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Abstract

The distinguishing features of Model Predictive Controllers ( MPC's ) include a process
plus noise model, a predictor to produce estimates of the future output trajectory. a
control algorithm to calculate the future control trajectory that minimizes a user specified
performance index, and a large number of tuning parameters which provide the flexibility

required to handle a wide range of applications. The main contributions of this thesis in

these areas are:

e A generalized Box-Jenkins type model that unifies the development of most
discrete equation error and output error formulations including GPC and DMC.
The classical step response form of DMC is derived from the same generalized
transfer function model as the GPC type controllers and extended to include a
lead/lag noise model that can be used to speed up or filter the disturbance

rejection independent of the servo response,

e A Separated Diophantine Overparameterized Predictor ( SDOP ) for stable
processes that separates the process and noise model contributions to the process
output plus a Reduced Diophantine Overparameterized Predictor { RDOP ) that
reduces adaptive control calculations by up to 65%. Both are proven to be

equivalent to the optimal predictors used in GPC.

e A control algorithm to calculate the vector of control moves that minimizes a
quadratic performance index containing the squares of the control errors and
control increments over a "sparse” set of selected future time instants. A

normalized u-weighting parameter is incorporated so that varying u from zero to



unity produces the effect of continuously varying the control horizon from N, to

Not+m (mz1).

e To facilitate tuning of the overall ( servo ) response the predicted steady state
output is added as the Jast element in the predicted output vector and it is shown
that varying the normalized steady state weighting parameter, 0 < % < 1, varies
the closed-loop response from very aggressive ( in the extreme deadbeat ) to a

very conservative mean level response.

o Several alternatives for tuning the regulatory calculation ( disturbance rejection )
properties of MPC's are derived based on the generalized noise model C/ DAA™.
The recommended approach is to use a "disturbance horizon " or a normalized,
noise-model weighting factor, 0 € ¢ < 1, which varies the contribution of the
noise model to the output response ( independent of the servo response ) from
conservative ( e.g. DMC ) to aggressive ( eg. GPC ). Adjustment of the
normalized o-weighting ( for uncertainty prediction ) and y-weighting ( for

overall performance ) is sufficient to tune most practical applications.

These new developments are combined in a Unified Model Predictive Controller
( UMPC ) that is attractive for theoretical work because of its generality and for practical

applications because of its flexibility and ease of tuning.
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Chapter 1

Introduction

The results presented in this thesis are related to the increasingly popular process control
strategy known as Model Predictive Control or MPC. MPC is receiving widespread
acceptance both in industry and in academia. In order to establish a proper perspective for
the research work reported in this thesis various aspects of MPC are outlined in the

following sections.

1.1 Model Predictive Control { MPC )

Model Predictive Control ( MPC ), which is sometimes also referred to as Model Based
Predictive Control ( MBPC ) or just Predictive Control { PC ), is a subset of Model-Based
Control ( MBC ) that has heen defined differently by various researchers. Froisy ( 1994 )
defines MPC to be the control approaches that use embedded process models. Muske and
Rawlings ( 1993 ) view linear MPC as a class of control algorithms that compute a
manipulated variable profile by utilizing a linear process model to optimize a linear or
quadratic open-loop performance function subject to linear constraints over a future time
horizon. The first move of this open-loop optimal manipulated variable profile is then
implemented. This procedure is repeated at each control interval with the process
measurements used to update the optimization problem. According to Ogunnaike and Ray
( 1994 ) MPC is an appropriately desc.riptive name for a class of computer control
schemes that utilize a process model for two central tasks:

e Explicit prediction of future plant behavior.

e Computation of the corrective control action required to derive the predicted

output as close as possible to the desired target values.
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According to Richalet ( 1992 ), a typica! MPC involves the following four activities:
e Training or operating image — Process model
e Target — Reference trajectory
e Action — Computation of a structured manipulated variable

e Comparison actual vs. expected — Modeling error compensator

De Keyser ( 1991 ) summarizes some of the important elements characterizing MPC as
follows:

e Prediction by means of a process model.

* Generation of a reference trajectory.

¢ Structuring of the ( postulated ) control law.

e Algorithmic calculation of the best control scenario.

An important MPC characteristic, common to most of the existing algorithms, is the use
of future trajectonies of open-loop plant output as a basis for calculating the future control
horizon. Based on this concept MPC is also called Long Range Predictive Control
(LRPC).

Dynamic Matrix Control ( DMC ) and Model Algorithmic Control ( MAC ), which is also
known as IDCOM, were the pioneering industrial applications which in fact established
the area of MPC. Because of this, some authors implicitly restrict the use of the term MPC
to DMC, MAC/IDCOM, and their commercial variants. Other researcher include almost
every long range predictive control ( LRPC ) algorithm in MFC category.

For the purpose of this thesis MPC is defined to be an optimal control strategy with
following elements/characteristics:
» An explicit process model, for example impulse/step response, transfer function or
state space. A combination of these model forms can also be considered.

* An explicit or implicit noise/disturbance model.
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e An output/prediction horizon.

* An optimal long range output predictor based on the process and noise models.

e A user specified performance criterion with or without constraints on the
input/output.

¢ Solution of an optimization problem to yield current and future control actions.

e Receding horizon implementation ( i.e. implementing only the current control

move and resolving the optimization problem at every sampling instant ).

A number of modern process control strategies contain the above mentioned features and

hence can be classified as MPC. Some of these include:

DMC Dynamic Matrix Control ( Cutler, 1979)

MAC /IDCOM Model Algorithmic Control / Identification & Command ( Richalet
etal., 1978 )

GPC Generalized Predictive Control ( Clarke et al., 1987a)

EHAC Extended Horizon adaptive Control { Ydstie, 1985 )

EPSAC Extended Predictive Self Adaptive Control { De Keyser, 1985 )

OCS Optimum Control Synthesis ( Peterka, 1982 )

MUSMAR Multistep Multivariable Adaptive Control (Greco et al., 1984 )

MURHAC Multipredictor Receding Horizon Adaptive Control ( Lemos and
Mosca, 1985)

The above listed MPC's differ from each other with respect to process and noise model
forms, performance criterion details, assumptions about future control moves and
optimization problem solving methodologies. Three of these MPC's, DMC, MAC/IDCOM
and GPC, warrant more detailed description because of their widespread popularity in

industry and academia and are discussed in following sections.



1.1.1 Dynamic Matrix Control { DMC )

DMC algorithm was first developed at Shell and was introduced in the open literature in
1979 when Cutler reported successful application of this algorithm to a fluid catalytic
cracking ( FCC ) unit. Some of the main features of DMC include the following:

e Step response process model

e Animplicitly assumed Random Walk noise model.

e A quadratic cost &:nction

¢ The notion of a control horizon ( i.e. control moves after a certain point in future

are arbitrarily set to zero).
e Systematic handling of process constraints through the use of a numerical

optimization algonthm to calculate the required cosircl action.

Some commercial versions of DMC include DMI ( Dynamic Matrix Identification ), a
proprietary multivariable step-response identification software, as part of the MPC

package.

Although DMC has been successfully employed in industry, it has some inherent

drawbacks. Some of them are:
e A large number ( typically >30 ) of step response coefficients are needed.
e It can not handle open-loop unstable processes.
¢ Disturbance rejection is exclusively dependent on servo response.

However, some versions of DMC use ad hoc fixes to go around some of the above listed

problems.

1.1.2 Model Algorithmic Control / Identification and Command (
MAC /IDCOM )

Model Algorithmic Control ( MAC ) developed by Richalet er al. ( 1978 ) is considered to

be one of the two pioneering MPC schemes. The other is DMC which has been already
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discussed. Industrial implementation of MAC is also known as ldentification and
Command ( IDCOM ). The main elements of MAC/IDCOM are:

o Impulse response process model.

e Reference trajectory, a weighted sum of current and future output and current
setpoint.

e Fixed output horizon, determined by the settling time.

s Contro! horizon set equal to the output horizon.

e Quadratic cost function.

o Receding horizon implementation.

o Two-step QP solution of the constrained optimization problem.

Although IDCOM uses an impulse response mode! it is recommended that first a transfer
function model be identified which can subsequently be used to generate the required
impulse response coefficients. This is due to the fact that the identification of impulse

response from noisy input/output data results in coefficients with large variances.

The deficiencies of IDCOM are similar to those of DMC and include the following;
e A large number of impulse response coefficients are needed.
e Limited to open-loop stable processes.

» No separate tuning knob for disturbance rejection.

1.1.3 Generalized Predictive Control { GPC )

Unlike DMC and IDCOM the Generalized Predictive Control ( GPC ) was not 2 result of
industrial ventures, rather it was a product ‘of academic research at Oxford university. The
landmark papers of Clarke ef al. ( 1987a and 1987b ) started a new era of systematic
formulation of MPC. Key features of GPC are:

e Transfer function process model
e ARIMA noise model which includes the process model denominator.

e Recursive solution of Diophantine equations.



¢ Unifies many previously existing MPC schemes into one algorithm

Because of the equation error noise modeling, GPC can handle both open-loop stable and
unstable processes. Since its introduction, GPC has enjoyed widespread academic
acceptance. A large number of research papers have been devoted to alternate
formulations, theoretical analysis and extension of the GPC philosophy. Industrial
applications of GPC are also reported. However due to the lack of any dedicated
marketing of a commercial version, it has not penetrated as deep into the industry as DMC
or IDCOM. Some of the shortcomings of the GPC algorithm are:

o Noise dynamics are tied to the process dynamics.

e OQutput predictor lumps process and noise terms.

o Computationally expensive Diophantine equation solution.

¢ Relatively complicated control algorithm formulation compared to DMC.

1.1.4 Commercial MPC Packages

As has been mentioned above, the industrial implementation of MPC's preceded their
formal formulation. This lead to the widespread acceptance and growing applications of
MPC in today's industry. Hundreds of industrial applications of MPC, using different
commercial packages, have been reported ( Froisy, 1994 ). The following list summarizes
some of the commercial packages for MPC ( Ogunnaike and Ray, 1994 ):

DMC  Dynamic Matrix Control: marketed by DMC Corporation

QDMC  Quadratic DMC: developed and used by Shell

OPC Optimu Predictive Control: developed and marketed by Treiber Controls Inc.
and is almost identical to DMC except that the constraints are handled using
linear programming rather than quadratic programming.

IDCOM Identification and Command: an industrial implementation of MAC, is marketed
by Setpoint Inc. with different names including IDCOM-S, IDCOM-M and
IDCOM-B etc.. Originally IDCOM was developed in France by
Adersa/Gerbios.



PC Predictive Control: combines features of IDCOM and DMC and is marketed by

Profimatics.

HPC Horizon Predictive Control: a multi input single output ( MISO ) control
scheme marketed by Honeywell Corporation. It differs from DMC in objective
function and tuning parameters, but incorporates the concept of correction
horizon beyond which the prediction error is to be reduced permanently to zero.

HMPC  Honeywell Multivariable Predictive Control: a multi input multi output (MIMO)

control scheme marketed by Honeywell Corporation. It is a multivariable
extension of HPC.

Most of the above listed commercial MPC algorithms have been implemented using a
general purpose process control computer ( e.g. a Digital VAX ) which in turns
communicates with a separate distributed control system ( DCS ) ( e.g. 2 Honeywell TDC

3000 DCS system ). Compact versions of MPC ( e.g. OPC and IDCOM-B ) may directly
be implemented on DCS

A brief list of industrial applications of MPC includes control of the following ( Ogunnaike
and Ray, 1994 ).

¢ Distillation columnz

o Fluid catalytic cracking ( FCC)
s Hydrocracker reactor

¢ Polymerization

e Chemical reactors

e Pulp and paper making

o Polymer extruders

e Tar sand extraction cells



1.2

Advantages of MPC

It can be rightfully asserted that at present MPC is the most poplar advanced process

control strategy in the petroleum and petrochemical industry. The number of industrial

applications of MPC is growing rapidly because of its inherent advantages over

conventional PID controllers. Another reason is the easy availability of MPC technology at

affordable prices and the ever falling computing costs. A number of advantages of a

standard MPC package are listed below:

1.3

Can handle Multi-Input-Multi-Output (MIMO) systems

Easy to deal with time delays in a systematic way

Incorporates process input/output constraints

Very flexible tuning parameters/strategies

Handles unusual process dynamics, e.g. "wrong-way" initial responses.
Allows for on-line real-time-optimization ( RTO )

Fits well with model-based process monitoring

Intuitively-apnealing, optimization-based control

Systematic compensation for noise/disturbances

Proven performance in the chemical industry

Drawbacks of MPC

Naturally, in this imperfect world, advantages are offset by shortcomings or drawbacks.

Some of the deficiencies of MPC are:

Computational complexity.

Tuning parameters are not in terms of usual performance specification criteria.
Specification of noise/disturbance models is not well defined.

Robustness issues are not explicitly addressed.

Theoretical analysis is difficult for finite horizon controllers.



1.4 Structure of the Thesis

This section consists of two sub-sections. Sub-section-1.4.1 describes the motivation for

the study of specific aspects of MPC and establishes the objectives/goals for the research
work. The second sub-section describes the organization of the thesis.

1.4.1 Motivation and Objectives

The rapidly growing number of MPC industrial applications presents a serious challenge to
academia in terms of developing a more fundamental understanding and theoretical
analysis of MPC. One important area of interest is to integrate the seemingly different
MPC schemes. While different applications may be situation-specific, unification, in terms
of the functional characteristics of MPC algorithms is highly desirable. It is not important
that the unification should result in a single generalized master algorithm, all that is needed
is 2 conceptual unification which will bring the currently scattered MPC strategies under a
common framework so that parameters in various schemes can be mutually translatable.
Some of the bases for unification include the following:

e Process model type: transfer function, step, impulse or state space.

¢ Noise/disturbance modeling: equation error or output error etc..

o Reference trajectory: reference time in IDCOM and model-following in GPC etc..

o Cost function

¢ Control law structure

Complete unification covering all the characteristics of MPC's is a very broad research
area and is too unrealistic to attempt by an individual or even by a single research group.
However, unification on the basis of one or two criteria seems practical and has been
successfully attempted in the past. Based on different horizon settings GPC unifies many
previously developed control strategies. Li ef al. ( 1989 ) state space formulation of MPC
started an era of process mode! based unification. Qi and Fisher ( 1993 ) developed a dual-
model MPC which uses a combination of step response and transfer function process

models. Soeterboek ( 1990 and 1992 ) and Soeterboek ef al, { 1990 ) used a generalized
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equation error noise/disturbance model in their Unified Predictive Control ( UPC )
algorithm. The work presented in this thesis employs a more general noise disturbance
model which includes both the output error and the equation error structures. A very
important issue in process control applications is the disturbance rejection properties of
the implemented control system. Most of the existing MPC schemes do not deal with this
point explicitly. For example, DMC has no servo-independent tuning mechanism to
control the speed of disturbance rejection. GPC assumes that disturbances have the same
dynamics as the process. In general there has been no significant emphasis placed on the
role of noise/disturbance model in disturbance rejection performance of MPC. In this
thesis, a general noise/disturbance model is introduced and used as a tuning mechanism

that can be utilized to achieve desired disturbance rejection properties.

Transfer function based MPC's employ Diophantine equations to separate the free and
forced ( past and future ) responses. Usually the process and noise models are lumped in
the derivation of the optimal output predictor. This lumped formulation restricts the
independent manipulation of the noise model. It also complicates the analysis of the
resulting controller. A separated Diophantine predictor formulation of MPC is proposed in
the current work. It leads to an MPC algorithm that is simple, straightforward and allows

separate manipulation of the noise/disturbance model.

A great deal of computational load of an MPC algorithm is associated with the
Diophantine equations that appear in output predictors even though the future outputs are
not explicitly calculated. In addition to the computational load, the number of Diophantine
equations is proportional to the output horizon and pose an additional burden on
computer storage. The computational load and the storage requirements become a serious
limitation in MIMO systems, The search for computationally cheaper MPC algorithms is

another objective of the thesis.

Most existing MPC strategies require large output horizons in order to yield robust

control in the presence of the inevitable unmodeled dynamics. A goal of the current
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research is to generalize the performance criterion ( cost function ) of MPC so that it can
use a sparse output horizon. Another limitation of curr.ntly available MPC packages is the

integer nature of the control horizon. Interpolation of the control horizon is considered as

another objective for the study.

The concept of long range prediction in MPC can be extended to include the steady state
prediction in the cost function. This idea has already been implemented by Kwok and Shah
( 1994 ). However in this thesis the steady state prediction has been incorporated in MPC

using an entirely new interpretation and methodology.

A recursive MPC formulation, which gives the control law for a control horizon of Nu+m

in terms of the control for N,, is also on the list of objectives of the current study.

1.4.2 Thesis Organization

The technical material of the thesis begins with Chapfer-2 which discusses the structure
and role of noise/disturbance models in detail. A generalized ncise/disturbance model,
which covers both the equation and output error structures, is devcloped for inclusion in
the UMPC formulation. The chapter also describes 2 modified form of the classical DMC
algorithm which includes an independent tuning parameter for disturbance rejection. In
the same chapter, an overparameterized optimal output predictor is developed to reduce

computational load and computer storage requirement.

The Separated Diophantine Predictor ( SDP ) is developed in Chapter-3. Using this
predictor a modified form of the classical DMC is formulated, which includes parameters
for independent disturbance rejection and noise attenuation,. A new concept, that of
disturbance horizon, is introduced. Strategies to incorporate more than one
noise/disturbance mode! into the MPC formulation has been included using the notion of
disturbance horizon and o-weighting. Detailed analyses of SDP are included to relate it to

the classical predictors. An overparameterized SDP is proposed to reduce the computer

time and storage requirements.



12

Chapter—# of the thesis deals with the development of computationally more efficient
Reduced Diophantine Predictors ( RDP }. A parsimonious and an overparameterized form
are formulated and then mathematically proven to be identical to the classical optimal

predictors. The sources of computational saving are discussed in detail.

The notion of a sparse output horizon is introduced using a generalized cost function in
Chapter-5. The advantages cf using an integral cost function for highly sparse output
horizons is demonstrated and a more general control policy is introduced. Another new
concept, control horizon interpolation, using a sparse control horizon is included. This
chapter also presents a method for using multiple control horizons in the UMPC

formulation.

Chapter-6 is dedicated to the steady state error weighting formulation of UMPC. A
completely new basis for including the steady state tracking error in MPC is introduced.
Two methods for steady state output prediction are presented. The steady state error
weighting formulation of MPC is shown to be a2 weighted interpolation of dynamic and
mean-level MPC. The steady state error weighting is normalized and the concept of

disturbance horizon, developed in Chapter-3, is applied to this scenario.

A control horizon-recursive formulation is put forward in Chapter-7. The matrix
inversion lemma is used to avoid the matrix inversion normally involved in the control
calculations. Two new methods of control horizon interpolation ( one was developed in

Chapter-4 ) are presented. A method of simultaneous recursion and interpolation of

control horizon is also developed.

The presentation of the current research work is concluded in Chapter-8 of the thesis.
This chapter draws overall conclusions about the accomplished research results presented
in chapters 2-7. Guidelines for potential future research work in the area of model

predictive control are provided at the end of this last chapter.
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Chapter 2

Unified Model Predictive Control '

2.1 Introduction

A model-structure-unified formulation of long-range predictive control is presented in this
chapter. This model-based control strategy which shall in the sequel be called Unified
Model Predictive Control (UMPC), uses a generalized polynomial structure for both
process and noise models rather than a specific model structure like ARIMAX. A wide
range of model structures can be handled and by selecting the appropriate model structure,
the Unified Model Predictive Control law may be reduced to well known controllers like
GPC and DMC.

The role of the noise model as a tuning parameter for the speed of disturbance rejection is
elaborated and the advantages of a generalized noise model are established. A unified
formulation is adopted for the two complementary classes of noise model structures viz.

the Equation Error (EE) model and the Qutput Error (OE) model.

UMPC is derived using two different predictors. The Lumped Diophantine Predictor
(LDP) is an extension of the classical long-range predictor used in controllers such as
GPC but incorporates both the EE and the OE noise model structures in one formulation,
A Lumped Diophantine Overparameterized Predictor (LDOP) was then developed which

offers the same generality but with a substantial saving in computational load. The UMPC

! An earlier version of this chapter was presented at the 44th Canadian Chemical Engineering Conference
: *Unified Predictive Control®, Saudagar, M.A., Fisher, D.G. and Shah, S.L., 1994.
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is a receding horizon controller and retains the concepts of output horizon and control

horizon and control weighting (2) used in GPC and other modem controllers.

An improved version of classical DMC, IDMC, is derived, as a special case of the
generalized noise structure, using the LDP. The IDMC algorithm, which adds a first order

lag filter in the DMC noise model, provides independent tuning for disturbance rejection.

A number of simulation results are presented to illustrate the effect of various noise model

structures and the performance of the newly formulated IDMC algorithm.

One of the objectives of the present work is to integrate all such structure-specific linear

controllers into a single algorithm using a general model-structure.

2.2 The Generalized Model Structure

The measured output can be described by the following equation:

Output Signal = Process Model x Input Signal + Noise Model x Uncertainty Signal
or

¥(1) = G(g™" Yult = 1) + W(g™ )e(r) (2.1)
where G(g™") is the process model, W(g™") is the noise model and y(¢), #(f) and e(?) are
the output, the input and the uncertainty signals at time 7 respectively. A typical example

of the uncertainty signal e(s) is zero-mean, normally-distributed, independent, white

measurement noise.

The process model G(g™') can be a non-parameteric finite impuise-response model as
employed in Identification and Command ( IDCOM ), ( Richalet et al., 1978 ), 2 non-
parameteric step-response model such as the one used in Dynamic Matrix Control,
(DMC), ( Cutler, 1979 ) or it can be a parameteric transfer function model as employed in

Generalized Predictive Control (GPC). Moreover these model forms, parameteric and
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non-parameteric, can also be rearranged into the more descriptive state space formulations

( Lim, 1988, Liet al., 1989 and Lundstrom et al., 1991 ).

In UMPC the following discrete time transfer function type process model is used,

G(q")=%:,; 22)

where A(g™') and B(q™') are polynomials in the backward shift operator ¢~' which will

be omitted from all polynomials for simplicity of notation in the rest of the chapter.

The primary purpose of including a noise model in the measured output equation is to
inform the controller about the dynamic structure of the noise/disturbance. Because of the
stochastic nature of the noise and the disturbance, detailed identification of the noise
model W is usually not feasible. In practice the most useful specification of the noise
model has been the inclusion of an integrator which for the discrete-time case is given as:

Integrator =-;— =$ with A=1-g¢"" = Difference Operator (2.3)
An integrator in the noise model successfully describes random step disturbances
introduced at the output and the drifting integrated white noise associated with output
measuring devices. The steady-state error due to a difference between the gain of the
actual process and the process model is also well-described by this integrator. Most of the
recent LRPC’s include an integrator in their noise models. Besides the integrator, the
remainder of the noise model is either specified on an ad hoc basis or is left unspecified.
The noise models of DMC and GPC are:

W= % DMC Noise Model (2.49)
C .
W=— GPC Noise Model (2.5)
AA

The DMC noise model consists of only a single integrator, while the GPC noise model

contains the process model denominator A in addition to an integrator and an observer
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polynomial C. The inclusion: of 4 in the noise model is appropriate when the disturbances
and the plant have the same dynamics. However in general this "hard-wired" 4 reduces the
flexibility in specifying the noise model, and in many cases it amplifies the effect of the
unmodelled dynamics. Moreover the 4 in the noise model can not describe measurement

noise which is almost always added at the output i.e. it does not share the plant dynamics.

In controller design a rather important role of the noise model is its influence on the speed
of disturbance rejection. Although this feature of the noise model has been implicitly
utilized in some of the LRPC’s, it has not been emphasized explicitly in the LRPC
literature. As the main issue in process control is regulatory control, i.e. keeping specified
process variables at their desired values ( set-points ) in the presence of internal and
external disturbances and noise, the speed of disturbance rejection is of prime importance.
In this context a generalized noise model structure provides more flexibility in controlling

disturbance rejection than using an arbitrarily fixed structure.

As mentioned earlier, the long range predictive controllers developed to date use
arbitrarily specified noise models. A general noise model structure for discrete-time linear
time invariant svstems has been widely used in the time series literature (Box and Jenkins,
1976). Harris and MacGregor (1986) employed such structures to develop Linear
Quadratic ( LQ ) controllers. Soeterboek ( 1990 and 1992 ) and Soeterboek et al. (1990 )
used a generalized equation error ( ARARMAX ) noise/disturbance model in their Unified
Predictive Control { UPC ) algorithm. De Keyser (1991) suggested the use of 2 Box-
Jenkins type model structure for LRPC. However no LRPC based on these generalized

noise model structures has gained any significant acceptance.

The following discrete-time rational polynomial model structure, based on (2.1), is
considered to be the most general model structure for linear rational polynomial noise
models ( Ljung. 1987 and Soderstrom, 1989 }:

weC

D (2.6)
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where C and D' are polynomials in the backward shift operator g’

For controller design an integrator is generally included in the noise model for offset
removal. For example GPC and DMC use a single integrator 1/A ( A=1-g") in the noise
model. However offset removal may require more than one integrator for ramp and higher

order disturbances or set points. Therefore a multiple integrator 1/A" was included in the
P 4

UMPC model structure to offer 2 more general formulation.

Many popular model structures including ARMAX and ARIMAX use the process
denominator polynomial 4 in the denominator of the noise modzl. These model structures
are called Equation-Error (EE) models. The model structures which do not contain the
process denominator polynomial 4 in the denominator of the noise model are called
Output Error (OE) models. In general controllers based on the EE model structure result
in faster disturbance rejection than those based on the OE structure. For example GPC is
much faster than DMC in terms of disturbance rejection. However in the presence of
higher Model Plant Mismatch (MPM) these EE model based controllers become unstable
due to the presence of the process denominator polynomial 4 in the denominator of the
noise model. One indirect solution, used in GPC, is to use a compensating polynomial
( the so-called T-filter or observer polynomial ) in the numerator of the noise model. In
UMPC, in addition to the C polynomial in the numerator, an arbitrary polynomial, D, is
included in the denominator of the noise model rather than restricting the denominator to

the fixed process denominator polynomial 4.

The D polynomial provides a systematic way of increasing the speed of disturbance

rejection. The D = 1 case gives a DMC-type controlier which has slow disturbance
rejection speed. With a2 D=1-ag™, increasing & increases the speed of disturbance

rejection. Setting D = A gives the GPC disturbance rejection characteristic. In order to

include the optional process polynomial 4, the arbitrary polynomial D and the multiple
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integrator in the UMPC formulation, the denominator polynomial of the noise model (2.1)

is defined as follows:
Noise model denominator = D'= DAA” @7
and the noise model for (2.1) becomes:

C
— — 2.8)
DAN (
The notation A is used to indicate that the polynomial A is included for equation error
structures. More specifically:

A=A for EE structures

A=1 for OE structures

The A notation is an extra burden but it unifies the formulations for the EE and the OE
structures into a single formulation. Without this notation two parallel derivations would
be needed to encompass both the EE and the OE noise structures. Note that although the
optional polynomial 4 could be included in D, it is shown explicitly in the denominator of
the noise model in (2.9) as a separate term for the following two reasons:
e It explicitly highlights the EE model structure option.
o In the case of the EE model structure, A gets cancelled out during the controller
derivation resulting in a simpler formulation. In other words including 4 as a
separate term in the denominator of the noise model assures the relative primeness

of the polynomials 4 and D.

With the above definition of the noise model and the transfer function process model, the

following generalized model structure for the measured output is used in UMPC:

C
DAA"

e(l) (2.9)
UMPC Model

)= %rz(l -D+
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In cases when only the effect of noise, disturbances and/or model uncertainty on the

process output is of interest the following model is more appropriate:
0= Zu(e-+x0) 2.10)

where x(?) is the residual at time z.
Setting D=1, n=1and A= 4 in the generalized noise/disturbance model (2.9) gives the
following ARIMAX ( or CARIMA ) model used in GPC:

Ay(t) = Bu(t - 1)+ %e(:) 2.11)

For model-following control, optional polynomials © and © may be used in the general
model of (2.9) to give:

—y(t)——u(f )+ Dia ,.e(r) (2.12)

However in many cases @ = Q = 1 and even if they are arbitrary polynomials, they can
always be merged into 4, B, C, D.

It may be noted that (2.12) can be rearranged into the form:
cQA
[@4DA™|y(r) = [ BQDA™ Ju(e - 1) + [—A—le(r) (2.13)

Where A is defined as follows:
A=1 for EE structures

A=A for OE structures

and
Ad=A

By redefining the coefficient polynomials (2.13) can be written as:

A'y() =B u(1-1) +-CA—e(t) (2.14)

which has the same structure as the model (2.11) used in GPC. However, as is obvious
from the above and as will be discussed later, this structure lumps the process

characteristics ( 4, B ) with the noise characteristics ( C, D, & ). One of the objectives of
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this thesis is to separate the noise versus process characteristics and to design a controller
which allows independent specification/tuning of the noise/disturbance rejection
properties. Therefore the more general separated model structure given in (2.9) is used in
UMPC. Note that the simplification, in the model following case, by merging © and Q,
into 4, B, C and D does not disturb the relative contributions of process and noise terms
model terms in the prediction and is therefore not contradictory to the philosophy of

separate parameterization.

2.3 The Lumped Diophantine Predictor ( LDP )

For j-step ahead predictions the time parameter in equation (2.9) is shifted by +j giving:

yit+ )= %u(t +j=1) +[D§A" ]e(r + ) (2.15)

Note that y(t+/) is the future output and is not available at current time . The noise model

[D/'!A" ]e(t + j) contains both future and past/present terms in e(.). The past and present

values of e(.) can easily be reconstructed using (2.9), while the future value of e(.) can at
best be set equal to its expected value which for the case of zero mean white noise is equal
to zero. However to do this, the noise term must be divided into future and past/present
components. Usually this segregation is done using the weil-known Diophantine

equations.

In the classical approach for obtaining the j-step ahead predictor ( used in GPC for
example ), the noise model Diophantine: expansion (2.16) is also employed when the
process model ( first term on the RHS of equation (2.15) ) is divided into past/future
terms. This results in the coupling of the process model and noise model polynomials. In
the present study the predictor based on this classical approach is referred to as Lumped
Diophantine Predictor or LDP because it "lumps” the process and noise polynomials
together. The derivation of the LDP is as follows.

The first term on the RHS of equation (2.15) is rearranged as follows:



C Au(t+ j-1) C _
ya+j= [DAA B Ca ‘*‘[DZA,.]?(""J) (2.17)

C
Substituting (2.16) f =
ubstituting (2.16) for [ DAA

] in (2.17) gives:

A'u(t+j-1)
DB =
Y+ j)= [E +q° i [

F,
DAA"} +|E, +q™ m (t+)) (2.18)

The j-step ahead optimal prediction conditioned on the input/output data up to time  is
denoted by y,(r +jif) and is obtained by setting the future component E, e(#+/) equal to

2zero and rearranging (2.18) to:

y (t+jit)=

E,DB FrB
—Au(t+ j-D+ ==yt -1+ 1
ca b C[A"(' ) DAA"e()]

(2.19)

Then recognizing from (2.9) that [ u(1-1) + e(t)] y(1) the above equation can

be simplified as follows:

t+ jl —[E’DB]A"::(H'—I d 2.20
y,(+jl)= ca J )+?y(t) (2.20)

This eliminates the unknown future e{1+j) terms from the output predictor but the first
term on the RHS of (2.20) contains both, future and past components. In order to separate

these components the following Diophantine equation is used:

EDB] ~ _G,
8ol

Substitution of (2.21) in (2.20) leads to
. N < F
y, @+ 1) =G Au(t + - 1)+ =L A'u(t - 1) + =L y(1) (2.22)
CA C
With the following definitions of filtered input and output
A"u(t-1) ¥
—_— d (==~
Ca an Y0 C
the predictor (2.22) becomes:

Aul (t=1)= (2.23)
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y,(t+ 0= G Au(t+j-1)+ G, (1-D+F,y (1) (2.24)
LDP

Remark 2.3-1:

The predictor (2.24) is termed the lumped Diopiiantine predictor or LDP because the
second term on the RHS is a combination of process and model polynomials.

Remark 2.3-2:

The first term on the RHS of (2.24) is the forced response which depends on the present
and future input values, while the remaining two terms on the RHS constitute the
prediction of the free response of the system based strictly on input-output information
until time = ¢, 1.e. when {u(t+-1), =1,2,3,...}=0.

Remark 2.3-3:

It can be shown that the forced response in the LDP is independent of the noise model.

Equation (2.21) gives
~ B
g, {ﬂ] 225)
CA |

where the square brackets with subscript j denotes the first j terms of the argument within
the square brackets. Moreover

)

Substituting (2.26) in (2.25) gives:

= C DB B
= — —_— =|-= 2
G [DAA" CA]J [AA" ], ) (2.27)

Equation (2.27) shows that G, depends only on process model polynomials ( B and 4 )

which in turn proves that the forced response does not depend on the noise model.

The second term on the RHS of the LDP contains filters which depend on both process
and noise models, while the third term depends only on the specified noise model.



(8]
Lh

Remark 2.3-4:

The LDP may be derived in many other ways, however the foregoing derivation was
developed to specifically highlight the fact that the process transfer function is expanded
into future and past parts using the noise model Diophantine equation ( see equations
{2.17) and (2.18) ).

Remark 2.3-5:

Assuming that (2.9) accurately represents the actual process and assuming perfect process
and noise modeiling, the prediction error, g,(r+j}7), of the LDP corresponding to y,(+4/l1),
can easily be obtained by subtracting (2.19) from (2.18) as follows:

e, @+ /0=y +)-y, (t+)=Eee(t+)) (2.28)
This is also obvious from the fact that the assumption made in deriving (2.19) from (2.18)
was that E,e(t + j)=0.

Remark 2.3-6:

For ARIMAX ( or CARIMA ) models 4= 4 and the LDP gives the GPC predictor with
a single integrator ( i.e. #=1 ), while for DMC-like controllers with C =D = A=1 the
noise model is simply a single integrator, and therefore F, =1 ( and the VO filtering in
(2.23) is not required ).

Remark 2.3-7:

For OE noise model structures the second term on the RHS of equation (2.22) contains
the denominator of the process transfer function. This implies that for open loop unstable
processes the predictions may become unbounded. A simple way to get stable predictions

for unstable processes is to use an EE noise model structure instead of an OE structure.

Another option revealed by the above derivation of the LDP is to use a partial EE noise
model structure which is defined as one containing only the unstable factors of the process

model transfer function denominator instead of the whole denominator.

y(1)= %"(f -+ 'D—f'—A-;e(t) where A, = unstablefactorsof 4 (2.29)

A=4,4, where A, = stable factors of 4 (2.30)
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C _F
oar =5 DAy @31)

The same effect (i.e. the partial EE modelling ) may also be achiev<d by simply setting one
of the factors of C equal to 4,.

A block diagram illustrating the LDP is given in Figure 2.1. Note that the predictor does
not give separate free responses due to the manipulated variable and uncertainty. In Figure
2.2 the free response for the LDP is shown to be a sum of the free responses due to the

past manipulated variable and uncertainty.

2.4 The Lumped Diophantine Overparameterized
Predictor ( LDOP )

The past and future terms in the noise model can be separated using the following

Diophantine expansion rather than (2.16):

C -N

"T_=£ + —.L 2.32
pAat " T Danx (2.32)

where N is any integer greater than or equal to j. A useful case results when N is set equal

to the maximum output horizon of a long range predictive controtler.

Substituting (2.32) for D§A in (2.17) gives:

, v Fu A"u(t+ j-1) [ v F. ]( .
! =|E - ]DB = NN 2.33
Y+ J) [ ytq DAN Ca +|Ey +q DA (¢+j) (233)

._EyDB : F.[B C .
==X __A" - M ult - f - —_—rt( -
yit+n o u(t+j-N+ C [‘A u(t-N+j=-1)+ DTS e(t-N+ j)] 234)

+Ee(t + j)

The term in the square bracket on the RHS of the above equation is y(t-N+j) and the
expected future values of e(.) are zero. Substituting these gives:

N

DB =
y,(t+ 0= ECE Au(t+j-1) +%’-y(t - N+ j)+Eye(t) (2.35)

where



E.=E, +q”E,
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(2.36)

Note that the future stochastic part £ ne(l + J) is set to zero in arriving at equation (2.35)

Expanding the input into past and present/future terms using

E\ DB ~ .Gy
X —=G, > 237
Ci s B (237
Gy =G, +47G, (2.38)
gives
y,(t+jlt)= G-:N,A"u(r +Jj- l)+6~,A"u(1 - +G, Aut - N_+J )
. C4 (2.39)
+—Ciy(t - N+j)+Ege()
Defining e(?) ( using (2.9) ) as
"y(t) — DBA™u(t - -
e()= DAy y®) o 2D _ paar v/ (1)- DBA™W (1-1) (2.40)
and the filtered input/output, A"»” and y* as in (2.23) yields
y,(t+jl)= C?'N,A"u(z +j- 1)+5MA"u(: “D)+G A ((-N+j-1 (2.41)
+F,y (1= N+ j)+ Ee(1)
LDOP

Remark 2.4-1:

The predictor (2.41) is termed as the lumped Diophantine overparameterized predictor or
LDOP because the Diophantine expansions corresponding to the farthest horizon point is
used for all j's. The future polynomials of these Diophantine equations have N parameters

and thus are overparameterized compared to the Diophantine equations corresponding to

jth horizon point which contain only j parameters in their future polynomials.
Remark 2.4-2:

The first term on the RHS of LDOP is the forced response which depends on the present

and future input values, while the remaining four terms on the RHS constitute the
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prediction of the free response of the system based strictly on input-output information
until time = ¢.
Remark 2.4-3:

The computational load associated with equations (2.36) and (2.38) is trivial because E,

is simply the first j terms of £, and ¢/ E,, represents the last N-j terms of E,, . Similarly

—

C?NJ is the first j terms of G, while q"g,\,J represents the last N-j terms of G, .

Remark 2.4-4:

The computational load of LDOP is much lower than that for LDP. This is primarily due
to the fact that the two sets of Diophantine equations (each consisting of Nz equations
where . = output prediction horizon ) are replaced by only two Diophantine equations.
The storage requirement is also reduced.

Remark 2.4-5:

LDOP is mathematically identical to LDP. The following theorem proves this.
Theorem-1:

The LDOP ( equation 2.41) ) is mathematically identical to the LDP (equation (2.24) ).
Proof:

Combining (2.32) and (2.36) gives

DAA" = Eh.’p +q7Ey+q™" D;NA" = ENJ +q~ DAA"EB;A‘Z-N"FN
which implies that

&b (2.42)
and

F,=DANE, +q™™"F ' (2.43)

Substituting (2.38) in (2.37) and rearranging yields:

EDB = .= x0 = _ GyCi+q™ G,
F=—=0, +¢ JGA)"'QAE%': 5+’ = Ca -

CA

(2.44)

Using (2.36), % can also be given as:



E.DB EDB _ E,DB . G _E.DB
o e g —— =0, +q =t +q —= 245
ca -9 Ta TG Taa (243
or
E.DB ~ . G +E,DB
i—=GC P 2.46
ca " T (246)
Comparing (2.44) and (2.46) gives:
G, = c=35,J (2.47)
G, +E,DB= G,CA+q ™G, (2.48)
or
G, =G,Ci+q "G, ~E,DB (2.49)

Substituting G,, G, and F, from equation (2.47), (2.48) and (2.43) respectively in the
LDP equation (2.24) yields:

y,a+j= éh.,A"u(t +j=1) +[5~,Cf4 +q VG, - EN,DB]A"W' (-1 2.50)
+{DAA'E, +q™""'F, @ .

rearranging

y (1 +jl0)= 5”_,13"::(: + j=1) +5~JA"u(r —D)+G AW ({-N+j-1)
+F,y’(t- N + jy+ DAN'E,,y’ (1) - E,, DBA"W (1 ~1)
(2.51)
or

y,(t+ 1) = Gy 8t + j=1) + Gy Au(t =) + Gy (¢ = N + j- 1)

DAN"y(1) - DBAu(z - 1) 352
CA

+F~yf(l—N+j)+E~i
which using (2.40) gives:

»,(t+jit) = Gy &utt+ j-1) + Gy Ault =)+ Gy &% (¢ = N+ j= 1)

° (2.53)
+F,y (1= N+ j)+ E e(1)

which is exactly identical to the LDOP (2.41) XX
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Remark 2.4-6:
The forced response in the LDOP is independent of the noise model. This follows
because the forced response of LDOP is exactly equal to that of LDP which has aiready

proven to be independent of noise model ( see Remark 2.2-3)

2.5 The Control Law

The purpose of a long-range predictive controller is to find the current ( at time = 7))
contro! action, u(7), by ccnsidering the effect of current plus future control moves on the
output over a future horizon bounded by times +N; and r+N.. Time 1+, is greater than
or equal to the earliest time in the future at which the output is affected by the control

move at time ¢, while N; is arbitrary but must be greater than V).

To date most of the popular long-range predictive controllers use the following type of
cost function for optimal control calculation (Clarke et al., 1987):

Ny " Ny -
J= 3 yUy, (e + A -wle+ D] + S AU A" s +j-D)| (2.54)
where

A.) = the weighting on tracking error.

y(.) = the predicted output values.

w(.)= the desired cutput values or the set-points.

Ny = the initial output horizon 2 the earliest future output that is affected by the control
move at time ¢.

N>=  the final output horizon, the farthest future output that is included in the cost
function J. -

A(.)= the control weighting sequence.

N.= the control horizon, the number of future non-zero control increments.

The future predicted output, y,(Z + j|t), in the above cost function is usually given by the

LDP or the LDOP developed above which are repeated here for reference:
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y, @+ j6)=G,&u(t+j-1)+G AW -1+ F,y’ (1) (2.24)

LDP

v, @+ ) =Gyau(t+ j-1)+ Gy Au(t-1) +G&u’ (1~ N+ j-1) 241)
+Fy" (1= N+ j)+ Ege(t)

LDOP

The prediction consists of two parts. The first term on the RHS of the predictors is the
response due to the future input moves. This first part is known as the forced response.
The remaining terms on the RHS of the predictors are called the free-response i.e. the
response due to the past inputs u(.) and disturbances up to time .

The forced responses are given by:

Forced Response for LDP = G A"u(r + j - 1) (2.55)

Forced Response for LDOP = G-:NJ A'u(t+ j-1) (2.56)
where

Gy =G =g +8q" +. 420" @.57)
The free responses are given by:
LDP free response:

fu+)=CG A -1+ Fy () (2.58)
LDOP free response:

F@+ ) =Gy N u(t =1 +CyA'u’ (1= N+ j=1)+ Fyy’ (¢t~ N+ j)+ Eye(r) (259)

In order to obtain a compact vector-matrix representation of the set of future predictions
in the form:

Y, =Gu+f (2.60)
the set of N-Ny+1 output predictions at time / is represented by a vector y, and the set of

future control moves ( i.e. A"u(f) to A"u(t+Nx-N;) ) by u. In order to have a correct

vector-matrix form the polynomials G , are flipped right side left and the matrix produced



L.
t

by stacking the flipped polynomials is called G. Similarly the vector for the free responses

is represented by f. In expanded form (2.60) is:

[ y,(t+N) ] -g.\‘.-l
y;(l+Nl+l) g.‘\'.

Ly, (t+ Ny | 8v,o1 &y,

with

[ yp(t-!-Nl) ]
y,(t+N, +1)

Y, = :
L -vp(“'Nl) AN Ny
-g.\',-l o & 0
&, = & &

G= M . K

[8xy1 Enye2

b4
&

0 - 07T Au® [ f(t+Nt)W
g& - 0 A"u(t +1) FU+N,+))

e 0 : + :
) |au@+N. -] L fu+N) |

Au(t)
A"u(t+1)

| A"u(t+ N, - 1)

0
0
0

g“-(.\',-.v,.t)-.v:

[ f(+N) T
f@+N,+1)

(2.61)

L J+N;) |

Na-Nyel

(2.62)

(2.63)

The dimensions of the matrix G are (NV>-Ni+1)xN2, where the length of u is N>. However

most LRPC's assume that only the first N, < N: control moves are non-zero. This

assumption greatly reduces the computational load as the dimensions of the G matrix

reduce to (N-Ny+1)xN,, and the length of vector u becomes N,. The G matrix becomes:

Pg.\_‘_l aes ST - A
&y, e & &

[ Ex.1 8y

0 ]

0

&o
8NN S npenen,

The cost function J (2.54) in vector form is:

(2.64)
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J=(y, -W)T(y,-w)+u"Au (2.65)

I'= a N-N;+1 by N-Nr+1 diagonal matrix of tracking error weightings
A= a N, by N, diagonal matrix of control weightings and

w is the vector of future set points defired as follows:

[ w(t+N,) |
w(t+ N, +1)
W= : (2.66)

L w(@+Ny)

Nye Xyl

Now the predictor (2.60) may be substituted in (2.65) giving the following cost function:
J=(Gu+f-w) T(Gu+f-w)+u'Au (2.67)

Minimization of the cost function in (2.67) w.r.t u gives (MclIntosh, 1988):
u=(G'TG+A)*G'I(w-f) (2.68)

The control law (2.68), with appropriate choice of process and noise models and the
various tuning parameters ( e.g. Ny, N2, N, and /), yields many of the classical model-
based controllers reported in the literature. Some of these include the following:

o Generalized minimum variance, GMV, ( Clarke and Gawthrop, 1975 and 1979,

Tuffs and Clarke, 1985).

e Extended horizon adapti-e controller, EHAC, ( Ydstie, 1985).

¢ Dynamic matrix control, DMC, ( Cutler, 1979).

o Generalized predictive control, GPC, ( Clarke et al., 1987).

¢ Identification and command, IDCOM, ( Richalet et al., 1978 ).

e Predictive control algorithm, PCA; ( Bruijn et al., 1980 ).

2.6 Improved Dynamic Matrix Control ( IDMC )

DMC is one of the most popular LRPC's used in the chemical industry. One major

drawback of DMC is its slow speed of disturbance rejection. A control horizon of one in
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GPC is often very effective, whereas DMC may require N, between 3 to 5 for similar

disturbance rejection speed (Clarke, 1991).

In the following formulation a simple algorithm is developed to improve the disturbance
rejection speed of classical DMC and to give two degrees of freedom for tuning, i.e. the
servo and regulatory responses can be tuned independently. Note that the algorithm i1s

extracted from the generalized noise/disturbance model structure presented earlier (2.9).

2.6.1 Classical DMC Predictor using LDP

The measured output model for classical DMC can be written as:
y()= Hu(t-1)+ %e(!) = Hu(t - 1) + x(1) (2.69)

Note that (2.69) is obtained from the generalized UMPC output model (2.9) ( with an OE
structure ) for A=C=D=1, B= Handn=1. The process model A and the residual
x(f) at time ¢ are defined as:

H=> hq™" where A, are impulse - response coefficients (2.70)
=1

x(1) = y(1) - Hu(1 = 1) = y{1) -Lih,Q"" ]"(f -1 @71)

For stable processes the summation can be truncated at 7, the process settling time, giving

the following expression for x(7).

;
x{1) = y(1) - [’Z hqg'! }u(l -1 (2.72)
-
The measured process output, 3(f), can also be expressed in terms of step-response
coefficients as:
y(1) = SAu(t-1) +ie(l) = SAu(t - 1) + x(1) (2.73)

where



S= g- = Z%'q"" = Zs,q"" where s, are the step - response coefficients
L " @.74)
s, = ;h* and h=s-s. with 5,=0
=1
x(1) = y(t) - SAu(t - 1) = y(1) ~ [’Z s,q"“ ]Au(t -1 (2.75)
&

Again for stable processes the summation can be truncated at 7 provided that an additional
term is included to account for the effect of past input beyond the settling time. The

following expression for x({) is obtained:

.
x(1) = y(f) -LZ s,q""]Au(r - ~spu(t-T-1) (2.76)
=
Note that s, = sy for i 2 T+1. The Diophantine equation (2.16) becomes:
1 LF 1-¢7 1
— E -+ L = -4 I - 2.77
¥ 9 A A q A ( )
which implies
E =124" d F= | 2.78
;= T an ; =] ( . )
The LHS of Diophantine equation (2.21) becomes:
E DB
——=EH= ———H 1-¢g7'|S 2.79
o A [1-97] (2.79)
— Led J — huid
$=8 +97'S, S =2sq"" 5= Ysg™" (2.80)

i=l i=j+l

[1-¢7]§=8-¢7'S= S +q [S S] qu +q~ Z(s s, )g7 (2.8
i<+l

G =59 and G, = gs, -s. ) (2.82)

Substituting the above in the LDP equation (2.24) gives:
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y,(1+ )= ﬁs,q"“ }Au(t+j-1)+[ i(s,-s,_J)q""'"}Au(l—l)+ y(1) (2.83)
=1 =7 +1

I=j+

= i=j+]

y,(t+ji)= is,Au(r+j—i)]+[ i(s.-s.-,)Au(r-i+f)]+y(r> (2.84)

Truncating the second sum at 7T gives the following DMC predictor:

T

Y, + 0= ij(; +j=i) H ng, -s,., JAu(t -i +j)}+y(z) (2.85)
Z .

= i=j+

Using (2.75), the DMC predictor in terms of residual x(¢) is obtained as:

y £+ i) = Lis,!.\u(t + j=i) }+[ is,Au(l +j—i)]+x(:) (2.86)
=1 i=j+l

which after truncation becomes:

y, (@ +jl1) =|;§J_:S,Au(t +j—i)]+|: is,Au(t +j-i):|+s,.u(r +j-T-1)+x(1)K2.87)
=1

i=j+1

2.6.2 Improved DMC ( IDMC ) Predictor using LDP

As discussed earlier in this chapter and will be shown later by simulations, an optional
polynomial in the denominator of the noise/disturbance model can substantially increase
the disturbance rejection speed. The original formulation of DMC lacks this option. In
order to improve the disturbance rejection properties of DMC, its measured output model

(2.69) is ( slightly ) modified to include a first order D polynomial as:

= Hu(t =1+ —e(t) = Hult =1 +- 1
y(1) = Hu(t l)+DAe(l) Hu(t l)+[l—5q"][l—q"]

Note that in this case A=1, C=1, D=[1-&"'], B= Hand n=1. Then (2.88) can be

e(?) (2.88)

rewritten as:

(1) = Hu(t - 1) + [% + ﬁ}(;) (2.89)



where

] 5 &
= e— d = e I —
=1 T =15 5

The Diophantine equation (2.16) for partitioning the noise terms becomes:

[a B ] {a[l '], Ai- 5"q"} q}{a[l—é’q"]ﬁ-ﬂcS’A}

A [1-87] A [1~857"] [1-577']a
which implies
{a[l qJ A1- 5’q"}
A [1-&7")
and

F,=a[1-87]+p5's=(a+p5)-(ab+p5")q"
The LHS of Diophantine equation (2.21) becomes:
E,DH ={(a+p)-(@d+B)g" - (a+ps')q™ +(a5+p&')g"™ }S
= {1-(a+p8")g" + (@b +p5')g7" }S
Substituting (2.74) for S gives:
E,DH = zls g™ +q~ ZAS —(a+f6")s,., +(ad+B8’)s,., . 17"
i= i=j

Comparing (2.95) with (2.21) implies
- J
G, =2sq"" ad G, = Z{ 5., = (@+p8’)s, + (@b +P8" )5, }g"'

=1

Substituting the above in the LDP equation (2.24) gives:

v+ jin = L}_:sq ]Au(r +j-1)

+[ Zﬂs ~(a+p8)s,., +(ab +B5)s,.,.. }q """]Au(r-l)
i=j+

+a+ 8’ )y(t) - (ad + pé’ )yt - 1)
Applying ¢, the backward shift operator, to Au(.)'s
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(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)



¥, e+ jit)= Lis,M(: -i+j)]

0[ igs —(a+f8')s,., +(ad+ B8’ )s, ., Jou(t —i+ j)] (2.98)
i=j+

+Ha + p&)y(1) - (ad + p5’ )yt -1)
defining

1-67 & =
= (a + B85’ == &* and ¥, =(a+p5"" =—-—— “(2.99)
(a+B5') ;Z ) kZO

yields

-

PREFHE [Els,Au(:-Hj) ] +[__§i =S, + O S A=+ ] )](2.100)

+¥, (1) - &Y,y -1)
Collecting terms in ¥, and '¥,_; gives

y, (1 +jlt)= [,ils,Au(Hj—i) ]-l»l: i(s, —s,_J)Au(r-i +j)}+y(r)

i=j+1

[it(‘i’ Ds,., - &P,_,s,_,_t}Au(t-i-i- j):l (2.101)

i=j+
+(¥, = y(1) -8 y(t-1)

rearranging gives

y,(f+jlf)=[§ls.6“(f+j-i)] [ Z(S .,)M(I-Hj)]-w(t)

=+ (2.102)

-&Pj-l[’ ngtq I-j I}A‘u(’ i +J)}+&P -|AJ’(‘)

<7+

Truncating the second and third summations at T gives the following IDMC predictor:
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y,(t+ji)= [’is,Au(r + j i) ]-{ zr:(s, -5, JAu(t-i+ j)]+ (D
1

2 DA
= (2.103)

T
'5‘*’;-![ > gsw -5, }Au(l -i +j)] +8¥,,Ay(1)

i=j+
The above IDMC predictor is obtained in terms of residual x(r) using equation (2.75) as:
J v -
y,(t+jln)= ['Z.S‘,All(l + j=i) ]+l Zs,Au(t —i+j):| +x(1)+6¥, | Ax(r)  (2.104)
=1 i=j+l

which after truncation gives:

j= i=j+1

y, (1 + Jlt) =Lis,Au(l +j—i)]+[ is,Au(r—i+j)]+s,.u(!+j- T-1D+x(f)
H

+0¥, , Ax(1)

(2.105)
IDMC

Note that the "improved DMC" of (2.105) is identical to conventional DMC (2.87) except
for the addition of the last term. It is shown below that this last term provides a second
degree of freedom for tuning the response to disturbances. Recall that & is the parameter

in the first order D polynomial in (2.88) and ‘¥, is given by (2.99). Moreover & varies
between 0 to 1, with =0 giving the conventional DMC.

The residual terms in (2.105) can be viewed as Taylor series expansion of a generalized j-
step ahead projected residual, x,(¢+l¢), given as:

x, (1 + 1ty = x(0) + §8x(0) + & & x(1) + -+ (2.106)
& x (1 + jlit)
a&(n)’
(2.105) all &, except &, and&, are zero ( note thaté, is 1 ). This is because of the fact

where £, are ith partial denivative of x,(f + j|}, . In the IDMC predictor

that the employed D polynomial in the noise model is of first order. In general, however,

there would be as many non-zero £, as the order of the D polynomial. Note that the first
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coefficient of the expansion, &,, is non-zero because of the presence of an integrator in the

noise model,

2.7 Simulation Examples

In the following examples the above developed formulations/techniques are simulated

using Matlab. These examples were motivated by the following propositions:

e In many cases LRPC's with a GPC noise model tends to give undesirably fast
disturbance rejection leading to unacceptably excessive overshoot.

o In some LRPC applications, e.g. in the presence of unmodelled dynamics, the GPC
noise model destabilizes the system.

e Classical DMC gives very slow disturbance rejection.

e More than one integrator is needed to achieve an offset-free response for ramp
disturbance rejection or setpoint tracking.

e IDMC (i.e. classical DMC with a simple first order choice of the D(g™') polynomial )

gives disturbance rejection that can be independently tuned by adjusting &.

Simulations are based on the following two processes ( Process-A and Process-B ):

Process- A (in s-domain) = ! (2.107)
(1+8)(1+3s)1+5s)

.0078271+.021232"2+.00357="°

Process- A (in z-domain) = — 3
1-19031="" + 11514272 - 2158z~

(2.108)

The poles of Process-A in the z-domain are 0.8187, 0.7165 and 0.3679, while the zeros
are at -2.586 and -0.1798. Note that one of the zeros is outside the unit circle making the
discretized process nonminimum phase { NMP ). The gain of the process is 1.

2(229)
(s +1)(s* +30s+229)

Process-B (in s - domain) = (2.109)

03700z +.0717227 +00785:"°

Process-B (in z-domain) = < -
1-13422z7"+.4455:7° -.0450=

(2.110)
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Process-B is the process used in Rohrs' (1984) beachmark example. The z-domain poles
are 0.9048, 0.2187+0.0443i and 0.2187-0.0443i. Plant zeros are at -0.1164 and -1.822.

Like Process-A one of .he zeros is outside the unit circle making the discretized process
nonminimum phase ( NMP ).

2.7.1 Example-1: Effect of Model Structure:

This simulation is based on Process-A with the following Reduced Order Model:

-
MMel-A]:%:_ (2.111)

Simulation uses Nx=10, Ny=1, N,=1 and A4=0. A sustained step disturbance of magnitude
0.5 is introduced at time = 50.

First GPC without a T-filter ( i.e. ARIX structure ) is tried. The controlled variable
diverged as can be seen in Figure 2.3 ( note that the sustained oscillations are due to the
clipping of the manipulated variable at +5 ). McIntosh (1988) also reports that when using
GPC without a T-filter, stable control is not possible for model-1. However changing the
model structure to IOE ( i.e. Integrated Output Error as in DMC), gives stable offset free
control as shown in Figure 2.3. Clarke (1991) also reports that the DMC model structure,

which uses a random walk noise model, is more robust than GPC without a T-filter.

One reason for the poor robustness of GPC without a T-filter is the existence of the
additional factor 4 in the denominator of the GPC noise model. MPM is usually present at

high frequencies and this 4 factor amplifies the modelling errors as pointed out by Clarke
(1991). )

Figure 2.4 demonstrates similar robustness of the DMC model structure for Process-B
with the following Reduced Order Model ( ROM ):

-1
Model - Bl = — 002 _ (2.112)

1 - .94z
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2.7.2 Example-2: Advantages of using an additional factor D
in the Denominator of the Noise Model:

UMPC includes provision for inclusion of a polynomial factor, D, separate from the 4

polynomial in the noise model. Polynomial D can be used tc increase the speed of

disturbance rejection in cases when A is not available ( i.e. for non-parameteric process

models ) or in the presence of high Model Plant Mismatch ( MPM).

The simulations to demonstrate the role of the D polynomial in disturbance rejection
performance use Process-A with N;=20, M=1, N.=1 and A=0. A sustained step
disturbance of magnitude 0.5 is introduced at time = 50. Figure 2.5 shows that a D
polynomial ( D= [I—O.‘?Sq"]2 ) improves the disturbance rejection speed significantly.
The improvement in disturbance rejection properties is also achieved for models with
MPM as is shown in Figure 2.6 which uses D =[1-08¢']1-015¢™'] and the following
reduced order model:

-1 .2 3
Model-A2='m'z +.0232™ +.0652 @.113)
1 - 912"

2.7.3 Example-3: Double Integrator for Ramp disturbances:

An integrator in the noise model is usually required for offset removal. However in some
cases a single integrator may not be sufficient. As defined earlier the general integrator
included in the UMPC model (2.9) may take ihe form of a single integrator 1/4 , a double

integrator 1/A% or a multiple integrator 1/4",

To illustrate the need of a double integrator, a ramp disturbance of 0.17 is introduced at
1=50 . Figure 2,7 shows that for a ramp disturbance DMC noise model gives a controlled
variable response with an offset. However an additional integrator gives an offset-free
response. The need for a double integrator for GPC is demonstrated in Figure 2.8 where a

single integrator failed to remove the steady state offset. Note that the magnitude of the
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offset in case of GPC is much lower than that of DMC. This is due to the presence of the
additional 4 polynomial in GPC. Both figures are based on Process-A with no MPM.

Note that the ramp disturbances as shown in Figures 2.7 and 2.8 are much more common
in process industries than might be first thought. UMPC as in most LRPC's, assumes that
the disturbance adds directly to the output. Most conventional process models assume that
the disturbance, d, passes through a disturbance transfer function, Gq, before it reaches the
output. Process transfer functions containing an integrator are quite common in industry.
e.g. most liquid level processes. Obviously a step disturbance, d, passing through an
integrating G, will appear at the output as a ramp which is the case illustrated by Figures
2.7 and 2.8. In practice, DMC applications to integrating processes are handled by

differencing the process measurement which essentially adds an integrator to the

controlled system.

2.7.4 Example-4: Double Integrator for Ramp Set point
Tracking:

A single integrator can not give offset-free response for ramp tracking. A double
integrator is required. This proposition is illustrated in Figure 2.9 which clearly shows the
offset when a single integrator is used. The offset is removed when a double integrator is
used. These simulations used Process-B with no unmodelled dynamics. Note that the

setpoint tracking i. not a function of noise model structure as long as there is no MPM.

2.7.5 Example-5: Disturbance Rejection Properties of IDMC:

Figure 2.10 compares the disturbance réjection performance of IDMC with classical
DMC. The simulation is based on Process-A with no MPM. For a control horizon of 1,
DMC gives poor disturbance rejection performance. The addition of D =[l-—0.9q"]
yields a significant increase in disturbance rejection speed. Note that IDMC does not

require on-line solution of a Diophantine equation to incorporate a first order D in the

control law. There is simply an extra term in the predictor (2.105).



2.8 Conclusions

The Unified Model Predictive Controller ( UMPC ) developed in this study integrates

several model structures into a single algorithm. The designer is free to change the model

structure a priori or on-line, to meet the current requirements of a given application. With

the conventional LDP the computational load for UMPC is slightly greater than predictive

controllers based on 2 less-general model structure such as GPC. However the UMPC

with the overparameterized predictor formulation ( LDOP ) substantially reduces the

computational load of the controller algorithm. The generalized noise/disturbance model

of UMPC yields the classical DMC and GPC formulations as a special cases. A simple

modification to the classical DMC algorithm gives considerably faster disturbance

rejection for a control horizon of one. The specific results and conclusion of current work

are as follows:

e Model structure has a significant influence on the controller robustness and
performance.

e The combination of the C and D polynomials in UMPC is more flexibie than the simple
T-filter ( the designed C polynomial ) used in GPC.

e A double integrator is needed for offset-free response for ramp disturbances and/or set
points.

e For ARIMAX structures, UMPC is exactly the same as GPC with a T-filter.

e UMPC gives the classical DMC predictor as 2 special case when the generalized noise
model is set equal to a simple integrator e.g. 1/A.

¢ An improved form of DMC for regulatory control ( IDMC ) is obtained by a simple
derivation using the LDP and a first order lag filter in the original DMC noise model.
The IDMC gives independent tuning, e. g. for a faster disturbance rejection, of the
classical DMC.
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1) The filters and signals with the index j are vectors and are drawn with thicker lines; j varics from 1 to N;.
2) The UMPC block does the calculations ( optimization ) necessary to produce the control vector that
minimizes the predicted control emors.

Figure 2.1  Unified model predictive control ( UMPC ) with lumped (GPC type)
Diophantine predictor ( LDP )
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x'(D)

: ,, - (1) +
V(110 + UMPC Amu(1) 1 ' Process -

Au(t+j-1) il o)

----------------------------------

Yu(t+jl)

Notes:

1) The filters and signals with the index j arc vectors and are drawn with thicker lines; j varies from 1 o N, .

2) The UMPC block does the calculations ( optimization ) necessary to produce the control vector that
minimizes the predicted control errers.

Figure 2.2 Analysis of the LDP to separate free responses corresponding
to the manipulated variable and the uncertainty
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Figure 2.7 Offset removal using double integrator for ramp disturbances in DMC



54

Double Integrator

Process Output & Setpoint

-1 1 1 1 ] 1

0 50 100 150 200 250 300
Time in Sampling Units

Control Signal

1 ] 1 (] L

0 50 100 150 200 250 3po
Tima in Sampling Units

Figure 2.8 Offset removal using double Integrator for ramp disturbances in GPC
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Chapter 3

Disturbance Rejection Teckniques for Long
Range Predictive Control

3.1 Introduction

This char.er develops 2 new Separated Diophantine Predictor (SDP) which separates the
noise model from the plant model in the prediction equation and hence makes it possible
to manipulate the disturbance term independent of the plant model. The SDP is proven to

be mathematically identical to the classical Lumped Diophantine Predictor (LDP) used in
GPC.

An overparameterized version of the SDP, the SDOP (Separated Diophantine
Overparameterized Predictor ), is also developed. It is functionally identical to the SDP
but offers substantial savings in computational load.

A Long Range Predictive Control ( LRPC ) algorithm is derived using each of the three
predictors , i.e. LDP, SDP and SDOP. An improved version of Dynamic Matrix Control
(DMC) is also formulated using the same concepts. A disturbance horizon to control the
extent of the employed noise model is introduced and its role in improving robustness is
established. Another new method, o-weighting, which uses two ( or more )
noise/disturbance models with normalized weightings is also developed to provide
additional flexibility for reguiatory control.
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3.2 Model and Predictor Preliminaries

The following derivation follows that given in Chapter 2.
The following linear discrete-time generalized model structure is used to represent the

measured output:

_B .. C
Y1y==ult = 1) + o= e(0) (3.1)

where the notation 4 is used to indicate that the polynomial A is only included for
Equation Error ( EE ) model structures and is be omitted for Qutput Error ( OE )
structures. More specifically:

A=4 for EE structures 3.2)

-

A=1 for OE structures (3.3)

Alternatively, the output may be expressed as
()= %u(l =1 +x(2) (3.49)

where x(f) is the residue at time ¢.

For j-step ahead predictions the time parameter in equation (3.1) is shifted by +/ giving:

y(r+j)=§u(t+j—l)+[ :le(t-e-j) (3.5)

DAA
The noise term is separated into future and past/present components using the

Diophantine equation:

C F
-——|=E +q’ —— :
[DAA"] "4 Daw . ©.6)
This Diophantine expansion can also be employed in the expansion of the process model

term. To do this equation (3.5) is rearranged as follows:

, ._| C Au(t+j-1) C .
Y+ j)= [DZA” ]DB A +[DEA" }'(: +7) 3.7

Where A is defined as follows:
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A=1 for EE structures (3.8)

A=4 for OE structures (3.9)

AA=A (3.10)

Using (3.6) to substitute for [Df'l:A ] in (3.7) gives:

F, A'u(t + j-1) F
t+ j)=|E +q ' ——|DB = E i t+j (3.11
ya+J) [’“’ DAA"] ca C|ErT e ey I

Setting the future component £, e(¢+)) equal to zero and rearranging gives:

y,(r+j|z)=Eéﬁa"u(r+j-1)+5[§u(r-l)+ < em]

CLA DAA (3.12)

Then recognizing that [%u(t—l)+ D,;:A" e(z)]: y(t) the above equation can be
simplified as follows:
1+ ) E,D5 A"u(t + j - 1) il (r) (3.13)
= = -D+-+ :
Y\l +] Ci J C y

The first term on the RHS of (3.13) contains both, the future and the past, components. In
order to separate these components the following Diophantine equation s used:
E,DB G,
——|=G,+q97 =% 3.14
526, 19

Then (3.13) becomes

~ G F
y, +j|r)=GJA"u(t+j—l)+—Cj;A"u(t+j-l)+?’y(r) (3.15)

With the following definitions of filtered input and output

A -2y =29 (3.16)

c
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the predictor (3.15) becomes:

y,(t+jit)= G, &u(t+j-1)+G, AW 1 -1)+F,y' (1) (3.17)
LDP

In the following discussion (3.17) is referred to as the Lumped Diophantine Predictor or
LDP.

3.3 Separated Diophantine Predictor ( SDP )

As mentioned earlier, the noise/disturbance model provides a direct means of manipulating
the disturbance rejection properties of the controller. It is therefore desirable to formulate
a predictor in which the noise term can be manipulated independent of the process term.

This section proposes a simple formulation to achieve this goal.

Equation (3.5) can be rearranged as:

o _?_ n . C .
Y+ j)= [A”A}A u(t + j D+[D.:1A" :|e(l +J) (3.18)

The first term of the above equation is separated into past and future/present components

using the following Diophantine expansion:

Bl 5 oot
b e

The noise model [Dfi: } is separated using the Diophantine expansion given in (3.6).

The predictor based on these separated Diophantine equations is developed below and is

referred to as Separated Diophantine Predictor or SDP.

Substituting (3.19) in (3.18) and using the Diophantine expansion given in (3.6).with

future e(.) set to zero gives:

B an . P, : F
y,(t+jlt)= P Au(t + j - 1)+7fu(t+_;-l)+DE’An e{r) (3.20)




With the following definition of the filtered input and filtered error

u(r-1)

and e’ (1) = OR

ut (-1 =
( ) DAA"

the predictor in (3.20) becomes:
Y+ )= PAu(t+j-1)+Pu (1-1)+ Fe/ (1)

The filtered error may be obtained using (3.1) as;

e () =SL - [y(r) u(t l)}=%=xf(r)

where
. B
x(7) = residual at 7 = [y(t) -;u(f - 1)]

and x7 (7) is filtered residue at time 1.
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(3.21)

(3.23)

(3.24)

Note that the residual x(r) is independent of the noise model and therefore the filtered

error e’ (1) and the filtered residue x/ (r) depend only on the numerator, C, of the noise

model and are independent of its denominator, The predictor can be written in terms of the

filtered residual as follows:

Y, (t+ji)= PAu(t + j- 1)+ PuF (1= 1)+ F,x’ (1)

(3.25)
SDP

A block diagram of SDP is given in Figure 3.1. The manipulated variable and the

uncertainty contributions to output prediction are clearly shown. Comparing this figure

with Figure 2.2 proves that the SDP formulation is much simpler than the LDP.

Remark 3.3-1:

The SDP has two parts. The first part consists of the first two terms which depend

exclusively on the plant model. The second part, which is the last term in the SDP,
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depends on the employed noise model and the residual x(r). Thus the process and
noise/disturbance contributions to the output prediction are separated.

Remark 3.3-2:

When the process polynomials 4 and B are estimated on-line ( i.e. in adaptive control ) it
is not necessary to solve the noise model Diophantine equation (3.6) at each control
interval for OE structures, since it is independent of 4 and B. This results in significant
computational savings.

Remark 3.3-3:

The SDP for the OE noise structure provides a basis for robustness analysis that is
independent of the process model. This is possible because the noise model contribution to
predictions (3.25) is free of the process model denominator and is also separately available
in the predictor.

Remark 3.3-4:

The SDP is straightforward and is simpler than the LDP which lumps together the plant
model and noise model terms.

Remark 3.3-5:

The SDP is mathematically equivalent to the LDP as is shown in Theorem-1.

Theorem-1:

The SDP ( equation (3.25) ) is mathematically identical to the LDP (equation (3.17) ).

Proof:

The first step in the proofis to prove that G ;= }-5, .

G, can be written as:

& [EDB _[E,D48 36
ol | ¢ ' (3.20)

where the subscript j following the outer square bracket indicates the first j terms of the
infinite order polynomial within the outer square brackets.

Similarly £,(g™") can be written as:

Eﬁ[ 2 ], (3.27)

DAA"



Substituting (3.27) for E, in (3.26) gives

6, =), %
AA"

This result can be used to prove that SDP = LDP.

Substituting (3.23) for x/ (1) in (3.25) gives:
y,(t+jly=PAut+j-1)+Pu’ (1~ )-F, gu"'(r =D+ Fy ()

Transforming u” (¢ - 1) into A"’ (1 - 1) using (3.21) and (3.16) yields

: D AR : }_)J ~ JB L
yp(t+_]|t)=.PJAu(t+j—l)+TAu U-D+Fy @)

and multiplying (3.19) throughout by C gives:

CB .~ CP
=CP +q~/ —
A"A )+ A4

CB=CA AP +¢7'CP

i E o+ q
DAA" y DAA"

Multiplying (3.6) throughout by B gives:
BF
— B =7 J

or
BC = BDAN'E, +q™ BF,
Equating (3.32) and (3.34) gives

CP, - BF, _gcil PP 5
A

b
and using equation (3.14) and the fact that E =G , gives:

CP, - BF,

-G
AA !
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Substituting (3.36) and ﬁ_, =G , in (3.30) proves that the SDP is identical to the LDP.

o0



Remark 3.3-6:

For unstable systems the u7() and x/ () in the SDP get unbounded even for EE noise
structures, whereas the LDP in such cases gives stable predictions. An easy solution to
this problem is to use the following identities to convert the SDP form into the LDP

equivalent form:

G,=F (3.37)

1

G, = q’|DBE, - CAF)| (3.38)

where ¢’ [DBE )= Cﬁf’] ] means the filter [DBE - Cﬁﬁ,] with firstj terms truncated

Note that the above equation is obtained using (3.30) and (3.35).
Remark 3.3-7:
Equation (3.25) for the SDP can be written as:

B F
y, @+ jl)=—ult+j- ) +—==x(1) (3.39)
d A C
or

F
Y, + )=y, +]) +F’[y(t)-y.. 0] (3.40)

where y,, is the modelled output and y(#) is the actual ( measured ) process output.
The above predictor equation has a structure similar to the Kalman filter ( Brown, 1983 )
in the way it assimilate the new information contained in the measurement. In words it can

be written as follows:

Updated Prediction = Model Prediction + Gain [ Measured Quiput - Model Quiput ]

where gain is given by -C_J'
Remark 3.3-8:
The y,(7+jlf) in equation (3.25) for SDP can also be interpreted as the sur. of known input

and uncertainty contributions. The uncertainty ( unfiltered ), x(¢), is projected in future by

F
the factor F’ which is a function of the employed noise/disturbance model and j .
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Figure 3.2 illustrates the uncertainty projection at various frequencies ( @ ) along the
output horizon for a GPC noise model. The 4 polynomial for the noise model is the

denominator of the following z-domain process:

.00768=""+.02123="° +00357="
1-19031z7 +1.1514273-2158:"

z -domain transfer function = (3.41)

Due to the presence of the 4 polynomial in the denominator of the noise model the
F
projected uncertainty amplification factor, —C%— increases with both j and @. For ©=0 the

amplification factor remains constant at 1 for all values of j. At higher frequencies this
factor increases by two order of magnitude for sufficiently large j. 1f a major proportion of
the uncertainty is MPM ( Mode! Plant Mismatch )} then the high uncertainty amplification
factor may destabilize the predictcr. On the other hand a higher amplification factor is
desirable for low frequency disturbance rejection provided there is no or low MPM/noise.
Inclusion of a C polynomial gives a means of decreasing the uncertainty amplification
factor, Figure 3.3 which uses C = [l —0.9q"] and the same GPC noise model of Figure

3.2 demonstrate this fact.

The DMC noise model is a simple integrator ( 1/A ) and there is no way in the original
formulation to increase ( or decrease ) the uncertainty amplification factor. Therefore in
DMC the residual ( i.e. uncertainty ) at time = 4/ is equal to that at time = ¢ The
generalized noise/disturbance model of equation (3.1) provides three filters to control the
uncertainty amplification factor described as follows:
¢ The C polynomial to decrease the uncertainty amplification factor
o The D polynomial to increase the uncertainty amplification factor independent of
the process model
e The A4 polynomial to increase the uncertainty amplification factor. The increase in
the factor is directly proportional to the “slowness" ( or the effective time

constant ) of the process as given by the model ( not the actual process ).
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Figure 3.4 shows that the uncertainty amplification factor for DMC increases from its
normal value of unity when the noise model is augmented with 2 first order D polynomial

( D=[1-09¢"'] ). In Figure 3.5 uncenainty amplification factors for various noise

models are compared at a fixed frequency ( ©=n/2 ). The 4 polynomial for GPC is the
denominator of the process transfer function given in equation (3.41), while
C=[1~09¢"]and D=[1-084"']. GPC gives the highest uncertainty amplification
factors whereas the DMC predictor projects the uncertainty very conservatively with a
constant uncertainty amplification factor of 1. GPC uncertainty projection is tuned down
by the C polynomial and the DMC uncertainty projection is tuned up by the D polynomial.
Remark 3.3-9:

The SDP gives the j-step ahead output prediction as the sum of contributions due to
manipulated variable and the residual. Occasionally it is desirable to have the prediction
corresponding to a noise model in terms of the one based on a different noise model. In
order to derive a useful expression for this situation the following two noise model

Diophantine equations will be used:

C 5

n,:F:=E,J+q’-b% (3.42)
C-u F:

n2=-D_;-=E:J+qJF: (343)

The j-step ahead predictions based on SDP derived using the above two noise models are

denoted by y,(1+ |7}, and y,(r+ j|l),L= and are given as follows:

Y, +jl0),, = u(l+1— l)+ x(l) (3.44)

Y (t+jit),, = --u(r +j-1) + x(t) (3.45)

Subtraction of (3.44) from (3.45) gives
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CuF:; - C:F;,

Yot + )y, = y,(t+ 1)y, + cC

x(1) (3.46)

or using the Diophantine equations for the two noise models

q’{C.D,E,,-C,D,E, }

t+ jit),, =y, + j10x
Y+ I, =y, (t+ jl0)y, + .

x(1) (3.47)

where ¢’ {C:D,E,J --C,DzE:J} represents the filter {C:D,E,J -G DzEzJ} with the first j

terms truncated.

As an example of this predictor consider the following two noise models and ti.cr

Diophantine equations:
. Lo LB
ARX noise model: Yl E, 6 +q - (3.48)
ARARMAX noise model : L. E. +q”’ f-’—- (3.49)
©ap T e q D .

The ARARMAX model is a generalized equation error structure ( Ljung, 1987 ). The
predictor corresponding to ARARMAX in terms of the predictor based on the ARX
model is obtained by substituting the numerators and the denominators of the ARX and
ARARMAX noise models in (3.46) or (3.47) and is given as:

. - F,=CF,
Y + 10 ararsax = Y, {1+ J1) arx +Tx(¢) (3.50)

or

q’{CAE, - ADE, }
_ C

The predictor (3.51) is identical to the following unified j-step ahead predictor of

Soeterboek ( 1990 ) used in his Unified Predictive Control ( UPC ):

y,(r+j|r)mm =y, (0 + 1) s + x(1) (3.51)

K A
yp(t + J10) araroaax =.Vp(’+j|f)m '*'%x(t) (3.52)

note that K, 4 = ¢’ {CAE,, - ADE,,}.
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Note that the predictor (3.46) or its alternate form (3.47) are very general since they give
the output prediction corresponding to any noise model in terms of the prediction based
on a different noise model. For example these predictors can be used as an alternative
means of deriving and/or interpreting:

e IDMOC in terms of classical DMC ( Chapter 2 )

e EDMC in terms of classical DMC ( Chapter 3 )

¢ GPCinterms of DMC

e GPC with T-filter in terms of GPC without T-filter

A brief comparison of UMPC with UPC of Soeterboek ( 1990 and 1992 } is presented in
Appendix 3-A.

3.4 The Separated Diophantine Overparameterized
Predictor { SDOP )

One of the drawbacks of the LRPC such as GPC is the solution of the Diophantine
equations which requires huge computational and storage resources { Kramer, 1991 ). In
this section 2 new concept of oveparameterized Diophantine equation is presented to

overcome this drawback.

The process model can be separated using the following Diophantine expansion:

B
|

~ x P
=P, +q" Yo (3.53)

where N can be any integer greater than or equal toj. A useful case results when N is set
equal to N;+1 since ﬁN is then of degree N;and can be decomposed into past and future

components at #+f time instant as follows:

. +q7 P, (3.54)

o

B, -

Moreover
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P,=B (3.55)
Similarly the noise model can be separated using the following Diophantine expansion:

-N

.+ —~
YTV

_t 3.56
DAA @3.36)

where again E,, which is of degree N, can be decomposed into past and future

components at 7+ time instant as follows:

E,=E, +q7'E, (3.57

-

E,=E, (3.58)

With the above equations and following the procedure used earlier in the SDP derivation

the final equation for the overparameterized predictor is given as:

y,(t+ jity= BAu(t+ j=1)+ By Au(t =)+ P (14 j- N -1)

_ (3.59)
+E, ety + Fyx' (1= N+ )

SDOP

Remark 3.4-1:

The SDOP has two parts. The first part consists of the first three terms and it depends
exclusively on the plant model. The second part which consists of the last two terms in the
SDOP depends only on the employed noise model.

Remark 3.4-2:

The SDOP retains all the a¢ -antages associated with SDP mentioned earlier plus it is
computationally more efficient than SDP. The reduction in the computational load is
achieved by using a single overparameterized Diophantine equation in place of a set of

Diophantine equations ( viz. one equation for every j ) for both process and noise models.
Remark 3.4-3:

For N=j, the SDOP reduces to the SDP. This is due to the fact that ﬁ, and E,, become
zero and Fy = F) for N=j .
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Remark 3.4-4:

The computational load in calculating the polynomials }-51 fx; and E,, is trivial because
these are obtained by simply picking or separating the first j elements from the
corresponding degree N; polynomials in equations (3.54) and (3.57).

Remark 3.4-5:

The additional variable e(/) can easily be constructed as:

e(?) == DAAx” (1) (3.60)
Remark 3.4-6:
The SDOP is mathematically equivalent to the LDP. The following theorem proves this.
Theorem-2:
The SDOP ( equation {3.25) ) is mathematically identical to the LDP (equation (3.17) ).

Proof:

It is already proven as part of Thecrem-1 that G, = }-’; Then substituting (3.23) for
x” (1) in (3.59) gives

y,t+ )= BAu+j-1)+ B Au(t-1)+ Pau (1 +j-N-1)
— B . _ p _ (3.61)
+E:~y‘-’(‘)‘F~E" (-N+j-D+F,y (-N+))

Changing u" (1 —1) into A"/ (1 - 1) using (3.2!) and (3.16)
p, @+ jit)= PAur+ j~1)+ B a"u(e-1)+ Eye(t)

PC- (3.62)
+%§£A"uf(t—N+j—l)+FNyf(t—N+j)

Multiplying (3.53) throughout by C gives:

CB=A"ACP, +q"P,C (3.63)
and multiplying (3.56) throughout by B gives:

BC=BDAA'E, +q"F,B (3.64)
Equating (3.63) and (3.64) gives

g *[P.C - F.B)= &4 DBE, - ACP, ] (3.65)
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Rearranging

o [BC-FuB} _
A"A

[DBE, - ACP, = DBE, +q™ DBE,, - ACP, - " ACP, (3.66)

F\‘C-FNB f . . -

N T IR AW -N+j-1)=DBE A'w' 1+ j-1)+DBE A"u' (1 -1

AuA u ( J ) J u ( J )+- N u ( ) (367)
- ACP AW (t+j-1)- P Au(t - 1)

Next substituting (3.23) for e(?) gives:

— E, DAN' B = s _
Ee(n) = —-—C——[y(l)-zu(t - 1)] = E, DAA"Y’ (1)~ E,DBAW’ (t=1)  (3.68)

Equation (3.56) is used to yield:
F, =q"[C-E\DAN]

(3.69)
Fuy’(t-N+j)=¢’[C-E,DAN ]y’ (1)

Fuy'(t- X+ j)=¢’[C-E,DAN}y (1)-E, DAY’ () (3.70)

Fyy/(t-N+jy=Fy (1)~ E, DAA"y’ (1) because ¢’|C-E,DAN"|=F, (3.71)

— P.C-
Inserting £ e(1), “—C‘A,,%A"uf(t— N+j-1), and Fyy/ (t- N+ j)in (3.62) and
simplifying yields:
y,(t+ jlty= B AU+ j-1)+q'[DBE, - ACP |a"u’ (1= 1) +F,y’ (1) (3.72)

Equation (3.35) gives:

— ~+ CP-BF
q'|DBE, - ACP|= # (3.73)
and G, is obtained from (3.36):
CP -BF, _
2L .G, (3.74)
NA

and therefore the SDOP gives the LDP. XX



3.5 The Control Law

The purpose of a long-range predictive controlles is to find the current ( at time = 7))
control action by considering the effect of current plus future control moves on the output
over a future horizon bounded by times #+N; and #+N,. Time 1+, is greater than or equal
10 the earliest time in the future at which the output is affected by the control move at time

1, while N, is z:bitrary but must be greater than M.

To date most of the popular long-range predictive controllers use the following type of
cost function for the optimal control calculation (Clarke, 1987):

J= SOy, e+ A -wie+ Df + S|t + =D (3.75)
where

A.)= the weighting on tracking error.

¥4(.) = the predicted output values.

w(.)= the desired output values or the set-points.

N, = the initial output horizon 2 the earliest future output that is affected by the control
move at time t.

Na= the final output horizon, the farthest future output that is included in the cost
function J.

A() = the control weighting sequence.

N, = the control horizon, the number of future non-zero control moves.

The y,(¢+ jjt) in the above cost function is usually given by the LDP, SDP or the SDOP

developed above and repeated here for easy reference:

y,(t+ ji0=G,&u(t+j-1)+G A (1-1)+F,y’ (1) (3.17)
LDP
y,(t+jity= P au(t+j-1)+Pu" ¢ -1)+Fx' (1) (3.25)

SDP



y, e+ i = BAu(e+ j=1)+ By Aue=1)+ P 0+ j- N =1)

” (3.59)
+ E.\}e(t) + F.\'xf (I -N +J)

SDOP

The prediction consists of two parts. The first term on the RHS of the predictor 1s the
response due to the future input moves and is known as the forced response. The
remaining terms on the RHS of the predictor are called the free-response. It is the

response due to the past inputs #(.) and disturbances up to time £.

The forced response is given by:

Forced Response for SDP and SDOP = P, A™u(r + j - 1)

Forced Response for LDP = G JAu(t+j-1) (3.76)
where
P=G =g,+84" +. 48,97 G.1
The free response is given by:
LDP free response = f(t+j) =G, A"’ (1-1)+ F y’ (1) (3.78)
SDP free response = f(1+j) = Pu" (1= 1)+ F,x’ (1) (3.79)
SDOP free response = f(¢ + j) = F,,,A"u{t -D+Pu"(t+j-N-1) (3.80)
+E  Ae(t)+ Fux' (1= N + )
The control law is given as ( McIntosh, 1988 ).
u=[G'TG+A]" G'T(w-1) (3.81)
where
u={Au(r) Au(t+1) - Au(t+Nu-D]' (3.82)
w=[w(t+N) wit+N,+1) - w(t+N)|' (3.83)

f=[f(t+N,)) fU+N+1) - fa+N (3.84)
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[ =diagy(N,) 7N, +D - y(N)] (3.85)
A =diagli(l) AQ2) - A(N,)] (3.86)
-g.\'.-l -z " & 0 - 0

gy, 8xa o & & 0

G= : : RS . £ (3.837)
: : L &

8y -1 Buoz et o 8x,-n,
L

3.6 Enhanced Dynamic Matrix Control ( EDMC )

DMC in its various forms is well-established in the chemical industry. However a major
drawback of DMC is its slow speed of disturbance rejection. A control horizon ( M, ) of
one in GPC is often very effective, whereas DMC may require N, between 3 to 5 to

achieve a similar disturbance rejection speed (Clarke, 1991).

In the following formulation a simple algorithm is developed to enhance the disturbance
rejection speed of classical DMC. Note that the algorithm is extracted from the

generalized noise/disturbance model structure presented earlier.

3.6.1 Classical DMC Predictor using SDP

The measured output model for classical DMC can be written as:
y(t) = Hu(t - 1) +%e(r) = Hu(t - 1) + x(1) (3.88)

Note this is UMPC with 4=C=D=1, B= Hand n=1. The residual x(s) at tine ¢ and
H are given by:

H=Y hq™' where the A, are impulse - response coefficients (3.89)
i=l
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- 2
x(t) = y(t) - Hu(t - 1) = y(:)-rLZh,q""Ju(z- )] (3.90)
<

For stable processes the summation can be truncated at 7, the settling time, giving the

following expression for x(1).

.
x(7) =y(l)*['zh.9""}u(f- 1) (3.91)
=]
The output y(f) in terms of step-response coefficients is:
y(1) = SAu(t 1) +i—e(:) = SAu(t - 1) + x(1) (3.92)
where
—_ H ih_ -l _ is —te] h t ff . ts
= K 2 =2 g where s, are step - response coefiicien
et - (3.93)
s, = ;h, and h =s,-5_, with 5, =0(Seborgetal., 1989)
=1
x(1) = y(t) - SAu(t = 1) = y(1) - Lz.s,q"“ }Au(r -1) (3.94)
&

Again for stable processes the summation can be truncated at 7 provided that an additional
term is included to account for the effect of past inputs beyond the settling time. The

following expression for x(?) is obtained:

T
x(1) = y(1) -LZ sq™"! ]Au(l -1)-su{t-T-1) (3.95)
]
The Diophantine equation (3.6) becomes:
1 JE _1-¢7 1
—=E + — 3.9
A q”’ 2 A +q”’ A (3.96)

which implies

E=—2_ ad F=1 (3.97)
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I
S - SJ +q'}S} SJ = S,q"*l SJ - Zsaqq-ld (398\
1=l i=j+1
5_% =% P _ .
PJ = SJ = z,s'q-ul and P S, = ZS,q""“
i=1 A il

Substituting the above in the SDP equation (3.25) gives:
J L]
yp(t+jlt)=LZs,Au(t+j—i)]+ Zs,Au(: + j—=i)|+x(1) (3.99)
=1 i=j+l1
Equation (3.99) is the untruncated classical DMC predictor ( Prett and Garcia, 1988 ).

Truncating the second sum at T gives the following DMC predictor:
J T
y (1 +jl)= Zs,Au(t + j—1) ]-ﬁ- Zs,Au(t +j=0)|+su(t+j-T-1)+ x(1)(3.100)
=1 i=j+l]
Substituting equation in gives the DMC predictor in terms of y{(1):

i=j+1

v, +jl)= Lis,m:(z + j=1i) ]{ i(s, -5, )Bu(t =i +j)]+y(l) (3.101)
1

Truncating the second sum at T gives the following DMC predictor:

y,(+jit)= Lils,m;(: +j-0) ]4{ S(s, -, )autr-i+ j)}f w1 (3.102)

i=j+l

3.6.2 Enhanced DMC ( EDMC ) Predictor using SDP

The noise model used in DMC is trivial, i.e. a single integrator. The performance of DMC
can be significantly improved if a first order ARMA transfer function ( or a lead-lag
element ) is incorporated in its noise model. A denominator polynomial ( D ) substantially
increases the disturbance rejection speed, while a numerator polynomial ( C ) is useful for
noise filtering. These polynomials ( or filters ) have been previously incorporated into
DMC on ad hoc basis, but a rigorous formulation based on noise modelling is lacking. A

systematic way of incorporating a first order ARMA noise model in the original DMC
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formulation without requiring an additional Diophantine equation is presented in the
following development.

The DMC measured output mode! with an added first order ARMA filter is:

[1-247']
[1-&7]1-¢"

Note that this is UMPC with A=1, C=[1-z¢"'], D=[1-84'|l, B=Handn=1.In

y(t) = Hu(t - 1) +—’%e(!) =Hu(t-1)+ ]e(t) (3.103)

terms of the step response:

y(t) = Shu(t - 1)+ (12" e(r) (3.104)
1-87"[1-4"]
or
y(t):SAu(t-—l)+-£+ £ l}e(:) (3.105)
A [1-&7
where
-z ~x-8
a=% and  p=2= (3.106)

The Diophantine equation (3.6) becomes:

A [1-&7"] 1-47")a
which implies
ali-g™ 1-6'q™ o ,
E,:{ [ 5 ]+ﬂ{1_&1_,] } and F,=qfl-847]+p5'A (3.108)

Substituting the above expression for F, in the SDP equation and rearranging gives the

following :

y(t+ji6)= l;is,du(l+j—i)]+[‘ is,Au(r+j—i)i|+x(!)
=l = (3.109)
+(5—Z)(I—5J)Ax'r(l)

(1-9)

where
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xf (1) = 7 (1 - 1)+ x(1) (3.110)

Truncating the second sum at T gives the following EDMC predictor:

y (@ +j]l)=Lis,Au(r +j-:‘):|+|: zr:s,Au(! +j—i):\+s,u(t +j=-T=-1)+x(1)
f=1 i=j+1
+(5_ZX1-5J)MI(’)
(1-6)

(3.111)
EDMC

The above predictor for EDMC :an be expressed in terms of the original DMC predictor
by:

(6-11-6")
(1-9)

Note that the separate parameterization in SDP makes it possible to include a first order

(7, + 10 e =P+ D) e + ax’ (1) (3.112)

lead-lag ( ARMA ) filter in 2 much easier way than the inclusion of only a lag filter in
IDMC of Chapter 2 using the LDP. Moreover for y = 0 the EDMC predictor reduces to

the IDMC predictor and for =<0 the EDMC predictor reduces to the classical DMC
predictor.

3.7 Disturbance Horizon

In most LRPC's the noise model is specified arbitrarily as a means of tuning the
disturbance response of the controller. Nevertheless in the presence of unmodelled
dynamics ( MPM ) this ad hoc noise model specification can destabilize the controller. It is
also well known that the DMC noise model ( i.e. the Random Walk model or a single
integrator ) gives a robust controller with offset-free response but the disturbance
rejection speed is quite low. This is due to the absence of suitable tuning polynomials in
the noise model. Thus the DMC noise model can be used as a reference for a conservative

but robust controller ( see also Remark 3.3.7and 8 ).
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As mentioned earlier, the separation of the manipulated variable and the residual terms in
the SDP offers certain advantages. One of the advantages is that more than one
noise/disturbance model can be employed for the output prediction. For example a
primary noise model can be used to predict the earlier part of the output horizon and 2
secondary model can be employed for the later part. The portion of the output horizon
which uses the primary noise model is defined as the “Disturbance Horizon”. A
performance-oriented noise model may be specified for this earlier part of the output
horizon, then for the later part a2 more conservative noise model can be adopted. The term
“Disturbance Horizon” is suggested for this earlier part of the output horizon. The most
logical choice for a sufficiently robust noise model for use in the latter part of the
prediction horizon is the DMC noise model. A combination of noise models over the
output prediction horizon can result in 2 robust controller, i.e. one that will perform well
in the presence of MPM.

The SDP is given as:

y,(+jiy= BAu(t+j-1)+ Puf(1-1+Fx/() (3.25)
The free response is given as:

free response = f(1+ )= Pu"(1-1) + F,x'(1)

— F
=Pu (1= + -é—x(t) (3.113)

input residual
contribution  contribution

The residual x(¢) is the output equivalent of the lumped uncertainty ( disturbance, noise or

MPM ) at time ¢. The projected contribution of x(r) to the output prediction is a function

F
of the filter —C’- which is exclusively in terms of the noise model.
: : F, . : i
For a general performance-oriented noise model the filter —C"- is a complicated fur.ction of

X ) F
j and the noise model . However for the DMC noise model —é‘-'-=1. ( see Figures 3.2-3.5 ).

One simple implementation of the disturbance horizon is as follows:
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¥, t+jl0= PAu(t+j-N)+Pu(1- N+Fx/(1) forj=N 10N,

. ! (3.114)
y, ((+jin)= PAu(t+j-1)+ PJuF(r— D+ (1) forj=N,, 0N,

F
where N is the disturbance horizon. A plot of -(—::- vs. j, for a fixed frequency of w=n/2,

for this implementation is illustrated in Figure 3.6. In this case the primary noise mode! is
the GPC without T-filter corresponding to the process transfer function given in equation
(3.41) and the seconiary noise model is DMC. The output horizon ( Nz ) is 20 and the
disturbance horizon ( Ny ) is 17. In Figure 3.7, which uses the same process model and
output horizon as Figure 3.6, DMC is used the primary noise model over a disturbance

horizon of 10 while GPC is used as the secondary noise model for the rest of the output
horizon.

Another option is to set the uncertainty contribution to all of the output prediction for
>N, equal to the uncertainty contribution corresponding to j=Na as given in the following:
y, @+ )= B&u@+j-)+Pu"@-D+ Fx/(1) forj=NtoN,

. - (3.115)
y,+jin= P,A”u(t+j—1)+P1u"(t—l)+F~‘x(r) forj=N,, toN,

This strategy is depicted in Figure 3.8 which uses the GPC noise model, for residual
projection, for j = 1 to 8. Then for the rest of output horizon ( i.e. j =9 to 20 ), the

projection of uncertainty is fixed at its value corresponding to j = 8. The for this example

is the same used in Figures 3.6 and 7.

An even more UMPC general implementation uses two fully specified noise models with

the following Diophantine equations:

F

——=z=F + _J+ fori=N toN

Das =T pan J=roN G.116)
o) Fy '
C o Eraqle— =N, toN.

oaa - Bt oy = Nawel

with these noise models the predictions are given as:



g1

y, (t+ i) = PAu(t+j-1)+ Pu"(¢-)+Fx(r) forj=N,toN,
y,(+ )= Bau+j-D+Pu (- +Fx" () forj=N, 10N,

where (3.117)

(1)
C

x(1)

Iy = Iy = 222
x/ (1) and x’ (1) C

3.8 o-Weighting

The UMPC formulation discussed above incorporates two ( or more ) noise models which
are used over a specified discrete part of the prediction horizon. A simple way to
incorporate multiple noise models with non-discrete ( continuous ) proportions in the
control law is to include a weighted combination of the tracking errors corresponding to
both noise models for the entire prediction horizon in the cost function. This can be

achieved by defining the following matrices and vectors:
G (i-o) 0 w f
G Y= r Y= = f Y= '
[G] [ 0 ar] v ‘:w] [r ] (3.118)

where fand f are free responses corresponding to the first and the second noise models

respectively. The control law (3.81) then becomes:
u=[GT G +A]" G (w -f") (3.119)
This can be simplified as follows:

(1-e) 0]G

G'r'G =[G’ G*][ 0 oF G]:GT(1-a)rG+GTorG=GT1'G(3.120)

e pas oy [T -0 0 w-—f
G (w -f)=[G G][ o o’l‘w—f']

=GT-o)(w-N+Gal (w—1) 3.121)

=G T(w-f,,) where f,=(1-o)f +of

u=[GTG+A] G T(w-f,,) (3.122)
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The control law in (3.122) is the same control law derived previously except the frze
response is 2 weighted combination ( average ) of the free responses obtained using two

different noise models. Note that when o=0, f,, =f and for o= 1, f,, =f . Note also

that 0 < o< 1 can be changed on line at any time step without having to recalculate any of
the Diophantine equations which is ideal for "dynamic tuning” of the controller to
accommodate changes in the noise, disturbances and/or MPM. Moreover when the two

noise model are identical then (3.122) becomes the original control law given in (3.81).

In scalar form the average free response is given as:
falt+ )= Buf (1=D+(-0)Fx/ (1) +oF x” (1) (3.123)

Figure 3.9 describes the interpolating effect of o-weighting on the uncentainty projection
for the noise models of GPC and DMC.

3.9 Simulation Examples

Simulations were designed to analyze and compare the above developed disturbance
rejection techniques. In particular these examples are based on the following propositions:
e A DMC noise model gives very slow disturbance rejection.

e EDMOC gives faster ( stronger ) disturbance rejection.

e A disturbance horizon can be used to tune the controller. Use of a DMC noise model
for predictions greater than Ny steps ahead can stabilize the system. Multiple noise
models are another way of achieving robust and fast disturbance rejection. The
following combinations are useful:

= GPC noise model followed by DMC noise model

= DMC noise model followed by GPC noise model

= The Diophantine expansion for GPC noise model is limited beyond a certain point
in the output horizon.

o A weighted average of free responses corresponding to GPC and DMC noise models
provides a continuous ( non-discrete ) way of selecting any desired speed of

disturbance rejection between the GPC and the DMC responses.
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All of the simulations in this example are based on the z-domain 3rd order process given in

equation (3.41) repeated in the following for reference

! w2 -3
z - domain transfer function = 00768z 4;'0212')' -5;00357- = (3.41)
1-19031z7" +11514:7°-2158=

The poles of the s-domain transfer function are 0.8187, 0.7165 and 0.3679, while the
zeros are at -2.586 and -0.1798. Note that one of the zeros is outside the unit circle
making the discretized process nonminimum phase ( NMP ). The gain of the process is 1.

All simulations are carried out for a period of 150 time instants with a setpoint change of

unity at time = 0 and a sustained step disturbance of magnitude 0.5 starting at time = 50.

3.9.1 Example-1: DMC and EDMC Performance Comparison

A step response formulation was used for both DMC and EDMC. A step response vector
of length 40 is obtained using the transfer function of the plant (3.41). For N2=30, M=1,
N.=1 and A=0 the classical DMC gives very slow disturbance rejection as is seen in Figure
3.10. EDMC speeds up the disturbance rejection performance by using D= [l - 0.9q"]

with the classical DMC. Control signal oscillations are reduced when a first order C
polynomial ( C = [l— O.Sq"] ) is added to the noise model. The role of C in presence of
highly noisy measurement data is demonstrated in Figure 3.11 wherea C polynomial helps
reduce the control signal oscillations when the measurement is corrupted by a white noise

with a standard deviation of 0.5. Note that the noise is added directly to the process

output and hence is the same in both parts of the top plot in Figure 3.11.

3.9.2 Example-2: Demonstration of Disturbance Horizon as a
Tuning Parameter
The disturbance horizon provides a means to incorporate two ( or more )

noise/disturbance models into the control law design. This example demonstrates the

following scenarios:
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a) A GPC noise model followed by the DMC noise model.
This is given Figure 3.12 which shows that sequential use of GPC and DMC noise models

in the prediction horizon give a closed loop response faster than DMC and slower than
GPC. The noise model is changed at N~17.

b) The DMC noise model followed by a GPC noise model:

In Figure 3.13 the order of the noise r-odels is reversed. Here the DMC noise model is
used for the first 10 intervals ( i.e. N,~=10 ) and subsequently 2 GPC noise model is
employed. Again the response falls in between the responses corresponding to DMC and

GPC. However, this approach is probably more sensitive to high frequency MPM than
that used in part a.

c) Limiting the Expansion of the GPC noise model up to a disturbance horizon .
In this simulation the Diophantine expansion for j=N, =8 is also employed for Jj>Ny ie. the
contribution of the residual to the prediction of the process output is constant for j2Nys =8

. Figure 3.14 shows that the disturbance rejection speed for this case is slower than that of
GPC but faster than DMC.

3.9.3 Example-3: Multiple Noise Models using o-Weighting

A weighted combination of free responses corresponding to GPC and DMC can be

incorporated into the control algorithm using o-weighting. This is demonstrated in this

example which consists of the following simulations:

a) A weighted Combination of GPC and DMC noise models:

Figure 3.15 demonstrates the effect of o-weighting. Here the primary and the secondary
noise models are GPC and DMC respectively. Obviously o= 0 is GPC and o= 1 is DMC.
A o-weighting of 0.3 moves the GPC response a little towards DMC.

b) o-weighting in presence of Model Plant Mismaich:

In order to demonstrate the role of o-weighting in presence of unmodeled dynamics the

following reduced order model is employed with a GPC noise model.
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-1
Reduce Order Model = 008 (3.124)

1- 091z
Figure 3.16 shows that the close-loop response is unstable for GPC noise modcl. However
if a c-weighting of 0.5 is employed with DMC as the secondary noise model a stable
response with reasonably fast disturbance rejection speed is obtained. Similar results were

obtained in 2 number of other simulations.

3.10 Conclusions

The two new predictors ( i.e. SDP and SDOP ) proposed in this chapter facilitate the
independent manipulation of the contribution of the uncertainty term to the optimal long
range output predictor. An immediate result of the separated formulation of the LRPC
predictor is the concept of a disturbance horizon which enables the use of multiple noise
models in the control law. A further benefit of SDP permits the use of a weighted sum of
multiple noise/disturbance model contributions to the long range free response. This
methodology is named o-weighting. The specific results and conclusions are summarized

as follows:

The Separated Diophantine Predictor { SDP ) is the basis for independent manipulation

of the uncertainty contribution to the future output predictions

e The SDP-based LRPC formulation is direct, simple and straightforward when
compared to the classical LDP-based LRPC algorithm. In addition the SDP
formulation is easier to program.

e The SDP-based LRPC formulation provides better insight for theoretical analysis
because the uncertainty terms are decoupled from the process terms.

e The Separated Diophantine Overparameterized Predictor ( SDOP ) offers substantial
computational savings while retaining the benefits of SDP-based LRPC.

e Both the SDP and SDOP are optimal predictors and are mathematically identical to
the classical LDP.

e SDP readily gives the actual classical DMC predictor as a special case of the

generalized noise model as employed in this study.
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e An Enhanced form of DMC (EDMC) is obtained by simple derivation using the SDP
The EDMC gives faster disturbance rejection than the classical DMC. In addition
EDMC provides a lead/lag observer filter for robustness and noise attenuation.

e The newly introduced notion of Disturbance Horizon offers a systematic way of
incorporating more than one noise/disturbance models in the LRPC design. 1t may be
used to tune/detune the controller on-line.

e The o~ weighting concept is another contribution of the present study. It allows the
use of multiple noise/disturbance models in the free response predictions in any

arbitrary proportions.
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Appendix 3-A

Comparison of UMPC with the Unified Predictive Control {
UPC ) of Soeterboek ( 1990 )

The key eleme:ts of UPC, with minor nomenclature changes, are summarized below:

The Measured output model:

-d
g AB u(t - l)+3CZe(')

y(1)=

Note that this is an ARARMAX model ( Ljung, 1987 ) and has an equation error
structure.

Diophantine equations:

C

—=E +qg7 =+
Y R Y
l:E‘ +q-J_J-
A A

CE,=M,+q"™N,  wheren, isthe degree of D

F:f — Q + =rp R.I'
4 eTd Ty
FC
— + =np 1
R Zhe
] E =J+N, J=Nu

X =E, . +9 A where N is any arbitrary polynomial
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The Unified Predictor:
K A
C

y, (0 + iy = Gut+ j-d =)+ Gult=1)+ F y(t) + ——x(1)

or

. . K,A
Y, (1 + J11) aramraax =Y, + J1t) anx "'_C—x(t)

The Cost Function:

-

<! ) Ny 2
J= Z[Pyp(""ﬂf)-RW(t +j)]‘ +’1‘Z[%'"(f+j— l)]

=N =l d
with constraints:
NAu(t+j-1)=0 for 1SN, <j<N,

where P, R, 0., Q4 and N are polynomials in q'.

The following are the main differences between UMPC and UPC
e UPC uses an equation error model ( the ARARMAX model ) whereas, UMPC is
based on a more general model which combines the equation error and the output

error structures into one unified formulation.

e UPC does not include the integrators in the basic predictor formulation. They are
accommodated later in the control law derivation which requires an additional
Diophantine equation. UMPC on the other hand incorporates the integrators in

the noise mode! explicitly which does not an additional Diophantine equation.

e The unified predictor of UPC needs solution of five Diophantine equations, while

the SDP for UMPC requires only two Diophantine expansions.
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e The unified predictor of UPC is the sum of a predictor for an ARX model plus an
additional term to account for C and D. Since the ARX structure itself includes a
noise model, this predictor does not isolate the noise contribution to the output
prediction as 2 separate term. The SDP for UMPC gives an explicit separation of
the process and noise contributions to the prediction. Moreover the SDP can also
be put in a form such that the predictions associated with any one noise model can
be expressed as sum of the prediction based on another noise model and a term
that accounts for the difference between the two noise models. Consequently the

unified predictor of UPC is a special case of SD? ( see Remark 3.3-9).

e UPC incorporates dynamic control weighting while UMPC does not. The
importance of dynamic control weighting in LRPC's has not been demonstrated
and it is not recommended for tuning ( Mclntosh, 1988 and Mohtadi, 1986 ).

Q
Moreover an additional Diophantine equation (—8—"—: ¢, +q”’ Z;_) has to be
d d

solved. The absence of the dynamic control weighting greatly simplifies the
UMPC formulation.

e UMPC formulation is much simpler and straightforward compared to UPC

formulation which involves many intermediate variables such as »* and y*.

e UMPC has following features:

Computationally cheaper overparameterized predictors
Multiple noise models

Steady state weighting

Sparse output and control horizons

Multiple control horizons

* & & & &

Recursive formulation
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w(t~J)
wf ”n -1
Yolt70) y UMPC -—;->A u(r) ‘i _ Process
=1
Arur+)-1) 9 B
A
Free Responsc
ereereereeaeeearnaannn e 1o Uncormas
P
. q°r, Free Response
| F T
Free Resporse
. .! +
: »| 7, =G, Forced nnp;m +
haerer bt ened E ------------
A4
Y (t+j10)

Notes:

1) The filters and signals with the index j are vectors and are drawn with thicker lines; j varies from | to N;.

2) The UMPC block does the calculations ( optimization ) necessary to produce the control vector that
minimizes the predicted control errors.

Figure 3.1  Unified model predictive control ( UMPC ) with separated
Diophantine predictor { SDP }
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Figure 3.2 Uncertainty projection at various frequencies for GPC noise model
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Chapter 4

Reduced Diophantine Predictors for Long
Range Predictive Control '

New reduced Diophantine predictors are developed and are proven to be mathematically
equal to the conventional predictors used in the Long Range Predictive Controllers
(LRPC’s ) such as GPC. The new formulations are much simpler, do not require filtered
input and output values, and offer computational saving of up to 65% in adaptive
applications. The proposed formulation also leads to new insight and interpretations of
LRPC’s,

4.7 Introduction

Long Range Predictive Controllers { LRPC’s } are model-based optimal predictive control
algorithms which use a predicted future output trajectory of the system to calculate a set
of optimal control actions. The control implementation in LRPC’s is called receding
horizon control which means that only the first of the calculated control actions is applied
and the procedure is repeated at each time instant so that the control is always calculated

on the basis of the most recent system measurement.

A generalized measured output model for a transfer function based LRPC is:

C
DAA"

()= %u(t -D+ e(n) 4.1

! A version of this chapter was presented at the 1995 American Control Conference: Reduced
Diophantine Predictors for Long Range Predictive Controllers, Saudagar, MLA., Fisher, D.G. and Shah,
S.L.. Proc. American Control Conference, pp. 3688, 1995.
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where y(r) = output at time, 7 ;u(f) = input at t, e(f) = zero-mean normally distributed
independent white noise. 4, B, C and D a:¢ polynomials in backward shift operator g™
For offset free response a multiple-integrator 1/A" ( A=l-q:I ) is included. The noise model
may optionally contain the process model denominator 4 which is a characteristic of
equation error noise model structures such as ARMAX and ARIMAX (Clarke, 1987). The
notation 4 is used to indicate that the polynomial 4 shall only be included for equation
error structures. More specifically:

A

A for EE structures 4.2)

h Y|
n

1 for OE structures (4.3)

The model employed in the popular Generalized Predictive Control { GPC ) is a special
case of (4.1). Setting D=1, A= A4, n=1 in the second ( noise ) term of (4.1) gives:

B C
(@)= -Zu(t -+ ;A-e(l) (4.4)
Equation (4.1) may also be written as:
¥ = —i—u(l =D+ x(1) 4.5)
y(t)=y (1) +x(1) (4.6)
where y.(?) is the model output given as follows:
y.(0= %u(f -1 4.7)

and x(#), the residual, is a lumped term representing the difference at time, ¢ of the
measured output and the model output:

x(1) = y(1) - y.(1) (4.8)
Using (4.1) x(?) is represented as a stochastic signal in terms of e(f):

x(t) = D.gA" e(?) (4.9)
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In the case of zero noise and disturbance, x(f) represents the MPM ( Model Plant
Mismatch ) at time, 7. In the general case x(7) represents a lumped combination of noise,
MPM and external disturbances.

The lumped Diophantine predictor ( LDP ), based on the model (4.1), for the j-step ahcad
output prediction was developed in Chapter 2 and is given as:

y, 0+ jl)=G & u(t+j-1)+G A (t-1)+F,y’ (1) (4.10)
LDP

Where the following equations define the various filters and signals in the LDP:

Amu’ (1 - 1)=% and yf(:)=-’3%) 4.11)
A=1 for EE structures (4.12)
A=A for OE structures (4.13)
_D? 7|=Ei+a” i (4.14)
-E’—?B- =G, +q"i’. (4.15)
| c4 | CA

The first term on the RHS of (4.10) is called the forced response and all the other terms
on the RHS constitute the free response. The LDP uses a lumped ( in the sense it treats

DgA" as a single entity ) Diophantine equation (4.14)

Remark 4.1-1:
The LDP includes two sets of Diophantine expressions ( equations (4.14) and (4.15) )
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Remark 4.1-2:

Filtered values of input and output ( A™»' (¢) and y/(f) ) must be stored for output
predictions.

Remark 4.1-3:

The C polynomial is first included in the Diophantine expansion of equation (4.14), and
later it is deconvolved in the second Diophantine expansion of equation (4.15) which
suggest the inclusion of C in (4.14) is redundant as shown below.

4.2 The Reduced Diophantine Predictor { RDP )

If the numerator polynomial C is removed from the Diophantine expansion (4.14), the
resulting Diophantine equation to be solved becomes:

[—l—-]—if' +q” 4 (4.16)
DAN s DAN '
The predictor based on the above Diophantine equation is referred to as the Reduced
Diophantine Predictor or RDP. The model (4.1) may be shifted by +j and rearranged as:

~_[ 1 n . 1 - ,
y(i+j)= [:DAA" ]DBA u(t + j I)+[DAA" ]CAe(t + j) 4.17)

Substituting equation (4.16) for [D ! ] in (4.17) yields:

"

N P 4 .- L S P
wWe+ = [VJ +q ‘D—A’A;-]DBA u(l+}—l)+[VJ +q7 W’A,,]CAe(l+j) (4.18)

The degree of polynomial A= na, the degree of ¥, = j-1. Rearrangement of the above

equation gives:

DAA"

or substituting y(t) for the bracketed term using (4.1) yields:

y(t+j)= ff:.DBA"u(t +j-1) +l71[-%u(r -+ e(t):|+ I-/;C;!e(t + ) (4.19)

y(t+ j)=V,DBA"u(t + j-1) +7,y(1) + V,CAe(t + ) (4.20)
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Now taking the expectation of both sides of the above equation and noting that the
expected value of e(1+)) is zero, the following equation for the j-step predictor is obtained:
y,(t+ jlit) =V, DB&™u(t + j - 1)+ 7, y(1) +[fr',_c2]1 e(r) (4.21)
where y, (¢ + j]¢) is the prediction of the output y for #4j conditioned on the input/output
data available at time £ and [V,C4] is defined by the following expression:
VCA= [17;C3]J +q [l'/:—Cﬁ]J (4.22)
Equation (4.22) simply defines the separation of the polynomial ¥,C4 into terms up to

order j and the remaining higher order terms. The following expression is then used to

separate the forced and the free responses
V,DB=|V,DB} +q¢™[V,DB], (4.23)

The final form of the RDP is as follows:

»,(t+jty=[V,DB] Au(t+j~1)+[V,DB] Au(t-1)+7,y(1)+ [V,c4], e(r) (429)

(RDP)
The term e(r) is reconstructed as:
DAA B
=220 500~ Zu- ] 425)

Remark 4.2-1:

The computational load of separating the past and present from future terms in equations
(4.22) and (4.23) is trivial because it is equivalent to picking the first j elements of the
corresponding arrays.

Remark 4.2-2:

Only one set of Diophantine expansion ( given by equation (4.16) ) is involved which
results in lower computational load than required in the classical approach which requires
two Diophantine equations for the LDP((4.14) and (4.15) ).




Remark 4.2-3:

Au’ (1) and y’ (1) (i.e. the filtered Au(r) and »(?) in the LDP are not required. Instead a

single extra variable e(#) from (4.24) is used. This simplifies the theoretical analyses of the
controller based on this predictor.

Remark 4.2.4:

The derivation and implementation are much simpler and straight forward.
Remark 4.2-5:

The C polynomial is not part of the Diophantine equation, and therefore C may be
changed at any time with no extra control computation, e.g. to adjust the noise filtering
on-line.

Remark 4.2-6:

The Reduced Diophantine Predictor (RDP) is mathematically identical to the classical
LDP. This is shown by Theorem-1.

Theorem-1:
The RDP (4.24) is mathematically identical to the LDP (4.10)

Proof:

Equation (4.20) may be re-written as:

Y+ )=V, DBNu(t + j-1)+7,y(0) +[7,CA] e(t+j) + [T'/]_CT]J e(r) (4.26)
Subtracting (4.26) from (4.20) yields:

Y, (t+ )=yt + ) =-[V,CA] et +)) (4.27)

Shifting 7 in (4.1) by +/ and using equations (4.14) gives:

B F
t+ =—ult+j-1)+—= ND+E e(t+j 428
y@+j) Au( J )+DAA,e()+ et + j) (4.28)

or substituting the above equation in (4.27) gives

.. _B . F N .
Yyl ) ="ut+ j-1)+ DEJA —e(t)+E, e(t + j)-[V,CA] et +)) (4.29)

Now consider the future component [17': CJ"!']J
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E’=[{C}’{D.7:A }] [{ A4 }{DAA"}] =[te44,7), (330)

where
{_‘_} -7 (431)
DAA S, '
Therefore, based on the rules of shift algebra given in Appendix-A of this chapter
[VJCA]J =E, 4.32)

Substituting (32) in (28) gives:

F
y,(t-a-j]r)--u(t +j- l)+ e(r) (4.33)
from which equation (4.10) for the LDP follows. XX
Remark 4.2-7:

One of the requirements for an offset-free process response is that the steady state
prediction must converge to the current output value. The steady state prediction from,
the Reduced Diophantine Predictor (RDP) is easily shown to be equal to the current
output. This may be shown by using 7, = ¢’ [1 - DAA'7, Jin (4.24) to produce:
¥, + jity=[7,DB], &'uii + j=1)+[7,DB], A'u(t-1) -
+q’ [l -DANV, 1v(t) +[I7JT“4_]J e(t) @39
Note that there is at least one A in e(f). Thus, at steady state ¢! = 1, or A = 0 giving
Ye(ti0) = 1)
Remark 4.2-8:
The proof that the servo response is independent of the C polynomial for the case of zero
model-plant mismatch is very trivial with the new formulation. The C polynomial in the
RDP appears only in the term with e(#) and for the case of perfect modeling and noise-free
servo response e(f) = 0, so the noise-free servo response is obviously independent of the C
polynomial. The proof of this property requires a much longer derivation and argument
when it is based on the conventional GPC predictor (McIntosh, 1988) which uses the LDP
(4.10).
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Remark 4.2-9:

The classical DMC predictor can be obtained as a special case of RDP by noting that for
DMC 4=C=D=1,B=Handn=1.

The Diophantine equation (4.16) becomes:

1 » P, 1-gv 1
_—_--V+ J—J"_— L s — 435
A q A A q A (4.35)
which implies
~  1-g~ —
v = z and 7 =1 (4.36)
where
H=% hg™' where the 4, are impulse - response coefficients (4.37)
i=1
Moreover
H - ha =1+l - -te} H
S= Y = Zq =) 5q where s, are step - response coefficients
=l =1 (4.38)
s, = ) h, and h =5 -5_ with 5,=0(Seborgetal, 1589)
k=1
7oB=Y"9" H_(-gs 4.39
DB =—"— =(1-¢7’) (4.39)

[1-97]S=S-475 =5, +¢7(5, - 5| = Nsg™ +q7 T(s,-5.,)a""" (@.40)
i=l i=j+]

where the following relation hs been used:

S= .'S’-J +q"§, S"_, = is,q"" §J = is,q""“ (4.41)
i=] i=j+]
therefore
[7,pB], = is,q"" and  [V,DB] = f:(s, -5, )g (4.42)
i=1 i=j+1

also
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Fea), -, ¢ (9
Substituting the above in the RDP equation (4.24) gives:
7 w
y,(r + jl£) = [,zs'q"" ]M(! +j=1) +[ Z(s‘ =S, )q""’" Au(r-1)+y(t) (4.44)
=1 i=j+]
or

PREIOHE ['is,Au(r + j=i) ]+[ ng, -5, )Au(r-i+ j):|+ (1) (4.45)
1

= I=j+

Truncating the second sum at 7, the settling time, gives the following DMC predictor:

= i=j+

y,( + jlf) = Lis,Au(r + j=i) ]+[ igs, -s,_J)Au(t -i+j)]+y(r) (4.46)
1

Using (4.5), DMC predictor in terms of residual x(7) is obtained as:

i=j+1

y,(t+jlt)= [’is,Au(l + j~i) ]+[ is,Au(t +j- i):| + x(f) 4.47)
=]

which after truncation becomes:

y,(t+jl0)= [‘is,Au(r-q-j—i) ]+[ Zr:s,Au(r+j—i)jl+s,u(t+j— T-1)+x(1)K4.48)
1

= i=j+1

Remark 4.2-10:
The RDP equation (4.24) gives, with 4= 4, D=1, andn =1, the following predictor
for GPC with T-filter ( C polynomial ) :

y e+ 0 =7, B]J Au(t + j=1)+[V,B] Au(t-1)+7, (1) +[17;c]J e(t) (4.49)
Note that the C polynomial appears only in the last term which vanishes if the degree of C

is zero. This gives a predictor for GPC with T-filter as a sum of the predictor for GPC

without T-filter and an additive term as:

Yo+ J10) ape wn .t =V, + J1) cpc wapont 7-6ikr +[I7;C]J e(?) (4.50)
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The advantage of the above additive expression is that the T-filter contribution to the
output prediction is given separately which might be useful in determining its robustness
properties and other analyses. This decoupling of T-filter contribution is not available in
the classical GPC predictor ( LDP ) as shown below.

The original predictor for GPC with T-filter ( C polynomial ) is obtained using LDP for
UMPC mode! with A= 4, D=1, andn=1, and is given as:

. ~ : — Au(t—1 t
2,{ + J0 ercwn e = G, 80t + j=1)+G, (c )+1-3 y(c) (4.51)

The GPC predictor without T-filter is:
Yo {t+ /10 goc wsoutne = G, 8u(t +j=1)+G Au(t — 1) + F y(1) (4.52)
Note that in case of LDP, y,(#+ jif)opcamt.cne Can ROt be given in terms of

¥ 5 (T + J11) Gpc wnbous 7-tine -

The RDP is graphically presented in the block diagram given in Figure 4.1. In this figure
the predictor does not give separate free responses due to the manipulated variable and
uncertainty. In Figure 4.2 the free response for the RDP is shown to be a sum of the free

responses due to the past mznipulated variable and uncertainty.

4.3 The Reduced Diophantine Overparameterized
Predictor (RDOP):

Solution of the Diophantine equations, in the LRPC algorithms such as GPC, requires
huge computational and storage resources ( Kramer, 1991 ). One modification to reduce
the computational resources is overparameterization of the output predictor developed in

the following.

The separation of future and past components using the Diophantine equation (4.16) for

1+ is not unique. A Diophantine equation in terms of N 2 j may be used. For example, the
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predictor can be simplified by using the following single Diophantine identity for N 2 N2
to replace the Diophantine equations for all individual j's:

P
_1 5 4.53
DA 1 Duar (4.53)

The predictor based on the Diophantine equation (4.53) is overparameterized and
therefore referred to as Reduced Diophantine Overparameterized Predictor (RDOP ).

Substituting equation (4.53) for [D;A,] in (4.17) gives:

~ s &V n . [~ & - .
y(+j)= [VN +q " DAT&" ]DBA u(t + ]-1)+LV~ +q" DAHA . ]CAe(t +j) (459

The degree of V/,, = N-1 so the above equation can be rearranged to
i+ = VNDBA"u(r +j=D+ VNCZe(t + J)

_T[B . C _ (4.55)
+VN[;u(t ~-N+j-D+ Dan e(t- N+_;):|

The terms in square brackets is y(z-N+j) so

y(t+j) =VyDBAu(t + j=1)+ 7, y(t = N + j) +V,,CAe(t + j) (4.56)
After taking the expectations:

y,(t+ jit)=VyDBA'u(t + j-1) +V, (¢ = N + j) +[V,,CA] e(t) 4.57)
where [F"NCE]J is defined by the following expression:

VuCa=[V,CA), +q7 [V,C4], (4.58)

where [VNCE]J represents the first j terms of ¥,CA4and [V,CA] consists of the

remaining terms.

The forced and free responses are separated using the following expression

V.DB=[V,DB| +q~ [V, DB|, (4.59)
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where [V, DB] represents the first j terms of V,DBand [V, DB] consists of the

remaining terms.
The final form of the RDOP is then:
»,(t+j0)=[V,DB] A'u(r+j-1)+ [VNDB]J A"u(z-1)
— = (460)
eyt - N+ j)+[V,CA] et)
(RDOP)

Remark 4.3-1:

The computational load associated with the separation in the equations (4.58) and (4.59)
is trivial because it is equivalent to picking the first j elements of the corresponding arrays.
Remark 4.3-2:

Only a single Diophantine expansion ( given by equation (4.53) ) is used for the entire
prediction horizon as compared to the LDP and the RDP which require two sets and one
set of Diophantine expansion respectively where there are N2 equations in each set. This
results in substantial saving in computer storage and computational load. Reductions of
more than 65% have been observed in simulation examples.. Specifically the large

computational saving is due to following the two factors:

i) The entire Diophantine expansion is accomplished by a single call to a function such as
deconv in Matlab,

if) The N>-N+1 convolution operations E,B are reduced to two convolution operations
V,B and V,,C

The 65% computational saving is obtained under the following conditions:

e The computer programs have been written in Matlab command language.

e The controller is adaptive, i.e. A and B are estimated at each control interval

e The percentage computational saving is based on only the control law calculations
block of the Matlab programs.

e The controller is designed for the Reduced Diophantine Overparameterized predictor.
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Remark 4.3-3:

Since the reduction in the computational load is exclusively achieved through the
reformulation of the predictor, it is still valid for the controller with input/output
constraints.

Remark 4.3-4:

The RDOP is mathematicaily identical to the classical LDP and the RDP. This is shown by
Theorem-2.

Theorem-2:

The RDOP (4.60) is mathematically identical to the LDP (4.10)

Proof:

Equation (4.56) may be re-written as:

Y+ )=V, DBAu(t+j-1) +V, y(t- N + )

-l-[VNCZL e(t +j)+'[l'/;,_CE]J e(t) .61

Subtracting (4.61) from (4.57) gives:

y,(t+ ji)=y(e+ j)=-{V,C4] ee+ ) (4.62)
But y(r+/) is given in (4.28) as:

. _B F,

y(i+j)= ;u(r +j=1 +§"Ze(r) +E e(t+ ) (4.28)

Substituting the above equation in (4.6 ) gives
. _B . F, > o :
Yyt + )= Zult+ j-D)+—Loe(t)+ E, et + )) -7 ca] e+ ) (4.63)

Now using shift algebra ( reviewed in Appendix-A ) and equation (4.32) it may easily be
shown that: -

[‘V'NCZ]J = [17,(:2]} =E, (4.64)
therefore substituting (4.64) in (4.63) gives:
B F,
t+jl)==u(t+j-1 =< —e(t .
Y, (t+j11) A"( +J )+DAA,.8() (4.65)

from which equation (4.10) for LDP follows. *e e



Remark 4.3-5:

The proof of Theorem-2 is applicable for any N 2. Therefore as a special case it also
serves as a proof to theorem-1 for N =3

Remark 4.3-6:

The above derivation shows that the RDOP is independent of N. In fact N > j has been
primarily used to obtain a predictor involving a single Diophantine equation for the entire
output horizon. This objective is achieved by setting N= N2. Any value of N > N2 while
permissible, would result in somewhat more computational load. Hence N = N2 is
recommended.

Remark 4.3-7:
Since the RDOP is equivalent to the RDP and LDP, it is also an optimal predictor.
Therefore the saving in the computational load is obtained without sacrificing optimality.

4.4 The Control Law

The purpose of a long-range predictive controller is to find the current ( at time = 1)
control action by considering the effect of the current plus (N.-1) future control moves on
the output over a future horizon bounded by times #+N, and #+N:. Time +M) is greater
than or equal to the earliest time in the future at which the output is affected by the control
move at time 7, while V- is arbitrary but should be greater than or equal to N;.

To date most of the popular long-range predictive controllers use the following type of
cost function for the optimal control calculation (Clarke, 1987a,b):

Ny 2 N, s
J =3 Uy, e+ A0 -wit+ ] + 3 AG Aute + j-1) (4.66)
where

#.)= the weighting on tracking error.
y,{.) = the predicted output values.
w(.)= the desired output values or the set-points.
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Ny = the initial output horizon  the earliest future output that is affected by the control
move at time t.

N; = the final output horizon, the farthest future output that is included in the cost
function J.

A() = the control weighting sequence.

N,= the control horizon, the number of future control moves included in the cost
function J.

The y,(1 + jit) in the above cost function is usually given by the LDP, RDP or the RDOP

developed above and are repeated here for reference:
v, + 10y =G,Au(t + j-1)+ G A"’ (1 - 1)+ F,y’ (1) (4.10))
LDP

y,(t+jity= [17,03]1 A'u(t + j-1)+[V,DB] A'u(r-1)+V,y(0)+ [7,C4] er) (4.29)

RDP
y,(t+ ji0y= [V DB] &"u(t+ j-1)+[V, DB| &'u(z-1)
d : ! _ (4.60)
Wyt~ N+ j)+[V,,C4| e)
RDOP

The prediction consists of two parts. The first term on the RHS of the predictor is the
response due to the future input moves. This first part is known as forced response. The
remaining terms on the RHS of the predictors are called the free-response. It is the

response due to the past inputs x(.) and disturbances up to time .

The forced response is gtven as follow:
Forced Response for RDP = [/7 DB]J A'u(t +j-1)
Forced Response for RDOP = [VNDB]J A"u(t +j-1) 4.67)
Forced Response for LDP =G A"u(1+ j-1)

where



[7,DB],=[V.DB] =G, =g, +gq™'+.+8,.97""

The free response is given as follow:

LDP free response:

f+)=G,8 ¢=D+Fy’ @)

RDP free response:

S+ j)=[V,DB] Au(t-1)+V,y(1) +[V,CA] ()

RDOP free response:

f@+j)=[V,DB] &ut =) +V,y(t-N + ) +[7aC4], &)

The control law is given as ( McIntosh, 1988 ):

u=[GTG+A]" G'T(w-1)

where

u={Au(r) Au(t+1) - Au(t+Nu-1J

w=[W+N) wt+N, +1) = wi+N)J

£=[f(t+N,)) fU+N, +1) - fU+N,)]

I =diagly(N,) 7(N,+1) - y(N,)]

A=diaga(l) A(2) -

-gN,-l En,-2
Ev, &N

F-{TRR -

AN
c & 0 - 0 7
8 & 0
&o
&
""" Eny-,
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(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)
(4.74)

(4.75)
(4.76)

4.77)

(4.78)
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4.5 Conclusions:

e A reduced Diophantine predictor (RDP) for Long Range Predictive Control (LRPC) is
developed which invé)lva only one, much simpler, set of Diophantine equations rather
than the two sets used in the conventional GPC formulation (Ciarke, 1987).

e The reduced Diophantine predictor (RDP) is not formulated in terms of filtered input
and output values. Only the single calculated variable, e(.) is required.

e The reduced Diophantine predictor (RDP) is proven to be mathematically equivalent
to the conventional ( GPC ) lumped Diophantine predictor (LDP) and is therefore
optimal.

e LRPC based on the reduced Diophantine predictor (RDP) has been found to be much
simpler and computationally less expensive than the conventional lumped Diophantine
predictor (LDP) based formulation.

e A reduced Diophantine overparameterized predictor (RDOP) is also derived and
proven to be optimal and mathematically equivalent to the reduced Diophantine
predictor (RDP) and the conventional lumped Diophantine predictor (LDP).

o The reduced Diophantine overparameterized predictor (RDOP) offers substantial
computation savings and is therefore recommended over the LDP and RDP for
LRPC’s such as GPC and UPC.
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Appendix 4-A

Polynomial Shift Algebra

In the formulation and analysis of discreis-time long range predictors and controllers it is
always necessary to divide various system polynomials and/or ratios of polynomials in ¢’
into future and present-plus-past contributions whenever such polynomials ( or the ratios
thereof ) are used with the signals which explicitly contain future values.

In the following development some basic facts and relationships for polynomial
bifurcation are established. The expressions are developed for monic polynomials but this

involves no loss of generality since any polynomial can easily be converted to a monic

polynomial by simple scalar division.

Let:
AgT)=1+ag" +a,q” +-+a, g™ deg{4(g™")} =na
B(g")=1+bg" +b,q7 +-+b g™ deg{B(g™')} =nb
Clg)=1+cg” +cg™ +tc, g™ deg{C(g™")} = nc
D(g)=1+d,q” +dyq7 +-+d g™ deg{D(g™")} =nd

Now assuming that the signal of interest is j-steps ahead in future (e.g. y(+/) ), then:

Aq™)={A@™), +q7[4e™)],
Future Part Present / Past
deglA(g™")}, =j-1  deg[A(g™)), =na-j

Similar expressions may be written for B(g” ), C(g" ) and D(g" ) polynomials. In the

following development the argument ¢™' of the polynomials is omitted for clarity.

(48], =[4,8,], =[48], =[4,8],
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The above relation holds because any term in either 4 or B that is farther in the past than
g’*’ simply adds the corresponding terms of convolution in g7 or farther in the past and
ultimately these terms are truncated.
It also follows that:

[4BCD] =[4BCD]

where A'=4dord, B'=BorB, C=CorC, D'=DorD,
In other words either the polynomials themselves or their j-step future parts may be used
inside the RHS square brackets. Similar results hold for inverse filters as given in the

following expression:

o] [0 {030 ) [0 ] s 2]

For rational filters ( i.e. the ratio of polynomials ) the following relations hold:

] -]
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1) The filters and signals with the index j are vectors and are drawn with thicker lines;, j varies from 1 to A,

2) The UMPC block does the calculations { optimization ) necessary to produce the control vector that

minimizes the predicted control errors.

Figure 4.1  Unified model predictive control { UMPC ) with reduced
Diophantine predictor ( RDP )



x'()
w(t-i-j) { Noise & Disturbance )
; " - 0]
y,(t+jit) + UMPC | A"u(r) 1_: Process B 4 ' +
Aru(r+j-1) 9" B Yull) - _ & ND)
4
x(1)
DAN
C
+
-
v, |

Yo (t+l1)

Notes:

1) The filters and signals with the index ; are vectors and are drawn with thicker lines; j varies from 1 o N,.
2) The UMPC block does the calculations ( optimization ) necessary to produce the control vector that
minimizes the predicted control errors.

Figure 4.2  Analysis of the RDP to separate free responses corresponding
to the manipulated variable and the uncertainty



Chapter 5

Generalized Cost Function for Long Range
Predictive Control

A generalized cost function for Long Range Predictive Control ( LRPC ) is introduced
which allows optimization of the sum of squares of arbitrarily selected tracking errors
within the output horizon ( i.e. it allows for a sparse output horizon ) and hence reduces
the computational load associated with the conventional full output horizon . Regular
spacing, 4, is suggested as a convenient way to specify the sparse output horizon but
arbitrary point-by-point specification is also possible.

For regularly-spaced highly sparse output horizons the tracking error summation term in
the cost function is replaced by a numerical integration formula in order to eliminate the
deterioration of performance caused by removing a large number of tracking errors from

the minimization process.

The UMPC cost function also allows for a sparse control horizon. /ndependent
control moves ( future control moves which are treated as independent variables in the
optimization ) may be defined arbitrarily anywhere in the output horizon as opposed to the
contiguous control horizon of classical LRPC. In general the non-independent control
moves ( future control moves which are arbitrarily defined in terms of independent control
moves ) may be a function of the independent control moves. A sparse control horizon,
with the non-independent control moves set to zero, gives slower control than that
obtained using a corresponding full control horizon. Two special cases of sparse control
horizons are presented in detail. A control horizon of N, independent control moves with a

spacing, 4, between the first and the rest of independent control moves gives the effect of
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a continuous ( fractional ) control horizon between 1 and N, as 4: is increased. Similarly a
control horizon of N, independent control moves with a spacing, s, between the last and
the rest of independent control moves gives the effect of a fractional control horizon
between N, -1 and ¥, . An effect equivalent to a fractional control horizon between two
integer values can also be achieved by dividing the output horizon into two parts using d,

as divider and employing a different control horizon for each of the two parts.

Simulation results are presented to illustrate the effect of various aspects of the newly

introduced generalized cost function.

5.1 Introduction

The purpose of a long-range predictive controller is to find the current ( at time = 1)
control action by considering the effect of current plus future control moves on the output
over a future horizon bounded by times ¢+N, and r+N:. Time ¢+N, is greater than or equal
to the earliest time in the future at which the output is affected by the control move at time
t, while NV, is arbitrary but should be greater than M.

To date most of the popular long-range predictive controllers minimize the following type
of quadratic cost functions for the optimal control calculation (Cutler, 1979, Clarke, 1987;
Mclintosh, 1988):

J=3y Oy, @+ N, +j- 1 -w(e+ ]+ A0 A +j- D] .1)

where the terms are defined in Chapters 2.

Note that for the above cost function:
N=N,-N, +1 (5.2

The prediction y, (1 + j|r) in the above cost function is usually given by an optimal
predictor and may be described by the following general equation:

Y, +j10)=G Au(t+j-1)+ f(t +)) (5.3)
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-+l

G,=8+8&q " +-+8,.9 (5.4)
The prediction, y,(t + jl7), consists of two parts. The first term on the RHS of the

predictor is the response due to the future input moves and is known as the forced
response. The second term on the RHS of the predictor, £1+)), is called the free-response.

It is the response due to the past inputs u(.) and disturbances up to time ¢.

The control law is given as ( Mcintosh, 1988 ):

u=[G'TG+A]"G'T(w-f) (5.5)
where the terms are the same as used in Chapter 2. The dynamic matrix G is given as:
-gN;—I . e go . 0 7
gNl “es g: gl .'. 0
G=| ¢ : : ST (5.6)
_gN:-l gf-':-'-‘ ) gh’;-h’._(N:_N‘ol)-N.
for Nu=N:
-gN,-‘ cae go 0 e 0 9
&x, “ & & - 0
G=| ¢ i .0 (5.7)
| 8Nyt ENgz T : g°..(.~',-~,-|)-~,

Figure-5.1 describes the underlying concepts of long range prediction and output and
control horizons for a conventional LRPC ( with ¥, = 1, N> =9 and N, =5 for illustration
purposes ).

In the following development the boundaries of the output horizon are defined exactly in
the way they are employed in the conventional LRPC, i.e. Ny and N; or for ease of
notation 1 and N. However the control horizon is understood to be the number of control

moves which are not arbitrarily specified ( i.e. the independent contro! moves ). Note that
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in the conventional LRPC formulation the control horizon, N,, also defines the future time
instant beyond which the control moves are arbitrarily set to zero. This positional (in time

dimension ) aspect of the conventional control horizon definition is not followed in the

following derivations. For example a control horizon of 3 will specify that three
independent control moves are involved. It does not necessarily mean however that the

control horizon spans the interval f to 1+2.

5.2 Output Horizon Restructuring

LRPC with the conventional output horizon ( which includes the future predictions at
every consecutive time instant from #+V; to t+N; ) requires substantial computation and
memory. This is especially true for MIMO systems. The following sections present an easy
way to restructure the cutput horizon so that fewer output predictions are used in the

control law calculation.

5.2.1 Sparse Output Horizon

The cost function of equation (5.1) may be written as a sum of two terms:

J=J,+J, (5.8)

J, = tracking error cost = iyu)[y,(: + N, +j=10)-w(t + j)]: (5.9
I

J. = control cost = %J.U)[Au(r +j-N} (5.10)

=

A long output horizon is often needed to get a stable closed-loop response in the presence
of unmodeled or unusual plant dynamics. However a large output horizon means more
computation and computer storage since the tracking error cost J, will have more terms in
the summation. One way to reduce the computational load without sacrificing the benefit
of a large output horizon is to use a sparse output horizon in J, . In other words the cost
function will minimize the sum of squares of tracking errors at selected points rather than

all of the points in the output horizon. In this case J, is defined as:



J, = Ty, e+ An-wa+p] (5.11)

FuHN, L N2)

where 3 is the existential quantifier and /=3(N,...N:) indicates that the summation may
involve any arbitrary time instants in the output horizon. Any number of time instants may
be included in the above summations. However the time instants ++V, and +/N> must be

included in the summation to preserve the specific output horizon boundaries.

The above error cost is very general. A more easily specified J, involves summation of

terms at equally spaced time instants. (i.e. regular spacing). For this special case the cost
function may be specified as:

J. = irU)[y,(f +N, +[J=-D]d, + 1) -w(t+ N, +[j - ))d, + 1])]’ (5.12)

Jul

where
N= the number of tracking errors in the summation.
d, = the spacing between predictions.

Note that if N is prespecified then N> can not be specified independently, rather it is given
as:

N,=N,+(N-1)d, +1) (5.13)
On the other hand if N2 is specified first and (N, -N)) is divisible by (d)+1) then N is fixed
to the following vaiue:

N,-N,
P e
d, +1

N= 1 (5.14)

Note that for 4, = 0 (i.e. for no spacing ) (5.14) reduces to (5.2) giving the same N as in
the conventional LRPC output horizon.

The above idea of a regularly-spaced, sparse output horizon is illustrated by Figure-5.2
which assumes d, =3 and N=4.
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Another way to structure the summation in J, is to divide the output horizon in two or
more parts and use d; =0 for the first part of the output horizon and for the rest of the
output horizon use d; >0 in an increasing trend. This works well because the variability of

the tracking errors decreases along the output horizon.

Incorporation of the sparse output horizon in the control algorithm is very simple. Matrix
G, and vectors f and w are modified by retaining only those rows which correspond to the

tracking errors included in the error cost J.. For regular spacing d| these are given as:

gy 0 & 0 - 0 l
Enyesy, T 7T -0
G=| P 0 (5.15)
| Bny-r 8wy vttt &odw.n,
S+ N) w(t+ N,)
S+ N, +d,+1) w(l+ N, +d, +1)
f=|f(t+N, +2[d, +1)) and w=|w(t+ N, +2[d, +1])
.f(t'i'Nz) SNr] W(l'i'N:) SNl
(5.16)
G= [g, g, g..,,x]h,_h_3 where the g, 's are columns of size N (5.17)
Effect of d;:

Simulation results have shown that for fixed N, the control performance can usually be
maintained with 4 greater than zero but the results depend on the process model and the
selected control interval. This means that fewer free responses have to be calculated. The
dimensions of the various vectors and matrices, involved in the control calculation, are
also reduced. This reduces the memory storage requirements and the required
computational load. Note that the computational savings obtained due to the reduced
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number of free responses is valid for both the adaptive and the non-adaptive
implementations.

The computational and storage savings due 1o d spacing is of particular interest for
MIMO case where the number of free responses to be calculated on-line is much greater.
If the predictions are calculated using recursive equations then the same number of
predictions ( e.g. Nz values ) are calculated even though a subset is used in subsequent
calculations. However, for example for a 4x4 MIMO system with N, = 21, there are 16
sets of free responses each of which has 21 points. Therefore a total of 336 free response
points must be calculated on-line at each control interval for a regular non-sparse output
horizon ( i.e. for 4 = 0 ). However, substantial computational and storage savings are
achieved if a sparse output horizon, e.g. with d; = 4, is employed. In this case there will be
16 sets of free responses each of which contains only 5 ( instead of 21 ) points.
Consequently, instead of 336, only 80 free responses have to be calculated. Besides free

responses, the sizes of the various vectors and matrices are also reduced.

Note that in practice a single d) may not be appropriate for all ( 16 in the above example )
sets of predictions because of different dynamics of various transfer functions of a MIMO
transfer function matrix. More than one ) can be used to deal with this situation.

For d; >>0, the control performance acteriorates. This is understandable, since in this case
the generalized cost function minimizes the tracking error at fewer time instants in the

output horizon.

5.2.2 Integral Error Cost

For the regular spacing case the performance of the controller deteriorates as the spacing
d, increases. An interesting solution to this problem is to apply appropriate weightings to
the tracking errors in the summation of J, to mimic an integration of the squares tracking
errors. These weightings are obtained using Simpson's rule or any higher order numerical
integration methods ( e.g. Newton-Cotes formulae ) and are incorporated in the control

algorithm by modifying the 1j)'s of I in the control law.
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5.3 Generalized Control Horizon

5.3.1 Planned control Policy { PCP )

The cost function (5.1) can bz minimized with respect to all Nz possible control moves.
However it is often advantageous to impose certain assumptions on these control moves.
This concept of arbitrarily constraining some of the future control moves is referred to as a
Planned Control Policy or PCP. The concept of PCP is not new and in fact a particular
PCP which sets all Au(.)=0 after N,, has been employed in the above derivation and in
many well known LRPC's ( e.g. DMC, GPC ) because it reduces the matrix G of (5.17)

to:
G=[2, & - &), (5.18)

In this section the concept of a PCP is defined much more generally and presented more

formally.

The PCP adopted in this study classifies the control moves to be calculated as independent
and dependent control moves. Only the independent control moves are used in the
minimization of the cost function or generated in the calculated control vector. The
dependent control moves may be arbitrarily fixed to a constant ( e.g. zero ) or defined in
terms of the independent control moves. The control move at time ¢ must be included as
an independent move to give the independent control for the current time ( 7 ). The control
cost function, J., involves only the weighted sum of the squares of the independent control

moves. De Keyser ( 1991 ) suggests similar methods of structuring of the control law.

A general control cost is defined as:
Jo= 2 AQNAu(t+j-DF (5.19)
230t N)

Again this control cost is too general. More easily specifiable special cases exist. In the

following sections two useful control costs, are introduced. These control costs assume
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that the number of independent control moves N, and all the dependenr control moves are

arbitrarily set to zero. The two sparse control horizons can be obtained from a

conventional contiguous control horizon of size N, by inserting the following spacing:

1. Spacing, d>, between the first ( current ) control move and the rest of the N, -1
independent contiguous control moves to produce the effect of a control horizon
between 1 and N, or,

2. Spacing, d;, between the first N, -1 contiguous control moves and the last control

move to produce the effect of a control horizon between N, and N.-1.

5.3.2 The d, Spacing

The following control cost provides a means to incorporate the above defined d: spacing (
i.e. the spacing between the first ( current ) control move and the rest of N, -1 independent
contiguous control moves ) in the conventional control horizon:
N,
J. = A[A() +D AU Au(t + j-1+d,)f (5.20)
Jul
where
N,= number of independent control moves.
d;=  spacing between the first and the rest of the independent control moves.
The independent control moves specified in J. must lie between 7 and t++N;-1 which implies
that d; should be constrained to observe the following condition:

d, < N,-N, (5.21)

The dependent control moves, Au(.), are set to be zero which means that the control

action, u(.), remains at its previous value. The control vector is:

- Au(t) -

Au(t +1+d,)
u=| Au(t+2+d,) (5.22)

[ Au(t+ N, -1+4d,)]

N~
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The matrix G of (5.17) is modified to incorporate d: by removing the column:

corresponding to the dependent control moves, i.e.
G=[8 |82, " Brot)yun, (5.23)

The above formulation gives N, — N, +1 discrete levels of control horizon interpolation
between 1 and V.. In other words the d; spacing produces the effect of a fractional control
horizon between 1 and N,. For large N, the size and effect of 4 will be smaller. In the
extreme case of N, = Nz, d> can not be greater than zero and only one control horizon
(i.e. N, = N,) is available. Figure-5.3 gives a diagrammatic description of the generalized

control horizon with d- spacing.

5.3.3 The d; Spacing

The d> spacing provides N,-N_ +1 levels of apparent fractional control horizon
between 1 and N. ( i.e. 2 span of N, control moves ). With d; spacing ( i.e. the spacing
between the first N, -1 contiguous control moves and the last control move ) the same
number of levels of apparent fractional control horizon is obtained for a span of one
control horizon ( i.e. between N, -1 and N, ). In other words 45 spacing gives better
resolution in terms of number of control horizon levels per control move. d; spacing is
included in the conventional control horizon using the following control cost:

J. = [nilz(j)[m:(: +j- 1)]’]+A(N,)[Au(t+N, -1+d,)J" (5.24)

p

where
N.= number of independent control moves.
diy= spacing between the last two independent control moves.
Moreover the independent control moves specified in J; must lie between ¢ and t+N>-1. In
other words:

d,sN.-N, (5.25)
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Note that now the N, — N, +1 levels ( of interpolated control horizon ) are available over
a single control move, a much better resolution for control horizon interpolation. The
dependent control moves are set to be zero so that:

Au(r) i
Au(t +1)
u= : (5.26)

| Au(t+ N, ~1+d,)

N+l

Note that dependent control moves between Au(t+N,-2) and Au(+N,-1+d,), which were
arbitrarily assumed to be zero, are not included in vector the u. Similarly the dependent

control moves after Au(z+N.-1+d5) do not appear in u.

Again the original matrix G , of (5.17), is modified to incorporate d3 by removing the
columns corresponding to the dependent control moves. In terms of equation G is given
as:

G=[g| 8: * Byt igs.-d,],,._h-_ (5.27)

Note that the columns of the original G matrix, in (5.17), between g, _, and gy .., are

not included in the above modified G. Incorporation of ds in the control horizon is
demonstrated in Figure-5.4.

5.4 Mulitiple Control Horizons

The conventional cost function assumes a single control horizon for the entire output
horizon. As already discussed, a more general ( flexible ) PCP ( Planned Control Policy
may involve the use of two (‘or multiple ) control horizons in the control law.

The output horizon may be divided into two or more parts and a separate control horizon
can be defined corresponding to each part of the output horizon. In the following
development a smaller control horizon is used for the beginning part of the oufput horizon
and a larger control horizon is employed for the later part. A tuning parameter d,, the

extent of the smaller control horizon, is used to divide the ouiput horizon into two parts.
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The first part, which uses a smaller control horizon, spans the time 7 to #+d, and the rest of
the output horizon, di+1 to N:, uses a larger control horizon. There are many possible
combinations for selecting the two control horizons for the two parts of the output

horizon. Two useful cases for control horizon selection are discussed in the following.

5.4.1 Control Horizons 1 and N,

In this strategy control horizons of 1 and N, are employed for the first and second parts of
the output horizon respectively. The tuning parameter d,, which takes values in the range
0 to N, determines the relative effect of the smaller control horizon which in this case is 1.
For d: = 0 the control law uses a control horizon exactly equal to N,. Whereas d; = N
gives a controller with control horizon of 1. As d, increases from 0 to N; the effect is
equivalent to a continuous change in the control horizon from N, to 1. The effect of d; in
this arrangement( i.e. with control horizons 1 and N, ) is similar to that of 4> mentioned

earlier in section 5.3.2.

The above strategy can be implemented by setting the last N,-1 columns of the first 4,

rows of the matrix G equal to zero. The modified G matrix is given as follows:

gua |0 0 0 - 0 ]
g | O 6 0 -. 0
S
1 .
G=|8.qn! O 0 0 . 0 (5.28)
______ e
g.\r,-d’. :gh',-d‘-l .........
P
:
i gN,-l ! gN,-Z ......... gN:'N--N-N.

Note that all elements of the upper right partition of G are set to be zero.

5.4.2 Control Horizons N,-1 and N,

The idea here is to provides the effect of a fractional contro! horizon between N,-1 and N,..
This is accomplished by using a control horizon of N.-1 for the first part of the output

horizon and a control horizon of N, for the remaining part. To incorporate these two
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consecutive control horizons in the control law the first d; rows of the last column of G

are set equal to zero. The modified G is given as:

™ gh"—l vae- g, ...E 0 7
&, g & . E 0
: : L E :
G=|8x s : N (5.29)
________________________ R
Enied,  8ryedia1 * A
. . P
;
L 8v-r vz T T T Bnpen, v

Note that all elements of the upper right partition of G are set to be zero.

For d; = 0 the above modification gives a controller corresponding to control horizon
exactly equal to N.. and di = N- gives a controller with control horizon of N,-1. The role
of d in this method is similar to the interpolating effect of ds.

5.5 Simulation Examples

The following sections present simulation examples were designed to highlight the

following features and notions:

e A sparse output horizon may be used to reduce the dimensionality of the LRPC
control law calculation.

e The use of numerical integration in place of simple summation in the cost function is
helpful when large spacing in the output horizon leads to poor performance or even
instability especially for larger control horizons and unmodeled dynamics.

o Spacing between the first and the rest of control moves in the control horizon.

e Spacing between the last and the rest of control moves in the control horizon.

e Use of two control horizons, 1 and N,

e Use of two control horizons, N.-1 and N,.

All simulations are based on the following 3rd order precess :
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1
The s-domain P = 5.30
€ $-domain Frocess (1+s)1+3s)1+5s) ( )

Using a sampling time of one second the following z-domain transfer function is obtained:

o=l RS -3
The 2. domain Process = 07682 j.ozlzs. +003572 il (5.31)
1-19031z” +11514z-2158z

The poles of the process in z-domain are 0.8187, 0.7165 and 0.3679, while the zeros are
at -2.586 and -0.1798. Note that one of the zeros is outside the unit circle making the
discretized process nonminimum phase ( NMP ). The gain of the process is 1.

The UMPC employed in the simulations uses a DMC noise model. The output was
assumed to be noise-free, however a sustained step disturbance of magnitude 0.5 is added
to the output at time instant = 50. The following parameters are common to all
simulations: M=1, and 2=0 . In the following simulations perfect modeling is used, except
for Examples 1 and 2 where the following Reduced Order Model is employed:

<1 - -3
Reduced Order Model < 0-122"+0.0232°0.0652 5:32)

1 - .91

5.5.1 Example-1: Sparse Output Horizon

This simulation uses N;=41 and N,=2. Figure-5.5 shows that a spacing of 4 (i.e.d, = 4)
in the output horizon does not deteriorate the control performance at all. The dimensions
of the G matrix is 41x2 for 4} = 0, whereas it is only 9x2 for the sparse output horizon
case with d; = 4. Moreover 41 free responses need to be calculated for the regular output

horizon case, while in case of the sparse output horizon only 9 free responses are required.

5.6.2 Example-2: Sparse Output Horizon with Integral Cost

This example demonstrates the following two facts:
I Alarge value of d) destabilizes the system response
Il An integral cost can be employed to counter the destabilizing effect of larger d,
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In order to demonstrate the destabilizing effect of large d; a highly sparse output horizon
with a spacing of ) = 9 has been used in this simulation. Output and control horizons are
kept same as in Example-1 ( i.e. N-=41 and N,=2 ). Figure-5.6 shows that an integral cost
gives stable response almost identical to that in Example-1. In the absence of the integral
cost an oscillatory ( ringing ) response results. Consequently the use of an integral cost

allows larger spacing in the output horizon without deterioration of the closed-loop

system response.

5.5.3 Example-3: Interpolating Effect of d,

As indicated in section 5.3.1 the parameter d can be used to interpolate between control
horizons 1 and N, . In this example the interpolating effect of 4; is demonstrated by
simulation. In order to appreciate d-interpolation, the responses corresponding to control
horizons 1, 2 and 3 are given in Figure-5.7 where 4: is set zero. In Figure-5.8 responses
corresponding to three values of d> ( 7, 3 and 1 ) are plotted for a control horizon, N,, of
3. The response for 42 = 7 is almost equal to that for N, = 1. The 4> = 3 case gives control
performance equivalent to an interpolation between N, = 1 and N, = 2. Setting d> = 1

gives an effect of a control horizon between N, =2 and N, =3 .

5.5.4 Example-4: Interpolating Effect of d;

This simulation example shows the interpolating effect of &5 . A control horizon of 3 is
used in Figure-5.9 which contains responses corresponding to three values of ds . All of
these three responses give the effect of a control horizon between N, = 2 and N, = 3. The
ds = 7 case is almost identical to N, = 2 and d; = 1 gives a response that is similar to N, =
3. The response corresponding to d; = 3 lies about half way between N, = 2 and N, = 3.
Figure-5.10 illustrates the interpolating effect of d; between N, =1 and N, = 2.

5.5.5 Example-5: Effect of Multiple Control Horizons

The proposition that more than one control horizons can be used to give the effect of an

interpolated control horizon is illustrated by this example. Figure-5.11 shows the
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interpolating effect of d between N, = 1 and N, = 3. Increasing d; shifts the response from

N, =3 towards N, = 1. Figure-5.12 demonstrates di-interpolation between N, = 1 and N,

= 3.

5.6 Conclusions

The optimization criterion for LRPC's is viewed in a broader perspective. A generalized

cost function is introduced which allows the use of a sparse output horizon, spacing in the

control horizon or multiple control horizons. The specific results and conclusions of the

current work are as follows:

Minimization of the sum of selected tracking error squares in the output horizon yields
results which compare well with the results when the sum of all of the tracking error
squares is minimized.

In some cases the performance of the selected tracking error squares minimization
controller deteriorates if the number of selected tracking errors is below some
m; :imum. Performance deterioration in case of a controller based on the minimization
of very low number of selected tracking error squares may be avoided by using a
numerical integration than a simple summation in the cost function.

Spacing after the first independent control move produces an effect equivalent to using
control horizons between 1 and N...

Spacing before the last independent control move produces an effect equivalent to
using control horizons between N,-1 and M.

Multiple coirol horizons provide the effect of control horizon 1S N, <. Nomar
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Chapter 6

Unified Model Predictive Control with Steady
State Error Weighting

Unified Model Predictive Control (UMPC) is formulated using a generalized
noise/disturbance model such that most linear discrete Long Range Predictive Controllers
(LRPC's), eg. GPC and DMC, are included as special or limiting cases. Steady state
output control is added so that UMPC can be used with a smaller output prediction
horizon N; and tuned by specifying a normalized weighting factor, 0< 7 <1, which makes
the UMPC a weighted combination of steady state ( mean-level ) control and a dynamic
( relatively aggressive ) controller tuned using the usual parameters, Nz, N, etc. Two
methods for the calculation of steady state prediction are presented. In order to stabilize
plants with MPM, an option to use a conservative noise model for steady state prediction

is provided

6.1 Introduction

LRPC's use a predicted future output trajectory or horizon {y,(¢+)), j =N, Ny+1, ... N2 }
in the calculation of a set of optimal control moves {du(r+j-1) j=1, 2, ... N, }. Use of a
larger output horizon, i.e. larger N> , generally leads to more conservative, more robust
control and hence is common in industrial applications. However, use of a larger N, also
increases the computational and storage requirements of the control algorithm especially
for adaptive controllers which require the solution of Diophantine equations at every time
step. A relatively shorter horizon will reduce the computational load but it may give very
vigorous control action and, in some cases, may destabilize the system. It is well-known
that the step response coefficients of a stable process approach a steady state value.
Therefore the later part of a step response can reasonably be replaced by a weighted
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steady state value This will result in substantial computational savings because several
terms in the cost function are replaced by a single steady state prediction.

Steady state weighting was first introduced in LRPC's by Kwok (1992) and Kwok and
Shah (1994), who included it in the minimization of the cost function of the GPC
( Generalized Predictive Control ). However their approach is complicated and has many
limitations including the following:

It is developed for a specific LRPC, i.e. GPC.

e It unnecessarily includes 2 set of steady state predictions instead of a single steady
state prediction.

e The set of steady state predictions is treated in a matrix separate than the dynamic
matrix making the formulation more complicated.

¢ The steady state weighting is not normalized, i.e. it runs from 0 to =.

e In most cases of Model Plant Mismatch (MPM) this approach to steady state

weighting can not stabilize the system.

Appendix-6A summarizes the above mentioned GPC formulation with steady state error
weighting due to Kwok and Shah.

In this chapter, single-point steady state output control is added to the original UMPC
formulation so that the advantages of a long output horizon can be gained along with the

computational savings associated with a smaller - .

The proposed approach introduces a single, normalized tuning parameter 0< 7, <1, which
permits the specification of any weighted combination of steady state ( mean-level )
control and the more aggressive control specified by the usual tuning parameters N2, N, ,
etc. Tuning this single parameter , 0< <1, provides a wide range of control responses
and use of a "separated" Diophantine predictor in UMPC permits the use of multiple
noise/disturbance models and/or a "disturbance horizon" which can be used to tune the
dynamics ( speed ) of the output response to disturbances ( independent of the servo

response ) and to compensate for the errors in the noise/disturbance model or prediction.
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In summary, UMPC is 2 general, intuitive, efficient algorithm that includes provision for

independent tuning of the regulatory and servo responses.

The present study proposes a much simpler, straightforward and robust formulation to

incorporate the steady state weighting in LRPC's. The proposed formulation overcomes

the above mentioned limitations of the existing formulation and includes the following

features:

It is based on a general LRPC rather than GPC

It uses a new predictor which is much simpler than the classical predictor.

It includes two methods to obtain the steady state prediction.

It includes only a single steady state prediction rather than a set of steady state
predictions and the rationale for including a single steady state prediction is
mathematically established.

The steady state prediction is a natural extension of the output horizon in the sense
that the predicted steady state value is simply appended to the vector of predicted
outputs.

No additional matrices are required.

No additional control law derivation is needed.

The interpretation of the r=sulting control law is conceptually meaningful.

The steady state weighting is normalized, i.e. it takes the values between 0 and 1.

It allows the use of more conservative noise models for steady state prediction which

is important for stabilizing systems with MPM.
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6.2 The Generalized Measured Output Model and the
Long Range Predictor

A slightly simplified form, corresponding to a single integrator, of the generalized
measured output model introduced in Chapter-2 is:

B C
¥t = ;u(r -1+ DA e(t) 6.1)

where 3{1), u(t-1) and e() are the output, the input and the uncertainty signals at time ¢

respectively. 4, B, C and D are polynomials in the backward shift operator g~' and the

notation A4 is used to indicate that the polynomial 4 shall only be included for equation
error structures. More specifically:

A=A for EE structures (6.2)

A=1 for OE structures (6.3)

The process transfer function is assumed to be stable since there is no concept of steady

state for open-loop unstable processes.

The j-step ahead Separated Diophantine Predictor (SDP) is given as:

y,(t+jit)=PAu(t+j-1)+Pu"(t-1)+Fe’ (1) (6.4)
where
C __F
—=E +q — 6.5
DAa 77 TDia 65
B ~ _ P

and with the following definition of the filtered input and filtered error

uF(:-1)=@ and ef(t)=1—;-(% (6.7)

Also
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o e _ x() _ 6.8
=20~ Uy Zue-n|= =27 65)
where

x(t) = residue at f = [y(r) -%u(l - l)] (6.9)

x/ (1) is the filtered residual at time z. Note that the residue x(#) is independent of the

noise model and therefore the filtered error e/ (z) or the filtered residual x/ (r) depends

on the numerator of the noise model but is independent of its denominator. The separated

Diophantine predictor ( SDP ) can be written in terms of the filtered residual as follows:
y,(t+ jlt) = Pau(t+ j-1)+ Pu" (1 - 1)+ F,x’ (1) (6.10)
SDP

The SDP has two parts. The first part consists of the first two terms and it exclusively
depends on the plant model. The second part which is the last term in the SDP depends

only on the employed noise model.

In most of the literature ( e.g. Clarke, 1987a ) on LRPC's the first j step response

coeflicients are represented by go to g.; also F‘, is denoted by G ;- Therefore in the sequel

P isreplaced G, which is defined as:

G =8 +89" +89°++g,.97"" (6.11)
The predictor in terms of filtered error signal is:

Y, +j10)=G Au(t+ j-1)+ Pu" (t-1)+ F,e’ (1) (6.12)
and the predictor in terms of filtered residual is given as:

y,(t+ji0)=GMu(t+j-1)+Pu"(t - D)+ Fx’ (1) (6.13)
or

Y, +ji)=G 8u(t+j-0)+f(t+)) (6.14)

with
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fu+))=Pu"@-D+Fx' (@) (6.15)

The first term in the predictor (6.13) ( i.e. the forced response ) can be rewritten in a
summation form starting with the term involving the current control move ( i.e. Au(r) ) to
give the following predictor form:

Y+ jlH)= igj_,Au(r +i=-1)+ Eu"(t -+ ,-:fo () (6.16)

The above predictor is for the case where N, = j ( N, is the control horizon defined

below ). The following predictor is based on any N, < J.

y,+jNY=3 g, bu(t+i-1)+ Bur (1= 1)+ F,x’ (1) (6.17)

i=]

Note that an extra argument, N, , has been specified in y, nomencluture. This argument is
often omitted when N, =J.

The cost function in terms of the y, nomenclature of (6.17) is given as:

Ny . M .
J= P yU)y, @+ AL N =wi+ D]+ A0 [bute + j -1 (6.18)
JuN, 5]
u=[GTG+A]"G'T(w-f) (6.19)
where

A.)= the weighting on tracking error,

¥u{.) = the predicted output values.

w(.)= the desired output values or the set-points.

w(.)= the desired output value or the set-point at steady state.

N, = the initial output horizon 2 the earliest future output that is affected by the control
move at time t.

N>=the final output horizon, the farthest future output that is included in the cost
function J.

A(.)= the control weighting sequence.



N.= the control horizon, the number of future non-zero control moves.

u=[Au(t) Au(t+1)

w=[w(+N) wi+N +1) -

Au(l +

f=[f@+N) fU+N +1) -

r=diag[7(N|) y(N, +1) ---

I, =diagfy () 7»,(2) -

A=diag[A() AQ2) -

e
gy,

| &0y

En;-2

&

AN

&£
&

oooooo

Nu-1)]’
w(t+N,)|"

Sa+N)I

y(N,)]

7.(N,)]

0
0
&

gN:"N. - N,N.

6.3 Optimal Steady State Prediction
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(6.20)
(6.21)
(6.22)
(6.23)
(6.24)

(6.25)

(6.26)

A brute force way to obtain the steady state prediction for a stable process is to use the
above developed j-step ahead predictor ( equation (6.10) ) with large j. This would

obviously require a lot of computational effort as it involves solution of Diophantine

equations (6.5) and (6.6) to obtain P, (or G, ), P, and F, for j— ( i.e. for very large

J). Note that in general only the last N, coefficients of G , are required to construct the

dynamic¢ matrix G corresponding to a control horizon of N,. Moreover for steady state

prediction based on N, = 1 only one, the last, coefficient ( represented by g; ) is needed.

Two simpler methods for steady state prediction calculation are proposed in the following

sections.
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6.3.1 The Steady State Prediction Method-|

The predictor (6.10) requires the steady state values of G,. P, and F, for steady state

output prediction. Setting g° = 1, to obtain steady state values, in the Diophantine

equations (6.5) and (6.6) would give indeterminate results because of the presence of A
which becomes zero at steady state.

In this method a Diophantine expansion for % is derived in terms of the Diophantine

equation for % , in order to get rid of A. The method utilizes the well-known i { which

can be easily proven ) that for stable transfer functions the impulse response coefficients

decay to zero with time.

Let
B ~ _H ) H
g:Hj-i- JTJ h hq +hq 'i"'-i'hJ_lqjl q"Tj (627)
For stable 4 and as j—« both /,_; and H diminish. Moreover
> h|= =80 for g'=1 Ii.e. atsteady state (6.28)
P A1)
Now dividing (6.27) by A and noting that:
9" & . 9
A ;ﬂq = (6.29)
yields

= -k -k -k 43 e
_th +th +th +eoth, Zq +[Zh*:| +q”’ T (6.30)

k=0 k=l kw2 kny=] k=0

s {5 ol {0

[ h]_+ 7 (6.31)
o LYY



Sl g -l

k=0 k=0 kxQ k=0
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Equation (6.32) is the Diophantine expansion for % ( equation (6.6) with

P replacedby G, ) with:
0 1 .2 - =1
CJ = [Zh*]+[2h,]q" +|-Zh,]q"--+[2h,]q""
e kw0 Li=0
and
Ao,
ka0

For stable 4 and as j— and using (6.28)

g, = the last coefficient of G, asj — o =[th]=&
P AQ)

and

P = [ih,]A =g, A

kn0

(6.33)

(6.34)

(6.35)

(6.36)

Similarly the following terms are obtained for the Diophantine equation (6.5) as j— ( the

subscript s represents the steady state ).
. -_CO)
' D()A(1)
F, =¢ DA

(6.37)

The following steady state output prediction for N, =1 is obtained by substituting (6.35),

(6.36) and (6.37) in equation (6.17):
Y,(sit,N,) = g,8u(e) + g, Au" (1 - 1) + &, DAx’ (1)

(6.38)
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6.3.2 The Steady State Prediction Method-Ill

This method is based on the fact that for stable transfer functions the siep response
coefficients and the residual converge to some constant value as time goes to infinity. This
leads to the fact that at sufficiently large values of j two consecutive step response

coefficients can be assumed to be identical.

The Diophantine expansions for a stable transfer function and sufficiently large j and j+1:

B
=g, + ‘g g etg g 4+
A £ +89 +8:9 £,97" +q” AA

B gt ot pq D 6.39
ekt ' +8.q 7 +4g,g " 807 +g TN (6.39)
subtracting the former equation from the later
0= 8,47 g7 a- )_ z
P=g4
As j—x the above relation becomes:
P=gA (6.41)

where the subscript s represents the steady state. Substituting this value of P, in the first

Diophantine equation gives
ABA =g, +89 " +8:9 7+ +gq9 " +q7 %
° (6.42)
=08+ 487 + 08,7 +-+0g.07 4478,
at steadystateg™ =1, A=0 and g~/ =1 therefore
B(1)
= 6.43

Similar derivation yields e, and F, exactly as given in equation (6.37). The steady state
output prediction is also the same as given in (6.38).
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6.4 Pure Steady State Control with a Finite Control
Horizon

The following steady state prediction for a finite control horizon N, is obtained using
(6.17) and the steady state values of various fi'ters:

Y, LN,) = 3 g, 8ule +i =1+ B (1) + Fax’ (1) (6.44)

where the s, as an argument or a subscript, represents the steady state. Thus y,(slz,N,)

is the steady state prediction corresponding to control horizon N, made at time ?.

Kwok and Shah (1994) included a set of squares of the steady state tracking errors based
on steady state predictions corresponding to control horizons 1 to N, in the cost function
to be minimized. They did not give any reason for it, moreover they did not even define
explicitly the notion of the steady state prediction corresponding to a specific finite control

horizon.

For N, >1, an optimal control strategy based on the minimization of the square of the

steady state tracking error, y,(s|¢,N,)~w(s), is an underdetermined problem ( i.e. one

equation with more than one variable ). Note that w(s) is the setpoint at steady state. In
order to analyze the optimal pure steady state control consider the following set of steady
state predictions:

¥, (sit.1) = g, Au(r) + Pu® (1 = 1) + F,x’ (1)

Y, (si,2) = g,8u(t) + g, Au(t +1) + Pu™ (1 - 1) + F,x/ (2)
: : : : : (6.45)

N,
Y, N =D g Au(t +j -1+ PuF (1 - 1)+ F.x’/ (1)

el

and the cost function

J= Y 7.0y, st ) - w(s)f (6.46)

1=



The control that minimizes J is:

u=[GI,G,|'GIT,(w, -£,)=G;'(w,-1,)

or in expanded form
Au(r) g, 0 -« 071'[e,
us Au(z+1) | g, & . i |e,
- : : o0 |
Au(t.i‘Nu-l) & - = & €,
Maultiplication of (6.48) by G, yields
g 0 - 0] Au(t) £,
g & - | au(r+l) | |e,

: . 0 : :
g - - glauerN,-n] e

3

and solving each of the equations in (6.49) gives

[ Au) 'fé:

Au(t +1) 0

aue+N, -] | o
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(6.47)

(6.48)

(6.49)

(6.50)

Equation (6.50) clearly indicates that even if a set of N, steady state predictions are

considered, the optimal control action is to set all the control moves equal to zero except

the first one. In other words there is no point in using a set of N, steady state predictions

corresponding to control horizons containing N, points because for steady state optimal

control (6.50) shows that only the first control move, u(7), is non-zero. Moreover, as

expected, the steady state control law corresponding to a control horizon of 1 is exactly

identical to the mean-level control.

It follows that if steady state control is combined with control based on the minimization
of the sum of squares of the dynamic tracking errors over a horizon from N, to N; the

steady state contribution should be based on a contro!l horizon of one regardless of the
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control horizon for the dynamic part. Otherwise ( i.e. if the control horizon is greater than
1 for the steady state part } it can not strictly be called steady state control, and the
combination can not rightly be termed as the LRPC with steady state weighting,.

For pure steady state optimal control, the inclusion of the sum of squares of the steady
state tracking errors corresponding to N, >1 as done by Kwok results in the control moves
beyond time 7 being set equal to zero as shown in (6.50). However when the additional
steady state tracking errors are used in combination with the dynamic tracking errors then
the detuning effect of steady state weighting is not confined to the first control action.
Instead it is spread over the control moves of the entire control horizon. Consequently, for
a given steady state weighting, lesser detuning is observed as compared to the case when

only a control horizon of one is used for the steady state prediction.

6.5 Combination of Steady State Control with LRPC

Incorporation of steady state weighting in the control law is straightforward. The basic
control law undergoes only minor modifications. The steady state prediction is appended
to the output horizon and a weighted square of the tracking error at steady state is added
in the cost funclion as follows:

Noal LN,
J= Y yUy, @+ 10~ we+ D] + 2 AU Au( + -]

=N, J=l

where (6.51)
YU+ N, +l)=y,(sl,)]) and  y(N,+D)=y(s)

The dynamic matrix is redefined as:

(8nr Tt & 0 ]
Ex, 8 & 0
6=\ ;. . . .05 (652)
Bwys 8wpz UL 7 UT Ewew,
. &, 0 U 0 J(Vg-N 20N,
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Similarly f and T are redefined to be:

f=[f(t+N) fU+N+1) = fE+N) i f)]

6.53)
where  f(s) = steady state value of free response (
and
r=diag[7(N1) y(N,+1) - y(N,) :7(3)] (6.54)

The above formulation offers a simple way of normalizing the weighting on the steady
state control part. Normalization can be achieved by simply redefining the I' as follows:
I =diag[y(N)1-7(N y(V, +D[1-7(s)] -+ y(NI -7 (N, =N, + 17 ()
(6.55)
The advantage of normalization is that the range of x is now tounded between 0 to 1.
Setting =0 means no steady state weighting at all, whereas y=1 implies that the control
is entirely based on the minimization of square of the steady state tracking error. Another
obvious interpretation of the %=1 case is that it is the mean-level control i.e. the control
corresponding to an infinite output horizon and a contro! horizon ¢l unity. Thus if the
LRPC were designed so that =0 gave the most aggressive control that would ever be
considered for the particular application ( in the extreme, this would be 4 = 0, N, = N; for
deadbeat control ), then tuning the single parameter 3, over the range 0 to 1 means that the
optimal control action would vary from aggressive ( deadbeat ) to mean level. This is a

significant simplification and provides the basis for an on-line “automatic” tuning

mechanism.

6.6 Disturbance Modeling for Steady State Prediction

The roles of noise model in controller design include the following:

e It informs the controller about the expected dynamic structure of the ncise and

disturbances.

e An integrator in the noise model helps achieve an offset-free response.

e It can be used to increase/decrease the speed of disturbance rejection.
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e [t can stabilize plants with unmodeled dynamics.

Because of the stochastic nature of the noise and the disturbance, detailed identification of
the noise model is practically unfeasible. In practice the noise model is specified as a

tuning parameter to achieve the above mentioned goals.

An important role of the noise model is its influence on the speed of disturbance rejection.
The primary objective in process control is regulatory control. In most applications the
effect of the noise and disturbances must be compensated as quickly as possible. The
polynomial D in the denominator of noise model (6.1) may be used to achieve the desired
speed of disturbance rejection. DMC does not include such a polynomial in its noise model
and therefore its speed of disturbance rejection is much lower than that of GPC which
contains the process model denominator 4 in the denominator of its noise model.
However the inclusion of 4 in the noise model is desirable only when the disturbances
share the plant dynamics. In general, restricting the denominator polynomial to be A
reduces the flexibility in specification of the noise model, and in many cases amplifies the
effect of the unmodelled dynamics. Moreover the A in the noise model can not describe
the measurement noise which is almost always added at the output i.e. it does not share
the plant dynamics. A better way of controlling the speed of disturbance rejection is to
have an arbitrary polynomial, D, in the denominator of the noise model rather than
including the fixed process denominator polynomial A. The generalized noise model used
in this study (6.1) was selected for this reason.

One simple way to achieve good speed of disturbance rejection without sacrificing stability
is to control the contribution of the noise model to the future prediction. The extent of the
effect of the noise model in the future prediction is termed the “Disturbance Horizon”. In
other words a performance-oriented noise model may be specified for some earlier part of
the output horizon, then for the later part a more conservative noise model could be
adopted. The term ‘Disturbance Horizon” is suggested for this earlier part of the output

horizon. The most logical choice of a sufficiently robust noise model is the DMC noise
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model. The use of two ( or multiple in general ) noise models in the suggested way over
the output horizon results in the flexibility necessary to obtain an efficient robust

controller.

One simple implementation of the disturbance horizon is as follows:

Y (t+j|!)=G-_,Au(l+j-l)+}"’luﬁ'(t—1)+lef(r) forj=N,toN,

- _ (6.56)
Y, {0+ j10)=G,8u(t + j - l)+PJ.u”(t— D+ x(1) forj=N, ,toN, +1

where N; is the disturbance horizon. and F, =1 for DMC noise model.

Another option is to freeze the uncertainty contribution to prediction at the value

corresponding to the end of the disturbance horizon as given in the following:
v, U+ j0)=G Au(t+j-1)+Pu"(t-1)+Fx/ (1) forj=N,toN,

- ! 6.57)
Y, 0+ 1) =G Au(t+ j-1)+ Pu"(t-1)+ Fy x(t) forj=N, toN,+]

The use of an ad hoc performance oriented noise model for the entire output horizon or
for an earlier part of the output horizon is helpful in increasing the speed of disturbance
rejection. However it is not suitable for the calculation of the steady state prediction in the
presence of the unmodelled dynamics because such noise models amplify the effect of
unmodelled dynamics and lead ultimately to instability. Consequently the steady state
prediction should be based on the simplest possible noise model which happens to be the
random walk model of DMC.

1 2! -k q-J

—— e —

A qu A (6.58)
or

F, =1 foranyj, therefore F,=1 (6.59)

Thus in calculating the free response at steady state F; =1 (or F; =Fyy ) should be used in
place of the one based on the prespecified performance oriented noise model. In other
words the disturbance horizon should not extend beyond N, it should be shorter than N:
in case of severe MPM.
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6.7 Simulation Examples

The role of steady state error weighting in LRPC, as developed in the preceding sections,
is demonstrated in the following sub-sections through simulations using Matlab. The
specific propositions set for the simulation examples were the following:

¢ The steady state ertor weighting, 7, detunes the closed-loop response.

e The detuning effect of 7 is monotonic.

¢ The rate of detuning steeply decreases with , .

® ¥ with a small N, gives the effect of a larger N .

e Aggressive noise models destabilize or fail to stabilize systems with large MPM.

e Ingeneral y weighting yields better performance than that obtained using A-weighting.

Simulations are based on the following two processes ( Process-A and Process-B )
adopted from Mclntosh (1988):

i

Pr - A (in s-domain) =
ocess-A (i )= T syl + 35y 59)

(6.60)

which gives the following z-domain transfer function for a sampling interval of 1 second:

.007682""+.02123z7 +,00357:z"°

Process- A (in z-domain) = - - =
1-19031z"" +11514z™"-2158=

(6.61)

The poles of Process-A in the are 0.8187, 0.7165 and 0.3679, while the zeros are at -
2.586 and -0.1798. Note that one of the zeros is outside the unit circle making the
discretized process nonminimum phase ( NMP ). The gain of the process is 1.

2(229)
(s+1)s* +305+229)

Process - B (in s-domain) = (6.62)

which gives the following z-domain transfer function for a sampling interval of 0.1 second:

03700z +.07172= % +.00785z ">

Process- B (in z-domain) = — . -
1-1342227"+4455:7° - 0450z

(6.63)
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Process-B is the process used in Rohrs' (1984) benchmark example. The z-domain poles
are 0.9048, 0.2187+.0443i and 0.2187-.0443i. Plant zeros are at -0.1164 and -1.822. Like
Process-A one of the zeros is outside the unit circle making the discretized process

nonminimum phase ( NMP ).

6.7.1 Example-1: Detuning Effect of y,-Weighting

This example demonstrates the detuning effect of 5 . Figure-6.2 which is based on
Process-A with no MPM shows the effect of low values of  ( 0 to 0.2 ). The higher
values of % (0.3 to 0.9) are used in Figure 6.3. It can be seen that the detuning rate is
much higher in the lower range of % . Figures 6.4 and 6.5 show a similar y, effect for
Process-B with no unmodelled dynamics. All simulations in this example are based on N}
=1, M=5N,=land A=0.

6.7.2 Example-2: y,-Weighting to mimic a larger AV,

The original motiv: \ion for including y-weighting into the MPC algorithm was to mimic
the effect of a large output horizon while using 2 much shorter one. This point is
illustrated in Figures 6.6 to 6.9. Figures 6.6 and 6.7 show that a y, value of 0.3 with N; = 5
gives a response almost identical to N> =20 and » = 0. Figure 6.6 is based on a DMC
notse model whereas 2 GPC noise model is used for the simulation shown in Figure 6.7.
Obviously the GPC noise model results in much more aggressive disturbance rejection
than the DMC model. Both simulations are based on Process-A with no MPM and N, =1,
N, =1 and A = 0. Figure 6.8 demonstrates the N, -reducing effect of y-weighting in
presence of severe MPM. In this simulation the third order Process-A is used with the

following first order model

Mclntosh (1988 ) has indicated that the above model has severe mismatch and the GPC
based on this model is very difficult to stabilize, As shown in Figure 6.8, a  value of 0.35

with an N; of as low as 10 gives results comparable to N> =120 with y = 0. The simulation
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is based on the DMC noise model. All simulations used Process-A with N, = 1, N, =1 and
A=0,

6.7.3 Example-3: Use of DMC noise model for steady state
prediction

The noise model has a profound effect on the steady state prediction especially in the
presence of MPM. In most cases of unmodelled dynamics the controlled system based on
a GPC noise model ( no T-filter, i.e. C = 1) can not be stabilized using y.-weighting. This
is because of the fact that in steady state prediction the GPC noise model amplifies the
current, at time = 1, MPM ( or the unmodeled dynamics ) by order magnitudes. This fact is
depicted in Figure 3.2 where the steady state uncertainty contribution to the output
prediction ( for a frequency @ = #/2 ) is about 100 times larger than its value at time = 1. A
DMC-based controller is stabilizable by x-weighting but gives undesirably slow
disturbance rejection. In order to obtain stable control with good disturbance rejection
properties the controller is based on two noise models. The GPC noise model is used for
the entire cutput horizon except the steady state prediction which is calculated on the
basis of the DMC noise model. Figure 6.9 clearly illustrates the advantage of using two

noise models. The simulations in this figure use Process-B with the following reduced

order model

0.145:°"

Reduced order mode! for Process-B = ————
1-093z™"

(6.64)

The model has substantial MPM. As can be seen, a GPC based controller exhibits unstable
behavior while a DMC noise model gives very slow disturbanze rejection. However, a
combination of GPC and DMC vyields stable control with much faster disturbance rejection

performance. All simulations in the figure use My =1, N2 =10, N, =1, 5 =0.1 and A=0.
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6.7.4 Example-4: Comparison between 4 and y,-Weightings

Use of the control weighting ( A-weighting ) in LRPC tuning is well established. This
example demonstrates that y-weighting with DMC noise modeling yields much better
results than A-weighting. Figure 6.10 compares the two strategies for Process-B with

following first order model:

0.033z'
Reduced order model for Process-B = ——— (6.65)

1-094z""
The A-weighting strategy uses A=2 and the y-weighting employs 7 = 0.02. It is clear that
7-weighting gives better results. The simulations in this figure use Ny =1, M; = 10, and N,
=2. Similar results are shown in Figure 6.11 where simulations are carried out for Ny = 1,

N2 =10, N, =2 and Process-A with the following reduced order model:

=1
Reduced order model for Process-A = _008z7 (6.66)

1-094:"

Again tuning with y-weighting is superior to A-weighting.

6.8 Conclusions

A completely new formulation for incorporating the steady state weighting in model
predictive control is developed. The y.-weighting in the MPC algorithm provides a new
tuning methodology that is no more difficult to implement than increasing N> by one. The
effect of a large output horizon is obtained by using y.-weighting on the predicted steady
state error with a much shorter output horizon. The new formulation is based on a
generalized noise/disturbance model and uses a new separated Diophantine predictor
which is much simpler than the classical lumped Diophantine predictor. Two methods to
obtain the steady state prediction are presented. The new formulation uses only a single
steady state prediction rather than a set of steady state predictions as required in the
existing methodology ( Kwok, 1992). The steady state-only control is analyzed and the
use of a single steady state tracking error in the cost function is mathematically justified.

The steady state prediction is implemented as a natural extension of the output horizon so
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that no extra matrices or vectors are involved and the onginal form of the control law is
preserved. The resulting control law is interpreted as an interpolation between regular
MPC and mean level MPC. The steady state weighting is normalized ( equation (6.55) ).
i.€. it takes the values between 0 and 1. The steady state prediction is optionally based on
conservative noise models, e.g. DMC, to stabilize systems with model plant mismatch

(MPM). Simulation examples are presented to illustrate the advantages of y.-weighting,

References:

Clarke, D.W., Mohtadi, C. and Tuffs, P.S., " Generalized Predictive Control - Part I the
Basic Algorithm ", Automatica, Vol. 23, No. 2, pp.137-148, 1987a.

Clarke, D.W., Mohtadi, C. and Tuffs, P.S., " Generalized Predictive Control - Part Il
Extensions and Interpretations ", Automatica, Vol. 23, No. 2, pp. 149-160, 1987b.

Clarke, D.W.," Adaptive Generalized Predictive Control ", Proceedings of the Fourth
International Conference on Process Control (CPCIV), Editors Y. Arkun and W.
H. Ray, Padre Island, TX, 1991.

Cutler, CR. and Ramaker, B.L., "Dynamic Matrix Control - A Computer Control
Algorithm ", AIChE National Meeting, Houston, TX, 1979.

Kwok, K., "Long Range Adaptive Predictive Control ", Ph.D. thesis, University of
Alberta, 1992,

Kwok, K., and Shah, S. L., "Long Range Predictive Control with a Terminal Matching
Condition"”, Chemical Engineering Science, Vol. 49, No. 9, pp. 1287-1300, 1994,

McIntosh, A.R., "Performance and Tuning of Adaptive Generalized Predictive Control *,
M.Sc. thesis, University of Alberta, 1988.

Rohrs, C.E., Athans, M., Valavani, L. and Stein, G., "Some Design Guidelines for

Discrete-time Adaptive Controllers”, Automatica, Vol. 20, No. 5, pp. 653-660,
1984,



178
Appendix 6-A

Review of the Existing Formulation for GPC with Steady
State Error Weighting

Following is a summary of the Kwok et. al.( 1994 ) formulation for the incorporation of
the steady state error in GPC.
The ARIMAX output model used in GPC is:

B+ £
Y= Au(t d)+ y Ae(ir) (6.67)

The optimal j-step ahead predictor is given as:

y},(t+j|r)=51Au(r+j---¢:i)+_J M(‘C-J)+F; yg) (6.68)
The optimal steady state predictor is derived as:
Nu
v, 680 =g, _Zﬁu(t+j—d)+é%‘”+ﬁ(q")*’-‘ci’— (6.69)
J:

The following two Diophantine equations are required as in GPC.

C -
PTRRALY €70
EB G,

CJ: = GJ +q-J —6 (6.71)

The cost function is modified by adding a summation of steady state error terms as

follows:

N, LN, )
J= 2y, + i -wie+ I +3 A0 A+ j- D]

1N L

37,00, e+ =) - w(s)]

Jel

(6.72)

The control law that minimizes (6.72) is :
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u=[GTG+A+GITG, ['[6Tw-NH+GT,w,-1)] (6.73)

where

v() = the weighting on tracking ervor.

v,(.) = the weighting on tracking error at steady state.

¥{.) = the predicted output values.

w(.)= the desired output values or the set-points.

w,(.)= the desired output value or the set-point at steady state.

Ni= the initial output horizon 2 the earliest future output that is affected by the control
move at time t.

Na= the final output horizon, the farthest future output that is included in the cost
function J.

A()= the control weighting sequence.

N.= the control horizon, the number of future non-zero control moves.

u={Au(t) Au(t+1) - Au(t+Nu-1] (6.74)
w=[w(t+N,) wt+N +1) - w(t+N)] (6.75)
f=[f(+N,) fU+N+1) - fa+N)IJ

where  f(t+))=G, Au(rc -d) , F yg) (6.76)
w (N, xN)={1 1 - 1]"w(s) (6.77)
£=[1 1 - i]T.c—;,A“(‘C“’)+ﬁyg) (6.78)
I =diagly(N,) 7(N,+1) - 7(N,)] (6.79)
T, =diagfy, () 7, - 7,(N)] (6.80)

A=diaglA(l) A(2) - AN,)] (6.81)
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(81 &z 0 & O e 0
En, v T & & T 0
G=| R - g (6.82)
’ oo &
| 8ny-r Eap-z vttt ot B,
g 0 0
G =% & -~ ; (6.83)

g‘ e ase g‘ 5‘.'~-
C()

B(1) _
= e,=-—=; F =ed e G
&= A “f =

The main difference between this implementation of steady state weighting and the one
develcped in this thesis for UMPC is the last summation term in (6.72), the underlined

steady state terms in (6.73), the use of separated Diophantine predictor ( SDP } and the
calculation of the free responses, 1.
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Figure 6.1 Incorporation of steady state error in long-range predictive
control
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Figure 6.3 Detuning with steady state error weighting for process A, v,=0.3t0 0.9
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Figure 6.4 Detuning with steady state error weighting for process B, y,=0 to 0.2
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Figure 6.8 A smali N, plus y, gives an effect of a larger N,, DMC for Process-A
with severe Model Plant Mismatch



Process Output & Selpoint

Control Signal

189

2 R [l i { i ] 1 \
1k ey W -
0 : i
DMC GPC+DMC fory, GPC
-1 1 L 1 L 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Time in Sampling Units
5k
0 .\—\’—l’_f H
5} X
0 50 100 180 200 250 300 350 400 450

Time in Sampling Units

Figure 6.9 Effect of noise model structure for steady state prediction calculation



Process Output & Setpoint

Control Signal

190

%=0,v,=0.02
0 50 100 150 200 250 300
Time in Sampling Units

L

| i ]

0 S0

100

150 200 250 300
Time in Sampling Units

Figure 6.10 y,-weighting vs A-weighting, GPC for Process-B with MPM



191

2 ) ¥ L] ¥ 1
E
2
[-3]
7]
ol
=]
[ =8
=1
o
-
&
_1 1 L 1 L 1
0 50 100 150 200 250 aoo
Time in Sampling Units
4

Control Signal

o 1 Il

i L

0 50 100 150 200 250 300
Time in Sampling Units

Figure 6.11 y,-weighting vs A-weighting, GPC for Process-A with MPM



Chapter 7

Interpolation and Recursion of Control
Horizon in Long Range Predictive Control

Long Range Predictive Control ( LRPC ) typically involves the calculation of N, discrete
future control moves that minimize the control ( tracking ) esror over an output horizon of
Ny > N, points. The control horizon is an important design/tuning variable but, by
definition, has integer values. This chapter shows how the equivalent of non-integer (
fractional ) values of N, can be obtained by "interpolating” between the control produced
by two integer values of N,. One simple method is to stack the blocks of weighted errors
prior to optimization. This method involves higher dimension matrices. The second
method of interpolation uses the algebra of partitioning of matrices to reduce the
dimension of the involved matrices. In both methods the interval of interpolation, m, may

be more than unity.

A recursive formulation based on matrix partitioning is presented that permits the control
action corresponding to N,+m to be calculated recursively starting from the control moves
for N.. The recursive formulation is quite general in that the recursion may be done for

more than one step ( the m-step ahead recursion).

Finally an interpolative recursive formulation is developed. This method combines the
interpolation and the recursion of the control horizon into one algorithm. Again both the

recursion and the interpoiation can be multi-step.



7.1 Introduction

Unified Model Predictive Control (UMPC) falls into the general classification of LRPC.
The main feature of an LRPC is that it uses a predicted future output trajectory ( called
the output horizon ) of the system to calculate a set of optimal control moves. The control
horizon is defined as the number of independent, non-zero control moves permitted in the
optimization. The control horizon is inherently integer. However in many cases, especially
in the presence of model plant mismatch (MPM), an interpolation between two integer

levels of the control horizon is highly desirable for tuning purposes.

Mztrix inversion is an important implementation issue for control horizons beyond 3. A
recursive formulation is therefore quite attractive from a practical point of view since it

can decrease the dimensions of the matrices to be inverted.
Both of the above mentioned formulations are developed in the following sections.

7.2 Review of Conventional Long Range Predictive
Control Algorithm

To date most of the popular long-range predictive controllers use the following type of

quadratic cost functions for the optimal control calculation (Cutler, 1979, Clarke, 1987a;
De Keyser, 1991):

N . M .
J= Y yG)y, @+ N +j- 1 -wie+ )] + 3 A0 st + j-DF (7.1)
J=l el
where the various variables have usual meanings ( cf. Chapter-2 )
Note that for the above cost function:

N=N,-N, +1 (7.2)



194

The prediction y,(f + jlf) in the above cost function is usually based on a stochastic
model for the measured output such as an ARMAX or ARIMAX model. In UMPC the
following Box-Jenkin's type model is employed:

C
DAA

0= Zult= 1)+ pelt) (73)

where (), u(t-1) and e(?) are the output, the input and the uncertainty signals at time ¢
respectively. A, B, C and D are polynomials in the backward shift operator ¢~ and the

notation A is used to indicate that the polynomial 4 shall only be included for equation
error structures. More specifically:

A=A for EE structures (7.4)

A=1 for OE structures (7.5)

The above model is quite general and controllers like GPC and DMC are special cases.
GPC is obtained by setting 4= A, and D = 1. The setting A=1,and C=D=1 gives the
DMC model structure ( Clarke, 1991 ). The following j-step ahead separated Diophantine
predictor ( SDP ) developed in Chapter 3 is based on the generalized output model of

equation (7.3):
y,(t+ji0)=G Au(t+j-1)+ Pu" (1 - 1)+ F,x/ (1) (7.6)
G =8+ 89 ' +.+g,,97" a.n

The various filters and terms of (7.6) are defined in Chapter 3.

The prediction, y,(# + j|7), consists of two parts. The first term on the RHS of the

predictor (7.6) is the response due to the future input moves. This first part is known as
the forced response. The sum of the last two terms on the RHS of the predictor is called
the free-response. It is the response due to the past inputs #(.) and disturbances up to time
i

The predictor (7.6) can also be given as;
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y,(t+ i) =G, 8ut+ j-D+f(t+)) (7.8)

where f{1+/) is the free response at time = f4/.

The first term in the predictor (7.6) ( i.e. forced response ) can be rewritten in a

summation form starting with the term involving the current control move (i.e. Au(?) ) to

give the following predictor form:
j —
y,(t+ji)=2 g, Bu(t+i=1)+Pu"(t-1)+ Fx' (1) (7.9)
i=]

The above predictor is for the case where N, = j ( note that N, is the control horizon ).

The following predictor is based on any N, <.

N,
Yo+ I N)=D g, Bu(t+i- D+Pu"(t-1)+Fx/ (1) (7.10)

Note that an extra argument, N,, has been specified for y, nomenclature. This argument is
usually not included when N, = as in equations (7.6) and (7.9).

The control law for the minimization of (7.1) is given as ( McIntosh, 1988 ):

u=[GTG+A]" G (w-f) (7.11)
where

u=[Au(r) Au(t+1) - Au(t+Nu-1] (7.12)

w=[wt+N) wt+N, +1) = w(t+N,)] (7.13)

F=[f(+N)) fU+N,+1) - fe+N,)] (7.14)

I =diagly(N,) 7N, +1) - y(N,)] (7.15)

A=diagli(l) A@2) - A(N,)] (7.16)
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(8un o & O
&, =~ & & - 0

G= & (7'17)
_gN;-I gN,-: cre aes  aea g-’*’:--’“-...v-w,

7.3 Control Horizon Interpolation Method-I

The LRPC formulation as developed above is good only for the integer values of the
control horizon, N,. In many cases a low value of N, yields very slow control while some
higher control horizon, say N,+m, gives control that is too active. Usually the higher
control horizon is employed and some other detuning parameter, e.g. the control
weighting, A, is used to stabilize the response. A weighted combination of the control
action generated for NV, and N,+m would provide a very d‘irect method of tuning and could

be interpreted as an interpolation of the control horizon between N, and N.+m.

The above described interpolation is obtained by minimizing a weighted sum of tracking
err. s corresponding to two control horizons, N.+m and N, with weightings 4 and 1-u
respectively, instead of a single control horizon N,. The cost function to achieve this
“interpolation” is:
N N,
J =2 (0= Wy Gy, + Ny + - NN - w(e+ D] + D A Au(e + j- D)

J=l )=l

. (7.18)
+ 2wy Gy, 0+ Ny + j =, N, + my=w(t + )]

=l

Note that the extra argument, N,, in ), has been used as defined in (7.10) in order to

identify the control law corresponding to each control horizon.

A simple way to incorporate the two control horizons N,, and N,+m with weightings 1-4

and u respectively using the cost function (7.18) is to define G*, I, w*, * and A" as
follows:
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Gl

G 0 0 (1-wT w Lf 719
A0 (7.19)
[o A,.,] |

where G, w, f and I are the same as defined in section 7.2 and G, and A, are defined as:

A-

i 0 can wes -
0
G, = &> : (7.20)
LENna-nu-t **" EN2-Mu-minNom

and

A, =diag[A(N, +1) AN, +2) --- AN, +m)] (7.21)

The equivalent of equation (7.11) is then:
u=(GlTrlGl +A')-‘G'r.(w""‘f.) (722)
This method is simple, however it doubles the row size of most of the matrices. Note that

the setpoints and the free responses are exactly the same for the two control horizons.

7.4 Control Horizon Interpolation Method-Il

This section proposes an improvement of the above method for control horizon
interpolation. Unlike the method given in section 7.3, the proposed method does not
increase the dimensions of the various matrices. The main idea is to expand different
matrices in Method-I to get lower dimensional matrices.

G“[z“} 6.=[6 G| G.=[G 0] (1.23)

GI'G”* =[Gf,,, GL[#;— a 0 ][G“}=Gfmp]'6,m +GT,(1-uIG,,

- TG, (7.24)
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fTrmu . . _ T T p]' 0 w-{
G (w -f)-[(;_,,, 6L]’, (1-p)rLf-f]

=GL I (w-0+GL(-wl(w-1) (7.25)

=[GLAT +GL (- I w-1)

Therefore the control law (7.11) becomes
u=[GL UG, +GL(I- WG, + A" [GL A +GLA-pT]w-1)  (7.26)

For u = 0 the above equation reduces to the original control equation for the control
horizon N, provided the trailing zero columns are deleted from G, . For =1 it gives the

original control equation for the control horizon N,+m.

7.5 Control Horizon Recursion

The use of a larger control horizon requires inversion of higher dimensional matrices. A
recursive solution would be both cheaper in terms of computational load, and more robust
in terms of numerical properties. The following development for a control horizon-

recursive solution of MPC algorithm is based on the well-known matrix inversion lemma.

7.5.1 Recursive Formulation
Define G, as follows:

G..=[G G,] (7.27)
whereG and G, are the same as defined in Section 7.3. Note that G__ is the dynamic

matrix corresponding to a control horizon of N,+m. The control law for this latter case

( using equation (7.11) ) is:
., =[GI.TG., +A"] G I'(w-T) (7.28)

where
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u, = [“‘ ] u” and u’ are vectors of sizes N, and m respectively
u

The various terms in (7.28) are evaluated as follows:

G’ A 07 [GTG+A G'TG
G .IG. +A" = G G - n
wmt O [G;]r[ “]+[0 A,,] [ GITG G;rcmmm]

(7.29)
[x z
[z 5]

X=GTG+A, Z=GTG,, Z'=GIIG, and S=GLIG,+A, (7.30)

where

Applying the matrix inversion lemma

X Z7' [x'-wz™X"' W

G ] G + A = 7.31

| R I N oz
where

W =-X"ZV WT=-VTZ™X?  and V=(S-27X"'Z)" (7.32)
The dimensions of the various matrices are as follows:

G is NxN, G_ is Nxm G,, is Nx(N_ +m)

G is NxN A is (N, +m)x(N, +m)

A is N xN, A, is mxm X is N, xN, (7.33)

Z is Nxm S is mxm V is mxm

W is N, xm

Postmultiplication of (7.31) by GT_I'(w - f) gives

[sz] G-m y “l]-lczml (W 'f) =
[Z s]-l GT - * I ]
= T ; =

(X" WZ'X)G'T +WG'T
WIGT +VGII
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(7.34)

Using (7.28) u,, = N :I is obtained as:

u’ X 216" X'-WZ'X")G'T+WG.T
= -f)= " -f
[] [z’ S | [G’Jr(w ) [ W'G'T +VG.LT (w=1)

_[A-WzZ")X'G'T(w-f)+ WG T(w- f)]
WIGTT(w-1)+VGII(w-T)
(7.35)
or in terms of u ( the control moves vector corresponding to the control horizon of N,,)

u’] [ a-wZT)u+WGIT(w-1) ]
* |7 | WTGTT(w - ) + VGII'(w - f)

(7.36)
_[(@+X7'ZVZT)u-X"ZVG T (w-1)
- -V'Z7u+ VGII(w-1)
u = (1+X"'ZVZ)u-X"ZVG!I'(w~-f) (737)
= u+X"ZV[ZTu-GLI(w-1)] '
u), =-V'ZTu+ VG I'(w - f)=-V'[ZTu- VG T (w - )] (7.38)

7.5.2 Recursive implementation

The recursive formulation developed in section 7.5.1 is quite general in that it allows for
recursion of control horizon by m steps. However it requires an m7xm matrix inversion and
calculation of base u ( i.e. u corresponding to control horizons N, ). A recursive
implementation, for a control horizon of N,, without matrix inversion can be developed by
setting mr=1 and starting with N, =1. Moreover the recursion of X ( i.e. (7.31) ) rather
than u ( i.e. (7.36) ) is more efficient. The following procedure is adopted:

Set G, = the first column of G ( G is the original dynamic matrix )
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X, = GTG, +A a scalar and X' =XL

1
1. Startwithk = 1
2. Set G, = the first k columns of G

(78]

. Define g,., = thek +1 th column of G

5

) x-l - x:l—wkzzx;: wl'
wi \Z

5. Setk=k+1ifk <N, andgotostep2orquitifk =N,
where

Z, = Gfl'gm » 8, = gI.trghl +A0. Y, =[Sx ‘ZIX;‘Z:]-I and W, = _x;‘zkvt

Note that S, —Z] X;'Z, is scalar, therefore its inversion is not 2 matrix inversion.

Now
Xy =[G'TG+A]" therefore u=X; G'T(w-f) (7.39)

where u is the required vector of control moves corresponding to the control horizon of
N..

7.6 Control Horizon Interpolation with Recursion

In section 7.4 an MPC formulation for a control horizon interpolation was presented.
Section 7.5 provided a method for control horizon recursion. In this section a new
formulation 7or combined interpolation and recursion of control horizon is developed. For

this purpose the control law (7.22 will be used, i.e.
u=(G''T"'G" + ") G'T*(w" - ") (7.22)
Where G*, I, w*, * and A" are as defined in (7.19) and G, and A, are defined in (7.20)

and (7.21) respectively. G is the usual dynamic matrix corresponding tv 2 control horizon

of N, as used in section 7.2. The control vector is defined as:
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u= [ u:‘ ] where u}, is of size N, and u}_ is of size m (7.40)
u

o

The term G"'T*G” + A" on the RHS of (7.22) is:
AT pn a _ GT GT #r 0 G Gm A 0]
G TG +A '[G; olo a-pmrlc o] o A,

_[6'TG+A  G'4G, ]_[X Z,,]
GIuIG GLuG.+A,} |Z, S.

(7.41)

where
X=GTG+A, Z,=G"uI'G,, Z, =G 4G, and S, = GG, +A, (7.42)
Applying the matrix inversion iemma gives

[G rG* +A] [x zy] _[x-‘-w,,zf,x" w]

S W, Vv,
(7.43)
with W, =-X"Z,V, ,WI=-VIZIX' and V,=(,-Z,X'Z)"
The dimensions of the various matrices are as follows:
G is NxN, G_ is Nxm G" is 2N x(N,+m)
G" is 2Nx2N A is (N, +m)x(N, +m)
A is N xN, A, is mxm) X is N, xN, (7.44)
Z,is N,xm S, is mxm V, is mxm
W, is N, xm

The term (G*'T°G" + A")G'T* of (7.22) is

ITGU l-lls_xzy-IGT GTﬂr 0
(G rGM)Gr-[Z'ﬁSHGT I (1-;;)1']

_[x'- z.’x" GT Ul 0 ]
00 (-pr

(7.45)



or
(GITI--G- +Au)-lGll—l
[(xX?-WZIX)GT+W,G. (X' -W,ZX)GT [l O
- WIG™+V G WIGT 0 (1-@F

_ (X' -WZX)GTuM+W,Gral (X' -W,Z X")GT(1-)T
W.G'ul'+V,Gul’ WIGT(1-
(7.46)
The contro! law of (7.22) is given as:

l::l; ] = (G.TF:G- + An)-ncul-.[w - f]

- w-~f

_ [(X" -WZIX )G +W, Gl (X' -W,ZTX)GT(1- p)r][w - f]

W GTul +V, Gl W GT(1- T w-f

(7.47)
or
(X =-W,Z X )GT(w—f)+W,G ul'(w-f)
WIGT(w-1)+V, G ul(w-1)
(7.48)
_[a+ X'Z,VZ)H)X'GT(w-1)-X"Z, VGl ul(w-T)
-VIZ X'GT(w=-f)+V,G ul(w-T)
w | [A+X'2,V,Z)u-X"Z,V,G ul(w-f) (7.49)
u, -V;Zu+V,G I (w-1) '
w =(1+X"'Z,V,Z)u-X"2,V,G] I (w-f) 7.50)

=u+X"'Z,V,[Zlu- Gl (w-1)]

uh, =-VIZIu+V,GLul(w—f) = -V][ZIu- G ul(w -1)] (7.51)
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For u = 1 the above eguations reduce to the equations for the recursion-only case. Setting

g = 0 yields u’ =v and uj, =0, ie the base case with neither recursion nor

interpolation. Implementation follows the procedure outlined in Section 7.5.

7.7 Simulation Examples

The notion of control horizon interpolation, recursion and interpolation with recursion
developed in the preceding sections are demonstrated using Matlab based simulations in
the following sub-sections. Examples are designed to illustrate the following:

e Interpolation between N, and N,+m using u-weighting Methods I and II.

¢ Control horizon recursion.

e u-interpolation with recursion

All of the simulations are based on the following z-domain 3rd order process ( Mclntosh,
1988 ):

-l 2 -3
z - domain transfer function = 00768z 1'02123" +.,'00357" - (7.52)
1-19031="" + 11514272158

The poles of the z-domain transfer function are 0.8187, 0.7165 and 0.3679, while the

zeros are at -2.586 and -0.1798. One of the zeros is outside the unit circle making the
discretized process nonminimum phase ( NMP ). The gain of the process is 1.

All simulations are carried out for a period of 150 time instants with a setpoint change of
unity at time = 0 and a sustained step disturbance of magnitude 0.5 starting at time = 50.
A DMC noise/disturbance model is employed in all simulations and N=1, N;=20, 4=0 are
fixed. A perfect process model ( i.e. model with no MPM ) is used in all examples.

7.7.1 Example-1: interpolation of control horizon, Method-|

Figures 7.1 and 7.2 demonstrate interpolation of the control horizon using 4 as the
interpolating parameter for Method-I. In Figure 7.1, the interpolation is between control
horizons of 1 and 2. In this case x4 = 0 corresponds to N, = 1 and u =1 is the same as N,

=2. As u is increased towards 1, the response shifts towards that corresponding to N, =2.
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However the effect of u is almost negligible for u between 0 and 0.5 or so. The most
effective range of u is usually between 0.9 to 1.0. Figure 7.1 shows response for 42 =0 ( or
N.=1), u=07, u=09and u=1 (or N,=2). It is clear that the response gets more
active for increasing u values i.e. increasing control horizon N,. Figure 7.2 illustrates the

same role of u interpolation between N, = 1 and N, = 3 and can be compared directly with
Figure 7.1.

7.7.2 Example-2: u-interpolation of control horizon, Method-2

This example simply demonstrates that the two methods for u-interpolation, i.e. Method-1
and Method-II, are identical. Figures 7.3 uses a u value of 0.8, N, = 1 and m = 1. The
figure clearly shows that the two methods yield identical results for a fixed value of x and

other parameters. However, Method 11 is preferred because of its computational efficiency

resulting from the smaller matrices.

7.7.3 Example-3: Recursion of control horizon

Figures 7.4-7.6 show that the recursive ( in terms of control horizon ) solution of MPC is
identical to the original non-recursive algorithm as proven in section 7.5. Figure 7.4 uses
N. =1 and m = 1 to give a controller equivalent to N, =2. Figure 7.5 uses N, =2 and m = |
to yield a recursive solution for N, = 3, while the same solution is obtained using N, =1
and m = 2 in Figure 7.6. This example simply demonstrates that the two methods for u-

interpolation, i.e. Method-I and Method-II, are identical and can be used with m 2 1.

7.7.4 Example-4: Recursion with interpolation of control

horizon

The u-interpolation with control horizon recursion is exactly equivalent to u-interpolation
with the non-recursive calculation of u as shown in section 7.6. This fact is demonstrated
in this example. In Figure 7.7 a u value of 0.8, N, = 1 and m = 1 are used for the

simulation. It can be seen that the combination of u interpolation with control horizon
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recursion ( N, =1, m =1 and u = 0.8 ) yields the same results as when interpolation and

recursion are done separately.

7.8 Conclusions

A new concept of control horizon interpolation is presented. The 4 interpolation can be
interpreted as the use of non-integer control horizons. Two methods for u interpolation
are formulated. Method H is a more efficient implementation of Method I due to the lower
dimensions of the matrices involved. The interpolation can be made between any two
integer control horizons ¥, and N, +m, i.e. it is not limited to consecutive control hor.zons.

The matrix inversions required for the control calculation are ( N,xN, ) and ( mxm ).

A control horizon-recursive solution for MPC is developed which, with the
implementation of section 7.5.2, eliminates the need of matrix inversion ( N, =1, m = 1),
More than one control horizon step recursion may be performed. A method for combined
interpolation and recursion of control horizon is developed which allows multi step control
horizon recursion with interpolation. All the results are proven mathematically and

demonstrated through simulations.
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Chapter 8

Conclusions

8.1 Contributions

A new Unified Model Predictive Controller ( UMPC ) has been formulated based on the
latest methodology available in the literature plus the best combination of the
improvements developed in this thesis. The contributions of this research work on MPC
are grouped under the following headings and discussed in the following six subsections

1. Generalized noise/disturbance model structure
Optimal long-range predictors
Use of multiple noise/disturbance models
Steady state error weighting

Horizon restructuring and interpolation

S U S i

Interpolation and recursion of control horizon

8.1.1 Generalized Noise/Disturbance Model Structure

Most of the formulations in this thesis are based on a generalized Box-Jenkins type model
structure which unifies many of the existing MPC algorithms such as GPC and DMC. The
generalized model used in UMPC explicitly handles equation error and output error model
structures in a single formulation and has provision to incorporate more than one
integrator. The role of the noise/disturbance model as a key parameter for disturbance
rejection is established and the disturbance rejection properties of GPC and DMC are

compared and analyzed in terms of their respective noise/disturbance models.
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The classical DMC predictor is derived from the generalized noise/disturbance model and
interpreted as a special case of UMPC rather than starting with the classical step response
formulation. Based on the generalized noise/disturbance model structure, improved and
enhanced versions of DMC ( IDMC and EDMC ) are formulated. The IDMC noise model
includes 2 first order lag filter in addition to an integrator. This filter gives IDMC an
independent parameter to adjust the speed of disturbance rejection. A first order lead-lag
filter with an integrator in the noise model of EDMC provides better disturbance rejection
and noise attenuation performance than that of classical DMC and can be regarded as an
extension of IDMC.

UMPC is formulated using the generalized process and noise models since this gives the
user the flexibility to choose the best model for a given application and, in extreme cases,

to change the model structure on-line.

8.1.2 Optimal Long-Range Predictors

An optimal long range predictor is a key element of MPC. A considerable portion of the
computational effort required for MPC is associated with the long range prediction.
Moreover the final mathematical form of MPC is affected by the choice of optimal
predictor structure. In the present work a number of different optimal long-range
predictors, based on the generalized noise/disturbance model structure, .re developed.

A lumped Diophantine predictor or LDP is formulated as a natural extension of the
classical optimal predictors used in existing MPC such as GPC ( Clarke et. al., 1987a and
1987b ). The LDP gives the DMC and GPC predictors as special cases.
Overparameterization is used to reduce the computational foad and computer storage of
long-range predictors. An overparameterized version of LDP termed the lumped
Diophantine overparameterized predictor or LDOP is developed to reduce the

computational requirements.
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The separated Diophantine predictor ( SDP ) provides the basis for an easier and more
straightforward formulation for MPC. The SDP, which maintains separate terms for the
process and noise contributions to predictions, offers greater insight in analyzing the role
of the noise/disturbance model in long-range predictions. The SDP has been shown to
have a Kalman filter ( KF ) type structure, The separated Diophantine overparameterized
predictor ( SDOP), an overparameterized version of SDP, offers substantial

computational saving. Both predictors, SDP and SDOP, have been proven to be
mathematically identical to the original LDP.

The reduced Diophantine predictor ( RDP ) requires only one set of Diophantine
equations in the calculation of the output predictions. The RDOP, an overparameterized
form of RDP, yields up to 65% computational saving in adaptive applications but does not
separate the process and noise contributions. The reduced Diophantine predictors ( RDP
and RDOP ) have been shown to be mathematically identical to the original LDP.

The Separated Diophantine Overparameterized Predictor ( SDOP ) was chosen for
implementation in UMPC because it is computationally efficient and leads to convenient

ways of tuning the disturbance rejection ( regulatory control ) independent of servo
response.

8.1.3 Use of Multiple Noise/Disturbance Models

The noise/disturbance model in an MPC formulation governs the prediction of uncertainty
( noise, disturbance and MPM ) for future time instants in the output horizon. If a
conservative noise model is used the uncertainty contribution to the output prediction
does not increase rapidly with time. The DMC noise model, ( a random walk structure), is
an extreme example of conservative modeling where the uncertainty contribution to the
future prediction is set equal to its current value. GPC on the other hand uses an ARIMA
noise model in which the increase in the future uncertainty contribution is directly

proportional to the "slowness" ( or the effective time constant ) of the process model.
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Aggressive noise models are good for disturbance rejection but are highly non-robust in

the presence of unmodeled dynamics.

Conventional MPC employs a single noise/disturbance model for the entire prediction
horizon. The present study suggests the use of more than one noise/disturbance model for
output predictions. For the case of two noise models the notion of disturbance horizon is
introduced and defined as the first part of the output horizon which uses the primary noise
model. The rest of the output horizon employs the secondary noise model. Using the
disturbance horizon as a tuning parameter, a flexible controller is developed which can be
tuned 1o give any desired level of disturbance rejection performance between and
including DMC and GPC. A variation of the above approach is to predict the uncertainty
contribution using a single noise model over the disturbance horizon and keep it constant
afterward rather than use a second noise model. ( Note that a disturbance horizon of zero
would give DMC ).

The disturbance horizon discussed above is a discrete ( integer ) tuning parameter. A non-
discrete tuning parameter, o, is introduced to combine two noise models in any desired
proportion. The continuous, normalized tuning parameter, g, which takes values between

0 and 1, is more convenient for tuning, and its extreme values gives DMC and GPC type

performance.

Disturbance horizon and o-weighting tuning parameters have been incorporated into the
MPC algorithm using the separated Diophantine predictors ( SDP or SDOP) which allow
independent tuning of the uncertainty contribution in the prediction.( The lumped
Diophantine predictor (LDP ) and the reduced Diophantine predictor ( RDP ) are not
suitable for these extensions.)

Continuous tuning using 0 S o < 1 and a SDOP are recommended because of their
convenience and computational efficiency. For the ideal case with MPM = 0, o can be

used to tune the disturbance rejection independent of the servo response.
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8.1.4 Steady State Error Weighting

Many MPC applications use a large prediction horizon in order to provide more robust
control. This imposes a higher computational load for adaptive implementations. One
solution to this problem is the incorporation of the steady state tracking error in the cost
function of MPC. A short output horizon with appropriate steady state weighting can
produce the effect of larger output horizons. Steady state weighting in MPC was criginally
proposed by Kwok and Shah (1992). However, their formulation has several shortcomings
as described in Chapter 6. In this thesis steady state weighting ( x-weighting ) is
incorporated into MPC using a completely new formulation. The new formulation is based
on the generalized UMPC noise/disturbance model and the separated Diophantine
predictor ( SDP ). The steady state prediction can be calculated using either one of two
methods. A single steady state error, corresponding to a control horizon of 1, is used in
the new formulation. The use of a single steady state tracking error in the MPC cost
function is justified by analysis of long range predictive control involving only the steady
state predictions corresponding to control horizons 1 to N,. The steady state prediction is
added as the last element in the vector of predicted outputs. This approach does not
involve any extra matrices or vectors and the original form of the MPC control law
remains unchanged. The new formulation may be interpreted as an interpolation between
the regular MPC and the mean level MPC as the normalized tuning parameter, 3, takes
the values between 0 and 1. Conservative noise models, e.g. a DMC structure, are
recommended for steady state prediction for robustness in the presence of model plant

mismatch (MPM).

The y-weighting in UMPC provides a new tuning strategy without any computational
penalty. The y-tuning ( with appropriate noise model for steady state prediction ) is found
to be much superior to the A-weighting and hence is recommended for tuning the
combined regulatory/servo response. It is particularly appropriate for systems with

unmodelled dynamics if it is combined with o-weighting approach for disturbance
modeling ( Section 8.1.3 ).
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8.1.5 Horizon Restructuring and Interpolation

8.1.5.1 Structuring the Output Horizon

The output horizon in classical MPC is a set of contiguous predictions, which starts at the
current time 7 and extends through up to time t+N> . The current study proposes the use of
sparse output horizons which contains only arbitrarily selected predictions i.e. a subset
from the time interval 7 to 1+N; . A regular spacing of d) between the selected predictions
for minimization yields results which compare well with the results when there is no
spacing, i.e. d; = 0. The use of d; >0 reduces the dimensions of the dynamic matrix and the
free response vector and hence cuts down on the computational requirements even for

nonadaptive implementations.

The performance deterioration due to large values of 4y, ( i.e. for highly sparse output
horizons ) may be avoided by minimizing the integral of the tracking error squares rather
than the summation, i.e. using a numerical integration formula more sophisticated than
Euler's Method.

A sparse output horizon is recommended ( along with numerical integration ) to save

computational resources.

8.1.5.2 Structuring the Control Horizon

The control horizon, i.e. the number of independent control moves permitted in the
optimization is inherently an integer tuning parameter. However in many cases especially
in the presence of model plant mismatch (MPM), a higher value of control horizon
destabilizes the system while a lower value gives sluggish control. An intermediate level of
control horizon between two consecutive integer values is often desirable for active and
robust control. The concept of independent and dependent control moves in UMPC is
extended to produce three different methods of obtaining the effect of non-discrete control

horizons.



One useful special case is to introduce spacing in the classical control horizon. Introducing
spacing d; after the first independent control move, produces results equivalent to

interpolation between control horizons 1 and N,,.

Spacing before the last independent control move, di, interpolates between control

horizons N,-1 and ..

A third alternative for modifying the control horizon is to use a tuning parameter d, to
generate a weighted combination of two control horizons, Ny, and N,; . This provides the
effect of an interpolated control horizon N,; < N, € N,;. The primary control horizon, M.,
is applicable for the interval t to t+d; of the output horizon while the remainder of the
output horizon uses the secondary control horizon, N... The d, tuning is a control horizon
version of the disturbance horizon concept. Setting d, = 0 is equivalent to using N.; and d,

= N is equivalent to using N,

A method for continuous interpolation between two levels of control horizon separated by
m with m 2 1 is developed using u-weighting. Two approaches for u-weighting are
formulated. Note that u-weighting generates an optimal weighted combination of the
control actions produced by two different control horizons whereas o-weighting produces

an optimal combination of the contro! actions generated using two different noise models.

They can be used individually or together.

The u-weighting tuning strategy is recommended because of its continuous range (0 < u

< 1). It can be used along with o-weighting to replace the conventional A-weighting.

8.1.6 Interpolation and Recursion of the Control Horizon

The conventional MPC implementation invoives inversion of an N, -dimensional matrix.

For higher values of N, , matrix inversion poses a substantial computational burden in the
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case of adaptive implementations. This research work formulates 2 recursive algorithm for
control calculation. The proposed method provides a means to perform m-step recursion
with m 2 1. For SISO applications with N, =1 and m =1 no matrix inversion is required.

The recursive formulation is combined with the z-weighting described earlier.

The recursive formulation is recommended as a means of reducing the order of the matrix

inversion.

8.2 Tuning Guidelines for UMPC

A systematic way of selecting appropriate tuning options is highly desirable for practical
implementations of UMPC. The following objectives should be considered in developing
guidelines for the optimal selection of UMPC options.

¢ Efficient control

e Robust controller design

e Low computational requirements

e Minimum number of tuning parameters

e Simpler Formulation

¢ Easier implementation

In the following sections separate recommendations are given for open-loop stable and

unstable processes.

8.2.1 UMPC for Open-loop Stable Processes

For stable plants the following UMPC options achieve most of the above mentioned
performance objectives:
¢ SDOP for computational savings

e Steady state weighting ( % ) to detune the servo response without large N>
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¢ o-weighting with a performance oriented ; -imary noise model ( e.g. GPC ) and a
conservative secondary noise model { e.g. DMC ) to provide independent tuning

of disturbance rejection
s An appropriate number of integrators to give offset-free response

e For poorly damped processes, or for more active control, u-weighting with N, >1

Note that o, # and u are continuous, normalized tuning parameters.

8.2.2 UMPC for Open-loop Unstable Processes

For unstable plants the following UMPC options are recommended:
e RDOP with an equation error model structure ( e.g. ARIMAX )
o (C polynomial ( T-filter ) to improve the robustness of the controller
® An appropriate number of integrators to give offset-free response
® Output horizon spacing to reduce the computational load
e u-weighting with N, >1
The minimum prediction horizon, N, is always set to be 2 d + 1 where d is the process

dead time.

Note that the well known A-weighting is replaced by the u-weighting.

8.3 Future Work

The work presented in this thesis covers a wide range of topics in MPC. Most of the
results in this work were developed based on sound theory and, in most cases, have been
related to the existing established formulations, Nevertheless, a number of issues,
particularly related to implementation, remain unaddressed and are potential areas for

future work. Some of the areas of interest are described below:

e In the present work the generalized noise/disturbance model has been used exclusively
as a design element for funing the disturbance rejection performance. On-line

estimation of the noise mode! would provide a2 more up to date description of the
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system. Identification algorithms for Box-Jenkins type models are already available in
the literature ( e.g. the prediction error method or PEM, Ljung, 1987, Sodestrom,
1989). However the issues of convergence and adaptation in real time

implementations need further consideration.

The separated Diophantine predictor { SDP ) was shown to have a Kalman filter type
structure. Further study to establish a more precise equivalence of the SDP to KF is
justified. The key aspects to proceed in this direction are a state space equivalent of
the input/ouput transfer function and the matrix solution of the Diophantine

equations.

More guidelines need to be developed for using the noise/disturbance model as a

design parameter in practical applications.

It should be possible to develop a steady state weighting equivalent formulation for

unstable process models, e.g. integrating processes.

The incorporation of input, output and auxiliary constraints into the UMPC

formulations developed in this thesis is highly desirable.

All of the work in this thesis is based on SISO ( single input single output ) systems.
The results may be extended to MIMO ( multi input multi output ) systems. However
considerations like time delays and interactions have to be analyzed in greater detail
for MIMO case.
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