrical surfaces.

The ACPAC method is first used to determine the contact angles by analysis of the
capillary rise profile around a cylinder (ACRPAC), which is referred to as simply ACRPAC
case hereafter (Gu et al.,, 1997a). In this method, the precise image of a partial capillary
profile of the liquid around a conic or constant-diameter cylinder was acquired and digitized
by applying computer image processing and analysis techniques. Then the contact angle of
the capillary profile on the cylinder was determined by numerically minimizing the

deviation between the physically observed (the digitized) capillary profile and the
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theoretically predicted curve. The latter is the curve representing a solution of the Laplace
equation of capillarity. The accuracy of the measured contact angles is approximately 0.1°.
Besides local gravity, densities of liquid and vapour phases and the liquid-vapour surface
tension, the only input data is the digitized partial capillary profile. The contact angles
determined by the ACPAC technique are insensitive to reasonable uncertainties involved in
these input data. This method was used to measure the contact angles of four n-alkane
liquids around cylindrical glass fibers coated with the FC725 material. The results are in
good agreement with those obtained by using the Wilhelmy plate method. This new method
was then applied to study the dependence of contact angles on the geometry of the conic
glass cylinders, which was interpreted as the line tension effect. In particular, the contact
angle in the case without the line tension effect, 8., can be measured directly by the present
method. Using computer digital image analysis techniques, the ACPAC technique is fully
automatic, objective and accurate. It is a useful tool in studying the wetting, spreading and
deposition processes of a liquid drop on fiber surfaces. It will be particularly suitable for
precise measurement of the contact angles of a liquid on fibers with some roughness. A
general user-oriented computer code to implement the ACPAC technique is also developed.

In the following sections, first, the numerical solution is presented for the differential
equation governing the shape of the capillary rise profile around a conic cylinder in the
presence of gravity. Then the objective function is defined as a measure of the deviation of
the calculated Laplacian curve from the measured capillary rise profile. This function is the
average of the 'normal’ distances between the measured points and the calculated curve. The
optimization of the objective function is achieved by using the contact angle as one of the
adjustable parameters. A computational scheme is developed to determine the contact
angle. Next, computer digital image acquisition and digitization techniques and the detailed
experimental set-up and procedure are described respectively. Finally, the measured contact
angles on constant-diameter and conic cylinders as well as their application to determination
of the line tension of four n-alkane liquids on the FC725 solid surface are given and
discussed. Comparisons are also made of the experimental data with those obtained from
both the sessile drop method by using the ADSA technique and the Wilhelmy plate
technique.

78



ACPAC Technique

The ACPAC technique for the ACRPAC case is then modified and extended to
measure such a contact angle formed between an oil-water interface and a fiber surface by
analysis of the capillary depression profile around a cylinder (ACDPAC). A brief
introduction to the ACPAC technique for the ACDPAC case will be presented in Section
4.6. Once the wettability of the fiber-water-oil system is measured properly using the
ACPAC technique, the contact angle can be substituted into Equation (3.31a) to determine
Ys and further to determine ys, from Equation (3.31b) given in Section 3.6. If yx, s and
the other surface energies are known, the Hamaker constant can be determined from
Equation (3.30) given in Section 3.5.2. The detailed results of the Hamaker constants
determined from the measured surface energies for a variety of fiber-water-oil systems will

be presented in Section 4.7.

4.2 Mathematical Formulations of the ACPAC Technique for the

ACRPAC Case

When a conic cylinder is vertically inserted into a pool of liquid, the latter may
climb up the cylinder above the undisturbed surface of the liquid. As illustrated in Figure
4.1, the liquid-vapour interface will form a contact angle with the surface of the conic
cylinder. For a moderately curved liquid-vapour interface, the pressure difference across the
curved interface is described by the classical Laplace equation of capillarity:

AP=P —P =y, (> +-

43
R & ) (4.3)

where, AP is the pressure difference across a liquid-vapour interface; P, and P, are the
pressures on the liquid side and on the vapour side of the interface, respectively; vy is the
surface tension of the liquid(l)-vapour(v) interface; R; and R; are the principal radii of
curvature of the interface. In the absence of external forces other than gravity, the pressure
difference is a linear function of the elevation. For an arbitrary point P(x,y) on the liquid-
vapour interface, the pressures in Equation (4.3) can be further expressed as:

Pi= Pio-p, & (4.4a)
and

P.=Pw-p, & (4.4b)
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where, p; and p. are the densities of the liquid phase and vapour phase respectively; y is the
local capillary rise height of point P(x,y) on the interface above the horizontal undisturbed
surface of the liquid; Py and P, are the reference pressures of the liquid phase and the
vapour phase, chosen at the vicinity of the undisturbed surface of the liquid. If the ratio of
the radius of the conic cylinder to the radius of the pool is sufficiently small, the difference
between the two reference pressures, APy, will be zero by applying Equation (4.3) at y=0,
i.e., on the undisturbed flat liquid-vapour interface, and noticing R;’=R;’=x:
APy=Pu-Pwu=0 (4.4c)
where R, and R;® are the principal radii of curvature of the undisturbed liquid-vapour
interface very far from the cylinder axis. Substituting Equations (4.4a,b,c) into Equation

(4.3) and rewriting it give

1 1
—+—)=-A 4.5
sz(Rl Rz) Py (4.5)

where Ap=p;-p, is the density difference between the liquid phase and the vapour phase.
For the system illustrated in Figure 4.1, the x-y coordinate system is chosen as follows: the y
axis is the axis of the conic cylinder; the x axis is along the horizontal undisturbed liquid-
vapour interface and normal to the y axis. The Laplace equation of capillarity, Equation

(4.5), can be rewritten as:
2

]

y dy
de*  ,_ dx _Acgy (4.6)
_4_y_ 2 % d_y 2 % ylv -
[1+(dx) ] x[1+(dx) 1

Equation (4.6) is a second-order ordinary differential equation that requires two
boundary conditions. The convenient choice of the boundary conditions is the capillary rise
height and the contact angle on the conic surface. At the three-phase contact circle on the
conic cylinder, the capillary rise height, h, the tangential angle, ¢, and the contact angle, 6,
of the liquid-vapour interface constitute the relevant boundary conditions:

Yh-s. =h (4.7a)

%Lq‘ =-tang = -tan(180°- B -0) =tan(B +68)  (4.7b)
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where R. is the local radius and B is the local inclination angle of the conic cylinder.
Another choice of boundary conditions on the undisturbed surface of the liquid at infinity is:
Ve =0 (4.8a)

dy
2y =0 4.8b
de (4.8b)

Obviously, such boundary conditions can not be implemented in the practical computations.
By substituting y;=y and y,=dy/dx into Equation (4.6), it can be transformed into:

dy,

=y, 4.9a
e Y (4.9a)

dy, Ap gy, ¥, 232
== - — 1+y, 4.9b
, [ - x(1+y:,),,2] (I+y3) (4.9b)

Consequently, the boundary conditions, Equations (4.7a,b) or Equations (4.8a,b) associated
with Equation (4.6) can be changed into the corresponding initial conditions:

Viken, =h (4.10a)

Vik-p =tan(p +6) (4.10b)
or

Yih-o=0 (4.11a)

Yoh=e =0 (4.11b)

Equations (4.9a,b) with the initial conditions, Equations (4.10a,b), form a set of first-order
non-linear ordinary differential equations for y, (i.e., y) and y, (i.e., dy/dx) as functions of
the independent variable x. For given R, 8, 6, h and Apg/y\y, which depend on the shape of
the conic cylinder and the properties of the liquid tested, the complete shape of the
axisymmetric capillary rise profile y=y(x) can be easily obtained by numerically integrating
differential Equations (4.9a,b) simultaneously with the initial conditions, Equations
(4.10a,b). In this study, the 4"%-order Runge-Kutta technique is used to solve the differential
equation system, which was successfully used to predict the equilibium shapes of
axisymmetric liquid solder menisci previously (Gu and Li, 1997d). For the steep part of the
liquid-vapour profile where |dy/dx| is greater than 1.0, the differential equation system will

be automatically switched to another set of first-order ordinary differential equations for x;

81



Chapter 4

(ie, x) and x; (i.e., dx/dy) as functions of the independent variable y. This can be done by
using y as an independent variable and substituting:

dy _ 1
o &
dy
dy _ 1 dx
2 de dZ
dx -y
dy

into Equation (4.6). The detailed mathematical transformations of the differential equations
as well as their initial conditions are straightforward, and are thus not included here. In this
way it is ensured that variation of the dependent variable in each step be definitely less than
the calculating step of the independent variable during numerical calculation of capillary rise
profile. The latter can be chosen properly.

Like the ADSA technique (Rotenberg et al., 1983; Cheng et al., 1990; Li et al,
1992), the ACPAC technique determines the contact angles from the shapes of the liquid-
vapour interfaces, i.e., from the capillary profiles on a conic or constant-diameter cylinder.
The strategy employed is to define an objective function which is a measure of the
discrepancy between the physically observed capillary profile and the theoretically
calculated curve, i.e.,, a curve satisfying the Laplace equation of capillarity. Then the
objective function is minimized numerically by using the contact angle as one of the
adjustable parameters.

Let xm; and ymi (i=1, 2, ..., N) be a set of experimentally measured coordinates
which describe the measured liquid-vapour interface, and xj and y; (=1, 2, ..., K, choosing
Xck>Xmn) be another set of the coordinates of a calculated Laplacian curve. In this paper, the
objective function, E, is defined as:

N
2|

P 4.12)
N (

where d; is the "normal” distance from each measured point (Xmi, ¥mi) to the calculated
capillary profile (i=1, 2, ..., N). According to the above definition, physically, the objective
function is the average of the "normal" distances between the measured points and the

theoretical Laplacian curve. Hence, the value of the objective function depends only on the
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shape of the calculated Laplacian curve once the real capillary profile is measured, i.e., Xmi
and ym; (i=1, 2, ..., N) are given.

In order to construct a theoretical Laplacian curve by solving Equations (4.9a,b) with
the initial conditions Equations (4.10a,b), some parameters, such as the local gravity, g, the
density difference between the liquid and the vapour phases, Ap, and the liquid-vapour
surface tension, v, have to be known. As will be discussed in the next section, for a given
conic cylinder, Ahm, Rc and B can be readily determined from the physically observed
capillary profile, where Ahn, is the measured relative elevation of the position of the three-
phase contact circle on the cylinder to the position of the lower edge of the acquired partial
capillary rise profile. In the experiments, only partial capillary profile could be acquired
because of the contradiction between the image resolution and the scope of the microscope
and video camera system. The calculated capillary profile around the conic cylinder in this
study shows that the liquid-vapour interface could extend to a quite large range. Thus it
becomes practically impossible to acquire the complete capillary rise profile with sufficient
image resolution. If ho represents the capillary rise height at the lower edge of the measured
partial capillary rise profile relative to the undisturbed liquid surface, then the absolute
height of the capillary rise, h, at the conic cylinder is equal to:

h=h+Ahn (4.13a)
Therefore, once Apg/yiv, Ahy, Rc and B are known, the calculated Laplacian curve will
depend merely on the values of 8 and hy. Consequently, the objective function depends only
on the two parameters, 0 and hy, i.e.,

E=E@6,h,) (4.13b)

In the present optimization scheme, 6 and hg are used as the adjustable parameters to
find the best fit of the theoretical Laplacian curve to the digitized liquid-vapour interface.
Once the objective function is minimized, the corresponding 6 is the measured contact
angle. For a given conic cylinder and a tested liquid, hence, only a set of discrete
coordinates of the physically observed capillary rise profile is required as input data. The
output of the optimization scheme will provide the values of the contact angle, 0, and the
capillary rise height, h (or hg), as well as the calculated capillary rise profile corresponding

to the minimum objective function Emin.
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4.3 Computer Digital Image Techniques

A block diagram of the apparatus used in the present experiments is shown in Figure
4.2. A coated glass cylinder is inserted into a shallow dish slightly overfilled with the tested
liquid and they were placed between the light source and the microscope. A Cobu 4910
CCD monochrome camera was mounted on a Leica Wild M3B microscope. The video
signal of the capillary profile was transmitted to a videopix digital video processor which
performed the frame grabbing and digitization of the image to 640 x 480 pixels with 256
grey levels, where zero represents black and 255 represents white. A Sun Sparc10 computer
was used to acquire the image from the videopix and perform the image analysis,
computation and digitization.

All experimental digital images were automatically stored in the computer memory.
The basics of digital image acquisition process are as follows. A video source, such as a
video camera attached to a microscope, produces an analog video signal containing image
data. This signal is transmitted to the image processor. The analog signal is converted to a
digital signal containing the image data in the form of digital picture elements, or pixels.
The digital pixel data are then stored in frame memory one frame at a time, with each pixel
occupying one frame memory location. Once the image is stored in frame memory, it may
be accessed for display or other additional computer processing. Display circuitry
transforms the pixels stored in frame memory back into an analog signal for display on a
video monitor. The number of pixels that are transferred to or from frame memory in one
frame time defines the display resolution of the frame memory.

Two typical images (produced by a laser printer) of the partial capillary rise profiles
of hexadecane-vapour (air) interface, one around the bottom tip part and another around the
conic part of a conic cylinder, are shown in Figures 4.3a and 4.4a (produced by a laser
printer), respectively. For each image, using a standard grid image as a calibration to correct
possible optical distortion, a special computer image processing and analysis program was
used to digitize the image automatically with sub-pixel resolution. Then the computer
program will determine the conic cylinder profile and the profile of liquid-vapour interface.
The output of this program are two sets of discrete coordinates, x and y in mm, of the profile
of the cylinder surface and the capillary rise profile of the tested liquid on the left and the
right sides, respectively. The digitized plots of the above two images, as seen in Figures.
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4.3a and 4.4a, are given in Figures 4.3b and 4.4b, respectively. These plots clearly indicate
the profiles of the cylinder surface and the hexadecane-vapour interfaces on the both sides.
By implementing the spline curve fitting, the accuracy of the digitized profiles is about 1.0
um, at x40 magnification.

With the digitized profiles of each image, the local radius R. of the three-phase
contact circle is half of the horizontal difference between the three-phase contact points on
the left side and on the right side. The relative elevation between the three-phase contact
circle and the lower edge of the partial capillary rise profile covered by the image, Ahn, as
defined before, is merely their vertical difference. The local slope of the solid surface
profile, i.e., tanp, at the position of the three-phase contact circle can be easily calculated by
applying a polynomial curve fit to the measured profile of the solid surface.

4.4 Experimental Aspects of the ACRPAC Case

The liquids used in the present contact angle measurements are decane, dodecane,
tetradecane, and hexadecane (Aldrich Chemical Company, Inc., 99% pure). These liquids
are chosen in order to satisfy the following general requirements: they have low vapour
pressure or a high boiling temperature so as to minimize evaporation; they are chemically
stable and not excessively toxic; they will form finite contact angles on the solid surface
used in this study. In addition, the contact angles, 6, and line tensions, o, of these liquids
on a similar solid surface, FC721, are available in the literature (Li and Neumann, 1990b;
Duncan et al., 1995; L1, 1996).

In the present work, the solid surface used in the experiments is FC725 (a
fluorochemical surfactant coating material, 3M Product) coated on very smooth glass
cylinders. Two types of glass cylinders were used in this work: constant-diameter cylinders
and conic (varying diameter) cylinders. As illustrated in Figure 4.1, the local radius, R, of
the conic cylinder changes smoothly from approximately 0.14 mm at the tip to 1.0 mm (or
1.5, 2.5 mm) on its upper cylindrical part. The local inclination angle, B, defined as the
angle between the gradient of the cylinder profile and the horizontal level, decreases from
90° near the tip, reaches the minimum about 60° on the conic part, and finally increases to
90° again on the upper cylindrical part. The FC725 surface was prepared by a dip-coating
method as described below. First, the cylinder was slowly and vertically dipped into a small
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bottle filled with the FC725 coating material. The bottle was placed on a disk floating in a
beaker of water. The position of the floating disk, and hence the level of the coating liquid,
was then lowered very slowly by draining the water in the beaker at a controlled rate. Thus,
a uniform and smooth FC725 coating was left on the cylinder. Finally, the coated cylinder
was suspended vertically and dried in air before use in the experiment.

The quality of the FC72S5 surfaces was carefully examined in this study. First, it was
known from the 3M Product Selection Guide that this fluorochemical surfactant coating
material is very stable, even in many extremely aggressive chemical environments. The
FC725 coating material is insoluble to organic liquids such as n-alkanes used in this study.
Second, the average roughness of the dip-coated FC725 surfaces, measured by the Tencor
Surface Profilometer (TSP), is less than 0.0250 um. Lastly, the contact angle hysteresis has
been measured by using the following procedures. To avoid the line tension effects, the
contact angle measurements were done on the FC725 coated glass cylinders of constant
radius (i.e., $=90°). Initially, the coated cylinder was slowly inserted vertically into the
liquid to a certain depth. Thirty seconds was given to allow the three-phase contact line and
the liquid meniscus to reach equilibrium. Then an image of the capillary rise profile around
the cylinder was taken. The cylinder was further inserted into the liquid so that the three-
phase contact line reached a new position, and a new image was taken after 30 seconds; and
so on. Five advancing contact angles were measured from successive digital images, each at
a different vertical position downwards along the cylinder. Afterwards, five receding
contact angles were measured in a similar way by moving the cylinder upwards. For a
given liquid, the above measurements were repeated for three separate cylinders. For all
liquids tested in this work, the contact angle hysteresis is almost the same, ranging from 5-
7°. For example, for the FC725-tetradecane system, the average advancing contact angle is
65.3° and the average receding contact angle is 58.4°. Although the solid surfaces used in
this work are very smooth, these surfaces may still have a very small percentage of
heterogeneity, probably due to impurities of the coating material and dust in the air. This
might be the cause of the observed contact angle hysteresis. It has been shown by Li and
Neumann (1992c) that the advancing contact angle on a smooth but heterogeneous surface

represents the equilibrium properties of the dominant material of the surface, while the
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receding contact angle reflects the property of the impurity of the surface. Hence, the
contact angles mentioned thereafter will be the advancing contact angles only.

Measurements of capillary rise profile around a conic cylinder in this study were
carried out according to the following procedure. For each liquid, three conic cylinders of
different sizes were used in the measurement. First, the tip part of the conic cylinder was
inserted into the liquid and the image of the capillary rise profile around that part was taken.
Then the conic cylinder was moved downwards very gently to change the position of the
three-phase contact circle on the conic cylinder. Once the capillary rise profile around the
conic cylinder was formed and stable, another image was taken at the new position and the
experiment continued until the profile reached the upper cylindrical part. Contact angle
measurements for constant-diameter cylinders were carried out in a similar fashion. The
entire experimental set-up was placed on a vibration-free table. All measurements were
conducted at room temperature, 22°C.

For comparison, the ADSA and the Wilhelmy plate techniques were also utilized to
measure contact angles of the same solid-liquid systems. Glass slides (7.5 cm x 2.5 cm)
used in these measurements were coated with the FC725 material by using the dip-coating
method as described above. In the first experiment, the contact angle of a sessile drop on a
FC725 coated glass slide was measured by applying the ADSA technique. Secondly, the
Wilhelmy plate technique was employed to determine the contact angle without line tension
effect, O, at the vertical glass slide. Once the capillary rise height, h, was measured, the
contact angle was calculated from Equation (4.1). The measurement procedures in the
present study are summarized as follows. A vertical glass slide coated with the FC725 was
dipped into a shallow dish slightly overfilled with the tested liquid. They were put between
a light source and a goniometer. The dish is wide enough to ensure that the liquid surface is
horizontal in the region far from the glass slide. A goniometer was installed on a three-
dimensional translation stage with a vertical resolution of 1.0 ym. The stage was mounted
on a separate stand so as to insulate mechanical vibrations created by its movement. Using
the goniometer and the translation stage, the height of capillary rise is determined by
measuring the positions of the three-phase contact line on the coated glass slide and the

position of the horizontal liquid surface. For an individual measurement of h, a total of ten
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readings of the position of the horizontal liquid surface and the position of the three-phase

contact line were taken.
4.5 Experimental Results and Discussion of the ACRPAC Case

4.5.1 Contact Angle Measul;ements on Constant-Diameter Cylinders

Experiments were conducted to test the ACPAC technique for the ACRPAC case.
As a first application, the contact angles on the FC725 coated constant-diameter cylinders
for the four n-alkane liquids: decane, dodecane, tetradecane and hexadecane, were
measured. To examine the possible effect of the cylinder size on the measured contact
angles, three cylinders of different sizes (Rc=1.0, 1.5 and 2.5 mm) were used for each liquid.
Ten images were taken at different positions of each cylinder. The consistency of the
measured contact angles for three different cylinders indicates that there is no appreciable
effect of the cylinder size on the results. Physically, these measured contact angles are the
advancing contact angles without line tension effect, Oxacrrac, since the constant-diameter
cylinders are vertically positioned, i.e., p=90°, as will be seen from Equation (4.16).
According to the classical Young Equation (4.14b), these contact angles depend only on the
interfacial tensions of the solid-liquid-vapour interfaces in the system.

Table 4.1 shows the average contact angle value (at the 95% confidence level) of
each liquid measured by the ACPAC method for the ACRPAC case. For comparison, the
contact angles, B,wilheimy, (at the 95% confidence level) of each liquid obtained from the
Wilhelmy plate technique are also listed in Table 4.1. An excellent agreement is found
between the contact angles measured by these two techniques. However, it is noted that the
measured contact angles have a maximum variation of about +0.5° around the mean values.
This is due to the practical difficulty in aligning either the cylinder or the slide truly
vertically in the measurements. Experimental results indicate that the slight inclination of
the cylinder or the siide could cause a rather large difference in the measured contact angles
between the left and the right sides. The maximum variation at the 95% confidence level is
only about £0.1° if the measured contact angles from one side are averaged. Therefore, the

accuracy of the measured contact angles by the ACPAC technique is approximately 0.1°.
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4.5.2 Contact Angle Measurements on Conic Cylinders

The contact angles on the FC725 coated conic cylinders for the four n-alkane liquids
were also measured by the ACPAC technique for the ACRPAC case. As an example, Table
4.2 shows the changing contact angles of decane on the FC725 solid surface at the different
positions of a conic cylinder from its lower tip part to its upper cylindrical part. The contact
angles on the conic part are approximately 3-4° larger than those on the cylindrical part.
This phenomenon can be interpreted in terms of the so-called line tension effect. Hence, a
direct application of the present experimental technique is to determine line tension by
measuring the contact angles at the different positions of a conic cylinder.

In surface thermodynamics, line tension in a three-phase equilibrium system can be
either defined as the free energy per unit length of a three-phase contact line (Gibbs, 1961,
Boruvka and Neumann, 1977) or understood as the force operating in a one-dimensional
three-phase contact line and tending to minimize its length. For a sessile drop on an ideal
solid surface, the mechanical equilibrium condition at any point along the three-phase
contact circle can be expressed by the modified Young equation (Boruvka and Neumann,
1977):

cos@= cosf, - z . (4.14a)

1
}/ v R
and

cosg, = Le Vs (4.14b)
Vi

where yiv, Ysv and yq are the interfacial tensions of the liquid-vapour interface, the solid-
vapour interface and the solid-liquid interface, respectively; R is the radius of the three-
phase contact circle; 0 is the advancing contact angle corresponding to a finite contact
radius, R; O is the contact angle corresponding to an infinitely large drop, i.e., R =; and &
is the line tension. The well-known classical Young Equation (4.14b) indicates that 0 is
constant for a given solid-liquid-vapour system. The modified Young Equation (4.14a)
relates the line tension to contact angle and the radius of a three-phase contact circle. Thus,
line tension can be determined by measuring the contact angle dependence on the drop size.
As defined in Equation (4.14a), the slope of the cos versus 1/R straight line is (-o/viv). If

the slope and the liquid surface tension are known, then the line tension can be determined.
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Recently, Lin and Li (1994) have incorporated the local inclination angle, B, of an
inclined solid surface or a solid surface of revolution in the form of cosf into the line tension
term in Equation (4.14a). They derived another form of the modified Young equation for
the case where the three-phase line is in contact with an inclined solid surface:

cosf = cos@. - id .COSB 4.15)

YIv p
where p is the local radius of curvature of the three-phase contact line. Equation (4.15)

clearly shows the influence of the local inclination angle, B, on the curvature (l1/p)
dependence of contact angles due to the line tension effect. For an ideal solid surface of
revolution, such as a cone or cylinder, the three-phase contact line is a circle because of its
axisymmetry and p becomes a constant, R, the local radius of the contact circle on the solid
surface. Therefore, Equation (4.15) can be simplified as:
cos@ =cosO_ -i,&sﬂ— (4.16)
v Re
Equation (4.16) will reduce to Equation (4.14a) if = 0°, i.e., if cosp = 1, which corresponds
to a horizontal planar solid surface. It will become the classical Young Equation (4.14b), if
B = 90° ie. cosp = 0 and 8 = O, which corresponds to either a vertical cylinder with a
constant radius as discussed in the previous case or a vertical flat plate as used in the
Wilhelmy plate technique (Neumann, 1974; Neumann and Good, 1979; Adamson, 1982;
Budziak and Neumann, 1990). In such a case, the line tension term is absent from Equation
(4.16). Therefore, 0. should be defined more exactly as the contact angle without line
tension effect. However, the linear relationship between cosO and (cosp/R.) for a given
solid-liquid system predicted by Equation (4.16) has yet to be confirmed experimentally.
It should be noted that the advancing contact angle measured on a real surface is the
Young contact angle, i.e., which can be used in the Young equation (Neumann and Good,
1972). Since the conditions required in deriving Equation (4.16) are the same as those
required in deriving the classical Young equation, the advancing contact angles can also be
used in Equation (4.16). It has also been shown elsewhere (Neumann and Good, 1972; Li
and Neumann, 1992c) that the advancing contact angle represents the equilibrium property

of the dominant material of a smooth but non-homogeneous surface. Thus, the line tensions
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calculated from the advancing contact angles represent the property of the dominant
material, the FC725, in the present case.

By employing the present experimental technique, the quantities in Equation (4.16),
such as the radius of the three-phase contact circle, R, the inclination angle, 8, and the
contact angle, 6, can be measured directly. Therefore, the remaining tasks are to bring the
measured R, B and 0 into the modified Young Equation (4.16) and then to plot the data in
terms of cos® versus cosf/R.. The line tension, o, and the contact angle, 6., can be readily
determined since the gradient and the intercept of the linearly fitted line to these data are -
o/yy and cosOx, respectively.

The experimental data obtained in this work and their corresponding linear lines
fitted using Equation (4.16) for the four liquids on the FC725 surface are shown in Figure
4.5. The correlation coefficients r* for these fitted linear functions are all above 0.83.
Therefore, the linear relationship between cos@ and cosf/R. as predicted by Equation (4.16)
is statistically supported by these data. The line tensions, o, and the contact angles, 6, for
the four n-alkanes on the FC725 surface were obtained from the plots in Figure 4.5 and
summarized in Table 4.3. These line tension values agree well with those reported in the
literature for similar systems (Gaydos and Neumann, 1987; Li and Neumann, 1990b;
Duncan et al., 1995). In order to examine the validity of the contact angle, 6, and line
tension, o, derived from the measured contact angles around a conic cylinder, comparative
experiments were done. For each liquid on the FC725 coated glass slides, contact angles,
Bapsa, of sessile drops with a contact radius R of 3 mm were measured by using the ADSA
technique. The results are listed in the last column of Table 4.3. In addition, the predicted
contact angles, Oed, by using Equation (4.16) with R=3 mm, the derived 8 and o values
are listed in the same table. For all four liquids, these two contact angles are in excellent
agreement within the experimental error.

As discussed before, the contact angle without line tension effect, 6., would
correspond to the contact angle of an infinitely large drop in the sessile drop method. In the
sessile drop method, 6. can only be evaluated (Gaydos and Neumann, 1987; Li and
Neumann, 1990b; Duncan et al., 1995) by extrapolating the fitted line of cos6 versus 1/R to

the vertical axis (i.e., 1/R=0), because in practice it is impossible to generate an infinitely
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large drop. For the conic cylinder-liquid systems, however, both the local radius, R, of the
three-phase contact circle and the local inclination angle, B, of the solid surface can be
changed simultaneously. The quantity cosf/R. in Equation (4.16) covers a wider range, in
this study approximately from -1.00 to 10.00 cm'. More importantly, the point of
cosPp/R=0 is also included in the range. At this point, cos® becomes cos6- and the line
tension effect term is absent from the equation. Hence, the contact angle without line
tension effect, 0,, which is derived from the contact angles measured by the ACPAC
technique for the ACRPAC case, is more reliable. In fact, this conclusion is also supported
by the excellent consistency between the 0., values derived from Equation (4.16) (Table 4.3)
and those measured directly by either the ACPAC method for the constant-diameter
cylinders or the Wilhelmy plate technique (Table 4.1).

4.6 Brief Introduction to the ACPAC Technique for the ACDPAC case

Many applications in cosmetic and textile industries require the knowledge of
contact angles formed by an oil-water interface on a fiber surface. However, when a
hydrophobic fiber is inserted into a beaker filled with a layer of water at the bottomn and a
layer of oil at the top (assuming that the oil phase is lighter than the water phase), the oil-
water interface forms a depressed meniscus around the fiber. Therefore, this section will
focus on the measurement of such a contact angle formed between a depressed oil-water
interface and a cylindrical fiber surface (Gu and Li, 1998a). The ACPAC technique for the
previous ACRPAC case is modified and extended to determine the contact angles by
analysis of the capillary depression profile around a cylinder (ACDPAC). Mathematically,
calculation of the capillary depression profile around a cylinder can be transformed into the
prediction of the previous capillary rise profile by using appropriate coordinate
transformation. In the measurements, an image of the capillary depression profile of the oii-
water interface is taken as an image of the capillary rise profile by purposely setting the
video camera upside down. Thus the contact angle can be determined by using the approach
similar to the ACRPAC case. As an application, the contact angles of two different oil-
water interfaces on the cylindrical glass fibers coated with the FC725 material are measured
by using the ACPAC technique for the ACDPAC case. In addition, this method has been

applied to study the effects of two typical ionic surfactants, cetyltrimethylammonium
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bromide (CTAB) and sodium dodecyl sulphate (SDS), on the wettability of the oil-water

interfaces. The oil phase are two dimethyl siloxane liquids, silicone oil A and silicone oil B.

4.6.1 Coordinate Transformation

When a solid cylinder is vertically inserted through a horizontal liquid-fluid interface
formed between the upper fluid phase and the lower liquid phase in a beaker, the interface
will either climb up the cylinder above the undisturbed liquid-fluid interface or deform
downward around the cylinder. The overall shape of the capillary profile depends on the
surface/interfacial tension and the wettability of the liquid-fluid interface on the solid
surface. The determination of the contact angles in the capillary rise case for a liquid-
vapour interface around a fiber has been dealt with in the previous sections (Gu et al,
1997a). The focus in this part is to determine the contact angles in the capillary depression
case for a liquid-liquid interface around a cylinder. As illustrated in Figure 4.6, a depressed
oil-water (O/W) interface will form an obtuse contact angle on the cylinder surface. For
such a moderately curved O/W interface, its equilibrium shape is governed by the classical
Laplace equation of capillarity, similar to Equation (4.3):

1 1
w5, }’o..(Rl Rz) (4.17)

where y.w is the interfacial tension of the O/W interface. As shown in Figure 4.6, the X-Y
coordinate system was chosen as follows: the Y axis coincides with the axis of the cylinder,
and the X axis is along the horizontal undisturbed O/W interface and normal to the Y axis.
In the absence of external forces other than gravity, the pressure difference is a linear
function of the elevation. For an arbitrarily chosen point P(X,Y) on the O/W interface as
marked in Figure 4.6, the pressures in Equation (4.17) can be expressed as:

P.=P,-p.gY (4.18a)
and

P,=P,~p,gY (4.18b)
where, p. and p, are the densities of the water phase and the oil phase respectively; Y is
negative and represents the local capillary depression depth of the point P(X, Y) below the
horizontal O/W interface; and Py and P are the reference pressures of the water and the oil

phases, respectively, chosen at the vicinity of the undisturbed O/W interface. Note that the
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difference between the two reference pressures, APy, will be equal to zero by applying
Equation (4.17) at Y=0. Substituting Equations (4.18a,b) into Equation (4.17) and

rearranging gives:

1 1
w(—t+—)=—Ap,gY (4.19)
Yo R R °

where Apy = pu-po is the density difference between the aqueous and the oil phases.
Therefore, in the X-Y coordinate system, the Laplace equation of capillarity, Equation

(4.19), can be rewritten as:

d’Y dr
X’ dX =_A2p.gY (4.20)
dY 53 xi+@yn Y ow

[1+(E) ] [ (dX) k

Equation (4.20) is a second-order ordinary differential equation that requires two
boundary conditions. The convenient choice of the boundary conditions is either at the solid
surface or on the undisturbed horizontal O/W interface. At the three-phase contact circle on
the cylinder, the capillary depression depth on the cylinder, h, and the contact angle, 6. of
the O/W interface constitute the relevant boundary conditions at the solid surface:

Y|xr =—h (4.21a)
and
%Ixm = tan(@ - 90”) = —cot(@) (4.21b)

where R. is the constant radius of the cylinder. Another choice of the boundary conditions
is on the undisturbed flat O/W interface at infinity, where

Y|e..=0 (4.22a)
and
% e =0 (4.22b)

It is an apparent fact that in practice the above two boundary conditions at infinity can not be
used.

Mathematically, calculation of the capillary depression profile in the present case
can be readily transformed into the prediction of the capillary rise problem that has been
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properly solved previously. Let x =X, y =-Y and bring them into Equation (4.20), one can
obtain:
d’y dy
I S S 4 (4.23)
1+ dy ., % x[1+ (d_y)z ]% Yow

Note here that Ap = -Apo = po-pw is the density difference between the oil and the aqueous
phases. Physically, such a switch of the density difference can be readily understood by
considering the fact that the gravitational acceleration, g, will become positive in the
reversed x-y coordinate system (see Figure 4.6). The boundary conditions expressed by
Equations (4.21a,b) can be transformed into the corresponding boundary conditions for
Equation (4.23) as follows:

Vg =h (4.24a)

dy

—

dx
Here, h becomes the capillary rise height on the cylinder and 6,=180°-0 is the

=r =cot(0) =cot(180° - 6,) = 1an(90° + 6,) (4.24b)

supplementary contact angle on the oil side.

Equation (4.23) with its boundary conditions Equations (4.24a,b) are essentially the
same as Equation (4.6) with its boundary conditions Equations (4.7a,b), except that in the
present case B=90° y is replaced by y.w and O is substituted by 8,. They can be further
transformed into two first-order ordinary differential equations in conjunction with their
corresponding initial conditions by using the variable substitution method. Furthermore,
these two resultant equations can be solved numerically by using, e.g., the 4™_order Runge-
Kutta technique. Thus, for each set of given values of R., 8,, h and Apg/y.w, which depend
on the size of the cylinder and the properties of the solid-liquid-fluid system tested, one can
obtain an accurate shape of the transformed capillary rise profile, y=y(x), or the
corresponding actual capillary depression profile, Y(X)=-y(X). The detailed variable
substitution approach and complete mathematical transformation procedures were presented

previously and thus are not included here.
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After the above manipulations, the ACPAC technique for the ACRPAC case can be
directly used to determine the supplementary contact angle 6; by analysis of the capillary
depression profile around a cylinder (ACDPAC). It should be noted that, as one of the input
data, Ap is the density difference between the oil phase and the aqueous phase in the
reversed x-y coordinate system. Hence, here Ap = —Apg = po-pw is negative if the oil phases
tested are lighter than the aqueous counterparts. Similar to the ADSA technique, the
ACPAC technique for the ACDPAC case determines the supplementary contact angle by
the shape analysis of the capillary depression profile on the cylinder. An objective function
is defined as the discrepancy between a physically observed capillary "rise" profile and a
theoretically predicted one. Acquisition and digitization processes of the physical profile are
the same as those for the ACRPAC case. The theoretical profile is a curve satisfying the
Laplace equation of capillarity. The objective function is then minimized numerically by
using the supplementary contact angle as one of the adjustable parameters.

4.6.2 Experimental Aspects of the ACDPAC Case

A block diagram of the experimental apparatus used in the ACDPAC case is shown
in Figure 4.7. In the set-up, a pre-coated glass cylinder was inserted through the O/W
interface formed between the upper oil phase and the lower aqueous phase in a test beaker.
A square beaker of 40x40x40 mm® was used for optical consideration. Because the glass
fiber was coated with the hydrophobic FC725 material, the O/W interface was deformed
downward and a capillary depression profile around the cylinder was formed. The test
beaker was placed between a light source and a microscope. In order to use the previously
developed ACPAC technique for the ACRPAC case, the video camera system was
intentionally set upside down in all measurements. Thus, it is seen from Figure 4.7 that the
actual capillary depression profile becomes a capillary "rise” profile, which is displayed on-
line on the computer monitor. Such a capillary "rise” profile was acquired and processed by
the computer digital image system.

All experimental digital images were automatically stored in the computer memory
and could be retrieved, processed and analyzed after the experiment was completed. The
basic aspects of the digital image acquisition and digitization process and much more

experimental details about the digital image technique were described previously in Section
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4.3. Figures 4.8a and 4.8b show two typical digital images of the partial O/W interfaces
around the FC725-precoated glass fiber. Specifically, Figure 4.8a was taken before the
camera was set upside down, whereas Figure 4.8b was taken after the setting. Thus, Figure
4.8a is the actual capillary depression profile formed by the interface between the silicone
oil A and the deionized ultra-filtered (DIUF) pure water. Figure 4.8b shows the
corresponding capillary "rise” profile obtained by reversing the camera position. In these
digital images, the central black block represents the glass fiber and the remaining black
space represents the oil phase, while the two white parts on the both sides of the solid
surface represent the aqueous phase.

For such oil-water profile images, a standard grid image was used to calibrate the
image and correct possible optical distortion. A special computer image processing and
analyzing program was then implemented to digitize the image automatically with a sub-
pixel resolution. The computer program can determine the profiles of the glass fiber and the
O/W interface. The output data of the digitization process are two sets of discrete
coordinates, x and y, representing the profiles of the glass fiber surface and the O/W
interface around the fiber, respectively. The digitized plot of the image seen in Figure 4.8b
is given in Figure 4.8c. This figure clearly indicates the profiles of the fiber surface and the
profiles of the O/W interface between the silicone oil and the DIUF water on the left-hand
and the right-hand sides. By implementing the spline curve fitting, the accuracy of the
digitized profiles is about 1.0 um, at 40 times magnification. With the digitized profiles of
the capillary rise image, the radius of the cylinder, R., is half the horizontal difference
between the three-phase contact points on the left- and right-hand sides. As seen from
Figures (4.8b,c), the elevation of the three-phase contact circle on the glass fiber relative to
the lower edge of the partial capillary "rise" profile covered by the image, Ahn, is equal to
their vertical difference. Therefore, Xm; and ym; (i=1, 2, N), R. and Ahy,, which are all
required in the optimization scheme, are obtained by applying the computer digital image
techniques.

The oil phases used in the present contact angle measurements were silicone oil (A-
type) with kinematic viscosity of va = 2 Centistokes and silicone oil (B-type) with kinematic
viscosity of vg = 5 Centistokes (Dow Corning 200 Series Fluids). These pure oil liquids

were chosen as the oil phases in order to satisfy the following general requirements. They

97



Chapter 4

have low vapour pressures or high boiling temperatures, in order to minimize possible
adsorption and evaporation effects. Moreover, they are chemically stable and not
excessively toxic.

The aqueous phases were either the pure deionized ultra-filtered (DIUF) water
(Fisher Scientific, Canada) or ionic surfactant solutions. The pure DIUF water has a density
of pw = 998 kg/m’ and a liquid-air surface tension of yuv = 72.66 mJ/m’ at 22°C. Two
typical ionic surfactants were used: the cationic surfactant cetyltrimethylammonium
bromide, CTAB, and the anionic surfactant sodium dodecyl sulphate, SDS (Aldrich, 95%
pure). Their critical micelle concentrations (CMC) in water, determined from their surface
tension-concentration curves, were reported to be about 9.2x10* M for CTAB (Czerniawski,
1966) and 8.1x10° M for SDS (Stalidis et al., 1990) at 25°C. The ionic surfactant solutions
were prepared by adding one of the two ionic surfactants, either CTAB or SDS, at a
different concentration each time into the pure DIUF water. Usually a period of more than
12 h was allowed for the chosen surfactant to become completely dissolved and evenly
distributed in the ionic surfactant solution.

In this study, the glass cylinder of Rc=1.5 mm was coated with a fluorochemical
surfactant coating material, FC725 (3M Product). The FC725 solid surface was prepared
using a dip-coating method and the quality of the FC725 surfaces was carefully examined
following the procedures as described in details in Section 4.4.

After the aqueous phase was prepared, the oil-water interface was formed according
to the following steps. First, the square glass beaker was half filled with the test aqueous
phase. Then the oil phase was gently added by using a syringe until the beaker was almost
full. Due to their density difference, the upper oil phase was layered above the lower
aqueous phase. The O/W interface in the centre of the beaker was a horizontal flat surface.
When a FC725 coated glass fiber was inserted through the O/W interface in the centre of the
beaker, a capillary depression meniscus was formed around the fiber. However, a capillary
rise O/W interface was formed on the walls of the beaker because of high-energy glass
surfaces. This configuration made it possible to observe the capillary depression profile
from the outside of the beaker by using the video camera. Usually, the O/W interface was
aged for at least two hours before the FC725 coated glass fiber was introduced. Thus, the

possible adsorption of the dissociated ions in the pure DIUF water or the ionic surfactant
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solution onto the O/W interface could reach an equilibrium state, as indicated by other
researchers (Shinoda et al., 1963; Ives, 1984; Saulnier et al., 1996).

Measurements of the capillary rise O/W profile around a glass fiber coated with the
FC725 were carried out according to the following procedure. First, after a flat O/W
interface was formed, the FC725-precoated cylinder was positioned in the centre of the
beaker and gradually inserted through the O/W interface. The capillary depression O/W
profile was formed around the fiber because of the hydrophobic FC725 surface. It was
observed that the initial non-equilibrium contact angle of the O/W interface varies with time
up to several minutes, though the glass fiber is kept stationary. Hence, in this study, the
image of the capillary profile around the cylinder was taken 10 min after each movement of
the glass fiber in order to measure the static or the equilibrium contact angles. Then the
glass fiber was gently moved downward by using a three-dimensional translation stage with
a vertical resolution of 1.0 um. The position of the three-phase contact circle on the fiber
was thus changed. Again the image was taken at this new position after 10 min to ensure
that the contact angle reached the equilibrium value. The experiment continued until a total
of ten digital images at ten different positions were recorded. All measurements were

conducted at 22°C.

4.6.3 Experimental Resuits and Discussion of the ACDPAC Case

The contact angles on the FC725-precoated glass fibers were measured for two
silicone oil-pure DIUF water systems (silicone oil A-type and silicone oil B-type). Table
4.4 lists the mean values of the supplementary contact angles, 6, and the true contact
angles, 6, for the two O/W interfaces. Some surface properties of the oil phases and the

O/W interfaces are also included in the table, where v and 7, are the oil-air surface

tension and the O/W interfacial tensions, respectively. They were measured by the
pendant drop method using the ADSA technique (Rotenberg et al., 1983; Cheng et al,,
1990; Li et al., 1992). Any value following the “+” sign represents the standard deviation
of the mean value over ten trials. [t is noted that the maximum variation of the measured
supplementary contact angles, 8, or the true contact angles, 6, is about +0.4° around the
mean values. As was discussed previously (Gu et al, 1997a), this error is solely

attributed to the inability to align the cylinder truly vertically in the actual experiments.
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The standard variance is only approximately 0.1° if the average is taken over the
measured contact angles from one side of the glass fiber only. It is seen from Table 4.4

that, for the two silicone oil liquid, their surface tensions, v, , and interfacial tensions
against the pure DIUF water, y_,, increase as their densities increase. Consequently,

their O/W interfaces have slightly larger contact angles and become more non-wetting on
the FC725 surface.

The contact angles of the silicone oil and the ionic surfactant solution interfaces
on the FC725-precoated fiber were also determined by using the ACPAC technique for
the ACDPAC case. Table 4.5 gives the measured contact angles of the silicone oil (A-
type) and the DIUF water interfaces on the FC725-precoated glass fiber at different

cationic surfactant concentrations of CTAB from 10°~10°M. The corresponding surface

tensions of the aqueous surfactant solutions against the air, y,,, and the O/W interfacial
tensions, y,., at these surfactant concentrations are measured by the pendant drop
method using the ADSA technique. As expected, both v, and y,, decrease greatly when

the surfactant concentration increases. The maximum CTAB concentration tested is
equal to 10° M, very close to its CMC, 9.2x10* M, in water at 25°C (Czerniawski, 1966).
Accordingly, the contact angles of the O/W interfaces are reduced by nearly 8° as CTAB
concentration approaches its CMC. With the increase in CTAB concentration, the O/W
interfaces become more wetting than the silicone oil and the pure DIUF water interfaces.
Similar results of the silicone oil A-type and the DIUF water interfaces on the
FC725-precoated glass fiber are presented in Table 4.6 for different anionic surfactant
concentrations of SDS from 10%~102 M. This table also clearly shows the wetting effect
of the anionic surfactant on the O/W interfaces when it is added into the aqueous phase.
This test terminates as SDS concentration is near its CMC, 8.1x10> M, in water at 25°C
(Stalidis et al., 1990). Compared with the measured results for CTAB, SDS at about one
order of magnitude higher surfactant concentration has the similar wetting ability to
CTARB, regardless of their different ionic features. Near their CMCs, their v, 7,. and

the contact angles of the O/W interfaces are almost the same.
The wetting ability of SDS on the O/W interfaces was also investigated using the
ACPAC technique for the ACDPAC case for the silicone oil (B-type). Table 4.7 presents
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the contact angles of the silicone oil B and the DIUF water interfaces on the FC725-
precoated glass fiber measured by using the ACPAC technique for the ACDPAC case.
These results follow the same general trends as described above. Since silicone oil (B-

type) is denser and more viscous, its O/W interfacial tensions, v, , and the measured

contact angles, 8, are also greater than those for silicone oil (A-type) at the same SDS
concentration given in Table 4.6. It is found that, at the CMC of SDS, the contact angle
of the silicone oil (B-type) and the DIUF water interface is only approximately 5° smaller
than that for the silicone oil B and the pure DIUF water interface. Therefore, SDS has
less pronounced wetting effect on the silicone oil (B-type)-DIUF water interfaces than on
the silicone oil (A-type)-DIUF water interfaces.

All of the above experimental results indicate that the ACPAC technique is an
appropriate experimental method to study the wetting effect of any surfactants dissolved

in the aqueous solution on the liquid-fluid interface around a curved solid surface.

4.7 Hamaker Constants Determined from the Measured Surface Energies

of the Fiber-Water-Qil Systems
As was derived and expressed by Equation (3.30) in Section 3.5.2, the Hamaker

constant can be related to the surface energies by the following equation:

Apy = +287D5 | (V0 + ¥ =270 WY 5 + Vo =27 ) | (4.25)

where Dy is the separation distance at which the two surfaces are actually in contact. It is
sometimes also called either the interfacial contact separation distance or a "cut-off”
distance. It has been shown that the cut-off separation distance D, can be treated as a
"universal constant” (Do=0.165 nm) for very different liquids and solids (Israelachvili,
1985). In Equation (4.25), Yov, Ywv and yow represent the surface tensions of the oil-vapor
and the water-vapor interfaces and the interfacial tension of the oil-water interface, which
can be measured directly by using the ADSA technique for the pendant drop case. In
addition, ys and yrv are the surface tension of the fiber-vapor interface and the interfacial
" tension of the fiber-water interface and can not be measured directly. In terms of the
equation of state for interfacial tensions of solid-liquid systems, however, they can be

determined from the measured surface energies of the liquid-fluid interfaces and the
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contact angle (wettability) of the solid-liquid-fluid system (Li and Neumann, 1990a;

1992a). The equation of state for interfacial tensions of the present fiber-water-oil system

cosf = —1 +2 ,"f" e O (oo ¥ (4.26a)
YW'V

where, 0 is the contact angle of water drop formed on the fiber surface.

can be written as:

In Equation (4.26a), yuv can be measured by using the ADSA technique for the
pendant drop case. The pure DIUF water-air surface tension is equal to yuv = 72.66 £ 0.31
mJ/m? at 22°C. For the flat fiber surface, 0 can be accurately measured by using the
ADSA technique for the sessile drop case. For the cylindrical fiber, however, as was
discussed in details in the previous sections, 8 can be measured by using the ACPAC
technique. Once the values of y.v and 0 are measured, the fiber surface tension yr can be
calculated from the equation of state for the solid-water-vapor system by iteration.
Furthermore, the interfacial tension of the fiber-water interface, ys, can be determined
from the classical Young equation:

Yur €OSO =7, — V5 (4.26b)

Therefore, eventually, all the relevant surface energies required in Equation (4.25) can be
determined and thus the Hamaker constant can be determined from the equation by
choosing Dy = 0.165 nm.

In this thesis study, two kinds of fiber surfaces were used: the bare glass fiber is a
typical hydrophilic surface and the FC725-precoated one represents a hydrophobic
surface. Their solid surface tensions, yn, and the interfacial tensions with the water,ys,
can be determined using the equation of state for interfacial tensions, Equation (4.26a),
and the classical Young equation for fiber-water systems, Equation (4.26b), respectively.
The contact angle 6 of the pure DIUF water-vapor interface is about 10.1°+1.7° on the
bare glass surface and 115.6°+0.9° on the FC725-precoated fiber surface respectively.
Therefore, yn is found to be 71.56+0.39 mJ/m’ for the bare glass fiber surface and
13.8740.51 mJ/m’ for the FC725-precoated fiber surface by substituting the values of ywy

and 0 into Equation (4.26a).
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It should be pointed out that, ideally, the contact angle between the pure DIUF
water and a clean glass surface should be equal to zero since clean glass is a typical
surface of high hydrophilicity. In this work, the above contact angle (6=10.1°£1.7°) of
the pure DIUF water on the bare glass surface was measured using the ADSA technique
for the sessile drop case. This small non-zero contact angle may be due to a very small
percentage of the bare glass surface covered by possible impurities (or remaining traces)
of Acetone and dust from the air when it was washed with the cleaning agent and then
dried in air. In addition, this contact angle may not be accurate because, in principle, it is
not recommended to use the ADSA technique to measure any contact angles smaller than
25°. Hence, the surface energy (yn=71.56+0.39 mJ/m’) for the bare glass surface
determined by substituting the measured values of y.v and 8 into Equation (4.26a) may not
be accurate. In fact, unlike the liquid surface energy, the solid surface energy can not be
measured directly. In the literature, Fisher (1948) estimated the solid surface tensions of
several solid surfaces from the other surface tension measurements. The surface tension
of glass was reported to be about 150-300 mJ/m®. However, the exact surface energy of
clean glass is unknown. Thus, in this study, the above surface energy for the bare glass
surface was still used in determining yn from Equation (4.26b). Furthermore, in
conjunction with the other surface energies, such determined yr and yn were then used in
Equation (4.25) to calculate the Hamaker constant Aowr for the oil-pure water-bare glass
fiber system.

A sensitivity analysis was conducted to study the influence of the surface energy yn
on the model predictions. Ifthe surface energy yr. for the bare glass is purposely chosen as
71.56, 100.00, 150.00 and 200.00 mJ/m?, the corresponding Hamaker constants Aour (OT
A\3; in Table 4.8) calculated from Equation (4.25) are found to be 13.07, 14.31, 16.25, and

17.98x10%° J. Accordingly, the dimensionless adhesion numbers A4, = _6All(_3]2'— are equal to

5.35, 5.85, 6.64 and 7.36, respectively. The Hamaker constant A..r or the dimensionless
adhesion number A4 for the oil-pure water-bare glass system increases only by
approximately 38% as the surface energy yr, of the bare glass increases by nearly three
times. The other dimensionless parameters required in the 1-D model (see Chapter 6) are

selected as follows: A=10, DI=+10, Da=0 and t=5. A parametric study with respect to
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Aq (reflecting yr as well) was carried out for the case in which the vdW force becomes an
important driving force in the deposition of oil droplet onto the bare glass surface (see
Figures 6.2a,b for details). The final numerical results of the dimensionless mass transfer
rate Sh are found to be 0.0471, 0.0475, 0.0481 and 0.0486, if A4 is chosen as 5.35, 5.85,
6.64 and 7.36, which corresponds ys=71.56, 100.00, 150.00 and 200.00 mJ/m’ for the bare
glass respectively. The Sh number of the oil-water-glass system increases only by
approximately 3% if the surface energy yn for the bare glass increases by nearly three
times. Therefore, it can be concluded from the above sensitivity analysis that use of the
surface energy of yn=71.56 mJ/m? for the bare glass surface has no appreciable effect on the
final numerical results (i.e. Sh number) of the model predictions.

Silicone oil No. 1 with density of p, = 1050 kg/m’ and viscosity of po = 172.7 mPa s
(Aldrich Chemical Co.) was chosen as the dispersed oil phase in the deposition tests. Its
small density difference from the aqueous phase makes it particularly suitable for this
experimental study. The silicone oil-air surface tension is equal to yov = 26.10 £ 0.14 mJ/m’
at 22°C. The aqueous phases were either the pure deionized ultra-filtered (DIUF) water
(Fisher Scientific, Canada) or other aqueous solutions made with the DIUF water. The pure
DIUF water has a density of puw = 998 kg/m’ and a liquid-air surface tension of vy = 72.66 +
0.31 mJ/m? at 22°C. Moreover, it has an initial conductivity of 1.21x10* S/m and an
equilibrium pH of about 6.5. The interfacial tension for pure water-oil interface is equal to
Yow = 35.31 + 0.44 m¥/m’. In additional to the pure DIUF water, three kinds of aqueous
solutions were tested as follows: the aqueous solutions with different pH values, the
electrolyte solutions at different concentration and the ionic surfactant solutions. The pH
value of the DIUF water solution was adjusted to a desired value with NaOH or HCl. The
aqueous solutions containing electrolytes were prepared by adding one of the following two
typical electrolytes at a different concentration each time into the pure DIUF water: NaCl,
AICl. When making surfactant solutions, two widely used ionic surfactants were used: the
cationic surfactant cetyltrimethylammonium bromide (CTAB) and the anionic surfactant
sodium dodecyl sulphate (SDS). The ionic surfactant solutions were prepared by adding
one of the two ionic surfactants at a different concentration each time into the pure DIUF
water. Usually a period of more than 12 h was given for all the chemicals to be completely
dissociated and uniformly distributed in the aqueous solution.
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At this point, it is worthwhile emphasizing that yuv, yow and yn. are strongly
dependent on the aqueous phase used in the test, although yr, and y,. are the surface tensions
of the fiber surface and the oil phase and are thus independent of the aqueous solution tested.
Hence, for a given fiber-water-oil deposition system, once all the relevant surface energies
required in Equation (4.25) are known, the Hamaker constant for the fiber interacting
with the oil droplet across the aqueous medium A,wr can be calculated directly from the
equation (choosing Do = 0.165 nm, Israelachvili, 1985). Such calculated Hamaker
constants for the bare glass fiber interacting with the silicone oil droplet across different
aqueous media are listed in Table 4.8. Similarly, Table 4.9 gives the Hamaker constant
values for the FC725-precoated glass fiber interacting with the silicone oil droplet across
different aqueous media.

Some important information and tendency can be easily identified from Tables
4.8 and 4.9, which will be useful in correlating the numerical predictions (see Chapter 6)
and the deposition test data (see Chapter 7) to the surface properties of the fiber-water-oil
systems. In additional to the Hamaker constant, a dimensionless parameter is often used

to describe the strength of the vdW interaction and defined as below:

_ Auz

7 6kT

where, A4 is often referred to as the dimensionless adhesion number, where the

4.27)

Boltzmann constant k = 1.381x102* J/k (All the fundamental physical constants are
quoted from Weast et al.,, 1989) and T = 295.15 K. For each Hamaker constant, its
corresponding value of Ay is also listed in Tables 4.8 and 4.9 for reference. First of all, it
is found that the Hamaker constants A,.r for the silicone oil droplet interacting with the
two typical glass fibers across a variety of aqueous media changes from 0.40x10%° J to
13.07x10%° J (Ag = 0.16-5.35). Although the Hamaker constants for the oil-water-fiber
systems studied here can not be found elsewhere, the Hamaker constants for two identical
media (e.g., oil, mica, metals) interacting across another medium (e.g., water) are
available in the literature (Hough and White, 1980; Parsegian and Weiss, 1981;
Israelachvili, 1985). Typically, the Hamaker constants for oils (dodecane and
hexadecane), mica and metals (Ag, Au and Cu) interacting across water are about 0.36-
0.49x10?° J, 2.0x10%° J and 30-40x107%° J, respectively (Israclachvili, 1985). In this
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study, the silicone oil has a surface tension of y,» = 26.10 mJ/m? at 22°C, which is
between the surface tension of dodecane y,, = 25.44 mJ/m’ and that of hexadecane Yov =
27.76 mJ/m? at 22°C (see Table 4.1). It is also estimated that the vdW interaction for
glass fibers interacting across water medium should be slighter stronger than (and closer
to) that for micas but much weaker than that for metals interacting across water phase.
Therefore, the Hamaker constant listed in Tables 4.8 and 4.9 are in a reasonable range as
expected.

In addition, these two tables clearly indicate that the Hamaker constants for the
bare glass fibers given in Table 4.8 are larger than those for the FC725-precoated glass
fibers given in Table 4.9. This is because the bare glass fiber surfaces have higher
surface energy (yn = 71.56 mJ/m? at 22°C) and thus are hydrophilic, while the FC725-
precoated glass fiber surfaces have much lower surface energy (yn = 13.87 mJ/m? at
22°C) and thus are hydrophobic. More specifically, Table 4.8 shows that, for the bare
glass fiber surfaces, their Hamaker constants decrease as the pH value deviates from the
equilibrium value (pH=6.50) of the DIUF water. However, for the FC725-precoated
fiber surfaces, their Hamaker constants decrease almost monotonically from 2.40x107° J
to 0.40x10?° J when the corresponding pH value increases from 2.68 to 10.32. For the
bare glass fiber surfaces, their Hamaker constants slightly increase with addition of
electrolytes such as NaCl or AICl; into the DIUF water. Nevertheless, addition of either
ionic surfactants, CTAB and SDS, will substantially reduce the Hamaker constants for
the bare glass fiber surfaces, regardless of ionic feature of the surfactant added. These
last two patterns are completely reversed for the FC725-precoated fiber surfaces. All
above changes in the Hamaker constants are attributed to the variations of the surface

energies of the fiber-water-oil systems with the liquid properties of the aqueous media,

specifically, Ywv, Yow and Ysw-

4.8 Summary

In order to determine the vdW interaction described in Chapter 3, the Hamaker
constant is related to the surface energies of the deposition system by using the
combining rules. All the surface energies of the liquid-fluid interfaces can be readily

measured by using, for example, the ADSA technique for the pendant drop case.
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Nevertheless, the surface energies of the solid-fluid interfaces can not be measured
directly. The equation of state for interfacial tensions of solid-liquid systems is used to
determine the surface energies of the solid-fluid interfaces from the surface energies of
the liquid-fluid interfaces and the contact angle of the solid-liquid-fluid system. Since the
ADSA can measure the contact angle of any liquid-fluid interfaces formed on a flat solid
surface only, in this chapter, a new contact angle measurement technique is presented to
measure the contact angles on cylindrical fiber surface. The novel method determines the
contact angles by analysis of the capillary profile around a cylinder (ACPAC). There are
two specific application cases, one is by analysis of the capillary rise profile around a
cylinder (ACRPAC) and the other is by analysis of the capillary depression profile
around a cylinder (ACDPAC).

In the ACPAC technique, computer image processing and analysis techniques are
used to obtain the profiles of the cylinder and the liquid-vapour interface around the
cylinder. The contact angle is determined by numerically minimizing the discrepancy
between the physically observed liquid-vapour interface and the theoretical predicted
capillary rise profile, ie., the curve representing a solution of the Laplace equation of
capillarity. The input requirements are the density difference between the liquid and the
vapour phases, the liquid-vapour surface tension and the local gravity. The present
technique has been successfully tested to measure the contact angles of capillary rise profiles
around a constant-diameter or conic cylinder. The measured contact angles agree very well
with those measured by the Wilhelmy plate technique or the ADSA technique for the sessile
drop case, respectively.

In addition, the ACPAC technique for the ACRPAC case can be modified and
extended to measure the contact angle of a liquid-liquid interface by analysis of the capillary
depression profile around a cylinder (ACDPAC). The wettability of several oil-water
interfaces is studied by using the method. For silicone oil and pure DIUF water interfaces,
they have slightly larger contact angles as their interfacial tensions increase. Cationic
surfactant CTAB dissolved in the aqueous phase was tested to have nearly the same wetting
effect as the anionic surfactant SDS if SDS concentration is one order of magnitude higher,
regardless of their different ionic properties. All these results show that the ACPAC

technique is a powerful tool for accurate measurements of contact angles of any liquid-
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liquid interfaces on fiber surfaces. It can be used to measure the contact angles between a
liquid-vapour interface, or a liquid-liquid interface and a constant-diameter or conic
cylinder. It should be pointed out that most natural and artificial fibers encountered in
textile, cosmetic and composite material industries are rough and porous. Their shapes may
deviate considerably from those of constant-diameter cylinders. Thus, the ACPAC methods
will be particularly useful for studying the wetting phenomena associated with a liquid-
vapour interface, or an oil-water interface on these fiber surfaces.

Based on the modern computer digital image processing and analysis techniques, the
ACPAC technique is fully automatic, objective and accurate. This technique is an excellent
alternative tool for accurate measurements of contact angles on fibers. It will be particularly
useful in studies of wetting, spreading and deposition processes of a liquid on fiber surfaces.
It is anticipated that the novel contact angle measurement technique can be used to explore
the effects of other factors on the wettability of various solid-liquid-fluid systems, such as
time, temperature, pressure and humidity, and the other liquid properties. A general user-
oriented computer code for implementing the techniques is now available.

With both the sophisticated ADSA technique and the newly devised ACPAC
technique, all the relevant surface energies can be determined for a fiber-water-oil
deposition system. Therefore, the Hamaker constant for the fiber interacting with the oil
droplet across an aqueous medium A,wr can be calculated from Equation (4.25). Such
determined Hamaker constant depends solely on the surface energies of the fiber-water-
oil system under investigation. In comparison with the values of the Hamaker constants
available in the literature (Israelachvili, 1985), the values of the Hamaker constants given
in Tables 4.8 and 4.9 for the silicone oil droplets interacting with two different fiber
surfaces across various aqueous media are in an expected range. In particular, the
Hamaker constants are found to be about 107 to 10?° J for the high-energy bare glass
fiber surfaces and 102°-10"' J for the low-energy FC725-precoated glass fiber surfaces.
Changes in the Hamaker constants of the fiber-water-oil systems are caused by the
variations of the surface energies of the fiber-water-oil systems, specifically, Yov, Ywvs Yow
¥~ and ys.. It is noticed from Tables 4.8 and 4.9 that the Hamaker constant changes about

by one order for each fiber surface. Hence, it is expected that the vdW force will
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influence the deposition results to an appreciable extent if it is one of the dominant
factors involved in the deposition process.

However, precaution should be taken in attempting to interpret the deposition test
data since both the vdW and the EDL interactions will affect the deposition process. As
will be shown in the next chapter (see Tables 5.3 and 5.4 for details), actually, the EDL
interaction switches its sign (from repulsive to attractive or vice verse) and changes about
two orders (Dl = 103-105) as the aqueous medium changes. Another fact worthwhile
mentioning here is that, from the experimental point of view, it is hardly possible to
purposely and considerably modify the vdW interaction without causing substantial
variation of the EDL interaction. Therefore, it is practically difficult to examine the sole
effect of the vdW interaction in experiments. Nonetheless, it is much easier to greatly
modify the EDL interaction while the vdW interaction remains almost unchanged. As
will be shown in the next chapter, for example, the EDL interaction will vary
significantly and even switch its sign as the electrolyte concentration in an aqueous phase
and its valence are varied. As seen from Tables 4.8 and 4.9, the vdW interaction only
changes to a limited extent when the electrolyte, NaCl or AICl;, is added into the aqueous
medium. Thus the important role of the EDL interaction in deposition tests can be
readily identified.

By going through such lengthy theoretical derivations and experimental
endeavors (see the C-potential measurements in Chapter 5 as well), at this stage, the
effects of the physical properties of the fiber-water-oil system on the vdW interaction can
be quantified. More importantly, it is possible to quantitatively identify the important
role of the vdW interaction that might play in the actual deposition process. After the -
potential values of the fiber-water-oil systems are measured properly and further
discussion on the EDL interaction is elaborated in Chapter S, the joint effects of the vdW
interaction and the EDL interaction on a specific deposition process will be numerically
investigated in Chapter 6. These numerical predictions will be further compared with the
detailed deposition test data in Chapter 7.
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Table 4.1 Contact angles for four n-alkane liquids on the FC72-precoated constant-
diameter cylinders, as measured by the ACPAC technique for the ACRPAC case and the

Wilhelmy plate technique
Solid-Liquid System Yiv(mJ/m?) Owacrac () Bowilheimy ()
FC725-Decane 23.43 58.7+0.4 58.9+0.5
FC725-Dodecane 25.44 63.740.4 63.3+0.5
FC725-Tetradecane 26.55 65.840.5 65.4+0.5
FC725-Hexadecane 27.76 69.8+0.4 69.210.5

Table 4.2 Variation in the contact angle (0) of decane on the FC725-precoated conic

cylinder along its axial direction, with the local values of the radius (R.) and the

inclination angle (B) at the three-phase contact circle

Image no. Rc(mm) B 0%
1 0.1937 86.7 59.5
2 0.1997 85.1 62.4
3 0.2363 82.6 62.5
4 0.2607 82.2 62.0
5 0.3539 70.3 63.2
6 0.4240 68.5 62.3
7 0.4378 67.4 63.6
8 0.8614 70.4 60.0
9 1.0234 88.5 593
10 1.0313 88.7 59.0
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Table 4.3 The line tensions (o) and the contact angles (6.) for four n-alkane liquids on
the FC725-precoated solid surface, as derived from Equation (4.16) by using the contact

Solid-Liquid Tiv c Correl. * | 6, Opred OaDsA
(mJ/m®) | (WI/m) © ) ©)
(R=3 mm) | (R=3 mm)
FC725-Decane 23.43 1.7 085 | 58.5 60.2 59.9
FC725-Dodecane 25.44 2.1 0.87 | 63.6 65.8 66.3
FC725-Tetradecane | 26.55 33 084 | 65.4 68.0 68.2
FC725-Hexadecane | 27.76 3.7 0.83 | 69.5 71.4 71.2

* The Correlation coefficient of the linear curve fitting.

precoated glass fibres, as measured by the ACPAC technique

Table 4.4 Contact angles for two silicone oil and pure DIUF water interfaces on the FC725-

for the ACDPAC case
N po YOV },ow 9] 9
Oil Phase (kg/m®) | (my/md) (my/md) O O
Silicone Qil (A) 862 17.64+0.04 | 39.14+0.35 38.0+04 142.0
Silicone Oil (B) 919 19.13+0.04 | 41.51+041 35.540.3 144.5

111




Chapter 4

Table 4.5 Effect of the cationic surfactant, CT AB, on the contact angles of the silicone oil
(A-type) and the DIUF water interfaces on the FC725-precoated glass fibres

CTAB Concentration Yo Y ow 0, 0
™M) (m/m?) (mJ/m?) © )

10° 36.80+0.18 | 9.21+0.09 45.6+0.3 1344

10° 50001028 | 26.27+0.25 | 41.840.2 138.2

10° 61.94+0.02 | 38.1240.21 | 39.110.2 140.9

0 72.66+0.12 | 39.14+035 | 38.0+0.4 142.0

Table 4.6 Effect of the anionic surfactant, SDS, on the contact angle of the silicone oil (A-

type) and the DIUF water interfaces on the FC725-precoated glass fibres

SDS Concentration ¥ o ¥ ow 6, 6
™M) (mV/m?) (mJ/m?) O ©)

10* 37.96+0.08 | 9.76+0.07 45.7+0.2 1343

10° 60.62+0.29 | 35.70£0.36 | 39.130.2 140.9

10° 71.8540.26 | 39.09+0.28 | 38.9+0.1 141.1

0 72.66+0.12 | 39.14+0.35 | 38.0+0.4 142.0

Table 4.7 Effect of the anionic surfactant, SDS, on the contact angle of the silicone oil (B-

type) and the DIUF water interfaces on the FC725-precoated glass fibres

SDS Concentration Yo ¥ ow 6, (2]
M) (mJ/md) (mJ/m?) ©) O

10” 37.96+0.08 | 11.05+0.11 40.740.1 139.3

10° 60.62+0.29 | 36.30+0.13 36.40.1 143.6

10° 71.85+0.26 | 40.23+0.29 36.240.1 143.8

0 72.66+0.12 | 41.51+0.41 35.5+0.3 144.5
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Table 4.8 Hamaker constants Aowr (Or A,3;) for the silicone oil droplet (phase 1,
Yov=26.10+0.14 mJ/m?) interacting with the bare glass fiber (phase2, ys=71.56+0.39 mJ/m’)

across aqueous solutions (medium 3 with varying surface tensions)

Aqueous Medium Yy Yow 6 Yow A® | AS
(mJ/m?) (mJ/md) O (m¥/m?) | (102 J)
DIUF Water 72.66+0.31 | 35.31+0.44 | 10.1+1.7 0.03 13.07 | 5.35
pH=2.68 68.70+0.12 | 30.75+0.43 | 57.7xl1.1 34.85 995 | 4.07
pH=3.52 70.76+0.10 | 32.8440.52 | 55.8+1.2 | 31.79 | 10.17 | 4.16
pH=4.20 72.40+0.07 | 34.80+0.51 | 56.8+1.0 | 31.92 9.88 | 4.04
pH=6.50 72.66+£0.31 | 35.31+044 | 10.1*1.7 0.03 13.07 | 5.35
pH=7.20 70.78+0.10 | 31.89+0.15 | 40.5+1.4 17.74 | 1221 | 499
pH=8.93 70.43+0.22 | 30.84+0.15 | 42.7+2.1 19.80 | 12.26 | 5.01
pH=10.32 70.1640.23 | 31.03+0.09 | 44.7+1.8 | 21.69 | 11.90 | 4.87
10°M NaCl 71.89+0.37 | 32.69+022 | 62.7+1.9 | 38.59 9.54 | 3.90
10° M NaCl 68.81+0.28 | 30.82+0.07 | 56.2+1.3 | 33.28 10.17 | 4.16
10°M NaCl 66.83+0.34 | 30.60+0.09 | 51.7+1.0 | 30.14 | 1022 | 4.18
10° M NaCl 66.22+0.27 | 30.16+0.20 | 45.8+1.3 | 2540 | 1083 | 4.43
10°M AICh 69.07+0.36 | 32.57+046 | 72.4+2.3 | 50.67 7.05 | 2.88
10° M AICL 68.73+0.25 | 31.6540.18 | 61.0+1.6 | 38.24 949 | 3.88
10° M AICl; 68.20+0.35 | 31.60+0.41 | 61.3+1.6 | 3833 931 | 3.81
10° M AICl; 66.94+0.19 | 31.1240.18 | 47.1+1.2 | 25.99 10.60 | 4.33
10°M CTAB 68.24+0.25 | 31.79+0.41 | 55.5+1.9 | 3291 9.79 | 4.00
10°M CTAB 61.94+0.18 | 30.27+0.24 | 53.1+1.6 | 34.37 866 | 3.54
10° M CTAB 50.00+0.21 | 21.774038 | 53.3+1.3 | 41.68 7.24 | 2.96
10°M CTAB 36.80+0.20 | 6.55+0.13 | 70.8+1.4 | 59.46 4.71 1.92
10°M SDS 72.44+0.10 | 34.81+0.18 | 44.240.7 19.63 11.30 | 4.62
10°M SDS 72.00+0.12 | 34.6510.13 | 44.0+0.6 19.77 11.24 | 4.60
10°M SDS 71.85+0.26 | 31.7440.12 | 51.0+0.7 | 26.34 1041 | 4.26
10° M SDS 60.62+0.29 | 30.46+0.35 | 53.1+1.9 | 35.16 820 | 335
10“M SDS 37.96+0.08 | 6.11+0.15 | 42.840.6 | 43.71 695 | 2.84

* vew is determined from Equation (4.26b) with the measured values of yr, Ywv and 6.
b A3 is determined from Equation (4.25) with all the measured values of the surface
€NErgies, Yovs Ywvs Yow» Y and Ysw, and the chosen value of Dg=0.165 nm (Israelachvili, 1985).

€A = :—'”—w referred to as the dimensionless adhesion number, where the Boltzmann

constant k=1.381x102 J K™ and T=295.15 K.
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Table 4.9 Hamaker constants A.r(or A;32) for the silicone oil droplet (phase 1,

Yov=26.10+0.14 mJ/m?) interacting with the FC725-precoated glass fiber (phase2,
y#=13.8740.51 mJ/m?) across aqueous solutions (medium 3 with varying surface tensions)

Aqueous Medium Yoy Yow 6 Yow A | AsC
(mJ/m?) (mJ/m?) © (mV/m?) | 10%° J)
DIUF Water 72.66+0.31 | 35.314044 | 115609 | 4527 | 2.18 | 0.89
pH=2.68 68.70+0.12 | 30.75+0.43 | 1154405 | 4334 | 240 | 098
pH=3.52 70.76+0.10 | 32.84+0.52 | 1153+1.2 | 44.11 217 [ 089
pH=4.20 72.40+0.07 | 34.80+0.51 | 115.5+0.5 | 4504 | 2.15 | 0.88
pH=6.50 72.66:0.31 | 35.31+0.44 | 115.6:09 | 45.27 2.18 | 089
pH=7.20 70.78+0.10 | 31.89+0.15 | 114.7+1.0 | 4345 1.77 [ 0.72
pH=8.93 70.43+0.22 | 30.84+0.15 | 113.3+04 | 41.73 1.11 | 045
pH=10.32 70.1620.23 | 31.03+0.09 | 113.6+06 | 41.96 | 040 | 0.16
10°M NaCl 71.89+0.37 | 32.69+0.22 | 115.2+0.6 | 44.48 2.10 | 0.86
10° M NaCl 68.81+0.28 | 30.82+0.07 [ 114.8+0.5 | 42.73 1.97 | 0.8l
10° M NaCl 66.83+0.34 | 30.60+0.09 | 114.2+1.2 | 41.27 1.57 | 0.64
10°M NaCl 66.22+0.27 | 30.16£0.20 | 113.5+0.9 | 40.28 0.80 | 0.33
10°M AICL 69.07+0.36 | 32.57+0.46 | 114.6+0.3 | 42.62 1.71 | 0.70
10°M AICl; 68.7340.25 | 31.65+0.18 | 114.4+1.0 [ 42.26 1.60 | 0.65
10°M AICl; 68.20+0.35 | 31.60+0.41 | 114.2+0.8 | 41.83 1.44 | 0.59
10° M AICL 66.9410.19 | 31.12+0.18 | 113.6+0.6 | 4067 | 083 | 0.34
10°M CTAB 68.24+0.25 | 31.79+0.41 | 115.6+09 | 43.36 244 [ 1.00
10°M CTAB 61.94+0.18 | 30.27+0.24 | 109.3+0.8 | 34.34 2.87 1.18
10°M CTAB 50.00+0.21 | 21.77+0.38 | 103.0+0.7 | 25.12 | 432 | 1.77
10°M CTAB 36.8040.20 | 6.55+0.13 | 91.2+0.5 | 14.64 6.70 | 2.74
10°M SDS 72.4440.10 | 34.81+0.18 | 115.8+0.8 | 45.17 222 | 091
10° M SDS 72.0040.12 | 34.65+0.13 | 111.7+0.4 | 40.49 244 | 1.00
10°M SDS 71.8540.26 | 31.74+0.12 | 111.5+1.1 [ 40.20 334 [ 1.14
10°M SDS 60.62+0.29 | 30.46+0.35 | 107.0+0.9 | 31.59 3.51 | 1.43
10°M SDS 37.96:0.08 | 6.1140.15 | 93.6:09 | 16.25 6.50 | 2.66

? Ysw is determined from Equation (4.26b) with the measured values of ys, Yuv and 6.
® A3, is determined from Equation (4.25) with all the measured values of the surface
eNergies, Yov, Ywv, Yow, Yev and e, and the chosen value of Dy=0.165 nm (Israelachvili, 1985).

¢ A, =-gj&is referred to as the dimensionless adhesion number, where the Boltzmann

constant k=1.381x102 J K and T=295.15 K.
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Conic Solid Surface

Liquid

Figure 4.1 Schematic diagram of the capillary rise profile
around a conic cylinder for the ACRPAC case
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Figure 4.2 Experimental set-up used to measure the contact angle using
the ACPAC technique for the ACRPAC case
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Figure 4.3a Digital image of the capillary rise profile of hexadecane
around the FC725-precoated conical cylinder at its tip part
(produced by a laser printer)
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Figure 4.3b Digitized profile of the image shown in Figure 4.3a
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Figure 4.4a Digital image of the capillary rise profile of hexadecane around
the FC725-precoated conical cylinder at its conic part
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Figure 4.4b Digitized profile of the image shown in Figure 4.4a

117



Chapter 4

060 - ssesacg=1.7 uJ/m 6,=58.5° Correi=0.85
copooo g=2.1 ’u,,J/rn 9.”:63-60 Correl=0.87
sesee 0=33 uJ/m 6,=65.4> Correl=0.84

- asasasa g=37 'u,,J/m 9°°=69_5° Correl=0.83

0.50 A Decane

@ - a

)]

O 0.40 - Dodecane

U \
n Tetradecane

0.30 -

Hexadecane

020 T 1 T | T T T T T T T |

-2.0 0.0 2.0 4.0 6.0 8.0 10.0

cosR/Rc (cm™)

Figure 4.5 The line tension () and contact angles (6) derived from Equation (4.16)
using the contact angles measured by the ACPAC technique for the ACRPAC case for
the n-alkane liquids on the FC725-precoated conical glass cylinder
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Figure 4.6 Schematic diagram of a capillary depression oil-water (O/W)
interface around the FC725-precoated glass fiber
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Figure 4.7 Experimental set-up for measuring the contact angle using the ACPAC
technique for the ACDPAC case
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Figure 4.8a (top) Digital image of the capillary depression profile of the silicone oil
(A-type) and the pure DIUF water interface around the FC725-precoated glass fibre
(produced by a laser printer); Figure 4.8b (middle) Digital image of the capillary
“rise” profile of the silicone oil (A-type) and the pure DIUF water interface around
the FC725 coated glass fibre after the video camera was purposely set upside down
(produced by a laser printer); Figure 4.8c (bottom) Digitization of the image
showed in Figure 4.8b
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Chapter §
The {-Potential Measurements of Silicone Oil Droplets and

Fiber Surfaces in Aqueous Solutions

This chapter will focus on measuring the {-potentials of silicone oil droplets and
fiber surfaces, both of which are immersed in a variety of aqueous solutions.
Specifically, from Sections 5.1 through 5.4, an electrical suspension method is developed
to measure the {-potential of small liquid droplets dispersed in another immiscible liquid.
It is then utilized to determine the {-potential of the silicone oil droplets dispersed in various
aqueous solutions. Sections 5.5 through 5.8 will deal with the {-potential measurements
of fiber surfaces in contact with the same kinds of aqueous phases. The conventional
streaming potential technique is used but more attention is focused on understanding and
evaluating the solid surface conductance phenomenon and ultimately correcting its effect
on the measured C-potential. Using the experimental technique, the {-potential values of
two kinds of fiber surfaces are measured when each is in contact with different aqueous
solutions. After the {-potentials of both silicone oil droplets and fiber surfaces in various
aqueous solutions are determined experimentally, three important parameters can be
calculated, which are used to characterize the EDL interaction between the silicone oil

droplets and the fiber surfaces across the aqueous media (see Section 5.9).

5.1 The {-Potential Measurements of Silicone Oil Droplets Dispersed in

Aqueous Solutions

When it is dispersed in an immiscible aqueous solution, a small oil droplet may be
charged and surrounded by the ions of the opposite sign from the solution. The arrangement
of the electric charge on the oil droplet, together with the balancing charge in the solution, is
called the electrical double layer (EDL) of the droplet (Hunter, 1981; Adamson. 1982). The
electric charge residing at the liquid-liquid interface is of great importance in many colloidal
and interfacial phenomena, such as in the studies of interactions between various colloidal

droplets and solid substrates, i.e. deposition phenomena (Adamczyk and van de Ven. 1981b:
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Adamczyk et al., 1983; Alince, 1989; Alince et al., 1991; Alince and van de Ven, 1993.
Jachowicz and Berthiaume, 1989; Berthiaume and Jachowicz, 1991), and the interactions
between the droplets themselves, i.e. liquid droplet coalescence (Okada and Akagi, 1987;
Deshiikan and Papadopoulos, 1995a; 1995b; Sanders et al., 1995). The electric charges on
liquid droplets are directly related to a variety of emulsification, demulsification and micelle
formation processes.

The oil-in-water (O/W) emulsions are encountered in various industrial applications
and commercial products. The electrokinetic properties, especially the electrokinetic or zeta
potential, of the oil droplets dispersed in various aqueous solutions are of fundamental
importance in colloid and interface sciences. The determination of the {-potential has been
a traditional tool for characterizing the surface properties and stability of the colloidal
systems (Hunter, 1981; Jachowicz and Berthiaume, 1989). The C-potential of oil droplets
dispersed in different aqueous phases is an important quantity in a number of technological
processes, such as emulsion flotation, oil agglomeration, emulsification and micelle
formation, demulsification, as well as removal of the dispersed contaminants such as oils
from waste waters. In the past, there have been some attempts to determine the C-potential
of oil droplets dispersed in aqueous phases. ~Among the existing methods, the
electrophoresis (and microelectrophoresis) technique is probably the most widely used
method for colloidal emulsions and suspensions. Specifically, the electrophoresis technique
was successfully used to measure the &-potential of some oil droplets dispersed in different
aqueous solutions (Jachowicz and Berthiaume, 1989; Sanders et al., 1995; Deshiikan and
Papadopoulos, 1995a; 1995b; Stachurski and Michalek, 1996), or in several ionic surfactant
solutions (Bethiaume and Jachowicz, 1991; Stalidis et al, 1990; Avranas and Stalidis,
1991). In particular, it was shown (Bethiaume and Jachowicz, 1991; Stalidis et al., 1990;
Avranas and Stalidis, 1991) that the electrical characteristics on the emulsion droplets can be
easily modified by adsorbing surfactant onto the liquid-liquid interfaces and thus related to
the surfactant adsorption process. Measurements of the {-potential or the electric charge on
the liquid droplets dispersed in ionic surfactant solutions are of practical importance because
the ionic surfactants are extensively used in many industrial processes and commercial

products. Moreover, the adsorption phenomena of cationic and anionic surfactants onto
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emulsion droplets are of special interest because these two surface-active agents are
basically different from each other with regard to their ionic features.

Basically, using the electrophoresis technique, the {-potential of the O/W emulsion
droplets is determined by measuring the electrophoretic mobility of the oil droplets under an
externally applied static electric field according to the Helmholtz-Smoluchowski equation
for spherical droplets (Hunter, 1981). Since the electrophoresis technique is widely used
and well documented in the literature (Hunter, 1981), its principle and technical details will
not be reiterated in this thesis. Several commercial electrophoresis apparatuses are widely
used, such as Rank Brothers (Sanders et al., 1995), Malvern Zetasizer (Sanders et al., 1995)
and Pen Ken Laser Zee Meter (Jachowicz and Berthiaume, 1989; Berthiaume and
Jachowicz, 1991). However, some electrophorometers are too expensive and their
maintenance and operation are a difficult task in some cases. In addition, the electrophoresis
technique requires a complicated procedure to measure the electrophoretic mobilities only at
the so-called "stationary levels” (Hunter, 1981; Stalidis et al., 1990; Avranas and Stalidis,
1991). Furthermore, this technique is also restricted in its applicability by the special
requirements of the dilution of the colloids, the optical properties and size range of the
colloidal particles.

The objective of the present work is to devise a novel and simple experimental
method to directly measure the {-potential of liquid droplets dispersed in another immiscible
liquid. This method is then used to study the effects of varying pH value and the valence
and the concentration of electrolytes on the measured {-potential of the silicone oil droplets
dispersed in a variety of aqueous solutions (Gu and Li, 1997b; 1998c). Using this new
experimental technique, the contribution of the ionic surfactants to the measured {-potential
is also investigated (Gu and Li, 1998c; 1998d). These factors are anticipated to influence

not only the magnitude but also the polarity of the C-potential.

5.2 Electrical Suspension Method

5.2.1 Principle
When an oil phase with a density greater than the continuous phase is dispersed in
an aqueous solution, the oil droplets will move downward. The small oil droplets will soon

reach the so-called terminal velocities if only the gravity force, the buoyancy force, and the
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viscous drag force act on them. However, it has been observed in numerous experiments for
a long time that such dispersed oil droplets may be charged and thus surrounded by the ions
of opposite sign from the aqueous solution. The arrangement of the electric charge on the
oil droplet together with the balancing charge in the continuous phase is often referred to as
the electrical double layer (EDL). Because of the presence of the EDL around an oil
droplet, the above forces may be balanced by applying an electrical force on the oil droplet.
This electrical force can be produced by an externally imposed electric field. Thus the
motion of the oil droplet may be stopped with the droplet ultimately suspended in the
aqueous phase. The C-potential of the oil droplet can be determined by using such an
electrical suspension method since the electrical force is directly related to the C-potential.
An oil droplet moving at its terminal velocity in an aqueous solution can be
gradually slowed down and eventually kept stationary by applying a suitable electric field.
The polarity and the strength of the electric field depend on the polarity and the magnitude,
respectively, of the {-potential of the oil droplet. While the oil droplet is held in such a
stationary state, the viscous drag force vanishes and all the remaining forces acting on it
must be balanced, i.e.
F,—F, =F, é.D

g

4 4
where, F, = §m3 p.g is the gravitational force and F, = ;na’ p.g is the buoyancy force,

since the small stationary oil droplet can be justifiably assumed to be spherical (Panton,
1984), a is the radius of the oil droplet, p, is the density of the oil phase and pw is the density
of the aqueous phase, and g is the gravitational acceleration. F. is the electrical force on the
oil droplet produced by the externally applied electric field, which can be related to the to-
be-determined C-potential as follows (Babchin et al., 1989; Sawatzky and Babchin, 1993):

F, = 4nas £CEf (xa) (52)
where, ¢, is the relative dielectric permittivity or the dimensionless dielectric constant of the
aqueous solution and ¢, is the dielectric permittivity of free space,  is the zeta or

electrokinetic potential. In Equation (5.2), E=AV)/ is the static uniform electric field
strength, and here AV, is the electrical voltage applied across two electrodes and [ is

separation distance between the electrodes. As defined in Equation (3.32), x is the Debye-
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Hickel constant, which characterizes the extent of the EDL and mainly depends on the ionic
properties of the aqueous phase. The reciprocal of this constant, k", represents the EDL
thickness. The function f,(xa) required in the above equation is the well-known Henry
function or the Henry correction factor. It takes account of the well-known electrophoretic
retardation effect and typical values of the Henry function of f,(xa) as a function of xka can
be found in the literature (Hunter, 1981), which are listed in Table 5.1 for quick reference.
By substituting F; and F, as well as F. in Equation (5.2) into Equation (5.1), the {-potential

can be expressed as

2
a’Apg (5.3)

¢= 3¢,,(AV, /1) f,(xa)

where, Ap=pq-pw, the density difference between the oil and the aqueous phases. In this
study, the average size of dispersed oil droplets is about a=10 um, i.e. xa »1. Since the EDL
is much thinner than the size of the oil droplets (Hunter, 1981), i.e. xu~wo, the Henry

function f,(xa) approaches %(see Table S.1). In this case, an approximation expression of
the C-potential can be obtained by replacing the Henry function f,(xa) in Equation (5.3)
3
ith —:
b

2
‘= 2a°Apg (5.4)
9¢,.&,(AV, /1)

It should be noted at this point that Equation (5.4) is valid for almost all the aqueous
solutions tested in this work, except for the pure DIUF water. When the pure water is used
as a dispersing medium, the thickness of the EDL, k', may be as large as approximately 1.0
pum at 25°C (Hunter, 1981; also see Table 5.3 or 5.4). Accordingly, values of ka range
approximately from 10 to 20 as the sizes (radius a) of oil droplets changes from 10 to 20
um. In this case, Table 5.1 should be referred to find a value of the Henry function of
f,(xa) for each oil droplet, i.e. each ka where x'=1.0 um. Thus Equation (5.3) should be

used to determine the {-potential of the silicone oil droplets dispersed in the pure water.
To calculate the C-potential from either Equation (5.3) for any value of xa or

Equation (5.4) for the case of xa »1, only the values of a and AV, for each oil droplet have
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to be measured directly and individually since the other parameters in the equations are
known. Therefore, in practice, it is much easier to implement the electrical suspension
method. Nevertheless, prior to proceeding to the thorough descriptions of the experimental
conditions and the detailed discussion on the experimental results, it is essential at this point
to carefully examine several well-known effects that may be involved in this experimental
study. Some precautions have to be taken in order to minimize or, ideally, to eliminate their
possible influence on the measured results of C-potential. Several relevant effects will be

addressed in detail in the following paragraphs.

5.2.2 Electroosmetic Effects

The electroosmotic effect has long been recognized and extensively discussed by a
number of researchers (Hunter, 1981; Graciaa et al., 1995; Sirois and Millar, 1973; Collins
et al., 1978; Okada and Akagi, 1987). There might be two kinds of the electroosmotic flows
involved in the present electrical suspension method, one is at the walls of glass cell in
which the O/W emulsion is held and the other is around each O/W emulsion droplet.

Physically, the origin of the electroosmotic flux is due to the surface charge at any
glass fiber-water interface and the EDL in the aqueous phase immediately adjacent to the
interface. The electroosmosis occurs near the walls of glass beaker whenever an electric
field is applied. It has been reported that the electroosmotic effect may have substantial
influence on the {-potential of air bubbles obtained from the electrophoretic mobility
measurements. For example, some authors even showed that failure to take account of the
effect could affect not only the magnitude, but also the polarity of the (-potential of air
bubbles inferred from the measurements of the spinning tube electrophorometer (Bach and
Gilman, 1938; Gilman and Bach, 1938). Nevertheless, the electroosmosis has not been
addressed in most electrophoretic mobility measurements of the O/W emulsion droplets.
This is probably because the O/W emulsion droplets have much greater inertia than the air
bubbles and thus the electroosmotic effect on their motions is not appreciable.

Technically, the electroosmotic flux may be minimized or eliminated either by
neutralizing the surface charge of the test cell or by creating a highly viscous layer that
impedes the aqueous motion in the region near the cell walls. For instance, coating an

appropriate polymeric material on the solid surface has been proven to be a promising

126



Zeta-Potential Measurements

approach as described by Graciaa et al. (1995). In the experiment, measuring the
electrophoretic mobility only at the so-called "stationary levels", i.e. there is no bulk flow at
these positions, is another widely used effective method to get rid of the effect (Hunter,
1981).  Recently, this method has been successfully employed to measure the
electrophoretic mobility of both hydrocarbon oil droplets and small air bubbles (Stalidis et
al., 1990; Avranas and Stalidis, 1991; Collins et al., 1978; Okada and Akagi, 1987; Bowen,
1981). For a narrow rectangular capillary of the size from 10 to 1000 um, the stationary

levels occur at (Hunter, 1981):

z=% WTé (5.5)
where, z is the distance from the symmetric centre in width direction and W is the width of
the rectangular cell. Consequently, the influence of the electroosmotic flux at the stationary
levels can be avoided. In this study, a wide rectangular glass cell was made intentionally not
only for optical consideration but also for considerable reduction of the possible
electroosmotic effect. The results of this work did not show any significant variation as long
as the observation of the oil droplet was made in the range from z=-W/4 to z=+W/4. The
rectangular cell used in this work is so wide (W=30 mm) that only in the thin boundary
layers near the cell walls might the electroosmotic effect become relatively appreciable
(Doren et al, 1989). In addition, there are some practical measures to prevent the
occurrence of the fully developed strong electroosmosis, for instance, by reasonably
reducing the strength and the duration of the applied electric field and/or limiting the ionic
concentration and/or narrowing down the separation distance between the two electrodes.

On the other hand, it has been realized that the ions constituting the EDL around a
charged oil droplet will move under the influence of an externally applied electric filed, even
when the droplet itself is in a stationary state. There is an electroosmotic flow in the vicinity
of the oil droplet. Such flow will exert a viscous drag force on the stationary droplet and
thus affect its force balance condition represented by Equation (5.1). Its effect can be
estimated by comparing the viscous drag force, Fs=6mapwveo, With the total body force

expressed in Equation (5.1), Fg-Fy:
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F:l - 6ml‘lu vto
F,—-F, 4
3

where, uw is the viscosity of the aqueous solution and v, is the electroosmotic velocity

(5-6)
na’Apg

around the oil droplet. v, can be calculated from the well-known Smoluchowski equation
for the electrophoretic mobility (Hunter, 1981),

vfo - sreog (5 7)
E, pu, )

AV,
Here, E, = I L . Substituting Equation (5.7) into Equation (5.6) and rewriting it yields:

F,  9¢(FE (5.8)

F,—F, 2a°Apg

In the measurements, the typical values are E=AVy! <1000 V/m for the applied electric
field, and a=10 um for the droplet radius. If the (maximum) C-potential of the oil droplets is
assumed to be about +100 mV, Equation (5.8) indicates that the largest influence of the
electroosmotic flow on the force balance of the stationary droplet is less than 8%. As will
be shown later on, this error is well within the overall measurement error (15%) of the C-

potential determined from either Equation (5.3) or Equation (5.4).

5.2.3 Thermally Driven Convection Effect

Another potential problem arises from thermally driven convection current inside the
test cell (Graciaa et al., 1995; Sirois and Millar, 1973; Collins, et al., 1978; Okada and
Akagi, 1987). Because only a weak illuminating beam is required for the present apparatus,
the heat transfer from the light source was sufficiently blocked by using an infrared filter
before the light enters the cell. On the other hand, more attention was focused on effectively
controlling the primary Ohmic heating due to the applied electric field between the two
electrodes. The temperature increase caused by the Ohmic heating is evaluated as follows.

Considering the aqueous solution between the two parallel electrodes inside the test
cell and neglecting the oil phase since its concentration is only 0.25% (v/v) in the
experiments, the resistance of the aqueous phase, R, can be determined from the following

equation:
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=—— 5.9)

where, A is the cross-sectional area of the two electrodes; | is their separation distance and ¢
is the conductivity of the aqueous phase, which is measured in siemens (Q' m" or S/m).
The conductivity, the reciprocal of resistivity, is a bulk property of the aqueous phase
mainly depending on the concentration and the valence of the electrolyte used. For a given
electrolyte at a specified concentration, the conductivity can be related to the equivalent or
molar conductivity, A, measured in m? S/mole:

o =1000cA (5.10)
where, ¢ is the mole concentration of the electrolyte in mole I'' or M and A can be easily
found in some handbooks (Weast et al., 1989). The Ohmic heating per unit time, Q (J/s),
generated by the applied potential voltage, AV, across the two electrodes, is equal to:

(Av,)’
= 5.11
Q0 R (5.11)
When Equations (5.9) and (5.10) are substituted into Equation (5.11), it becomes
0=1000 £’ c 24! (5.12)

where, E=AVy/l is the electric field. If the electric field is imposed for At seconds and the

heat dissipation through the walls of the test cell is neglected, then the energy balance

equation for the aqueous phase between the two electrodes can be written as
OAr=4186.8AT C. p, Al (5.13)

where, AT (°C) is the temperature increase of the aqueous solution; C. (kcalkg/°C) is its
specific heat capacity and 4186.8 is the conversion factor between kcal and Joule. Bringing
Equation (5.12) into Equation (5.13) and rewriting it yields

E’cAt _ E’ cAAt

- (5.14)
41868C,p. 4.1868C.p..

Equation (5.14) shows that the temperature increase is proportional to the concentration of
the electrolyte in the aqueous solution if the other parameters are held constant.

By choosing the following approximate values for the other parameters in Equation
(5.14), E=1000 V/m, At=10 s, and C,=1.0 kcal’kg/°C and p,~=998 kg/m3 for the DIUF water,

the variations of the temperature increase are then estimated with the concentration of
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electrolyte NaCl from 10 to 10" M and listed in Table 5.2. It can be concluded from the
preliminary calculations that the Ohmic heating and consequently produced thermal
convection are negligible in this study, provided that the concentration of the electrolyte
added to the aqueous emulsion is kept below some critical upper level, for example, 10° M
for NaCl. Hence, no higher ionic concentrations of any electrolyte than 10* M were tested

in this study.

5.2.4 Electrode Polarization Effect

The effect of electrode polarization was also considered. It can alter the applied
electric field to some extent after many ions accumulate on the corresponding electrode of
opposite polarity. In order to minimize the electrode polarization influence, it has been
recommended to reverse the current flow by switching the polarity of the electric field after
each measurement (Hunter, 1981; Stalidis et al., 1990; Avranas and Stalidis, 1991). This

procedure was followed in the present work.

5.2.5 Overall Measurement Error Analysis
An error analysis of the {-potential measured by the electrical suspension method

is given as bellow. Equation (5.3) or Equation (5.4) for determining the C-potential can

be simply written as
a’l
=C (5.15)
¢ AV,
where, C = ——%—-for Equation (5.3) and C = 28pg for Equation (5.4), which can be
3¢,&, f,(ka) 9¢,£,

assumed to be constant in experiment. Taking the logarithmic operation on Equation (5.15)
and then differentiating the resultant equation yields

a¢ _,da  dl _d(Av,) (5.16)

¢ a | Ay,
From the above relation, the overall error of the present measurements can be expressed as

ﬂ_ i‘_z ﬂz d(AV,) 7
< fody -y @, a1
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As will be discussed in the experimental part, the overall accuracy of determining the oil
droplet size (a=10~20 um) with the present optical system is around da=0.5 pm and the
separation distance between the two parallel electrode plates was always set at =10.0 mm
with a resolution of d/=0.1 mm. In addition, the practical error of the applied voltage across
the two electrodes, AV,, was estimated to be d(AV)=0.1 V, though it could be read to 0.01
V. Choosing typical values as a=10.0 pm and AV,=5.0 V and bringing all the above values

into Equation (5.17), the relative error of the measured {-potential can be approximated as

d¢
= =10% (5.18)
4

Therefore, using the present experimental technique and apparatus, the overall error of the
C-potential determined from either Equation (5.3) or Equation (5.4) with the measured a, /
and AV, is less than 15%, an acceptable error for the C-potential measurements.

In summary, all the above mentioned effects can be minimized by properly reducing
the strength and the duration of the applied electric field and/or limiting the ionic
concentration of the aqueous solutions. It should be pointed out that there are some practical
limitations in applying the electrical suspension method to measure the C-potential of oil
droplets.  First, in order to reduce the three effects, especially the thermally driven
convection inside the test cell, only those more strongly charged smaller oil droplets with
less density difference from the aqueous phase can be studied by this method. They can be
more readily stopped and suspended in the aqueous solution by applying a lower electric
field in a shorter period. On the other hand, the oil droplets should be relatively large in
order to measure their sizes accurately using the present optical system. Consequently, the
oil droplet sizes should be within an appropriate range. In this study, the oil droplets whose
sizes range approximately from 10 to 20 um in radius are examined. This is not a concern
in this work because the measured -potentials of the oil droplets did not show observable
size dependence. Secondly, the ionic concentration of the aqueous solutions should be
limited to below certain upper level for the same reason. Hence, in these tests, no electrolyte
concentration higher than 10~ M or surfactant concentration higher than its critical micelle

concentration (CMC) was tested.
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5.3 Experimental Aspects of the {-Potential Measurements of Silicone

QOil Droplets Dispersed in Aqueous Solutions

5.3.1 Apparatus

A schematic diagram of the experimental apparatus is shown in Figure 5.1. In the
set-up, a rectangular glass test beaker is placed between a light source and a microscope.
The light source and the microscope system mounted with the video camera are same as
those described in details in Section 4.3. The internal dimensions of the rectangular glass
test cell are SO(L)x30(W)x80(H) mm, which can hold about 100 m/ solution. Inside the cell,
two copper electrode plates were aligned horizontally and their separation distance was set
at 10.00 mm for all the experiments. These two electrodes were connected to a DC
constant-voltage power supply (Harrison 6209B, Hewlett-Packard) to apply an external
electric field on the oil droplets between them. A polarity switch was also added to the
circuit for alternating the polarity of the electric field promptly. The applied voltage
between the two electrodes was displayed on a digital multimeter.

5.3.2 Preparation of the Silicone Qil-in-Water Emulsions

Silicone oil No. 1 with density of p,=1050 l(g/m3 and viscosity of u;=172.7 mPa s
(Aldrich Chemical Co.) was chosen as the dispersed oil phase in making all the O/W
emulsions. Its small density difference from the aqueous phase makes it particularly
suitable for this experimental study. The pure DIUF water (p.,=998 kg/m’) has an initial
conductivity of 1.21x10™ S/m and an equilibrium pH of about 6.5.

The four kinds of aqueous phases used in this study are the same as those tested for
determining the Hamaker constants (Tables 4.8 and 4.9): the pure DIUF water (Fisher
Scientific, Canada); the aqueous phases with different pH values; the electrolyte solutions
containing either NaCl or AICI; and the ionic surfactant solutions containing either CTAB
or SDS. The pH value of the DIUF water phase was adjusted to a desired value by adding
either NaOH or HCl into the pure DIUF water. The electrolyte solutions were prepared by
adding either NaCl or AIC]; at a different concentration (from 10° M to 10 M) each time
into the pure DIUF water. Two typical ionic surfactants were used to make surfactant

solutions: the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the anionic
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surfactant sodium dodecyl sulphate (SDS). Their critical micelle concentrations (CMC) in
water determined from their surface tension-concentration curves were reported to be about
9.2x10* M for CTAB (Czemiawski, 1966) and 8.1x10> M for SDS at 25°C (Stalidis et al.,
1990). The ionic surfactant solutions were prepared by adding one of the two ionic
surfactants at a different concentration (from 10° M to 10° M for CTAB or from 10° M to
102 M for SDS) each time into the pure DIUF water. Usually a period of more than 12 h
was given for these chemicals to be completely dissociated and uniformly distributed in the
aqueous phase.

After each aqueous solution was prepared, the general procedure for making each
silicone O/W emulsion is as follows. All the silicone O/W emulsions were made by
suspending 0.25% (v/v) silicone oil in the aqueous solutions. A sample of 0.5 m! silicone oil
was added into a beaker with 200 m!/ prepared aqueous solution while a stirrer (Caframo
RZR1, Canada) was stirring. The silicone oil was dispersed and then gradually the O/W
emulsion was formed. Stirring was continued for 20 min after addition of the silicone oil.
The O/W emulsion was aged for at least 2 h so that the possible selective adsorption of the
dissociated ions in the aqueous solution onto the oil-water interfaces could reach an
equilibrium state, as has been indicated by other researchers (Shinoda et al.,, 1963; Ives,
1984; Saulnier et al., 1996). It is this type of selective ionic adsorption that was believed to
cause the gathering of the excessive electric charge on the oil droplets dispersed in the
aqueous solutions (Stachurski and Michalek, 1996). The strength of such excessive electric
charge can be represented by the C-potential. No noticeable changes in the measured C-
potentials were observed for a longer ageing. Finally, the aged O/W emulsion was gently
poured into the test cell for the C-potential measurements. Generally, the silicone O/W

emulsion in the cell was unstable and the emulsion droplets sank down slowly.

5.3.3 Experimental Procedure

With the experimental apparatus as illustrated in Figure 5.1, the experiment for each
kind of the O/W emulsion was carefully conducted according to the following procedure.
First, the rectangular test cell was positioned vertically. The lower electrode plate was
placed horizontally on an insulated supporting stage. After the cell was filled with

approximate 100 m/ O/W emulsion and placed between the light source and the microscope,
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the position of the upper electrode was adjusted. The upper electrode plate was mounted on
a translation stage, which could be moved vertically with a resolution of 0.1 mm. The
separation distance between the two parallel electrodes was adjusted to and fixed at 10.0 mm
at all times. The two electrodes were connected to a circuit that consists of a power supply,
a polanty switch and a digital voltage meter. A certain period was allowed for the oil
droplets between the two electrodes to move at their terminal velocities before the actual
observation began. Using the set-up, motions of oil droplets can be observed in situ.

The microscope and camera were focused on a vertical plane near the symmetric
centre of the cell and the computer imaging system was prepared to display and capture the
digital images of oil droplets. For an arbitrarily chosen oil droplet moving at its terminal
velocity, it was gradually slowed down and finally completely stopped by imposing a
suitable electric field. Once the oil droplet was maintained in the stationary state and its
image was focused, the instantaneous digital image was acquired and stored automatically in
the computer memory. Meanwhile, the digital reading of the applied voltage, AV, across
the two parallel electrodes was recorded. The practical error of the applied voltage was
approximated 0.10 V, though it could be read to 0.01 V. The process from initially applying
the electric field and adjusting the voltage to completely stopping the droplet usually took
less than 10 s. The power supply was turned off immediately after each observation. It was
then turned on but with the opposite polarity for 5-10 s to minimize the electrode
polarization and turned off again. For each experiment, the above procedure was repeated
for other nine oil droplets dispersed in the same aqueous solution. The entire experimental
set-up was placed on a vibration-free table and all the measurements were carried out at
22°C.

The stored droplet images can be processed and analyzed later on to determine the
sizes of the droplets. The basic aspects of the digital image acquisition process and more
experimental details about the computer digital image techniques can be found in Section
4.3 and in the papers published by Neumann and co-workers (Rotenberg et al., 1983;
Cheng et al., 1990; Li et al., 1992). For each digital droplet image, a standard grid image
was used to calibrate the image and correct possible optical distortion. A special computer
digital image processing and analysis program was then executed to digitize the droplet

image. The output of the program are two sets of discrete coordinates, x and y in mm, of the
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perimeter of the oil droplet. The overall accuracy of the digitized perimeter is around 0.5
um, at 40x magnification with an additional magnifying phototube. The mean value of the
droplet radius, a, is determined from the digitized peripheral coordinates. Thus, choosing
I=10.0 mm, a=10.0 um and AV,=5.0 V and using their corresponding uncertainties, the

overall measurement error of the (-potential was estimated to be less than 15% using

Equation (5.17).

5.4 Experimental Resuits and Discussion

During emulsification of the oil phase in an aqueous phase, the silicone oil (No. 1)
droplets acquired their electrostatic charges through an emulsification process. During the
process, the silicone oil was stirred, broken up into droplets and ultimately dispersed in an
aqueous solution. The distribution of the electric charge on an oii droplet together with the
balancing charge in the adjacent continuous phase forms the electrical double layer (EDL),
which can be best characterized by its thickness, k', and its strength, the C-potential. The
measured C-potential strongly depends on the ionic properties of the aqueous solutions.

In general, several charging mechanisms are responsible for the charge of the oil
droplets in the O/W emulsions (Gu and Li, 1997b). Thus the {-potential of each oil droplet
may also depend on the actual process in which the droplet is formed. But the mean value
of the measured {-potentials over multiple droplets dispersed in the same aqueous solution
should be correlated to the oil and the aqueous properties of the O/W emulsion, provided
that the proposed electrical suspension method functions properly. Therefore, only the
mean value of the {-potential calculated by averaging over ten observed oil droplets
dispersed in the same aqueous solution will be mentioned hereafter.

In this paper, silicone oil No. 1 was used as the oil phase for making all the O/W
emulsions. All the aqueous solutions were prepared from the pure DIUF water. The ionic
properties of the aqueous phase were changed by varying its pH value, the valence and the
concentration of electrolyte, as well as the ionic feature and the concentration of ionic
surfactant, respectively. The sizes of the observed silicone oil droplets were approximately
10-20 um in radius. Usually, the applied voltages were approximately 5 V, i.e., Ex500 V/m,

depending on the (-potential and the size of the oil droplets under observation.
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Nevertheless, there was no observable dependence of the measured C-potential values on the
droplet sizes. The mean C-potential of the silicone oil droplets dispersed in the pure DIUF
water was also measured and used as a reference value. The detailed effects of the pH
values, the two typical electrolytes and the two ionic surfactants on the measured C-potential
of the O/W emulsion droplets will be discussed in the following sections.

5.4.1 pH Effect
The pH value was altered from 3.0 to 10.0 by adding standard dilute solutions of

either HCl or NaOH into the pure DIUF water. The mean values of the measured (-
potentials of the silicone oil droplets dispersed in the aqueous phases with various pH values
are shown in Figure 5.2. Adding HCI into the pure DIUF water to lower the pH values
exponentially increases the concentration of H' ions in the aqueous phase. The selective
adsorption of H® ions onto the oil-water interfaces gradually counteracts and then
completely neutralizes the negative {-potential. At lower pH values, H™ ions become the
potential-determining ions (p.d.i). Further lowering the pH value leads to the diminishing C-
potential and even the positive {-potential. As seen from Figure 5.2, the point of zero zeta
(pzz) is near pH=4.5, which is located slightly in the acid side. If the anionic adsorption of
CI' ions onto the O/W interfaces is neglected, the pzz can also be referred to as the
isoelectric point (iep) in the present case (Jachowicz and Berthiaume, 1989; Noh and
Schwarz, 1989). The pzz or iep is same as the point of zero charge (pzc) determined for the
same O/W emulsion system (Gu and Li, 1997b), and very close to the published pzz=5.0 for
mineral oil-in-water emulsion droplets (Sanders et al., 1995).

At higher pH values, on the other hand, OH" ions become the p.d.i. Their adsorption
onto the oil-water interfaces results in stronger negative {-potential of the oil droplets. As
shown in Figure 5.2, the {-potential monotonously decreases from +27.7 to —58.3 mV as the
pH value increases from 2.68 to 10.32. The (-potential of the silicone oil droplets dispersed
in the pure DIUF water (pH=6.5) was measured to be —35.5+2.9 mV, between the above
two extremes. In comparison with CI" ions at lower pHs or Na' ions at higher pHs, H or
OH’ ions are much more strongly adsorbed in the region near the oil-water interface such

that they determine the C-potential of the dispersed droplets in each case. Similar variations
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of the {-potential with the pH value were also observed for other O/W emulsion droplets
(Sanders et al., 1995; Deshiikan and Papadopoulos, 1995) and even solid-in-water
suspension particles (Hamieh and Siffert, 1994; Chorom and Rengasamy, 1995).

5.4.2 Electrolyte Effects

The variations of the measured (-potential with the mole concentration of the
following two typical electrolytes, NaCl and AICl; from 10° to 107 M are plotted in Figure
5.3. Some common trends for these two electrolytes can be readily found. First, at 10° M,
the {-potential values are close to the value for the pure DIUF water. At this concentration,
these two electrolytes have no significant effects on the C-potential. Second, the silicone oil
droplets acquire their strongest {-potentials near the concentration of 10° M for either
electrolyte, though one (-potential is negative and the other is positive. At electrolyte
concentrations higher than 10° M, however, the absolute value of the g-potential gradually
becomes smaller. A similar tendency was observed for other O/W emulsion systems
(Dittgen and Zosel, 1991). This phenomenon may be explained as follows. In general, the
silicone oil droplets dispersed in very clean pure water such as the pure DIUF water are only
charged to a limited extent because of fewer dissociated ions in the dispersing phase. With
addition of an electrolyte, the C-potential becomes stronger. At even higher concentrations,
however, addition of more electrolyte will considerably reduce the {-potential because of
the more compressed (thinner) EDL. As a result, the strongest {-potential is achieved only
when an appropriate amount of electrolyte, say 10° M, is added.

Furthermore, Figure 5.3 indicates that all the C-potential values for NaCl are small
and negative in the concentration range of 10%-10° M. However, the zeta reversal occurs
near 10°-10° M for AICL. The positive {-potentials for the multivalent electrolyte result
from the well-known strong selective adsorption of trivalent cations AI’" onto the oil-water
interfaces. The multivalent cations are more strongly adsorbed onto the oil-water interfaces,
and thus their effects on the -potential are more pronounced than the mono-valent cations
Na’. Therefore, it can be concluded that the C-potential depends not only on the

concentrations but also on the ionic valences of the electrolyte used.
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5.4.3 Effects of Ionic Surfactants

In the experiments with the ionic surfactant solutions, it is found that the adsorption
of the ionic surfactants CTAB and SDS onto the silicone oil-in-water emulsion droplets
strongly affects the C-potential. Figure 5.4 gives the measured results at different
concentrations of CTAB (10°-107 M) and SDS (10%-10> M). At 10° M, the measured ¢-
potential values are close to that for the pure DIUF water. It is seen from Figure 5.4 that the
point of zeta reversal (pzr) occurs at a CTAB concentration of around about 3x10° M. This
concentration is very close to the concentration found for another cationic surfactant,
cetyldimethylbenzylammonium chioride (CDBACI), at 4x10° M (Avranas and Stalidis,
1991). During the {-potential measurements, it was noticed that, near the pzr, the silicone
O/W emulsion was extremely unstable and that quick droplet coalescence was observed.
Since a high electric filed is required to suspend a very weakly charged oil droplet and, thus,
the thermal convection generated by the electric filed may become appreciable, no attempt
was made to measure the accurate pzr for CTAB in this study. When the CTAB
concentration is increased from the pzr, the measured (-potential becomes positive and
increases quickly. The variations of the {-potential with CTAB concentration are caused by
the well-known cationic adsorption. CTA" ions are the p.d.i in this case. Further increase of
the CTAB concentration causes the {-potential to increase slowly and, finally, to reach its
maximum value near +83.146.9 mV between 10* to 10° M. The saturation of cationic
adsorption is considered to occur between the two concentrations. Since its CMC is about
9.2x10* M (Czerniawski, 1966), no CTAB concentrations higher than 10° M were tested.
Avranas and Stalidis (1991) found a similar saturation pattern for the {-potential versus
concentration of CDBACI using the electrophoresis technique. In their case, the CDBA’
ions are considered to be the p.d.i and the limiting -potential approaches approximately
+55 mV at the surfactant concentration of about 6x10™ M, insensitive to the three oil phases
they tested.

Variations of the {-potential with log concentration of SDS from 10° to 10° M are
also shown in Figure 5.4. As expected, the C-potential becomes more negative if more SDS
is added into the aqueous solution. C;;H,sSO;" ions of SDS are the p.d.i, and their
adsorption onto the oil-water interfaces results in the change of the {-potential with the SDS
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concentration. In the literature, the {-potential of silicone O/W emulsion droplets was
reported to be negative when the emulsions were made with a similar anionic surfactant,
sodium octadecyl sulphate (SODS), at 2.8x10? M (Berthiaume and Jachowicz, 1991). The
¢-potential of heavy oil droplets (B-type) dispersed in 10* M SDS solution was also found
to be negative (Okada and Akagi, 1987). On further increase of the SDS concentration, the
anionic adsorption process continues until a maximum negative C-potential of —58.4+ 5.6
mV is attained at 10° ~ 107 M. The saturation state of the anionic adsorption is considered
to be achieved between these two concentrations. Therefore, the curve for SDS shown in
Figure 5.4 has an extended S-shape. Since the CMC of SDS at 25°C was determined to be
around 8.1x10” M (Stalidis et al., 1990), the {-potential measurements were not continued
for the aqueous solutions containing SDS concentrations higher than 102 M. Stalidis et al.
(1990) identified a similar trend for the {-potential of three oil phases dispersed in the SDS
solutions, again by using the electrophoresis technique. They found the limiting C-potential
of approximately —60 mV at the SDS concentration of about 8x10™ M, also insensitive to
the three oil phases they tested.

All the measured results of the {-potential of the silicone oil droplets dispersed in the
CTAB or SDS solutions show that these two ionic surfactants can change not only the
magnitude of the {-potential to a great extent, but also its polarity. Furthermore, these two
surfactants not only differ from each other with respect to their ionic properties but have
rather different abilities to adsorb onto the oil-water interfaces as well. It is their different
activities in the aqueous phase that determine their abilities to influence the C-potential of

the silicone O/W emulsion droplets.

5.4.4 Summary
In the previous sections, an electrical suspension method has been presented and

applied to measure the C-potential of silicone oil (No. 1) droplets dispersed in various
aqueous solutions. The aqueous properties are altered by varying pH values, electrolytes,
and ionic surfactants. The point of zero zeta (pzz) for the silicone oil droplets is found to be
about pH=4.5. The measured results have shown that the {-potential depends on both the

concentration and the ionic valence of the electrolyte dissolved in the aqueous phase. The
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experimental data also indicate that two widely used ionic surfactants, CTAB and SDS, can
significantly change the C-potential. The point of zeta reversal (pzr) for CTAB is
determined to be around 3x10® M. When the surfactant concentration approaches the
critical micelle concentration (CMC) of each surfactant, the saturation state of the selective
ionic adsorption is reached for either surfactant, as evidenced by the limiting C-potentials.
All the measured C-potential values for the two ionic surfactant solutions are in an excellent
agreement with those for similar O/W emulsion droplets measured by Stalidis and co-
workers (Stalidis et al., 1990; Avranas and Stalidis, 1991) using the electrophoresis
technique. The measured values of the {-potential have been plotted in Figure 5.2 for
various pHs, Figure 5.3 for varying electrolytes, and Figure 5.4 for the ionic surfactant
solutions, respectively. Table 5.3 or 5.4 also summarizes all the detailed values of the C-
potential (£;) of the silicone oil droplets dispersed in various aqueous solutions for
convenient reference. In Section 5.9, these measured {-potentials (G;) will be directly used
to determine the dimensionless EDL parameter DI and the dimensionless EDL asymmetry
parameter Da defined in Equations (3.37a) and (3.37b) in Section 3.8.

The electrical suspension method developed in this study is an excellent alternative
tool to the existing electrophoresis technique for measuring the C-potential. In practice, it is
much simpler and easier to implement. It is particularly suitable for measuring the C-
potential of the O/W and probably the water-in-oil (W/O) emulsion droplets. In principle,
the proposed method can be extended to measure the C-potential of any liquid droplets
dispersed in another immiscible liquid or even to measure the C-potential of fine solid
particles suspended in a liquid phase, provided that the density difference between the
dispersing phase and the dispersed (or suspended) phase is relatively small.

5.5 The {-Potential Measurements of Fiber Surfaces in Contact with

Aqueous Solutions

In the previous sections, the {-potential (&;) of silicone oil droplets dispersed in
various aqueous solutions is measured by using a newly devised electrical suspension
method. In order to determine the electrical double layer (EDL) interaction between a
spherical oil droplet and a cylindrical fiber, the -potential (&) of fiber surfaces has to be
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measured when they are in contact with similar aqueous solutions. As shown in
Equations (3.37a) and (3.37b), both &, and L. are equally involved in the dimensionless
EDL interaction parameter DI and the dimensionless EDL asymmetric parameter Da.
Physically, it has long been observed in many experiments that, when it is in contact with a
liquid medium, any solid surface may be charged and surrounded by the ions of opposite
sign from the liquid phase. The overall arrangement of the electric charge on the solid
surface, together with the balancing charge in the liquid phase, is also called the electrical
double layer (EDL) of the solid-liquid interface or simply the EDL of solid surface (Hunter,
1981). Similarly, such EDL is also characterized by its strength and polarity, £, the zeta-
potential, and its thickness, k', the Debye-Hiickel reciprocal length parameter. Like the
electric charge residing at the liquid-liquid interfaces, the EDL characteristics of a solid
surface in contact with a liquid phase are also of great importance in many colloidal and
interfacial phenomena such as in the studies of deposition phenomena (Adamczyk and van
de Ven, 1981b; Adamczyk et al., 1983; Alince, 1989; Alince et al., 1991; Alince and van de
Ven, 1993; Jachowicz and Berthiaume, 1989; Berthiaume and Jachowicz, 1991). In
addition, values of { and k' are directly related to the interactions between the solid
particles themselves when they are suspended in a liquid solution, i.e., particle coagulation,
and thus determine the stability of the suspensions. More recently, the electrokinetic effects.
which are caused by the EDL at the solid-liquid interfaces, are found to have a significant
influence on the flow characteristics of water through microchannels (Mala and Li, 1997).
Unlike the case for the oil-in-water (O/W) emulsions, there have been few efforts
made to determine the (-potential of solid-liquid interfaces because of obvious technical
complexities and difficulties. There are even fewer data of the {-potential of some specific
solid-liquid interfaces available in the literature (Jachowicz and Berthiaume, 1989; Sanders
et al., 1995; Mala and Li, 1997). Generally, there are two widely used methods to determine
the C-potential of the EDL at the solid-liquid interfaces. The first method is to crush the
solid material into fine particles and to disperse them in the aqueous solution to be tested.
Then the electrophoresis technique is implemented to measure the electrophoretic mobilities
of these particles. Eventually, the {-potential of the finely ground particles (or assumedly
the solid material) is calculated from the measured electrophoretic mobilities according to

the Helmholtz-Smoluchowski equation for spherical particles (Hunter, 1981). Therefore,
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the electrophoresis technique can be used for both colloidal emulsion (liquid) droplets and
colloidal suspension (solid) particles. Following the above procedure, Sanders et al. (1995)
measured the C-potential of finely ground microscope slide particles as a function of bulk
pH value using a particle electrophoresis apparatus (Rank Brothers, MK II, Cambridge,
England). However, a question which naturally arises with the electrophoresis technique for
the finely ground solid particles is whether such determined C-potential of the finely ground
solid particles can truly represent the C-potential of the solid-liquid interface prior to
crushing. In other words, it is not immediately clear whether and/or to what extent the
crushing process itself will change the surface and electrical properties of the solid material
to be tested.

The streaming potential technique is a much more widely used method to determine
the C-potential of a solid surface in contact with a liquid. For example, Mala and Li (1997)
used the streaming potential technique to investigate the electrokinetic effects of the EDL on
flow characteristics of water through a microchannel between two parallel plates. In
particular, they measured the C-potential of different plate materials, P-type silicone and
glass in contact with water containing different potassium chloride concentrations. Also by
using the streaming potential method, Jachowicz and Berthiaume (1989) determined the C-
potential of untreated hair fibers and the hair fibers modified by adsorption of a saturated
layer of cationic polyelectrolyte as a function of pH of the streaming solution.

In this study, the streaming potential technique was used because of its greater
simplicity and applicability. Specifically, a microchannel is designed for performing the
streaming potential measurements, which consists of two parallel plates of the solid material
to be tested. The streaming solution is the aqueous phase to be tested. Since the detailed
technical information about the streaming potential technique is well documented in the
literature (e.g., Hunter, 1981; Lyklema, 1995), its main principle and technical challenges
will be briefed in the next section. Particular attention will be focused on understanding the
effect of the surface conductance and determining its role in the electrokinetic phenomenon.
Later on, the experimental aspects of the streaming potential measurements will be
described in details in Section 5.7. Finally, the measured results of the C-potential of the
bare glass fiber surfaces and the FC725-precoated glass fiber surfaces in contact with

various aqueous solutions will be presented and analyzed in Section 5.8.
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With the measured data of the {-potential of the silicone oil droplets presented
previously and those of the {-potential of the glass fiber surfaces in the subsequent sections,
some important dimensionless EDL parameters, such as DI, Da and t defined in Equations
(3.37a,b,c), can be easily calculated (Section 5.9). Furthermore, in conjunction with the
consideration of the curvature effect presented in Section 3.9, the EDL interaction between a
spherical oil droplet and a cylindrical fiber can be quantified.

5.6 Streaming Potential Technique

5.6.1 The Origin of the Streaming Potential in Microchannel Flows

It has long been observed that most solid surfaces may bear the electrostatic
charges when they are in contact with a liquid. Thus the EDL will be formed at the solid-
liquid interfaces as long as the liquid contains some amount of dissociated ions. This is
because the electrostatic charges on the solid-liquid interfaces will attract :he counterions
in the liquid to establish an electric field. Usually, the EDL can be further divided into
the compact layer and the diffuse double layer (Hunter, 1981). Within the compact layer,
the ions are so strongly attracted to the solid surfaces that they are actually immobile. In
the diffuse double layer, conversely, the ions are affected much less by the electric field
and thus are mobile.

More specifically, the thickness of the diffuse EDL, ', generally ranges from a
few nanometers up to several hundreds of nanamters, depending upon the bulk ionic
concentration and the other physical properties of the liquid phase. The electrical
potential at the boundary between the compact layer and the diffuse double layer is
usually referred to as the {-potential. Therefore, { and k' can be used to characterize the
EDL strength and polarity and its thickness respectively. In general, for a given liquid
medium, the EDL thickness x™' can be directly calculated from Equation {3.32) since it
depends only on the ionic concentration and some other physical properties (i.e. & and T)
of the liquid. However, determination of the EDL strength and even polarity (i.e. the -
potential) presents a rather more difficult task. For the EDL formed at the solid-liquid

interfaces, the streaming potential technique is probably the most effective method to
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determine the C-potential by directly measuring the streaming potential of a liquid when
it is forced to flow through a microchannel made of the solid material to be tested. The
major principle of the technique and its relevant physical background will be addressed
briefly as follows.

When a liquid is forced to flow through a small channel under hydrostatic
pressure, the ions in the mobile part of the EDL near the wall are carried towards one
end. This constitutes an electrical current called a streaming current, I, to flow in the
direction of the liquid flow. Then the accumulation of ions downstream sets up an
electric field. This field causes a current called the conduction current to flow back in the
opposite direction through the bulk of the liquid. When the conduction current, I, is
equal to the streaming current, a steady state is achieved. The resulting electrostatic
potential difference between the ends of the channel is often referred to as the streaming
potential due to its flow (streaming) feature. Physically, the electrokinetic effect or
phenomenon can be understood in a simpler fashion. When the ions are moved in the
diffuse double layer, they draw the liquid nearby to move along with them. Obviously,
the motion of the ions in the diffuse double layer is subject to the C-potential of the EDL.
Thus, the liquid flow characteristics of the small channel are affected by the presence of
the EDL at the solid-liquid interfaces. Most importantly, the (-potential of the EDL can
be directly related the streaming potential. As will be discussed in the experimental part,
the latter potential can be measured directly and accurately if some technical efforts and

necessary precautions are implemented.

5.6.2 Streaming Potential Equations

Although the streaming potential phenomenon was observed in the experiments
long time ago, its relation with the C-potential of solid-liquid interfaces has been
established only relatively recently. The detailed mathematical derivations of relating the
measurable streaming potential, E;, to the -potential of the EDL for a circular channel
can be found in textbooks (e.g., Hunter, 1981; Lyklema, 1995). However, for simplicity,
the microchannels made of two parallel plates were used in the present streaming
potential measurements. Therefore, a similar relation (called streaming potential

equation) is required for this geometric configuration. The mathematical derivations of
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the streaming potential equations will be limited to a minimum level. Instead, more
attention will be focused on the physical understanding. However, it is worthwhile
noting that the following procedure is general for establishing a relation between the
streaming potential, E;, and the {-potential of the EDL at the solid-liquid interfaces,
irrespective of the specific shapes of the microchannels. These concise derivations will
also be helpful in obtaining deeper insights into the streaming potential phenomenon. A
more comprehensive mathematical model was presented recently by Mala and Li (1997),
which deals with the fluid flow through a microchannel between two parallel plates with
the presence of the electrokinetic effects.

First, the streaming current is, by its definition, referring to Figure 5.5 and noting

the symmetry,
I = ZfAK(y)p(y)Wdy, (5.19)

where V,(y) represents the velocity profile (varies in the transverse y-direction) of fluid
flow along the z-direction and p(y) is the distribution of volume density of charge across
the parallel channel. W is the width and & is the thickness of the microchannel.
Generally, the deiailed hydrodynamic behavior of a rectangular channel is quite
complicated. But if the ratio of the width to the thickness is large (i.e. W/8>~20), the
velocity profile in such a narrow rectangular channel is parabolic and symmetrical about
the center and is given by the Poiseuille’'s equation. The velocity profile V(y), flow
volume flux Q, and the averaged velocity V... across the channel as well as the
maximum velocity at the geometric center (y=0) Vin.x=V0) are equal to (Hunter, 1981;

Panton, 1984):

_—AP‘SZ Y N2y _( X\
V.(y)= 8L [l—(%) 1=Vl (%)] (5.20a)
- APWS?
Q’—W (5.20b)
_Q: _—APSI__Z_V (S_ZOC)

Vave - = = max
Wé 12ul 3
where, AP is the pressure drop, p is the viscosity of the streaming solution and L is the

length of the microchannel along the flow direction. It is noted that AP in the above
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equations is negative in order to generate the fluid flow along the z-direction. The
distribution of volume density of charge across the parallel channel, p(y) involved in the
integral Equation (5.19), can be directly related to the potential distribution across the
channel by the famous Poisson's equation (Hunter, 1981), in the present case, which can

be written as:

d’y __p(y) (5.21)
dyz 8’80

Since the EDL is confined to a thin region near the wall of the microchannel, only

values of p(y) close to y=6/2 are of importance in determining the streaming current (i.e.

the bulk of the moving liquid carries no net charge). In order to integrate Equation (5.19)

analytically, near the wall y=&/2, the velocity profile given in Equation (5.20a) can be
approximated as:

- APS’ — APS’®

4 y y y
V.(y)= 1+ -] = [1-(z=)]
TR A A TR

Substituting Equations (5.21) and (5.22) into Equation (5.19) gives:

(5.22)

£,6,APWS* fd v [1—(

Y )1dy (5.23a)
2ul A

I. =

Further integrating the above integral equation by parts produces:

£,6,APWS*
15='°— 1-
Il </

_ £,E,APWS - [ Idll’] _ £,6,6 APWS
2ul é 50 u L

d"’ 7 _l_sfd_"’d}
(5.23b)

The first term in the inner bracket disappears because dy/dy is zero when y=0 and indeed
long before y=0. Some may object that the approximation in Equation (5.22) leading to
Equation (5.23b) should not hold over the whole integration range. It should be noted,
however, that the contributions to the integral are confined entirely to the thin layer near
the wall where y=6/2 (Hunter, 1981).

The streaming potential, E,, generated by this current causes a conduction current

in the reverse direction given by:
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_AEM PEA _WSEA, 2W+8)EA
) L L L

where, more generally, A and Py, are the cross-sectional area and the wetted perimeter;

I (5.24)

Ay is the bulk electrical conductivity of the streaming solution and A, is the specific
surface conductivity. For the rectangular channel (Wx3), A=W and P.=2(W+3). Thus,
when a steady state has been established, I+1.=0 and so

B ufa, + Z(W + ;5‘)1;]

Noted that AP in the above equation is negative. It is convenient to use AP,=-AP in the
above equation; thus more generally:
E: _ srgog

AP, uli, + f2,]

Equation (5.26a) is often called the streaming potential equation. Here the term in the

(4, #0) (5.26a)

parentheses is written more generally as (A,+fA;) where f is a “form factor” for the

P,
i

<

channel, equal to the ratio of its wetted perimeter to its cross-sectional area, i.e. [ =

It should be noted that Equation (5.26a) is a general form of the streaming potential
equation, regardless of the specific velocity profile and the specific shape of the channel.

However, f represents the shape factor of the channel (Hunter, 1981).

5.6.3 Effect of Surface Conductance

In Equation (5.26a), A, refers to the conductance of a cube block of streaming
liquid of unit cross-sectional area and unit length and is measured in Ohm™ m" or S/m.
In practice, the bulk conductivity A, can be measured directly and accurately.
Correspondingly, A refers to the conductance of a square sheet of material of unit area
and constant, though negligible, thickness, measured along the length of the square and is
measured in Ohm™ or S. Physically, it is the surface equivalent of the bulk conductivity
As. In contrast to Ay, nevertheless, As is a surface excess quantity and thus can not be
measured directly. This means that a subtraction step is required in order to obtain A.

Depending on the specific method used and the system studied, the subtraction procedure
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may vary from straightforward to cumbersome. In case the effect of the surface
conductivity on the relation between the streaming potential and the (-potential is
neglected, Equation (5.26a) is simplified as:

% - fﬁ% (A, =0) (5.26b)
Equation (5.26b) is sometimes called the classical streaming potential equation, which is
valid only if all or almost all of the conduction current is transported by the bulk liquid,
i.e. the first term on the RHS of Equation (5.24) is overwhelmingly dominant. It
frequently happens, however, that a significant proportion of the conduction current is
transported by the layers near the wall (or even through the solid if it is a good
conductor). The accumulated charge in the EDL at the solid-liquid interfaces may then
lead to an unusually high surface conductivity. Especially for pure water or aqueous
solutions containing lower electrolyte concentrations, the effect of surface conductance is
significant since the bulk electrical conductivity is lower. Accordingly, the second term
on the RHS of Equation (5.24) becomes either important (maybe even dominant) or at
least comparable.

Historically, it took a quite long and difficult time to fully understand and to
correctly account for the effect of surface conductivity. The very idea that surface
conduction exists is relatively old; the phenomenon has, for instance, been recognized by
Smoluchowski early this century (Smoluchowski, 1903). One of the convincing steps
was the finding that the C-potentials, derived from the classical streaming potential
Equation (5.26b) (Note: it is a general form regardless of the shapes of capillaries) using
the measured streaming potentials, appeared sometimes size (radius for circular
capillaries)-dependent and sometimes not. In the 1930s, when this effect was not yet
appreciated, this finding even led to a debate in scientific society on the question whether
or not the (-potential really was a material- and condition- (e.g., pH, electrolyte
concentrations) specific characteristicc. Now it is known as the effect of surface
conductance. Hence, the spurious radius dependence (often called the radius
inconsistency) is caused by not taking account of the effect of surface conductance.

The specific form of the streaming potential equation for a rectangular

microchannel can be obtained from Equation (5.25) or (5.26a) as follows:
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AEI; = €605 I (rectangular channel) (5.27a)

1
z A, +2(—+)A
#[ b+ (W 6) 3]

If the ratio of the width to the thickness of the rectangular channel is large (i.e.
W/5>~20), the velocity profile in such rectangular channel can be described by the
Poiseuille’s equation. This kind of rectangular channels is simply called as the parallel-
plate channels since they are very narrow in their thickness directions. Therefore, for the
parallel-plate channel, its streaming potential equation can be derived by dropping the

term 1/W as it is much smaller than the term 1/3 in the above equation,

E, _ 5r£0§ - EEb (parallel - plate channel) (5.27b)
AR pG, 52,y HRADD

Where, Du is called the Dukhin number in order to acknowledge Dukhin's important
contributions to the EDL relaxation and electrokinetic phenomena. For a parallel-plate
capillary, Du number can be defined as (not uniquely), e.g.:

22,
2,0

Du = (5.27¢)

The streaming potential equation for a circular channel can be readily derived and
expressed as (Hunter, 1981; Lyklema, 1995):

Es - grgog — grgog

B "~ uA,(1+2Du)

( circular channel) (5.28a)
AP 2
= u(A, + ——r A)

where, r is the radius of the circular channel and for a circular capillary, Du number is
defined as (Lyklema, 1995; Lyklema and Minor, 1997):

Du = A (5.28b)

ra,

5.6.4 Determination of the {-Potential and the Surface Conductance A,
In this study, the parallel-plate channel is used to conduct the streaming potential
measurements. Now from the experimental point of view, it will be shown how to

determine the C-potential and the surface conductance A, from the measured streaming
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potentials by using the streaming potential Equation (5.27b). This goal can be achieved
by rearranging Equation (5.27b) as below (Lyklema and Minor, 1997)

EEAP, 1, 24,1 (5.29)

HE2, & A, 6
As seen from Equation (5.29) that, unless the effect of surface conductance is neglected,
generally, it is not enough to determine the £-potential from one streaming potential data.
At least, a second measurement is required in order to find A as well. Alternatively, for a
given streaming solution and a given channel material, if measurements are conducted for
different gaps (5), both -potential and As should be constant and thus can be derived
from Equation (5.29). The additional experiments are rewarded by producing not only
the {-potential, but also the surface conductivity A;. Also as mentioned before, A; can be
obtained only by using indirect methods such as the subtraction procedure.
Mathematically, as schematically shown in Figure 5.6, Equation (5.29) indicates a
£,E,AP,

s’b

linear relationship between the term and 5L for a given solid-liquid interface.

Therefore, if the other quantities, such as AP,, Es, 8, and Ay, W, &, are measured properly
for several gaps (i.e. different 8), the remaining task is to bring these measured data into

grEOAP: versus %_ Then the C-

Equation (5.29) and plot the data points in terms of
s“tb

potential and the surface conductivity A can be readily calculated since the intercept and
24,

(see Figure
¢4,

the gradient of the linear curve fit to these points are equal to % and

5.6), respectively.

In order to plot the linear line in terms of ﬁ"—AL versus ‘—;-, all the relevant
s7vb

quantities, AP,, E,, 8, and A, M, &, should be determined properly. Among the six to-be-
determined quantities required in Equation (5.29), AP, and Es are dependent on the
specific experimental conditions (solid material, liquid properties, gap size and flow
conditions) and & is the separation distance between the two parallel plates. The
remaining three parameters, A, 4 and & are the liquid properties of the streaming

solution. A thorough description of their determinations and the relevant experimental
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details regarding the streaming potential measurements will be presented in the

subsequent section.

5.7 Experimental Aspects of the {-Potential Measurements of Glass

Surfaces in Contact with Aqueous Solutions

As described above, in the streaming potential measurements, the resulting
electrostatic potential difference between the two ends of the microchannel is usually
very small, ranging from a few millivolts to hundreds of millivolts, at most up to a couple
of thousands of millivolts for extremely strongly charged solid-liquid interfaces.
Therefore, the streaming potential E; must be measured accurately, as a function of the
applied pressure AP, and gap size &, with a high impedance electrometer so that the
streaming current I; and the conduction current I. are not disturbed. Hence, an
experimental set-up of microchannel flow has to be designed carefully to ensure the

adequate accuracy of the streaming potential measurements.

5.7.1 Experimental Set-up

In the laboratory of Applied Surface Thermodynamics and Interfacial Phenomena
in the Mechanical Engineering Department at the University of Alberta, there is an
experimental set-up available for streaming potential measurement. This experimental
set-up is used in the present experimental study. A schematic diagram of the
experimental set-up used for the streaming potential measurements is shown in Figure
5.7. The entire experimental set-up can be decomposed of four major parts: the
microchannel cell; liquid handling system such as driving pump, valve controls and
piping layout; a series of measurement transducers (pressure transducer, electrometer and
conductivity sensor) and the computer-based data acquisition and processing system.
Since a complete technical description of the apparatus can be found in Mala's (1999)
Ph.D. dissertation, here, it will be described how to prepare the parallel-plate
microchannel and determine its gap, 8. It will also be stated how to assembly the
microchannel into the set-up. This will be followed by a brief technical description on

the streaming potential measurements, such as the pressure drop measurement, the
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streaming potential measurement and the conductivity measurement. Some cautions are

also mentioned in the description of the experimental procedure.

5.7.2 Preparation and Assembly of the Parallel-Plate Microchannels

So far the experimental apparatus was used to investigate fluid flow and heat
transfer studies in microchannels. Thus, for the present streaming potential
measurements, the remaining tasks were to carefully prepare each parallel-plate
microchannel and properly assemble it into the set-up. Here, it needs emphasizing that
the parallel-plate microchannel was chosen because of its simpler geometry and well-
known Poiseuille's flow characteristics. In the measurements, its hydrodynamic behavior
can be well controlled. Most importantly, as derived in the preceding: section, a
relationship is well established between the to-be-determined parameters, such as the C-
potential of the solid-liquid interfaces and the surface conductivity A, and experimentally
measurable quantities, such as AP,, E;, 8, and the liquid properties of the streaming
solution such as A,, p and &, which is expressed by the streaming potential Equation
(5.29).

In this thesis study, two kinds of solid surfaces were of interest: the bare glass
fiber surfaces and the FC725-precoated glass fiber surface. These two glass plates were
used to make the parallel-plate microchannels in the streaming potential measurements.
First, the pre-cleaned glass microscope slides (7.5cm x 2.5cm) were cut into two pieces
of glass plates and the two ends of each piece were polished carefully so that it has a
precise dimension of 3.00cm x 2.50cm with the accuracy of about +0.03 cm. The glass
plates were submerged in Acetone for 12 h, rigorously washed with Acetone several
times and eventually immersed in the pure DIUF water (Fisher Scientific, Canada) for 12
h. For the microchannels made of two bare glass plates, such cleaned glass plates were
dried in air before assembling the two plates together. For the microchannels made of the
FC725-precoated glass plates, each cleaned glass plates was dried in air and then coated
with the FC725 coating material (3M Product) using the dip-coating method described in
Section 4.4. Thus a uniform and smooth coating layer of the FC725 was left on the glass
plate. The coated glass plate was suspended vertically and dried in air before use for

making the parallel-plate microchannels.
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Irrespective of the glass material chosen, each parallel-plate microchannel is made
according to the following procedure. In order to have a proper gap size & for each
channel, a plastic shim (Small Parts, Inc., Florida) of proper thickness is cut to form the
shape of microchannel and used as a spacer. Two narrow plastic spacers (each width is
0.75 cm) are placed and fixed between two glass plates along their lateral sides by
applying a small amount of adhesive on each side of the shim and snapping a piece of
glass plate on it each time. The transverse distance between these two spacers is always
set at 1.00 cm, i.e. the width of all the microchannels is equal to W=1.00 cm. Of course,
the length of each microchannel is L=3.00 cm. However, the thickness (or gap) of the
parallel channel depends on the thickness of the shim chosen and the amount of the
adhesive applied between the shim and the two glass plates. In this study, plastic shims
of three different thickness of 0.001", 0.003" and 0.005" were used and correspondingly
the thickness of the microchannels separated by each of them plus the adhesive
(approximately 25 pm thick) is around =50, 100 and 150 pm as desired. Accordingly,
the ratio of W/8 is about 200, 100 and 67, which sufficiently satisfies the conventional
requirement for the parallel-plate channel W/8>20. Thus the velocity profile in such
parallel-plate channels can be assuredly assumed to be parabolic and symmetrical about
the center and is adequately described by the Poiseuille’s equation. The streaming
potential Equation (5.29) derived in Section 5.6.4 is valid for the microchannels tested in
this work.

Since the thickness of the parallel-plate channel is an important parameter
involved in the streaming potential Equation (5.29), at this point, how to accurately
measure the thickness (8) of such assembled parallel-plate microchannels is essential.
After the adhesive is dried in air for about 12 h, the thickness of the microchannel is fixed
and measured by using the computer digital image techniques. In the measurement. the
channel is placed under the microscope and the video camera system. Once the image of
the partial cross-section of the channel is focused well, the digital image is acquired and
stored automatically in the computer memory. The stored slot image can be digitized and
the output data are two sets of discrete coordinates, x and y in mm, of the upper and
lower boundaries of the slot. The overall accuracy of the digitization is around 0.5 pm at

40x magnification with an additional magnifying phototube. The mean value of the
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thickness 6 of the parallel-plate microchannel is determined from the digitized boundary
coordinates.

Following the thickness measurement, the parallel-plate channel will be
assembled into the piping system for the streaming potential measurements. In order to
force the streaming solution through the microchannels under high pressure, in this study,
an adhesive (epoxy) is used to bond and fix the microchannel cell in the flow system.
After the completion of a set of streaming potential measurements, the flow cell is

removed and replaced by a new one.

5.7.3 Streaming Potential Measurements

Once the flow cell of either glass fiber material is assembled in the flow system
and dried in air, and the to-be-tested streaming solution is prepared, the streaming
potential measurements can be started. Typically, the following three major
measurements are involved and carried out simultaneously: the pressure drop
measurement, the electrical measurement and the conductivity measurement. These
measurements will be described in the subsequent paragraphs. The detailed technical
information and the specifications of the relevant meters used in this study can be found
in Appendix I (Mala, 1999).

Measurement of the pressure drop (AP;) across the parallel-plate microchannel is
controlled by a computer and the pressure readings are stored in the computer memory.
A pressure transducer (Validyne, Model DP15-20, Engineering Corp., California) is used
to measure the pressure difference between the entrance and the exit of the microchannel.
Inside the pressure sensor, the elastic sensing element is a flat silicone diaphragm. The
sensing elements with different pressure ranges are available and the pressure transducer
is calibrated with a dead weight tester calibrator (Budenberg, England).

In order to establish a proper pressure drop (or proper flow rate) across the
microchannels, a tubing pump (Masterfex, Model 7550-60, Barnant Co., Illinois) with
maximum 100-psi pressure increment is used to drive the solution through the flow cell.
This pump can be operated at a fixed or variable flow rates and its flow rate can be
specified and controlled either automatically by computer or manually by the operator.

The pump automatically adjusts its rotating speed in the range from 60 rpm to 600 rpm to
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meet the specified flow rate. It is noted from Equation (5.29) that the specific value of
the flow rate is not directly required in the streaming potential equation. However, since
it is directly related to the pressure drop, the flow rate of the streaming solution through
the flow cell is also carefully measured using three different methods. First, the tubing
pump always displays a pre-specified flow rate. Second, the flow rate is measured on-
line by a magnetic flow sensor (Model MAO-125-S-10-AA, CHEM TEC Equipment Co.,
Florida). This reading and the pump reading are displayed on-line on the computer
monitor. These two flow rates will be compared with the average flow rate calculated by
measuring the amount of aqueous solution collected for a known period. The difference
among the three flow rates is found to be less than 0.5%.

Theoretically, according to Equation (5.29), the measured streaming potential E,
should be exactly proportional to the pressure drop AP,. However, as will be shown later
on, in the practical experimental measurements, this can not be assumed always true for
some unknown reason. In fact, it is usually suggested that one should always measure E
as a function of AP, over a reasonable range to obtain an accurate estimate of the point
——Egip , :;-) for a given gap size (refer to Figure 5.6). In this investigation, depending

s7b

on the gap size (5) of the parallel-plate microchannel to be tested, the flow rates are set

(

properly such that reasonable pressure drops can be achieved across the flow cell. More
specifically, for the parallel-plate microchannel of &=50, 100 and 150 pm,
correspondingly, three pre-set flow rates for each channel are 10, 20 and 40 ml/min, 20,
40 and 60 mV/min, 40, 60 and 80 m/min. Thus the pressure drops for the three chosen
flow rates are in the range of from 0.5 to 15 psi for each channel, which cover the
pressure drops in the measurements of the electrokinetic effects on liquid flows through
parallel-plate microchannels done by Mala and Li (1997) using a commercial
electrokinetic analyzer (EKA).

Next is to carefully conduct the electrical measurement of the streaming potential
E, across the two ends of the parallel-plate microchannel. As the streaming potential is
an induced potential due to the presence of the EDL at the solid-liquid interfaces, its
accurate measurement is essential to this research. The magnitude of the potential is in

the range from a few millivolts to thousands of millivolts. This inherently makes its
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measurements extremely difficult. Therefore, the streaming potential E; must be
measured, as a function of the applied pressure AP, and gap size 3§, with a high
impedance electrometer so that the streaming current I; and the conduction current I. are
not disturbed. In this experimental study, two AgCl electrodes (Dri-Ref-450, World
Precision Instruments, Inc., Florida) are inserted into the ends of the flow cell with each
electrode on each end and connected to an electrometer with high resistance (Model
6517, Keithley Instruments, Inc., Ohio) by a tri-axial cable. As the streaming solution is
forced to pass through the microchannel, the accumulation of the ions up-stream and
down-stream set up an electric filed with an electrical potential. This potential is the
streaming potential detected by the electrodes. The streaming potential is measured by
the electrometer remotely controlled by computer and all the potential readings are
automatically stored in the computer memory for data processing later.

In additional to two kinds of channel materials used (the bare glass fiber and FC725-
precoated glass fiber), four kinds of aqueous phases are used as the streaming solutions for
measuring the streaming potentials and thus the {-potentials of fiber surfaces in contact with
these aqueous solutions. These liquids are the same as those used for determining the
Hamaker constants (Tables 4.8 and 4.9) and those used for measuring the -potentials
(Tables 5.3 and 5.4) of silicone oil droplets. They are the pure DIUF water (Fisher
Scientific, Canada); the aqueous phases with different pH values; the electrolyte solutions
containing either NaCl or AICl; and the ionic surfactant solutions containing either CTAB
or SDS. The last three aqueous solutions are prepared from the pure DIUF water and the
detailed procedure for their preparations is described previously (see Sections 4.7 and 5.3.2).
In the streaming potential measurements, the viscosity u, relative dielectric constant &; and
electrical conductivity A, are the important liquid properties required by the streaming
potential Equation (5.29). Since the concentrations of the electrolytes or surfactants added
to the streaming solutions are usually very low, their effects on the liquid viscosity and
dielectric constant can be neglected. Also all the experiments are conducted at room
temperature, 22+1°C; thus the liquid viscosity and its dielectric constant are assumed to be
constant and chosen as p=1.0 mPa s and £~80.0 for the pure DIUF water respectively. The
electrical conductivity A, is measured using a conductivity sensor (Model Inpro 7001/120,
Mettler-Toledo Process Analytical Inc., Massachusetts) and connecting it to a CR 7300
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Mettler-Toledo conductivity/resistivity transmitter. A small conductivity cell is fabricated in
which the conductivity sensor is immersed. The conductivity cell is connected to the outlet
‘of the parallel-plate microchannel cell so that the conductivity can be measured and
monitored on -line. The output of the transmitter is displayed on the LCD panel of the
transmitter and its analog signal is also sent to and stored in the computer. For the streaming
solutions used in the measurements, their electrical conductivity varies considerably from
the minimum of A,=1.21x10® S/m for the pure DIUF water to the maximum of

Ae=340.56x10™ S/m for the electrolyte solution containing 10 M AICl;.

5.7.4 Experimental Procedure

After a microchannel is assembled into the flow piping system and an aqueous
solution is prepared, the streaming potential measurements will be conducted strictly
according to the following general procedure. Step 1, an initial flow rate is set and the entire
piping system is checked to see if there is any leaking. Depending on the pre-set flow rate, a
long period should be allowed for the fluid flow through the microchannel to reach a steady
state. The steady state is considered to be achieved if the variations of the measured
pressure drop and the flow rate are within their measurement errors. Also an even longer
period is allowed for the conductivity to reach a constant value for a given streaming
solution. This process may be called the preparation period of the measurement. Step 2,
three readings of the pressure drop AP, and the streaming potential E; are taken in one flow
direction and three others are recorded for the other flow direction. In experiment, the flow
direction is switched on purpose mainly for reducing the electrode polarization effect. It is
important that, after switched, one should wait until the flow reaches the steady state in the
new flow direction. This means one has to repeat the contents of Step 1 after each switch.
Step 3 is to repeat Step 2 twice and thus total eighteen readings of AP, and E; are collected
for the chosen flow rate. Step 4 is to repeat the above Steps 1-3 for the second flow rate and
the third flow rate, respectively. For each streaming solution (total 25 different streaming
solutions tested), three parallel-plate channels are used, which have gap sizes of
approximately 50, 100 and 150 um respectively. All the streaming potential measurements
are carried out at room temperature 22°C.
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Some cautions have to be exercised during the streaming potential measurements.
First of all, in order to minimize the well-known electrode polarization effect, three
measures are implemented. Usually the measurement of the streaming potential lasts only
about 30 s during which three readings are collected. The electrodes are disconnected from
the electrometer during non-measurement intervals. The flow direction is changed after the
measurements are done in one direction. Once the experiment for one channel or one
streaming solution is completed, the two electrodes are cleaned and rinsed with the DIUF
water and eventually put back into the beaker containing 3M KCl solution as recommended
by the manufacturer. Second, before using a new streaming solution, the microchannel cell
and the entire piping system are rinsed with methanol and then with the DIUF water at a
relatively high flow rate. The rinsing procedure presents to be an important measure of
removing any remaining trace of the old streaming solution. Lastly, the electrodes should be
rinsed thoroughly with the DIUF water several times before they are inserted into the two
ends of the flow cell. As stated above, during the non-experiment periods, they are always
immersed in the 3M KCl solution. Therefore, it would take a quite long time to rinse the
electrodes and to reach the conductivity of the to-be-tested streaming solution if the
electrodes were not rinsed prior to use. This is an essential precaution especially when the

pure DIUF water is used as a streaming medium.

5.8 Experimental Results and Analyses

For a given streaming solution, after the completion of the streaming potential
measurements of each channel at a specified flow rate, the averaged values of total 18
readings of AP, and E; are used in Equation (5.29) with a constant gap size 6 and the bulk
conductivity A,. Thus for each channel (8), there are three data points which correspond to
three different flow rates. Ideally, these three points should be at the same point if they are
plotted according to the streaming potential Equation (5.29) (see Figure 5.6), as the equation
requires that E be proportional to AP,. However, in practical measurements, the measured
streaming potential E is not exactly proportional to the applied pressure drop AP, for a
microchannel at the three specified flow rates. Typical results are plotted in Figure 5.8 for
the pure DIUF water and Figure 5.9 for the electrolyte solution containing 10° M NaCl.
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As was described in Section 5.6.4, instead of determining the C-potential directly
from a measured streaming potential data using Equation (5.26b), in this study, the C-
potential at the solid-liquid interfaces is determined from the intercept of the linear curve fit
of experimental data £6AF versus é‘l to the streaming potential Equation (5.29).
sh
Hence, it is difficult to directly determine the overall accuracy of the (-potential
determined by using the streaming potential technique. However, an estimate of the
accuracy can be pursued based on Equation (5.26b). Taking the logarithmic operation on
the classical streaming potential Equation (5.26b) and then differentiating the resultant
equation yields:
da¢ _da, +dE, _d(AP.)
A, E AP,

s

(5.30a)

From the above equation, the overall error of the present {-potential measurements can be
related to the total of the following three measurement errors:

d¢ dA,., dE ., d(APpP.).
= x 5.30b
z \’[ Py 1 +[E, 1"+ AP, ] ( )

As was described in the experimental aspects (Section 5.7), every effort is made to measure
these three parameters accurately. It is examined that, in this experimental investigation,
‘%”Q% and %SS%. In addition, the standard deviation of the measured E; for the
total 18 readings is found to be less than 5%. However, during the streaming potential
measurements, the potential difference between the two electrodes in the case of no flows
was checked and found to be non-zero, equaling to 5-10 mV, although the potential
difference was zeroed prior to the measurements. This is caused by slightly unbalanced
potentials between these two electrodes. Since the most measured values of E; are greater
than 300 mV, the relative influence of the above unbalance potential is approximately 3%.
Thus the total uncertainty of the streaming potential measurements is within 8%, i.e.

dE, <8%. Therefore, the overall accuracy of the present C-potential determination from the

h3

streaming potential measurements can be estimated from Equation (5.30b):
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i’g_ <10% (5.30¢)

5.8.1 Measurements of Surface Conductance Effect

r

£,6,AP.
——=—= strongly
s7*h

It can be clearly seen from Figures 5.8 and 5.9 that the term

depends on the gap size (8) of the microchannel tested. This phenomenon is caused by
the surface conduction effect as described previously. Furthermore, with all the
experimental data for different channels (different 8) but using the same streaming
solution, the {-potential and the surface conductance A are determined by plotting the
data according to Equation (5.29). For the pure DIUF water (A,=1 .21x10™ S/m), this plot

is shown in Figure 5.8. In this figure, three values need to be examined. First, from the

intercept (—l—) of the least-square linear curve fit, the zeta-potential at the bare glass

c

fiber-water interfaces is equal to {=-62.2 mV. This (-potential is very close to the
measured value of finely ground microscope slide particles (Sanders et al., 1995) and in
an excellent agreement with the {-potential value (C=-56 mV) published by Mala and Li
22,

Gz:b

(1997) for glass fiber-water interfaces. Second, from the slope ( ) of the least-square

linear curve fit, the surface conductivity is found to be A=6.30x10® S, which is
reasonable in comparison with the surface conductivity values of order 10°-10%° S for
water in glass capillaries (Overbeek, 1952; Hunter, 1981). Finally, the correlation

coefficient (r*) for the linear curve fit to the experimental data is equal to 0.84.

Therefore, the linear relationship between %Pz— and (—;— as predicted by Equation
(]

(5.29) is statistically supported by the streaming potential data for the bare glass fiber
surface-pure DIUF water interfaces.
It has been noted that, in this study, the {-potential of glass surfaces (L) and the

surface conductivity A are determined from the least-square linear curve fit to the

measured data points in terms of £.8,AF versus % As shown in Figure 5.6 and by
L]
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Equation (5.29), the intercept and the gradient of the linear curve fit to these data points

1 22 . . .
are equal to — and —— respectively. Therefore, it is necessary to make uncertainty

e Chs
estimates of the intercept and the gradient determined from the least-square linear curve
fit in order to determine the actual accuracy of . and A,. Based on the linear regression
analysis method (Mendenhall and Sincich, 1992) and the experimental data for the pure
DIUF water plotted in Figure 5.8, a 95% confidence interval for the intercept (i.e. &) is
found to be approximately 14%. In addition, a 95% confidence interval for the gradient
is approximately 8%. Bringing the known uncertainties for the gradient (8%), A (2%)

and £ (14%) into the gradient expression 22, , the overall accuracy of A, is found to be
c’b

about 16%. As was discussed in Section 5.6.3, physically, A, is the surface equivalent of
the bulk conductivity As. In contrast to A,, however, it can not be measured directly in
practice. Usually, a subtraction step is required in order to obtain A;. Hsance, 16% is a
reasonable accuracy for the determination of a surface excess quantity such as A

Furthermore, as will be shown in Figure 5.9, the dependence of ELAF:

sb

on l for the

electrolyte solution is much weaker than for the pure water case, though the surface
conductivity A is expectedly larger for the electrolyte solution. Therefore, the overall
accuracy of . and A, determined from the experimental data for an electrolyte solution
will be definitely within 14% and 16% respectively.

Similar results for the electrolyte solution (10° M NaCl) is given in Figure 5.9,
where = - 22.7 mV, Av=105.72x10™ S/m, A.=32.20x10* S and r’=0.88. As expected, with
addition of the electrolyte, the C-potential at the glass fiber-water interfaces is decreased due
to the compressed EDL near the interfaces at higher ionic concentration. Also as expected,
in comparison with those for the pure DIUF water, both the bulk conductivity Ay and the
surface conductivity A increase when 10 M NaCl is added. However, it is noticed that the
former increases by nearly two orders while the latter increases by approximately five times

only. In addition, the dependence of AR on % for the electrolyte solution is much

b
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weaker than for the pure water case, though the surface conductivity A is expectedly larger
for the electrolyte solution. This implies that the surface conductance has less relative effect
on the measured streaming potentials since it is much smaller than the bulk conductivity A,
of the electrolyte solution. A, is dominant whereas A, is negligible for the aqueous
solutions containing higher electrolyte concentrations. At this stage, a quantitative
evaluation of surface conductance effect is attempted and will be presented as follows.

The Dukhin number is a dimensionless parameter that might best quantify the
relative importance of the surface conductance. For a parallel-plate microchannel, Du can
be defined as:

24
=X 5.27c
Du w3 ( )

The above equation clearly indicates that the effect of the surface conductance strongly
depends on the channel size (8) and the ratio of the surface conductivity A to the bulk
conductivity Ap. The size influence of the microchannels on the surface conductance
effect can be easily estimated for the pure DIUF water. Using the experimental data
shown in Figure 5.8, it is calculated that Du=20.82, 10.41 and 6.94 and correspondingly,
&=-2.9, -5.5 and -7.8 mV if the surface conductance effect is completely neglected for
the gap size =50, 100 and 150 um, respectively. Therefore, the absolute magnitude of &
is far underestimated (even by an order) if surface conductance is not taken into account.
Furthermore, it can be concluded that the surface conductance effect is overwhelmingly
dominant in microchannel streaming potential tests for any pure water. Ignorance of the
effect inevitably leads to an unacceptably low -potential determined from the streaming
potential measurements. Moreover, this effect is still comparable to (104.1%) the bulk
conductivity for pure water flowing through even bigger channels (=1 mm).

In addition, as shown by Equation (5.27c), the ratio of the surface conductivity A
to the bulk conductivity A also plays an important role in the surface conductance effect.
For a series of NaCl concentrations, the bulk conductivity A, the surface conductivity As
and the Dukhin numbers are plotted in Figure 5.10. For this figure, Du was calculated
from Equation (5.27c) in which 8=10 um and the data for the pure DIUF water were

taken as those at 107 M NaCl solution. Figure 5.10 shows that, with an increase in the
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electrolyte concentration, the relative surface conductance effect (Du) is quickly reduced
because of a large reduction of the ratio of A; to A,. It is also found from this figure that,
for a large channels (6=1 mm), the surface conductance effect is still substantial as long
as the NaCl concentration is below some critical upper limit such as 4.0x10* M. Above
this electrolyte concentration, the influence of A, on the inferred C-potential is less than
15% and thus negligible because 15% is a usually acceptable measurement error of the -
potential. This finding is experimental support for the claim of the significant effect of
surface conductance on the (-potential that can be expected in | mm capillaries at
electrolyte concentrations below about 107 M given by Hunter (1981).

In the subsequent sections, the detailed effects of the pH values, the two typical
electrolytes and the two ionic surfactants on the measured {-potential at the glass fiber-
water interfaces will be presented briefly. All the experimental results of the measured C-
potential for various streaming solutions are further listed in Table 5.3 for the bare glass
fiber surfaces and in Table 5.4 for the FC725-precoated glass fiber surfaces. As seen
from these two tables, when the streaming solution changes, the measured (-potentials
for the FC725-precoated glass fiber surfaces are smaller than but follow the same pattern
as those for the bare glass fiber surfaces. Therefore, only the experimental data for the
bare glass fiber surfaces are discussed. In particular, some effort will be made to present
a clear contrast between these effects and those on the measured C-potential of the O/W

emulsion droplets presented in Section 5.4.

5.8.2 pH Effect
The pH value was altered approximately from 3.0 to 10.0 by adding standard dilute

solutions of either HCI or NaOH into the pure DIUF water. The measured C-potential at the
fiber-water interfaces with various pH values is shown in Figure 5.11. Since addition of
HCl into the pure DIUF water to lower the pH values exponentially increases the
concentration of H' ions in the streaming solution, as expected, the selective adsorption of
H" ions onto the fiber-water interfaces slightly neutralizes the negative C-potential. At lower
pH values, H' ions become the potential-determining ions (p.d.i). At higher pH values,
however, OH" ions become the p.d.i. Their adsorption onto the fiber-water interfaces results
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in stronger negative C-potential at the interfaces. As shown in Figure S5.11, the {-potential
monotonically decreases from -38.7 to —84.2 mV as the pH value increases from 2.68 to
10.32. The C-potential of the bare glass fiber surface in contact with the pure DIUF water
(pH=6.5) was measured to be —62.2 mV, between the above two extremes. In comparison
with CI' ions at lower pHs or Na* ions at higher pHs, H" or OH" ions are much more
strongly adsorbed in the region near the fiber-water interfaces such that they determine the
C-potential at the fiber-water interfaces, respectively. Similar variations of the -potential
with the pH value were also observed for the keratin fibers (Jachowicz and Berthiaume,
1989) and for finely ground microscope slide particles (Sanders et al., 1995).

As shown in Figure 5.11, it is unexpected that, even at pH=2.68, the {-potential is
still negative. The point of zero zeta (pzz) is not yet achieved for the fiber-water interfaces.
In the literature, Jachowicz and Berthiaume (1989) reported that the isoelectric point (iep) is
at pH=3.7 for untreated keratin fibers. At a pH lower than 3.7, the fiber surface possesses a
cationic character, while at a pH higher than 3.7 the keratin surface assumes a negative
potential. In addition, the pzz is found to be at pH=5.0 at the silicone oil-water (O/W)
interfaces (Gu and Li, 1998c), which is very close to the published pzz of mineral oil-in-
water emulsion droplets (Sanders et al., 1995). However, it is noted that the {-potential of
the keratin fibers tested by Jachowicz and Berthiaume (1989) is only slightly negatively
valued (Cc=-13 mV at pH=5.5-9.0) and thus can be easily neutralized (pH=3.7) and even
slightly positively valued at pH<3.7. In the present case, the -potential at the glass fiber-
water interfaces is strongly negatively valued ({=~-62.2 mV at pH=6.5). The selective
adsorption of H" ions adsorption onto the glass fiber-water interfaces is not strong enough to
counteract the strongly negative {-potential, though it is comparable to that onto the oil-
water interfaces. Recently, Sanders et al. (1995) used a particle electrophoresis apparatus to
measure C-potentials for finely ground microscope slide particles as a function of bulk pH.
Their reported C-potential values are all negative at all the pH values (pH~2-11). Hence, it
is difficult to reverse the polarity of the strongly negative {-potential at the glass fiber-water
interfaces purely by lowering the pH values. In the present tests, the piping system is made

of stainless-steel tubes and plexiglass connections. In order to avoid excessive acid
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corrosion of the piping system and possible chemical contamination, measurements of the

streaming potential at any lower pH values than pH=2.68 has not been attempted.

5.8.3 Electrolyte Effects

The variations of the measured C-potential at the glass fiber-water interfaces with the
mole concentration of the following two typical electrolytes, NaCl and AICL from 10 to
10~ M are plotted in Figure 5.12. At 10 M, the measured values of the {-potential are very
close to the value for the pure DIUF water ({=-62.2 mV). At this concentration, both
electrolytes do not have appreciable effect on the {-potential. As expected, with increase of
electrolyte concentrations higher than 10° M, the absolute value of the {-potential gradually
becomes smaller. This pattern has been also reported by Mala and Li (1997) and Sanders et
al. (1995). Physically, addition of electrolyte will considerably reduce the C-potential
because of the thin compressed EDL. It is found that the present values of the {-potential
for the NaCl electrolyte solution are almost same as those reported by Mala and Li (1997)
for the KCI electrolyte solution since the chemical properties of these two electrolytes are
quite similar.

Furthermore, Figure 5.12 indicates that variations of the C-potential with electrolyte
concentration for AICl; are greater than those for NaCl. This is because of the well-known
strong selective adsorption of trivalent cations AI’* onto the fiber-water interfaces. The
multivalent cations are more strongly adsorbed onto the solid-water interfaces, and thus their
effects on the (-potential are more pronounced than the mono-valent cations Na'.
Therefore, the {-potential depends not only on the concentrations but also on the ionic
valences of the electrolyte used. It is also noticed that, unlike the case for the C-potential at
the silicone oil-water interfaces, the {-potential at the fiber-water interfaces remains negative
even until 10° M AICl;. Hence, in comparison with the selective adsorption of trivalent
cations AI** onto the oil-water interfaces, such cationic adsorption onto the glass fiber-water
interfaces is much less pronounced and thus has less effect on counteracting their original

negative C-potential.

165



Chapter 5

5.8.4 Effects of Ionic Surfactants

In the experiments with the ionic surfactant solutions, it was found that the
adsorption of the ionic surfactants CTAB and SDS onto the glass fiber-water interfaces
strongly affected the C-potential. Figure 5.13 gives the measured results at different
concentrations of CTAB (10-10” M) and SDS (10%-102 M). At 10° M, the measured
values of the C-potential are close to that of the pure DIUF water. It is seen from Figure
5.13 that the point of zeta reversal (pzr) occurs at a CTAB concentration between 10° M
and 10® M. This pzr is in a good agreement with the point of zero charge (pzc) of the mica
surface somewhere near 10 M CTAB reported by Israelachvili and Pashley (1984). When
the CTAB concentration is increased from the pzr, the measured C-potential becomes
positive and increases slowly. Physically, the variations of the C-potential with CTAB
concentration are caused by the well-known cationic adsorption. CTA" ions are the
potential-determining ions (p.d.i) in this case. The saturation state of cationic adsorption can
be considered to occur between 10~ to 10° M. Since its CMC is about 9.2x10* M at 25°C
(Czerniawski, 1966), no CTAB concentrations higher than 10° M were tested. Variations
of the {-potential at the solid-water interfaces with log concentration of SDS from 10° to 10°
2 M are also shown in Figure 5.13. As expected, the {-potential becomes more negative if
more SDS is added into the aqueous solution. For the anionic surfactant solution,
Ci12H35S0;™" ions of SDS are the p.d.i, and their adsorption onto the glass-water interfaces
leads to the change of the {-potential with the SDS concentration. On further increase of the
SDS concentration, the anionic adsorption process continues until the strongest negative C-
potential about -90 mV is attained at 10°-102 M. The saturation state of the anionic
adsorption is considered to be reached between these two concentrations. Since the CMC of
SDS at 25°C was determined to be around 8.1x10” M (Stalidis et al., 1990), the -potential
measurements were not attempted with SDS concentrations higher than 102 M.

All the measured results of the C-potential at the glass fiber surfaces in contact with
either CTAB or SDS surfactant solutions show that these two ionic surfactants can change
the magnitude of the {-potential to a great extent and even its polarity. Furthermore, these
two surfactants not only differ from each other with respect to their ionic properties but also
have different abilities to adsorb onto the fiber-water interfaces. Therefore, they affect the
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¢-potential to quite different extents. Their abilities to influence the C-potential at the glass
fiber-water interfaces are determined by their rather different activities in the aqueous phase.

5.9 Determination of the EDL Interaction Parameters D/, Da and x™'

Up to now both the zeta-potential (5;) of the silicone oil droplets dispersed in
various aqueous solutions and the zeta-potential (&) of the glass fiber surfaces in contact
with these aqueous phases are determined experimentally. Some important EDL
interaction parameters can be easily calculated. The dimensionless EDL parameter DI,
the dimensionless EDL asymmetry parameter Da and the Debye-Hiickel reciprocal length
parameter k' for various aqueous solutions are listed in Table 5.3 for the bare glass fiber
surfaces and in Table 5.4 for the FC725-precoated glass fiber surfaces. The value
following each "+" sign after the measured &, represents its standard deviation, which is
within 13% as predicted by Equation (5.18). In the calculation of DI from Equation
(3.37a), the reference radius of oil droplet is chosen as a=10 um. Da is calculated
directly from Equation (3.37b). k"', as defined in Equation (3.32), directly reflects the
ionic properties such as the ionic concentration and the ionic valence of the aqueous
phase. Typical values of k™' vary by approximately three orders from near 1 um at its
maximum for the pure DIUF water to about 3 nm for the aqueous solutions containing
the highest electrolyte concentration (1020 M AICL) or the highest surfactant
concentration (102 M SDS).

It is seen from these two tables that when the aqueous phase is changed, DI and
Da for the FC725-precoated glass fiber surfaces follows the same pattern as those for the
bare glass fiber surfaces. At pH values below 6.5, the EDL interaction between the oil
droplet and the fiber surface is attractive since they are oppositely charged (&, >0 while
£.<0). However, such EDL interaction becomes repulsive for the pure DIUF water at
pH=6.5. As the pH value further increases, the repulsive EDL interaction is even
stronger, achieving its maximum greater than 10° for the pure DIUF water. It is also
noticed that, as expected, addition of electrolyte into the aqueous phase reduces the EDL
interaction by almost five times for NaCl and AICl;. At 10 M AICl;, the dimensionless
EDL interaction parameter DI is of order 10°. Introduction of CTAB leads both & and &
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to be positive and thus their repulsive EDL interaction is eventually of order 10%. Since
both &, and . are negative for the pure DIUF water, the more SDS is added into the
aqueous phase, the more negative these two potentials become. This results in the
stronger repulsive EDL interaction with the maximum DI greater than 10°.

In summary, for the bare glass fiber surfaces, DI switches its sign and changes
about two orders from 10° to 10° as the aqueous phase changes. Accordingly, Da has the
same sign as DI and ranges from 0.00 to 6.69. For the FC725-precoated fiber surfaces,
DI varies in a smaller range from 10° to 10%, though their Da values changes more
greatly. It is anticipated that such great changes in DI and Da will considerably affect the
total colloidal interaction between the silicone oil droplets and the glass fiber surfaces,
both of which are immersed in an aqueous solution. Combining the vdW interaction and
the EDL interaction together, it is feasible to conduct a thorough numerical study of the
general effects of Ay for the vdW interaction and DI, Da and t=xa (or x') for the EDL
interaction on the oil droplet deposition processes onto the different fiber surfaces across
varying aqueous solutions (Chapter 6). Furthermore, in Chapter 7, their specific influence
on the deposition processes will be shown and the numerical predictions based on the
experimentally determined A4 (Tables 4.8 and 4.9), DI, Da and t=xa (or k') (Tables 5.3
and 5.4) will be compared with the deposition test data.
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Table 5.1 Values of the Henry correction factor f,(xa) used in Equations (5.2) and (5.3) as
a function of xa (Henry, 1931; Abramson et al., 1942; Hunter, 1981)

xa Jfi(xa) xa Jfi(xa)
0 1.000 5 1.160
1 1.027 10 1.239
2 1.066 25 1.370
3 1.101 100 1.460
4 1.133 o) 1.500

Table 5.2 Temperature increase of the aqueous solution due to the Ohmic heating, as
calculated from Equation (5.14) with the concentration of NaCl from 10%to 10" M and

E=1000 V/m, At=10s, and C,=1.0 kcal’kg/ °C and p.=998 kg/m’

INaCl M) 10° 10 10* 10° | 102 | 10"
IAT (°C) 3.02x10° | 3.02x10* | 2.98x10° | 0.03 | 0.28 | 2.55

169



Chapter §

Table 5.3 Zeta-potential (5;) of silicone oil droplets dispersed in aqueous solutions, zeta-
potential (£.) of the bare glass fiber surfaces in contact with aqueous solutions and their

EDL interaction parameters (DL, Da and x’!) across various aqueous solutions

Aqueous Medium | L (mV) | (mV)* D!° Da® |x'(10°m)*
DIUF Water -35.5+29 |[-62.2 +48200 +0.16 | 966.46
pH=2.68 +27.782.1 |-38.7 -23400 2206 |9.46
pH=3.52 +16.1+1.6 |-45.6 -16000 2259 |[24.87
pH=4.20 +7940.5 |-50.6 -8700 428 |5441
pH=6.50 355429 |[-62.2 +48200 +0.16 | 966.46
pH=7.20 -43.743.5 | -63.8 +60900 +0.07 |[918.18
pH=8.93 -49.9+49 |-70.0 +76300 +0.06 |14:.14
pH=10.32 -58.3+5.5 |[-84.2 +107200 | +0.07 |29.90
10°M NaCl -40.1+4.2 |-58.6 +51300 +0.07 | 305.62
10° M NaCl -459+43 |-399 +40000 +0.01 |96.65
10°M NaCl 2282429 [-27.4 +16900 000 3056
10° M NaCl 235821 | -22.7 +11600 000 [9.66
10°M AICL; -35.543.1 |-56.2 +43600 +0.11 | 124.77
10° M AICl; +46.2+4.2 | -30.4 -30700 -2.09 |39.46
10°M AICl; +43.4+4.1 |-213 -20200 2226 | 1248
10~ M AICl; +26.9+2.8 |-14.9 -8600 -2.18 |[3.95
10°M CTAB -28.6£2.6 |-54.2 +33900 +0.21 |[305.62
10°M CTAB +40.0+3.5 |-25.4 -22200 -2.10 |96.65
10° M CTAB +82.4+64 |-13 -13100 -6.69 |30.56
10°M CTAB +83.146.9 | +5.7 +10300 +6.32 [ 9.66
10°M SDS -35.9+2.8 |-62.6 +49100 +0.16 | 305.62
10° M SDS -40.0+3.7 |-75.4 +65900 +0.21 |96.65
10°M SDS -46.3+4.1 | -85.1 +86000 +0.19 | 30.56
10° M SDS -56.8+5.2 | -90.5 +112200 | +0.11 [9.66
10°M SDS -58.4+5.6 |-92.0 +117300 [+0.11 [3.06

* As estimated from Equation (5.30c), the overall accuracy for the { measured by the
streaming potential technique is within 15%.

® Calculated from Equation (3.37a) in which the radius of oil droplet is chosen as a=10 pm.

€ Calculated from Equation (3.37b).

4 Calculated from Equation (3.32). For the pure DIUF water, its ionic concentration is
assumed to be 107 M.
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Table 5.4 Zeta-potential (&) of silicone oil droplets dispersed in aqueous solutions, zeta-
potential (&) of the FC725-precoated glass fiber surfaces in contact with aqueous solutions)

and their EDL interaction parameters (DI, Da and x’') across various aqueous solutions

Aqueous Medium | & (mV) (mV) * DI’ Da¢ [x'(10°m)°
DIUF Water 355429 | -245 +19000 +0.07 | 966.46
pH=2.68 +27.7+2.1 |-153 -9200 -2.18 9.46
pH=3.52 +16.1+1.6 |-18.0 -6300 -2.01 24.87
pH=4.20 +79+0.5 |-20.0 -3500 -2.46 54.41
pH=6.50 -35.5829 |-24.5 +19000 +0.07 | 966.46
pH=7.20 -43.743.5 |-25.2 +24000 +0.16 |918.18
pH=8.93 -499+49 |-27.6 +30100 +0.18 148.14
pH=10.32 -58.3+5.5 |-33.2 +42300 +0.16 |29.90
10° M NaCl -40.1+4.2 |-23.1 +20200 +0.16 305.62
10° M NaCl -459+43 |-15.7 +15700 +0.63 | 96.65
10° M NaCl -282+29 |-10.8 +6700 +0.50 |30.56
10° M NaCl -23.5+2.1 [ -90 +4600 +0.50 | 9.66
10°M AICl, -35.5+3.1 | -22.2 +17200 +0.11 124.77
10° M AICL; +46.2+42 |-120 -12100 -3.05 39.46
10° M AICI; +43.4+4.1 | -84 -8000 -3.68 12.48
10° M AIChL +26.9+28 |-59 -3500 -3.39 3.95
10°M CTAB 28626 |-214 +13400 +0.04 305.62
10° M CTAB +40.0+3.5 [ -100 -8700 -3.13 96.65
10° M CTAB +82.4+6.4 |-2.9 -5200 -15.22 [ 30.56
10° M CTAB +83.146.9 | +2.2 +4000 +17.90 | 9.66
10°M SDS 359428 | -24.7 +19400 +0.07 | 305.62
10°M SDS -40.0+3.7 | -29.7 +25900 +0.04 | 96.65
10°M SDS -46.3+4.1 | -33.6 +34000 +0.05 30.56
10° M SDS -56.845.2 |-35.7 +44300 +0.11 9.66
10°M SDS -58.4+5.6 |-36.3 +46300 +0.12 |[3.06

* As estimated from Equation (5.30c), the overall accuracy for the £. measured by the
streaming potential technique is within 15%.

® Calculated from Equation (3.37a) in which the radius of oil droplet is chosen as a=10 um.

¢ Calculated from Equation (3.37b).

4 Calculated from Equation (3.32). For the pure DIUF water, its ionic concentration is
assumed to be 107 M.
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Figure 5.2 The {-potential of the silicone oil (no. 1) droplets
as a function of pH of the aqueous phase

173



Chapter §

100 I 1 gl 1 L L1 uunl I 1 1 i1

¢ (mV)

-100 R ] T T T Illllll T ¥ 1 LI T_TIITYI T T Lf T LS RARI

106 105 104 10
Electrolyte Concentration (M)

Figure 5.3 The C-potential of the silicone oil (no. 1) droplets versus
log concentration of two electrolytes with different valences
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Figure 5.4 The C-potential of the silicone oil (no. 1) droplets versus
log surfactant concentration of CTAB or SDS
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Figure 5.5 Parallel-plate microchannel used in the streaming potential measurements
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“E.\'A'b V
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Least-square linear curve fit a A#0
1 : . £ ,,EOAP - l
Figure 5.6 The linear relations of _u_E_ versus 5 for the cases of A=0 and A0
:Ab

for determining the C-potential at the solid-liquid interfaces and the surface

conductivity A from Equation (5.29), using the streaming potential technique
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1 Flow Rate Q,
2 Pressure Drop AP, E
3 Streaming Potential E, . .
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Figure 5.7 Schematic of experimental set-up for the streaming potential

measurements of the parallel-plate microchannel
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Figure 5.8 Experimental data of the streaming potential measurements and
their linear curve fit using Equation (5.29) for the pure DIUF water
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Figure 5.9 Experimental data of the streaming potential measurements and

their linear curve fit using Equation (5.29) for the electrolyte solution of 10° M NaCl
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Figure 5.10 Variations of the bulk conductivity (A,), the surface conductivity (1) and
the Dukhin numer (Du) with log concentration of electrolyte NaCl

180



Zeta-Potential Measurements

-40 - -

G (mV)

-100 ' T T T ' T ' T
2.0 4.0 6.0 8.0 10.0

Figure 5.11 Variations of the {-potential of glass surfaces with pH of the aqueous phase
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Figure 5.12 Variations of the {-potential of glass surfaces with log concentration of
two electrolytes having difference valences
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Figure 5.13 Variations of the {-potential of glass surfaces with log concentration of
two surfactants CTAB and SDS
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Chapter 6

Numerical Solutions of Mass Transport Equations

6.1 1-D Mass Transport Equation

6.1.1 Analytical Solution
In Section 2.3, it was shown that, in the absence of external forces, the oil droplet
transfer flux onto the solid collector is governed by:

1d,  dn(n) mF.(0),_, (6.1)
r dr dr kT

where F_,(r) = F_,(r)i_ and thus n=n(r), i.e. both the colloidal force and the droplet

number concentration change only along the radial direction in the chosen cylindrical
coordinate system (r, ¢, z) shown in Figure 2.2. Integrating the above equation one time
gives:

Lan() _ mnF,r) _ C, (6.2)
dr kT

where C; is a constant to be determined. Equation (6.1) as it stands is a second-order

ordinary differential equation (ODE). In order to find a unique solution for this equation,
two boundary conditions should be specified. The following two boundary conditions
are used:

=n (6.3a)

r=r, x

n(r)

n(rY, ey =1 =0 (6.3b)

where n. is the oil droplet number concentration in the bulk emulsion at r=r, (an
“infinite” distance from the fiber surface. Equation (6.3a) expresses a natural boundary
condition, i.e. as r approaches infinity, the droplet number concentration should approach
N in the bulk phase of the emulsion. The second condition given in Equation (6.3b) is
often referred to as a “perfect sink” approximation, which is widely used in a number of
publications (Adamczyk and van de Ven, 1981b; Adamczyk et al., 1983; Elimelech,
1991; Sanders, et al., 1995). It states that all droplets will be irreversibly attached to the
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fiber surface once they have reached the so-called primary energy minimum (PEM)
region. The PEM is usually deeper than 25 kT and generally located near dpewm, i.c.,
ro=R+a+8pgy, Where R is the radius of the cylindrical fiber and a is the radius of oil
droplet. Physically, this condition is valid because once the oil droplets are close to the
PEM region, the colloidal interaction force, particularly the attractive vdW force, is so

strong that they will be irreversibly trapped in the PEM region and thus deposition

occurs.
Using the boundary condition Equation (6.3b), C, in Equation (6.2) is equal to:
dn(r) ryJ,
C =r =237 =_0v0 6.4a
1 o dr r=r, D: ( )
Here,
JO = —D'z dn_(r). r=r, (6'4b)
dr °

where Jo is the mass transfer flux of oil droplets toward the fiber surface (Jo<O for
deposition case). Jo is an important quantity to describe how quickly the deposition
process happens and will be determined later on. Eventually, droplet concentration

distribution is obtained by further integrating Equation (6.2), using Equation (6.4a)

CE_(r) F. .t
end dr —[;—dr
n(r)= e W [—ﬂo—j—l-e “ dr+C,] (6.5)
D r

Both J, and C; given in Equation (6.5) are dependent on the above two boundary
conditions given in Equations (6.3a,b).

Equation (6.5) as well as the two boundary conditions, Equations (6.3a.b), can be
simplified by introducing the following dimensionless variables and parameters:

mo p-r-R-a £ oy Fa , R
n, a kT a

a

(6.6)

where H is the dimensionless separation distance or gap between droplets and fiber

surface. Thus Equations (6.3a,b), (6.4b) and (6.5) become,
'—'(H)IH:H' =1 (6.7a)

n(H)you, =0 (6.7b)

and
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J dn(H
Sh=-po—=220) (6.8)
a
;(H) =eIFm:(H)dH[ShILI{O)e-IFM(H)deH +C—2] (6.9)
g(H)
where H_ ='7'°—_—R-:—‘-'-, H, — Seam =& rew, g(H)=H+1+A, ’c—zzﬂ. As defined in
a a n,

Equation (6.8), Sh is the Sherwood number (Sh>0 for deposition case), which represents

the dimensionless mass transport flux and can be calculated from the gradient of the
dimensionless droplet concentration profile at the PEM region where H, = 3 rev . Noting

the axisymmetry involved in the deposition system, the mass transfer flux Jo or the
Sherwood number (Sh) is constant over the entire collector if only the vdW and EDL
interaction forces are taken into account. Equation (6.9) is the analytical solution of the

one-dimensional (1-D) mass transport Equation (6.1). In principle, once the other

dimensionless parameters, FcoI(H ), He, Ho and A are given, the two dimensionless

constants, Sh and innvolved in Equation (6.9), can be determined from the boundary

conditions in Equations (6.7a.b).

However, it is usually difficult to obtain an explicit expression of the analytical
solution Equation (6.9) for 1-D mass transport Equation (6.1) unless Feot(H) can be
expressed explicitly as an extremely simple function. Moreover, it is also difficult to

determine Sh and _C-Zdirectly from the boundary conditions Equations (6.7a,b). The
colloidal force Fcol(H ) consists of the vdW interaction force F.w(H) and the EDL

interaction force FEDL(H ). As were derived in Chapter 3, the vdW and EDL interaction
forces between a spherical oil droplet and a cylindrical fiber are complicated functions
which themselves are also expressed in the form of integral equations. This fact makes it
almost impossible to obtain any meaningful explicit expression by integrating Equation
(6.9) directly. Alternatively, the droplet number concentration distribution function, n(r),
can be readily determined by integrating Equation (6.1) numerically, in conjunction with

the boundary conditions given by Equations (6.3a,b).
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6.1.2 Numerical Solution

By using the dimensionless variables and parameters defined in Equation (6.6),
Equation (6.2) can be changed into:

dnH) _E ey = snEY) (6.10)
dH g(H)

Equation (6.10) can be integrated numerically by using, e.g., the 4"-order Runge-Kutta
technique. The boundary conditions remain the same as those given in Equations
(6.7a,b).

Recognizing that Equation (6.10) is a linear ordinary differential equation, one
can relate a guess value for Sh to the corresponding value of the bulk droplet

concentration by

(S acniar _ (;1--_= Jacriar _ __1 (6.11)
(Sh)gucs_\‘ (n": )cal (nt )r:al
, . - dn(H,)
In this way, the second boundary condition, where n(H,)=0 and Sh = T is

satisfied by assigning a value to Sh, since its actual value is unknown. This value is
represented by (Sh)guess in the above equation. The numerical solution of n(H) can be
obtained by directly integrating Equation (6.10) from the second boundary condition
where ;(H0)=0 to some “infinite” distance H = H_. This calculation subsequently
provides a value of the bulk droplet concentration at H = H_, which is expressed as

(ne )cs in the above relation. This value may not be equal to unity as required by the first

boundary condition, i.e. (n= ocnat =1 at H =H_. Hence, the only remaining unknown

quantity in Equation (6.11) is (Sh)iqwa, the actual value of the dimensionless mass

transfer rate at the collector surface. Once (Sh)acnar is found, the actual distribution of oil

droplet number concentration n(H) can be uniquely determined by again numerically

integrating Equation (6.10) from H=H,, where ;(HO) =0, to H=H., where ;(Hc) =1.
Computational tests are performed to estimate the influence of the lower (Hg) and

the upper (H,) integration limits on the droplet concentration distribution. It is found that

the calculated results become insensitive to the chosen values of the lower and the upper
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integration limits as long as Ho< 5x10~ and H.>20. A sensitivity analysis for the upper
integration limit H, was implemented with respect to the final numerical results (i.e. Sh
number) of the 1-D model predictions and will be presented in Section 6.1.5. Therefore,
in the numerical simulations, the lower and the upper integration limits are taken as

Ho=10" and H.=40, respectively.

6.1.3 The Colloidal Force and the Transforming Function
In Equation (6.10), F.t(H)=F.w(H)+ Fo.(H) represents the total force of

the retarded dimensionless vdW interaction force and the dimensionless EDL interaction
force between an oil droplet and a cylindrical fiber surface. If the cylindrical fiber is
assumed to be infinitely long so that its end effects on the deposition process can be

ignored, these two forces can be expressed as follows, using Equation (3.17b) in Section

3.2 and Equation (3.22) in Section 3.3 for F..w(H) and Equation (3.51) in Section 3.9.3

for FEDL(H) :

— F. .. (H) i 615
Foaw(H)y =271 _ 4 [(= Fa(H, A)+ —=——V(H, A 6.12
vaw (H) "T [( ) ( )+ T+ 3H) Va( )] ( a)
a
and
Feoo(H) =Lt 7 oy (6.12b)
kT
a

where, A, =;"—’; is the dimensionless adhesion number. Functions Fz(H, A) and

Vz(H,A) in Equation (6.12a) are given by Equations (3.18) and (3.11) respectively. As

was discussed in details in Section 3.4, s is a constant equal to 11.116 and A is chosen
as 0.01 (corresponding to a=10 um) in the numerical simulations. It is also noted that. in

-

Chapter 3, the vdW interaction force is alternatively nondimensionalized by An as
a

defined in Equation (3.17a) for convenience over there. Equations (6.12a.b) show that
me(H ) and FEDL(H ) are functions of the dimensionless separation distance H.

Furthermore, Equation (6.12a) indicates that the dimensionless vdW interaction
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force fm'(H ) also depends on two dimensionless parameters: A and Ag. In Equation
(6.12b), function —F_z(H ) for the EDL interaction force is expressed by Equation (3.51).
Referring to Equation (3.51), the EDL interaction force Fen (H) also depends A and the

other three dimensionless EDL interaction parameters: D], Da and t. In this chapter,
Equations (6.12a,b) will be used to calculate the overall dimensionless colloidal force
Fe(H)= Foaw(H)+ Feor(H) required in the mass transport equations.

It has been pointed out in Chapter 3 that both the vdW and EDL interaction forces
are extremely stiff functions of the dimensionless separation distance H. Therefore, the
adaptive integration technique was utilized in order to predict these two forces accurately
over the large range of H (10'351-{5100). For the same reason, Equation (6.10) is
characterized by an extremely rapid change near the location of the PEM H=H,, where
these two colloidal forces decay very rapidly with H. It is also seen that here the
dimensionless distance variable H changes more than four orders from approximately
H¢=10" to H. =40. Hence, some effort should be made in order to improve the accuracy
of numerical predictions of the droplet concentration distribution and the Sh number from
Equation (6.10). Here, a special transforming function is introduced in the numerical
scheme to transform the dimensionless separation distance H into a new variable a by:

ln(Hi)
a= H° (6.13)
In(—*)

0

This transforming function ensures a continuous change of the mesh size in the new
radial coordinate a from 0 to 1, corresponding to the change of H from Ho=10" to H.
=40. In addition, a uniform mesh size for a (0<a<l) can be used and calculation
accuracy can be improved by simply reducing the mesh size. Accordingly, Equation

(6.10) and its boundary conditions Equations (6.7a,b) can be transformed as follows:

dn(@) — - . o GO
1o Fo(a)B(a)n(a) = Sh _G(a) B(a) (6.19)

n(@),., =1 (6.15a)
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n(@)|,.o =0 (6.15b)

Hovor Ho _ oy (He
) D) H@ = Ho

where, B(a) = H,( )® and

0
H, .o
Gla)=g[H(a)]=H ()" +1+ 4
H,
This kind of transformation will make the numerical integration not only much easier

(constant mesh size) but also much more accurate and efficient (quick convergence).

6.1.4 1-D Numerical Resuits and Discussion
Based on the DLVO theory, the total colloidal force is composed of the vdW

interaction force and the EDL interaction force. As stated above, the overall colloidal
force F..(H) between the oil droplets and the cylindrical fiber surfaces in the aqueous

phases can be fully described by the following dimensionless parameters: A and A4 for
the vdW force, and A, DI, Da and t for the EDL force. With the transformed governing
Equation (6.14) and the boundary condition Equations (6.15a,b), a parametric study can
be conducted for these dimensionless parameters. Because the total colloidal interactions
are characterized by five dimensionless parameters, i.e. A, Aq4, DI, Da and 1, a systematic

study of their effects on the deposition process is prohibitive. Since the curvature effects

of the cylindrical fiber represented by A4 = R on the vdW and EDL interaction forces
a

have been thoroughly investigated in Chapter 3, it will be chosen as A=10 as a typical
input value. In addition, the dimensionless asymmetric EDL parameter Da is chosen as
Da=0 for simplicity. Therefore, some typical values for the remaining three
dimensionless parameters were chosen as follows. (i) Ag=0.06, 0.60 and 6.00, represent
weak, middle and strong vdW interactions respectively; (ii) DI=-10°, -10%, -10°, which
represent the strong attractive EDL interactions, +10, +20 and +30, which represent the
repulsive EDL interactions; and (iii) t=xa=5 (lower electrolyte concentrations or smaller
oil droplets), 10 and 100 (higher electrolyte concentrations or larger oil droplets). These
values cover almost all practical cases of interest. Their selections are also based on
those values that have been determined in the previous chapters, e.g., Ag=0.16-5.35 (see

Tables 4.8 and 4.9), Dl=%( 10°-10%) and t=4-1000 (Tables 5.3 and 5.4). The detailed
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numerical results of the influence of these three dimensionless parameters on the local
dimensionless droplet number concentration distributions n(H) and particularly the
dimensionless mass transfer rate Sh numbers will be presented and analyzed in the
following paragraphs.

The typical profile of the oil droplet number concentration n(H) is shown in
Figure 6.1a in which H is plotted on a linear scale and in Figure 6.1b in which H is
plotted in common log scale with A;=6.0, DI=-10° and t=5. The Sherwood number is
found to be Sh=0.0645 in this case. These two figures show that the droplet number
concentration changes continuously from zero close to the solid surface where H=H, to
unity at the "infinity" H=H. such that the two boundary conditions expressed by
Equations (6.7a,b) are satisfied. In particular, as clearly seen from Figure 6.1b, the
droplet number concentration remains zero at smaller H<1.0. This depletion zone, where
r_x(H ) =0, is caused by the "perfect sink" approximation, ;(Ho) =0. In the present case,
both strong attractive vdW and EDL interaction forces are assumed. Hence, once the
droplets are in the vicinity of the solid surface (H<1.0), they are strongly attracted by the
surface and thus irreversibly trapped into the PEM region. Moreover, it is also noted that
Figure 6.1b gives a more clear and representative picture of the actual droplet number
concentration distribution, especially at smaller H values. The region at smaller H values
is much more interesting than the region farther away from the solid surface because the
Sherwood number is defined at H=H, and equal to the local slope of the concentration
profile. The droplet number concentration distribution near H=H, will directly affect the
deposition rate of the oil droplet onto the solid surface. In addition, Figure 6.1b justifies
necessity of the transforming function introduced in Equation (6.13). Hereafter, only the
droplet number concentration profiles with H in the log scale will be plotted.

Figure 6.2a shows n(H) for As=0.06, 0.60 and 6.00 at DI=+10 and -10°

respectively (t=5). The Sh number versus A4 is plotted in Figure 6.2b for the same
values of A4, Dl and t. It is seen from Figure 6.2b that, when either DI>+20 or Di<-10°,
Sh is strongly dependent on DI only, regardless of A4 from 0.06 to 6.00. This means that
such deposition processes are dominated by the EDL interaction force, irrespective of its

repulsive or attractive features. Only when DI=+10 (1=5), for weak repulsive EDL
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interaction, the vdW force (Ag4) becomes comparable to the EDL force and thus important
in determining the mass transfer rate. Correspondingly, Sh increases from below 0.035 to
above 0.045 as A, increases from 0.06 to 6.00. In this case, as shown in Figure 6.2a,

n(H) profile slightly changes as Ay is altered. In comparison with the those for the

strong attractive EDL force (DI=-10°), the droplet number concentration distributions

also clearly indicate that the repulsive EDL force enables the depletion zone rather closer
to the solid surface (within H<0.1) and causes n(H) to increase more quickly in the
intermediate range of 0.1<H<1.0. Farther away from the solid surface, the vdW becomes
predominant and thus n(H) reaches unity at H=H.. Hence, based on the numerical

calculations presented here, it can be concluded that the attractive vdW interaction is a

necessary condition to ensure deposition occurring. Nevertheless, it only affects the
droplet number concentration distribution n(H) and the mass transfer rate Sh to a limited

extent.
The specific effect of the dimensionless EDL interaction parameter DI on the

deposition process is shown in Figure 6.3a for the droplet number concentration
distribution n(H) at A¢=6.00 and t=5. This figure clearly shows the variation of n(H)
with DI. As the attractive EDL interaction is reduced, the depletion zone is reduced from

=2.0 for DI=-10° to H=1.0 for DI=-10’. Once the EDL interaction becomes repulsive
(DI>0), the depletion zone rapidly shrinks within H<0.3. On the other hand, when
DI=+20 or +30, n(H) increases quickly beyond the depletion zone. As indicated before,
since the attractive vdW force at A4=6.00 is comparable in magnitude to the repulsive

EDL force at DI=+10, in this case ;(H ) (the dotted line in Figure 6.3a) increases slowly

at the smaller H (0.1<H<1.0), followed by a rapid increase to n(H_.)=1. This

phenomenon is caused by the following competing facts between the vdW and EDL

interactions at different ranges of the dimensionless separation distance H: (i) at H«l (10

3<H<0.1), the attractive F.sw (H) is dominant and thus the depletion zone forms; (ii) at

H=1(0.1<H<1), the repulsive FEDL(H ) counteracts the attractive Foaw(H ) and thus
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n(H) increases gradually; (iii) at H»1 (1<H<40), again the attractive F .aw (H)plays a
major role in determining the droplet number concentration distribution.

The above analyses are also supported by variation of the dimensionless mass
transfer rate Sh with the dimensionless EDL interaction parameter DI shown in Figure

6.3b. As expected, with the increase in the attractive EDL interaction, Sh increases.
However, once FEDL(H ) becomes repulsive (DIi>0), Sh is reduced much more quickly. It
is noticed that the reduced radius t=xa of the oil droplet also plays an important role in

determining the effect of FEDL(H )on Sh. The smaller t is, the larger its influence is on
Sh. Especially when t=100, the effect of F eo. (H)on Sh becomes negligible and thus the

deposition process is solely controlled by the attractive F.w(H). As was discussed in

detail in Section 3.10 and expressed by Equation (3.52), the appreciable EDL interaction

occurs only within a region (H<Hm.x), where H_, = 3 . Therefore, if t==100, FEDL(H )
T

is only noticeable within a rather small region (H<0.03). When the oil droplets are
farther away from the solid surface, Feo(H) can be completely ignored in comparison
with Foaw (H).

The detailed effects of the reduced radius t of the droplet on the deposition
process are shown in Figure 6.4a for n(H) and in Figure 6.4b for Sh, respectively. As
shown in Figure 6.4a, as long as the EDL interaction is repulsive (DI>0), the depletion
zone is generally compressed within H<0.1. But the droplet number concentration profile
has a quite different shape for a different value of t. Accordingly, Figure 6.4b indicates

that in this case Sh is strongly dependent on the specific value of t. However, for the
attractive EDL interaction (DI<0), these two figures show that both ;(H ) and Sh slightly
changes as t changes. As t approaches 100, the effect of Feo(H) on the deposition
process becomes vanishing and thus Sh approaches 0.0597. This limiting Sh value
corresponds to the deposition case in which only the attractive Fuaw (H) (A4=6.00) exists

between the oil droplet and the solid surface.
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6.1.5 Limitations of the 1-D Numerical Model

The 1-D numerical describes the static steady state deposition of dilute emulsion
droplets onto a cylindrical surface. Strictly speaking, however, the static deposition is
essentially a transient process. After the deposition starts, more and more oil droplets will
attach to the fiber surface. Accordingly, the surface properties of the fiber will change
gradually. In particular, the vdW and EDL interactions between the incoming oil
droplets and the partially coated fiber surface will be modified. This will affect the

validity of the "perfect sink"” approximation, n(H) -1, =0, a widely used boundary

condition in the PEM region. In comparison with the mass diffusion produced by the
colloidal interactions, the transient term in the mass transfer equation may play certain
role in the static deposition. On the other hand, as the deposition proceeds, the mass
diffusion boundary layer becomes thicker and thicker. Thus it becomes increasingly
difficult to seek a numerical solution that satisfies simultaneously the two far field
dZ(H)I
dH '

these two far field boundary conditions to asymptote to a steady state. Hence, some

=0. [t may take a long time for

boundary conditions, n(H)|,-. =1 and

further analyses are needed to justify the approach of using a steady state formulation to
model the deposition process. More specifically, it needs to be proven that the “perfect
sink" approximation is still valid for a limited deposition duration. An order-of-
magnitude analysis will be performed to investigate the importance of the transient term.
Furthermore, a parametric study will show that the far field boundary conditions do not
affect appreciably the predicted deposition rate at the fiber surface.

As will be noted in Chapter 7, in this study, the deposition period of the first 15
min is not accounted for in the deposition measurements because the deposition during
this period is caused largely by the insertion of the fiber rather than solely by the colloidal

interactions. Choosing a,ve~10 um in Equation (7.4), the dimensionless thickness of the

,/Dmt

ave

mass diffusion boundary layer, , is nearly equal to unity at t=15 min. As shown in

Figures 6.2a, 6.3a and 6.4a for the dimensionless droplet number concentration

distributions, the droplet depletion zones where n(H) =0 extend from Hy=0.001 to H=l.
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Therefore, the actual deposition process is close to a steady state when t>15 min. Also as
will be shown in Chapter 7, only a small fraction of the fiber surface is covered by the
attached oil droplets until t=90 min. Hence, the "perfect sink" approximation remains a
good assumption in the present case.

An order-of-magnitude analysis is implemented to support the claim that the
transient term is not important in the deposition process, particularly at small separation
distances. For the cylindrical coordinate system (r, ¢, z) shown in Figure 2.2 and the 1-D
unsteady deposition case, substituting Equations (2.10) and (2.11) into Equation (2.1)

yields:

on(r,t)+&_§_[_r on(r,t) L, )F,(r)
ot r Or or kT

(aH)’

]=0

Setting An=ne, Af = , Ar=aH and r=R+a+aH in the above equation, the ratio of the

o

droplet migration caused by the total colloidal force to the contribution of the transient

term can be estimated as follows:

D, é rm(r,0)F_ (r) D, 1 (R+a+aH)n F,(r)
r or kT R+a+aH aH kT —H -Fe
g - =H - -Fc(H)
ot (aH)’
D,

where H is the dimensionless separation distance and Fc.(H)is the dimensionless
colloidal force as defined in Equation (6.6). The above expression indicates that the

deposition process is controlled by the colloidal force as long as the term H-Fou(H) is

greater than unity. As shown in Figures (3.4) and (3.7), the ratio H-sz(H ) remains
larger than unity in the range of H=Ho to H=1. This conclusion is consistent with the
predicted droplet depletion zones (Ho<H<1) for most cases. The droplet number
concentration distributions at H<1 depend strongly on the vdW and EDL interactions,
which are known to be effective at small separation distances. Thus the Sh number,
_ dn(H)
dH

colloidal interactions. When H>1, the transient term plays an appreciable role in

Sh

l n=u, » as defined in Equation (6.8), should also depend heavily on the
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determining the droplet number concentration distributions. The magnitude of the

. : . . 1 . .
transient term increases since the vdW force decreases with P as shown in Equation

(3.18) and the EDL force decreases exponentially as shown in Equation (3.38) for the
sphere-flat plate system.

It has been realized that, at large separation distances, the diffusion caused by the
gradient of the droplet number concentration and the effect of the transient term on the
overall droplet number concentration distributions may become increasingly important.
Nevertheless, the computed Sh number should be insensitive to the specific value of the
“infinite" separation distance H. used in the numerical simulations since Sh number is
defined in the PEM region. In this study, a sensitivity analysis for H. was conducted
with respect to the Sh number of the 1-D model predictions. Figure 6.4c shows the
results of the parametric study. In this figure, the two dotted lines represent the limits of
10% deviation from the Sh,=0.0295 for H.=40. It is found from Figure 6.4c that all the
computed Sh numbers for Ho2>20 are within the limits. Since the measurement error of
the deposition tests is approximately 10% (see Chapter 7), the specific value of Hx used
in the numerical predictions should not affect the Shca appreciably as long as H.2>20.
Furthermore, it can be concluded that the droplet number concentration distributions at
large separation distances or the far field boundary condition(s) have no significant effect
on the steady state deposition.

Finally, if the actual deposition process is always in a strong transient state, the
measured Sh numbers should always decrease as the deposition proceeds. As will be
shown in Chapter 7, however, the measured Shex, was found to be constant and that no
saturation states of deposition were observed in all the deposition measurements. The
number of the attached oil droplets on the fiber surfaces always increases linearly (i.e.
constant Sh) with the deposition time until t=90 min.

In summary, though the actual static deposition is a typical transient process,
under certain conditions, the present steady state 1-D numerical model can be used to
simulate the practical deposition case. It must be remembered that the steady state model
is applicable only to the region close to the solid surface, where the vdW and EDL forces

are dominant. In addition, the present 1-D numerical model is valid only for the static
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deposition of dilute emulsion droplets onto a cylindrical surface. It can only be used to
predict the deposition case in which the overall surface coverage is low, i.e. small Sh
number and short deposition duration. It is worthwhile to reiterate that the 1-D model
does not take into account any external force fields. When external force fields are
present, the deposition process becomes a multi-dimensional problem. In the following
section, the deposition case in the presence of the gravitational field and the electric field
will be studied. A two-dimensional (2-D) deposition model and its numerical solution

will be presented.

6.2 2-D Mass Transport Equation

The one-dimensional mass transport equation is obtained in the absence of any
external force fields other than the vdW and EDL interaction forces. In this case, since
the colloidal forces (the vdW and EDL interactions) are oriented only in the radial
direction and their magnitudes depend only on the gap width between the oil droplet and
the fiber surface, the general mass transport equation reduces to the 1-D second-order
ODE, i.e. Equation (6.1). In the preceding section, the detailed effects of the two
universally existing colloidal interactions on the droplet number concentration
distribution and the mass transfer rate onto the solid surfaces were studied. Nevertheless,
if the external force fields are present, the local mass transfer rate will depend not only on
the magnitudes of these fields but also on their orientation relative to the fiber surface.
This presents the two dimensional problem. The purpose of this section is to obtain the
numerical solution of 2-D mass transfer equation and thus to examine the deposition
process in the presence of the two frequently encountered external force fields: the
gravitational field and the electric field. The general 2-D mass transfer equation has been

derived in Chapter 2 and expressed by Equation (2.22):

o'n on on - &*n
6H—2+g.(H,¢)5i—1- gz(H,¢)5;-g3(H,¢)n(H,¢) +g,(H) EYE

=0 (6.16)

where:

d —
g (H,9) —d—H{ln[f.(H)g(H)]}—FH(H,d’),
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LH)Fo(8)

H.,¢)= .
&9 = e

o —col H G +
£.(H.0) = Fu(H,8) - (ol £ g )y + S Lo ST = 00008

*

SJ(H)
(g (H)’

f,(H)and f,(H)are the universal hydrodynamic correction coefficients (UHCC) and

g.(H)=

their analytical expressions are listed in Equations (2.17a,b) (Masliyah, 1994),
g(HY=H+1+ A,

Fu(H,¢)=L ’::I’,¢)=Fm1(1{)—(6ri£f)cos¢ is the component of the total

a

dimensionless force in i, direction,

— F, .
Fe(9)= :((7?) = (Gr £ Ef)sin ¢ is the component of the total dimensionless force in ii

a

direction,

Feat (H)= i‘%,ﬂ = Fuw(H)+ F et (H) is the total dimensionless colloidal force that

a

has the component in i, direction only, F . (H)and Feou(H) are given in Equations

(6.12a,b),
4
E m3 (po ~Puw )g
Gr= T is the dimensionless gravity number,
a

E
and Ef = _‘lkl?l is the dimensionless electric field number.

a

2
It is noted that the angular diffusion term 24”; in Equation (6.16) is usually

negligible since its coefficient g,(H)is sufficiently small for most practical cases where
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A»l. Thus the above elliptical second-order PDE can be simplified as the following

parabolic second-order PDE:

d*n n n -
St ) - H PTG HORHH=0 (617

The same strategy was utilized by Adamczyk and van de Ven (1981b) to simplify their
elliptical PDE of mass transfer. However, it should be emphasized that the whole term,

2
g.(H )2—;— is omitted solely because A in its multiplier g,(H) is sufficiently small

2

and thus the whole term is negligible. Physically, such omission does not imply
d’n

Y =~ 0. In other word, ;(H ,¢) should not be considered to be a linear function of ¢.

6.2.1 Boundary Conditions

Equation (6.17) as it appears is a linear homogeneous parabolic second-order 2-D
PDE whose solution can be achieved only by using numerical methods. In order to find a
unique solution of Equation (6.17), similar to the 1-D case, the boundary conditions with

respect to H can be specified as:

n(H.0)|sen, =1 0<¢p<n (6.18a)
n(H,$)| o, =0  0<¢<n (6.18b)

Equations (6.18a,b) represent the first kind of boundary conditions, which are also
referred to as the Dirichlet boundary conditions (DBCs). In addition, appropriate
boundary conditions with respect to ¢ are needed in order to find the unique numerical
solution of Equation (6.17) for a 2-D deposition case. However, the general deposition of
droplets onto a solid surface in the presence of arbitrarily oriented external force fields
can not be readily analyzed numerically, even by use of sophisticated numerical methods.
Hence, focus will be placed on the external forces that are composed of the gravitational
field and the electric filed only. The latter is applied vertically either downward or
upward and normal to the solid surface, assuming that the cylindrical fiber is placed
horizontally inside the deposition cell. Thus the “symmetry” boundary conditions can be

applied:
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on(H,¢) |
o '*°

aE(H,ml _
op

=0 (H,<H<H)) (6.19a)

0 (H<H<H,)) (6.19b)

Unlike the DBCs for I—l(H ,¢) with respect to H, the boundary conditions for ;(H ')

with respect to ¢ are classified as the second kind of boundary conditions, which are also

called the Neumann boundary conditions (NBCs). It is also seen from the function
FH(H,¢) defined in Equation (6.16) that the component of the total dimensionless

external forces (Gr + Ef) in i, direction always reaches its extremes at the upper and

lower apex points where ¢$=0 and n, respectively. At these two points, F +(¢) becomes
zero. Consequently, it is anticipated that the minimum and the maximum deposition rates

always occur at ¢$=0 and &, correspondingly.

6.2.2 Caliculation of Sh (¢) and Sh
Similar to the 1-D situation, the dimensionless mass transfer rate, the Sherwood

number in 2-D problem, can be defined as:

Jo on H,
Sh=- D_n, f'(HO)—n_(a—H_";)Ihno = Sh(¢) (6.20a)
a

In the present case, Sh becomes a local quantity, i.e. a function of the angular coordinate
¢ because the concentration gradient changes with ¢. As discussed above, since the

component of the total dimensionless external forces (Gr + Ef)in i, direction always

achieves its extremes at $=0 and n respectively, Sh(¢) should approach its maximum or

dSh(¢) I
d¢ ¢=0.x

minimum value at the same azimuthal direction, i.e. =0. The average

(overall) dimensionless mass transfer rate around the cylinder Sh is defined as:

h =7—lt- Sh(¢)d¢ (6.20b)

© Gy H
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Therefore, once the droplet number concentration distribution ;(H ,@) is determined
from Equation (6.17), the local mass transfer rate Sh(¢) and the overall mass transfer rate

around the cylinder Sh can be found from Equations (6.20a, b).

6.2.3 Transforming Functions

Equation (6.17), together with the boundary conditions given in Equations.
(6.18a,b) and the “symmetry” boundary conditions given in Equations (6.19a,b), can be
solved numerically by using some numerical methods, e.g., the implicit Crank-Nicolson
method. Similar to 1-D case, Equation (6.17) is characterized by a rapid change of its
multipliers near the location of the PEM where the vdW and EDL interaction forces
decay quickly with H. It is also noticed that the dimensionless variable H changes from
Ho=10" to H., =40 and that ¢ ranges from 0 to n. Hence, care should be taken in order to
solve the equation accurately and efficiently. In this study, two special transforming
functions were used in the numerical scheme and enable a continuous changing of the

mesh size in the new radial coordinate a and the new azimuthal coordinate f,

respectively,
a= HO (6.21a)
In(—=)
H,
B= l—£ (6.21b)
T

Thus, as shown in Figures 6.5a and 6.5b, the physical domain (Ho<H<H., 0<¢<n) is
transformed into the domain for the two new variables, a and 8 (0<a<l, 0<B<I1).
Substituting Equations (6.21a,b) into Equation (6.17), as well as its boundary
conditions Equations (6.18a.b) and the so-called "symmetry" boundary conditions
Equations (6.19a,b), yields
dn

on on - _
7+ Gi@p)~+ Gz(a,B)gﬂ-+G,(a,ﬂ)n(a,ﬂ) =0 (6.22)
n(a, B)lg. =1 0<p<l (6.23a)
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n(@, B, =0 0<B<I (6.23b)
on(a, B)
—ap—l pga =0 0<acsl (6.24a)
6;;(11, )
Tpﬂ‘|ﬂ=° -0 O<asl (6.24b)

where

G,(a, B) = {;{mm(a)c(a)]} —Fa<a,ﬁ)8(a)—ln(%),

0

_ F(@)F3(p) B (a)
@)= @@
G,(a,B) = —B(a)Fa(a,B)d—"—{lnm(a)c(a)l } - B(a) dE=H(@)]

a da
. Bz(a) F,(a)(Gr = Ef)cos(nf3)
F(a)G(a)
H(a) = Hy f; ) , Gay=g[H(a)]=H(a)*1+A, F@)=f[H()], i1, 4, and,
_dH(@) _ py Hevar He, _ H.

B(a) = T = Hy ()" =) = H@) (),

Fa(a, B) = Fea[H(a)] + (Gr £ Ef )cos(zB)
Fu(B) = (Gr £ Ef)sin(nB),

4
gﬂa’(p., -p.)g
o=

a

E

a
It is noted that the total dimensionless external force F.. =Gr+ Ef is constant

independent of the separation distance H, where Gr represents the dimensionless gravity

number for the gravitational field and Ef is the dimensionless electric field number. Later
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on, these two dimensionless parameters will be examined to determine their effect on the

dimensionless mass transfer rate Sh(¢) and Sh .

As will be discussed in detail in the next section, the implicit Crank-Nicolson
approximation of Equation (6.22) is unconditionally stable and convergent, the mesh size
does not affect the stability of numerical solution and thus is chosen solely based on
accuracy requirement. The accuracy of the numerical solutions is checked by varying the
mesh sizes and only results that are insensitive to these changes, ie. the relative

differences are within 0.01%, are considered accurate.

6.2.4 The Crank-Nicolson Method

Equation (6.22) is a typical parabolic second-order linear homogeneous PDE of
diffusion problem, which can be numerically solved by using the well-known Crank-
Nicolson method (Hoffman, 1992). In the literature, the Crank-Nicolson method was
successfully applied to solve the mass transport equations in the case of parallel-plate and
cylindrical channels (Adamczyk and van de Ven, 1981a) and for deposition of Brownian
particles onto cylindrical collectors (Adamczyk and van de Ven, 1981b). For the
physical domain shown in Figure 6.5a and the transformed domain shown in Figure 6.5b,
the finite difference stencil for the Crank-Nicolson scheme is illustrated in Figure 6.5¢c. It

can be seen from Figure 6.5¢ that the values at six points are required in every calculation
step. Based on the Crank-Nicolson scheme, the derivative n,(from now on, nis
substituted by n for simplicity) at the mid-grid point (i, j+0.5) can be approximated by the
second-order centered-difference (SOCD) expression. Similarly, the partial derivative

n,, can be approximated by the average value of the second-order centered-space

aa

(SOCS) expression. Each derivative term in Equation (6.22) can be approximated by its

algebraic finite difference approximation (FDA),

1
ij+0Ss = —(naali.jﬂ +naa|i.j =

2

-2n. .., +n n

l[niq,jq ijel i=l.j+! +
2 Aa Aa

—2n,, +n,

ivl s i-1.j ]

naa

1 1. n, ,—n_; n, .—n,_;
i.j+0.5 =E(na|i.j¢l +"a|'.j) =5[ = J;Aa' =Ly M.;ZAal <]

n,

n.

i, j+l -

n
nﬁli.j+0.5 = AB

=L and
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n ;. +n;

Nl ivos = 3
where, Aa and AP are the mesh sizes and the subscripts i and j represent the grid numbers
of the new variables a and P respectively. Substituting the above FDAs and the
expression of n;j+.s into Equation (6.22) produces the algebraic finite difference equation
(FDE),

| n;, J+l 2": J+l + n,_, S+ + ni‘l.j - 2”!’-] +n

-1 +
2[ Aa Aa ]
G,(i,j+0.5) [ni-vl.j*l R + Riviy — iy, 1+
2 2Aa 2Aa
a—n;
Gyt j+ 09 P ST 4,120

Multiplying the above equation by AP and rearranging the resultant equation gives:

A A A .. A .
[ ZAZBa 4AB G (i, j+0)n,_, ., +I- —Afz + G, (i, j+0.5) +—2B—GS(1, j+0.9)n, ., +

z’fa 4‘2’(’1 Gilis j+0.9)n,.. . 12’25 4‘2’1 Gy (ir j+0.5)n,,, +
AAZ“; (i, j+0. AZB (i, j +0. [ZAAZﬁ 4B G(G,j+0.5)m,_ ;=0
This equation can be further simplified as:
a; n,_y o+ b n, o *+C My YA N, +d, n,;+c, n.; = 0 (6.25a)
or
a, (n_; +n_ . )+b n ., + c,,(n;+n,,)+d n ;= 0 (6.25b)
where:

2,7=C-D-G (i, j+0.5)
bi;=-2C+Ga(i, j+0.5)+0.5AB-Gs(i, j+0.5)
ci;j=C+D-G (i, j+0.5)

d;j=-2C-G(i, j+0.5)+0.5AB-Gs(i, j+0.5)

AB AB
7> D=
2A°a 4Aa
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It is noted that the four multipliers, a;;, b;j, cij and d;;, are not only dependent on
the mesh sizes Aa and AP through the coefficients C and D, but also dependent on the
values of the three functions, Gi(a,B), Gi(a,B) and Gi(a,p) at the mid-grid point (i,
j+0.5). In terms of Equations (6.25a,b), the four multipliers, a;;, b;j, ci; and d;, are
marked beside their corresponding grid point(s) in Figure 6.5c. Obviously, multipliers a;;
and c;; are symmetric in the two levels for the grid points at (i-1, j or j+1) and at (i+l, j
or j+1), respectively. Prior to solving the resultant algebraic FDE, Equation (6.25a) or
Equation (6.25b), it is useful to carefully examine some major numerical properties of the
Crank-Nicolson method. First, it can be easily proved that the Crank-Nicolson
approximation of the PDE is consistent and unconditionally stable and that, by the Lax
equivalent theorem, such approximation of Equation (6.22) is also convergent (Hoffman,
1992). Secondly, Hoffman (1992) also showed that the truncation error of the FDE
produced from the Crank-Nicolson approximation is in the order of 0O(AB)+O(A%a) for
the present case. This can be proved from the first form and the second form of the
modified difference equation (MDE) of Equation (6.25a) or Equation (6.25b). The MDE

is obtained by writing each term in either equation as a Taylor series for n(a,B) about the

mid-grid point (i, j+0.5). Finally, for a given value of ¢ = GATBz’ AP=c-G;A’a. Thus,
a

as Aa is successively halved, AP is quartered. Consequently, the O(A*B) term should
decrease by a factor of approximately 16 and the O(A’a) term should decrease by a factor
of approximately four as Aa is halved for a constant c. The total error decreases by a
factor of approximately four, indicating that the O(A’a) term is the dominant error term.
Hence, the calculation step for B and especially the mesh size for a are chosen purely
based on the accuracy requirements. In summary, the implicit Crank-Nicolson method is
a two-level, six-point, single-step and second-order unconditionally stable and
convergent approximation. In order to obtain the numerical solution of the PDE,
Equation (6.22), a set of linear finite difference equations (FDEs), Equation (6.25a or b)
at all the discrete grid points, have to be solved simultaneously in conjunction with the

relevant boundary conditions.
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6.2.5 Solution of the Finite Difference Equations (FDEs)

The FDEs given in Equation (6.25a or b) are applicable only at the interior points.
If the range of 0<a<1 is divided into imax grids and the range of 0<B<I is divided into
jmax grids, the interior points are (i, j) and the droplet number concentrations at these
points are n;;, where i(a)=1~imax-1, j(B)=I~jmax-1. For instance, at the first level of
i=1~imax-1, j=0, a set of linear equations can be obtained from Equation (6.25a) and

written as follows:

(i=1,j=0 ayong, +bony +ciony +agngg +d gn g +Cionye =0
i=2j=0 Ay oty +hyony, +Coohy +ayon o +dygly g+ Coolty o =0
S (6.26)
 =imax-1,7=0 @ max-1.0Mimax-2.1 + Dimax<1.0M max 1.1 + Cimax—1.0Mimax.1
L + @y an1.0Mimax-2.0 + Dimax-1.0Mimax-1.0 + Cimax-1.0Mimax0 =0

It is obvious that one can not solve the above equations alone since there are only total
(imax-1) linear equations for 2(imax+1) unknown variables, n;j, i=0~imax, j=0~1 in
Equation (6.26). Additional (imax+3) relations are required, which, as will be discussed
later, can be found from the boundary conditions at i=0, imax and j=0, 1, as well as at
i=1~imax-1, j=0. Next, by applying Equation (6.25a) directly at the second level of
i=1~imax-1, j=1, similar (imax-1) equations can be written down. If at this stage all the
values at the last level, n;;, i=0~imax, are known from the above calculation, then there
are only (imax-1) equations at the new level for (imax+1) unknown variables, n;»,
i=0~imax. Two extra relations are needed and can also be given from the boundary
conditions at (0, 2) and (imax, 2) for ng> and nimax2, respectively. Therefore, the
numerical calculation at the interior points can proceed from one level to another and
eventually stop at j=jmax-2.

The boundary points are the points either at i=0, imax or at j=0, jmax,
respectively. There are two kinds of boundary conditions involved in this study. They
can be used either to determine the values at the boundary points directly (the first kind)
or to relate the values at the boundary points to those at the interior points (the second
kind). As shown in Equations (6.23a,b), the values of n;; are specified at the boundaries,
i=0 (a=0) and i=imax (a=1), irrespective of B values. These boundary conditions can be

simply expressed as:
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n, =0, m..,=1 (0<;<jmax) (6.27)

rmax.j
These two boundary conditions are classified as the first kind or the Dirichlet boundary
conditions (DBCs). Obviously, Equation (6.27) provides the two additional relations
previously required at any levels j21, e.g., no> and nimax> at the second level j=I.
Furthermore, the following relations can be readily attained by choosing j=0, | in the

above equation, respectively,

{"o.o =0, n,,0=1 (6.28)

"O.I =0’ imax.| =1

Equations (6.24a,b) express the second kind or the Neumann boundary conditions
(NBCs) at j=0 (B=0) and j=jmax (B=1), respectively. At j=0, the boundary condition can
be approximated by the explicit Euler method,

n,—n,=0 O(A’B) (1<i<imax-1) (6.29a)

Equation (6.29a) and Equation (6.28) together provide the exact (imax+3) relations
needed for solving Equation (6.26). Similarly, at j=jmax,
M max — Mo =0 O(A'B)  (1<i<imax-1) (6.29b)
Equation (6.29b) can be used to relate the unknown values of n; jmax at the level j=jmax to
the values of n;jmax.; at the sub-level j=jmax-1, which should be known from the above
numerical calculations for the interior points starting from j=0 to j=jmax-2. With the
values given in Equation (6.27) at j=jmax, all the values of n;jmax (i=0~imax) at the level
j=jmax are thus determined. Combining all the values of n;j, (i=0~imax, j=0~jmax) at
the interior points and the boundary points together, the algebraic solution of the FDEs,
Equation (6.25a), is achieved in the whole transformed domain, i.e. a=0~1 and $=0~1.
Based on the above numerical manipulations, in principle, some proper algorithm
can be utilized to solve all the relevant linear equations, Equation (6.26) for the interior
points and Equations (6.27) through (6.29a,b) for the boundary points, and find all the
values of n;; (i=0~imax, j=0~jmax). However, it is not a trivial task to solve the total
(imax+1)x(jmax+1) linear equations directly, particularly in consideration of the fact that
there are six non-zero coefficients in Equation (6.25a) for all the interior points
(i=1~imax-1, j=1~jmax-1). For example, in order to achieve more accurate numerical

results, if both imax and jmax are chosen as 1000 and thus Aa=AB=0.001, one has to
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solve over one million linear equations simultaneously. Instead of pursuing the direct
solution of the finite difference equations at the interior points and the equations
representing the relevant boundary conditions, in this study, a simple iteration method is
devised to find the solution of the linear equations. This iteration procedure will be
described as follows.

Basically, the iteration calculation starts from the point at i=1, j=0. Six variables
are involved in Equation (6.25a) at this point. They are ngg, n, o and n; at the level j=0,
as well as ng |, n;; and n,; at the level j=1 as shown in the first expression in Equation
(6.26). It is known that ny ;=ngo=0 from Equation (6.28) and that n; ;=n; ¢ and n;;=nyg
from Equation (6.29a). Thus, there are only two independent unknown variables in
Equation (6.25a) at i=1, j=0:

(bl.O + dl.O)

6.
2¢, (6.302)

o =— n,

If a guess value for (n; o)gess is given, nzo can be determined from the above equation.
The general form of Equation (6.30a) at j=0 will be, using Equation (6.25b):
2a,n, o +(by+d )n,,

- (1<i<imax-1) (6.30b)
2c,,

ni~1.0 =

Note that when i=1 and ngo=0, Equation (6.30b) reduces to Equation (6.30a). Such
numerical procedure can proceed until i=imax-1 and (Nimaxo)ca is determined. Since the
(Dimax.0)acwat Should be equal to unity as required by Equation (6.27) at i=imax, j=O0,
(n1.0)guess can be adjusted accordingly and the iteration calculation continues until
(Nimax.0)cal is sufficiently close to unity within a specified precision. Once all the values of
n; o (i=0~imax) at the level j=0 are obtained, according to the two boundary conditions
given in Equation (6.27) and Equation (6.29a), all the values of n;; at the level j=1 will
be same as their corresponding values of n; at the level j=0, i.e. n;;=n; (i=0~imax).

The above iteration procedure can be also used to find the values of n;;+; at all the
remaining levels j=1~jmax-2. For instance, at i=1, ngj+1=no;=0 from Equation (6.27) and
n,jand n,; at the previous level are known. Using Equation (6.25a) gives:

_ b n ;. +dyn; +cny, i=1lj21 (6.31a)

n;in=
Cu.j
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Similarly, if a guess value for (nj+i)gues is chosen, nyj+ can be found from the above
equation. More generally, one has

n __4, O, +n_ ) )+b 0, +d n  +c ;n,, i21,j21 (6.31b)

i+l j+1
C

i
Thus (ny j+1)guess can be adjusted accordingly to make (Dimaxj+t )cal adequately close to unity
as required by Equation (6.27), j=1~jmax-2. In addition, all the values of n;jmax at the
level j=jmax should be same as the values of n;jmax.1 at the level j=jmax-1 according to
the so-called “symmetry” boundary condition at j=jmax given in Equation (6.29b), i.e.
i jmax= Njjamx-1 (i=1~imax-1). In particular, 0o jmsx=0, Dimaxjmax=1 from Equation (6.27).
Ultimately, all the values of n;; (i=0~imax, j=0~jmax) have been found. Therefore, by
using the simple iteration method presented here, there is no need to directly solve the
total (imax+1)x(jmax+1) linear equations. Furthermore, it is much more easier to check
the numerical results and find the accurate numerical solution of the FDEs over the entire

transformed domain (0<a<l, 0<B<l). Eventually, the droplet number concentration

distribution n(a,p) or ;(a,ﬂ) over the transformed domain (0<a<l, 0<B<1) can be

transformed back into n(H ,@) over the physical domain (Hy<H<H., 0<¢<r) because the
old variables H and ¢ can be related to the new variable a and f by using the following
two inverse transforming functions, see Equations (6.21a,b):

H(a)= Ho(%f-)" 0<asl (6.32a)

0

o(pB)=(1-p)x 0<p<l (6.32b)

6.2.6 2-D Numerical Results and Discussion

If there are external force fields involved in the deposition system, the
corresponding mass transfer process becomes a two-dimensional (2-D) problem. In
particular, the case in which only the gravitational field and the electric field are present
is of great interest. If the electric field is applied vertically either downward or upward,
these two external fields will be always normal to the axis of the cylindrical fiber,
assuming it is placed horizontally. Thus the total dimensionless external force is equal to,

referring Equation (6.22):
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Fo: =Gr+Ef (6.33a)
4
Erra’(pa -p.)E
Gr= T (6.33b)
a
E| 4nma’ql|E
Ef = qiE| _ 4ma’q.|E] (6.33¢)
kT kT
a a

where q is the total electrostatic charge on the oil droplet and q. is the electrostatic charge
per unit surface area of the oil droplet. g. is sometimes also called the specific surface
charge or the surface charge density. It is noted that, unlike the vdW and EDL forces,
F e given in Equation (6.33a) is constant, irrespective of the separation distance. Prior
to examining their effects on the dimensionless droplet number concentration distribution
and the dimensionless mass transfer rate Sh(¢) and Sh, the magnitudes of the
dimensioniess gravity number Gr and the dimensionless electric field number Ef have to
be estimated. Since these two forces strongly depend on the size of the droplet and, for
relatively large droplets, they are several orders larger than the total colloidal forces, only
small droplets of radii around a=1 pm are considered in the following estimation.
Substituting the density difference between the silicone oil No. 1 and the DIUF water

Ap=po-pw=52 kg/m’ into Equation (6.33b) yields Gr=0.52. Ef is estimated to be -0.62
from Equation (6.33c) if the typical values for q. and |E| are chosen as -200 pC/m’ (Gu
and Li, 1997b) and 1.0 V/m (in a very weak electric field) respectively. The specific
effects of the vdW and EDL forces on the deposition phenomena were studied in the last
section. In this section, the following values of As=6.00, A=10, s=11.116 and A =0.1
(corresponding to a=1 um) will be chosen for the attractive vdW force and the EDL force
is completely ignored (i.e. DI=0) in the numerical modeling. It is further assumed that
the electric field be applied upward and thus F o =Gr— Ef , in order to avoid the case in

which these two external force fields counteract each other. Specifically, the following

five typical cases were selected for the numerical simulations: (1) Gr=0.50, Ef=-0.50 and

thus F e =1.00; (2) Gr=0.05, Ef=-0.05 and thus F..=0.1; (3) Gr=0.02, Ef=-0.02 and thus -
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F:=0.04; (4) Gr=0.01, Ef=-0.01 and thus F..=0.02; and (5) Gr=0, Ef=0 and thus
F =0, i.e. in the absence of any external force fields. The numerical results of the 2-D
deposition modeling for these five situations will be presented in the subsequent

paragraphs. In particular, the influence of the total external force field Fe: on Sh(¢),
Shand n(H,$)will be discussed.

Figure 6.6 shows Sh(¢) versus ¢ for the 2-D deposition case in which Gr=0.50,
Ef=-0.50 and thus F.=1.00. In this case the average Sherwood number is equal to

Sh=1.4304. As clearly indicated in the figure, Sh(¢) changes greatly around the solid

surface in the azimuthal direction i,. More specifically, the maximum Sherwood

number is achieved at ¢$=0, where Sh(0)=4.5432. This Sh number is nearly two orders

greater than that for the case F o =0. Therefore, in comparison with the colloidal forces,
the external force fields overwhelmingly dominate the deposition when Gr=0.50, Ef=-
0.50 and thus F..=1.00. It is seen from the plot that Sh(¢) decreases dramatically with ¢
and becomes negligible when ¢=100°. Physically, this means that the upper part (0<
$<100°) of the cylindrical surface is heavily covered by the oil droplets while there are
almost no deposited oil droplets onto its lower part (100°<¢<180°). This is because in the
present case both the gravitational filed and the electric field exert downward forces on
the oil droplets. Hence, the total external force functions as an attractive force at the
upper part to assist the deposition occurring whereas it acts as a repulsive force at the
lower part to counteract the deposition rate produced by the attractive vdW force.

Similar variations of Sh(¢) with ¢ for the other four cases are plotted in Figure
6.7. It is seen that these two external force fields control the deposition rate until
Gr=0.0land Ef=-0.01, i.e. until F.=0.02. The deposition rates at $<90° are usually
much larger than those at $>90°. At ¢=90°, the influence of the external force fields on
the deposition is absent and thus Sh(90°) is equal to 0.0606. When Gr=0, Ef=0,
i.e. Fexr =0, a uniform deposition rate Sh=0.0606 is obtained over the entire cylindrical

surface.
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The above analyses are well verified by the dimensionless droplet number
concentration distributions ;(H ,¢) versus H and ¢, which are plotted in Figure 6.8a (H
in linear scale) and Figure 6.8b (H in log scale) when Gr=0.05 and Ef=-0.05, i.e.
Fe=0.1. As shown in Figure 6.8a, the 3-D plot clearly indicates that the droplet number
concentration profiles quickly change from concave shape at smaller ¢ to convex shape at
larger 4. Correspondingly, Figure 6.8b shows that, as ¢ increases from 0° to 180°, the
depletion zone (i.e. n(H ,9)=0) is compressed from H~4.0 at ¢=0° to only H=1.0 at
¢=180°. As discussed above, this phenomenon is simply caused by the fact that the total
external force functions as an attractive force at the upper part to assist the deposition
occurring while it acts as a repulsive force at the lower part to counteract the deposition
rate produced by the attractive vdW force. In summary, the 2-D numerical model
developed in this section can be used to study the 2-D deposition processes in which both

the external force fields and the colloidal forces are present.
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Figure 6.1a Dimensionless droplet number concentration distribution (H in linear scale)
A =6.00, DI=-1000, t=5, Sh=0.0645
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Figure 6.1b Dimensionless droplet number concentration distribution (H in log scale)
A =6.00, DI=-1000, =5, Sh=0.0645
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Dimensionless Number Concentration
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Figure 6.2a Dimensionless droplet number concentration distributions (t=5)
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Chapter 7
Experimental Results for Deposition Tests and Their

Comparison with the Numerical Predictions

7.1 Introduction

In Chapter 2, it was shown that the deposition mass transfer processes are
governed by the colloidal forces and the external force fields. If only the colloidal forces
are involved in the deposition system, the mass transfer equation is a second-order ODE
and thus deposition becomes a 1-D problem. Based on the framework of the existing
DLVO theory, the overall colloidal force is composed of the vdW interaction force and

the EDL interaction force, i.e. Fcol(” )= Foaw (H)+ FeoL (H). For the deposition of any

spherical particles onto cylindrical fiber surfaces, in Chapter 3, general numerical
methods are presented to evaluate the curvature and relative size effects of the cylinder to

the spherical droplet on both the vdW interaction and EDL interaction. Also it has been
shown that the total dimensionless colloidal force FCOI(H ) between the oil droplets and

the cylindrical fiber surfaces in the aqueous phases can be fully described by the
following dimensionless parameters: A and A4 (or A,;;) for the vdW force. and A, DI, Da
and 1 (or x') for the EDL force. Here, A is the ratio of the radius of cylinder to the
radius of the oil droplets. Previously, several important parameters were determined
properly, such as the dimensionless adhesion numbers Ay (Tables 4.8 and 4.9 in Chapter
4) and the dimensionless EDL interaction parameters DI, Da and k™' for the silicone oil
droplet interacting with the bare glass surfaces and the FC725-precoated glass surfaces
across various aqueous solutions (Tables 5.3 and 5.4 in Chapter §).

In Section 6.1, a numerical procedure has been devised and a parameter study of
these dimensionless parameters has been carried out. For arbitrarily chosen values of
these dimensionless parameters, their detailed effects on the deposition phenomena were
examined by numerically solving the mass transport equation, in which only the colloidal
forces are involved (1-D model). At this stage, however, there are two tasks that

naturally come up and are to be completed. First, the effects of colloidal forces on the
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deposition processes were not yet studied experimentally for any practical cases.
Secondly, it is still to be determined whether the theoretical predictions of the proposed
1-D numerical model are in an acceptable agreement with the experimental results for
these practical deposition cases.

In the present chapter, a systematic deposition experiment has been designed to
carefully examine the detailed influence of the colloidal forces on the practical deposition
processes of the silicone oil droplets onto two kinds of glass fiber surface in a variety of
aqueous solutions. The fiber-water-oil deposition systems are exactly the same as those
dealt with in Chapters 4 and S. These deposition data for each specific case will be
compared with the numerical predictions of the 1-D model. Instead, the experimentally
determined dimensionless parameters are used in the present numerical simulations.
Specifically, the dimensionless adhesion numbers A4 for the vdW interaction are taken
from Tables 4.8 and 4.9 and the dimensionless EDL interaction parameters DI, Da and «'

for the EDL interaction are chosen from Tables 5.3 and 5.4.

7.2 Experimental

7.2.1 Materials
For all the deposition tests, two kinds of glass fiber bars were used: the bare glass

bar and the FC725-precoated one. The former is a typical hydrophilic surface, while the
latter represents a typical hydrophobic surface. As was described in Chapter 4, their solid
surface tensions ys can be determined from the equation of state for interfacial tensions,
Equation (4.26a). The contact angle 8 of the pure DIUF water-vapor interface is about
10.1°+1.7° on the bare glass surface and 115.6°+0.9° on the FC725-precoated glass
surface respectively. Therefore, y, is found to be 71.5620.39 mJ/m’ for the bare glass fiber
surface and 13.87+0.51 mJ/m? for the FC725-precoated glass surface.

These two types of glass bars were used as cylindrical fiber surfaces in the
deposition test. They are prepared according to the following procedure. First, the pre-
cleaned standard glass bar of radius R;=1.5 mm was heated and stretched to make longer

and thinner glass bar with radius about R=200-300 um. Then the resultant glass bar was
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cut into pieces, each of 3.0 cm long. As will be described later on, the actual radius R of
each glass bar was measured individually with resolution of 1.0 um. The glass bars were
submerged in Acetone for 12 h, rigorously washed with Acetone several times and
eventually immersed in the pure DIUF water (Fisher Scientific, Canada) for 12 h. For the
deposition tests with the bare glass bars, such cleaned glass plates were dried in air before
they were assembled on an deposition shelf. For the deposition tests with the FC725-
precoated glass bars, each of such cleaned glass bars was dried in air and then coated
with the FC725 coating material (3M Product) by using the dip-coating method as was
described in Section 4.4. Thus a uniform and smooth coating layer of the FC725
(hydrophobic material) was left on the glass bar. The coated glass bar was suspended
vertically and dried in air prior to being assembled on the deposition shelf.

Silicone oil No. 1 with density of p,=1050 kg/m3 and viscosity of u,~172.7 mPa s
(Aldrich Chemical Co.) was chosen as the dispersed oil phase in the deposition tests. Its
small density difference from the aqueous phase greatly facilitates making stable oil-in-
water (O/W) emulsions for this experimental study. The silicone oil-air surface tension is
equal t0 7,,=26.10+0.14 mJ/m? at 22°C.

Four kinds of aqueous phases were used as the continuous phase each time in
making the O/W emulsions and deposition experiments. These aqueous solutions were
exactly the same as those tested for determining the Hamaker constants (Tables 4.8 and 4.9)
and those used in measuring the C-potential measurements of silicone oil droplets and the
glass surfaces (Tables 5.3 and 5.4). They were the pure DIUF water (Fisher Scientific,
Canada); the aqueous phases with different pH values; the electrolyte solutions containing
either NaCl or AICl; and the ionic surfactant solutions containing either CTAB or SDS. The"
pure DIUF water with a density of p.=998 kg/m’ has a liquid-air surface tension of
Ywv=72.66+0.31 mJ/m’ at 22°C, an initial conductivity of 1.21x10™* S/m and an equilibrium
pH of about 6.5. The interfacial tension for pure water-oil interface is equal to
Yow=35.3120.44 mJ/m’. In the preparation of the aqueous phases with different pH values,
the pH value of the DIUF water was adjusted to a desired value by adding either NaOH or
HCI into the pure DIUF water. The electrolyte solutions were prepared by adding either
NaCl or AIC; at a different concentration (from 10° M to 10 M) each time into the pure
DIUF water. Two typical ionic surfactants were used to make surfactant solutions: the
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cationic surfactant cetyltrimethylammonium bromide (CTAB) and the anionic surfactant
sodium dodecyl sulphate (SDS). Their critical micelle concentrations (CMC) in waier
determined from their surface tension-concentration curves were reported to be about
9.2x10™* M for CTAB (Czerniawski, 1966) and 8.1x10° M for SDS at 25°C (Stalidis et al.,
1990). The ionic surfactant solutions were prepared by adding one of the two ionic
surfactants at a different concentration (from 10 M to 10 M for CTAB or from 10° M to
107 M for SDS) each time into the pure DIUF water. Usually a period of more than 12 h
was given for these chemicals to be completely dissociated and uniformly distributed in the

aqueous phase.

7.2.2 Preparation of the Silicone Oil-in-Water (O/W) Emulsions

After each aqueous solution was prepared, the general procedure for making each
silicone O/W emulsion for the deposition tests was as follows. All the silicone O/W
emulsions were made by suspending 0.25% (v/v) silicone oil in the aqueous solutions. A
sample of 1.0 ml silicone oil was added into a beaker with 400 ml prepared aqueous
solution. Inside the beaker, a homogenizer (Gifford-Wood Homogenizer, Greerco Corp.,
Hudson, New Hampshire) was stirring at a pre-set speed of 2000 rpm. The silicone oil was
dispersed and then gradually the O/W emulsion was formed. Stirring was continued for 20
min after addition of the silicone oil. It was found through trial and error that, by stirring the
oil-water mixture at the speed of 2000 rpm for 20 min, the sizes of most silicone droplets are
in a desired range of a=5-15 um. More importantly, such prepared O/W emulsions are
stable, i.e. no appreciable size changes were observed for more than 12 h, though usually the
entire deposition test for each fiber-water-oil deposition system can be completed within
only a few hours. The fresh O/W emulsion was aged for at least 2 h so that a stable droplet
size distribution of the O/W emulsion droplets could be reached. Finally, the aged O/W
emulsion was gently poured into a glass beaker for deposition test. Usually, about S min was
allowed for the agitated emulsion to “calm down" inside the test cell, which was followed by
the measurements of droplet sizes (Section7.2.4) and introduction of the deposition shelf.
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7.2.3 Deposition Cell

Two glass bars of the same kind (about 3 cm long each) were used each time and
assembled on an deposition shelf in parallel. Then the deposition shelf was inserted into
the glass beaker full of the O/W emulsion and positioned vertically. A block diagram of
the experimental apparatus for deposition test is shown in Figure 7.1. In the set-up, the
deposition cell is placed on a three-dimensional translation stage with a vertical resolution of
0.1 mm, which is positioned between a light source and a microscope. By using this 3-D
translation stage, during the deposition test, the deposition cell can be readily moved in the
three directions at will. The light source and the microscope system mounted with the
video camera are same as those described in details in Section 4.3. The internal
dimensions of the rectangular deposition cell are SO(L)x30(W)x80(H) mm, which can hold
approximately 100 m/ solution. Inside the deposition cell, two glass bars have about a 2.5
cm length fully exposed to the bulk emulsion phase. They are separated from each other by

approximately 1 cm so that their deposition processes will proceed independently.

7.2.4 Deposition Measurements

Immediately after insertion, deposition of the silicone oil droplets onto the glass
bars begins. It is an obvious fact that the initial deposition rate will not only depend on
the fiber-water-oil deposition system under investigation, but also largely depend on the
specific insertion process. Therefore, such initial random deposition period should be
discarded in the formal deposition measurements. In the deposition test, the number of
the attached oil droplets was counted at t=15 min after the deposition shelf was
introduced. Such counting is then conducted at t=30, 60 and 90 min after the initial
deposition, respectively. Hence, a total effective deposition period of 75 min is observed.
The detailed counting procedure is described as below.

At t=15 min after the insertion of the deposition shelf, the deposition cell,
including the deposition shelf and glass bars, are moved by using the 3-D translation
stage either to the right or left (x-axis) so that either one of the two glass bars is within
the scope of the microscope and camera system set at x40 magnification. Then the image
of attached droplets on the glass bar can be observed clearly by adjusting the focal

distance, i.e. by using the 3-D translation stage to move the deposition cell forward or
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backward (y-axis). Such observation and counting procedure of the attached oil droplets
is continued 10-mm (I=10 mm) long either upward or downward along the axial direction
of the glass bar. This is done by using the 3-D translation stage to move the deposition
cell upward or downward (z-axis). Since the diameter of the glass bar is usually larger
than the width (w) of the digital image covered by the microscope and camera system at
x40 magnification, the actual deposition area under observation is a partial lateral surface
area of the glass cylinder. The front view of this deposition area looks like a rectangular
(w x 1). This counting procedure is repeated for the other glass bar and the deposition
observation is carried out at t=15, 30, 60 and 90 min after the initial introduction of the
deposition shelf. For each kind of aqueous solution, the above mentioned measurement
procedure is repeated once for the same glass fiber surface. Hence, for a given fiber-
water-oil deposition system, a total of four numbers of the attached droplets are collected
at t=15, 30, 60 and 90 min respectively in each deposition test. The overall experimental
procedure remains invariable, regardless of the specific glass surface and O/W emulsion
used. The entire experimental set-up was placed on a vibration-free table and all the
deposition measurements were conducted at room temperature 22°C.

The complete deposition measurement is composed of the following four major
measurements: droplet size measurements; cylinder size measurements; deposition area
measurements and number counting of the attached droplets. By going through these
measurements, the dimensionless mass transfer or deposition rate Sh can be determined
(see Section 7.2.5). Same microscope and camera system was used at x40 magnification
to measure the radius a of the silicone oil-in-water emulsion droplets. As was mentioned
in Section 7.2.2, the proper stirring speed and duration in making the O/W emulsions
were found by trial and error so that the radii of most observed oil droplets are in the
range of a=5-15 um, with an average radius of a,..~10 um. This size range can be well
observed and measured by using the present optical system. The droplet size
measurements were conducted prior to the introduction of the deposition shelf. In the
measurements, 100 snapshots of the oil droplets were taken randomly and their
instantaneous digital images were acquired and stored in the computer memory. The
procedure for determining the radius a of each droplet from each snapshot has been

described in detail in Section 5.3.3 and the overall accuracy of the droplet size
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measurement is around 0.5 um. The average radius a... is determined from the radii of
100 oil droplets under scrutiny. Once a,.. is known, the droplet number concentration n.
in the bulk emulsion can be estimated from the total volume conservation of the oil
phase. The above microscope and camera system was also used to measure the radius R
of each glass bar, except that the optical system was set at x16 magnification in this case.
Generally, R is in the range of 200-300 um and the overall accuracy of its determination
is approximately 1.0 um.

The next task was to determine the deposition area. As is schematically shown in
Figure 7.2a, the actual deposition area under observation (represented by dotted line) is a
fraction of the lateral surface area of the glass bar. Furthermore, this deposition surface
area under examination (again represented by dotted line) is magnified and shown in

Figure 7.2b. From this diagram, it is found that the actual deposition area S is equal to:
w,
S=2Rlsin"(é) (7.1)

where w is the width of the snapshot covered by the microscope and camera system at
x40 magnification and | is the length observed along the axial direction of the glass
cylinder. For the optical system used in the present deposition measurements, w is
usually about 350 um and can be determined with an accuracy of 0.5 um. The length 1 is
always chosen as 10 mm and can be read up to 0.1 mm, equal to the vertical resolution of

the 3-D translation stage. If the width is much smaller than the radius of glass bar, i.e.

w .22
3 «l, then sin™ (—;2-) = Tz Substituting the approximate expression for sin”"' ¢ = a at

o=~0 into Equation (7.1) yields S = w/, the surface area of a rectangular. Finally, the
number N(t) of attached droplets onto the glass surface is counted at t=15, 30, 60, 90 min,
respectively. Usually, deposition rate is extremely high in the first 15 min, which is
caused by insertion movement of the glass fibers into the O/W emulsions. This is
followed by a constant low deposition rate for the remaining deposition period. This
constant low deposition rate is attributed to the presence of the vdW and EDL forces

acting between the oil droplets and the glass surface in the aqueous solution. In all the
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deposition measurements, no saturation state of deposition, i.e. the attached droplet
number remains unchanged, was observed until 90 min.

A typical snapshot (produced by a laser printer) of such attached droplets onto
cylindrical glass bar is shown in Figure 7.3. In this digital image, the attached oil
droplets can be clearly seen and thus counted. Generally, their deposition onto the glass
surface is found to be irreversible. Furthermore, such attached droplets may not be
uniformly distributed from place to place. However, statistically, their overall
distribution or surface coverage is strongly related the properties of the fiber-water-oil
system under examination. It is also worthwhile mentioning that, in this experimental
deposition study, the surface coverage is extremely low. For example, until 90 min, the
maximum total number of the attached oil droplets recorded in all the deposition cases is
less than 400 on the deposition area of § = w/. Given w=350 pum and =10 mm, if the
average radius of the attached droplets is assumed to be about 15 um on the glass surface,
then the possible peak surface coverage of the attached oil droplets at the end of each
deposition test is only about 8.1%. Therefore, as the deposition proceeds, the attached oil
droplets do not modify the surface properties of the glass bar to an appreciable extent.
The so-called "blocking/masking effect” of the attached oil droplets on the upcoming
droplets onto the glass surface is sufficiently negligible. On the other hand, there always
remains an adequately large number of the silicone oil droplets freely moving in the bulk
emulsion. It is due to these two facts that no saturation states of deposition were
observed in all the deposition measurements. The number of the attached droplets always

increases linearly with the deposition time until t=90 min.

7.2.5 Determination of Sh

After the completion of the deposition test for a given fiber-water-oil deposition
system, the droplet number transfer rate Je,, the dimensionless mass transfer rate Sh can
be determined from the measured number N(t) of the attached droplets on the deposition
area S in the period of At:

Jun='N(H?A),—N(t) t>15min (7.2)
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o
Shy,, = -_Dc;t (7.3)
aave
where:
. = kT (7.4)
67ua,,,

As was mentioned in Section 7.2.4, for a given fiber-water-oil deposition system,
the entire deposition experiment was repeated once. In each deposition test, two glass
bars were assembled on the deposition shelf and four numbers of N(t) were taken for
each glass bar at t=15, 30, 60 and 90 min respectively. Hence, for each deposition system
under investigation, a total of twelve measured values for J, or Sh are obtained from
Equation (7.2) or Equation (7.3). It is noted that the deposition period of the first 15 min
was not accounted in the data processing because the deposition during this period is
caused largely by the insertion motion rather than solely by the colloidal forces. Only the
average Sh numbers over the twelve measured values will be mentioned hereafter and
compared with the numerical predictions in the subsequent section. In the present
deposition tests, the overall repeatability for the dimensionless mass transfer rate Sh
number was found to be within 10%. For a variety of aqueous solutions, the vdW
interaction parameter (Ag) and the EDL interaction parameters (D], Da and k"), as well
as the detailed deposition test data and the numerical results are listed in Table 7.1 for the
bare glass surface and Table 7.2 for the FC725-precoated glass surface respectively.

7.3 Deposition Experimental Results and Their Comparison with the

Numerical Predictions

7.3.1 pH Effect

The pH value was altered approximately from 3.0 to 10.0 by adding standard dilute
solutions of either HCI or NaOH into the pure DIUF water. The measured dimensionless
mass transfer rates, Sh numbers, of the silicone oil droplets onto two different glass surfaces
with various pH values are shown in Figure 7.4a. Their numerical results are also included

in the same figure for comparison. This figure clearly shows that, for the bare glass surface
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and the FC725-precoated glass surface, both measured Sh numbers and the numerical
results monotonically decrease as pH values increases. As were shown in Tables 5.3 and
5.4, this is because the C-potentials of both the silicone oil droplets and the two glass
surfaces are strong and have the same polarity (negative) when they are in contact with the
aqueous phases having higher pHs. Thus the reduction of Sh is attributed to the increasingly
strong repulsive EDL interaction as pH value increases. It is also noticed from Table 7.2
that, for the FC725-precoated glass surface, such reduction tendency is further strengthened
by a rapid reduction in the vdW interaction with increasing pH values.

More specifically, for bare glass surface, the numerical predictions of Sh are in an
excellent agreement with the experimental results within the experimental error, though
generally the latter are slightly larger than the former. Thus it can be concluded that the
deposition process of the silicone oil droplets onto the bare glass surface (hydrophilic) can
be satisfyingly described by the mass transfer equation based on the existing DLVO theory,
in which both the vdW and EDL interactions are included. It is also seen from Figure 7.4a
that the numerical model predicts lower Sh for the FC725-precoated glass surface than that
for the bare glass surface when pH is below 4.5, which is located slightly in the acid side.
However, this pattern is reversed at pH above 4.5. This change can be explained as follows.
As seen from Figure 5.2, this pH value corresponds to the point of zero zeta (pzz) of the
silicone oil droplets dispersed in the aqueous phase. At higher pHs, Tables 5.3 and 5.4
indicate that the {-potential of the bare glass surface is more than twice stronger than that of
the FC725-precoated glass surface. As discussed above, at higher pHs, the reduction of Sh
is attributed to the increasingly strong repulsive EDL interaction for the both glass surfaces.
Therefore, at higher pHs (pH=5.0), smaller Sh for the bare glass surface is mainly caused by
its much stronger repulsive EDL interaction, though its vdW interaction A4 is stronger than
that for the FC725-precoated glass surface.

It is noted from Figure 7.4a that the experimentally measured Sh numbers for the
FC725-precoated glass surface are significantly larger than the corresponding numerical
predictions over the entire pH range, particularly at even smaller pHs. They are also larger
than those measured Sh values for the bare glass surface over the entire pH range. It
becomes obvious that, unlike the deposition case of the silicone oil droplets onto the
hydrophilic surface such as the bare glass surface, the deposition of the silicone oil droplets
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onto the hydrophobic surface such as the FC725-precoated glass surface can not be
adequately predicted by using the classical DLVO theory alone. In other words, there is
some additional attractive non-DLVO force operating in the deposition of the hydrophobic
surface (oil droplets) onto the other hydrophobic surface (FC725-precoated surface) in
aqueous solutions in the present case. In the literature, the attractive interaction between two
hydrophobic surfaces in water has been known to be unusually strong in several cases
(Israclachvili and Pashley, 1984). Such "hydrophobic interaction” belongs to a class of
important phenomena collectively referred to as the "hydrophobic effect”. Hence, in the
deposition tests, the unusual large Sh for the FC725-precoated glass surface may be ailso
caused by the hydrophobic interaction between these two hydrophobic surfaces in aqueous
phases. Furthermore, the deviation of the measured Sh values from the theoretical
predictions represents the portion attributable to the hydrophobic effect. A brief description
of the hydrophobic effect and particularly its influence on the present deposition rate Sh will
be presented later in Section 7.4.

In order to gain insight into the dominant driving force in the deposition process,
it is necessary to study the competition between the vdW interaction and the EDL
interaction under certain practical conditions. Figure 7.4b shows the EDL, vdW and the
total dimensionless interaction potentials between the silicone oil droplet and the bare
glass fiber in the pure DIUF water. The relevant dimensionless parameters used to
calculate the dimensionless vdW and EDL interaction potentials are chosen from Table
7.1 and further listed as follows: A¢=5.35, DI=+48200, Da=+0.16 and t=10. By using the
1-D numerical model presented in Chapter 6, the dimensionless mass transfer rate Sh
number is found to be Sh,=0.0153, which is in an excellent agreement with the
measured value She,,=0.0168. Three important features can be identified in Figure 7.4b
and are discussed below. First, the calculated primary energy minimum (PEM) is equal
to -2244.6 at the PEM region Hy=0.001. The PEM point is not included in the figure for
graphic reason. This PEM is far deeper than 25 kT, a usually accepted value for the
PEM. Therefore, the "perfect sink" approximation as expressed by Equation (6.3b) or
(6.7b) is valid for the present deposition tests. Physically, this approximation implies that
all the silicone oil droplets will be irreversibly attached onto the fiber surface once they

are in the vicinity of the PEM region. This is because the dimensionless vdW interaction
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potential decays approximately with % at Hl, referring to Equation (3.15), and with

—1—3 "at H»l, referring to Equation (3.16). The dimensionless retarded vdW interaction

force for the present sphere-cylinder system is also shown in Figure 3.4. However, the
dimensionless EDL interaction potential decays exponentially with H (see Equation
(3.36) for the sphere-flat plate case and Figure 3.7 for the EDL interaction force between
a sphere and a cylinder). Therefore, at small separation distances such as H<0.005 in the
present case, the attractive vdW interaction is dominant and ensures deposition.
Secondly, in Figure 7.4b, there is an energy barrier equal to +24.1 at H=~0.008. This large
energy barrier is formed due to strong repulsive EDL interaction between the silicone oil
droplet and the bare glass fiber in the pure DIUF water. In this particular case, both
EDLSs at the oil-water interface and at the fiber-water interface are negatively charged
(see Table 5.3). Finally, a secondary energy minimum (SEM) is found to be -3.9 at
H=~0.027. In the deposition tests, this SEM region may be responsible for attracting and
bringing the silicone oil droplets from the far field into the proximity of the energy
barrier. Furthermore, some of these oil droplets in the vicinity of the SEM region will
overcome the energy barrier and enter the PEM region. As mentioned above, in the
present case, the PEM is so strong that, once the oil droplets overcome the energy barrier,
they will be irreversibly trapped in the PEM region and thus permanent deposition

occurs.

7.3.2 Electrolyte Effects

The variations of the measured and calculated dimensionless mass transfer rate Sh of
the silicone oil droplets onto the bare glass surface with the mole concentration of the
following two typical electrolytes, NaCl and AICl; from 10° to 10 M are plotted in Figure
7.5a. Two common points for these two electrolytes can be readily identified. First, at 10°
M, both experimentally measured and numerically predicted Sh values for these two
electrolyte solutions are close to the value for the pure DIUF water case. ‘ At this
concentration, these two electrolytes do not have an appreciable effect on modifying the

deposition.  Second, the measured Sh increases monotonically as the electrolyte
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concentration of either NaCl or AIClL; increases from 10° to 10° M. The numerical
predictions for these two electrolytes not only follow the same trend but also agree well with
the experimental data over these electrolyte concentrations, though the theoretical Sh for
AICl; remains nearly constant at the electrolyte concentration higher than 10° M. As seen
in Table 7.1, such increase of Sh with the electrolyte concentration is due to slightly
increased A4 and the strong neutralization effect of the electrolytes on the C-potentials of the
silicone oil droplets and the bare glass surfaces. For example, Table 5.3 shows that, as the
concentration of NaCl increases from10® to 10® M, the negative (-potentials of the oil
phase and the glass surface are much weaker (about half). As a result, the repulsive EDL
interaction (DI) between them is reduced by a factor of four. It is also shown in this table
that, as the AICl; concentration further increases, the {-potential of the silicone oil droplets
even becomes positive. The zeta reversal occurs near 10°-10° M for AICL. As indicated in
Section 5.4.2, the positive {-potential for the multivalent electrolyte results from the well-
known much stronger adsorption of the trivalent cations AP’* onto the oil-water interfaces
than that of the monovalent Na*. This also explains why Sh for AICl; is considerably larger
than that for NaCl

Furthermore, it is also noticed from this plot that the experimentally measured Sh
numbers for NaCl and AICl; do not change significantly when both electrolyte
concentrations approach 10° M. This is an expected result because, at higher electrolyte
concentrations, addition of more electrolyte will considerably reduce the C-potentials of
silicone oil droplets and the glass surface due to the more compressed (thinner) EDLs.
Therefore, at even higher electrolyte concentrations, a limiting Sh will be achieved because
the vdW interaction does not change appreciably and the EDL interaction plays a much less
pronounced role in deposition than at lower electrolyte concentrations.

Figure 7.5b shows the dimensionless mass transfer rate Sh number versus log
concentration of the two electrolytes for the FC725-precoated glass surface. In contrast with
the above mentioned trends for the bare glass surface, the measured Sh decreases slightly as
the electrolyte concentration of either NaCl or AICl; increases from 10 to 10® M. Itis also
shown in this plot that Sh values for these two electrolytes are close to each other.
Specifically, Sh numbers for NaCl are slightly larger than those for AICl;, consistent with
their corresponding A4 values given in Table 7.2. These two facts suggest that in this case
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the EDL interaction is not an important driving force in deposition. It can be easily found
from Table 5.4 that, unlike the bare glass surface, the FC725-precoated glass surface is only
charged to a limited extent when it is contact with aqueous phase. Hence, in comparison
with the vdW interaction, the EDL interaction between the silicone oil droplets and the
FC725-precoated glass surface is no longer a dominant force in the deposition of the silicone
oil droplets onto this solid surface. In contrast to the increase of A4 with the electrolyte
concentration of either NaCl or AICl; for the bare glass surface given in Table 7.1, the
dimensionless adhesion number Ay for the FC725-precoated glass surface listed in Table 7.2
decreases appreciably as the electrolyte concentration increases from 10° to 10° M. Asa
result, the slow reduction of Sh shown in Figure 7.5b is largely attributed to gradual
reduction of Aq. Again in contrast to the results for the bare glass surface plotted in Figure
7.5a, Figure 7.5b shows a much greater difference between the measured She,, and the
predicted She,. As was mentioned in Section 7.3.1, the larger Shey, is also attributed to the
so-called hydrophobic effect, which will be discussed exclusively in Section 7.4.

7.3.3 Effects of Ionic Surfactants

In Sections 5.4.3 and 5.8.4, it has been shown that the adsorption of the ionic
surfactants CTAB and SDS onto either the silicone oil-in-water emulsion droplets or the
glass fiber-water interfaces strongly affects their C-potentials. Therefore, it is expected that
such adsorption will also strongly affect the deposition process of the oil droplets onto the
glass fiber surfaces in the ionic surfactant solutions. Figure 7.6a gives the dimensionless
mass transfer rate Sh numbers for the bare glass surface at different concentrations of CTAB
(10°-10° M) and SDS (10%-102 M). At 10° M, both the measured and numerical Sh
numbers are close to that for the pure DIUF water. It is seen from Figure 7.6a that Sh
increases considerably with CTAB concentration from 10° M and 10* M, though the
dimensionless adhesion number A4 is slightly reduced in the same range of CTAB
concentrations (see Table 7.1). This suggests that the EDL interaction is a dominant factor
in the deposition in this cationic surfactant solution.

Physically, such variations of Sh number with CTAB concentration are caused by
the well-known cationic adsorption onto the silicone oil-water interfaces and the glass fiber-

water interfaces. Specifically, it is shown in Figure 5.4 and Table 5.3 that the measured ¢-
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potential £, of the silicone oil droplets becomes positive and increases quickly when the
CTAB concentration is higher than 3x10° M, the point of zeta reversal (pzr). A further
increase of the CTAB concentration results in a slow increase of the C-potential and, finally,
to reach its maximum value near +83.1+6.9 mV between 10* to 10° M. The saturation of
cationic adsorption onto the oil-water interfaces is considered to occur between the two
concentrations. On the other hand, Figure 5.13 and Table 5.3 also indicate that the
measured negative C-potential . of the glass-water interfaces is gradually neutralized by the
cationic adsorption onto these two interfaces. Eventually, the saturation state of cationic
adsorption onto the glass-water interfaces occurs between 10 to 10° M. Close to these two
concentrations, {~0, indicating that the glass-water interfaces become almost electrically
neutral. As shown in Figure 7.6a and Table 7.1, both measured Sh numbers and the
numerical predictions are in accordance with the above trends. Further increase of the
CTAB concentration leads to the maximum Sh value occurring at 10°-10° M.

Variations of Sh with log concentration of SDS from 10 to 102 M are also shown
in Figure 7.6a. As expected, Sh decreases monotonically when more SDS is added into the
aqueous solution. This is because, as discussed in Sections 54.3 and 5.8.4 and further
summarized in Table 5.3, the {-potentials of the silicone oil droplets and the glass surfaces
in the anionic solution become more negative due to the intensified anionic adsorption as
more SDS is introduced into the aqueous phase. On further increase of the SDS
concentration, Figures 5.4 and 5.13 show that such anionic adsorption continues until the
strongest negative {-potentials, {;=-58.4 mV for the oil-water interfaces and L= -90 mV for
the glass-water interfaces, are attained at 102-102 M. The saturation state of the anionic
adsorption is considered to be reached between these two concentrations for the both
interfaces. Accordingly, Sh approaches its minimum at the SDS concentration of 10°-107
M. It is noticed that decreasing tendency of Sh with the SDS concentration is also
strengthened by gradually reduced vdW attractive interaction (see A4 in Table 7.1).

Finally, it is worthwhile pointing out that the numerical predictions of Sh with the
SDS concentration are in an excellent agreement with the measured values for the anionic
surfactant. For the cationic surfactant CTAB, a fairly good agreement between the
experimentally measured and numerically calculated Sh numbers is also achieved, though

the numerical curve is somewhat bumpy because the numerical calculations are carried out
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at discrete surfactant concentrations only. In addition, both the experimental and numerical
results suggest that the limiting Sh is obtained at higher CTAB concentrations. This fact
suggests that further increase of CTAB concentration beyond the tested concentration range
might not lead to even higher deposition rates in the deposition experiments. This becomes
an obvious conclusion since, at the CTAB concentration greater than 10~ M, both limiting
Cp and & become positive, in conjunction with the reduction of Aq as well (see Table 7.1).
All these results with the bare glass surface prove that the conventional DLVO theory can be
adopted to fully describe the deposition case of the silicone oil droplets onto the hydrophilic
bare glass surface in various aqueous solutions.

Figure 7.6b shows similar resuits of the dimensionless mass transfer rate Sh numbers
for the FC725-precoated glass surface at different concentrations of CTAB (10°-10” M)
and SDS (10°-102 M). As the CTAB concentration increases from 10° M to 10> M, both
Shexp and She, increase by about 100%. In the present case, as given in Table 7.2, such a
rapid increase of Sh number is caused by both gradually increased attractive vdW
interaction (A4) and the attractive EDL interaction (DI<0) as well. However, for the anionic
surfactant SDS, as might be expected, Sh decreases slightly in the concentration range of
from 10° to 102 M since the considerably increased repulsive EDL interaction (DI>0) is
partially counteracted by the slightly increased attractive vdW interaction (Ay). In either
case, the measured Sh numbers are substantially larger than the theoretical values.
Especially, it is noted from Figure 7.6b that as the CTAB concentration increases, such
difference becomes even larger, which is far beyond the experimental error (10%) of
deposition tests. As mentioned above, the large deviations between the measured Sh
numbers and the numerical data are observed for the FC725-precoated glass surface only.
They are assumed to be due to the attractive hydrophobic interaction between the
hydrophobic silicone oil surface and the hydrophobic FC725-precoated glass surface in the
aqueous solutions. In contrast to the deposition case of the silicone oil droplets onto the
hydrophilic bare glass surface in aqueous solutions, the deposition process of such oil
droplets onto the hydrophobic surface in water can not be adequately described by the
classical DLVO theory in which the hydrophobic interaction is not accounted for. A concise
discussion of the hydrophobic interaction between two hydrophobic surfaces in aqueous
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solutions and its possible influence on the present deposition study will be presented in the
next section.

7.4 Hydrophobic Effect

The attractive interaction between two hydrophobic surfaces in water is known to
be unusually strong. This "hydrophobic interaction" (Franks, 1973) belongs to a class of
important phenomena collectively referred to as the "hydrophobic effect”. The
hydrophobic interaction plays a central role in micelle formation, biological membrane
structure, and in determining the conformations of proteins. In conjunction with the well-
known vdW and the EDL interactions, it determines the stability of many suspension and
emulsion systems if the dispersed colloidal particles are hydrophobic. It also accounts for
the high interfacial tension of liquid hydrocarbon-water interfaces, and the large contact
angles subtended by water on hydrophobic surfaces.

In the literature, there have been several experimental findings and estimates of
the hydrophobic interaction. For example, Israelachvili and Pashley (1982; 1984)
derived the attractive force-law between two hydrophobic (hydrocarbons) surfaces in
electrolyte solutions from total force measurements on monolayer coated mica surfaces.
They further showed that this hydrophobic interaction is much stronger than the expected
vdW interaction at the separation distances below 8 nm and decays exponentially with
distance. Their experimental results indicate that these forces may determine the
magnitude of the energy barriers between interacting charged particles and hence the
stability of hydrophobic colloids. Later on, Xu and Yoon (1989) conducted a series of
coagulation experiments on aqueous suspensions of methylated silica. Their coagulation
experiments provide evidence that non-DLVO interaction (i.e. assumed the hydrophobic
interaction) is the major driving force for the coagulation of these colloidal particles with
strong hydrophobicity. Furthermore, they derived the hydrophobic interaction potential
from the results of coagulation experiments. The hydrophobic interaction potential is
expressed in terms of the nondispersion component of deposition work of water phase
and the distance between the two interacting particles. More recently, Dai and Lu (1991)
showed experimentally that a non-polar oil (kerosine) emulsion can significantly

intensify the hydrophobic flocculation of minerals. The non-polar oil was found to play
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two roles in accelerating the flocculation, one is to adhere onto the surface of
hydrophobic particles to enhance their hydrophobicity and the other is to form an oil
bridge among the hydrophobic particles to increase the strength of the flocs. Eventually,
they also derived an explicit expression for calculation of the hydrophobic interaction
potential between an oil drop and a hydrophobic particle in terms of hydrophobic
interaction theory.

In the present deposition study, it has been shown in Figures 7.4, 7.5a and 7.6a
that the all the experimental Sh numbers for the bare glass surface (solid symbols) are in
an excellent agreement with the theoretical predictions (lines). The latter are determined
by numerically solving the mass transfer equation in which only the vdW and EDL
interactions are included. However, the experimental data Shexp for the FC725-precoated
glass surface are found to be significantly higher than the theoretical results based on the
classical DLVO theory. In comparison with the calculated values (lines) in Figures 7.4,
7.5b and 7.6b, the measured dimensionless mass transfer rates of the hydrophobic
silicone oil droplets onto the hydrophobic surface (empty symbols) in these figures
usually increase by approximately 30-45%, which is far beyond the deposition
experimental error of approximately 10%. Therefore, the present deposition
experimental results for the FC725-precoated glass surface provide proof that non-DLVO
attractive interaction is also involved in deposition. This additional interaction, which
may be referred to as the hydrophobic interaction, is responsible for the deviations of the
experimental data of deposition tests from the theoretical predictions based on the
classical DLVO theory alone.

Strictly speaking, the hydrophobic surfaces can be classified into those that are
naturally hydrophobic (e.g., talc, paraffin wax, Teflon, molybdenite, some types of coal)
and those made hydrophobic by surfactant adsorption (e.g., by cationic surfactant
adsorption on proper solid surfaces). In this study, the FC725 coating material is
naturally hydrophobic and thus the FC725-precoated glass surface belongs to the first
kind of hydrophobic surface. Its strong hydrophobic effect on the deposition process has
been identified and discussed above. It is also noted in Figure 7.6b that the deposition
rates at the higher cationic concentration of CTAB are increasingly larger than the

theoretical values. This fact suggests that the second kind of hydrophobicity may also be
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involved in the deposition experiments with the cationic surfactant solutions. In Chapter
5, such cationic surfactant adsorption has been verified by the variations of the (-
potential of the FC725-precoated glass surfaces with the cationic surfactant concentration
(see Table 5.4). Hence, the cationic surfactant adsorption on the FC725-precoated glass
surface may further enhance its hydrophobicity and thus lead to rather higher measured
deposition rates at the higher cationic surfactant concentrations as shown in Figure 7.6b.

Furthermore, a visualized insight into the hydrophobic effect can be obtained
from the contact angle measurements of the silicone oil drops on these two kinds of glass
surfaces. Figure 7.7a is the digital image of a silicone oil drop residing on the FC725-
precoated glass slide in the pure DIUF water. The contact angle of the hydrophobic oil
drop on the hydrophobic surface is measured by using the ADSA technique to be 56.6°.
However, as shown in Figure 7.7b, the hydrophobic silicone oil drop forms 148.6° on the
hydrophilic bare glass surface. Figure 7.7a clearly shows that there is a strong attractive
hydrophobic interaction and thus an acute contact angle forms between these two
hydrophobic surfaces in the aqueous phase. Conversely, the hydrophilic glass surface
repulses the hydrophobic oil drop and results in an obtuse contact angle. Such strong
attractive hydrophobic interaction between two hydrophobic surfaces in water can be also
understood in another fashion. It is not difficult to prove that one needs to do much more
work in order to detach the flat silicone oil drop from the hydrophobic surface (Figure
7.7a) than that required to remove the nearly spherical oil drop from the hydrophilic
surface (Figure 7.7b).

With more experimental proof available in the literature, it is increasingly
recognized that there is strong hydrophobic effect between two hydrophobic surfaces in
water. Hence, determination of the hydrophobic interaction is necessary in order to
understand the non-wetting properties of hydrophobic surfaces, the coagulation
phenomena of hydrophobic colloidal particles, mineral separation processes using
flotation techniques, the waterproofing of surfaces and fabrics, in paint technology, and
in many other industrial applications. However, up to now the hydrophobic effect itself
is still poorly understood, though it has long been reported in the literature. So far neither
theoretical predictions nor experimental measurements of the hydrophobic interaction are

consistent and satisfactory. A more general expression of the hydrophobic interaction is
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still not available yet. This is largely caused by the following three obvious facts related
to the hydrophobic effect, which are addressed in detail by Israelachvili and Pashley
(1982; 1984) and Xu and Yoon (1989).

First of all, the origin of the hydrophobic interaction still remains controversial.
The hydrophobic effect is so strong that it is believed by some researchers that it is either
due to phase changes in the interlayer between two surfaces in close proximity or due to
anomalous polarization of water molecules near hydrophobic surfaces. In other words,
they believed that there is a so-called "hydrophobic bond" associated with it. Many
investigators, nevertheless, have taken the opposite view based on general theoretical
considerations of the liquid state and on Monte Carlo and Molecular Dynamic
simulations of liquid water. They consider the effect largely entropic in origin, arising
mainly from the configurational rearrangement of water molecules in the vicinity of
hydrophobic surfaces. In this approach the hydrophobic interaction would have to be of
significantly longer range than any typical "bond”. Another problematic aspect of the
hydrophobic interaction between surfaces concerns the effect of surface hydrophilic
groups (e.g., ionic groups or the polar head groups of surfactants and lipids) on this
interaction.  Ultimately, this study suggests that the hydrophobic interaction is
nonadditive, and further implicates the involvement of water structure which is known to
be delicately sensitive to the nature of dissolved solute molecules and surface groups
(Israelachvili and Pashley, 1984). At this point, it is worthwhile noting that, as was
shown in Section 3.2, the vdW interaction between any two bodies can be evaluated on
the bases of the Hamaker approach and the pairwise additivity. Similarly, in Section 3.9,
the EDL interaction between two surfaces has been derived by employing the Derjaguin's
integration method, which is additive in origin. Hence, the non-additivity of the
hydrophobic interaction would pose an almost intractable obstacle to its accurate
determination in practice, if it should be true.

Thirdly, there is no general formula available for calculating the hydrophobic
interaction. To date there has been no direct method available to measure the
hydrophobic interaction. Generally, two kinds of indirect methods were endeavored in
the literature. In full analogy to the excess quantities such as the surface concentration

defined in surface thermodynamics, the first method considers the hydrophobic
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interaction as the surface equivalent of the bulk vdW and EDL interactions. This means
that a subtraction step is required in order to estimate the hydrophobic interaction. For
instance, one can simply subtract the measured "total" force from the theoretical DLVO
forces. Then the “extra" attractive interaction obtained in this way is assumed to be the
hydrophobic contribution. Depending on the specific scheme adopted, such subtraction
procedure may vary from straightforward as stated above to cumbersome (Israelachvili
and Pashley, 1984). In principle, it is anticipated that this method should not function
well because of the non-additivity of the hydrophobic interaction, while both the vdW
and EDL interactions are additive. Accordingly, a second method is used to derive the
hydrophobic interaction potential in terms of hydrophobic interaction theory (Xu and
Yoon, 1989; Dai and Lu, 1991). Nevertheless, their final expressions of the hydrophobic
interaction potentials are quite different, in which some constants have to be found by
applying a nonlinear regression curve-fitting procedure. In summary, all the existing
expressions for calculating the hydrophobic interaction force or potential are empirical
and thus as claimed valid for the specific case only. The precise behavior of the
hydrophobic effect between two hydrophobic surfaces in various aqueous solutions
remains almost unknown, and will, of course, depend on a range of properties other than
the decay length and the hydrophobicity of the interacting surfaces. Only further
experiments on other types of colloidal systems will determine the generality of these
formulas derived for some typical cases.

Based on the current understanding and relevant research status of the
hydrophobic interaction (or the hydrophobic effect), it is not attempted in this study to
study quantitatively its detailed influence on the present deposition phenomena. In the
full realization of the above complexities with the hydrophobic effect, it is unlikely that
any empirical expression for the hydrophobic interaction derived for a specific case can
be adopted to generate satisfactory predictions for rather different colloidal systems.
Inevitably, much more substantial research work has to be accomplished in order to
understand the hydrophobic interaction and further incorporate it into the existing DLVO
theory if feasible. Only after one has achieved an adequate and fundamental
understanding of the hydrophobic effect can such modified or generalized DLVO theory

be generated so as to match even wider research interests and likely be accepted by the
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academic society. Development of the generalized DLVO theory is certainly an
important and challenging research topic, which is beyond the intended scope of this

thesis research.
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Table 7.1 Dimensionless mass transfer rate Sh (Sherwood) numbers of silicone oil droplets
onto the bare glass fiber surfaces in various aqueous solutions

Aqueous Medium | As° DI°® Da’ |x'(10°m)®| Shm® | Shep®
DIUF Water 5.35 | +48200 +0.16 | 966.46 0.0153 0.0168
H=2.68 4.07 | -23400 -2.06 |9.46 0.0391 0.0430
H=3.52 4.16 | -16000 -2.59 | 2487 0.0332 0.0349
H=4.20 4.04 | -8700 428 | 5441 0.0264 0.0277
H=6.50 5.35 | +48200 +0.16 | 966.46 0.0153 0.0168
H=7.20 4.99 | +60900 +0.07 | 918.18 0.0123 0.0134
pH=8.93 5.01 | +76300 +0.06 | 148.14 0.0109 0.0120
H=10.32 4.87 | +107200 +0.07 | 29.90 0.0097 0.0112
10° M NaCl 3.90 | +51300 +0.07 | 305.62 0.0150 0.0173
10° M NaCl 4.16 | +40000 +0.01 | 96.65 0.0169 0.0177
10°M NaCl 4.18 | +16900 0.00 | 30.56 0.0181 0.0217
10° M NaCl 443 | +11600 0.00 |9.66 0.0195 0.0224
10°M AICL 2.88 | +43600 +0.11 | 124.77 0.0162 0.0177
10° M AICL 3.88 | -30700 -2.09 | 39.46 0.0390 0.0371
10° M AICL, 3.81 |-20200 -2.26 | 1248 0.0379 0.0439
10° M AICl, 4.33 | -8600 -2.18 [ 3.95 0.0406 0.0467
10°M CTAB 4.00 | +33900 +0.21 | 305.62 0.0163 0.0179
10°M CTAB 3.54 | -22200 -2.10 | 96.65 0.0381 0.0323
10° M CTAB 2.96 | -13100 -6.69 | 30.56 0.0370 0.0426
10° M CTAB 1.92 | +10300 +6.32 | 9.66 0.0361 0.0433
10°M SDS 4.62 | +49100 +0.16 | 305.62 0.0144 0.0158
10° M SDS 4.60 | +65900 +0.21 | 96.65 0.0101 0.0106
10 M SDS 4.26 | +86000 +0.19 | 30.56 0.0082 0.0090
10° M SDS 3.35 | +112200 +0.11 | 9.66 0.0056 0.0061
10°M SDS 2.84 | +117300 +0.11 | 3.06 0.0045 0.0050
# Quoted from Table 4.8.
® Quoted from Table 5.3.

¢ Numerical predictions by solving the mass transport equation for the one-dimensional case.

¢ Experimental data of the deposition tests.
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Table 7.2 Dimensionless mass transfer rate Sh (Sherwood) numbers of silicone oil droplets
onto the FC725-precoated glass fiber surfaces in various aqueous solutions

Aqueous Medium | Ag® DI® Da® [«x'(10°m)°| Shu® Shexp
DIUF Water 0.89 | +19000 | +0.07 | 966.46 0.0192 | 0.0259
pH=2.68 0.98 | -9200 -2.18 9.46 0.0298 0.0492
pH=3.52 0.89 | -6300 -2.01 24.87 0.0263 0.0408
pH=4.20 0.88 | -3500 -2.46 54.41 0.0251 0.0351
pH=6.50 0.89 [ +19000 | +0.07 | 966.46 0.0192 |0.0259
pH=7.20 0.72 [ +24000 [ +0.16 [918.18 0.0154 | 0.0200
pH=8.93 045 [ +30100 |+0.18 | 148.14 00147 ]0.0185
pH=10.32 0.16 [ +42300 |[+0.16 |29.90 00119 |0.0149
10°M NaCl 0.86 | +20200 [ +0.16 [ 305.62 0.0190 | 0.0257
10° M NaCl 081 | +15700 |+0.63 [96.65 0.0188 0.0246
10° M NaCl 0.64 | +6700 +0.50 [ 30.56 0.0153 0.0205
10° M NaCl 0.33 | +4600 +0.50 [9.66 0.0115 0.0161
10°M AICl, 0.70 | +17200 | +0.11 124.77 0.0181 0.0244
10°M AICl 0.65 [ -12100 [ -3.05 39.46 0.0194 |0.0235
10° M AICL 0.59 | -8000 -3.68 12.48 0.0186 |0.0193
10° M AICl; 0.34 | -3500 -3.39 3.95 0.0123 0.0135
10°M CTAB 1.00 | +13400 [ +0.04 | 305.62 0.0201 0.0264
10°M CTAB 1.18 | -8700 -3.13 96.65 0.0317 [0.0396
10° M CTAB 1.77 | -5200 -15.22 | 30.56 0.0353 0.0494
10°M CTAB 2.74 | +4000 +17.90 [9.66 0.0389 |0.0564
10°M SDS 091 | +19400 | +0.07 [ 305.62 0.0194 | 0.0252
10° M SDS 1.00 [ +25900 |+0.04 [96.65 0.0190 |0.0245
10° M SDS 1.14 [ +34000 |+0.05 [30.56 0.0183 0.0238
10° M SDS 1.43 | +44300 [+0.11 [9.66 0.0159 |0.0215
10°M SDS 266 | +46300 | +0.12 [3.06 0.0152 |0.0205
* Quoted from Table 4.9.
® Quoted from Table 5.4.

¢ Numerical predictions by solving the mass transport equation for the one-dimensional case.

¢ Experimental data of the deposition tests.
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Figure 7.1 Experimental set-up for the deposition measurements
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Figure 7.2a (left) The deposition area under examination on the lateral surface
of glass cylinder; Figure 7.2b (right) Magnified deposition area on the

cylindrical surface
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Figure 7.3 The snapshot of the attached silicone oil (No. 1) droplets on
the bare glass bar in the pure DIUF water at t=15 min
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Figure 7.4a Dimensionless mass transfer rate Sh (Sherwood) number
as a function of pH of the aqueous phase
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Figure 7.4b The EDL, vdW and total dimensionless interaction potentials between
a silicone oil droplet and the bare glass fiber in the pure DIUF water
(A=5.35, DI=+48200, Da=+0.16, =10, Sh c al=0'0153)
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Figure 7.7a Digital image of silicone oil (No. 1) drop on the FC725-precoated glass
slide in the pure DIUF water. The measured parameters are as follows: the contact
angle 6=56.6°, the base radius of the sessile drop Ry=0.2729 cm and the drop volume
V,=0.0189 cm’

Figure 7.7b Digital image of silicone oil (No. 1) drop on the bare glass slide in the
pure DIUF water. The measured parameters are as follows: the contact angle
06=148.6°, the base radius of the sessile drop Ry=0.1234 cm and the drop volume
V,=0.0404 cm’
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Chapter 8

Conclusions and Recommendations

8.1 Major Academic Contributions

In retrospect of those principal research objectives conceived in Chapter 1, a more
complete and fundamental understanding is achieved for the colloidal interactions and the
overall deposition processes of small oil droplets onto solid surfaces in aqueous solutions
(Chapters 2-7). Some major conclusions made throughout this dissertation are
summarized as below.

1. In the first part of Chapter 3, a general theoretical method was presented to
determine the retarded van der Waals (vdW) interaction between a spherical particle and a
cylindrical body. Based on the Hamaker approach, first, the unretarded vdW interaction
between these two bodies is obtained by pairwise summation of all the relevant
intermolecular interactions and evaluated by accurate numerical integration. Such obtained
interaction was then modified to account for the retardation effect by incorporating a
correction factor. The detailed numerical predictions indicate that the vdW interaction
between a sphere and a finitely long cylinder can be approximated as the interaction
between a sphere and an infinitely long cylinder only if the ratio of the cylinder length to its
radius is greater than a certain lower limit. At smaller dimensionless separation distances
(H<1), the vdW interaction between a sphere and a cylinder can be approximated by that
between a sphere and a flat plate. Such a commonly used flat plate approximation is found
to be acceptable only if the ratio of the cylinder radius to the sphere radius is larger than 10.
In all other cases, however, this approximation will seriously overestimate the vdW
interaction for the sphere-cylinder system.

2. In the second part of Chapter 3, an approximate integral solution was presented
to determine the electrical double layer (EDL) interaction between a spherical particle
and a cylindrical surface. Based on this numerical solution, it has been found that the
curvature effect of cylinder on the EDL interaction can not be neglected at smaller
separation distances. In particular, when H<I, the flat plate approximation, i.e. the well-

known HHF expression for the sphere-flat plate system, will considerably overestimate
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the EDL interaction between a sphere and a cylinder. Above H=1, nevertheless, the EDL
interaction quickly becomes diminishing. In addition, the ratio of the radius of the
particle to the EDL thickness also has strong influence on the EDL interaction.
Particularly, at small separation distances (H~0.001~0.1), the EDL interaction is nearly
proportional to the ratio. It has also been estimated that the maximum separation distance
between the two nearby EDLs should be around three times of the EDL thickness in
order for them to interact with each other appreciably. Finally, the detailed numerical
results for different values of dimensionless EDL asymmetry parameter Da show that the
EDL interaction is always repulsive for the symmetric EDLs ((=(), i.e. Da=0,
irrespective of the separation distance between the interacting EDLs. However, it is
unexpectedly found that, at smaller separation distances, the EDL interaction can become
attractive between the asymmetric EDLs (Da>0), even though their C-potentials have the
same polarity. Only at relatively larger separations, the EDL interaction resumes its
originally repulsive feature. A possible explanation of this phenomenon is also furnished.

3. In Chapter 4, a new contact angle measurement technique has been developed
in order to determine the Hamaker constant involved in the vdW interaction (Chapter 3).
This method can be used to accurately measure the contact angle of a liquid-fluid
interface by analysis of the capillary profile around a cylinder (ACPAC). The ACPAC
technique has been successfully tested to measure the contact angles by analysis of the
capillary rise profiles around a constant-diameter or conic cylinder (ACRPAC). The
measured contact angles agree very well with those measured by the Wilhelmy plate
technique or the ADSA technique for the sessile drop case, respectively. This novel
technique is also adopted to measure such a contact angle formed between an oil-water
interface and a fiber surface by analysis of the capillary depression profile around a cylinder
(ACDPAC). The relevant experimental data for the ACDPAC case indicate that the
ACPAC technique is an appropriate experimental method to study the wetting effect of
any surfactants dissolved in the aqueous solution on the liquid-fluid interface around a
curved solid surface. By applying the novel contact angle measurement technique, the
Hamaker constants are found to be about 10™'° to 10%° J for the high-energy bare glass
surfaces and 102°-102' J for the low-energy FC725-precoated glass fiber surfaces.

Changes in the Hamaker constants (i.e. the vdW interaction) of the fiber-water-oil
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systems are attributed to the variations of the surface energies of the fiber-water-oil
systems with the liquid properties of the aqueous media.

All these experimental results show that the ACPAC technique is a powerful tool for
accurate measurements of contact angles of any liquid-liquid interfaces on fiber surfaces. It
can be used to measure the contact angles between a liquid-vapour interface, or a liquid-
liquid interface and a constant-diameter or conic cylinder. The ACPAC method will be
particularly useful for studying the wetting phenomena associated with a liquid-vapour
interface, or an oil-water interface on these fiber surfaces.

4. In Chapter S, a new simple electrical suspension method was devised to
measure the -potential of small liquid droplets dispersed in another immiscible liquid.
This method is then utilized to determine the (-potential of the silicone oil droplets
dispersed in various aqueous solutions. To determine the C-potential measurements of
glass surfaces in contact with these aqueous phases, the streaming potential technique is
applied by using a parallel-plate microchannel. The effect of surface conductance is
identified and ultimately its influence on the measured C-potential of glass surfaces is
corrected. Using these two experimental methods, the effects of the following factors on
the measured C-potential of the silicone oil droplets and the glass surfaces can be studied
quantitatively: varying pH value, the valence and the concentration of electrolytes and the
ionic surfactants. With the (-potentials of both silicone oil droplets and glass surfaces in
various aqueous solutions, three important EDL interaction parameters are determined.
Furthermore, in conjunction with the consideration of the curvature effect, the EDL
interaction between a spherical oil droplet and a cylindrical fiber has been determined
experimentally.

5. In Chapter 6, both the analytical and numerical solutions of 1-D mass transfer
equation, i.e. in the presence of the vdW and EDL interactions only, have been obtained.
The detailed numerical results in the 1-D case have clearly shown the specific effects of
the dimensionless adhesion number A4, the EDL interaction parameter DI and the ratio
(1) of the radius of the particle to the EDL thickness on the droplet number concentration
distribution and the mass transfer rate Sh. The 2-D numerical model is also developed in
which both the external force fileds and the colloidal forces can be accounted for. In

particular, the effects of the gravitational field and the externally applied electric field on
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the mass transfer rate Sh have been examined using the 2-D model. However, there are
some intrinsic limitations in applying the present 1-D and 2-D models to simulate the
practical deposition cases. These two models are established for the static steady state
deposition of dilute emulsion droplets onto a cylindrical surface. They are applicable
only to the region close to the solid surface where the vdW and EDL force are dominant.
It can be used for low surface coverage only, i.e. small Sh number and relatively short
deposition duration.

6. Finally, Chapter 7 presents a systematic deposition experiment to examine the
effects of the colloidal forces on the deposition processes of the silicone oil droplets onto
two kinds of glass fiber surface in a variety of aqueous solutions. The experimental
results of deposition test are then compared with the theoretical predictions of the 1-D
numerical model based on the classical DLVO theory. It has been found that, generally,
the deposition experimental data for the bare glass surface (hydrophilic) are in an
excellent agreement with the numerical results of the 1-D hodel. This fact indicates that
the deposition process of the silicone oil droplets onto such hydrophilic solid surface can
be well described by the existing DLVO theory in which the vdW and EDL interactions
are included. However, the experimentally measured deposition rates for the FC725-
precoated glass surface are found to be significantly higher than the theoretical
predictions. This fact suggests that non-DLVO attractive interaction is present in the
deposition process of the silicone oil droplets onto such hydrophobic solid surface. This
additional interaction, which is referred to as the hydrophobic interaction, is responsible
for the difference between the experimental deposition data and the theoretical

predictions based on the classical DLVO theory aione.

8.2 Future Research

The following recommendations are made as a result of this study.

1. The 2-D model for deposition process has been developed in the presence of
the gravitational field and the electric field in Chapter 2. Its numerical solutions have
also been obtained and presented in Chapter 6. In comparison with the colloidal forces,
these external force fields were found overwhelmingly dominant in the 2-D deposition

case. Therefore, it will be interesting research work to experimentally test their effects on

263



Synthesis

the practical deposition cases under the gravitational field and/or the electric field to
accelerate/decelerate the deposition process at one's desire. Then the measured
deposition data can be used to verify the numerical predictions presented in Chapter 6
and, if necessary, to improve the 2-D model.

2. In Chapter 7, it has been observed that the attractive hydrophobic interaction
(or generally referred to as the hydrophobic effect) is involved in the deposition case of
the hydrophobic silicone oil droplets onto the hydrophobic FC725-precoated glass
surface in aqueous solutions. However, the hydrophobic interaction is not accounted for
by the conventional (i.e., classical) DLVO theory. As has been pointed out, it is unlikely
that any existing empirical expression for the hydrophobic interaction derived for a
specific case can be adopted to generate satisfactory predictions for rather different
colloidal systems. Hence, a substantial research work has to be accomplished in order to
understand the hydrophobic interaction and further incorporate it into the existing DLVO
theory, if feasible. Development of such modified/generalized DLVO theory is an
exciting and demanding research work, which is probably significant enough to be
another doctoral thesis topic.

3. The fluid flows are often involved in the interactions between the colloidal
particles and the solid collectors in most industrial applications. Accordingly, the
deposition process in the hydrodynamic case is of more concem. In particular, one
desires to know the exact effects of the hydrodynamic conditions such as the Reynolds
number and the Péclet number on the deposition rates. In the literature, an excellent
numerical work on the hydrodynamic deposition of the Brownian particles onto
cylindrical collectors has been accomplished by Adamczyk and van de Ven (1981b).
Therefore, it is desired to see some experimental work on the hydrodynamic deposition
case. Such experimentally measured deposition data can be utilized to verify the existing
numerical predictions and, if necessary, to improve the numerical model.

4. Once deposition occurs, the deposited oil droplets start spreading on the solid
surface in the aqueous solution. As reported by Jachowicz and Berthiaume (Jachowicz
and Berthiaume, 1989; Berthiaume and Jachowicz, 1991), for instance, their experimental
observations indicated that the spreading process plays an important role in the

subsequent deposition and spreading processes of upcoming oil droplets. Therefore, it is
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essential to obtain a thorough understanding of such spreading phenomenon of oil
droplets on solid surface in aqueous solutions. In practice, the deposition and spreading
processes are coupled and thus affect each other. Such coupling effect can become
substantial especially when the surface coverage of the deposited liquid droplets is high.
In this direction, a new model for an oil droplet spreading on a solid surface in air
has been developed. Recently, a simple working spreading model (Gu and Li, 1998e;
1998f) has been developed using the modified overall energy balance (OEB) method
(Madejski, 1976; San Marchi et al., 1993) and the widely accepted “lubrication theory
approximation”. This spreading model synthesizes surface physics and fluid mechanics
and contains only one adjustable parameter. By employing the famous de Gennes model
for the viscous force of a moving contact line (de Gennes, 1990; Brochard-Wyart and de
Gennes, 1992) and the OEB method, this novel theoretical spreading model takes account
of the inertial, viscous and gravitational forces, the interfacial tensions and the wettability
of the solid-liquid-fluid system. The numerical predictions of this spreading model (Gu
and Li, 1998e) are in an excellent accord with the experimental data of spontaneous
spreading of silicone oil drops on a soda-lime glass plate measured by Chen (1988).
Furthermore, a good agreement is also obtained (Gu and Li, 1998f) for water drops
spreading on an anodized aluminium surface and on a glass plate measured by
Thoroddsen and Sakakibara (1998) at different low impact speeds. Nonetheless, all our
numerical predictions and the existing spreading data are for the case in which the liquid
drops spread on a solid surface in air. At present, it is not clear whether such known
spreading behaviour of the liquid drops on a solid surface in air is quite similar to that of
a liquid droplet (such as an oil droplet) on a solid surface in another immiscible liquid
(such as an aqueous solution). Hence, the spreading phenomenon for the latter case is to
be explored probably by means of both numerical and experimental methods. Such
research will further one's understanding of the possible coupling effect of the deposition
and spreading, as well as the well-recognized blocking/masking effect, which is expected

to become appreciable at high surface coverage.
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