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Amendment to the Proof Theory book

There was a mistake in a definition (Definition 2.25) in Chapter 2, which im-
pacted the listing of cases in the proof of the admissibility of the single cut rule in
LK. The new definition follows Bimbó (2015) [Theoretical Computer Science 597],
and the cases are rearranged (which also saves a few pages). The following pages
are the revised version of Chapter 2.

1



Chapter 2

Classical first-order logic

The first sequent calculus, LK is the example after which many other calculi
have been fashioned. We describe this calculus, prove its equivalence to the
axiom system K , and provide a sound and complete interpretation too. A
major part of Section 2.3 is a presentation of the proof of the cut theorem using
triple induction. We avoid the detour via the mix rule by using a suitable
formulation of the single cut rule, by adding a new parameter to the induction,
and by defining anew the rank of a cut. Although we do not go through all
the details of this proof, we hope that sufficiently many cases are included
so that the structure of the proof becomes completely clear. Later on, we will
provide more condensed proofs of cut theorems or simply state cut theorems
with reference to this proof, possibly, with modifications.

2.1 The sequent calculus LK

The calculus LK was introduced by Gentzen in [], where it is labeled
logistic (logistisch, in German). We will simply use the general term sequent
calculus until we introduce consecution calculi in Chapter 5. Our presentation
of LK is faithful to the original in the shape of the axioms and rules, though
we do not always use the same notation or symbols.

The formulas of LK belong to the following language. There are denu-
merably many name constants, and they are denoted by a0, a1, a2, . . . . There
are function symbols, denoted by f n0

0 , f n1
1 , f n2

2 , . . . , where the subscript iden-
tifies the function symbol, whereas the superscript shows the arity of the
function symbol. We define the language so that the arity of function sym-
bols (and later on, of predicate symbols and of connectives) is always a pos-
itive integer. The language contains predicate symbols that are denoted by
Pm0

0 , Pm1
1 , Pm2

2 , . . . . Once again, the subscript identifies the predicate and the
superscript indicates the number of arguments the predicate takes. The lan-
guage includes denumerably many of both function symbols and of predi-
cate symbols. We use = as the symbol for the two-place predicate called iden-
tity. Identity is considered a logical component of the language; therefore, the
interpretation of = is fixed, as it will become obvious in Section 2.4. Propo-
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sitional variables are denoted by p0, p1, p2, . . . , and we stipulate that there are
denumerably many of them.

Individual variables are a very important kind of basic expressions. Ev-
ery first-order language must contain denumerably many individual variables,
which are the only variables that can be quantified in a first-order language.
We denote individual variables by x0, x1, x2, . . . . The set of logical compo-
nents—beyond identity—includes connectives, a pair of constant propositions
and quantifiers. The connectives are negation (¬ ), conjunction (∧ ), disjunc-
tion (∨ ) and conditional (⊃ ). The constant propositions are T and F , which
can be thought of as “the true proposition” and “the false proposition,” re-
spectively. The names of these constants clearly show the limited amount of
information that is taken into account in classical logic. The universal and the
existential quantifiers are denoted by ∀ and ∃ , respectively.

Occasionally, we may simplify our notation—provided that no confusion
is likely. For instance, we might also use a, b and c for name constants, f , g
and h for function symbols, P, Q and R for predicate symbols, p, q and r for
propositional variables and x, y and z for individual variables. Sometimes
we will omit superscripts, when the arity of a symbol can be determined
from the (implicit) assumption that an expression is well formed.

So far there is nothing in the set-up of the language that would be specific
to a sequent calculus. The next two definitions are standard too.

Definition 2.1. (Terms) The set of terms is defined inductively by (1)–(2).

(1) Name constants and individual variables are terms;

(2) if f ni
i is a function symbol and t1, . . . , tni are terms, then fi(t1, . . . , tni )

is a term.

Having said that the definition is inductive, we assume that the set of
terms is the least set generated from the set of atomic terms (i.e., the set spec-
ified in clause (1)) by finitely many applications of the inductive clause (i.e.,
clause (2)). Finitely many includes zero many; that is, all the atomic terms
are terms—as their label intended to suggest.1

The set of terms could be defined using the Backus–Naur form (BNF) (as it
is often done nowadays), if we stipulate that A is a non-terminal symbol
that rewrites to an atomic term. Characterizing atomic terms by a context-free
grammar (CFG) is not difficult, but it is not pretty. We give the following defi-
nition as an example, and later on we always assume that a similar definition
can be given when there is a base set, the elements of which are indexed by
the natural numbers.2 (The subscript is concatenated to the previous letter
and it is slightly lowered for aesthetic reasons only.)

1Inductive definitions and inductive proofs are explained in detail, for example, in [] and in
[]. Here we only rely on a basic understanding of inductive definitions.
2Knowledge of formal language theory is not essential for our purposes, though it may be use-
ful. For example, Sipser [] is a good introductory text on formal language theory.
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Definition 2.2. (Atomic terms) Let A, I, S and N be non-terminal sym-
bols. A , the set of atomic terms is defined by the next context-free grammar.

1. A := AI 2. A := a | x
3. I := 0 | N | NS 4. S := 0 | N | SS
5. N := 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The start symbol is A , which is replaced by an “indexed atomic term” AI .
Since we do not want to have a 0 at the beginning of a string of digits, ex-
cept when 0 is the whole string, we have to complicate the definition of I
(the “index”) with N (for “non-zero digit”) and S (for “subsequent digit”).
Permitting S to be replaced by SS ensures that indices greater than 99 can
be generated too. Obviously, the complications in the above CFG stem from
the steps that produce a natural number in decimal notation, with positive
numbers not starting with 0 ’s.

Definition 2.3. (Terms in BNF) The set of terms is defined as

T := A | Fni
i (T, . . . , T︸ ︷︷ ︸

ni

) ,

where A rewrites to an atomic term, and Fni
i rewrites to a function symbol.

Exercise 2.1.1. Give a definition for Fni
i that is similar to 2.2. [Hint: One has

to make sure that for each i there is a unique positive integer ni . Here is
an idea that works, though it may not be the simplest solution (and it will
not produce f0 , e.g.). Think about the subscript and superscript as the single
string ini , in which there is a substring of the form %(ni)ni (or %(ni); ni with
; to separate the subscript and the superscript), where %(ni) is the reverse of
the string ni . Palindromes are easy to generate, though a slight complication
emerges here, because we do not want ni (hence, i either) to start with 0 .
Then i is m%(ni) , where m is any string that does not start with 0 . Associat-
ing the superscript to the subscript in this way can also ensure that there are
denumerably many function symbols of each arity.]

The following definition presupposes that we can refer not only to the set
of terms but also to the set of variables as a category of expressions.

Definition 2.4. (Well-formed formulas) The set of well-formed formulas is
inductively defined by (1)–(5).

(1) T and F are well-formed formulas;

(2) propositional variables are well-formed formulas;

(3) if t1, . . . , tni are terms, and Pni
i is a predicate symbol, then Pni

i (t1, . . . , tni )
is a well-formed formula;

(4) if A and B are well-formed formulas, then ¬A , (A∧B) , (A∨B) and
(A ⊃ B) are well-formed formulas;
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(5) if A is a well-formed formula and xi is an individual variable, then
∀xiA and ∃xiA are well-formed formulas.

A well-formed formula is an atomic formula, if it is by clause (1), (2) or (3).

“Well-formed formula” is a lengthy expression; hence, we will often use
instead the abbreviation wff or the shorter term “formula.”

Note that we take the formation of an identity statement to be a special
instance of (3). We introduced = as the identity symbol, but one particular
Pi could be fixed as the identity symbol. Then, by a notational convention,
we would write t1 = t2 instead of Pi(t1, t2) .

Exercise 2.1.2. The expressions in (a) are terms, and those in (b) are wff’s.
Use the Definitions 2.1 and 2.4 to generate these expressions step by step.

(a) x3 , f 2
1 (a4, x6) , h(g(x, b), f (a, y, y, z))

(b) (p ⊃ P1
1 (x0)) , (¬∀x0 P1

1 (x0) ∧ ∀x1 P1
1 (x2)) , ∃x1 ∀x2 ∃x3(P2

1 (x1, x2) ⊃
(P4

2 (x1, a, b, x2) ⊃ (P1
3 (x3)∨ P2

4 (x2, x4)))) , (¬p ⊃ ¬¬(Q(b, c, a)∧¬r))

Exercise 2.1.3. The following expressions are neither terms nor wff’s. Ex-
plain for each why it does not belong to either of those categories of expres-
sions. (a) ⊃ p , (b) a2 p1 ⊃ p2a3 , (c) ∀¬ (¬P(x) ∨ ∃Q(p, q)) . [Hint:
You may discover that the notation has certain built-in assumptions that are
usually left tacit.]

An occurrence of a variable in a formula is just what the informal meaning of
the phrase suggests: one can look at the formula and find the variable in it. It
is possible to assign unique labels to each occurrence of a variable, and then
to define when an occurrence is free or bound. However, for our purposes
it is sufficient to note this possibility without giving its details. Similarly, a
subformula is a wff that occurs in a given wff.

Exercise 2.1.4. Design a schema that assigns a unique numerical label to oc-
currences of individual variables.

Definition 2.5. (Variable binding) An occurrence of x in A is free iff (i.e.,
if and only if) it is not within a subformula of A of the form ∀xB or ∃xB .
All occurrences of x in A that are not free are bound.

Each displayed quantifier in ∀xA and ∃xA binds the immediately follow-
ing occurrence of x , as well as all the free occurrences of x in A .

Exercise 2.1.5. Describe an informal procedure that allows one to decide if an
occurrence of a variable is free or bound. Explain how to find the quantifier
which binds a particular bound occurrence of a variable.

Every occurrence of every variable is either free or bound, but not both. It
is also customary to talk about free and bound variables of a formula. x is a
free variable of A iff there is a free occurrence of x in A , and similarly, for a
bound variable. Then, it is easy to see that, if x occurs in A , then x is a free or
a bound variable of A , and possibly, both.
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Exercise 2.1.6. List all the variables that occur in the following formulas.
Then, for each occurrence determine whether it is free or bound. Lastly, for
each formula, list its free and bound variables.

(a) (∀x0 (P1
1 (x0) ⊃ P2

2 (x0, x1)) ∧ ∃x3 ¬P1
1 (x3))

(b) ∀y (Q(z) ∨ ¬∃z R(z, y, a3, z))

(c) ∀x1 ∃x1 (∀x2 P1
1 (x1) ⊃ ∀x3 ¬∃x1 P3

4 (a0, x1, x3))

Exercise 2.1.7. Create formulas with the variable binding properties listed.

(a) x has no occurrence, y has one bound and z has one free occurrence.

(b) x has one free, y has two bound and z has two free and one bound
occurrences.

A wff of the form A(x) may have some occurrences of x , and some of
those may be free in A(x) . (There are surely no free occurrences of x in
∀xA(x) .) Then, in a limited context such as an axiom or a rule, we mean by
A(y) , the formula that is obtained from A(x) by replacing all or all selected
free occurrences of x by y . However, we have to add a proviso to this,
because we want all the newly inserted y ’s to be free in A(y) . (Informally
speaking, all the replaced x ’s were free, hence so should be all the new y ’s.)
The situation in which the new y ’s are guaranteed to be free is what we call
“y is OK for substitution for x in A(x) ,” and then we say that A(y) is the
result of the substitution of y for x in A(x) . Substituting for a subset of the
free occurrences of x is simply limited substitution; we scrutinize further the
more encompassing concept first.

A slightly more complicated description of when y is OK for substitution
for x can be given by characterizing where x occurs in A(x) . x may have
both free and bound occurrences in A(x) , and we may forget about all the
bound occurrences for now. A free occurrence of x cannot be in the scope of
∀x , however, it may be in a subformula of the form ∀yB , that is, somewhere
inside B . Since we (tacitly) assume that x and y are distinct variables, ∀y
leaves the free occurrences of x free. However, if such an x is replaced by
a y , then that y becomes bound by ∀y . To sum up in a sentence, y is OK
for substitution for x in A(x) iff no free occurrence of x in A(x) is within a
subformula of the form ∀yB . In the case of a limited substitution, the “no
free occurrence” is qualified as “no selected free occurrence.”

We do not allow substitutions when a variable is not OK for substitution,
which makes substitution a partial operation, which is not always defined for
a wff and a pair of variables. However, when we use A(y) in the sense we
have just described, we assume that y is a suitably chosen variable. There are
other ways to deal with the problem of the “clash of variables,” as it is some-
times called. For instance, by renaming the bound variables that would cause
the new occurrences of the substituted variable to become bound. However,
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the problem can always be circumvented by choosing a variable to play the
role of y , which has no occurrences in A(x) .

Exercise 2.1.8. Decide if the “OK for substitution” conditions are satisfied in
the situations (a)–(d) (for unlimited substitution).

(a) y is OK for substitution for x in (∀x P(x, y) ⊃ ¬(∀y P(y, x) ⊃ Q(x)))

(b) x is OK for substitution for y in (∀x P(x, y) ⊃ ¬(∀y P(y, x) ⊃ Q(x)))

(c) z is OK for substitution for x in ∀z (P(x, z) ⊃ ¬∀x P(z, x))

(d) z is OK for substitution for y in ∀z (P(x, z) ⊃ ¬∀x P(z, x))

A quintessential feature of sequent calculi is that they are designed to for-
malize reasoning about inferences rather than simply to be a framework to
construct inferences. In the case of classical logic, there can be finitely many
premises and finitely many conclusions. This idea is captured in the concept
of sequents.

Definition 2.6. (Sequents) If 〈A0, . . . ,An〉 and 〈B0, . . . ,Bm〉 are (possibly
empty) sequences of formulas, then A0, . . . ,An ` B0, . . . ,Bm is a sequent.
The A0, . . . ,An part is the antecedent and the B0, . . . ,Bm part is the succe-
dent of the sequent. The comma (i.e., , ), which separates the formulas, is a
structural connective.

The ` symbol does not stand for a connective; it forms a sequent from two
sequences of formulas. Either of these two sequences of formulas may be
empty. The turnstile (i.e., ` ) is often used to indicate that a formula is a the-
orem of an axiom system, and we will occasionally use ` in that sense too.
Thus, ` can appear in connection with more than one system, but hopefully,
this will not cause confusion, because context will determine which sense is
meant. These uses of ` are connected; in the sequent calculus LK , ` A will
be the analog of `A in the corresponding axiom system K .

Sequences of formulas will be denoted by capital Greek letters such as Γ and
∆ . We omit the angle brackets (as above) in the context of a sequent. By
Γ ,A and A, Γ , we mean the sequence of formulas obtained via appending
the formula A to the end or to the beginning of the sequence Γ , respectively.
Sequences are the structures in LK .

We explained (on page 15) the concept of limited substitution. In the upper
sequent of the quantifier rules, by A(y) , we mean a formula A with zero
or more free occurrences of y selected. Then, ∀xA(x) or ∃xA(x) in the
lower sequent is obtained by replacing the selected occurrences of y with
x (which must be OK for the selected free occurrences of y in A(y) ), and
then by attaching a quantifier prefix. Furthermore, substituting y for all free
occurrences of x in A(x) must return A(y) .

LK is a sequent calculus for classical first-order logic, FOL. It contains an ax-
iom and rules. Some of the rules will only change the shape of a structure, and



Chapter 2. Classical first-order logic 17

accordingly, they are called structural rules. The other rules are connected in
an obvious way to connectives and quantifiers, hence, they are called connec-
tive and quantifier rules, or together, operational rules. To simplify our notation
a bit further, we will omit outside parentheses from wff’s. Note that we do
not give any special rules involving T , F or = now; in effect, we temporarily
exclude them from the language.

A ` A id

A, Γ ` ∆

A∧B, Γ ` ∆
∧`1

B, Γ ` ∆

A∧B, Γ ` ∆
∧`2

Γ ` ∆,A Γ ` ∆,B
Γ ` ∆,A∧B `∧

A, Γ ` ∆ B, Γ ` ∆

A∨B, Γ ` ∆
∨`

Γ ` ∆,A
Γ ` ∆,A∨B `∨1

Γ ` ∆,B
Γ ` ∆,A∨B `∨2

Γ ` ∆,A
¬A, Γ ` ∆

¬`
A, Γ ` ∆

Γ ` ∆,¬A `¬

Γ ` ∆,A B, Θ ` Λ

A ⊃ B, Γ , Θ ` ∆, Λ
⊃`

A, Γ ` ∆,B
Γ ` ∆,A ⊃ B `⊃

A(y), Γ ` ∆

∀xA(x), Γ ` ∆
∀ `

Γ ` ∆,A(y)
Γ ` ∆, ∀xA(x)

` ∀�

A(y), Γ ` ∆

∃xA(x), Γ ` ∆
∃ `�

Γ ` ∆,A(y)
Γ ` ∆, ∃xA(x)

` ∃

The rules (` ∀) and (∃ `) , which are marked by � , are restricted, and they
are applicable when the lower sequent does not contain the variable y free.
An obvious consequence of this stipulation is that there can be no free occur-
rences of y in the elements of Γ or ∆ . Also, all the free occurrences of y in
A(y) must be selected in those two rules.

So far, we have listed the operational rules in LK . The next six rules are the
structural rules.

Γ ` ∆

A, Γ ` ∆
K `

Γ ` ∆

Γ ` ∆,A `K

A,A, Γ ` ∆

A, Γ ` ∆
W `

Γ ` ∆,A,A
Γ ` ∆,A `W

Γ ,A,B, ∆ ` Θ

Γ ,B,A, ∆ ` Θ
C `

Θ ` Γ ,A,B, ∆
Θ ` Γ ,B,A, ∆

`C

The labels for the structural rules allude to the Curry–Howard correspon-
dence between implicational formulas and combinators. We will present a
more rigorous version of the correspondence between structural rules and
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combinators in Chapter 5, at which point we will explain the motivation for
these labels too.

The (K `) and (`K) rules are called thinning or weakening. If Γ ` ∆
expresses that from the premises in Γ , at least one of the conclusions in ∆
can be inferred, then adding a premise or a conclusion weakens the original
claim about the inference. The (W `) and (`W) rules are called contrac-
tion, because two occurrences of a formula are reduced to one occurrence.
The (C `) and (`C) rules are called permutation, interchange or exchange.
These rules allow one to switch a pair of formulas that are adjacent, any-
where within a sequent. Although any of Γ , ∆ and Θ may be empty, if they
are not, then the shape of the permutation rules guarantees that A and B
still can be swapped.

Keeping the structural rules in mind, we could (informally) view sequences
of wff’s as sets, where the order and the number of occurrences of wff’s does
not matter. Replacing sequences of wff’s by other structures will be impor-
tant in other sequent calculi (e.g., in Chapters 3, 4 and 5). However, in this
chapter, we consider LK in its original form, where sequents are built from
sequences of wff’s.

Sequences and sequents imply a linear ordering or a linear succession of
formulas; proofs are more complex.

Definition 2.7. (Proofs) A proof is a finite tree comprising occurrences of
sequents, where each leaf of the tree is an instance of the axiom and all the
other nodes are justified by applications of the rules.3

We say that a sequent Γ ` ∆ is provable when there is a proof in which Γ `
∆ is the end sequent (i.e., the root of the proof tree). To make the definition of
proofs more palpable we give two proofs as examples followed by detailed
explanations.

Example 2.8. First,we prove an instance of exchanging different quantifiers.

R(z, v) ` R(z, v)
∀y R(z, y) ` R(z, v)

∀ `

∀y R(z, y) ` ∃x R(x, v)
` ∃

∀y R(z, y) ` ∀y ∃x R(x, y)
` ∀

∃x ∀y R(x, y) ` ∀y ∃x R(x, y)
∃ `

` ∃x ∀y R(x, y) ⊃ ∀y ∃x R(x, y)
`⊃

The first line is an instance of the axiom, from which we can get the next se-
quent by (∀ `) . There is no restriction on this rule, and there is no restriction
on the (` ∃) rule either, which yields the next sequent. Each of the variables

3The notion of trees as we use it here and elsewhere in this book is explained in Section A.1 of
Appendix A. (Our usage is the standard one in logic and in some parts of computer science;
however, the term is used with a wider meaning in some other areas.)
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z and v has exactly one occurrence in the sequent, which means that the
rules (` ∀) and (∃ `) can be applied in the next two steps. The last move
is to introduce ⊃ . The proof also shows that Γ and ∆ can be empty, for in-
stance, in the last step they are both empty. (Incidentally, note that the labels
are not part of the proof, they are added to help to see the proof as a proof.)

Definition 2.9. (Theoremhood) A formula A is a theorem of LK , if there is
a proof ending in the sequent ` A .

From the previous example, we know that ∃x ∀y R(x, y) ⊃ ∀y ∃x R(x, y)
is a theorem of LK .

Example 2.10. Now we prove a theorem that involves both connective and
structural rules.

`C

C `
K `

C ` C
A, C ` C
C ,A ` C

A ` A
A ` A, C `K

A ` C ,A `C

¬A,A ` C ¬`

C ∨ ¬A,A ` C
A ` C ,¬(C ∨ ¬A) `¬

A ` C ,B ∨ ¬(C ∨ ¬A) `∨

∨`

A ` B ∨ ¬(C ∨ ¬A), C B ` B
C ⊃ B,A ` B ∨ ¬(C ∨ ¬A),B ⊃`

C ⊃ B,A ` B ∨ ¬(C ∨ ¬A),B ∨ ¬(C ∨ ¬A) `∨

A∧ (C ⊃ B),A ` B ∨ ¬(C ∨ ¬A),B ∨ ¬(C ∨ ¬A) ∧`

A,A∧ (C ⊃ B) ` B ∨ ¬(C ∨ ¬A),B ∨ ¬(C ∨ ¬A) C `

A∧ (C ⊃ B),A∧ (C ⊃ B) ` B ∨ ¬(C ∨ ¬A),B ∨ ¬(C ∨ ¬A) ∧`

A∧ (C ⊃ B),A∧ (C ⊃ B) ` B ∨ ¬(C ∨ ¬A)
A∧ (C ⊃ B) ` B ∨ ¬(C ∨ ¬A)

` (A∧ (C ⊃ B)) ⊃ (B ∨ ¬(C ∨ ¬A)) `⊃
W `

`W

The proof is a tree with the root being the bottom sequent. There are three
leaves in this tree, and each leaf is an instance of the axiom with wff’s C , A
and B , respectively. This is not the only possible proof of the end sequent
` (A∧ (C ⊃ B)) ⊃ (B ∨ ¬(C ∨ ¬A)) .

Exercise 2.1.9. Take a look at the proof above. Create a couple of other proofs
ending in the sequent ` (A ∧ (C ⊃ B)) ⊃ (B ∨ ¬(C ∨ ¬A)) . How do the
proofs differ from each other?

The nodes in the tree are occurrences of sequents, and in this case it so hap-
pens that all the occurrences of sequents are occurrences of distinct sequents.
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However, this does not need to be so, in general. Here is a simple example.

A ` A A ` A
A ⊃ A,A ` A
A,A ⊃ A ` A C `

A ⊃ A ` A ⊃ A `⊃

⊃`

` (A ⊃ A) ⊃ (A ⊃ A) `⊃

The two leaves are the same instances of the axiom, and if we would not
distinguish between occurrences of sequents, then the tree would have only
five nodes. In that situation, the two top lines would look like the following.

A ` A
A ⊃ A,A ` A

This is not an instance of the (⊃`) rule; hence, the lower sequent is un-
justified. Having clarified and exemplified when the same sequent appears
repeatedly in a proof tree at distinct nodes, now we introduce the convention
of omitting the “occurrence of” from “occurrence of a sequent,” when it is
unlikely to cause a confusion.

Exercise 2.1.10. Take a look at the proof of ` (A∧ (C ⊃ B)) ⊃ (B ∨ ¬(C ∨
¬A)) above. Suppose that all the occurrences of A and B are replaced by
D and that the occurrences of sequents are not distinguished. How would
the graph underlying the modified proof tree look? [Hint: Draw the tree
corresponding to the proof tree above as an unlabeled graph and modify the
graph by collapsing the nodes that stand for the same sequent.]

All the nodes in a proof tree that are not leaves are justified by the rules
shown in the annotation. As we already noted, the annotation is not part of
the proof, but it is often useful. Also, once a (purported) proof is given, it is
decidable if the tree is indeed a proof. One can imagine how to go through
the nodes of a finite tree while verifying that they are justified to be where
they are. Annotations are normally intended to be correct, and if they are,
then only one rule needs to be checked. In general, it is neither required nor
true in all sequent calculi that a sequent in a proof has a unique justification.

Exercise∗ 2.1.11. Determine whether proofs in LK always have a unique jus-
tification or not. [Hint: Either construct a proof containing a sequent that can
be annotated with more than one rule, or sketch an argument that shows that
no such proof can be constructed.]

For instance, in the above simple example A ⊃ A ` A ⊃ A is an interior
node, hence, it must be justified by a rule, and it cannot be justified as an
instance of the axiom (though it is an instance of the axiom). Reflecting on
this fact, we can see that the same end sequent has a much shorter proof.
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Exercise 2.1.12. Prove that the formulas given in (a) and (b) are theorems of
LK . [Hint: The formula in (a) is an instance of the principal type schema of
the combinator S′ . That is, not all structural rules will be needed for a proof
of the formula. There are various ways to prove the formula in (b). Try to
find a proof in which (C `) is the only structural rule used.]

(a) (A ⊃ D) ⊃ ((A ⊃ (D ⊃ (B ⊃ D))) ⊃ (A ⊃ (B ⊃ D)))
(b) (¬(A∧B) ⊃ (¬A∨ ¬B)) ∧ ((¬A∨ ¬B) ⊃ ¬(A∧B))

You might have discovered while trying to prove the two formulas in the
previous exercise that it is often helpful to construct a proof (when there is a
concrete formula to be proved) from the bottom to the top. Building the proof
tree from its root, of course, means that the rules are “applied backward,” so
to speak. Searching for proofs in a bottom-up fashion can be made precise in
the notion of a proof-search tree, which however, should not be confused with
a proof tree. For instance, a proof-search tree may contain no proof at all.

Exercise 2.1.13. Prove the formulas given in (a) and (b). [Hint: The restric-
tions on some of the quantifier rules mean that occasionally the order in
which quantifier rules are applied does matter.]

(a) ∀x (P(x) ⊃ ∀x Q(x, x)) ⊃ ∀x (∃x P(x) ⊃ Q(x, x))

(b) ∀x ∀y (R(x, y) ⊃ ∀z (R(x, z) ⊃ R(y, z))) ⊃ ∀x (∃y R(y, x) ⊃ R(x, x))

The formula in (b) expresses that if R is Euclidean, then it is end-reflexive
(i.e., a point with an R -predecessor is reflexive). (Such properties are of in-
terest, e.g., in the meta-theory of modal logics.)

Exercise 2.1.14. Determine which of the following formulas are provable.
Prove the ones that are provable and explain why the ones that are not prov-
able have no proof. (a) ∀x R(x, x) ⊃ ∀y ∀z R(y, z) , (b) ∀y ∀z R(y, z) ⊃
∀x R(x, x) , (c) ∃x Q(x, x) ⊃ ∃y ∃z Q(y, z) , (d) ∃x ∃y Q(y, x) ⊃ ∃x Q(x, x) .

Now that we have some sense of how LK as a formal system works, let us
turn back to exploring Gentzen’s original idea that his logistic calculus is a
calculus of logical deduction.

A system of logic has a notion of proof and deduction associated to it.
However, the properties of those notions are investigated in the so-called me-
ta-theory of the logic. LK is intended to be a calculus that allows not simply
proofs and derivations, but also reasoning about logical inferences.

Sequents in LK have a natural informal interpretation: A1, . . . ,An ` B1,
. . . ,Bm is to be thought of as the inference from all the premises A1, . . . ,An
to some of the conclusions B1, . . . ,Bm . Using the language of LK , we can
rephrase this as A1 ∧ . . . ∧ An implies B1 ∨ . . . ∨ Bm . (To ensure that these
expressions are formulas, we may assume that the parentheses are to be re-
stored by association to the left.)
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This way of looking at sequents imparts a new interpretation of the rules.
Let us start with the three pairs of structural rules.

The left rules, (K `) , (W `) and (C `) allow, respectively, the addition of
a new premise, the omission of extra copies of a premise and the reordering
of the premises. If we think about the premises as joined by ∧ , then (W `)
and (C `) can be viewed to express half of the idempotence of ∧ and its com-
mutativity, respectively. The left thinning rule can be seen to express that a
conjunction implies its right conjunct. (Sometimes, the wff (A∧B) ⊃ B and
the wff (A∧B) ⊃ A are called simplification.)

There is a tendency in everyday reasoning, and even in certain areas of
logic, to prefer single-conclusion inferences. For instance, syllogisms, no mat-
ter if in their ancient or medieval form, contain more than one premise, but
only one conclusion. Thus, perhaps, we are less familiar with how sets of
conclusions can be manipulated without retracting a conclusion and reexam-
ining the inference. Still, it is not difficult to see that the right structural rules,
(`K) , (`W) and (`C) are informally justifiable. Adding a new conclusion
is unproblematic, because if we already have some formulas at least one of
which follows, then throwing in one more formula maintains that property,
that is, at least one formula still follows. It is even easier to see that omitting
repeated occurrences of a conclusion or changing the order of the conclusions
does not affect the correctness of an inference.

Exercise 2.1.15. Prove that ∧ and ∨ are idempotent, commutative and asso-
ciative. Which structural rules are used in the proofs?

To round out our initial look at the rules, we introduce a cut rule.

Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
cut

A version of the cut rule (cut G ), which we introduce in Section 2.3.1 on
page 30, was included into LK in []. The cut rule is admissible in LK , as
we prove it in Section 2.3. This rule allows us to intertwine two deductions,
which is the most sweeping structural change any rule permits.

First, let us consider what happens when ∆1 and ∆2 are empty in the
sequent Γ ` ∆1, C , ∆2 . Then, in the deduction from Θ1, C , Θ2 to Λ , we can
replace C by Γ , provided that C follows from Γ , that is, Γ ` C . This move is
very much like how lemmas can be eliminated in favor of their whole proof
in mathematical and in real-life reasoning. If the ∆ ’s are not empty, then they
must be retained, because we cannot say, on the basis of Γ ` ∆1, C , ∆2 , that
C is the consequence of Γ . However, we can still say that if all the wff’s in
Θ1, Γ , Θ2 are available as premises, then at least one of the wff’s in ∆1, Λ, ∆2
is derivable, when Θ1, C , Θ2 ` Λ .

As it turns out, the most important uses of the cut rule, such as the proof of
the replacement theorem or the emulation of the detachment rule, do not require
the full power of the cut rule. However, it is easier to prove a more general
form of the cut rule to be admissible.
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Lastly, we should reiterate that all sequents are finite, that is, they contain
finitely many formulas. The informal interpretation turns a sequent into an
inference. However, if inferences between infinite sets of formulas are al-
lowed (and they often are), then some of the latter do not have formal equiv-
alents among the sequents in LK .

2.2 An axiom system for FOL

FOL may be axiomatized in more than one way; indeed, it has been axiom-
atized in many ways.4 For different purposes, such as to prove theorems or to
prove meta-theorems more easily, various axiom systems are useful.

The language is defined as before, and for the sake of easy translation, we
use the same symbols. Then we may assume the identity translation between
the formulas that belong to LK and those that belong to K , that is, the axiom
system defined below.

Definition 2.11. (Axiom system K ) The axioms and rules of K are (A1)–
(A5), (MP) and (UG).

(A1) (A ⊃ (B ⊃ A))
(A2) ((A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)))
(A3) ((¬A ⊃ ¬B) ⊃ ((¬A ⊃ B) ⊃ A))
(A4) (∀xA(x) ⊃ A(y)) , where y is OK for substitution for x in A(x)

(A5) (∀x (A ⊃ B) ⊃ (A ⊃ ∀xB)) , where x is not free in A
(MP) A and (A ⊃ B) imply B
(UG) A implies ∀xA

Axiom (A4) requires that the variable y is OK for x in A—as explained
on page 15. The substitution of y is for all the free occurrences of x in A(x) ,
that is, we cannot select a proper subset of the free occurrences of x—unlike
we could in the rules of LK .

The language of K contains five other logical constants that have not fig-
ured into the axioms and rules. They are viewed as contextually defined by
certain formulas.

Definition 2.12. The following abbreviations are adopted in K .

(D1) (A∨B) for (¬A ⊃ B)

4We present K , which is the axiom system mainly used by Mendelson in [], where other
axiomatizations are presented too. We harmonize the notation with ours.
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(D2) (A∧B) for ¬(A ⊃ ¬B)
(D3) ∃xA for ¬∀x¬A
(D4) F for ¬(A ⊃ A)
(D5) T for (A ⊃ A)

Definition 2.13. (Proofs, theorems) A proof is a finite sequence of wff’s, in
which each formula satisfies at least one of (1)–(3).

(1) The wff is an instance of an axiom;

(2) the wff is obtained from preceding elements of the sequence by an ap-
plication of the rule (MP);

(3) the wff is obtained from a previous wff in the sequence by an application
of the rule (UG).

The last formula in a proof is called a theorem. ` A indicates that A is a
theorem of K .

Definition 2.14. (Derivations, consequence) A derivation of the wff A
from the set of wff’s Γ is a finite sequence of wff’s, in which each formula
satisfies at least one of (1)–(3).

(1) The wff is a theorem;

(2) the wff is an element of Γ ;

(3) the wff is obtained from preceding elements of the sequence by an ap-
plication of the rule (MP).

The wff A is a logical consequence of the set of wff’s Γ , which is denoted by
Γ ` A , when there is a derivation of A from Γ .

Notice that although both proofs and derivations are finite sequences of
wff’s, the premise set Γ itself does not need to be finite. That is, the conse-
quence relation can hold between an infinite set of wff’s and a wff.

Axiom systems have a certain elegance, because often, a few self-evident
principles and rules suffice to generate an infinite set of less obvious, or
in some sense, more complex theorems. As a way to organize knowledge,
axiom systems have had a long and successful history since the 4th cen-
tury BCE. However, given a wff, even if it is suspected to be a theorem, it
may not be easy to find a proof from the axioms; let alone it is straightfor-
ward to determine that the wff is not provable using only the axiom system.

For example, in K , an application of the rule (MP) leads to a loss of a
subformula, so to speak: B is obtained from A ⊃ B and A . That is, if we
try to construct a proof of B , we have to find an A such that both the major
premise (i.e., the implicational wff) and the minor premise of the detachment
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rule are theorems. Since the theorems themselves could have been obtained
by detachment, and we may not know, to start with, how many steps are
needed, the process is challenging. Solving the following exercises may give
a flavor of this difficulty.

Exercise 2.2.1. Prove the following wff’s in the axiom system K . (a) (A ⊃
A) , (b) ((C ⊃ A) ⊃ ((A ⊃ B) ⊃ (C ⊃ B))) , (c) ((A ⊃ B) ⊃ ((A ⊃ (B ⊃
C)) ⊃ (A ⊃ C))) and (d) (((B ⊃ C) ⊃ B) ⊃ B) . [Hint: The first wff is
the principal type schema of the combinator I . The wff’s in (b) and (c) are
similarly related to B′ and S′ . The last formula is called Peirce’s law.]

Exercise 2.2.2. Prove that the wff’s in (a)–(c) are theorems of K , and that the
logical consequence stated in (d) obtains. (a) (∀x ∀yA(x, y) ⊃ ∀xA(x, x)) ,
(b) (∀xA ⊃ ∀x (A ∨ B)) , (c) ∃x (A(x) ⊃ ∀xA(x)) , (d) ∀x ∀y (R(x, y) ⊃
∀z (R(y, z) ⊃ R(x, z))), ∀x ∀y (R(y, x) ⊃ R(x, y)) ` ∀x ∀y (R(x, y) ⊃
R(x, x)) .

Exercise∗ 2.2.3. Prove that the next wff’s are theorems of K . (a) (∃x (A(x)
⊃ B(x)) ⊃ (∀xA(x) ⊃ ∃xB(x))) , (b) (∃x (A(x) ∧ B(x)) ⊃ ∃xA(x)) , (c)
(∃x ∀y R(x, y) ⊃ ∀x ∃y R(y, x)) .

“Axiom-chopping,” as it is sometimes called, helps to develop an under-
standing of the interactions and relationships between the axioms, rules and
theorems. Notwithstanding, our focus is on sequent calculi, another type of
proof systems, in this book. Notably, they are much better suited to search-
ing for proofs, because they refine the notion of proofs themselves. There are
classic texts that contain excellent examples of how to build up a set of useful
theorems from an axiom system.5 We will freely assume, if we need to, that
wff’s, which are known to be theorems of FOL, are provable in K . We leave
it to the interested reader to find their proofs from the axioms.

2.3 Equivalence of LK and K
The two proof systems, K and LK , are equivalent, which means that if A

is a theorem of K , then the sequent ` A is provable in LK , and vice versa.
It is straightforward to prove that every axiom of K is provable in LK . As an
example, we give a proof of axiom (A1).

A ` A
B,A ` A K `

A ` B ⊃ A `⊃

` A ⊃ (B ⊃ A) `⊃

5See, for example, Church [] and Kleene [] as well as Mendelson [].



26 Proof Theory: Sequent Calculi and Related Formalisms

Exercise 2.3.1. Construct proofs in LK of axioms (A2) (A ⊃ (B ⊃ C)) ⊃
((A ⊃ B) ⊃ (A ⊃ C)) and (A3) (¬A ⊃ ¬B) ⊃ ((¬A ⊃ B) ⊃ A) .

Exercise 2.3.2. Prove that the quantificational axioms (A4) and (A5) of K are
theorems of LK . [Hint: See Definition 2.11 on page 23.]

K did not contain all the logical constants of LK as primitives. Therefore,
we have to prove that certain wff’s that are counterparts of the Definitions
(D1)–(D3) in K are provable in LK . Namely, we have to prove the following
six wff’s: (1) (A∨B) ⊃ (¬A ⊃ B) , (2) (¬A ⊃ B) ⊃ (A∨B) , (3) (A∧B) ⊃
¬(A ⊃ ¬B) , (4) ¬(A ⊃ ¬B) ⊃ (A ∧ B) , (5) ∃xA ⊃ ¬∀x¬A and (6)
¬∀x¬A ⊃ ∃xA . We prove (4) and leave the other formulas for an exercise.

¬`
`⊃
`K

A ` A
A ` A,¬B
` A,A ⊃ ¬B
¬(A ⊃ ¬B) ` A

B ` B
` B,¬B `¬

A ` B,¬B K `

` B,A ⊃ ¬B `⊃

¬(A ⊃ ¬B) ` B ¬`

¬(A ⊃ ¬B) ` A ∧ B
` ¬(A ⊃ ¬B) ⊃ (A∧B) `⊃

`∧

Exercise 2.3.3. Prove that the wff’s listed above as (1), (2), (3), (5) and (6) are
also theorems of LK .

The rules of K are detachment, (i.e., (MP)) and universal generalization,
(i.e., (UG)). We have to show that if the premises of these rules are provable
in LK , then so are their respective conclusions.

For modus ponens, we may assume that there are some proof trees rooted
in A and A ⊃ B . We would like to be able to have the following proof tree....

` A

...
` A ⊃ B
` B ?

The ? indicates that there is no rule (or combination of rules) in LK that
we could apply to the premises to obtain the lower sequent. (The horizontal
line is thicker to suggest the possibility that several rules had been applied.)

Exercise 2.3.4. The claim we just made may or may not be obvious. Convince
yourself that chaining together several rules of LK will not help.

We could add the above pattern as a rule to LK , and then we could try to
show that it does not increase the set of provable sequents. Instead, we add
the cut rule mentioned on page 22, which is useful for other purposes too.6

Sometimes, this rule is called the single cut rule, because the premises are
only required to contain an occurrence of C , the cut formula, and exactly one

6This formulation of the cut rule for LK from [] generalizes the one in [].
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of all the occurrences of C is affected in each premise. The left premise of
the rule has to have an occurrence of C in the succedent, whereas the right
premise has to have an occurrence of C in the antecedent for the rule to be
applicable. (C may have further occurrences, but those will be ignored from
the point of view of an application of this rule; they are merely components in
the ∆ ’s and Θ ’s.) The occurrences of C , which are singled out, are replaced
by Γ and Λ , respectively, each of which might comprise several formulas.

If we have the cut rule, then we can show that modus ponens can be emu-
lated in the following way.

cut

...
` A

...
` A ⊃ B

A ` A B ` B
A ⊃ B,A ` B ⊃`

A ` B cut

` B
This chunk of the proof shows that if cut would be included in LK , then

(MP) would be a derived rule. Notice that the first application of the cut rule
suggests more uses for the cut rule beyond emulating detachment. If the for-
mula A ⊃ B is a theorem, then the corresponding sequent ` A ⊃ B could
be obtained only by one of the following two rules: (`K) and (`⊃) . We
could exclude the first, if we would know that ` is not a provable sequent.
Notice that there is a huge difference between this sequent and the sequent
A ` A , which is the axiom of LK . If the sequent with empty antecedent
and empty succedent would be provable, then using the (`K) rule all wff’s
would be theorems. This would be catastrophic for the whole calculus. We
will show that LK is consistent, hence, this sequent is not provable. Then the
last rule must have been (`⊃) . An application of the cut allows us “to take
back” this step.

Cut is a very powerful rule, and we look at it in connection to LK in the
next section, where we also prove its admissibility in LK . Later, in Chapter 7,
we consider further versions and other useful consequences of this rule. For
now, we only record that the single cut rule suffices to mimic in LK the (MP)
rule of K .

The other rule of K is (UG). We have to justify the following step in a proof....
` A(x)
` ∀xA(x)

?

It might seem that we can simply say that we have the rule that we need in
place of ?, namely, (` ∀) . However, this rule has a side condition, which re-
quires that there are no free occurrences of y anywhere in the lower sequent,
which means that the formula ∀xA(x) may not contain such occurrences of
y . However, in (UG), the y is x , and ∀x binds all free occurrences of x . We
note that x is OK for x in any wff, and substituting x in A(x) for all free
occurrences of x yields A(x) . Lastly, the (` ∀) rule does not require that y
and x are distinct. In sum, ? can be replaced by (` ∀) , indeed.
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In the context of axiomatic calculi, it is usual to prove theorems that license
the renaming of bound variables.7 In the context of sequent calculi, the renaming
of free variables, like y ’s in and above the (` ∀) and (∃ `) rules, is essential.

Lemma 2.15. A proof of the sequent Γ ` ∆ may be transformed into a proof of
the same end sequent in which y in the upper sequent of an application of (∃ `) or
(` ∀) occurs only in the subtree rooted in the upper sequent.

Proof: There are finitely many occurrences of applications of these two rules
in any proof, hence, iterating the following step proves the lemma. We select
an application of the two rules that either has no application of (∃ `) or (` ∀)
above it, or if it has, then the variables of all those rules have already been
renamed. We replace all the occurrences of y in the subtree rooted in the
upper sequent by z , which occurs nowhere in the proof. The process yields
a proof from a proof by the following lemma. qed

Lemma 2.16. If a free variable, which is not the y in (∃ `) or in (` ∀) is re-
placed everywhere in the axiom or in a rule by a variable, which is not the y of
(∃ `) or (` ∀) , then the result is an instance of the axiom or of the same inference
rule, respectively.

Proof: For most of the rules, the claim is obvious, since nothing depends
on the concrete shape of the A ’s and B ’s. However, the quantifier rules are
either not restricted, or by the condition of the lemma, the variable entering
the restriction is not renamed. qed

This lemma also shows that we could rename the x in A(x) in the LK
proof imitating (UG), if we would not want to have x in the upper sequent.

Theorem 2.17. (From K to LK ) If A is a theorem of K , then A is a theorem
of LK .

Proof: We only have to combine the components that we already have. K ’s
axioms are theorems of LK , and K ’s rules can be simulated in LK . The
connectives that were defined in K behave appropriately in LK . qed

To view the axiom system and the sequent calculus as equivalent, we need
to show that the converse of the if–then statement in the theorem is true too.
The interpretation of sequents, which we introduced somewhat informally
earlier, comes handy; we make that precise now.

Definition 2.18. For Γ ` ∆ , we define τ(Γ ` ∆) to be
∧
(Γ ) ⊃ ∨(∆) , where∧

and
∨

are as follows.

(1)
∧
( ) := (A ⊃ A)

(2)
∧
(A) := A

7The ancillary role of bound variables is explained by Schönfinkel [].
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(3)
∧
(An+1,An, . . . ,A1) := (An+1 ∧

∧
(An, . . . ,A1))

(4)
∨
( ) := ¬(A ⊃ A)

(5)
∨
(B) := B

(6)
∨
(B1, . . . ,Bm,Bm+1) := (

∨
(B1, . . . ,Bm) ∨ Bm+1)

Obviously, τ(Γ ` ∆) is a wff, and
∧
(Γ ) is a conjunction when Γ is not

empty, whereas
∨
(∆) is a disjunction when ∆ is not empty.

The connectives ∧ and ∨ are defined in K , and they may be proved as-
sociative. This means that we could omit all but the outside parentheses ob-
tained from the wff’s

∧
(Γ ) and

∨
(∆) . The wff’s in (1) and (4) could have

an arbitrary A in it, or A could be a fixed wff. Alternatively, the empty
antecedent of a sequent could be thought of as T and the empty succedent
could be taken to be F , in accordance with (D4) and (D5).

Theorem 2.19. (From LK to K ) If A is a theorem of LK , then A is a theorem
of K .

Proof: What we show is that τ takes the axiom of LK into a theorem, and
further, if the upper sequent(s) of a rule are theorems, then so is the lower
sequent. (The proof is by induction on the height of the proof tree, and we
include here only a small selection of the cases.)
1. τ(A ` A) is A ⊃ A , which is a theorem of K .
2.1. If the last rule is (∧`1) (or (∧`2) ), then τ(A ∧ B, Γ ` ∆) should
follow from τ(A, Γ ` ∆) (or from τ(B, Γ ` ∆) ). The formula ((A ∧ C) ⊃
D) ⊃ ((A ∧ B ∧ C) ⊃ D) (or ((B ∧ C) ⊃ D) ⊃ ((A ∧ B ∧ C) ⊃ D) ) is a
theorem of K ; hence, if its antecedent is provable, then so is its consequent.
(Finding proofs of this and other formulas in K is Exercise 2.3.6.)
2.2. Let us assume that the last rule applied is (`¬) . Then τ(A, Γ ` ∆) has
to imply τ(Γ ` ∆,¬A) . The wff ((A ∧ C) ⊃ D) ⊃ (C ⊃ (D ∨ ¬A)) is a
theorem of K , thus, if τ(A, Γ ` ∆) is a theorem of K , so is τ(Γ ` ∆,¬A) , as
needed.
2.3. If the last rule is (∀ `) , then the formula that should be shown to be a
theorem of K is ((A(y) ∧ C) ⊃ D) ⊃ ((∀xA(x) ∧ C) ⊃ D) . The antecedent
of this wff is τ(A(y), Γ ` ∆) , whereas the consequent is τ(∀xA(x), Γ ` ∆) .
Again, the hypothesis of the induction together with the theorem of K give
the desired conclusion.
2.4. Let us consider (` ∀) . τ(Γ ` ∆,A(y)) is C ⊃ (D ∨A(y)) and τ(Γ `
∆, ∀xA(x)) is C ⊃ (D ∨ ∀xA(x)) . There is no reason why the first formula
would imply the second, but the (` ∀) rule comes with a restriction that
saves the implication. y cannot occur free in the second formula at all, hence,
it certainly cannot occur free in C or D , the antecedent or the disjunct in the
consequent of the wff. With this restriction in place, ∀y (C ⊃ (D ∨A(y))) ⊃
(C ⊃ (D ∨ ∀xA(x))) is a theorem of K .
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3. The theoremhood of B in LK is defined as the provability of ` B . τ
gives (A ⊃ A) ⊃ B , from which we immediately get B , by detachment,
because A ⊃ A is a theorem of K . qed

Exercise 2.3.5. Complete the proof of the previous theorem. [Hint: You may
assume that the wff’s that are necessary for the proof are provable in K .]

Exercise∗ 2.3.6. Prove in K the wff’s that have to be shown to be theorems in
order for the above proof to work. [Hint: Remember that proving theorems
in an axiom system sometimes can get tricky and lengthy.]

2.3.1 Cut rules

We used the single cut rule in the previous section with the promise of
showing it admissible later. A cut rule was introduced by Gentzen in [],
in fact, he included his cut into LK as a structural rule. To be more precise,
the cut rule in [] is not exactly the same rule that we gave on page 22.
Gentzen’s cut rule is cutG :

Γ ` ∆, C C , Θ ` Λ

Γ , Θ ` ∆, Λ
cut G

C must have an occurrence in the premises of cut G , just as we stated for the
cut rule. And, only a single occurrence of C is omitted from ∆, C and C , Θ .

The left and right permutation rules—together with the absence of group-
ing—guarantee that wff’s can be “moved around” both in the antecedent
and in the succedent of a sequent. Thus it may appear at first that it is abso-
lutely unimportant where a formula, for example, the cut formula is placed
within the antecedent and the succedent. Gentzen seems to have preferred
the edges; all the formulas affected by his rules—except those in (C `) and
(`C)—are either first in the antecedent or last in the succedent. (We defined
τ accordingly so that τ yields formulas with a transparent structure.) In
the case of the cut rule, however, such a positioning of the cut formulas is
clearly problematic, because we want to prove the admissibility of the cut.
Gentzen missed this observation, though he obviously realized that the per-
mutation rules must have a more general form than the other rules do. An
insight that one gains from applications of the single cut rule and from proofs
of the admissibility of cut in sequent calculi for non-classical logics is that
the appropriate form of the single cut rule is the one we gave earlier (and not
cut G ). Working with consecution calculi, where the structural connective is
not commutative, is especially helpful to reach this view.

Gentzen introduced LK , more or less, starting from scratch. At the same
time, when we acknowledge the novelty and the cleverness of his sequent
calculus, it may be worthwhile to mention some other problematic features
caused by the particular shape of his rules.
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Pertaining to the edge positioning of formulas is a peculiarity that became
well understood only after the work of Curry [] (that was later reinforced
by Howard []). Consider the following proof.

A ` A B ` B
A ⊃ B,A ` B ⊃`

A ` (A ⊃ B) ⊃ B `⊃

` A ⊃ ((A ⊃ B) ⊃ B) `⊃

The formula A ⊃ ((A ⊃ B) ⊃ B) is a theorem (and a valid wff) of classical
logic; it is called assertion. However, it is not an instance of self-implication
(A ⊃ A ), which is provable from the axiom of LK by one application of
the (`⊃) rule. Assertion is the principal type schema of the combinator CI
(also denoted by T ), with axiom CIxy B yx .8 Obviously, some permutation
is happening in the combinatory axiom, whereas the (C `) rule has not been
applied in the proof displayed above. In other words, the (⊃`) and (`⊃
) rules are mismatched, when we look beyond mere provability of wff’s in
classical or intuitionist logic.

Another complaint is that Gentzen considered cut to be a structural rule.
It turns out that cut is a special and important rule, but has very different
properties than the six other structural rules, which allow the manipulation
of the formulas in the antecedent or in the succedent of one sequent. Cut
combines two sequents—while it drops an occurrence of a formula from each.

The appropriately formulated cut rule can be shown to be admissible by
a straightforward induction. Gentzen, on the other hand, had to devise a
roundabout proof to show the admissibility (really, from his point of view,
the eliminability) of cutG . The mix rule can be shown to be equivalent to cutG
in LK (but not in some other sequent calculi).

Γ ` ∆ Θ ` Λ

Γ , Θ∗ ` ∆∗, Λ
mix

The rule is applicable if there is a wff C such that it occurs both in ∆ and Θ .
∆∗ and Θ∗ stand for ∆ and Θ , respectively, but with all the occurrences of C
omitted.

It is also interesting that this rule is formulated somewhat informally—
there is no notation introduced to locate the occurrences of C . The rule even
may appear not to require the existence of a suitable C (though it does). Mix
is decidedly a strange rule. Instead of the idea of locating one occurrence of
C within ∆ and Θ , Gentzen opted for replacing all occurrences of C with
one copy of each of Γ and Λ . Mix is equivalent to cut G within LK (and also
in LJ ), but this equivalence is peculiar to classical (and to intuitionist) logic.

Lemma 2.20. The cutG rule and the mix rule are equivalent, that is, a sequent is
provable in LK using cut iff it is provable in LK using mix.

8We will say more about combinators and types in Chapters 5 and 9.
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Proof: Let us assume that Γ , Θ ` ∆, Λ is by cutG from the premises Γ ` ∆, C
and C , Θ ` Λ . If ∆, C and C , Θ have no other occurrences of C , then an
application of mix using the same premises yields the same lower sequent.
In general, let there be n occurrences of C in the succedent of the left premise,
and m occurrences of C in the antecedent of the right premise (where n, m ≥
1). Then the following proof segment yields the sequent Γ , Θ ` ∆, Λ . (The
thicker horizontal lines indicate that the sequents above and below may be
separated by more than one step.) If m = 1 or n = 1 , then the thinning and
permutation steps are altogether omitted.

Γ

...
` ∆, C C , Θ

...
` Λ

Γ , Θ∗ ` ∆∗, Λ

Γ , Θ ` ∆∗, Λ
Γ , Θ ` ∆, Λ

`K (n−1×), `C’s

K ` (m−1×), C `’s

mix

We cannot specify the exact numbers of the applications of the (C `) and
(`C) rules, which are necessary to restore the sequence of formulas Γ , Θ∗

to Γ , Θ (and similarly, to derive ∆, Λ from ∆∗, Λ ). (The numbers of appli-
cations of the thinning rules are determined by the numbers of occurrences
of C in Θ and ∆ , respectively.) However, the size of Γ , Θ∗ and that of ∆∗, Λ
clearly induce an upper bound. If the numbers of wff’s in Γ , Θ∗ and in ∆∗, Λ
are i and j , respectively, then the bounds are i · (m− 1) and j · (n− 1) .

Now let cutG be given, and let us assume that in the premises Γ ` ∆
and Θ ` Λ , there are n and m occurrences of C (with n, m ≥ 1). If m =
n = 1 , then one application of cut G yields the same sequent—provided that
the cut formulas are in the right positions in the premises. Finitely many
applications of (`C) to the left premise and finitely many applications of
(C `) to the right premise can ensure that the C ’s are on the edges.

Let us consider the more complicated situation when m 6= 1 or n 6= 1 .

`W’s (m−1×)
`C’s

Γ

...
` ∆

Γ ` ∆∗, Cm

Γ ` ∆∗, C

Θ

...
` Λ

Cn, Θ∗ ` Λ
C `’s

C , Θ∗ ` Λ
W `’s (n−1×)

Γ , Θ∗ ` ∆∗, Λ
cut G

Applications of the permutation rules at the top may or may not be needed,
depending on the concrete shape of ∆ and Θ . If m = 1 or n = 1 , then no
contraction is applied on the left or on the right branch. qed

The proof shows not only how powerful the mix rule is, but also that the
equivalence of this rule and the cutG rule relies on all the structural rules.

Exercise 2.3.7. Consider the second half of the proof above. One can post-
pone the applications of the contraction rules. What does the new proof seg-
ment look like? [Hint: You may want to work out a small concrete example
first, for instance, with the premises A ` C , C ,B and D, C , C , C ` E .]
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There are other parts of LK that could be (and later on, were) sharpened.
The axiom A ` A could be stated in the form p ` p , where p is an atomic
formula (that is, a propositional variable or a predicate followed by suffi-
ciently many terms). There is a proof of the sequent A ⊃ A ` A ⊃ A on
page 20, which is an instance of the original axiom. If we restrict the axiom
to atomic formulas, then it is natural to ask if the modified system (let us say,
LKat ) can prove all the theorems that LK can.

Exercise 2.3.8. Either prove that LK and LKat have the same set of theorems,
or give an example, i.e., a wff, that is provable in one but not in the other
system. [Hint: The inclusion is obvious in one direction.]

As the last remark concerning certain peculiarities of LK , let us note a dis-
crepancy in the formulation of the two-premise rules. The (`∧) and (∨`)
rules assume that the two premises are identical except A and B . On the
other hand, the (⊃`) rule does not prescribe that Γ and Θ , or ∆ and Λ are
the same. The rule could have been formulated instead as follows.

Γ ` ∆,A B, Γ ` ∆

Γ ,A ⊃ B ` ∆
⊃`e

We switched A ⊃ B to the other edge in the antecedent (in view of our pre-
vious complaint related to typing), but the main difference is that now A
and B must be proved in the same sequents, though on different sides of the
turnstile. The subscript e is to indicate that this is the genuinely extensional
version of the (⊃`) rule. The distinction between intensional and exten-
sional connectives, which are otherwise alike or similar, will be explained in
more detail in Chapter 5. (The (⊃`) rule is due to O. Ketonen.)

Classical logic cannot distinguish between the connectives that are intro-
duced on the left by the two rules (⊃`) and (⊃`e) . But Gentzen defined
LK with an eye toward LJ (which we will look at in Chapter 3).9 The rule
(⊃`) has an advantage over (⊃`e) , if one wants to define LJ by simply re-
stricting the number of wff’s on the right-hand side of the ` to at most one.

Exercise 2.3.9. Show that (⊃`e) is a derivable rule in LK . Conversely, prove
that if the left introduction rule for ⊃ is (⊃`e) , then (⊃`) is derivable
(when the rest of LK is kept unchanged).

We listed some features of the original formulation of LK that later turned
out to be puzzling, undesirable or suboptimal. To further motivate our for-
mulation of the cut rule, let us consider the sequent calculus again as a sys-
tem to reason about inferences. The right premise of the cut rule says that Λ
can be derived from Θ1, C , Θ2 . If from Γ the formula C is derivable within
∆1 and ∆2 (as given by the left premise), then placing Γ in the spot where
C is (that is, starting with Θ1, Γ , Θ2 ), should suffice for the derivation of Λ
within ∆1 and ∆2 (that is, ∆1, Λ, ∆2 ).

9See [] for more historical considerations.
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The two cut rules, cut and cut G are, obviously, equivalent in LK , and from
now on, we always mean our single cut rule (rather than cutG ). There are
other versions of the cut rule such as multi-cut (cf. p. 145). The latter version
of cut has its own problems with respect to proofs of admissibility.10 We
think that proving the cut rule, which is a single cut rule, admissible by a
direct proof—as below—is superior to other approaches. In order to prove
the admissibility of the cut rule, we introduce a series of new concepts. Some
of them characterize the roles various formulas play in a rule; others pertain
to proofs in which there is an application of the cut rule.

Definition 2.21. (Degree of a wff) The degree of a formula A is denoted
by δ(A) , and it is defined inductively by (1)–(7).

(1) δ(p) = 0 , where p is an atomic formula;

(2) δ(¬A) = δ(A) + 1 ;

(3) δ(A∧B) = max(δ(A), δ(B)) + 1 ;

(4) δ(A∨B) = max(δ(A), δ(B)) + 1 ;

(5) δ(A ⊃ B) = max(δ(A), δ(B)) + 1 ;

(6) δ(∀xA) = δ(A) + 1 ;

(7) δ(∃xA) = δ(A) + 1 .

The degree of a formula is a natural number assigned to the formula,
which indicates the complexity of the formula. (This is not the only possible
way though to describe the complexity of a formula by a natural number.)
Formulas can be represented as trees with atomic formula occurrences label-
ing the leaves and the intermediate nodes labeled by occurrences of connec-
tives or quantifiers. Then the degree of a formula corresponds to the height
of the formation tree of the formula minus one.

Next we provide an analysis (in the sense of Curry []) for the rules of
the calculus. Clearly, some formulas are simply copied from the upper se-
quent(s) to the lower sequent, whereas others are combined, modified, or at
least, moved around. We introduce three categories of formulas: principal
formulas, subalterns and parametric formulas.

Informally, the categories capture certain types of behaviors of formulas
that we describe briefly. A principal formula is a formula in the lower se-
quent of a rule, which is in the center of attention or it is the formula that
is introduced by the rule. A subaltern is a formula in an upper sequent in
a rule that is intimately connected to the principal formula, most frequently,
because it is a proper subformula of the principal formula, but sometimes it
is an occurrence of the same formula as the principal formula. A paramet-
ric formula is either in the lower or in the upper sequent, but it is neither a

10See [, §61] where there is a work-around, and [] where difficulties remain.
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principal formula nor a subaltern. Parametric formulas are in the sequents,
because the sequent calculus is formulated to reason about consequences,
which may involve more than two or three wff’s; hence, some formulas are
not in the spotlight, so to speak, in some proof steps.

Definition 2.22. (Analysis) We consider each rule, and identify the princi-
pal formulas and the subalterns. All the other formulas are parametric.
(∧`1) , (∧`2) and (`∧) . The principal formula is A ∧ B . There is one
subaltern in the left introduction rules, depending on whether A or B occurs
at the edge of the upper sequent. In (`∧) , both A and B are subalterns.
(∨`) , (`∨1) and (`∨2) . The principal formula is A ∨ B . A and B are
subalterns in (∨`) , and whichever of them occurs at the far right in the
succedent is the subaltern in (`∨1) and (`∨2) .
(¬`) and (`¬) . The principal formula is ¬A , and the subaltern is the dis-
played A in both rules.
(⊃`) and (`⊃) . The principal formula is A ⊃ B with the subalterns being
the two immediate proper subformulas, A and B , which are displayed in
the rules.
(∀ `) and (` ∀) . The principal formula is ∀xA(x) , whereas the subaltern is
the A(y) at the edge.
(∃ `) and (` ∃) . The principal formula is ∃xA(x) , and the subaltern is the
displayed A(y) .
(K `) and (`K) . The principal formula is the newly introduced A . These
rules are exceptional in the sense that there is no subaltern in either of them.
(W `) and (`W) . The principal formula is A in the lower sequent. The
two displayed occurrences of the same formula in the upper sequent are the
subalterns.
(C `) and (`C) . The principal formulas are the B and A in the lower se-
quent, and the subalterns are A and B in the upper sequent.

The descriptions should make it clear, but it is perhaps useful to empha-
size that we label as principal formulas or subalterns only the formula oc-
currences that are explicit in the formulation of the rules. From the point of
view of easy identification of subalterns and principal formulas, it is help-
ful that the formulas affected by the rules are at the edge of the antecedent
or succedent—except in the permutation rules. (Later on, we will see other
ways that help with the identification.)

Definition 2.23. (Parametric ancestors) A formula A (occurring in a se-
quent higher in the proof tree) is a parametric ancestor of a formula A (occur-
ring in a sequent lower in the proof tree) iff the two formulas are related via
the transitive closure of the relation specified in (1)–(3).

(1) A parametric formula A in an upper sequent of a rule is a parametric
ancestor of the same A in the lower sequent of the rule;
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(2) the subalterns in (C `) and (`C) are parametric ancestors of the corre-
sponding principal formulas in the lower sequent of the rules;

(3) the subalterns in the (W `) and (`W) rules are parametric ancestors of
the principal formula in the lower sequent of the rules.

Parametric ancestors allow us to trace formulas upward in the proof tree,
which provides a more refined view of proofs than if we would rely simply
on occurrences of formulas. All the parametric ancestors of A look like A ,
and they are called parametric because they are often—though not always—
parametric formulas with respect to the application of a rule. A useful obser-
vation is that all parametric ancestors of a wff A occur on the same side of
the ` where A itself does.

Let us assume that we are given a proof containing an application of the
cut rule. We define the three parameters that the inductive proof relies on.

Definition 2.24. (Degree of cut) The degree of an application of the cut rule,
δ , is the degree of the cut formula, C .

Definition 2.25. (Contraction measure of cut) The contraction measure of
an application of the cut rule, µ , is the number of applications of (W `) and
(`W) rules to parametric ancestors of the cut formula.11

Definition 2.26. (Rank of cut) The left rank of (an application of) the cut
rule, %l , is 1+ the maximal number of consecutive sequents (from the left
premise upward) in the subtree rooted in the left premise in which paramet-
ric ancestors of the cut formula occur in the succedent.

The right rank of (an application of) the cut rule, %r , is 1+ the maximal
number of consecutive sequents (from the right premise upward) in the sub-
tree rooted in the right premise in which parametric ancestors of the cut for-
mula occur in the antecedent.

The rank of (an application of) the cut rule, % , is the sum of the left and
right ranks.

Obviously, δ , µ and % are all natural numbers; δ,µ ≥ 0 . Moreover, %
is positive, and at least 2 , because %l ≥ 1 and %r ≥ 1 . Our definition of
rank is different from a similar notion in []; but to maintain the least value
for % = 2 , we have “1+” in our definition—as if we were counting the cut
formula as its own ancestor or the sequent that is the premise of the cut.

Theorem 2.27. (Cut theorem) The cut rule is admissible in LK .

We will prove that if a sequent is provable with applications of the cut rule,
then it is provable without using the cut rule. The cut rule is not a derived
rule, that is, there is no way, in general, to obtain the lower sequent from the
premises by applications of the rules of LK .

11The notion of contraction measures was introduced in [], for LEt
→ . The idea of having this

new parameter in an inductive proof comes from certain observations recorded in [].
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Exercise 2.3.10. Prove the claim in the last sentence. [Hint: Construct a con-
crete proof with an application of the cut rule.]

The proof we give is constructive (or effective), and it is proof-theoretical,
that is, it does not appeal to the interpretation of the sequents. Effectiveness
means that given a proof containing applications of the cut rule, one can pro-
duce a proof of the end sequent without cut using appropriate cases from the
proof of the cut theorem. There are other methods to prove a cut rule admis-
sible; in Section 7.6, we present a proof of a cut theorem that is semantical
and is not effective.

In the steps of the proof, we will specify local changes to be made to the
given proof tree—unlike in some other proofs, where global modifications of
the proof tree are stipulated (cf. Section 7.4). In other words, the steps will
not require replacement of formulas throughout a subtree of the proof tree,
though we sometimes will assume that it is possible to copy a subtree.

Proof (Cut theorem): The proof is by triple induction on δ , µ and % , and by
an induction on the number of applications of the cut rule in a proof.12

Our strategy is to make clear the overall structure of the proof, and to indicate
all the cases that need to be considered. However, when we reach a point
where a pattern may be discerned, we will insert exercises, and omit writing
out all the details. We will give a proof segment with an application of the
cut rule, then after a  , the transformed proof segment.
1.1 〈% = 2,µ = 0, δ = 0〉 is the case when each parameter has its least
value. There are four pairs of rules or axioms that allow an application of the
cut rule.
(a) 〈id, id〉

cut
p ` p p ` p

p ` p
 p ` p

(b) 〈`K, id〉

cut

`K
Γ

...
` ∆

Γ ` ∆, p p ` p
Γ ` ∆, p

 Γ

...
` ∆

Γ ` ∆, p
cut

(c) 〈id, K `〉

cut
p ` p

Γ

...
` ∆

p, Γ ` ∆
K `

p, Γ ` ∆
 Γ

...
` ∆

p, Γ ` ∆
K `

12For a double induction in a similar context, see [, p. 454]. We provide more details on the
structure of the triple inductive proof in Section A.2 in the Appendix.
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(d) 〈`K, K `〉

cut

`K
Γ

...
` ∆

Γ ` ∆, p
Θ

...
` Λ

p, Θ ` Λ
K `

Γ , Θ ` ∆, Λ
 

Γ

...
` ∆

Γ , Θ ` ∆
K `’s, C `’s

Γ , Θ ` ∆, Λ
`K’s

In each pairing, the cut is directly eliminated from the proof.

1.2 〈% = 2,µ = 0, δ > 0〉 allows more variety in pairing rules and the
axiom. There are 40 cases in total. (In order to save space, we will almost
always omit—from now on until the end of the section—adding

... in place
of the subtrees above the premises. However, it should be understood that
only instances of the axiom (id) are leaves in a proof tree.)

Exercise 2.3.11. The four pairs considered in 1.1 are possible again. Verify
those cases. [Hint: Consider is the degree of the cut formula plays a role.]

(a) 〈` ∧,∧`1〉

cut

`∧
Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A∧B
A, Θ ` Λ

A∧B, Θ ` Λ
∧`1

Γ , Θ ` ∆, Λ
 Γ ` ∆,A A, Θ ` Λ

Γ , Θ ` ∆, Λ
cut

(b) 〈` ∧,∧`2〉

cut

`∧
Γ ` ∆,A Γ ` ∆,B

Γ ` ∆,A∧B
B, Θ ` Λ

A∧B, Θ ` Λ
∧`2

Γ , Θ ` ∆, Λ
 Γ ` ∆,B B, Θ ` Λ

Γ , Θ ` ∆, Λ
cut

Exercise 2.3.12. Work out the details for the pairings of disjunction rules.

(c) 〈` ¬,¬`〉

cut

`¬
A, Γ ` ∆

Γ ` ∆,¬A
Θ ` Λ,A
¬A, Θ ` Λ

¬`

Γ , Θ ` ∆, Λ
 

Θ ` Λ,A A, Γ ` ∆

Θ, Γ ` Λ, ∆
Γ , Θ ` ∆, Λ

C `’s, `C’s

cut

(d) 〈`⊃,⊃`〉

cut

`⊃
A, Γ ` ∆,B
Γ ` ∆,A ⊃ B

Θ ` Λ,A B, Ξ ` Ψ

A ⊃ B, Θ, Ξ ` Λ, Ψ
⊃`

Γ , Θ, Ξ ` ∆, Λ, Ψ
 

 cut

cut
Θ ` Λ,A A, Γ ` ∆,B

Θ, Γ ` Λ, ∆,B B, Ξ ` Ψ
Θ, Γ , Ξ ` Λ, ∆, Ψ
Γ , Θ, Ξ ` ∆, Λ, Ψ

C `’s, `C’s
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(e) 〈` ∃, ∃ `〉

cut

` ∃
Γ ` ∆,A(y)

Γ ` ∆, ∃xA(x)
A(z), Θ ` Λ

∃xA(x), Θ ` Λ
∃ `

Γ , Θ ` ∆, Λ
 Γ ` ∆,A(y) A(y), Θ ` Λ

Γ , Θ ` ∆, Λ
cut

(f) 〈` ∀, ∀ `〉

cut

` ∀
Γ ` ∆,A(z)

Γ ` ∆, ∀xA(x)
A(y), Θ ` Λ

∀xA(x), Θ ` Λ
∀ `

Γ , Θ ` ∆, Λ
 Γ ` ∆,A(y) A(y), Θ ` Λ

Γ , Θ ` ∆, Λ
cut

The cases (a)–(f) are justified by a reduction in the degree of the cut formula.
For (e) and (f), we note that Lemma 2.15 ensures that the variable z can be
renamed in the subtrees above A(z) .

There are four connectives and two quantifiers, which gives 7 right rules
and 7 left rules. They can be paired with the axiom or a thinning rule. We
summarize the 28 cases in the next four patterns, assuming > ∈ {∧,∨,¬,⊃,
∃, ∀ } .
(g) 〈`>, id〉

cut

`>
...

Γ ` ∆, C C ` C
Γ ` ∆, C  

...
Γ ` ∆, C `>

(h) 〈id,>`〉

cut
C ` C

...
C , Γ ` ∆

>`

C , Γ ` ∆
 

...
C , Γ ` ∆

>`

(i) 〈`>, K `〉

cut

`>
...

Γ ` ∆, C
Θ

...
` Λ

C , Θ ` Λ
K `

Γ , Θ ` ∆, Λ
 

Θ

...
` Λ

Γ , Θ ` Λ
K `’s

Γ , Θ ` ∆, Λ
`K’s, `C’s

(j) 〈`K,>`〉

cut

`K
Θ

...
` Λ

Θ ` Λ, C

...
C , Γ ` ∆

>`

Θ, Γ ` Λ, ∆
 

Θ

...
` Λ

Θ ` Λ, ∆
`K’s

Θ, Γ ` Λ, ∆
K `’s, C `’s

The cut rule is eliminated in each case in (g)–(j).

Exercise 2.3.13. Choose at least 4 logical constants and write out an instance
of the last four cases. [Hint: Convince yourself that the patterns given cap-
ture all the 28 cases.]
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1.3 〈% > 2,µ = 0, δ = 0〉 can happen when %l > 1 or %r > 1 . We assume
the former; then we have 23 cases, depending on which rule was applied in
the left premise of the cut. In the operational rules, even if the rule is a right
rule, the principal formula cannot be the cut formula, because %l > 1 . The
principal formula of (`W) cannot be the cut formula, because µ = 0 .
(a) 〈`K, 〉

cut

`K
Γ ` ∆1, C , ∆2

Γ ` ∆1, C , ∆2,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A  

Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
cut

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A `K

(b) 〈`C, 〉

cut

`C
Γ ` ∆1, C ,D, ∆2

Γ ` ∆1,D, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1,D, Λ, ∆2
 

 

Γ ` ∆1, C ,D, ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ,D, ∆2
cut

Θ1, Γ , Θ2 ` ∆1,D, Λ, ∆2
`C’s

Exercise 2.3.14. Create two other cases with the (`C) rule.

(c) 〈` ∧, 〉

cut

`∧
Γ ` ∆1, C , ∆2,A Γ ` ∆1, C , ∆2,B

Γ ` ∆1, C , ∆2,A∧B Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A∧B  

 

Γ ` ∆1, C , ∆2,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A
Γ ` ∆1, C , ∆2,B Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,B cuts

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A∧B `∧

(d) 〈` ∨1, 〉

cut

`∨1
Γ ` ∆1, C , ∆2,A

Γ ` ∆1, C , ∆2,A∨B Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A∨B  

 

Γ ` ∆1, C , ∆2,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A cut

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A∨B `∨1

Exercise 2.3.15. Detail the case with the (`∨2) rule.
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(e) 〈`⊃, 〉

cut

`⊃
A, Γ ` ∆1, C , ∆2,B
Γ ` ∆1, C , ∆2,A ⊃ B Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A ⊃ B  

 A, Γ ` ∆1, C , ∆2,B Θ1, C , Θ2 ` Λ

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2,B
A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,B

C `’s

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A ⊃ B `⊃

cut

(f) 〈` ¬, 〉

cut

`¬
A, Γ ` ∆1, C , ∆2

Γ ` ∆1, C , ∆2,¬A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,¬A  

 A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2

A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,¬A `¬

cut

(g) 〈` ∃, 〉

cut

` ∃
Γ ` ∆1, C , ∆2, A(y)

Γ ` ∆1, C , ∆2, ∃x A(x) Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2, ∃x A(x)
 

 

Γ ` ∆1, C , ∆2, A(y) Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2, A(y)
cut

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2, ∃x A(x)
` ∃

(h) 〈` ∀, 〉

cut

` ∀
Γ ` ∆1, C , ∆2, A(z)

Γ ` ∆1, C , ∆2, ∀x A(x) Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2, ∀x A(x)
 

 

Γ ` ∆1, C , ∆2, A(y) Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2, A(y)
cut

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2, ∀x A(x)
` ∀

Exercise 2.3.16. Scrutinize and explain the transformation in (h).

(i) 〈`W, 〉

cut

`W
Γ ` ∆1, C , ∆2,A,A
Γ ` ∆1, C , ∆2,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A  
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Γ ` ∆1, C , ∆2,A,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A,A cut

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A `W

(j) 〈W `, 〉

cut

W `
A,A, Γ ` ∆1, C , ∆2

A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2
 

 A,A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A,A, Γ , Θ2 ` ∆1, Λ, ∆2

A,A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2

A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

W `

C `’s

cut

(k) 〈K `, 〉

cut

K `
Γ ` ∆1, C , ∆2

A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2
 

 Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2

A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
K `

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

cut

(l) 〈C `, 〉

cut

C `
Γ1,A,B, Γ2 ` ∆1, C , ∆2

Γ1,B,A, Γ2 ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ1,B,A, Γ2, Θ2 ` ∆1, Λ, ∆2
 

 

Γ1,A,B, Γ2 ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, Γ1,A,B, Γ2, Θ2 ` ∆1, Λ, ∆2
cut

Θ1, Γ1,B,A, Γ2, Θ2 ` ∆1, Λ, ∆2
C `

(m) 〈∧ `1, 〉

cut

∧`1
A, Γ ` ∆1, C , ∆2

A∧B, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A∧B, Γ , Θ2 ` ∆1, Λ, ∆2
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 A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2

A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

A∧B, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
∧`1

Θ1,A∧B, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

cut

Exercise 2.3.17. Write out the details for the case with rule (∧`2) . [Hint: It
is practically the same as (m).]

(n) 〈∨ `, 〉

cut

∨`
A, Γ ` ∆1, C , ∆2 B, Γ ` ∆1, C , ∆2

A∨B, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A∨B, Γ , Θ2 ` ∆1, Λ, ∆2
 

 

A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A, Γ , Θ2 ` ∆1, Λ, ∆2

A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2

B, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,B, Γ , Θ2 ` ∆1, Λ, ∆2

B, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

cuts

A∨B, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2

Θ1,A∨B, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

∨`

(o) 〈¬ `, 〉

cut

¬`
Γ ` ∆1, C , ∆2,A
¬A, Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,¬A, Γ , Θ2 ` ∆1, Λ, ∆2
 

 

Γ ` ∆1, C , ∆2,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A cut

¬A, Θ1, Γ , Θ2 ` ∆1, Λ, ∆2

Θ1,¬A, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

¬`

(p) 〈⊃ `, 〉

cut

⊃`
Γ ` ∆1, C , ∆2,A B, Ξ ` Ψ

A ⊃ B, Γ , Ξ ` ∆1, C , ∆2, Ψ Θ1, C , Θ2 ` Λ

Θ1,A ⊃ B, Γ , Ξ, Θ2 ` ∆1, Λ, ∆2, Ψ
 

 
cut

Γ ` ∆1, C , ∆2,A Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆1, Λ, ∆2,A B, Ξ ` Ψ

A ⊃ B, Θ1, Γ , Θ2, Ξ ` ∆1, Λ, ∆2, Ψ

Θ1,A ⊃ B, Γ , Ξ, Θ2 ` ∆1, Λ, ∆2, Ψ
C `’s

⊃`
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(q) 〈⊃ `, 〉

cut

⊃`
Γ ` ∆,A B, Ξ ` Ψ1, C , Ψ2

A ⊃ B, Γ , Ξ ` ∆, Ψ1, C , Ψ2 Θ1, C , Θ2 ` Λ

Θ1,A ⊃ B, Γ , Ξ, Θ2 ` ∆, Ψ1, Λ, Ψ2
 

 Γ ` ∆,A

B, Ξ ` Ψ1, C , Ψ2 Θ1, C , Θ2 ` Λ

Θ1,B, Ξ, Θ2 ` Ψ1, Λ, Ψ2
cut

B, Θ1, Ξ, Θ2 ` Ψ1, Λ, Ψ2
C `’s

A ⊃ B, Γ , Θ1, Ξ, Θ2 ` ∆, Ψ1, Λ, Ψ2

Θ1,A ⊃ B, Γ , Ξ, Θ2 ` ∆, Ψ1, Λ, Ψ2
C `’s

⊃`

(r) 〈∃ `, 〉

cut

∃ `
A(z), Γ ` ∆1, C , ∆2

∃xA(x), Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, ∃xA(x), Γ , Θ2 ` ∆1, Λ, ∆2
 

 A(y), Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A(y), Γ , Θ2 ` ∆1, Λ, ∆2

A(y), Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

∃xA(x), Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
∃ `

Θ1, ∃xA(x), Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

cut

(s) 〈∀ `, 〉

cut

∀ `
A(y), Γ ` ∆1, C , ∆2

∀xA(x), Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1, ∀xA(x), Γ , Θ2 ` ∆1, Λ, ∆2
 

 A(y), Γ ` ∆1, C , ∆2 Θ1, C , Θ2 ` Λ

Θ1,A(y), Γ , Θ2 ` ∆1, Λ, ∆2

A(y), Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

∀xA(x), Θ1, Γ , Θ2 ` ∆1, Λ, ∆2
∀ `

Θ1, ∀xA(x), Γ , Θ2 ` ∆1, Λ, ∆2
C `’s

cut

The transformations in (a)–(s) are justified by a reduction in %l . The shape
of the cut formula has not changed, hence, δ is unchanged. For the same
reason, the decrease in rank cannot change µ .

Exercise 2.3.18. Take a look at the cases in 1.3. Do the transformations intro-
duce applications of a rule that was not used in the given proof segment?
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Exercise 2.3.19. Again, look at the cases. Could they be presented more com-
pactly by grouping some of them together? [Hint: You may consider whether
a one-premise or a two-premise rule was applied, or whether the rule is a left
rule or a right rule.]

1.4 〈% > 2,µ = 0, δ > 0〉 with %l > 1 gives rise to a similar set of cases as
1.3 did. (Incidentally, we used C for the cut formula in 1.3 without placing
any restrictions on C .)

Exercise 2.3.20. Explain why there is no difference between the cases when
δ = 0 and when δ > 0 . [Hint: You probably will have to appeal to the
definitions of rank, contraction measure and the cut being a single cut.]

1.5 〈% > 2,µ > 0, δ = 0〉 and %l > 1 leads to similar cases as in 1.3 with a
new case added when the cut formula is the principal formula of (`W) .

Exercise 2.3.21. Create all the possible cases “from scratch” and compare
your list with the cases in 1.3. [Hint: LK is defined on page 17.]

(a) 〈`W, 〉

cut

`W
Γ ` ∆, C , C
Γ ` ∆, C Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆, Λ
 

 
cut

Γ ` ∆, C , C Θ1, C , Θ2 ` Λ

Θ1, Γ , Θ2 ` ∆, Λ, C Θ1, C , Θ2 ` Λ

Θ1, Θ1, Γ , Θ2, Θ2 ` ∆, Λ, Λ

Θ1, Γ , Θ2 ` ∆, Λ
C’s, W’s

cut

The transformation is justified by a decrease in the contraction measure of the
cut—for both cuts. The first cut, in addition, has a lower rank, but the second
cut may have the same rank as the cut in the given proof chunk. However,
that is not a problem, because the contraction measure is decreased by at
least one.
1.6 〈% > 2,µ > 0, δ > 0〉 with %l > 1 generates the same pairings as in 1.5.

Exercise 2.3.22. Verify that the greater degree of the cut formula is not an
impediment to the transformations in 1.5.

1.7 〈% > 2,µ = m, δ = d〉 , where %r > 1 leads to duals of the cases in 1.3–1.6.
The cases can be dealt with similarly as before.

This concludes the proof. qed

We contend, that ours is the most elegant proof of the admissibility of the
single cut rule for LK .

Exercise∗ 2.3.23. Write out in detail all the cases. [Hint: If you do not bunch
cases together, then there are many cases.]
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Exercise 2.3.24. Once you are certain that the cut proof works, design a com-
pact way to present the cases.

Exercise 2.3.25. Having the details of the triple inductive proof of cut, ex-
plain why a double induction (without µ ) works for mix but not for cut G
(or the cut rule).

The transformations in the proof could be viewed as a non-deterministic
algorithm, because if %l > 1 and %r > 1 , then no order is specified on appli-
cable subcases. This is not how Gentzen specified his double induction in the
proof of the admissibility of the mix rule. In the case of LK , we could require
either that %r must be reduced first, and then the assumption %l > 1 may
be strengthened with adding %r = 1 , or the other way around. Imposing an
order on the steps in cut elimination process may be advantageous in some
other sequent calculi, which have exactly one formula on the right-hand side
of the ` and have a richer language than classical logic does. However, LK
enjoys an almost complete left–right symmetry.

2.4 Interpretations, soundness and completeness

The previous sections have not given a rigorous interpretation of the for-
mulas and sequents. We used notation that may be familiar from other pre-
sentations of classical logic or suggestive of the intended meaning of the for-
mal expressions, but it is time to put a formal interpretation in place. The
interpretation that we present follows the approach that is usual nowadays:
it defines inductively the notion of a structure, also called a model, satisfying
(or making true) a wff. Then we extend this notion to sequents in a straight-
forward way, which is in accordance with viewing the comma as ∧ or ∨—as
in Definition 2.18 or in the informal sense we introduced on page 21.

Definition 2.28. (Classical models) A classical model M is a triple 〈D, I, v〉 ,
where D is a non-empty set of objects, the domain of interpretation; I is a func-
tion, the interpretation function satisfying conditions (1)–(4) below; and v is a
function, the valuation function that interprets individual variables into D .

(1) If t is a name constant, then I(t) ∈ D ;

(2) if f n is an n -ary function symbol, then I( f ) ∈ DDn
;

(3) if p is a propositional variable, then I(p) ∈ { T, F } (where T, F /∈ D ;
they stand for the two truth values);

(4) if Pn is an n -place predicate, then I(P) ⊆ Dn .
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This definition does not specify the cardinality of D , which is sometimes
called the universe of discourse. Nor does it define a unique structure; in other
words, there is more than one, indeed, there are infinitely many models—
though some wff’s are true only in finitely many models. The variability of
the interpretations of non-logical components is in contrast with the inter-
pretation of the logical particles, which are fixed by Definition 2.30 below.

In order to make the definition of satisfaction smooth, we introduce a func-
tion, denoted by i , which gives the denotation of a term. An atomic term can
be a constant or a variable, and a function symbol can take either kind of
atomic term as its argument, as well as it can have a complex term as its
argument. Clearly, I and v are sufficient to compute the denotation of a
term in a bottom-up fashion, thus i ’s role is merely to make the presentation
easier, rather than to add something new to an interpretation.

Definition 2.29. (Denotation of terms) If t is a term, then the denotation
of t , denoted by i(t) , is determined by a classical model M = 〈D, I, v〉 in
accordance with (1)–(3).

(1) If t is a name constant, then i(t) = I(t) ;

(2) if t is a variable, then i(t) = v(t) ;

(3) if t is of the form f n(t1, . . . , tn) , where t1, . . . , tn are terms and f n is a
function symbol, then i( f (t1, . . . , tn)) = I( f )(i(t1), . . . , i(tn)) .

It is an easy induction on the structure of terms to prove that i is well-
defined, that is, i is a total function on the set of terms, and maps each term
into an element of D .

We introduce a further notational device to indicate the pointwise modifica-
tion (including null or no modification) for valuation functions. By v[x : d]
(where d ∈ D ) we mean a function such that for any y that is (syntactically)
not identical to the variable x , v(y) = v[x : d](y) , whereas v[x : d](x) = d .
Obviously, if v(x) = d , then literally v[x : d] does not modify v at all, and
we label this as null modification. Otherwise (i.e., when v(x) 6= d ), v[x : d]
differs from v in exactly one place, in the value for x .

Definition 2.30. (Truth in classical models) Let M = 〈D, I, v〉 be a classi-
cal model. The relation M �v A is defined recursively by (1)–(10). (We omit
M , as well as v , when they are unaltered in a clause.)

(1) � T and 2 F (i.e., F is never satisfied);

(2) � p iff I(p) = T ;

(3) � t1 = t2 iff i(t1) = i(t2) ;

(4) if Pn is an n -place predicate (other than = ) and t1, . . . , tn are terms,
then � P(t1, . . . , tn) iff 〈i(t1), . . . , i(tn)〉 ∈ I(P) ;
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(5) � ¬A iff 2 A , that is, not � A ;

(6) � A∧B iff � A and � B ;

(7) � A∨B iff � A or � B ;

(8) � A ⊃ B iff 2 A or � B ;

(9) �v ∀xA(x) iff for any v[x : d] , �v[x:d] A(x) ;

(10) �v ∃xA(x) iff there is a v[x : d] such that �v[x:d] A(x) .

M �v A is read as “the model M with the valuation v satisfies (or makes
true) the wff A .” In most of the clauses, v may be left implicit, because M
includes v . The definition makes clear that given a model M , the truth of a
formula A is completely determined by M itself. Although v ’s pointwise
modification must be considered in (9) and (10), which yield models of the
form M′ = 〈D, I, v[x : d]〉 , the d ’s are chosen from D , which is a compo-
nent of M . (9) and (10) differ from the rest of the clauses, because they show
that quantification is not compositional. In the case of quantificational formu-
las, the semantic values of the component expressions are not sufficient to
compute the semantic value of the complex formula.

Exercise 2.4.1. Are the next four formulas satisfiable or not? (a) (∃x ∀y R(x, y)
⊃ ∀y ∃x R(x, y)) , (b) (∀x (P(x) ⊃ ∃y P(y)) ⊃ (∃x P(x) ⊃ ∃y P(y))) ,
(c) (∀x (∀x¬P(x) ⊃ Q(x)) ⊃ ∀y (¬Q(y) ⊃ P(y))) , (d) (∀x ∀y ∀z ((R(x, y) ∧
R(y, z)) ⊃ R(x, z)) ∧ (∀x ∃y R(x, y) ∧ ∀x ∀y (R(x, y) ⊃ ¬R(y, x)))) . [Hint:
Use the semantic notions introduced so far to substantiate your claims.]

Definition 2.31. (Validity in classical models) A is logically valid (or valid,
for short) in classical models iff M �v A for all M , that is, the wff A is true
in all classical models.

The definition can be rephrased—equivalently—to state that A is valid
when given any domain D and any interpretation function I , all valuations
v make A true.

Exercise 2.4.2. Determine if the following wff’s are logically valid or not. (a)
(∃x (P(x) ∧ ∀y (Q(y) ⊃ R(x, y))) ⊃ ∀x (Q(x) ⊃ ∃y (P(y) ∧ R(y, x)))) , (b)
(∀x (P(x) ⊃ Q(x)) ⊃ ∃y (P(y) ∧Q(y))) , (c) ((∀x P(x) ∨ ∀y Q(y)) ⊃
∀z (¬P(z) ⊃ Q(z))) , (d) ∃x ∃y (x = y∧ (P(x) ⊃ P(y))) . [Hint: The negation
of a valid wff is not satisfiable.]

Definition 2.18 allows us to view a sequent as a wff. If we think of A in
clauses (1) and (4) of the definition as a fixed wff, then τ is a function, that is,
every sequent is mapped into a unique formula.

Exercise 2.4.3. Prove that τ is a well-defined function, that is, for each se-
quent Γ ` ∆ , τ(Γ ` ∆) is a wff. Is it true that if τ(Γ ` ∆) is the same wff as
τ(Γ ′ ` ∆′) , then Γ ` ∆ is Γ ′ ` ∆′ ?
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The soundness and completeness theorems guarantee that the proof sys-
tem is adequate with respect to the intended interpretation. Our focus in this
book is on proof systems; hence, we only outline the proofs of the next three
theorems and do not give many details. (We exclude T , F and = , as well as
the f ni

i ’s from consideration, as before.)

Theorem 2.32. (Soundness, 1) If Γ ` ∆ is a provable sequent, then τ(Γ ` ∆)
is a logically valid formula.

Proof: We outline the structure of the proof and detail two steps. The rest of
the proof is relegated to an exercise.

The proof is by induction on the height of the proof tree. If the height is
1 , then the sequent is provable, because it is an instance of the axiom. Oth-
erwise, the bottom sequent in the proof is by a rule, and one has to consider
the possible cases rule by rule.
1. If the sequent is of the form A ` A , then τ(A ` A) is A ⊃ A . For
this wff not to be logically valid, there should be a model M such that M 2v
A ⊃ A . The latter, by clause (8) from Definition 2.30, means that M �v A
and M 2v A . This is obviously impossible in a classical model.
2. Let us assume that the last rule applied in the proof is (K `) , in partic-
ular, let the shape of the lower sequent be A, Γ ` ∆ . The hypothesis of the
induction is that τ(Γ ` ∆) is valid. By Definition 2.18, τ(Γ ` ∆) is C ⊃ D ,
and τ(A, Γ ` ∆) is (A ∧ C) ⊃ D . If M 2v (A ∧ C) ⊃ D , for some M ,
then M �v A ∧ C but M 2v D . However, then also M �v C , which is a
contradiction. qed

Exercise 2.4.4. Consider the 19 other rules (counting each of (∧`) and
(`∨) as two rules). [Hint: The steps are straightforward.]

Informally, the idea behind the soundness proof is that an instance of the
axiom is logically valid, and the rules—whether operational or structural—
preserve validity.

The soundness theorem is often summarized by saying that theorems are
valid. Definition 2.9 introduced the notion of theoremhood into LK .

Theorem 2.33. (Soundness, 2) If A is a theorem of LK , then A is valid.

Exercise∗ 2.4.5. Prove the previous theorem. [Hint: Notice that no instance
of the axiom—without further applications of rules—yields a theorem.]

The converse of the soundness theorem is the completeness theorem.

Theorem 2.34. (Completeness) If A is a logically valid formula without name
constants, then ` A is a provable sequent.

Proof: We sketch the proof of the contrapositive of the claim, that is, if A is
not a theorem of LK , then there is a model M such that M 2 A .
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We outline some steps, and leave filling in the details as exercises. If there
are free variables in A , then we change each of them to a new name constant,
and from now on, we take A to be this closed wff. We also exclude function
symbols and = from the language in order to provide a brief general de-
scription of the construction. We take ∀ as a defined logical constant, that
is, ∀xB(x) is ¬∃x¬B(x) . We consider sets of wff’s starting with { ¬A } .
This is obviously a finite set, hence there are finitely many non-logical sym-
bols that occur in ¬A . Nonetheless, there are denumerably many closed
formulas that can be generated using those non-logical components. We fix
an enumeration of those wff’s. Originally, we assumed that we have a denu-
merable sequence of name constants in the language; now, we take a “fresh”
sequence of name constants, let us say, b0, b1, b2, . . . . These name constants
enter into terms and wff’s exactly as the name constants, which are in the
original language, do.

The following construction is usually called Lindenbaumizing.13 Starting
with a set of wff’s Γ0 (i.e., { ¬A } ), we consider the wff’s that we stipulated
to be enumerated, and at each stage we expand the set if we can do so with-
out introducing a contradiction.

Some of the enumerated wff’s are of the form ∃x C(x) , and we want to
make sure that each of these formulas is instantiated. We define Cb/x to be
C , if C is not an existentially quantified formula. Otherwise, Cb/x is the
formula obtained from C by omitting the quantifier prefix and substituting
for the previously quantified variable the next unused name constant from
the sequence of b ’s.

1. Γn+1 =

{
Γn ∪ {Bn+1,Bb/x

n+1 }, if Γn ` ¬Bn+1 is not provable;
Γn, otherwise.

2. Γ =
⋃

n∈ω
Γn

The construction preserves consistency, that is, if there was a wff E such
that Γ0 ` E was not provable, then there is no Γ ′ ⊆ Γ such that Γ ′ ` E ′ is
provable, for all E ′ . The starting set { ¬A } also has this property, because if
¬A ` B , for any B , then ` A is provable.

The next step is to use the set Γ to define a model M with the property
that—due to the definition of M itself—M � C , for all C ∈ Γ . The wff’s in Γ
(may) contain some name constants, and if they do, then we take D to be the
set of those name constants. If no wff in Γ contains a name constant, then we
take an object d to be the only element of D .

Lastly, it remains to be shown that M indeed has the property that it makes
all the elements of Γ true. qed

The next exercises ask you to fill in the details in the above proof sketch.

13The verb is derived from the name of A. Lindenbaum who was a logician in Warsaw.
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Exercise 2.4.6. Prove that if A is not a theorem of LK , then { ¬A } is con-
sistent. [Hint: Find a suitable wff in place of B , and show that ` ¬¬A is
provable, hence, by cut, ` A is provable.]

Exercise 2.4.7. Show that Γ , obtained by Lindenbaumizing, is consistent,
provided that Γ0 is consistent.

Exercise 2.4.8. Make the definition of M precise. [Hint: The atomic formulas
determine the model, because Γ contains all the formulas that it can, in the
restricted fragment of the language.]

Exercise 2.4.9. Prove that the model M defined in the previous exercise has
the desired property, that is, for all C ∈ Γ , M � C .


