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Abstract

The increasing complexity of electric power grids, owing to the integration

of Distributed Energy Resources (DER), electric vehicles, energy storage sys-

tems, and advanced metering infrastructure, has stimulated a surge in research

on machine learning-based state estimation and control. In this thesis, we ex-

amine the robustness of machine learning-based Distribution System State Es-

timation (DSSE) techniques to a class of adversarial attacks, known as evasion

attacks. In these attacks, the attacker manipulates real-time measurements of

sensors installed in the distribution grid by adding carefully crafted perturba-

tions to diminish the accuracy of DSSE. We devise a stealthy attack based on

the Fast Gradient Sign Method (FGSM), dubbed Sneaky-FGSM, by analyzing

the statistical properties of real-time measurements and adding perturbations

accordingly. Using simulation on a standard test distribution system, we show

that this attack would remain largely unidentified, and the error introduced in

the DSSE process could propagate to a voltage control scheme that takes the

DSSE result as input. Moreover, we present Targeted-FGSM, a powerful tar-

geted evasion attack strategy that is capable of misleading the state estimator

in a certain direction to cause specific power quality issues. Upon analyzing

the covert nature of these attacks, we propose the adoption of the feature

attribution-based detection strategy to build robust safeguarding mechanism

for DSSE techniques. Our results suggest that incorporating machine learning

models in DSSE is a double-edged sword and calls for more research in this

area to ensure the robustness of these models to adversarial samples.
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Chapter 1

Introduction

On August 14, 2003, a high-voltage transmission line tripped in Northern

Ohio due to a tree contact – a typical fault that was supposed to trigger an

alarm in the control room for immediate attention. Unfortunately, the alarm

never went off, and this seemingly isolated incident spiraled into a series of

catastrophic events that led to the great blackout of 2003 in North America,

affecting 50 million people, causing at least 11 deaths and damages worth

around $6 billion [80]. Although a combination of factors, including software

bugs, equipment failures, and human error were initially blamed for the event,

an investigation launched by the North American Electric Reliability Corpo-

ration (NERC) concluded that the blackout could have been confined to a

smaller region had operators been aware of the system state [79], underscoring

the importance of situational awareness.

Historically, state estimation was primarily used in the power transmission

system to determine its state, e.g., bus voltages or branch currents, from in-

complete or noisy measurements. These measurements can be obtained from

the Supervisory Control and Data Acquisition (SCADA) system or Phasor

Measurement Units (PMU) installed at specific nodes in the network. But

in the past decade, the growing adoption of DER and controllable loads has

caused wide fluctuations in voltage and reverse flow in the power distribution

system, making it imperative to increase visibility in low-voltage feeders and

employ feedback control schemes to maintain its reliable operation. Since real-

time state estimation supports these applications, it is anticipated that it will
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Figure 1.1: Power distribution systems are partially observable with a limited
number of measurement devices.

be increasingly incorporated in distribution system operation practices [84].

1.1 State Estimation in Distribution Systems

Power distribution systems are complex networks with a radial operational

structure and numerous interconnected components, including substations,

step-down transformers, feeders, and loads. Monitoring and control of such

systems require a wide range of sensors, reliable communication infrastruc-

ture, and data acquisition devices. However, due to factors such as cost, sen-

sor deployment and communication constraints, there is limited observability

in distribution systems today [10]. Figure 1.1 shows an example of a par-

tially observable power distribution system equipped with a small number of

measurement devices, i.e., Distribution-level Phasor Measurement Units (D-

PMUs), in addition to smart meters that are installed at customer premises.

The complexity of distribution systems is growing due to the large-scale

integration of DER, increased penetration of electric vehicles, and prolifera-
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tion of distributed energy storage systems and power electronics. These new

components cause bidirectional power flow, wide fluctuations in voltage, and

congestion issues, calling for enhanced monitoring and more stringent control

of the distribution system through a Distribution Management System (DMS).

One of the key components of DMS is state estimation, which is defined as

the problem of identifying the unobservable parameters, a.k.a. state variables,

from the available measurements in a power system [63]. Examples of state

variables are the voltage magnitude and phase angle of a subset of buses in

the distribution network.

We note that the application of state estimation is not limited to power

grids. In any large and partially observable distributed system, such as trans-

portation system, communication network, industrial process control, and au-

tonomous vehicles, state estimation plays a critical role in enhancing the situa-

tional awareness of the operators by providing an accurate and comprehensive

picture of the system’s behavior. It enables them to identify potential bottle-

necks or congestion issues, and take proactive measures to address them.

1.2 Motivating Data-Driven State Estimation

The state estimation problem can be formulated as a system of nonlinear

equations, which is typically solved as a Weighted Least-Squares (WLS) prob-

lem [72] in the polar or rectangular coordinate system. However, WLS-based

estimators do not yield sufficiently accurate results in the DSSE problem for

several reasons. First, unlike the transmission system, real-time measurements

are scarce in the distribution system as there is little instrumentation be-

yond the substation [27]. This results in fewer measurements than unknowns,

rendering WLS-based estimators ineffective [130]. Second, a typical distribu-

tion system contains numerous unbalanced three-phase lines. These lines are

shorter than transmission lines and have a higher r/x ratio. This could lead

to ill-conditioned Jacobian and gain matrices, affecting the convergence rate

of WLS-based state estimation techniques [3]. Finally, WLS-based state es-

timation techniques rely on the electrical system model, which encodes the

3



operational structure of the network and parameters of distribution lines and

transformers. This model is not available in most distribution systems to-

day [6].

Inspired by the success of ML techniques in approximating complex

physics-based models, several attempts have been made to solve DSSE by

taking a data-driven approach or a hybrid approach that combines ML

models with electrical model-based, static or dynamic state estimation tech-

niques, such as WLS and Kalman filter [40]. In particular, neural networks

trained on historical measurements or simulation data have been used to

estimate the system state from existing measurements [11], [115], [128], [129],

initialize the Gauss-Newton method so it enjoys quadratic convergence to

the true latent state of the system [126], or generate pseudo-measurements

to compensate for the lack of sufficient measurements when solving DSSE

using traditional model-based techniques [67]. More recently, physics-aware

neural networks [127] have been utilized to increase the accuracy of DSSE

by pruning connections in the neural network according to the distribution

system model. These studies are unanimous in their conclusion that ML-based

state estimators are superior to traditional model-based techniques, which

are computationally expensive and often incapable of capturing the nonlinear

relationship between input and output, hence they cannot effectively deal

with increased variability and uncertainty in distribution networks.

Despite the vast literature on data-driven and hybrid state estimation tech-

niques, previous work does not investigate whether these techniques are ro-

bust to adversarial samples [38] that resemble normal sensor data. This is

important because adversarial attacks have been shown to greatly degrade the

performance of classification and regression models in other domains [23], [71],

[125]. Since DSSE is essentially a regression problem, these attacks can reduce

the state estimation accuracy and subsequently the performance of the con-

troller that relies on the DSSE result. For example, the attacker might be able

to create power quality issues by misleading the operator into taking actions

that exacerbate over- or under-voltage problems. Such an attack will be detri-

mental if it is not detected by the BDD mechanism that is commonly adopted
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to protect the state estimation process. The real-world application of the

newly developed data-driven and hybrid DSSE techniques requires assessing

the vulnerability of the underlying machine learning model(s), and developing

threat models and mitigation strategies, which are currently missing. This

observation serves as the key motivation behind our work.

1.3 Problem Statement

In this section, we present a brief overview of the fundamental concepts that

form the foundation of our work. Specifically, we provide the mathematical

formulation of DSSE and present a widely used BDD mechanism to protect

DSSE. Then, we discuss a rule-based voltage regulation scheme that relies on

the DSSE output.

1.3.1 Distribution System State Estimation

Suppose h(·) is the non-linear function that relates state variables, denoted by

vector x ∈ Cn (where C is the set of complex numbers), to a vector collecting

field measurements z ∈ Cm. We have

z = h(x) + ξ, (1.1)

where ξ ∈ Cm is the measurement error. Note that h(·) depends on the real-

time operational structure and parameters of the distribution system model.

To obtain the system state vector of size n from a set of m independent

measurements, a WLS estimator minimizes the following objective function [3]:

min
x

J(x) =
m∑
i=1

(zi − hi (x))
2 /Rii (1.2)

where R is a diagonal matrix, called the covariance matrix of measurement

errors (ξ) and given by:

R =


σ2
1 0 · · · 0

0 σ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 σ2
m


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Here, σ2
k is the variance of the kth measurement from the measurement vector

z. We can write (1.2) in vector/matrix form as follows:

min
x

[z− h(x)]⊤R−1 [z− h(x)] (1.3)

Due to the high computational overhead and possibility of getting stuck in

local minima [62], h(·) is often linearized:

h(x) = Hx (1.4)

Here, H is the measurement matrix and typically defined as the Jacobian

matrix of h(·).

H = δh(x)/δx

By combining (1.3) and (1.4), we derive the estimated state as:

x̂ = argmin
x

[z−Hx]⊤R−1 [z−Hx] (1.5)

We note that linearization of h(·) does not work well in distribution grids, so

iterative methods, such as Gauss–Newton, can be used instead to estimate the

state starting from some initial point.

By adding pseudo-measurements obtained from historical data to field mea-

surements, DSSE is usually solved as an overdetermined problem, where we

have fewer states than the measurements, i.e., n < m. In this case, the closed-

form solution for the maximum likelihood estimate of x can be derived as

follows [106]:

x̂ =
(
H⊤WH

)−1
H⊤Wz (1.6)

1.3.2 Residual-based Bad Data Detection

As the reliability of estimated states is heavily dependent on the accuracy of

measurements, Distribution System Operators (DSO) often deploy a residual-

based BDD mechanism to safeguard the state estimation procedure. Specif-

ically, the measurement error, e is defined as the difference between actual

measurements (z) and estimated measurements (ẑ), i.e., z− ẑ, where ẑ = Hx̂.
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The chi-square test is a convenient strategy to identify the presence of bad

data [3]. From (1.2), the residual can be rewritten as:

J(x) =
m∑
i=1

e2i
Rii

=
m∑
i=1

(
ei
σi

)2

(1.7)

Notice that Equation (1.7) is of the form y =
∑d

i=1 χ
2, which corresponds to

the chi-squared distribution with d degrees of freedom. Since it is assumed

that m > n, at most (m − n) of the measurement residuals will be linearly

independent, resulting in d = m− n. To detect the presence of bad (measure-

ment) data, J(x) is compared to the critical chi-square value at the degree of

freedom d, and a pre-specified level of significance α. If J(x) < χ2
d,α, then the

estimated state, i.e., x̂, can be trusted. Otherwise, it is assumed that the mea-

surement contains bad data. Upon detecting bad data, the DSO may either

discard the estimated state and replace it with a previous state estimate or

try to identify the source of bad data, eliminate the bad measurement(s), and

re-estimate the current state.

1.3.3 Voltage Regulation using DSSE Result

The bus voltage is closely related to the load demand in an electrical power

distribution system. When the total demand of connected loads increases at a

given bus, more power is drawn from the distribution system. This increased

demand subsequently causes a drop in the voltage at the distribution bus due

to higher power flow through the distribution lines and transformers. On the

contrary, when the total load demand decreases, less power is drawn from the

distribution system, leading to an increase in the voltage at the distribution

bus. Maintaining a stable and appropriate voltage level at the distribution

bus is crucial for the reliable and efficient operation of the electrical distri-

bution system. Voltage control equipment, such as transformers and voltage

regulators, are used to control and adjust the voltage at the distribution bus

to ensure that it remains within acceptable limits and meets the requirements

of connected devices and consumers. A voltage limit violation in a power

distribution system occurs when the voltage level exceeds or drops below the
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acceptable limit set by the utility company or some regulatory body. This can

happen due to various reasons, such as equipment failure, an increase in load,

or a fault on the distribution lines. These violations not only affect the sta-

bility of the power grid but also can cause damage to equipment (both at the

grid end and consumer end), and power outages. To prevent these calamities,

voltage control devices, such as capacitor banks, regulators, and On-load Tap

Changers (OLTC), are used to quickly respond to voltage fluctuations.

Due to high installation costs, D-PMUs are not currently deployed at each

node of a distribution system, despite their ability to provide highly precise

and frequent data [95]. Therefore, estimated states from DSSE are often used

instead of the measurements when they are missing to detect voltage limit vio-

lations [34] and perform Volt/VAR Optimization (VVO) [66]. In this context,

an adversarial attack launched against the data-driven state estimator would

eventually impact these control decisions.

The most prevalent VVO approach is the SCADA-controlled VVO, which is

a rule-based strategy where voltage and VAR control devices, such as voltage

regulators and capacitor banks, are controlled based on some pre-defined set

of rules [86]. The SCADA-controlled VVO is often studied as two independent

problems, VAR optimization and Voltage control [86]. For this study, we focus

on the voltage control part of the SCADA-controlled VVO mechanism which

aims to maintain acceptable voltage levels at all points along the distribution

feeder under all load conditions by controlling tap changers and/or voltage

regulators [94].

1.3.4 Adversarial Attacks

An adversarial attack is a deliberate and targeted attempt to manipulate the

behavior of a machine learning model (e.g. the model used for state estimation)

by introducing specially crafted input data, known as adversarial samples,

during the model training or inference phase. The two most common types of

adversarial attack strategies are:

• Evasion Attacks: Attacks in this category add carefully crafted pertur-
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1.4 Objectives and Contributions

In this thesis, we aim to address the following research questions.

• While there is a consensus in the research community that data-driven

DSSE approaches are superior to conventional static and dynamic state

estimation approaches in terms of effectiveness, are they sufficiently re-

liable and robust to be incorporated into power distribution grids?

• How effective is the conventional BDD mechanism in preventing adver-

sarial attacks on DSSE?

• What impact do adversarial attacks have on control system(s) that rely

on the DSSE results?

• Is there a more effective detection mechanism that can replace conven-

tional residual-based BDD to mitigate adversarial attacks?

To answer these questions we investigate the adversarial robustness of two

state-of-the-art data-driven DSSE models, namely Stacked ResNetD [11] and

Robust K-Nearest Neighbours (R-KNN) [115], that have been shown to out-

perform several other electrical model-agnostic state estimation techniques.

We propose a black-box adversarial attack that uses an arbitrary surrogate

model trained on historical data – measurements and corresponding states –

to add carefully crafted perturbations to the measurements to reduce the ac-

curacy of DSSE. We show that the standard residual-based BDD mechanism

fails to flag the modified measurements as bad data in the majority of cases.

We then devise an even stealthier version of this attack in which the attacker

uses statistical properties of sensor data to selectively apply the perturbations.

Upon analyzing the untargeted nature of the proposed attack strategies, we

devise a targeted adversarial attack which is able to create certain power qual-

ity issues. To demonstrate the damage that could be inflicted, we assess the

impact of both attacks on a voltage control scheme that relies on the DSSE

result. The contribution of this thesis is fourfold:
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• We present a black-box evasion attack against state-of-the-art data-

driven DSSE techniques. Using surrogate models that are different from

the victim state estimation model, we argue that the attacker needs nei-

ther the knowledge of the ML model used in DSSE (as in white-box

attacks), nor any information about the distribution system model. We

then devise a stealthier evasion attack, namely Sneaky-FGSM, by ap-

plying perturbations according to the variance of data generated by the

respective sensors. We show that this novel attack can further reduce

the accuracy of DSSE at a lower BDD detection rate.

• We acknowledge the untargeted nature of the proposed black-box attack

strategies and devise a targeted adversarial attack that is able to mislead

the state estimator in a certain direction, thereby inducing certain power

quality issues.

• We demonstrate the inefficacy of the conventional residual-based BDD

mechanism in detecting adversarial measurements and propose an ef-

fective detection-based safeguarding mechanism to protect data-driven

state estimators from adversarial attacks. We compare the performance

of the proposed detection method with two strong baselines proposed in

prior work. Through extensive experiments, we show that our proposed

method achieves superior performance in detecting diverse adversarial

attacks crafted with different types of surrogate models and varying lev-

els of added noise.

• We conduct a simulation study on an extended version of the IEEE 33-

bus test system, in which the IEEE European low-voltage system is used

to model the secondary networks and real load data is used to represent

the household demands, to investigate how the error introduced in the

state estimation process propagates and affects a voltage control scheme

that relies on the DSSE output.

Our findings suggest that

11



Data-driven DSSE techniques are not presently robust to carefully
crafted adversarial data, and more research is warranted to address
their vulnerabilities and build robust protection strategies before they
can be incorporated into distribution system operation practices.

1.5 Outline

The rest of the thesis is organized as follows. Chapter 2 discusses the related

work on data-driven DSSE techniques, adversarial attacks, and false data in-

jection attacks on power systems, vulnerability analysis of ML-based power

system applications, and safeguarding strategies for state estimators. Chap-

ter 3 presents the methodology used in this thesis– the architecture of the

data-driven DSSE strategies, attack formulation, and a brief introduction of

the rule-based voltage regulation process. Chapter 4 describes the experimen-

tal setup and presents the experimental results on analyzing the adversarial

vulnerability of data-driven DSSE approaches. Chapter 5 offers a brief de-

scription of the proposed detection strategy, compare its performance with

two state-of-the-art baselines and presents the corresponding experimental re-

sults. Finally, Chapter 6 concludes the thesis by discussing the limitations of

this work and possible future directions.
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Chapter 2

Literature Review

In this chapter, we review the previous work concerning data-driven DSSE and

its vulnerabilities. Section 2.1 discusses existing data-driven DSSE approaches.

Sections 2.2 and 2.3 introduce adversarial attacks and false data injection

attacks, respectively. Section 2.4 surveys the literature on robustness analysis

of data-driven DSSE approaches and identifies the gaps that we address in

this thesis. Finally, Section 2.5 provides a summary of recent efforts to build

efficient detection and prevention mechanisms for safeguarding distribution

system state estimators.

2.1 Data-Driven DSSE Strategies

Machine learning-based state estimation techniques garnered attention in re-

cent years as they were shown to be superior to traditional static and dynamic

state estimation techniques, such as WLS and Kalman filter [84], especially

in distribution networks with high DER penetration. For example, real-time

distribution system state estimators based on various Deep Neural Network

(DNN) architectures [1], [2], [128], [129], and K-nearest neighbors (KNN) [115]

were proposed in the literature. An ML-based state estimator that takes ad-

vantage of an ensemble of residual neural networks (ResNet) [11] has been

recently shown to outperform several other ML-based techniques, including

multilayer perceptron (MLP) and convolutional neural network (CNN). A

deep learning approach to Bayesian distribution system state estimation for

unobservable distribution systems has been proposed in [70]. In that work,
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a fully connected neural network has been used to learn the parameter of a

Bayesian state estimator. In recent work [127], a physics-aware neural net-

work (PAWNN) has been proposed to estimate the state of the distribution

system where knowledge of the underlying physical system is used to prune the

dense neural network, reducing overfitting. Several studies also employ a hy-

brid approach in which an ML model is combined with a traditional approach

(such as WLS and the least absolute value) [14], [15], [126]. The fundamental

concept underlying these hybrid approaches is to leverage the ML model to

map available measurements or historical data to the neighborhood of the true

latent state. These approximate state values are then used as a starting point

for iterative methods, such as the Gauss-Newton method.

These data-driven state estimators have been shown to be better alterna-

tives to conventional electric model-based state estimators due to their high

accuracy as well as faster and guaranteed convergence. However, the robust-

ness analysis of these models is still an under-explored area of research. We

present a detailed discussion on the research gaps present in the literature in

Section 2.4.

2.2 Adversarial Attacks

Recall the adversarial attacks introduced in Section 1.3.4. These attacks can be

designed using a white-box or black-box approach. During a white-box attack,

the adversary uses the knowledge of the ML model used in the classification

or regression task, including its architecture, hyper-parameters, and weights

associated with connections, to generate adversarial samples [17], [30], [73]. We

refer to this model as the victim model. In contrast, in a black-box attack, the

adversary has only query access to the victim model and no prior knowledge of

the victim model’s architecture; therefore, it uses a surrogate model to generate

adversarial samples [39], [46], [48]. In the context of black-box attacks, the

victim model is often referred to as an oracle – an abstract entity that can

provide information or answer specific queries [83]. Previous studies have

shown that due to the transferability of adversarial samples, it is possible to
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design black-box attacks by training surrogate models that differ from the

victim model [82]. Our work is inspired by this result.

2.2.1 Fast Gradient Sign Method

In this work, we focus primarily on FGSM and its variants. Introduced by Ian

Goodfellow et al. in 2014, FGSM is considered to be the very first adversarial

attack proposed against neural networks. The key idea behind this attack is

to perturb the input data in the direction that maximizes the loss function of

the model. By taking a step in the direction of the sign of the gradient, scaled

by a small perturbation magnitude, the attack aims to find the adversarial

example that is most likely to be misclassified by the model. Concretely, for

any input sample X, FGSM generates the corresponding adversarial sample

given by:

X′ = X+ ϵ ∗ sign (∇X [L(f(X; θ), ytrue)]) (2.1)

Here, ϵ is a small constant that controls the magnitude of the perturbation,

ytrue is the original label for input X, and f(·; θ) is a surrogate model utilized

by the adversary. In the case of white-box attacks, f(·; θ) can be the same

as the victim model. However, for black-box attacks, the adversary trains an

arbitrary model that performs the same task as the victim model. The training

data can be collected from publicly available datasets or generated specifically

for the purpose of training the surrogate model.

While general adversarial attacks aim to degrade the overall performance of

the victim model in any conceivable manner, there exists a more sophisticated

type of these attacks, called targeted adversarial attacks. The objective of a

targeted adversarial attack is to cause the victim model to predict a specific

target class or output. Unlike untargeted attacks, which aim to cause any

misclassification (in classifier models) or misprediction (in regression models),

targeted attacks are designed with a specific goal in mind. These attacks pose

significant challenges and raise concerns in various applications. For example,

in image recognition, an attacker might seek to manipulate an image so that a

classifier identifies it as an object of interest. In autonomous driving, targeted

15



attacks could be used to create misleading road signs or traffic signals that lead

self-driving cars to make incorrect decisions, potentially resulting in accidents

or other dangerous situations.

2.2.2 Targeted vs. Untargeted Attacks

Consider a classifier f(xi) that correctly classifies the input sample xi into

its original class yi. An adversarial attack algorithm aims to generate an

adversarial sample, x′
i, that it is similar to the original sample, xi, according

to some distance metric di, but is misclassified as f(xi) ̸= yi. We can define

the two types of attack against a classifier model as follows:

• Targeted Attack: All the adversarial samples, x′
1,x

′
2, ...,x

′
n, are generated

such that they are misclassified into a pre-determined class y′, where

y′ ̸= yi, for i = 1, 2, ..., n.

• Untargeted Attack: The generated adversarial samples are misclassified

as any class except the true class.

Similarly, we can define these two types of attack against a regression

model, g(xi), as follows:

• Targeted Attack: All the adversarial samples, x′
1,x

′
2, ...,x

′
n, are generated

such that g(x′
i) ≥ g(xi) + t or g(x′

i) ≤ g(xi) − t, where t > 0 is the

predefined target.

• Untargeted Attack: Generated adversarial samples shift the output of

the victim model by any amount t ̸= 0.

Targeted attacks are typically generated by using a customized loss func-

tion in the attack algorithm. One of the most popular targeted attack al-

gorithms is the Carlini–Wagner (C&W) attack [17] which aims to find the

smallest noise δ ∈ Rn added to an image X ∈ Rn that will change the clas-

sification result to a target class t, predefined by the attacker, by optimizing

an adversarial loss function that consists of two parts – one for minimizing
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the perturbation and another for maximizing the adversarial loss for the per-

turbed input. The iterative least-likely class method, a.k.a iterative target

class method (ITCM) [53], is another simple, yet powerful targeted attack

generation approach that modifies the untargeted iterative FGSM algorithm

to generate targeted attacks.

One major limitation of the above-mentioned targeted attack approaches

is the lack of transferability, which hinders the development of black-box tar-

geted attacks. Li et al. [57] identified the two main reasons behind this. First,

existing transferable attacks use softmax cross-entropy as loss function which

results in vanishing gradient problems in iterative targeted attacks. Second,

traditional targeted attack strategies only focus on maximizing the probability

of targeted class and ignore whether the adversarial examples are close to the

original class. Consequently, in some cases, the targeted adversarial exam-

ples neither successfully transfer with the target label nor deceive the victim

model effectively. To address these challenges, they introduced two novel con-

cepts: Poincaré distance and triplet loss, for generating transferable targeted

attacks. Poincaré distance has been used instead of the cross entropy loss to

adapt the size of the gradient. Additionally, the triplet loss ensured that the

victim model’s output for the adversarial sample not only moved closer to the

target label but also moved farther away from the true class label, improving

the attack’s effectiveness and transferability. In another recent work, replacing

cross-entropy loss with logit loss has been found effective in generating efficient

transferable targeted attacks that do not suffer from gradient disappearance

during the perturbation generation process [132]. A source-independent gener-

ative approach to devise transferable targeted attacks against image classifiers

has been proposed in [78]. This approach is built on a novel loss function that

focuses on matching the distribution-level statistics of perturbed source and

target samples.

Most of the targeted attack approaches were originally developed against

classifiers, and there has been limited exploration into understanding their

effects on regression models. Unlike classification models, where the goal is

to misclassify the input, regression models output continuous values, making
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the attack strategy slightly different. Two targeted attack algorithms against

electroencephalogram (EEG) based brain-computer interface (BCI) regression

problems have been proposed in [69]. The authors adopted the ideas of C&W

and iterative FGSM attacks and modified them to produce two targeted attack

strategies that are effective on regression models, namely CW-R and IFGSM-

R. A similar approach has been taken to generate targeted attacks on wind

power forecasting models by leveraging the white-box PGD attack algorithm

to minimize the mismatch between the victim model’s prediction and the at-

tacker’s target in [43]. To the best of our knowledge, no prior study focused

on generating targeted attacks against DSSE, which is essentially a regression

problem.

2.3 False Data Injection Attacks in Power Sys-

tems

Liu et al. introduced the idea of stealthy false data injection attacks against

transmission system state estimation [61]. They showed that an attacker can

carry out stealthy FDIA that fool the traditional residual-based BDD mecha-

nism if the attack vector a satisfies

a = Hc (2.2)

where c is a nonzero vector of the same length as the system state to be

estimated.

This result has served as a driving force for researchers to conduct in-depth

investigations into the development of FDIA, their impacts on power system

operations, and potential protective measures. FDIA can affect a wide range

of smart grid functions and applications, including state estimation [28], [61],

[87], [123], load forecasting [24], [74], demand response [26], [36], and SCADA

system [37], [113]. Given the focus of our research, we only survey the literature

on generating FDIA against state estimation in power distribution systems.

FDIA against DSSE: Unlike transmission systems, FDIA at the distribu-

tion system level have not been extensively explored yet. A realistic FDIA
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strategy against the WLS-based distribution system state estimators has been

proposed in [28]. The proposed FDIA was generated under a relaxed assump-

tion that the attacker does not have access to the true system states, and

therefore, utilizes only information about the local state obtained by approx-

imating the entire system state using a small number of branch flow or bus

injection measurements to generate attack vectors. One major limitation of

their work is that they used a simplified single-phase feeder model. Later,

Zhuang et al. [135] extended that work and investigated the vulnerabilities

of a linear DSSE approach in multiphase and unbalanced smart distribution

systems.

Unlike targeted adversarial attacks, in the context of FDIA, the term tar-

geted attack usually refers to a specific type of security attack aimed at com-

promising or damaging a particular component, node, or group of nodes within

the system. Typically, targeted attacks are launched against distributed state

estimation in an inter-connected power system where each regional control

center performs the state estimation based on the topology and parameters of

the region, in addition to the measurements taken in that region. For example,

the targeted attacks proposed in [108] are launched against a single compro-

mised control center and are able to affect the outcome of distributed state

estimation. Another work by the same authors focuses on detecting and local-

izing targeted attacks on distributed state estimation in power transmission

systems. In this work, we perform state estimation in a centralized manner,

and use the term targeted attack when we talk about the targeted adversarial

attacks described in Section 2.2.

Evasion Attacks vs. FDIA: While both evasion attacks and FDIA ma-

nipulate the sensor data, there are fundamental differences between the two in

terms of attack formation strategies and threat models. To launch an effective

FDIA that bypasses the BDD mechanism, the adversary typically needs to

have access to the topology and configuration of the grid or the measurement

matrix, in addition to the data-overwrite access [61], [62], [119]. However, only

data-overwrite access is sufficient to launch black-box adversarial attacks. Fur-
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thermore, adversarial samples crafted by models that capture hidden features

and trends in data have the property of transferability, which allows them to

mislead not only a specific target model but also other models even if their ar-

chitectures differ greatly [82]. To the best of our knowledge, no such evidence

regarding transferability of FDIA has been provided in the literature.

2.4 Vulnerability of ML Models in Power Sys-

tems

In recent years machine learning has shown promise in solving a variety of plan-

ning and operation problems in the power system. For example, data-driven

strategies have been used successfully in renewable generation and residen-

tial load forecasting [5], [35], [124], power line outage prediction and local-

ization [31], [41], power system protection and control [19], [121] and state

estimation [1], [2], [11], [115]. Despite the growing interest in the integration

of ML with planning and operation practices in the power system, research

pertaining to the security of ML in this field has only begun to appear recently.

The vulnerabilities of ML algorithms used in the power system are first

investigated by Chen et al. in [22] where the authors propose an evasion at-

tack algorithm that works in a similar manner to FGSM. They examined the

efficacy of the proposed attack against a neural network-based power qual-

ity disturbance classifier and an RNN-based load forecasting model. Eklas et

al. [44] study the application of machine learning in the smart grid and the

emerging security concerns associated with the adoption of this technology.

The authors have reviewed recent cyber attacks against electric grid infras-

tructures that took place around the world and were caused by compromised

software, malicious operating systems, or the presence of intruders.

While various ML techniques have been proposed to detect FDIA [91],

[102], [109], [117], few papers examined robustness and security issues that

arise from the use of machine learning techniques. The impact of two adversar-

ial attacks, namely Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) and Jacobian-based Saliency Map Attack (JSMA), on an MLP-based
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false data detection technique was analyzed in [91]. Joint adversarial exam-

ples and false data injection attacks (AFDIAs) that are able to fool both BDD

and Neural Attack Detector (NAD) mechanisms protecting the DC state esti-

mation process have been proposed in [102]. While white-box AFDIAs show

promise in bypassing the detection mechanisms, the performance of black-box

AFDIAs is subpar. Another recent study uncovers the inefficacy of BDD and

NAD mechanisms in DC state estimation in the presence of white-box targeted

FDIA [101].

Turning to data-driven state estimation approaches, ANN-based state esti-

mators have been found vulnerable to FDIA. For example, optimization tech-

niques based on differential evolution and sequential least-square quadratic

programming have been proposed in [59], [60] to construct attack vectors that

can fool the BDD mechanism and affect an MLP-based state estimator. How-

ever, the iterative optimization algorithms employed to execute these attacks

may not be efficient enough to be launched against large-scale power systems

in the real world. More recently, a forward-derivative-based adversarial attack

on a neural network-based state estimator is proposed in [99]. However, the

authors do not consider the existence of any bad data detection mechanism;

thus, it is unclear how effective this attack strategy is when state estimation is

safeguarded by the BDD mechanism. We also note that all these attacks are

white-box, i.e., the attacker is assumed to have full knowledge of the power

grid’s structure and model, as well as the architecture and parameters of the

ANN used for DSSE, which is a strong assumption in some real-world appli-

cations.

The closest work to ours is [9] and [100], where data-driven approaches

are used to generate black-box attacks against electrical model-based state

estimators. Specifically, a robust linear regression model has been proposed

in [100] to generate stealthy attack vectors that can fool the residual-based

BDD mechanism integrated with the DC state estimation technique in the

black-box setting. For AC state estimation, deep adversarial networks have

been used for the first time in [9] to craft a stealthy black-box adversarial

attack against power system state estimation. The authors used the vanilla
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FGSM algorithm to create the attack vectors against an AC-PSSE algorithm

that estimates states by solving the WLS optimization. In contrast to these

recent studies, in this thesis, we analyze the vulnerability of data-driven DSSE

approaches to adversarial attacks crafted using surrogate neural networks un-

der the black-box assumption. We propose the novel Sneaky-FGSM algorithm,

which is capable of inducing higher measurement noise without being detected

by the conventional BDD mechanism. Moreover, we propose the Targeted-

FGSM algorithm, which is capable of executing a targeted attack that aims to

fulfill a specific adversarial objective by misleading the DSSE mechanism in a

certain direction. To the best of our knowledge, this is the first proposed tar-

geted adversarial attack strategy that aims to misguide a control operation

in a particular direction by inducing error in the DSSE process. Lastly, we

address a major limitation of the existing literature [9], [99], [102] by analyz-

ing the impact of the proposed attacks on voltage regulation schemes, which

is an important control application that relies on the DSSE result. Table 2.1

provides a concise overview of our contributions and the unique aspects of this

work compared to the related work.

2.5 Safeguarding State Estimation

Safeguarding state estimation in power systems is crucial for maintaining re-

liable and secure operation. The core principles of safeguarding state estima-

tors remain similar between distribution and transmission systems due to the

shared objective of ensuring accurate and secure power system operation. In

this section, we review the literature on the implementation of various safe-

guarding mechanisms for state estimation in power systems.

2.5.1 Safeguards Against FDIA

We categorize the existing defense mechanisms against FDIA into two cate-

gories as described below.
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Protection-based Approaches: Identifying crucial system components,

implementing strict access control and secure communication protocols, and

maintaining best security practices such as performing regular security as-

sessments, configuring firewalls, updating software, and disabling unnecessary

services help prevent adversaries from accessing the system. In [12], Bi et al.

demonstrate that it is possible to prevent FDIA against state estimation ap-

proaches by protecting carefully selected meter measurements. They propose

an arithmetic greedy algorithm that finds the minimum set of protected meter

measurements by gradually expanding the set of secure state variables. Con-

sidering the high computational complexity of the proposed greedy algorithm,

the same authors conduct another study to characterize the optimal protec-

tion from a graph theoretical perspective [13]. The optimal state protection

problem is mapped into a minimum measured Steiner tree (MMST) problem

and two exact solutions are proposed based on the Steiner vertex enumeration

algorithm and mixed integer linear programming (MILP). A combination of

protection-based and detection-based defense mechanisms for PSSE has been

proposed in [123]. As a preventive measure, sensors and meters connected to

the largest number of buses have been identified as critical and selected for

protection. Besides, temporal- and spatial-based FDIA detection mechanisms

have been proposed.

Detection-based Approaches: The problem of bad data detection in

power system state estimation has been well-studied for decades. Residual-

based bad data detection methods such as chi-square test for detection and

largest normalized residual test (LNRT) for localization are widely used in

commercial PSSE software and tools [3]. Several other physical model-based

approaches that rely on statistical features of measurement data have also

been explored in different studies. For example, the authors in [50] argue that

the control center can use historical data to maintain and track its belief state

of the system and propose a Bayesian formulation of the state estimation

problem. The detector presented in [50] uses L∞ norm on residue errors

from the state estimator to detect the statistically unlikely measurements. A
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Table 2.2: Detection-based safeguarding mechanisms against FDIA

Approach Algorithm Reference

residual-based L∞ detector [50]

convex optimization
Generalized Likelihood
Ratio Test (GLRT)

[51]

checking statistical
consistency

robust projection statistics [131]

error thresholding
topology perturbation
method

[52]

solving matrix separation Fast GoDec [55]
tracking measurement
variations

absolute distance & KLD [18]

nonparametric density
estimation

Kernel density estimation [21]

supervised,
semi-supervised, ensemble
learning & online learning

SVE, SVM, SLR, K-NN,
Adaboost, & online
perceptron (OP)

[81]

supervised learning SVM, K-NN, ENN, ANN [89], [118]
supervised learning CNN [64], [110]

supervised learning
Recurrent neural network
(RNN)

[7], [47],
[112], [114]

ensemble learning Isolation forest [4]

ensemble learning
ensemble of LR, DBSCAN,
& Chebyshev

[133]

deep learning deep autoencoder [109]

deep learning
Generative Adversarial
Network (GAN)

[58]

supervised &
semi-supervised learning

SVM, statistical-based
anomaly detection

[32]

supervised learning
attention-based temporal
convolutional network
(ATCN)

[85]
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similar approach based on the Bayesian formulation of SE is considered in [51]

where the authors proposed a detector based on the principle of GLRT. The

primary drawback of the Bayesian formulation-based approaches lies in their

lack of efficacy in identifying falsified measurement data that fits into the

historical measurement distribution. This issue is addressed by Chaojun et al.

in [18]. They propose a robust FDIA detection mechanism that uses the KLD

to track the dynamics of the measurement variations and detect false data

injected into the system. This approach has been proven effective in detecting

false data samples even if they fit the distribution of historical data. Another

effective FDIA detector based on statistical consistency check between two

state vectors– one estimated using secure PMU measurements and the other

with remaining SCADA and PMU measurements has been proposed in [131].

Besides these physical model-based approaches, data-driven strategies for

detecting anomalies and false data have also been explored in the recent

literature. Various supervised, semi-supervised, and unsupervised models

have been found effective in this prospect. A comprehensive review of various

FDIA detection methods leveraging machine learning algorithms has been

presented in [90]. Considering the large volume of work in designing and

developing FDIA detectors, we present a brief overview of the relevant recent

works in detecting FDIA on state estimators in table 2.2.

2.5.2 Safeguards Against Adversarial Attacks

While FDIA against state estimators have been well studied for decades, the

damage that could be inflicted by adversarial attacks has been investigated

only recently. The existing literature on building safeguarding mechanisms

that protect state estimators from adversarial attacks is mostly detection-

based. In [102], a joint adversarial and stealthy false data injection attack has

been launched against a DC state estimation model that is protected by two

detection-based safeguarding mechanisms, namely a conventional BDD and a

NAD, which is a simple Fully Connected Neural Network (FCNN) trained to

classify bad measurement data. Both BDD and NAD models have been found

vulnerable to white-box state-perturbation-based FDIA (S-FDIA). Sayghe et
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al. [91] conduct a similar study on a WLS-based DC state estimation model

protected by an MLP-based classifier trained to distinguish bad measurement

samples from good ones. Similar to the results obtained in [102], the MLP-

based detection approach has also been found vulnerable to white-box adver-

sarial attacks. While the aforementioned studies focus on white-box attacks,

another recent work by Bhattacharjee et al. [9] confirms the ineffectiveness of

conventional residual-based BDD mechanisms in safeguarding the WLS-based

AC-PSSE approach against black-box adversarial attacks.

To the best of our knowledge, only two safeguarding mechanisms in the

literature have been proven to be effective in protecting data-driven state es-

timators against adversarial attacks. These include a meter protection-based

strategy and an adversarial training-based strategy proposed by Tian et al.

in [99]. In the meter protection-based strategy, a forward derivative-based ap-

proach has been undertaken to rank the importance of the meters and then a

subset of important meters have been selected for enhanced protective mea-

sures such as encryption, authentication, and access control. This approach re-

sulted in a promising performance in protecting the state estimator. However,

as mentioned in the original work, such protection methods might consume a

lot of defense resources, especially in large-scale and complex power grids. For

the adversarial training-based defense, the data-driven state estimator is re-

trained using a mixture of benign and adversarial data samples for enhanced

robustness. This approach is budget-friendly and easy to incorporate into

large-scale systems. However, one major drawback of this defense strategy is

that adversarial training leads to a reduction in model performance on benign

data, creating a trade-off between robustness and general performance [99].

We note that, both of these safeguarding techniques are protection-based,

aiming to thwart adversarial attacks. However, no preventive measure is en-

tirely foolproof and therefore, in addition to integrating preventive measures,

it is equally important to devise robust and effective detection mechanisms to

ensure comprehensive system security.

Based on this literature survey, it is safe to say that there is a lack of

existing research that presents a viable safeguarding mechanism to effectively
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defend state estimation methodologies against adversarial attacks. Thus, de-

signing effective and robust safeguarding strategies against adversarial attacks

is still an open research area that requires further investigation. This moti-

vates us to look for an effective safeguarding strategy that would be able to

detect adversarial attacks on distribution system state estimators. Moreover,

the inefficacy of traditional bad data detection strategies, as reported by pre-

vious work, prompts us to approach this problem from a different perspective.

Instead of remodeling the age-old power system security mechanisms for mod-

ern data-driven DSSE approaches, we aim to explore the possibilities within

the machine learning domain and find a viable solution that could be tailored

to our advantage.

We note that adversarial examples are hard to detect due to their sub-

tle and imperceptible nature, closely resembling normal data but containing

slight perturbations crafted to mislead machine learning models [16], [103].

A growing body of research aims to understand the existence of adversarial

examples [33], [38], [97], but a complete understanding of the underlying rea-

sons remains elusive primarily due to the intricate functional structures of deep

neural networks, making it challenging to derive precise mathematical descrip-

tions. Recently, feature attribution has been found successful in tackling the

black-box nature of neural networks [56], [92] and improving transparency and

fairness of machine learning models [25], [88]. Based on this observation, Yang

et al. [122] introduced an effective method for detecting adversarial attacks

by thresholding a scale estimate of feature attribution scores. Their proposed

ML-LOO detector has demonstrated superiority over state-of-the-art detec-

tion methods in its ability to differentiate adversarial images from popular

attack methods across a variety of real data sets. Motivated by its success in

safeguarding image classifiers against adversarial attacks, we adopt the feature

attribution-based detection approach for protecting data-driven state estima-

tors. More details regarding this experiment can be found in Chapter 5.
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Chapter 3

Methodology

This chapter begins by describing the threat model where we state the assump-

tion about the goal, capability, and resources available to potential adversaries.

We then discuss the implementation of DSSE and BDD techniques, present

the mathematical formulation of the proposed black-box evasion attack strate-

gies and white-box targeted attack strategy, and provide more details about

the voltage control scheme that relies on the DSSE results.

3.1 Threat Model

We analyze the effectiveness of untargeted black-box and targeted white-box

FGSM attacks on two state-of-the-art data-driven DSSE models that have

been proposed in prior work, namely Stacked ResNetD [11], and R-KNN [115].

For the untargeted attacks, we conduct our experiments under the assumption

that the attacker has no knowledge of the architecture of the victim model,

hence it is a black-box attack. Nevertheless, the attacker is assumed to have

(a) read and write access to the real-time measurement of all sensors, z, and

(b) query access to the victim model1. Given these assumptions, the pri-

mary attack point would be the utility data center where the state estimation

(victim) model is run and sensor data are stored. The attacker can be an in-

sider (e.g., a malicious operator), or an intruder hacking into the server, using

compromised software installed on the server that hosts the victim model, or

1The query access is basically equivalent to the read access to the model output for user
specified inputs. As discussed in Section 2.2, having query access to the victim model is a
fundamental assumption for black-box attacks.
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gaining access to the DSO’s authorized user account. For example, during

the 2015 Ukraine power outage, the hackers managed to infiltrate the control

system by sending phishing emails to the operators [116]. Once inside, they

executed multiple unauthorized commands, resulting in power disruption to

over 225, 000 customers lasting between 1 and 6 hours. The PMU networks

and utility data centers have been found vulnerable to cyber attacks in sev-

eral recent studies [105], [111], indicating a high risk of the presence of such

adversaries, lending credence to this threat model.

The goal of a successful attack is to distort the measurements in a way that

significantly alters the state estimation results and at the same time remains

undetected. Hence, in the second phase of experimentation, we investigate

the stealthiness of the proposed attack to the traditional residual-based BDD

mechanism. Upon analyzing the results from BDD, we propose a new attack

strategy, namely Sneaky-FGSM, which is able to induce noise in a stealthier

fashion, fooling the BDD strategy more often than the vanilla FGSM attack.

In light of the observation that both vanilla and Sneaky-FGSM attack meth-

ods are generated in an untargeted manner, resulting in a random impact on

the output of the victim model, we develop a white-box targeted attack strat-

egy, called Targeted-FGSM. The objective of this attack is to induce specific

power quality issues, such as under-voltage or over-voltage problems, in the

distribution buses by misleading the state estimator in a certain direction.

3.2 DSSE and BDD Techniques

Neural networks, being universal function approximators, can precisely ap-

proximate the state estimation module. While it is possible to train a vari-

ety of ML models and incorporate them in DSSE, instead of introducing yet

another architecture and identifying its vulnerabilities, we use two state-of-

the-art data-driven models as our victim models– (a) an ensemble learning

model, namely Stacked ResNetD, which has been proposed in [11] and shown

to outperform several other deep neural networks, and (b) a robust K-nearest

neighbors approach, namely R-KNN, which has been proposed in [115] and
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of this victim model.

R-KNN [115]: This approach utilizes similar measurements from historical

data to estimate the state given a measurement sample, zt, at any time step

t. Given a specific zt, the state vector, xt, is considered a random variable

that follows a normal distribution with unknown hyper-parameters q and Σd:

N
(
qTzt,Σd

)
.

From the historical dataset, K training points closest2 to zt are selected.

Then, ridge regression is used to estimate the unknown hyper-parameter q̂.

q̂ = argmin
q

K∑
i=1

(
xi − qTzi

)2
+ 2γ∥q∥2

Here, 2γ∥q∥2 is the regularization term. The unknown hyper-parameter Σd

has been absorbed in the penalty constant γ.

Assuming that the historical data obtained from the K-nearest neighbors

is stored in matrices,

Zmat = (z1, z2, ..., zK)

Xmat = (x1,x2, ...,xK) ,

the closed-form solution is given by:

q̂ =
(
ZmatZ

T
mat + 2γI

)−1
ZmatXmat (3.1)

Once the hyper-parameter q̂ is estimated using Equation 3.1, it is then

used for Bayesian inference to generate the current state estimate, x̂t,

x̂t = q̂Tzt

To enhance the robustness of the state estimation model, a two-stage fil-

tering process is applied to the historical data. In the first stage, the historical

measurement data is carefully cleaned by filtering out data points with large

measurement residuals.3 This step helps to get rid of any bad historical mea-

surement data resulting from various factors such as telecommunication errors,

2L2-norm has been used as the distance metric.
3As described in Section 1.3.2, the measurement residual is defined as the sum of squared

differences between the original measurement (z) and the estimated measurement (ẑ).
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incorrect topology information, equipment failure, finite accuracy, infrequent

instrument calibration and measurement scaling procedure at the control cen-

ter. In the second stage, all the historical state estimates undergo an outlier

detection algorithm to mitigate the impact of any potentially malicious data

that could have been injected by an adversary. The authors proposed an out-

lier detection algorithm that assesses the local density of a data point (i.e.

state vectors) compared to its K-neighboring points. If the density is signif-

icantly lower, the data point is flagged as an outlier and excluded from the

process. This thesis focuses solely on evasion attacks, where the adversary in-

jects adversarial examples exclusively during runtime, and the training dataset

(i.e. the historical data used in the R-KNN model) is assumed to be clean and

free of malicious data. Therefore, we safely omit the robustness enhancement

steps and just implement the core R-KNN method.

Residual-based BDD: Bad data detection is a classic problem inherent in

the original formulation of state estimation. Detecting bad measurements is

extremely valuable for the state estimation procedure and is typically imple-

mented as a residual-based method. The intuition behind the residual-based

BDD approach is that the residual, J(x), determined after the state estimator

algorithm converges, will be minimal if the measurement set contains no bad

data [106]. In this work, we implement the residual-based BDD mechanism

described in Section 1.3.2 with a level of significance α=0.05, and degrees of

freedom d=48.

3.3 Voltage Regulation Scheme

We implement the rule-based voltage regulation scheme that relies on DSSE

and was previously described in Section 1.3.3. In this scheme, the control rules

are generally determined based on operational constraints. An example VAR

optimization rule can be – “switch on the capacitor bank, if the power factor is

less than 0.95” and an example of the voltage control rule can be– “if voltage at

bus n drops below or goes above the pre-defined setpoint, change the OLTC tap
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Algorithm 1 Vanilla FGSM Attack

1: Inputs:
Training data,

{(
ztraini ,xtrain

i

)}
i=1,··· ,Ntrain

Maximum training iteration, maxIter
Clean data sample at timestamp t, (zt,xt)

2: Output:
Adversarial measurement sample at timestamp t, z′t

3: Initialize:
θ0 with small random values
Surrogate model, fθ with appropriate loss function, L

▷ Training the surrogate model f , parameterized by θ
4: for j = 0, 1, · · · ,maxIter do

5: θj+1 ← θj − α∇θj

[
1

Ntrain

∑
i

L
(
f(ztraini ;θj),x

train
i

)]
6: end for ▷ α is the learning rate

▷ Calculating gradient of the loss w.r.t. the input, zt
7: δzt = ∇zt [L (f(zt;θ),xt)]
8: z′t = zt + ϵ · sign(δzt) ▷ ϵ is a hyper-parameter (scalar)
9: return z′t ▷ Return the adversarial sample

position accordingly” [86]. In this study, we implement the rule-based voltage

control strategy by installing an OLTC and setting up a voltage control rule

similar to the example we gave for the voltage control rule. Detailed analysis

of this experimentation is presented in Section 4.2.4.

3.4 Attack Strategies

Now, we describe the three gradient-based adversarial attack strategies,

namely (a) vanilla FGSM, (b) Sneaky-FGSM, and (c) Targeted-FGSM, that

will be used in the next chapter. Note that the last two attack strategies are

novel and are developed in this thesis.

3.4.1 Vanilla FGSM

We employ the FGSM attack presented in section 2.2 in a black-box setting

under the hypothesis that the adversary, being unaware of the victim model’s

architecture, can choose any suitable neural network as the surrogate model.

To test this hypothesis, we use four different surrogate models and investigate
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their effectiveness against the two victim models. The initial two surrogate

models used in the study are variations of a MLP architecture. One version

consists of five dense layers with ReLU activation functions, while the other

version incorporates tanh activation functions. Additionally, a CNN model

proposed in [11], comprising three convolutional layers and three dense layers

with ReLU activation functions, has been employed as a surrogate. Another

variant of this CNN model, utilizing tanh activation functions, has also been

utilized as a surrogate model.

Our aim is to investigate how evasion attacks could mislead distribution

network control systems by affecting the data-driven state estimation process.

While most evasion attacks are designed to fool classifiers, FGSM and its

iterative versions, in particular, BIM and PGD introduced in Section 1.3.4, can

be applied against regression models as well. Since FGSM is the foundation

of the other two attacks and all of these three attack strategies work in a

similar manner [134], we choose this as our primary attack strategy. For the

rest of this paper, we refer to the standard black-box FGSM, presented in

Algorithm 1, as vanilla FGSM to distinguish it from the novel Sneaky-FGSM

and Targeted-FGSM discussed later.

3.4.2 Sneaky-FGSM

From Equation (1.7), it can be seen that the tolerance of the residual-based

BDD mechanism is determined by the variance of measurement data. Thus,

intuitively, perturbing the measurements that do not show much variance in-

creases the chance of being detected by the BDD mechanism. Based on this

insight, we formulate the novel Sneaky-FGSM attack strategy, which improves

the vanilla FGSM attack by perturbing only the measurements with high vari-

ance to increase the stealthiness of the attack. The proposed Sneaky-FGSM

approach is presented in Algorithm 2.

Power system measurement data exhibits seasonality and temporal varia-

tion. Thus, the data used in the variance calculation step plays an important

role in correctly detecting bad measurements. For example, taking into ac-

count measurements collected over one year would result in higher variance
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(hence a less stringent BDD process) than considering measurements collected

over a week for this calculation. In this study, we use the daily variance of

measurements, i.e., we calculate the variance of a batch of data generated over

24 hours, while implementing the BDD mechanism.4

Typically, measurement variances calculated from the historical data are

stored in the data center and are updated periodically. Depending on the

level of access that the adversary has to the data center, they might be able

to read the stored variance data. Even in a stricter case when the adversary

does not have access to the variance data, on any day D, an adversary with

access to the measurement data can easily estimate the daily variance of each

of the m measurements, {σ2
k}mk=1, by calculating the daily variance using the

measurements from the previous day, D − 1, or using a batch of the latest

data samples. These estimates will be used by the adversary to identify which

measurements have an exceptionally low variance, and therefore, should not

be perturbed in the stealthy version of the attack.

In this experiment, we use the household power consumption dataset (de-

scribed later in Section 4.1), in which reactive power consumption (Q) exhibits

exceptionally low variance (less than 1). In light of this, we design the first

version of Sneaky-FGSM by perturbing all measurements except the Q mea-

surements. We found that using this attack it is possible to fool the BDD

mechanism more frequently than the vanilla FGSM; however, perturbing the

Q measurements in addition to the other measurements would increase the

BDD detection rate. This successful attempt led to a more general version of

the proposed Sneaky-FGSM, where we do not perturb a particular measure-

ment zt[k] if its variance, σ2
t [k], is lower than a pre-defined threshold value.

The threshold value that is being used to determine whether a variance value

is ‘low’ or not, is a hyper-parameter that is tuned according to the attacker’s

intent. Using a higher threshold value will produce a stealthier but less effec-

tive attack and vice versa. In this experiment, we define the thresholds for

power consumption measurements as follows: υ1 = · · · = υm = 1 to avoid

4In practice, the daily variance data can be estimated using historical measurements
from the same day in prior year(s) or the previous day.
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Algorithm 2 Sneaky-FGSM Attack

1: Inputs:
Training data,

{(
ztraini ,xtrain

i

)}
i=1,··· ,Ntrain

Maximum training iteration, maxIter
Clean data sample at timestamp t, (zt,xt)

2: Output:
Adversarial measurement sample at timestamp t, z′t

3: Train the surrogate model f parameterized by θ, following the steps de-
scribed in Algorithm 1 (Line 4 to 6).

4: Define the minimum thresholds, [υ1, υ2, ..., υm], for the variance of mea-
surements

5: Define the vector, select, of size m as follows:

select[k] =

{
0 if σ2

t [k] < υk
1 otherwise

▷ Calculating gradient of the loss w.r.t. the input, zt
6: δzt = ∇zt [L (f(zt;θ),xt)]
7: S = select⊙ sign(δzt)
8: z′t = zt + ϵ · S ▷ ϵ is a hyper-parameter (scalar)
9: return z′t

adding noise to Q measurements and perhaps other measurements that are

intrinsically low variance.

In Line 6 of Algorithm 2, we define a binary vector, select ∈ {0, 1}m, which

holds 0 at index k if the variance of the kth measurement of the data sample zt

is below the predefined threshold (i.e., σ2
t [k] < υk), and 1 otherwise. Finally, in

Line 7, we modify the perturbation vector obtained from vanilla FGSM (i.e.,

sign(δzi)) by calculating its Hadamard (element-wise) product with select.

3.4.3 Whitebox Targeted FGSM

Vanilla FGSM and Sneaky-FGSM, despite being successful in misleading the

victim state estimator model, causing increased wear and tear of voltage reg-

ulation equipment, and occasional under-voltage or over-voltage incidents5,

share a common limitation. Specifically, both of them generate adversarial

samples in an untargeted manner without a specific objective in mind. This

means, while the adversarial samples are capable of misleading the victim

state estimator model, there is no promise on the direction in which the vic-

5Corresponding experimental results are presented in the following chapter.
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Algorithm 3 Targeted-FGSM Attack

1: Inputs:
Training data,

{(
ztraini ,xtrain

i

)}
i=1,··· ,Ntrain

Maximum training iteration, maxIter
Clean data sample at timestamp t, (zt,xt)
The victim model, g(z; θ)
Pre-defined range, vmin, vmax

2: Output:
Adversarial measurement at timestamp t, z′t

3: x′
t = xt.copy()

▷ Replace the voltage values of x′
t with random values selected from the

range vmin, vmax

4: for i = 0, 1, · · · , n/2 do
5: x′

t[i] = random(vmin, vmax)
6: end for
7: δzt = ∇zt [L (g(zt; θ),x

′
t)]

8: z′t = zt − ϵ · sign(δzt) ▷ ϵ is a hyper-parameter (scalar)
9: return z′t ▷ Return the adversarial sample

tim model’s output moves (e.g., the estimated bus voltage may be higher or

lower than its true value). To address this limitation, we introduce a goal-

oriented attack strategy, namely Targeted-FGSM, that aims to create system

instability at a higher rate compared to the untargeted methods at the expense

of a stricter assumption: the adversary possesses complete knowledge of the

victim model’s architecture, denoted g(z; θ).

The goal of our proposed targeted attack strategy is to mislead the victim

model so that its estimated voltage values are shifted upwards. Consequently,

the adversary increases the likelihood of under-voltage incidents occurring by

misleading the voltage violation detection mechanism in two ways: (a) pro-

ducing a false negative result– concealing the true state during under-voltage

situations (i.e. estimating a voltage within the acceptable range), and (b)

producing a false positive result– generating an over-estimation that surpasses

the upper safe-range threshold, even when the bus voltage is actually within

the safe range. An elaborate discussion on the impact of adversarial attacks

on the rule-based voltage regulation scheme is presented in Section 4.1.3.

Similar to some of the recent work [17], [53], we design the Targeted-FGSM

algorithm by modifying the surrogate model’s loss function. Suppose that we
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are trying to construct an adversarial measurement data sample, z′t, from a

clean data pair, (zt,xt). For a victim model g(zt; θ), we define the adversarial

loss function for the white-box Targeted-FGSM attack as L (g(zt; θ),x
′
t). Here,

x′
t is a vector of size n which has the same phase angle values as xt but

the voltage values are replaced by some randomly chosen values from the

voltage range (vmin, vmax), which is pre-defined by the adversary based on

their objective. An adversary who aims to trigger under-voltage occurrences

should define (vmin, vmax) from a higher range e.g. around the upper safe-

voltage threshold. Conversely, an adversary who aims to trigger over-voltage

incidents should define (vmin, vmax) around the lower safe-voltage threshold.

It is important to note that using a fixed value for each element of x′
t instead

of randomly selecting them from the range (vmin, vmax) is also a viable option.

However, we prefer the random selection approach to affirm that x′
t is not a

hyper-parameter requiring fine-tuning for the targeted attack strategy to be

effective. By opting for random values of elements of x′
t, we contend that the

success of the proposed Targeted-FGSM algorithm, i.e., its ability to push the

estimated states in a specific direction, primarily relies on the perturbation

factor, ϵ, rather than the choice of x′
t.

Once the adversarial loss function is defined, we construct the adversarial

sample, z′t using the gradient descent formula to minimize the adversarial loss

function, L (g(zt; θ),x
′
t), with respect to the input sample, zt. Algorithm 3

describes the proposed Targeted-FGSM attack.

There are two key restrictions inherent in the proposed Targeted-FGSM

algorithm. First, similar to some of the gradient-based targeted attacks dis-

cussed in Section 2.2, our proposed Targeted-FGSM also lacks transferability,

hence it cannot be used in the black-box setting. Second, the effectiveness of

this attack highly depends on the perturbation factor, ϵ. An ϵ value that is

too small will not be able to push the estimated state enough to produce a

false positive or false negative while detecting voltage violation. On the other

hand, if the value of ϵ is excessively large, it will result in a notable increase in

measurement noise that will be immediately detected by the safeguard system

tied to the state estimator.
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In this chapter, we established the groundwork for this thesis by explaining

the approach and methodologies employed in our study. In the next chapter,

we will delve into the practical implementation of these methods and show-

case the experimental results obtained for vulnerability analysis of data-driven

DSSE approaches when faced with the three adversarial attack strategies in-

troduced earlier in this chapter.
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Chapter 4

Adversarial Vulnerability of the
DSSE Models

This chapter provides an overview of the simulation environment and the ex-

periments carried out to analyze adversarial vulnerability of the data-driven

DSSE methods described in Section 3.2. This includes a detailed description

of the test case, data preparation techniques, and evaluation criteria, followed

by an in-depth presentation of the experimental results.

4.1 Experimental Setup

4.1.1 Test Case

Our test system is structurally similar to the customized IEEE 33-bus test sys-

tem presented in [40]. Specifically, we use the 33-bus system [8] as the primary

distribution network and the IEEE European low voltage test feeder [45] to

model the secondary networks. We assume each of the primary buses, except

the first one, is connected to a low-voltage feeder, representing the secondary

network. Figure 4.1 shows one of the low-voltage feeders that originates from

Bus 25. Other low-voltage feeders are not depicted in this figure.

Each secondary feeder supplies 55 single-phase loads. To represent these

loads, we adopt the Multifamily Residential Electricity Dataset (MFRED) [68],

which contains daily load profile of 390 US apartments with 15-minute reso-

lution over a 12 month period (January 2019 to December 2019). The loads

are grouped into 26 apartment groups as per the recommended data aggrega-

41



Figure 4.1: Single-line diagram of the customized IEEE 33-bus test system.
Node 25 shows the IEEE European low-voltage system, which is connected to
each of the primary nodes.

tion standard for publishing utility data in the State of New York [98]. Thus,

each of the apartment groups contains the average real and reactive power

consumption of 15 apartments.

To simulate a real-world setting, we add Gaussian noise with standard de-

viations 0.01, 0.02, · · · , 0.1 to each of the 26 household load data to generate

286 distinct apartment load data including the original 26 households. This

way, 500 hypothetical buildings are created, each containing 1 to 10 apart-

ments chosen randomly from the 286 apartments. We determine the suitable

aggregation level at each low-voltage bus using the network data provided

in [8]. More specifically, we randomly select buildings and connect them to

each secondary bus until the loads in the low-voltage network under each pri-

mary bus add up to the load given in the 33-bus system datasheet. Finally,

we run the AC power flow analysis using the Open Distribution Simulator

Software (OpenDSS) [29] to generate the training and test datasets for the

ML models. We note that the training dataset can be generated in a similar
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fashion in the real-world setting, i.e., by solving the power flow equations to

obtain the system states using historical load and generation data [126].

4.1.2 Data Preparation and Simulation

At a given time t, the input to the state estimator is the real-time measure-

ments collected by vector zt, and the output is the system state, xt. In defin-

ing measurements and states, we use the conventional approach [84] where the

state variables are the bus voltage phasors, denoted by

x = [v1,v2, · · · ,vb,θ1,θ2, · · · ,θb]

with b being the number of buses that do not have D-PMUs installed. Here,

vi and θi represent the vectors containing the three-phase voltage magnitudes

and phase angles of bus i, respectively. Any combination of redundant network

data (i.e., bus voltage phasors, real and reactive power consumption, branch

flows) can be considered as the measurement for the DSSE process. For this

study, we assume all load buses in the secondary distribution network are

equipped with smart meters providing real and reactive power consumption

data every 15 minutes. We aggregate the smart meter data from all load buses

in a secondary network, without accounting for losses, to produce the real and

reactive power consumption at the primary bus, which are treated as pseudo-

measurements. Thus, the measurement vector contains three-phase real and

reactive power consumption at each of the primary load buses, and three-phase

voltage magnitudes of buses equipped with D-PMUs. We install six D-PMUs

since this level of observability led to reasonable state estimation performance

in [40]. Figure 4.1 shows the placement of the D-PMUs that collect the voltage

phasor measurement data. One D-PMU is installed at the substation (Bus 1).

The remaining D-PMUs are installed at the end of the primary feeders and

one in the middle of the longest feeder to ensure system-wide observability.

Note that determining the optimal placement of measurement devices, such

as D-PMUs, is outside the scope of this work, so we just tried one reasonable

sensor placement strategy.

Treating the first bus as the slack bus, we have 32 load buses in our primary
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distribution system. Therefore, we have 32 × 3 × 2 pseudo-measurements for

real and reactive power consumption at these buses: (P,Q). From the buses

equipped with a D-PMU, we have 6 × 3 voltage magnitude measurements.

Thus, the input measurement vector is of size 210×1. Excluding the D-PMU-

installed buses, we have 27 buses that comprise the system state; thus, the

state vector is of size 162× 1.

We consider the OpenDSS simulation results obtained for the first half of

every month to train the victim model. Since the dataset has 15−minute res-

olution, we have a total of 17280 training samples (i.e., 96 instances from each

day, for the first 15 days of every month for a year). To form the test dataset,

we randomly choose the load data from three consecutive days of each month

and obtain the corresponding OpenDSS simulation result. Thus, we generate

3456 instances of test samples, grouped in 12 groups of 288 consecutive mea-

surements (i.e., 3 consecutive days from each month × 96 samples from each

day) that are evenly distributed over the one-year time period. The remaining

samples, pertaining to 12 days in the second half of every month, are used to

train the surrogate model.

4.1.3 Evaluation Criteria

We use the following measures to evaluate the performance of the ML-based

DSSE technique and the voltage control scheme under normal operating con-

ditions and in the presence of the black-box evasion attack.

State estimation accuracy To evaluate the performance of the data-driven

state estimators we use the root-mean-square error (RMSE) defined as:

RMSE =

√√√√ 1

T · n

T∑
t=1

n∑
i=1

(xt
i − x̂t

i)
2

Here, n is the total number of estimated states, T is the total number of test

samples, and xt
i and x̂t

i represent actual and predicted states, respectively.

Voltage limit violation detection accuracy Detecting voltage limit vi-

olations is the first step of voltage regulation, which is crucial to ensure the

44



reliable operation of the distribution system. To analyze the impact of the

black-box FGSM attack on the ability to detect voltage limit violations using

the estimated state, we set the acceptable voltage range as ±5% of the nom-

inal voltage level. We remark that the optimal acceptable range varies from

system to system. We followed the range specified for the “Range A service

voltage” in the American national standard for utilization voltage regulation

(ANSI C84.1) [107].

Impact on the voltage regulation scheme We use the number of un-

necessary tap change operations and the amount of voltage limit violations

(including both over or under-voltage incidents) at the selected bus as our

performance measures to analyze the impact of the proposed adversarial at-

tacks on the rule-based voltage regulation scheme. Controlling voltage control

devices based on an inaccurate state estimation result may lead to one of the

three unfavorable scenarios described below.

Scenario 1 (Increased tap operations) This occurs when there is a

false positive: even though the bus voltage is within the specified range, unnec-

essary voltage control operations (such as OLTC tap changes) are performed

due to the error in the state estimation result. This increases wear and tear

on voltage regulation devices, reducing their lifetime.

Scenario 2 (Increased over-voltage incidents) It may occur in two

different ways: (a) when the bus voltage is above the upper threshold but it

does not get detected because of the erroneous state estimation result (i.e.,

a false negative or a false positive in the opposite direction that erroneously

detects an under-voltage occurrence instead of the true over-voltage state). In

this case, the affected bus experiences an over-voltage problem, but since it is

not accurately detected, the voltage control scheme either does not take any

remedial action (in the case of a false negative) or takes the opposite action

that makes the situation worse (in the case of false positive). Thus, the over-

voltage situation persists; (b) when the bus voltage is within the specified
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range but an under-voltage occurrence is detected (i.e., a false positive). In

this case, the controller sends a command to increase the OLTC tap position.

Due to this unnecessary tap change operation, the voltage level increases in

that bus and possibly other buses downstream of the OLTC. This may lead

to an over-voltage problem, degrading the power quality.

Scenario 3 (Increased under-voltage incidents) This is the exact

opposite of the previous scenario and may occur in two different ways: (a)

when the bus voltage is below the lower threshold and it does not get detected

(i.e., a false negative or a misdirected false positive that erroneously detects an

over-voltage occurrence instead of the true under-voltage state); (b) when the

bus voltage is within the specified range but over-voltage is detected (i.e., a

false positive). In this case, an unnecessary tap change operation is performed

to lower the tap setting. This may lead to an under-voltage problem, degrading

the power quality.

4.2 Experimental Results

In this section, we present the simulation results, evaluate the effectiveness and

stealthiness of the proposed attacks, and analyze the impact of these attacks

on a rule-based voltage regulation scheme.

4.2.1 Effectiveness of Black-box Attacks

In the first phase of experimentation, we design an attacker who constructs

adversarial data samples using the vanilla FGSM presented in Algorithm 1

and modifies the measurements (z) accordingly. As discussed in Section 3.4,

the choice of the surrogate model rests exclusively with the attacker. To ana-

lyze the impact of black-box attacks on the state estimator’s performance, we

employ four different surrogate models, namely MLP and CNN with tanh and

ReLU activations, to generate the adversarial data samples. These adversar-

ial samples, when fed to the victim state estimator model, increase the state

estimation error. The induced estimation error is directly proportional to the
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To address this question, we analyze the impact of vanilla FGSM and

Sneaky-FGSM attacks that are able to bypass BDD with a high success rate,

i.e. at least 90% success rate. Observe that Sneaky-FGSM is capable of

bypassing BDD with higher ϵ values than that of vanilla FGSM (Figure 4.4).

In other words, by utilizing the Sneaky-FGSM algorithm, it is possible to add

more perturbation without being detected while keeping BDD detection rate

the same.

Figure 4.5 shows the distribution of two ratios, |Vest.|
|Vtrue| and

|V adv
est. |

|Vtrue| , which helps

compare the effect of vanilla FGSM (ϵ = 0.11) and Sneaky-FGSM (ϵ = 0.3)

attacks on the (victim) state estimation models. Here, |Vtrue| is the true bus

voltage magnitude, |Vest.| and |V adv
est. | are the estimated voltage magnitudes

under normal conditions and under adversarial attack, respectively. As ex-

pected, the original DSSE model keeps the ratio very close to 1. However, the

vanilla FGSM attack causes the number of outliers to increase significantly and

with the Sneaky-FGSM attack, the induced estimation error is even higher.

Figure 4.6 shows a more detailed comparison of the vanilla FGSM and Sneaky-

FGSM attacks, generated using ϵ values such that the average BDD detection

rate is not more than 10%, by presenting the box and whisker plot of bus volt-

age magnitude ratios at each of the unobserved buses, with outliers marked

at 5th and 95th percentiles. For brevity, we only present the box and whisker

plots for two surrogate models.

4.2.3 Impact on Voltage Limit Violation Detection

It is essential for system operators to determine the real-time state of the power

distribution system to ensure its reliable operation. One important application

of DSSE is detecting voltage limit violations in the network. We use the voltage

phasor magnitudes obtained from the OpenDSS simulation results using the

test dataset to identify the true voltage limit violation incidents during the

simulation period. Since we have 3456 test data instances and 27 load buses

that are not equipped with D-PMUs in our test system, there is a total of

3456 × 27 = 93312 instances where voltage magnitude violation may occur.
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(a) Vanilla FGSM (ϵ = 0.11) on the Stacked ResnetD victim
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(b) Sneaky-FGSM (ϵ = 0.3) on the Stacked ResnetD victim
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(a) Vanilla FGSM (ϵ = 0.11) on the R-KNN victim
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(b) Sneaky-FGSM (ϵ = 0.3) on the R-KNN victim

Figure 4.6: Performance of the two victim models with clean data samples
and adversarial data samples generated by (a), (b) CNN(ReLU) and (c), (d)
MLP(ReLU) surrogates. The two box and whisker plots are presented next to
each other for each bus.
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estimated states when adversarial test data samples generated by Sneaky-

FGSM are fed to the victim model.

Then each of these three binary vectors is compared to the true detection

vector (VLV) to analyze the impact of the proposed attacks on the accuracy

of voltage limit violation detection. Figure 4.7 shows the final outcome of the

experiment. As we observe, although both of the victim models exhibit high

accuracy when tested in non-adversarial cases, they experience a substantial

drop in accuracy under adversarial settings.

Inaccurately detecting voltage limit violations may mislead the voltage

regulation process and result in poor management of voltage-control tools,

power quality degradation, and even worse, catastrophic operational failures

such as persistent over-voltage or under-voltage problems at load buses causing

equipment damage. We illustrate these scenarios in the next section.

4.2.4 Impact on the Voltage Control Scheme

To maximize the system observability with a small number of measurement

devices, we instrument all the head-ends of the primary feeders of our test sys-

tem with D-PMUs as depicted in Figure 4.1. Hence, voltage regulators close

to the endpoints can be controlled using the D-PMU measurements. However,

we must rely on the estimated states to apply the VVO mechanism at inter-

mediate buses, which may experience over-voltage or under-voltage issues due

to changes in load during peak and off-peak hours. Until this phase of our

experiment, we ran the simulation without installing any voltage regulator.

As the simulation results suggest, a number of intermediate nodes experience

the under-voltage problem during peak hours. We observe that the closest

node near the substation bus that is affected by this issue is Bus 6, and the

problem persists as we travel further along the feeder. To address this, we use

the RegControl object from the OpenDSS simulator to install a transformer

with OLTC on Line 5 − 6 and set the corresponding control rule as “If the

voltage at Bus 6 violates the limits, change the tap setting accordingly”.1 To

1Depending on the magnitude of the violation, one or more tap change actions may be
performed.
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(a) Victim: Stacked ResNetD, Surrogate: CNN(ReLU)

(b) Victim: R-KNN, Surrogate: MLP(ReLU)

Figure 4.8: Impact of adversarial attacks on the rule-based voltage control
mechanism. All of the major spikes in the voltage profile are due to multiple
concurrent tap change operations except the one pointed with the cyan arrow,
which occurred due to a sudden increase in load demand.

investigate how the proposed Sneaky-FGSM attack affects the voltage control

scheme, we simulate the BDD-integrated DSSE-based voltage regulation pro-

cess using 24-hour load data (from 6:00am to 6:00am of the next day) in three

different settings: a) in the absence of an attacker; b) under the vanilla FGSM
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Table 4.1: Impact of adversarial attacks on the rule-based voltage regulation
process during a day-long simulation.

Victim Surrogate
#Unnecessary Tap
Changes Initiated

#Voltage Limit
Violations

Vanilla
FGSM

Sneaky-
FGSM

vanilla
FGSM

Sneaky-
FGSM

Stacked
ResNetD

CNN(ReLU) 4 11 0 5
CNN(tanh) 1 11 0 23
MLP(ReLU) 96 96 0 0
MLP(tanh) 96 96 0 0

R-KNN

CNN(ReLU) 6 21 1 88
CNN(tanh) 10 56 83 85
MLP(ReLU) 68 96 0 0
MLP(tanh) 66 96 0 0

attack; and c) under the Sneaky-FGSM attack. During this simulation, if a

particular measurement is flagged as ‘bad’ data, we replace the corresponding

state estimate with the latest state estimate that was computed using a ‘good’

measurement.

Figure 4.8 shows the simulation results. As we observe, in the absence

of the attacker, the voltage control scheme correctly identifies the violation

that took place at 7:30am, initializes the command to increase the tap setting,

and brings the voltage to the specified range. However, when the attacker is

present, the violation detection mechanism often fails, resulting in unnecessary

tap operations as well as voltage fluctuations and occasional under-voltage

problems at the regulated bus. These issues might get more pronounced under

the Sneaky-FGSM attack. Table 4.1 shows the impact of these attacks in

terms of the number of unnecessary tap changes and voltage limit violations

during a day-long simulation.

As we observe from Table 4.1, the main limitation of the proposed black-

box attacks is their untargeted nature. While it is guaranteed that the pro-

posed attack strategies will mislead the voltage detection mechanism and im-

pact the control system, the magnitude of the impact varies across victim mod-

els and surrogate models being used. In some cases, we see a significant rise in

the number of unnecessary tap change operations and no voltage limit viola-
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create more under-voltage events. Thus, the adversary needs to push the

voltage levels in the estimated state vector in an upward direction. We define

vmin = 1.03 and vmax = 1.04 in Algorithm 3.

Figure 4.11 compares white-box vanilla FGSM (ϵ = 0.08) and Targeted-

FGSM (ϵ = 0.08) on the Stacked ResNetD victim model in terms of the

distribution of two ratios, |Vest.|
|Vtrue| and

|V adv
est. |

|Vtrue| . Here, |Vtrue| is the true bus voltage

magnitude, |Vest.| and |V adv
est. | are the estimated voltage magnitudes under nor-

mal conditions and under adversarial attack, respectively. It can be seen that

vanilla FGSM moves the estimates in both directions while Targeted-FGSM

maintains a majority of cases with a ratio greater than 1. A detailed per-

bus comparison using box and whisker plots is shown in Figure 4.12, which

confirms the targeted nature of this attack.

Figure 4.13 presents a quantitative comparison between the untargeted

and targeted attacks. As we observe in Figure 4.13a, the Stacked ResNetD

model, under normal conditions, is able to accurately estimate the true sys-

tem state. Figures 4.13b and 4.13c illustrate the impact of white-box vanilla

FGSM and Sneaky-FGSM, respectively. We notice a rise in false positives and

false negatives due to these attacks, although the estimate can shift in either

direction. Figure 4.13d shows the impact of the Targeted-FGSM attack. It is

evident that the estimated states are now being pushed upward, fulfilling the

adversary’s objective.

We conduct a day-long simulation and present the bus voltage profile in

Figure 4.14. As it can be seen, the proposed Targeted-FGSM attack misleads

the state estimator to predict over-voltage even when the bus voltage is within

the acceptable range. As a result, multiple unnecessary tap-down operations

are triggered, causing a persistent under-voltage issue in the regulated bus.

On the other hand, with the white-box vanilla-FGSM, we obtain a mixture of

tap-up and tap-down operations due to its untargeted nature.
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Figure 4.14: Impact of the white-box vanilla FGSM and Targeted-FGSM at-
tacks on the rule-based voltage control mechanism. All of the major spikes
in the voltage profile are due to multiple concurrent tap change operations
except the one pointed with the cyan arrow, which occurred due to a sudden
increase in load demand.

4.3 Discussion

We have presented three different adversarial attack algorithms, each designed

with distinct adversarial objectives while sharing a common intention of de-

ceiving data-driven DSSE techniques and consequently affecting the control

operations. Now we present a brief comparison of the adversarial attack algo-

rithms explored in this chapter.

In Table 4.2, we compare the proposed attack strategies in terms of (a)

effectiveness (i.e. their ability to affect the DSSE technique and the con-

trol operation), (b) stealthiness (i.e. their ability to fool the residual-based

BDD mechanism), (c) their ability to achieve a specific adversarial goal, and

(d) their ability to work in a black-box setting. We consider the proposed

Targeted-FGSM algorithm highly effective due to its ability to achieve spe-

cific adversarial objectives. However, in terms of stealthiness, Sneaky-FGSM

stands out among the three. Note, the stealthiness comparison is solely based

on the residual-based BDD mechanism. In the next chapter, we propose an

effective detection-based safeguarding mechanism that is able to achieve high
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accuracy in detecting various types of adversarial attacks, including the pro-

posed Sneaky-FGSM attack.

Table 4.2: Comparison of the three proposed adversarial attack strategies.

Attack
Strategy

Effectiveness
Stealthiness
(w.r.t. BDD)

Satisfies Specific
Adversarial Goal?

Works in
Black-box
Setting?

Vanilla
FGSM

Low Medium ✗ ✓

Sneaky-
FGSM

Medium High ✗ ✓

Targeted-
FGSM

High Medium ✓ ✗

In this chapter, we analyzed the adversarial vulnerabilities of data-driven

DSSE approaches from the perspective of an adversary and summarized the

experimental results. In the next chapter, we look at the problem from the

perspective of the system operator and seek protective measures to mitigate

these attacks on state estimation.
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Chapter 5

Detecting Adversarial Attacks

In the previous chapter, we have explored the adversarial vulnerabilities asso-

ciated with data-driven state estimators and analyzed the impact of different

types of adversarial attacks on the control system that relies on the estimated

states. In this chapter, we propose an effective detection-based defense mecha-

nism that can be used as a safeguard for distribution system state estimators.

5.1 Feature Attribution-based Detection

Strategy

Feature attribution refers to the process of quantifying the contribution of

individual features of an input sample in a machine learning model’s decision-

making process. Feature attribution techniques help in understanding how

much each feature influences the model’s output and gaining insights into why

a specific prediction was made. In [122], a leave-one-out (LOO)-based feature

attribution method has been used to detect adversarial samples generated

against a C-class classifier, f(z; θ) : Rd → [0, 1]C , that maps an input sample

z of dimension d to a probability vector f(z) of dimension C. The proposed

feature attribution method maps an input sample z ∈ Rd to an attribution

vector ϕ(z) ∈ Rd, such that the ith element of ϕ(z) is the contribution of

feature i in the prediction of f(z; θ). Each element of the feature attribution

vector for input sample z is computed as

ϕ(z)i = f(z; θ)c − f(zi; θ)c,where, c = argmax
j∈C

f(z; θ)j (5.1)
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Here, zi is a masked example generated by masking the ith feature of z by 0,

and f(z; θ)c denotes the cth element of the probability vector returned by the

classifier f(z; θ).

Then, the interquartile range (IQR) of ϕ(z), defined as the difference be-

tween the 75th percentile and the 25th percentile among all entries of ϕ(z) ∈ Rd,

is used to calculate statistical dispersion in the feature attribution matrix:

IQR(ϕ(z)) = Qϕ(z)(0.75)−Qϕ(z)(0.25) (5.2)

where

Qϕ(z)(p) = min{β :
#{i : ϕ(z)i < β}

d
≥ p}.

As shown in [122], for an adversarially perturbed data, z′, IQR(ϕ(z′)) is

larger than that of the corresponding benign data. An intuitive explanation

behind this behavior lies in the working principle of algorithms generating

adversarial perturbation. These perturbations can alter the importance and

influence of different features in the data, causing the model to make incorrect

predictions. As a result, the dispersion measure in feature attribution scores

for adversarial data tends to exhibit comparatively higher values. Therefore,

adversarial samples can be distinguished from benign ones either by thresh-

olding the IQR of feature attribution maps or by fitting a logistic regression

model to the IQR values. This approach achieved superior performance in de-

tecting adversarial image samples generated against multiclass classifiers [122],

motivating us to adopt this detection strategy in safeguarding the data-driven

state estimators.

In Equation (5.1), the prediction score for the class label that has the high-

est value has been used to calculate the feature attribution value. However,

for regression tasks there is no ‘class label’, and therefore, the formulation

for obtaining ϕ(z) must be different. To adopt the same detection method

in regression tasks, we define each element, ϕ(z)i, of the feature attribution

matrix as the difference between the original prediction of the DSSE model on

the true measurement data z and the prediction when the ith feature of z is

masked by 0.

ϕ(z)i = f(z)− f(zi) (5.3)
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Then, we calculate IQR (ϕ(z)) using Equation (5.2) and fit a logistic regres-

sion model to the IQR values calculated for benign and adversarial training

samples. Since it is not realistic for the system operator to generate the ex-

act same adversarial samples as the attacker, we train the logistic regression

model using a particular set of adversarial samples, generated using the vanilla

FGSM (ϵ = 0.1) algorithm crafted with the CNN(ReLU) surrogate. Once the

logistic regression model is trained, we deploy it for testing.

Since all three detection mechanisms evaluated in this thesis are binary

classifiers, we use the receiver operating characteristics (ROC) curves to eval-

uate the performance of the detection mechanisms. The ROC curve plots the

classifiers’ false positive rates against their true positive rates across different

thresholds. Note, for the LOO-based detection algorithm, the threshold that

varies throughout the ROC curve is the cutoff value of the logistic regression

model.

5.2 Baseline Detection Methods

We adopt the feature attribution-based adversarial attack detector described

in the previous section as a DSSE safeguarding mechanism and compare its

performance with two state-of-the-art detection-based SE safeguarding strate-

gies proposed in prior works, namely the neural attack detector (NAD) [102]

and the KL Divergence-based FDIA detector [18]. In this section, we present a

brief overview of the working principle of the two baseline detection strategies.

Neural Attack Detection (NAD): Various types of neural networks, in-

cluding CNN [64], [110], RNN [7], [112], [114], MLP [96], [102], and DNN [42]

have been proven effective in detecting stealthy FDIA that are able to bypass

traditional BDD mechanisms. Inspired by these results, we implement the

NAD strategy proposed in [102] as one of the baselines for detection mod-

els. We use the fully connected neural network (FCNN), comprised of six

hidden layers with ReLU activation functions, originally proposed as a safe-

guarding mechanism for the IEEE 30-bus system in [102]. According to [102],
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once trained, this model can detect traditional stealthy FDIA (as described in

Equation (2.2)) with 99.6% accuracy.

The NAD model is trained using a mixture of benign and adversarial data

samples at the operator’s end. Similar to the LOO-based detection mechanism

described above, we train the NAD model using a particular set of adversarial

samples generated using the CNN(ReLU) surrogate model and vanilla FGSM

algorithm with ϵ = 0.1. Then, we test the efficacy and generality of this

detection strategy using a variety of adversarial samples generated using four

different surrogates and varying ϵ values.

The NAD model calculates the probability estimates for both benign and

adversarial classifications of any given input sample, z. We consider the ‘pos-

itive’ class to represent adversarial samples. By comparing the probability

estimate of the positive class with the actual class labels at different thresh-

olds, we generate the ROC curves.

KLD-based FDIA Detection Strategy: The Kullback–Leibler diver-

gence (KLD) has been utilized in several previous works to detect FDIA [18],

[49], [75]. Chaojun et al. [18] proposed an effective FDIA detection strategy

in AC state estimation where at any time step k, the KLD between two

distributions pk and q is compared against a predefined threshold, τ , to detect

if the measurement sample zk contains bad data. The detection mechanism

can be described as follows:

isBad=

{
1, if DKL (pk∥q) > τ

0, otherwise
(5.4)

Before delving into the details, it is important to clarify how the term

‘distribution of measurement variations’ has been used in the context of the

KLD-based detection method. We need to detect bad measurement data in

an online fashion. At any time step k, we obtain the measurement vector

zk and decide if it contains bad measurement. For this, we calculate the

difference between zk and zk−1; this difference is considered as the distribution

of measurement variations at time step k, pk. This might be confusing at

first because only one data point is defined as a distribution. However, the
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basic idea is based on the observation that power systems behave as quasi-

static systems, where the system state changes constantly but slowly. Thus,

when all the measurements are normalized in the per unit system, most of the

measurement variations, i.e. each of the elements of pk, should be small and

close to zero, despite the fact that they are collected from different types of

sensors that are placed in different locations. In other words, regardless of the

type of the measurement (be it active load, reactive load, or bus voltage), the

difference between two consecutive measurements obtained from any sensor

can be treated as a random variable, namely measurement variation, which

takes arbitrary values. If no bad data is injected in zk, then the distribution

of measurement variation at time step k, i.e. pk, should be similar to the

distribution of average measurement variations obtained from the historical

data. We note that this is indeed a strict assumption and might be one of the

reasons behind the subpar performance of this detection strategy.

In Equation (5.4), q is the distribution of average measurement variations

obtained from the historical data, pk is the distribution of measurement varia-

tions between the current time step and the previous time step, andDKL (pk∥q)

is the Kullback–Leibler divergence between pk and q which is given by:

DKL (pk∥q) =
∑
x

pk(x)ln
pk(x)

q(x)

The accuracy of this detection strategy greatly depends on the selection of

τ . We outline a process to select the optimal value of τ below. The experi-

mental results showing the performance of this baseline detector are presented

in the next section.

Selecting the value of τ : As described in the original work [18], max-

imum KLD from historical data with 99% confidence level is considered the

optimal value for τ . To find out the optimal τ value, we consider the training

data obtained from the first 11 months (January to November) to calculate the

distribution of average historical measurement variation, q. Then, the training

samples collected in December are used to calculate the distribution of mea-

surement variations, pk−dec, for each of the benign data samples. Figure 5.1
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to the previous chapter, we generate the white-box Targeted-FGSM attack

against the Stacked ResNetD victim model. However, while analyzing the

performance of these detection strategies on black-box attacks, defining a vic-

tim model is not necessary. This is because unlike the residual-based BDD

mechanism (described in Section 1.3.2) that uses the states estimated by the

victim model to calculate the measurement residual, these detection strategies

directly use the sensor measurements, zk, collected at time step k and classify

it as benign or adversarial. Since we do not need to define a victim model

to generate adversarial samples in a black-box setting, the performance of the

detection strategies on the untargeted black-box attacks remains consistent

across different victim models.

Let the true positive rate (TPR) be the proportion of adversarial measure-

ment samples that are correctly classified and the false positive rate (FPR) be

the proportion of benign measurements that are misclassified as adversarial.

We use the area under the curve (AUC) of the receiver operating character-

istic (ROC) curves as the performance evaluation metric for this experiment.

Table 5.1 summarizes the experimental results. The ROC curves of the detec-

tion methods under vanilla FGSM (ϵ = 0.15), Sneaky-FGSM (ϵ = 0.15), and

Targeted-FGSM (ϵ = 0.15) are depicted in Figures 5.2, 5.3, and 5.4, respec-

tively.

Our proposed LOO detector outperforms the other two methods in detect-

ing various types of adversarial attacks generated with different perturbation

factors, ϵ. While NAD shows comparable performance in detecting the vanilla

FGSM attack, its effectiveness decreases when it is tested with Sneaky-FGSM

and Targeted-FGSM attacks crafted with lower values of ϵ. This limitation

stems from the fact that the NAD model is trained on adversarial data gener-

ated solely by the vanilla FGSM algorithm, highlighting the inherent limita-

tions of neural attack detectors as they are constrained by the data they are

trained on, which implies they cannot be generalized. On the other hand, the

KLD-based detection strategy has subpar performance (similar to the residual-

based BDD mechanism) and fails to offer robust protection against adversar-

ial attacks. This result reveals an interesting observation: unlike traditional
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Table 5.1: Performance of detection methods against different adversarial
attack strategies crafted with different surrogate models. Note: Stacked
ResNetD model is used as the victim model for the Targeted-FGSM attack.

Attack
Surrogate
Model

ϵ
AUC

NAD KLD LOO

va
n
il
la

F
G
S
M

CNN(ReLU)
0.05 0.999 0.782 0.999
0.15 1.0 0.855 1.0
0.30 1.0 0.874 1.0

CNN(tanh)
0.05 0.999 0.952 1.0
0.15 0.999 0.997 1.0
0.30 0.999 0.999 1.0

MLP(ReLU)
0.05 0.996 0.884 1.0
0.15 0.999 0.925 1.0
0.30 1.0 0.929 1.0

MLP(tanh)
0.05 0.997 0.636 1.0
0.15 0.999 0.746 1.0
0.30 1.0 0.771 1.0

S
n
ea
k
y
-F
G
S
M

CNN(ReLU)
0.05 0.687 0.591 0.889
0.15 0.771 0.635 0.940
0.30 0.887 0.653 0.946

CNN(tanh)
0.05 0.888 0.757 0.992
0.15 0.967 0.844 0.999
0.30 0.982 0.859 0.999

MLP(ReLU)
0.05 0.878 0.513 0.892
0.15 0.973 0.518 0.944
0.30 0.982 0.519 0.957

MLP(tanh)
0.05 0.910 0.508 0.960
0.15 0.987 0.511 0.998
0.30 0.999 0.511 0.999

Targeted-FGSM
White-box

0.05 0.721 0.938 1.0
0.15 0.965 0.995 1.0
0.30 0.997 0.997 1.0
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and adversarial test samples, D (pbenign∥q) and D (padv∥q), respectively. Here,

q represents the distribution of measurement variation obtained from the his-

torical data. It can be seen that there is a significant overlap between the two

histograms, making it impossible to find a good threshold (τ) value that would

achieve high TPR and low FPR.

Adversarial samples, despite being indistinguishable from normal data at

the surface level, leave traces on hidden features used by neural networks for

classification or prediction purposes. This means the key to identifying ad-

versarial samples lies in examining how the neural network’s decision-making

process in being affected by these samples. This is where feature attribution

comes into play, as they offer profound insight into the model’s decision-making

process by highlighting the significance of particular features in its predictions.

Figure 5.6 compares the histogram of average1 dispersion measures of feature

attributions for benign and adversarial samples from the test dataset. We

observe that adversarially perturbed samples have a larger average dispersion

in feature attribution compared to the benign samples and there is no overlap

between the two histograms. Thus, it is easier to distinguish adversarial sam-

ples from benign ones either by thresholding the dispersion measures (when

the dispersion measures are scalars) or by fitting a simple classifier, such as

a logistic regression model (when the dispersion measures are vectors). This

explains the superior performance of the proposed LOO-based detector.

1For each measurement z, ϕ(z) is a matrix of size 210 × 162 and IQR(ϕ(z)) is a vector
of length 162. To plot the histogram, we take the average of the vector IQR(ϕ(z)).
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Chapter 6

Conclusion

Data-driven DSSE approaches offer distinct advantages over traditional meth-

ods that rely on assumptions and simplified models. This is because they

have the ability to learn from historical data, capturing intricate patterns and

non-linear relationships in the system, resulting in improved efficiency and ac-

curacy. Nonetheless, it is crucial to acknowledge the vulnerabilities inherent

in these models before integrating them with monitoring and control systems

of critical infrastructure, such as the power distribution system. This thesis

presents a comprehensive analysis of the security and robustness of data-driven

DSSE techniques in the presence of adversarial evasion attacks from two dif-

ferent perspectives: from an adversary’s viewpoint (Chapter 4) and from the

DSO’s viewpoint (Chapter 5).

From the adversary’s perspective, we design effective and stealthy evasion

attacks that are able to induce error in the state estimation process, thereby

exerting deleterious impact on distribution system control and operation prac-

tices that rely on the state estimates. We show that data-driven DSSE pro-

cesses are vulnerable to stealthy and effective black-box adversarial attacks

that can fool the BDD mechanism with at least 90% success rate, this is while

the attacker does not need to have any prior knowledge of the distribution

system model or the ML model used for state estimation. This makes these

types of attacks more practical and likely than conventional FDIA, in which

the attacker is assumed to have some prior knowledge of the system model to

launch an effective attack. We also propose a novel Sneaky-FGSM attack that
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outwits the BDD mechanism more frequently than the vanilla FGSM, while in-

flicting comparable or potentially greater harm to the control system. Through

comprehensive experimentation involving different combinations of victim and

surrogate models, we demonstrate that our proposed Sneaky-FGSM retains its

covert nature regardless of the surrogate models being used by the adversary.

After analyzing the proposed black-box attacks that are untargeted, we

introduce a targeted, white-box adversarial attack strategy, namely Targeted-

FGSM, that creates specific power quality issues by misleading the state es-

timator in a certain direction. Using real household load data, we conduct

simulations on a 33-bus test distribution system as the primary network and

the IEEE European low-voltage test feeder as the secondary distribution sys-

tem connected to each primary node, validating the experimental results.

From the DSO’s perspective, our goal is to design effective and robust

safeguards for the data-driven state estimators. Based on our analysis of

the rationale behind the ineffectiveness of traditional statistical feature-based

BDD strategies in detecting adversarial attacks, we propose a highly effective

detection-based safeguarding mechanism, namely LOO, that utilizes feature

attribution scores to distinguish between benign and adversarial measure-

ments. We corroborate that LOO achieves superior performance compared

to two other state-of-the-art detection strategies.

6.1 Limitations and Future Work

We discuss the limitations of this work and possible future research directions

below.

• As discussed in Section 3.4.3, our proposed Targeted-FGSM algorithm

lacks transferability, hindering the development of black-box targeted

attacks. A recent line of work aims to develop targeted adversarial attack

strategies that are transferable across different victim models [57], [78],

[132]. Exploring the impact of these attack strategies on various smart

grid applications can be an interesting future research direction.

79



• Another drawback of the proposed Targeted-FGSM algorithm is its de-

pendence on the perturbation factor, ϵ, to ensure the desired targeted

effect. Exploring alternative ideas from automatically tuning this hyper-

parameter to overcoming this dependency presents an intriguing research

direction.

• In this thesis, we have analyzed the vulnerabilities of data-driven DSSE

approaches to evasion attacks only. In future, we aim to conduct similar

studies on model poisoning and data poisoning attacks that could take

place during the training period. One interesting idea is analyzing the

impacts of backdoor attacks, where the adversary implants a backdoor

into the ML model during training and later, during its deployment,

exploits that to achieve adversarial goals.

• Our proposed safeguarding mechanism, LOO, is a detection-based ap-

proach. Designing protective measures and developing robust data-

driven state estimators present promising future research direction.

6.2 Applicability

Data-driven DSSE techniques, being able to capture the non-linearity in the

complex distribution systems, offer better alternatives to the conventional

state estimation techniques in terms of accuracy, efficiency, and convergence

rate. In this thesis, we analyze the adversarial robustness of data-driven DSSE

strategies, uncover their vulnerabilities to adversarial attacks, and demonstrate

the potential impacts of such attacks on the control systems that rely on state

estimation. Our experimental findings highlight that intelligent models, de-

spite being highly efficient, might introduce novel security risks. Moreover, we

illustrate the reasoning behind the sub-optimal performance of conventional

bad data detection strategies in detecting adversarial samples and based on

the analysis, we propose an effective adversarial attack detector.

Accurate state estimation supports optimized grid operation, better man-

agement of power flows, improved power quality, and timely detection of con-
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tingencies and faults, which allows faster response to prevent the occurrence

of blackouts and minimize service disruptions. We believe this thesis would

prove beneficial to the research community in providing insight into potential

security risks and reliability concerns that might arise due to the integration of

data-driven techniques with monitoring and control tools developed for critical

infrastructure such as the power grid and shedding light on the importance of

designing robust DSSE approaches as well as effective safeguard mechanisms.
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