
University of Alberta

Post Weld Heat Treatment - PWHT: Temperature-Time Relationships

by

Marcel Zulic

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master o f Science

in

Welding Engineering

Department o f Chemical and Material Engineering

Edmonton, Alberta

Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96576-7
Our file Notre reference
ISBN: 0-612-96576-7

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

PWHT - Post Weld Heat Treatment is aimed at reducing the residual stresses

resulting from manufacturing and welding. This treatment also exerts metallurgical

changes influencing the properties of the base metal, weld metal and the heat-

affected zone (HAZ).

The thermal cycle o f the heat treatment after welding is governed in the codes by

the heating rate, the holding temperature, the holding time and the cooling rate.

There is a relatively good agreement among Codes and Standards about the

maximum tempering temperature from 600°C to 680°C, while there is discordance

about the holding time at the same tempering temperature. For medium carbon and

low alloy steels, there is little information about PWHT below 600°C.

PWHTs at 550°C and 500°C with different holding times were performed for

medium carbon 1043 and low alloy 4140 steels welded with the SMAW process.

Hardness measurements of the base metal (BM), heat-affected zone (HAZ) and

weld metal (WM) and microstructural examinations were done to correlate the

steel properties with different PWHT parameters.

Both steels can be post weld heat treated at temperatures under 600°C.

PWHTs at 550°C/4.0 hours and 500°C/15.0 hours produced similar results to these

of recommended PWHTs at 600°C and 600°C. Tempering parameters based on

diffusion coefficients are slightly conservative while those based on the Hollomon-

Jaffe parameter are overly conservative.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENT

1. SOFTWARE TESTING AND TEST DATA GENERATION........................ 1

1.1. Software testing... 1

1.1.1. Introduction...1

1.1.2. Black Box Testing... 2

1.1.3. White Box Testing... 2

1.2. Test Data Generation..6

1.2.1. Static Test Data Generation...6

1.2.2. Dynamic Test Data Generation..6

2. GENETIC ALGORITHM (GA)..9

2.1. Outline of G A .. 9

2.2. Representation Issue... 10

2.3. Selection Mechanism.. 12

2.4. Genetic Operations... 12

2.4.1. Binary Coding Operators...13

2.4.2. Real Coding Operators... 14

3. PROGRAM DEPENDENCE GRAPHS.. 21

3.1. Program Dependence Graphs (PDG)..21

3.1.1. Control Dependence.. 22

3.1.2. Data Dependence..23

3.2. A Tool Using PD G ... 24

4. PREVIOUS RESEARCH ON TEST DATA GENERATION.......................26

4.1. TESTGEN by Korel..26

4.2. ADTEST system by Gallagher..27

4.3. GADGET by M ichael.. 28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4. Constraint-based Testing (CBT) by Offutt...32

4.5. Dynamic Domain Reduction (DDR) Procedure by Offutt.....................36

5. TEST DATA GENERATION USING PDGS AND GA (TDGEN)...............40

5.1. Outline.. 40

5.2. Coverage Table and Priority Ranking of Branches................................43

5.3. Path Selection Using PD G ...51

5.4. The Genetic Algorithm in TDGen.. 62

5.5. Discussion of Computational C ost... 66

5.6. Issues Regarding Loops and A rrays...67

5.7. Results on the Triangle Program...67

6. EMPIRICAL RESULTS...73

7. CONCLUSION AND FUTURE WORKS...87

BIBLIOGRAPHY...89

APPENDIX..95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Table

Table 1.1 A Set of Test Inputs to Achieve MC/DC Page 4

Table 4.1 An Example of the Coverage Table Page 28

Table 4.2 Operators for Fitness Functions Page 29

Table 4.3 Condition-decision Coverage of GADGET Page 30

Table 4.4 An Example of Necessity Constraints of Page 33

Function MAX

Table 4.5 Predicate Problem Page 34

Table 4.6 Results of Godzilla on Small Programs Page 35

Table 5.1: Coverage Table for Triangle Classification Program Page 45

Table 5.2: The Ease-of-Execution Metric for Each Unreached Page 48

Predicate in the Triangle Program

Table 5.3 Improved-Ease-Set Metric for Each Untested Page 49

Branch in the Triangle Program.

Table 5.4: Untested branches Sorted with Ease-of-Execution Page 50

as Primary Key (Low to High) and

Improved-Ease-Set as Secondary Key (high

to low) of the Triangle Program

Table 5.5: Test Cases Generated by GADGET for Page 52

Triangle Classification Program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.6:

Table 5.7

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Rules to Build Fitness Function for Basic

Relational Operations

Test Cases that Traverse Untested Branches

for Triangle Classification Program Page

Results of TDGen on the Four Programs

Statement Coverage Results of TDGen on

Triangle Classification Program

Branch Coverage Results of TDGen on

Triangle Classification Program

Results on Three Programs Using Condition

-decision Coverage

Page 63

Page 71

Page 74

Page 84

Page 84

Page 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1 An Example of Simple Crossover Page

Figure 2.2 An Example of Mutation Operation Page

Figure 2.3 Fuzzy Connection Based Crossover Page

Figure 2.4 Gene i for Different Types of Crossover Operators Page

Figure 3.1 Program SUM on the left, its control-flow graph Page

(CFG), and its control dependence graph (CDG)

on the right

Figure 3.2 Program SUM (left), CFG (middle) and Control Page

Dependence Graph and Data Dependence

Graph (right)

Figure 4.1 Architecture of Godzilla Automatic Test Data Page

Generator

Figure 4.2 Function Mid and Its Control Flow Graph Page

Figure 5.1 System Architecture and Dataflow Diagram Page

Figure 5.2 Algorithm for TDGen Page

Figure 5.3: Program Dependence Graph (PDG) of Triang Page

Procedure in Triangle Classification Program

Figure 5.4: Control Dependence and Data Dependence Page

Analysis for Node 20

14

14

17

17

23

24

34

37

41

41

45

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Constraints Information from Control and Data

Dependence Analysis

Control Flow and Data Dependence Analysis for

Node 18

Control Flow and Data Dependence Analysis for

Node 24

Statement Coverage and Branch Coverage of

Random Testing on Hex-Dee Conversion Program

Statement Coverage of TDGen on Hex-Dee

Conversion Program

Branch Coverage of TDGen on Hex-Dee

Conversion Program

Statement Coverage and Branch Coverage of

Random Testing on Bonus Program

Statement Coverage of TDGen on Bonus

Program

Branch Coverage of TDGen on Bonus Program

Cumulative Frequencies of Runs to Achieve

100% Statement and Branch Coverage of

Random Testing on Bonus Program

Cumulative Frequencies of Runs to Achieve

Page 60

Page 68

Page 70

Page 75

Page 76

Page 76

Page 77

Page 77

Page 78

Page 78

Page 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100% Statement and Branch Coverage of

TDGen on Bonus Program

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Statement Coverage and Branch Coverage of

Random Testing on Quadratic Formula Program

Statement Coverage of TDGen on Quadratic

Formula Program

Branch Coverage of TDGen on Quadratic

Formula Program

Cumulative Frequencies of Runs with 100%

Statement and Branch Coverage of TDGen on

Quadratic Formula Program

Statement Coverage and Branch Coverage of

Random Testing on Triangle Classification

Program

Statement Coverage of TDGen on Triangle

Classification Program

Branch Coverage of TDGen on Triangle

Classification Program

Cumulative Frequencies of Runs with 100%

Statement and Branch Coverage of TDGen on

Triangle Classification Program

Page 80

Page 80

Page 81

Page 81

Page 82

Page 83

Page 83

Page 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Software Testing and Test data Generation

1.1. Software testing

1.1.1. Introduction

As long ago as early 70’s, it was pointed out that testing for correctness is futile.

Testing can only determine the presence of errors not their absence. Even a small

program can contain many millions of possible test-input conditions.

Consequently, exhaustive testing is impractical. Despite these fundamental limits

to software testing, it is still the most commonly used and potent weapon against

software errors.

Software testing is an expensive component of software development and

maintenance, since some researches indicate that approximately 50% of the

software production development cost is spent on software testing. It consumes

resources and adds nothing to the product in terms of functionality. Therefore,

much effort has been spent on development of automatic software testing tools in

order to significantly reduce the cost of software testing, so as to reduce the cost

of software development and maintenance. In order to test software, test data

have to be generated and some test data are better than others when they are used

to find errors. Therefore, a systematic testing system has to differentiate good

(suitable) test data from bad test (unsuitable) data, and it should be able to detect

good test data if they are generated. A search algorithm is needed to decide

where the best test data lie and concentrate its search there. Nowadays testing

tools can automatically generate test data, which will satisfy certain criteria, such

as branch coverage, path coverage, etc. A testing tool should be general, robust

and generate the correct test data corresponding to the testing criteria.

Test data that are appropriate for one program are not necessarily appropriate for

another program even if they have the same functionality. Therefore, an adaptive

testing tool for the software under test is necessary. Adaptive means that it

monitors the effectiveness of the test data to the environment in order to produce

new solutions with the attempt to maximize the test effectiveness.

Page 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are basically two software-testing methods: black box testing (sometimes

called “functional” or “specification-based”) and white box testing (sometimes

referred to as “structural” or “code-based” or even “glass-box”), Roper [1994],

1.1.2. Black Box Testing

The internal structure and behavior of the program under test is not considered.

The objective is to find out solely when the input-output behavior of the program

does not agree with its specification. The strength of black box testing is that

tests can be derived early in the development cycle. The software is treated as a

black box and its functionality is tested by providing it with various

combinations of input test data.

1.1.3. White Box Testing

The internal structure and behavior of the program under test is considered. The

structure of the software is examined by execution of the code and test data are

derived from the program's logic. This method gives feedback e.g. on coverage

of the software.

There are several white-box testing criteria frequently used by software testing

tools:

Statement testing:

Generate test data to execute every source language statement in the program at

least once. Also referred to as statement coverage.

Branch testing:

Generate test data to exercise the true and false outcomes of every decision. Also

referred to as branch coverage or decision coverage. Branch testing resolves the

“null else” problem by forcing the true and false outcomes of each branch, even

if there is no code associated with these outcomes. Its weakness is in the testing

of compound conditions. For example, given the following situation:

Page 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if A = 0 .5 or (B>0.5 && C==TRUE&&D==’Yes’)

{some code}

else

{some code}

The only thing we need to do to traverse the true outcome is to make A equal to

0.5, and we don’t have to brother about the rest of the condition.

Condition/decision testing:

Generate test data such that all conditions in a decision take on both outcomes (if

possible) at least once, and exercise the true and false outcomes of every

decision. Also referred to as decision/condition coverage.

Modified condition/decision testing (MC/DC):

Generate test data such that every condition in a decision in the program has

taken all possible outcomes at least once, every decision in the program has

taken all possible outcomes at least once, and each condition in a decision has

been shown to independently affect that decision’s outcome. A condition is

shown to independently affect a decision’s outcome by varying just that

condition while holding fixed all other possible conditions. Also referred to as

MC/DC coverage.

For example, consider the following fragment of code:

if (A or (B and C))

{some code}

else

{some code}

Page 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MC/DC requires test cases to show that each Boolean operand (A, B and C) can

independently affect the outcome of the decision. MC/DC may be achieved with

the following set of test inputs (note that there are alternative sets of test inputs,

which will also achieve MC/DC):

Table 1.1 A Set of Test Inputs to Achieve MC/DC

Case A C Outcome
r- i

i FALSE FALSE TRUE FALSE

2 TRUE FALSE TRUE TRUE

3 FALSE TRUE TRUE TRUE

4 FALSE TRUE FALSE FALSE

In the above example:

• A is shown to independently affect the outcome of the decision condition

by case 1 and case 2;

• B is shown to independently affect the outcome of the decision condition

by case 1 and case 3;

• C is shown to independently affect the outcome of the decision condition

by case 3 and case 4.

To achieve 100% MC/DC requires a minimum of n+1 test cases, and a maximum

of 2n test cases

Path testing:

Generate test data to cause execution of all paths in the program. Path testing

increases the probability of error detection, and a path through software can be

described as the conjunction of predicates in relation to the software's input

variables. The weakness is that there are a lot of paths (in worse cases, there

might have an infinite number of paths), but this is also the strength in that

combinations of paths are exercised, which other structural testing methods do

not achieve. However, path testing is generally considered impractical because a

Page 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program with loop statements may have an infinite number of paths. A path is

said to be 'feasible', when there exists an input for which the path is traversed

during program execution, otherwise the path is unfeasible.

Mutation testing (strong):

Mutation testing creates a number of mutant programs, which differ from the

original in one small way (i.e. each possessing a fault). The original test data are

run through the mutant programs. If the test data detect the difference in the

mutant program (i.e. they reveal the fault by producing different output from the

original program) then the mutant is said to be dead. If, on the other hand, one of

the mutants does not produce different results, then the test data need to be

examined and augmented to reveal the fault and kill the live mutant. The

advantage of strong mutation testing is it shows that absence of particular faults,

while the weakness is that it is computational expensive to carry out.

Mutation testing (weak):

Weak mutation testing takes some component of a program and creates a number

of mutants of this component. Test data are then run through the mutants and if,

on at least one execution, the results from the mutants and the original are

different, then the test data are considered to be adequate. Five components are

identified in weak mutation testing: data access (or variable reference), data

storage (or variable assignment), arithmetic expression, arithmetic relation and

Boolean expression. Weak mutation is computational cheaper than strong

mutation in that it is usually not necessary to physically generate all the mutants,

while the weakness is it is not reliable for the program as a whole, and the

adequacy of the data is local to the component under test.

There are some other testing criteria in software testing domain, i.e., DD path

(decision-to-decision path), condition testing, multiple condition testing, level-i

paths, basic path testing, linear code sequence and jump (LCSAJ), data flow

testing, domain testing, partition analysis, equivalence partitioning, boundary

value analysis, cause-effect graphing and category-partition testing. Complete

Page 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and detailed introductions white-box testing criteria can be found in Roper

[1994],

1.2. Test Data Generation

Extensive testing can only be carried out by an automation of the test process.

Since test data generation is the major and most crucial part of test process, the

benefits of applying automatic test data generation are a reduction in time, effort,

labor and cost for software testing.

1.2.1. Static Test Data Generation

Static test data generation method analyzes the software under test without

executing the code, either manually or automatically. Symbolic execution and

evaluation, introduced by Howden [1975], Darringer [1978] and Clarke [1985],

is a typical static method for generating test data. Symbolic execution provides a

functional representation of the path in a program and assigns symbolic names

for the input values and evaluates a path by interpreting the statements and

predicates on the path in terms of these symbolic names. All static approaches

are hampered by the limitations of symbolic execution - loops are only analyzed

in terms of their entry and exit points or have to be unrolled, analysis of arrays is

memory intensive or must be approximate and the problems of pointers and

dynamic memory are hard to address.

1.2.2. Dynamic Test Data Generation

Dynamic techniques overcome the problems experienced by static techniques by

actually executing the software and exploiting the information that is only

available at run-time. There are three types of dynamic techniques:

I.2.2.I. Data Specification Generators

Deriving test data from specification belongs to the 'black-box' testing method.

Such a strategy generates test cases and test data e.g. from formal Z specification,

Yang [1995]. The test data can then be applied to software and the effectiveness

can be measured, e.g. using ADATEST in Gallagher [1997] (ADATEST is an

Page 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

automatic testing system for Ada software which measures for example the

percentage of statements executed or branches covered). A disadvantage is that a

formal specification for the software may not often exist.

1.2.2.2. Random Test Data Generation

Random test data generators, Sturgis [1985] and Voas [1991], select arbitrarily

test data from the input domain and then these test data are applied to the

program under test. The automatic production of random test data, drawn from a

uniform distribution, should be the default method against which other systems

should be judged, Ince [1987]. It is suggested that the distribution of selected

input data should have the same probability distribution of inputs that will occur

in actual use (operational profile or distribution which occurs during the real use

of the software) in order to estimate the operational reliability.

Random testing only requires a random number generator and a small amount of

software support. The adequacy of random data is very dependent on the interval

(range) from which the data is generated. Data from poorly chosen intervals are

much worse than those from well-chosen intervals. A disadvantage of random

testing is to satisfy equality values, which are difficult to generate randomly.

Random testing is pretty good for the final testing stage of software. Duran

[1981] recommended a mixed final testing, starting with random testing,

followed by a special value testing method (to handle exceptional cases). Ince

[1987] reported that random testing is a relatively cheap method of generating

initial test data.

1.2.2.3. Pathwise Test Data Generation

Path wise test data generators, Korel [1990] and DeMillo [1991], are systems that

test software using a testing criterion, which can be path coverage, statement

coverage, branch coverage, etc. The system automatically generates test data to

the chosen requirements. A pathwise test generator consists of a program control

flow graph construction, path selection and test data generation tool.

Page 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dynamic approaches of test data generation have been shown to perform

effectively for a number of structural testing-criteria and overcome many of the

weaknesses of static techniques. Their ability to work well in the presence of

arrays allows them to generate test data for a wider class of software. However,

most of the approaches are far from perfect or empirical. Using simple search

techniques or single search technique restrict the application of the dynamic

approaches on test data generation. Most of current approaches ignore the fact

that none single test data search technique is perfect - one technique works very

well to some tested programs may be very weak in testing other programs.

Page 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Genetic Algorithm (GA)

2.1. Outline of GA

The study of genetic algorithms is originated with John Holland [1975] in the

mid-1970s, and it is investigated by Back [2000], Fogel [1995] and Goldberg

[1989], Further studies of using genetic algorithms on test data generation were

made by Korel [1990], Ferguson [1997], Gallagher [1997], Pargas [1999],

Tracey [2000], Michael [2001] and Godefroid [2002],

The name “genetic algorithm" comes from the attempt to model the natural

genetic evolutionary process. The basic idea of genetic algorithms is to represent

candidate solutions to the concrete problem using a vector of components known

as chromosomes, and then model selective breeding to obtain “offspring" that

have characteristics inherited from each parent, just like natural evolution.

Genetic algorithms work by maintaining a population of chromosomes, and each

chromosome in the population has an associated fitness to determine which

chromosomes are used to form new ones in the competition process (called

selection). Successive populations (known as generations) are evolved with

certain probability using genetic operations - parents are combined (crossover)

and new genetic information is introduced (mutation). Genetic algorithms have

had a great measure of success in search and optimization problems. The reason

for a great part of their success is their ability to exploit the information

accumulated about an initially unknown search space in order to bias subsequent

searches into useful subspaces, i.e. adaptation, which is the key feature,

particularly in large, complex and poorly understood search spaces, where

classical search techniques are inappropriate.

Only general introduction and major techniques of genetic algorithms are

included in this chapter, and complete introductions are provided in Goldberg

[1989] and Mitchell [1996].

An outline of the genetic algorithm search process is shown as follows:

Page 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure Genetic Algorithm is

Current Population, Parents, Offspring:

Array (1. .N) of Chromosomes;

Begin

INITIALIZE (Current Population);

- Assign initial values to each member o f the population

CALC FITNESS (Current Population);

Calculate the fitness fo r each member o f the
population, related to the objective

Function fo r the solution represented by the
chromosomes

Loop

SELECT SURVIVORS (Current Population, Offspring);

Select which members o f the population will survive to
be offspring directly

SELECT PROSPECTIVE PARENTS (Current Population, Parents);

Select which members o f the population are to be used
as parents

RECOMBINE (Offspring, Parents);

Combine parents to produce offspring

MUTATE (Offspring);

Stochastically mutate the new offspring to introduce
diversity

CALC FITNESS (Offspring);

Exit when STOP CRITERION;

End loop;

End Genetic Algorithm;

The generic decisions fall into three classes - representation issue, selection

mechanism and genetic operations.

2.2. Representation Issue

Representation is a key issue in GA work because GAs directly manipulate a

coded representation of the problem and because the representation can severely

Page 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

limit efficiency of GAs. There are mainly two representations using in GAs:

Binary coding and real coding.

Binary coding: To represent the elements of a search space S=Si x ...x Sn by

means of the binary alphabet, a function cod;: Si-^{0,l}Ll, LieN, should be

specified, which codes each element in Si using binary strings of length Li. An

element x=(xi, ... , xn) eS (x;eSi) is represented by linking together the coding

of each one of its components cod (x)=codl (x i) ... codn (xn), Herrera [1996] .

Real coding: it would be particularly natural to represent genes directly as real

numbers for optimization problems of parameters with variables in continuous

domains. Then a chromosome is a vector of floating point numbers, the precision

of which will be restricted only to that of the computer with which the algorithm

is carried out. The size of the chromosomes is kept the same as the length of the

vector, which is the solution to the problem.

Fixed-length and binary coded strings for the representation solution have

dominated GA research since there are theoretical results that show that they are

the most effective ones, Goldberg [1991], and they are easy to implement.

However, GA’s good properties do not stem from the use of bit strings. In many

cases, GA practitioners devised non-binary representations, and proved them to

be more natural for specific application problems.

The advantages of real coding are as follows:

1. Real parameters makes it possible to use large domains for the variables,

which is difficult to achieve in binary implementations where increasing

the domain would mean sacrificing precision, assuming a fixed length for

chromosomes.

2. Real parameters’ capacity to exploit the graduality of the functions with

continuous variables.

3. It is very close to natural formulation of many problems.

Page 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Real coding allows the domain knowledge to be easily integrated in the

real coded GA for the case of problems, and more complex operations are

possible.

2.3. Selection Mechanism

Selection methods decide which solutions will become parents and also which

solutions will survive into later generations. Parent selection in Holland's [1975]

original work was based on fitness - solutions with a higher fitness value were

more likely to be selected as parents, known as roulette wheel sampling. This

aims to mirror the parent selection process in nature, where fit individuals have

higher probabilities to survive and become parents. The idea is that by

combining the information of fit parents even fitter offspring can be produced.

However, the selection of parents is subject to sampling errors and this can lead

to a significant difference between the actual and expected number of times a

solution is used as a parent. De Jong [1975] devised an expected value model.

This determines the expected number of times each solution will be selected as a

parent and ensures the actual selection is closely in line with this expectation.

Barker [1985] pointed out that these fitness-based techniques for selecting

parents could result in a strong bias towards a few very fit solutions. This can

cause the search to converge too quickly and get trapped in a local minimum.

Barker suggests ranking selection to overcome this problem. Here, solutions are

ranked according to fitness. The parent selection is then based on rank, with a

bias towards the higher ranks. This abstracts away from the actual values of the

fitness, but still allows fitter solutions to be selected more frequently. Another

selection scheme discussed by Goldberg and Deb [1991] is tournament selection,

which selects k individuals from the current population with uniform possibility,

and has them do the “tournament”. Often tournaments are held only between two

individuals. There are also many variations suggested on these techniques.

2.4. Genetic Operations

After selection has been carried out, the construction of the intermediate

population is complete and the operators of crossover and mutation are applied.

Page 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The crossover operator is a method for sharing information between

chromosomes; it combines the features of two parent chromosomes to form two

offspring, with the possibility that good chromosomes may generate better ones.

The crossover operator is not usually applied to all pairs of chromosomes in the

intermediate population. A random choice is made, where the likelihood of

crossover being applied depends on probability defined by a crossover rate, the

crossover probability. The crossover operator plays a central role in GAs, in fact,

it may be considered to be the one of the algorithm’s defining characteristics.

Definitions for this operator depend on the particular representation chosen. The

mutation rate operator arbitrarily alters one or more components, or genes of a

selected chromosome so as to increase the structural variability of the

population, thus introduce some sort of randomness into the chromosome. The

role of mutation in GAs is to restore lost or unexplored genetic material into the

population to prevent the premature convergence of GAs to suboptimal

solutions; it insures that the probability of reaching any point in the search space

is never zero. Each gene of every chromosome in the population undergoes a

random change according to a probability defined as a mutation rate, the

mutation probability.

The implementation of the genetic operators is partially dependent on the

solution encoding method. Although much of the research into genetic operators

has focused on manipulation of binary strings, there are some researchers

working on real-coded operators. Hereafter are some operators using for binary-

coded operation and real-coded operation:

2.4.1. Binary Coding Operators

• Crossover operators:

Simple crossover (Holland [1975]): given two chromosomes

c i= (C v C l) a n d C 2= (Ci -CL) ’ th e o ffsp r in g

Hi=(> and H2=(C^>C%CM’- ’C[) are

Page 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generated, where i is a random number belonging to {1, ... , L-1}.

Figure 2.1 shows an example of this operator’s application.

Figure 2.1 An Example of Simple Crossover

N-point crossover (Eshelman [1989]): n crossover points are

randomly selected and the corresponding segments of the parents

are exchanged for generating the offspring.

Uniform crossover (Syswerda [1989]): the values of each gene in

the offspring are determined by the uniform random choice of the

values of this gene in the parents.

• Mutation operation (Holland [1975]: given a chromosome, a gene is

randomly chosen and its value is swapped; “1” or “0” and vice versa.

(See figure 2.2)

I
m u m u m m u m m m n

Figure 2.2 An Example of Mutation Operation

2.4.2. Real Coding Operators

• Crossover:

Assume that Ci=(Ci—c l) an(̂ (̂ 2=^C\-"Cn) are two chromosomes that

have been selected to apply the crossover or mutation operator to them.

Flat crossover (Radcliffe [1991]):

An offspring H=(hi,...,hi,...,hn), is generated, where h, is a randomly
1 2

(uniformly)chosen value of the interval [£ . , q .].

Simple crossover (Wright [1991]):

Page 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A position is {1,2,.. .,n - l} is randomly chosen and the two new

chromosomes are built.

Arithmetical crossover (Michalewicz, [1992])

Two offspring, Hk=(hk ,...,hk ,...,hk) k=l, 2, are generated, where

h\ = A q . + (1 - A) q and hf = A q + (1 - A) £ . . X is a constant

(uniform arithmetical crossover) or varies with regard to the number

of generations made (non-uniform arithmetic crossover).

BLX-a crossover (Eshelman [1993]):

An offspring is generated: H=(hi,.. .,hi,.. ,,hn), where hi is a randomly

(uniformly) chosen number of the interval [cmin-I*a,cmax+ I*a],

Cmax=max(Ci,Ci), cmin=min(q . , q .), 1= cmax. Cmin. The BLX-0.0

(a=0.0) crossover is equal to the flat crossover.

Linear crossover (Wright [1991]):

Three offspring Hk=(hk ,...,hk ,...,hkn) k=l,2,3, are built, where

rl 1 1 1 2 ,2 3 1 1 2 , , 3 1 1 3 2 TTr. . . .
/i, = — r + —r > h, = ~ r — r and h, = —n + ~ r ■ With this

1 ^ i / ^ K s i * ^ i ^ i t 2 2

type of crossover, an offspring selection mechanism is applied, which

chooses the two most promising offspring of the three to substitute

their parents in the population.

Discrete crossover (Miihlenbein [1993])

1 2
hi is a randomly (uniformly) chosen value from the set i c i 'C i } •

Page 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Extended line crossover (Miihlenbein [1993])

1 2 1
h; =Ci + a (Ct ~ c) anc ̂ a is a randomly (uniformly) chosen value in

the interval [-0.25,1.25].

Extended intermediate crossover (Miihlenbein [1993])

1 2 1hi= q. + a i Qy. - £.) and a; is a randomly (uniformly) chosen value in

the interval [-0.25,1.25]. This operator is equal to the BLX-0.25.

Wright’s heuristic crossover (Wright [1990])

Let’s suppose that Ci is the parent with the better fitness.
1 2 1

hj= r • (q . -) + Ci ancl r is a random number belonging to [0,1].

Linear BGA crossover (Schlierkamp-Voosen [1994])

Under the same consideration as above, hi = £.± rang i - y - A , where

2 1

A - — ^77 . The sign is chosen with a probability of 0.9.
I I Ci ~ ci

Usually, rang; is 0.5 times the domain of the selected variable, and

y= '^ l_ Q(Xk 2~k where oqe [0,1} is randomly generated with

p(0Ci=l)= — . This operator is based on Miihlenbein mutation,
16

Miihlenbein [1993].

Fuzzy Connection Based Crossover (FCB) (Herrera [1994])

In short, the interval of action of the gene i[ai, bj] may be divided into

three regions [ai, a;], [a.;, (3j], [(3i; bi], where good descendents may be

obtained; even considering a region [cU, Pi’] with a ,’<=ai and

Pi’>=Pi would seem reasonable. Figure 2.3 shows this graphically.

Detailed introduction is provided in Herrera [1994].

Page 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

____________ Relaxed Exploitation_______________

Exploitation ̂ Exploitation ̂ Exploitation

ai a ’i a ; (3; (3’j bi

Figure 2.3 Fuzzy Connection Based Crossover

For each type of crossover operations presented earlier in this section, Figure 2.4

shows the effect on gene i.

Arithmetical
I I

x=—2 1 11

a;

1 •

C: 4

1

c j

1

bi

BLX-a aI 1 i 1 aI 11

ai

I

c j

m 1

c j

I A

1

bi

1
Linear 1

ai
|

• 1

X

1 •

C ?

X

1

bi
1

Discrete 1

a;

1

f

Cj

1
7 1 1

i

V

c j

i

1 71

1

bi

i
Extended 1

a;

1

Cj

1

c j

i

bi

Wright’s heuristic
| 1 i1

|

Cj
rangi • A rang* • A

i

1

Cj

1

i

bi

i
Linear BGA 1

aj

i

cj

1

c j

i

bi
1

L
\

FCB

l F 1 1 M 1 1 s “ I

ai a ’i a . 13i P ’i bi

Figure 2.4 Gene i for Different Types of Crossover Operators

Page 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Mutation:

Suppose that Ci=(ci,...,ci,...,cn) is a chromosome and cie [ai, bi] is a gene

to be mutated, c;’ is the result that generated from a mutation operation.

Random mutation (Michalewicz [1992])

Ci’ is a random (uniform) number from the domain [ai, bi].

Non-uniform mutation (Michalewicz [1992])

If this operator is applied in a generation t, and graax is the maximum

number of generations then

c(+A(f ,fc ,-ci) i f t — 0
C[={

c, - A(t,c; - a ;) ifr = 1

with x being a random number which may have a value of zero or

one, and

A(t, y) = y(l - r),

where r is a random number from the interval [0,1] and b is a

parameter chosen by the user, which determines the degree of

dependency on the number of iterations. This function gives a value

in the range [0,y] such that the probability of returning a number

close to zero increases as the algorithm advances. The size of the

gene generation interval shall be lower with the passing of

generations. This property causes this operator to make a uniform

search in the initial space when t is small and very locally at a later

stage, favoring local tuning.

Real Number Creep (Davis [1991])

When a continuous function is optimized with local maximums and

minimums and, at a given moment in time, a chromosome is obtained

Page 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is situated in a good local maximum, it would be interesting to

generate other chromosomes around this chromosome in order to

come close to the peak point of such a maximum. In order to do this,

we may slide the chromosome into a value that increases or decreases

it by a small random quantity. The maximum slide allowed is

determined by a parameter defined by the user. Different instances of

this operator have been presented, such as the Guaranteed-Big-Creep

and the Guaranteed-Little creep (Davis [1989]) and the small creep

and the large creep (Kelly [1991]). The difference between these

operators lies in the value of the maximum slide allowed.

Miihlenbein’s mutation (Miihlenbein [1993])

c\ = c t + rangi • y,

where rangi defines the mutation range and it is normally set to

0.1*(bi-a0. The + and - sign is chosen with a probability of 0.5 and

a ;e [0, 1} is randomly generated with p(a;=l)=l/16.

Values in the interval [cj-rangi, Cj+rang,] are generated using this

operator, with the probability of generating a neighborhood of c*

being very high. The minimum possible proximity is produced with a

precision of rang t ■ 2”15.

There are other two operators, which are based on Miihlenbein

mutation, and the only difference is how to calculate the y:

Discrete modal mutation (Voigt [1994])

15

n

Page 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with n =
\og(rang min)

. Bm >1 is a parameter called the base of the
log(s m)

mutation and rangmin is the lower limit of the relative mutation range.

Continuous modal mutation (Voigt [1994])

Kr = 'Zak0(Bm),
k = 0

with (/) (zk) being a triangular probability distribution with

n k Z > £ - 1 n H l Ty k
m m < < m_____ m

We should point out that once parents have been selected and offspring formed

after the crossover and mutation, an additional selection strategy should be used

to determine the survivors for the next generation. In Holland's original work, all

of the offspring survived to become the next generation. The elitist model

introduced by De Jong [1975] attempts to prevent good solutions from one

generation being lost in later generations, due to crossover or mutation. This is

achieved by combining the best of the current generation and the offspring.

The parameters for a genetic algorithm include the population size, number of

parents, number of offspring, rate of crossover and rate of mutation. Most

applications of genetic algorithms rely on setting these parameters by trial-and-

error.

Page 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Program Dependence Graphs

3.1. Program Dependence Graphs (PDG)

Program dependence graphs were introduced by Kuck [1981] as an intermediate

program representation well suited for performing optimizations (Ferrante

[1987]), vectorization, and parallelization. PDG represents a program as a graph

in which the nodes are statements and predicate expressions, and edges

connected to a node represent both control conditions on which the execution of

the operations depends and the data values on which the node’s operations

depend.

Dependences in a program arise as a result of two separate effects. First,

dependence exists between a statement and the predicate whose result

immediately controls the execution of the statement. For example,

if (A) N1

B=C+D; N2

else B=C * D N3

N2 and N3 depend on predicate A since the value of A determines whether N2 or

N3 is executed. Dependences of this type are control dependences. Second,

dependence exists between two statements whenever a variable appearing in one

statement may have an incorrect value if the two statements are reversed. For

example,

A=B+C; N1

D=A * E; N2

N2 depends on N l, because executing N2 before N1 would result in N2 using

incorrect value of A. Dependences of this type are data dependences or flow

dependences.

Page 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructing a program’s control dependence subgraph and data dependence

subgraph, which are defined in terms of control flow graph, are the two steps of

constructing a PDG.

3.1.1. Control Dependence

In this section, we define control dependence in terms of a control flow graph

(CFG), which has a unique entry node ENTRY and a unique exit node EXIT.

Definition 1. A node V is post-dominated, by a node W in a CFG if every

directed path from Y to exit (not including V) contains W. The definition of

post-dominance does not include the initial node on the path, so a node never

post-dominates itself, but a node (if it is a predicate node) can post-dominate

its L-branch (where L-branch could be either true or false branch).

Definition 2. X and Y are nodes in a CFG. Y is control dependent on X iff

1) Y post-dominates L-branch of X and

2) X is not post-dominated by Y.

If Y is control dependent on X, then X must be a predicate. Following one

branch from X always results in Y being executed, while taking another branch

may result in Y not being executed. Condition 2 is always satisfied when X and

Y are the same node, which allows loops to be correctly accommodated by the

definition.

Figure 3.1 depicts program SUM on the left, its control-flow graph in the center,

and its control-dependence graph on the right. T represents TRUE and F for

FALSE.

In the example, “printf (sum)” and “printf (i)” post-dominate the node “i< l l ”,

which means no matter i< l 1 is true or false, they are going to be executed. We can

see from the CDG that all nodes are control dependent on node “Enter” except for

nodes “sum=sum+l” and “i= i+ l”, which are control dependent on node “i d l ”.

Besides, node “i d l ” is control dependent on its true branch.

Page 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int main 0 {

int sum = 0;

int i=l;

while (id l) {

sum=sum+i;

i=i+l;

}

printf (“%d\n”, sum);

printf (“%d\n”,i);

sum=0

i=1

i<11

Enter

(sum=0) printf (sum) printf (i)i=1 i<11

printf (“%d\n”,i)

Enter

i=i+1

printf (“%d\n”,sum)

Exit

sum=sum+i

Figure 3.1 Program SUM on the left, its control-flow graph (CFG), and its

control dependence graph (CDG) on the right.

3.1.2. Data Dependence

Definition 3. X and Y are nodes in a CFG. Y is data dependence on X iff

1) X assigns to variable Z, and Y uses Z, and

2) there is a path in the CFG from X to Y that does not include an assignment

to Z (excluding X and Y).

Figure 3.2 shows the program dependence graph of the SUM program, with the

data dependence graph and control dependence graph together. The black

straight lines with arrows represent control dependence relations and the grey

curved lines with arrows are for data dependence relations.

In the PDG, variable “sum” in the node “sum=sum+i” is data dependent on the

initial assignment of sum and i, and it is also data dependent on the values of

sum and i in the last iteration of the while loop.

Page 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Enter

T
sum=0

int main 0 { ____
I i=i"~

int sum = 0;

int i=l;

while (i<ll) {

sum=sum+i;

i=i+l;

}

printf (“%d\n”,sum);

printf (“%d\n”,i);

}

Figure 3.2 Program SUM (left), CFG (middle) and Control Dependence

Graph and Data Dependence Graph (right)

3.2. A Tool Using PDG

Constructing PDG manually is a time-consuming job, and practically impossible

when programs keep getting bigger and complicated. There are tools that

automatically generate PDGs, provide PDG information that users need, and

provide flexible and powerful queries on PDGs.

A commercial tool called CodeSurfer, introduced in Anderson [2001] and

GrammaTech [1999], is used in the thesis project to assist us to get PDG

information that we need of the programs under test and do queries on PDGs.

CodeSurfer is a powerful source code analysis and navigation tool, providing

easy and precise navigation and understanding of source code. CodeSurfer has

many uses including program understanding, maintenance, impact analysis,

debugging, reengineering, and reuse.

CodeSurfer works like a compiler - it parses and analyzes all the source-code

components of the system. The dependences between statements in the program

are computed first by analyzing direct dependences, then by analyzing indirect

dependences. The results are stored in a data structure called a System

Page 24

sum=sum+i

(sum=0) printf (su m)) (printf (i)

sum=sum+i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dependence Graph (SDG), which is a comprehensive system-level graph

including multiple PDGs for different procedures with intraprocedural control

and data dependence information, Horwitz [1990]. The elements of the SDG are

the declarations, statements and conditions. They are linked together to describe

their data-dependence and control-dependence relationships. Sophisticated

algorithms are used to traverse the SDG to answer queries. The result of a query

evaluation is a set of SDG elements that can then be mapped back to locations in

the source code.

CodeSurfer not only provides graphic user interface but also can be programmed,

extended, customized, and integrated with other applications using its scripting

language. Its scripting language is based on Scheme, a general purpose

programming language, with some extended additional data types for

representing the dependence-graph representation of C programs.

With CodeSurfer, users can easily get PDG information and do queries on PDGs.

By running CodeSurfer scripts, results can be got without using the GUI of

CodeSurfer, and with the API of CodeSurfer, users can integrate CodeSurfer

with other testing applications to construct a testing tool, which is capable of

using program PDG information to test software.

Page 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Previous Research on Test Data Generation

4.1. TESTGEN by Korel

The traditional dynamic test data generation paradigm, implemented by Korel

[1990] and Korel [1996] with a tool called TESTGEN, uses the idea that test

requirements can be transformed and treated as functions. If some test

requirement is not satisfied, the test requirement can be transformed to a function,

and data collected during the execution of the program can be used to determine

the values of the function, which represent how close different test cases are to

the function minimum. Therefore, the problem of satisfying test requirements by

generating test data is converted to the well-understood problem of function

minimization.

For example, if the requirement is to traverse the true branch of i f (pos>=21) on

line 324 in a program, suppose pos324(x) represents the value of pos recorded on

line 324 when the program is executed with the input x, the function

taken on line 324. Thus, the problem of test data generation is reduced to the

problem of the function m inim ization, which is that in order to find the proper

input to traverse desired branch, we must find a value of x that minimizes 3 (x).

In TESTGEN system of Korel [1990], the tested program is executed on a seed

input, and subsequent action depends on whether the execution reaches the

sections of code where the test requirement is supposed to hold. If it does,

function minimization methods can be applied to find a needed input value. If

the code is not reached, a subgoal is created to bring about the conditions

necessary for function minimization to work. The subgoal consists of redirecting

the flow of control so that the desired section of code will be reached. TESTGEN

finds branches that are responsible for directing the flow of control away from

the desired location, and attempts to modify the seed input to force the control of

execution to the desired direction. The approach to the new subgoal can be

21 - pos324 (x), i f pos32A (x) < 21;

0, otherwise
is minimal when the true branch is

Page 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

treated as that of its parent goal. Likewise, more subgoals may be created to

satisfy the first subgoal. This recursive creation of subgoals is called chaining in

Korel [1990] and Ferguson [1996].

Korel’s approach has the advantage on freely choosing which path it wants, and

in the TESTGEN system, heuristics are used to select the path that seems most

likely to have an impact on the target condition.

4.2. ADTEST system by Gallagher

Besides Korel’s TESTGEN, ADTEST system of Gallagher [1997] specifies an

entire path in advance, and then the goal is to find an input that executes the

desired path. Since it is known which branch must be taken for each condition on

the path, all of these conditions can be combined in a single function whose

minimization leads to an adequate test input.

For example, if the desired path requires taking the true branch of the condition i f

(b>=10) ... on line 11 and taking the false branch of the condition i f (c>=8) on

line 18, then one can find an adequate test input by minimizing the function

3 1(x) + 3 2(V), where

Unfortunately, this function cannot be evaluated until line 10 and line 18 are

both reached. Therefore, the ADTEST system begins by trying to satisfy the first

condition on the path, adding the second condition only after the first condition

has been satisfied. As more conditions are reached, they are incorporated in the

function that the algorithm seeks to minimize.

10 — bn , ifbn <10,
0, otherwise

c13 - 8, ifcn > 8;
0, otherwise

Page 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3. GADGET by Michael

Another software test data generator, GADGET introduced by Michael [2001],

applies genetic algorithm on the test data generation problem, which is not used

in most previous test data generation systems. GADGET uses condition-decision

coverage that leads to two test requirements for each condition in the code,

namely, each condition must be true and false for at least once respectively.

Condition-decision coverage also requires that each branch of each decision be

taken at least once.

Before starting the GA, a seed input is used to execute the program, and after

the first execution, a coverage table is initialized with the coverage status of each

condition or decision for the purpose of tracking if a condition or a decision is

tested or not. (See the Table 4.1 below). After this, the algorithm uses the

coverage table to select a series of test requirements in turn.

Table 4.1 An Example of the Coverage Table

Status

Condition/Decision TRUE FALSE

1 X X

2 - -

3 - X

4 X -

5 X -

6 - -

For each test requirement, the GA is initialized and attempts to satisfy the given

requirement. Whenever the GA generates an input that satisfies a new test

requirement, no matter whether it is the one that GA is currently working on, the

new test input is recorded for the future use and the coverage table is updated.

The test data generator continues to iterate over the test requirements until no

further progress can be made. GADGET uses a commercial coverage analysis

tool (DeepCover) to measure the condition-decision coverage. Michael’s

Page 28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach is different from TESTGEN and ADTEST in the way that it doesn’t

concentrate on one specific path to the desired location. Instead, it delays the

conditions that haven’t been reached, and works on the condition that has been

reached and where either the true or false branch hasn’t been satisfied yet. When

the GA works on a certain requirement, many other requirements are often

coincidentally satisfied. This phenomenon is named “serendipitous satisfaction”

by Michael [2001], and it plays an important role in GADGET.

For each of not completely satisfied test requirement, a fitness function 3 is

generated to map the problem to a minimization problem. Table 4.2 shows how

3 is calculated for some typical relational operators in GADGET.

Table 4.2 Operators for Fitness Functions

Decision type Example Fitness function

Inequality if (c>=d)...
f d - c , i f d > c \

3(x)= j
[0, otherwise

Equality if (c=d)... 3(x)=|d-c|

true/false value if (c)...
[1000, i f c = FALSE-,

3 (x H
[0, otherwise

There are some experiments done on 9 simple programs with GADGET. They

are:

• Binary search

• Bubble sort

• Number of days between two dates

• Euclidean greatest common denominator

• Insertion sort

• Computing the median

Page 29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Quadratic formula

• Warshall’s algorithm

• Triangle classification

The condition-decision coverage results are in Table 4.3:

Table 4.3 Condition-decision Coverage of GADGET

Program Random GA

Binary search 80 70

Bubble sort 1 100 100

Bubble sort 2 100 100

Number of days between two dates 87.5 100

Euclidean greatest common denominator 100 100

Insertion sort 100 92.3

Computing the median 100 100

Quadratic formula 75 75

Warshall’s algorithm 91.7 100

Triangle classification 48.6 94.29

The advantage of GADGET is that it uses GA instead of gradient descent used

by TESTGEN and ADTEST to avoid to be stuck at the local minima. Moreover,

GADGET greatly simplifies the dynamic test data generation by skipping

complicated control flow analysis for a specific path, with the hope that most of

the conditions in the coverage table would be partially satisfied by the initial

input or coincidentally partially satisfied when GA is working on some other

conditions.

However, there are some problems with Michael’s algorithm. The test data

generator GADGET depends heavily on the serendipity of whether a location of

the tested program is reached. In GADGET, only those conditions that have been

reached or partially satisfied in the condition-decision coverage table are

converted to functions. Other conditions that haven’t been reached are left

Page 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behind until they are reached by coincidence satisfaction of some input that

generated by the GA trying to satisfy other conditions. Since the serendipity

satisfaction plays an important role in GADGET, the tool may ignores those

unreached conditions throughout the algorithm and may give them up without

any trials at the termination of the optimization procedure. This approach greatly

simplifies the algorithm, while still enabling it to succeed with some small

programs. Unfortunately, there are many commercial programs or procedures

with complex control flow paths and cascaded data dependence between

variables, and it is hard or often impossible to find solutions only by

coincidences. In simple programs, this approach may reach 100% coverage, but

when programs get larger, the chance that each condition in the coverage table

gets reached is very low. Hence, GADGET has to abandon some hard-to-reach

conditions or branches, reducing the overall coverage. In Michael’s approach, it

trades off the coverage rate with the simplicity of the algorithm. Surprisingly,

Michael’s approach has worse coverage on 2 programs than random testing, and

there are 5 programs with the same coverage percentages of GADGET and

random testing. There are some reports from other researchers about the poor

coverage results of using Michael’s algorithm. When we carefully analyze

GADGET, it happens in most cases that when programs get complex, what

GADGET really does is generating random values in repeated attempts to satisfy

the functions.

Since performance of GADGET mostly depends on the performance of GA, the

tool inevitably inherits the weakness of the GA. The technique used by

GADGET to define the fitness function makes the tool inadequate to deal with

conditions with Boolean variables or enumerated types. For example, if

GADGET is trying to exercise the true branch of the condition

if {windy)...

It simply makes 3(x) equal to the absolute value of windy. This makes 3(x) zero

when the condition is true and positive otherwise. However, if windy only takes

on two values of 0 and 1, then the fitness function can only have two values as

Page 31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

well. Two-valued fitness function does not allow the genetic algorithm to

distinguish between different inputs that fail to satisfy the test requirement, thus

genetic search cannot apply a preference on one set of inputs over other sets as

they have the same positive value as their fitness. With serendipity satisfaction

that GADGET uses, the chance of the GA to traverse the true branch of

conditions containing Boolean variables is no more than the chance of random

search. Some of the failures reported in Michael [2001] are:

for (index=begin; index<=end && Itermination; index++)
if (((T<=0.0)||(0.0==Gain)))
if(o_5)
if (o_5)
if (((o_5>0.0) && (o<0.0)))
if (FLARE)
if (FLARE)
if (DECRB)

Enumerated types are a little better than binary variables for GAs to handle, but

GAs still have difficulty in guiding the search towards the minimization, because

only limited values are available for GAs to evaluate the fitness of different

inputs.

Although path selection is not vital to GADGET, it may still be the case that

some execution paths are better than others for satisfying a particular test

requirement. If a path selection algorithm could be introduced to GADGET, it

wouldn’t be difficult for the genetic search algorithm to favor solutions using the

selected paths. Another drawback of GADGET is that because all the inputs that

cannot reach the condition that the tool is trying to satisfy get the same low

values as their fitness values, there is no way for GA to bias the inputs that are

closer to reaching the condition, and hence the possibility of breeding more

inputs to actually reach the condition is reduced.

4.4. Constraint-based Testing (CBT) by Offutt

Another test data generator, Godzilla by Offutt [1988], presents a technique for

using mathematical constraints for testing, which is called Constraint-Based

Testing (CBT), DeMillo [1991]. CBT adopts weak mutation testing criterion:

introducing faults to the program under test by creating mutants of the program,

Page 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and generating test data to kill the mutants by revealing the faults and distinguish

the mutant from the original. Godzilla integrates Mothra Software Testing

Environment Project to generate the mutants. Mothra uses twenty-two mutation

operators for testing FORTRAN programs and over seventy for testing C

programs. These operators are designed to simulate the common mistakes that

human programmers might take.

Although with the mutation operators it is clear that the mutated statement of the

mutant program is different from the counterpart of the original program, it

doesn’t guarantee the state difference after the execution of the mutated

statement, and the program and its mutant will never differ if the states of the

two programs don’t differ after the execution of the mutated part, because the

program and its mutant are syntactically equal except for the mutated statement.

In order to cause the wished state different to kill the mutant, a term “necessity

constraint” is defined to make sure of the incorrect output of the mutated

statement. Table 4.4 shows an example of constructing necessity constraint for

the function of MAX.

Table 4.4 An Example of Necessity Constraints of Function MAX

FORTRAN SOURCE NECESSITY CONSTRAINT

1

FUNCTION MAX (M, N)

MAX=M

A MAX=N M^N

A MAX=ABS (M) M<0

2 IF (N.GT.M) MAX=N

A IF (N.LT.M) MAX=N (N>M) ± (N<M)

A IF (N.GE.M) MAX=N (N>M) ^ (N = M)

3 RETRUN

A: mutated statement

Early experiments with necessity constraints show that test data generated for the

constraints that did not involve predicates killed around 90% mutants, while the

Page 33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test data for the constraints that did involve predicates only killed 65% of the

mutants. Although the generated test cases caused an immediate effect on the

state of the mutant program, the Boolean result of the mutated predicate often

was the same as that of the original program. An example of this program is

shown in Table 4.5.

Table 4.5 Predicate Problem

Original statement IF (I+K.GE.J) THEN

Mutated statement IF (3+K.GE.J) THEN

Necessity constraint 1 * 3

Test case 1=7; J=9; K=7

Although the necessity constraint 1^=3 is satisfied, because I+K=14 and 3+K=10,

and both of them are greater than J, the result of the predicate remains unchanged.

To overcome the difficulty, Godzilla introduces the predicate constraint, (I+K>J)

(3+K>J) in the example, to force the mutated predicates to have different

result from that of the corresponding predicates in the original program.

P a th E x p re ss io n s

Failu re
Inform ation

P a th A nalyzer

C onstra in t
SatisfierP re d ic a te s

C onstra in t
G e n e ra to r

T e st C a s e s

N ecessity
C onstra in ts

Figure 4.1 Architecture of Godzilla Automatic Test Data Generator

Figure 4.1 shows the architecture of Godzilla. The three major tools are the Path

Analyzer, the Constraint Generator and the Constraint Satisfier, represented in

the figure by boxes. For each statement in the original program under test, the

path analyzer creates a path expression constraint such that if the path expression

constraint is satisfied by the test case, the targeted statement is executed. The

Page 34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path expression constraint guarantees the reachability of the statement. The

constraint generator constructs the predicate and the necessity constraints, which

are stored in constraint tables and are passed to the constraint satisfier together

with the path expression. The satisfier gets each necessity constraint in turn,

finds the corresponding statement, conjoins that constraint with the appropriate

path expression, and uses constraint satisfaction procedure to generate a test case

to solve the conjunction. If a test case cannot be generated for some reason, the

information about the failure can be supplied to the tester.

Results of using Godzilla on some small programs, presented in Offutt [1988],

are listed as follows in Table 4.6 (TCs is the number of test cases; M is the

number of mutants generated; K represents the number of mutants killed; E

represents the number of equivalent mutants; MS is the mutation score;

Table 4.6 Results of Godzilla on Small Programs

Program Size TCs M K E MS Time

BUBBLE 10 32 339 304 35 1.00 0:22

DAYS 28 419 3016 2624 139 .95 7:02

FIND 28 58 1029 953 75 .99 2:27

GCD 55 325 5063 4747 298 .99 14:24

TRITYP 27 420 970 862 107 .99 10:53

Because of the mutation analysis basis of CBT, the test data generated has the

capabilities of testing faults, and it subsumes other testing methods such as

statement coverage and branch coverage. However, since CBT uses weak

mutation testing, it inevitably inherits its weakness. Neither of necessity

constraints and predicate constraints fully captures how an incorrect state once

introduced remains incorrect until a failure is revealed as an output value. There

Page 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are several reasons that can cause this to happen. Firstly, the test case is not

strong enough to force the program to carry the incorrect state to the final output.

Secondly, the program can be robust enough to detect the intermediate incorrect

state and force the program to return to a correct state. Thirdly, the intermediate

incorrect state of the mutant can be irrelevant to the final state. Moreover, CBT is

lack of capability to deal with non-input variables directly, and all non-input

variables have to be rewritten with symbolic evaluation in the term of input

variables. With the programs getting more complicated and loops with uncertain

iterations being involved, it is hard to convert all non-input variables to input

variables using symbolic evaluation. Besides, even if CBT uses weak mutation

testing instead of strong mutation testing to reduce the computational cost, it is

still expensive to apply it on large programs. Even for the small programs like

the triangle classification program, Godzilla gets 455 constraints for its

constraint satisfier to work on. The constraint satisfier that Godzilla uses is

domain reduction procedure, which is quite naive and inefficient. CBT also has

problems handling nested expressions, arrays and loops. Although it has great

results on small programs, CBT suffers from above shortcomings that prevent it

from working in practical situations.

4.5. Dynamic Domain Reduction (DDR) Procedure by Offutt

A novel approach of test data generation, called dynamic domain reduction

procedure, is proposed by Offutt [1999]. The dynamic domain reduction uses

part of CBT, Korel’s dynamic test data generation approach and symbolic

evaluation. Although DDR process also works by choosing the specific path,

unlike Korel’s approach, it has no initial values for inputs. The values are

derived from the initial input domains (range). The DDR procedure walks

though the program control flow graph, generating test data along the way. Each

input variable is initially given a large set of potential values (its domain), and as

branches are taken in the control flow graph, the domains of the variables

involved in the predicates are reduced so that appropriate predicates would be

true for any assignment of values from the domain. A search process of how to

reduce the domains is used. When the process is done, the remaining values for

any variables’ domains represent sets of test cases that will cause the traversing

Page 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the path. If any variable’s domain is empty, the search process fails, which

means either the path is infeasible or the procedure fails to find satisfying values

to traverse the path.

One simple example to illustrate the DDR approach from Offutt [1999] is:

int mid (x,y,z)
intx,y,z;
{

int mid;
1 mid = z;
2 if (y<z)

{
3 if (x<y)
4 mid = y;
5 if (x>z)
6 mid = x;

}
7 else

{
8 if (x>y)
9 mid = y;
10 elseif(x>z)
11 mid = x;

}
12 return (mid);

}

Figure 4.2 Function Mid and Its Control Flow Graph

If the path of 1-2-3-5-6-12 is chosen, input variables’ domains after each

constraint are as follows:

x y z

1. Start: <-10. ..10> <-10..,.10> <-10 ...10>

2. y < z (node 2 to 3) <-10. ,.10> <-10..,.0> <1... 10>

3. x = y (node 3 to 5) <-5.. .10> <-10..,.-5> <1... 10>

4. x < z (node 5 to 6) <-5...,2> <-10..,.-5> <3... 10>

The searching process for split points is crucial to the dynamic domain reduction

procedure. Choosing different split points gives different results of the domain

reduction procedure, and impropriate selection of split points may cause a later

constraint to be infeasible. Every time the search process does the domain

Page 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reduction, some of the values, which could include the solution, are kept out of

the domain, so if the domain reduction procedure fails on the chosen split point,

the search algorithm needs to search for a better split. During the search process,

the split point is successively reevaluated using bisection, which move the split

point halfway in one direction, then the other, and so on until the choice

succeeds in allowing a test case to be found, or all choices have been exhausted,

or a predetermined constant number of choices have been made (to avoid an

infinite search).

Dynamic domain reduction improves its capability to deal with arrays by treating

each element of an array as a distinct variable. It is also capable of handling

paths with one loop structure by dynamically checking the loop constraint to see

if another iteration of the loop is needed. The algorithm to evaluate domains for

expressions, which can be very hard for other symbolic evaluation methods, is

addressed in the dynamic domain reduction procedure.

Dynamic domain reduction is a more advanced approach than the original

domain reduction using in CBT. However, it has several limitations: First,

dynamic domain reduction procedure has only worked on small numeric

operations, because it hasn’t been able to handle all operations on all data objects

besides numeric operations, in another word, the operation system is not yet

complete. Secondly, inter-procedure issue is not mentioned at all in the algorithm,

specifically, when a path goes through several procedures. Moreover, although

the search algorithm for split point works for small programs like the Function

Mid, when the domains for input variables become huge and continuous, it’s

questionable if the search process for split point can work effectively and

efficiently. For example, if a program needs inputs whose type is float or even

double and their domains are from the minimum to the maximum of float or

double type, the search space for the split point is vast, whether the bisect

algorithm works in the case is very doubtful. Finally, the dynamic domain

reduction procedure works when a specific path is selected based on the

program’s control flow graph; however, if the dynamic domain reduction

procedure is needed to work on every path of a program, this type of exhaustive

Page 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

testing will be computationally very expensive, and impractical for big programs

with thousands of paths.

Page 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Test Data Generation using PDGs and GA (TDGen)

5.1. Outline

In the thesis, we propose an approach, called TDGen, which automatically

generates test data using program dependence graphs and GA to test programs

based on branch coverage criterion. The idea of the approach is that path

selection is crucial for testing some branches, and some specific paths, which

may not be easily selected and traversed by random test cases, are needed to be

chosen to test those branches, therefore, to use a static program analysis to select

the path or paths may help the test data generator to satisfy the desired conditions

and achieve the coverage of targeted branches. TDGen uses program dependence

graphs to select a path that may reach the targeted branch, and obtains constraint

information of the selected path. After the constraints have been collected from

the program with the assistance of program dependence graphs, a genetic

algorithm is used to generate adequate test cases to satisfy all the constraints and

ensure the selected path is reached and traversed. Comparing to test data

generator using GA but without PDG analysis, the test data generator using both

GA and PDG analysis gives GA more constraints to work with during test data

generation, so it’s more effective and more efficient.

Figure 5.1 shows the system architecture and dataflow of TDGen. The coverage

table, similar to Figure 4.1 in Michael’s approach, is established to record the

branch information of the program under test, and keeps tracking whether a

branch is tested or not. When the coverage table is initialized with the seed

inputs, the test data generator gets next targeted untested branch from the

coverage table and send query requests of the PDG analysis with regard to the

target branch to the program analyzer, which takes in the source code of the

program, generates a system program dependence graph including a PDG for

each procedure, accepts query requests from the test data generator, and sends

query results back to the data generator with either graphic user interface or

application program interface. After getting query results from the program

analyzer, the test data generator converts the query results to constraints. A

Page 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

genetic algorithm is used to satisfy the constraints and then test cases are

generated. If the constraints have temporary variables in them, and the GA needs

their values to evaluate fitness functions, the values of the temporary variables

can be obtained by augmenting the source code of the tested program to output

them. Finally, the program is run with the test cases generated by the test data

generator to see if the desired result is reached. If the targeted branch or some

other untested branches are traversed, the coverage table will be updated, and

then new target will be selected from the coverage table for the next cycle of test

data generation.

Branch Infomation

Program Under Test / ’ Coverage TableProgram Analyzer

PDG
Queries Targeted

BranchQuery
Results Test CasesResults

Update

Test Data Generator Using GA

Figure 5.1 System Architecture and Dataflow Diagram

Figure 5.2 shows the algorithm of TDGen. A candidate solution (a individual or

a chromosome for the genetic algorithm) is a set of test data, i.e., an array or a

list of inputs for the program under test.

Procedure TDGen

Input:

program: a program to be tested

Output:

Page 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

covTable: the table to record information and testing status
(tested/not tested) for each branch

testCases: set of test cases that are solution to test corresponding
branches

Variable declaration:

pdgConstraint. constraint from PDG analysis

testRequirements: a table of all untested branches

curPopulation: sets of test data

nextPopulation: sets of test data

individual: a set of test data

target: one test requirement for which test data are going to be
generated

maxlterations: the maximum iterations

iterationCounter. a counter to record the number of iterations

Begin

Create covTable',

Initialize covTable with results of random test data generation;

Create testRequirements',

For (each entry of testRequirements)

{

target=current entry of testRequirements',

Proceed PDG analysis for the target and convert the PDG
analysis result to pdgConstraint',

Initialize the curPopulation',

While (iterationCounter<=maxIterations and target is not
satisfied)

{
Compute the fitness of each individual of curPopulation',

Select the best individual of the curPopulation to
survive to be nextPopulation directly;

Select parents from curPopulation using roulette
selection scheme;

Generate new individuals o f nextPopulation from the
selected parents using crossover and mutation operations;

Page 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Execute program with each individual of the
nextPopulation to check if there are any other untested
branches being tested;

Update covTable, testRequirements, testCases and
iterationCounter;

CurPopulation=nextPopulation;

return (covTable, testCases);

end

Figure 5.2 Algorithm for TDGen

5.2. Coverage Table and Priority Ranking of Branches

A triangle classification program, which is widely used in papers of automatic

test data generation, is used to illustrate the strength of our approach. The

triangle classification takes in three integers as three sides of a triangle, and

decides which type of triangle it is to have the three sides with the length of the

three integers. Four results of scalene, isosceles, equilateral and not a triangle are

returned to users depending on the three integer inputs. Since the program

includes some nested conditions and an enumerated data type variable, it is

perfect to show the advantages of using PDGs for path selection. The source

code of the triangle classification is as follow:

#include <stdio.h> 1
int triang (int i, int j, int k) { 2
// returns one of the following:
//1 if triangle is scalene
// 2 if triangle is isosceles
// 3 if triangle is equilateral
// 4 if not a triangle

if ((i<=0) | |(j <=0) 11 (k<=0))
return 4; // acd

3
4
5
6
7

int tri=0;
if(i==j)

if((i+j<=k)||(j+k<=i)||(i+k<=j))

//g
8

IIh 9
10
11
12
13

//i
//bef

Page 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tri=4; //be 14
else tri=l; //f 15
return tri; 16
} 17

if (tri>3) 18
tri=3; 19

else if ((tri=l)&&(i+j>k)) 20
tii=2; //j 21

else if ((tri==2)&&(i+k>j)) 22
tri=2; //h 23

else if ((tri==3)&&(j+k>i)) 24
tri=2; //j 25

else tri=4; //k 26
return tri; 27

} 28

int main (void) { 29
printf("enter 3 integers for sides of triangles\n"); 30
int a, b, c; 31
scanf ("%d %d %d", &a, &b, &c); 32
int t=triang (a, b, c); 33
if (t==l) 34
printf ("scalene\n"); 35
if (t==2) 36
printf ("isosceles\n"); 37
if (t==3) 38
printf ("equilateral\n"); 39
if (t==4) 40
printf ("not triangleVn"); 41

} 42

To show how the PDG analysis works, we will focus on the procedure triang to

illustrate how the path selection process proceeds. The program dependence

graph of the triang procedure in the triangle classification program is given in the

figure 5.3:

TDGen designed with PDG analysis and GA uses branch coverage as the test

adequacy criterion. This leads to two test requirements for each predicate in the

program, and either the true or false branch has to been satisfied by at least one

test case. A coverage table is established, showing the predicate number,

program line numbers of predicates, predicate, true/false branch and branch

coverage status. Before starting to generate test data for the tested program, a

seed input, usually generated randomly based on the specification or given by

users, is used to execute the program under test for the first time. Generally,

running the program with the seed input will have some branches tested. The

Page 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

result of the execution of the tested program with the seed input is recorded in

the coverage table and the status of each branch is initialized.

EN TER triang

J f ((i< = 0) ||(k < = 0) ||(j< ^)

tri=0 (i= j) (tr l= 0)

(((i+j<ssk)||(j+k<=i)||(i+k« re tu rn tri J \

tri=1

tri=2

Control Row
tri=2

D ep e n d en c e

FALSE

tri=2

Figure 5.3: Program Dependence Graph (PDG) of Triang Procedure in

Triangle Classification Program

Table 5.1 gives an example of the coverage table after the triangle program

executes with the initial seed input, for example 1, 3, 4 as i, j, k. The branch

coverage table is established with the information of predicate number, line

number, description of predicates, true/false branch and status (traversed or not).

Table 5.1: The Coverage Table for Triangle Classification Program

Line Predicate Branch
Status

(tested: ’X ’; untested: ‘- ‘)

1 #3 if ((i<=0) 11 (k<=0) 11 (j <=0))
True -

False X

Page 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 #6 if (i==j)
True -

False X

3 #8 Fti T
i ll *
*

True -

False X

4 #10 if (j==k)
True -

False X

5 #12 if (tri==0)
True X

False -

6 #13 if(((i+j<=k)||a+k<=d)||(i+k<=j))
True X

False -

7 #18 if (tri>3)
True -

False -

8 #20 if ((tri==l&&(i+j>k))
True -

False -

9 #22 if ((tri==2&&(i+k>j))
True -

False -

10 #24 if ((tri==3&&(j+k>i))
True -

False -

After the initial coverage table has been established, the next question is which

branch is our next target. Since traversing of different branches will have

different contributions to the satisfaction of our selected criterion, we need to

weight the importance of each branch towards branch coverage criterion. We

give higher priority to those branches that their traversing causes more other

branches traversed or makes other branches easier to be traversed. Some

traditional dynamic test data generators deal with branches with their natural

sequence in the program, and some others randomly choose one of the branches

that have been reached but not tested to be the next targeted branch to work on.

In our approach, we try to discriminate branches and decide their possible

contributions to our software testing adequacy criterion, so as to always work on

the most possible contributory branch first.

Page 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two metrics suggested by Horwitz [2002] are used to determine the priority

level of each branch. Both metrics are only for predicates. Different from

Horwitz’s original metrics, which use components that are statements and

predicates to calculate the metrics, the two metrics in TDGen are only calculated

with predicates. Horwitz’s original metrics bias the predicates followed by more

statements and predicates in the PDG by calculating metrics with both statements

and predicates, while we don’t favor predicates that have more statements in

either true or false branch by calculating metrics with only predicates, because

testing branches with more statements won’t give us any higher branch coverage

than testing branches with fewer statements.

1. Ease-of-Execution Metric:

An estimate of the effort needed to force a predicate C of an untested branch

to be executed can be computed by finding the path from a tested predicate to

C that contains the fewest predicates in the program dependence graph. In the

control dependence graph, each such path corresponds to one or more paths

in the control-flow graph. The predicates on the program dependence graph

are the “relevant” predicates on the corresponding control-flow graph paths.

The Ease-of-Execution metric gives only a rough estimate of the actual effort

needed to force C to execute, since in practice the predicates in a program are

not independent, and it may be easier to force a predicate to evaluate to one

value than to another. Nevertheless, absolute precision is not necessary, and

only a reasonable correlation between the actual effort and the values of the

metric is needed.

We use the example of the triangle program with 1, 3, 4 as its inputs to

calculate the Ease-of-Execution metric. From the coverage table and the

program dependence graph, we know that every unreached predicate has

only one path from the node Enter to itself, so there is no need to compare

and decide the shortest path from the reached predicate to itself. The

calculation of Ease-of-Execution metric is simple in this case (See Table 5.2

for the result).

Page 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: The Ease-of-Execution Metric for Each Unreached Predicate in

the Triangle Program.

Line # (Node#) Predicate Ease-of-Execution Metric

7 #18 if (tri>3) 1

8 #20 if ((tri== 1 &&(i+j >k)) 2

9 #22 if ((tri==2&&(i+k>j)) 3

10 #24 if ((tri==3&&(j+k>i)) 4

2. Improved-Ease-Set Metric:

Improved-Ease-Set Metric can be evaluated by calculating the total amount

by which the Ease-of-Execution metrics of untested predicates are

guaranteed to be lowed if a predicate P executes and evaluates to v (v

represents the value that predicate P is evaluated to). This metric shows how

traversing one branch impacts the Ease-of-Execution metrics of other

predicates. The Improved-Ease-Set metric can be computed for each

predicate P and value v by determining, for each untested predicate C

reachable in the program dependence graph from P, how many predicates are

on the shortest path from P to C. If the number of predicates is less than C’s

current Ease-of-Execution metric, then the difference in values is added to (P,

v)’s Improved-Ease-Set Metric.

We still use the triangle program with inputs of 1, 3, 4 to see how to get the

Improved-Ease-Set metric. Table 5.3 lists values of Improved-Ease-Set

metric and nodes with lowed Ease-of-Execution metric in the bracket for

each predicated that has not been reached.

Page 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.3 Improved-Ease-Set Metric for Each Untested Branch in the

Triangle Program.

#
Line #

(node #)
Predicate Branch

Lowed Ease

Metric

Improved-

Ease-Set

Metric

1 #3 if ((i<=0)||(k<=0)||(j<=0))
True None 0

False X X

2 #6 if (i==j)
True None 0

False X X

3 #8 if (i= k)
True None 0

False X X

4 #10 IIn True None 0

False X X

5 #12 if (tr i= 0)

True X X

False
18 (-1), 20(-l),

22(-l), 24(-l)
4

6 #13 if (((i+j <=k) 11 (j +k<=i) 11 (i+k<=j))
True X X

False None 0

7 #18 if (tri>3)

True
20(-l), 22(-l),

24(-l)
3

False
20(-2), 22(-2),

24(-2)
6

8 #20 if ((tri==1 &&(i+j >k))
True 22(-2), 24(-2) 4

False 22(-3), 24(-3) 6

9 #22 if ((tri==2&&(i+k>j))
True 24(-3) 3

False 24(-4) 4

10 #24 if ((tri==3&&(j+k>i))
True None 0

False None 0

Page 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Ease-of-Execution metric gives high values to branches that are closer to the

ENTER node in program dependence graph, and the Improved-Ease-Set metric

gives high values to the branches that may have more contribution to the goal of

branch coverage criterion. The two metrics computed for each untested predicate

or branch can be used to determine an ordering by which TDGen can choose

which branch to focus on next. TDGen sorts all branches using Ease-of-

Execution metric as the primary key (from low to high), and Improved-Ease-Set

metric as the second key (from high to low). The intuition of using Ease-of-

Execution metric is that predicates having lower values of Ease-of-Execution

metric are closer to the ENTER node in PDG, and it is relatively easier for the

data generator to find inputs to force these predicates to execute. The Improved-

Ease-Set metric makes the data generator bias those more profitable branches,

because their execution is likely to make more untested components to be

executed. For instance, traversing of the false branch of predicate #7, i f (tri>3)

on line #18, seems more fruitful than the execution of the true branch, because

false branch may cause the execution of predicates 22 and 24.

Therefore, after triangle classification program is run with the seed input of 1, 3,

4, and the coverage table is initialized, all untested branches in the coverage table

are sorted with Ease-of-Execution first and then Improved-Ease-Set. The values

of the two metrics and the sorted untested branches are in Table 5.4.

Table 5.4: Untested branches Sorted with Ease-of-Execution as Primary Key

(Low to High) and Improved-Ease-Set as Secondary Key (high to low)

of the Triangle Program

Line Predicate Branch

Ease-of-

Execution

Metric

Improved-

Ease-Set

Metric

5 #12

oIIllE

False 0 4

1 #3 if ((i<=0)||(k<=0)||(j<=0)) True 0 0

2 #6 if (i= j) True 0 0

3 #8

MIIIIJ*-1 True 0 0

Page 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 #10 Si II II pr True 0 0

6 #13 if (((i+j <=k) | |(j +k<=i) 11 (i+k<=j)) False 0 0

7 #18 if (tri>3)
False 1 6

True 1 3

8 #20 if ((tri==l&&(i+j>k))
False 2 6

True 2 4

9 #22 if ((tri=2&&(i+k>j))
False 3 4

True 3 3

10 #24 if ((tri==3&&(j+k>i))
True 4 0

False 4 0

In table 5.4, the false branch of #5 predicate is listed as the first target for the test

data generator to work on. Although it has the same value of Ease-of-Execution

as other untested branches of predicate #3, 6, 8, 10 and 13, traversing the false

branch of predicate #5 has more contribution to our branch coverage criterion

according to its higher value of Improved-Ease-Set metric. It is showed in the

PDG of the procedure triang that when the false branch of predicate #5 is

traversed, predicate #18, #20, #22 and #24 are closer to the closest reached node

in the PDG, and may be easier for the test data generator to test them with less

effort. It is indicated in the table that all false branches of predicate #18, #20, #22

and #24 have higher priority over corresponding true branches in that each false

branch leads to lowing the values of other predicates’ Ease-of-Execution metric,

while every true branch doesn’t.

5.3. Path Selection Using PDG

Since the algorithm of GADGET in Michael [2001] has been explained in the

last chapter, comparison between TDGen and GADGET will be used in this

section to show the advantages of TDGen. Both approaches use GA, and the

difference is that TDGen uses program dependence analysis of the tested

program to guide GA to work more effectively.

Page 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The triangle classification program is an excellent example for illustrating most

test data generation algorithms and provides some challenges to different

approaches, because of the number of predicates, including nested predicates that

exist in such a small program. The temporary variable tri is an enumerated type,

which is a hard job for most GA approaches. The search space of the three

integers is huge, from negative minimum integer (-2,147,483,647) to positive

maximum integer (2,147,483,647). The large search space decreases the chance

for a random search approach to coincidentally satisfy many of the conditions,

and by the mean time it helps to show the evolving procedure of the genetic

search algorithm.

First, let us take a look at some results from GADGET on the triangle program.

Table 5.5 provides the test cases that succeed traversing some of the branches in

the program by GADGET reported in Michael [2001]. Key a to i are marked in

the program source code displayed in Section 5.2.

Table 5.5: Test Cases Generated by GADGET for Triangle Classification

Program

Number of Runs Key Integer 1 Integer 2 Integer 3

2 a 1680498885 1961702355 -1490056820

3 b 1293470477 1898197634 465181194

4 c -1201922928 1041962067 280365949

6 d 841354299 -1802686561 -209782529

20 e 1056804119 660913846 1617709752

117 f 719320455 507534636 574028437

5311 g 743820356 743820356 1826109949

10751 h 999699718 584551117 999699718

16800 i 799340978 1321708382 1321708382

Page 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By analyzing the test cases with the triangle program, we can see that there are 3

conditions that GADGET hasn’t satisfied in the procedure triang. They are:

tri>3 m on line 18;

i+j>k in else i f ((tri-=l)&&(i+j>k)) on line 20;

j+k>i in else i f ((tri--3)&& (j+k>i)) on line 24;

The reason why GADGET doesn’t satisfy the last condition on line 24 with the

input set of 799340978, 1321708382 and 1321708382, which is supposed to

reach and satisfy j+k>i, is that GADGET doesn’t take integer overflow into its

consideration. The range for i, j, k is from (-2,147,483,647) to (2,147,483,647),

so when the sum of j and k is larger than the maximum for integer type, the

memory overflow causes the sum of j and k to be a negative value which is

smaller than i. This is just a little overlook of GADGET and it is easily fixed in

TDGen.

Since GADGET only uses the conditions of the targeted predicate as the

constraint for the GA to work on, it’s easy for the GA to find valid inputs to

satisfy conditions like i=j, j - k , i=j and i+j<k \ \j+k<i || i+k<j, which have only

inputs and are easy to reach. However, when a specific path is required to be

selected to reach a predicate, GADGET has trouble reaching and satisfying it. In

addition, the overflow situation lies, so the only luck that GADGET got in the

triangle program is

i+k>j in elseif((tri==2)&&(i+k>j)) online 22;

The condition of i+k>j is satisfied as a by-product of GADGET satisfying the

condition

i==k in if(i==k) on line 8;

When GADGET satisfies the constraint of i=k, the condition of i+k>j might be

satisfied with serendipity. Because the GA starts with a random seed input, the

Page 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new input that GADGET generates when attempting to satisfy i==k on line 8

could happen to be, for example,

999699718, 1984551117, 999699718 (i+k<j),

instead of the fortunate

999699718, 584551117, 999699718 (i+k>j)

Because the input with i+k<j also reaches line 22, when GADGET targets i+k>j

on line 22 later, it may fail in the GA process to evolve the input with i+k<j to

the new input with i+k>j, just like it’s failure with another input

743820356, 743820356, 1826109949 (i+j<k)

for

i+j>k in elseif((tri==l)&&(i+j>k)) on line 20;

The reason why GADGET fails to evolve the input in which i+j<k to the input in

which i+j>k is that it doesn’t consider the necessary path that the input should

traverse to reach the condition as well as satisfy it. The algorithm has no

mechanism to analysis data dependence and it considers each predicate

separately: when the GA targets i+j>k, it doesn’t consider that fact that tri-1 is

the result of i=j. Therefore, the fitness functions that GADGET uses for the

[k — i + j ifk > i + j f I tri - 1 1 i f tri ^ 1
condition might be \ and < . When the

[0 otherwise [0 otherwise

GA does the crossover and mutation operation on the inputs that satisfy tri=l

and reach the condition i+j>k, and change the values of i and j to improve the

fitness value. If the new inputs cannot reach the condition because of i ^ j, a low

fitness value is given to the new input, even if i is very close to j, because neither

the first nor the second fitness function is able to help the algorithm to make the

values of i and j go closer to each other. Since the evolvement process of the GA

is interfered by the fact that the condition is reached or not, GA is incapable of

distinguishing a better set of inputs from a worse set of inputs if neither of them

reaches the predicate of the targeted branch, and GA may keep abandoning new

Page 54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inputs unable to reach the target condition, thus finally stops because of no

improvement within a certain amount of generations. If we can think of

i+j>k in elseif((tri==l)&&(i+j>k)) on line 20;

and because tri=l, we add

i=j in i f (i - j) on line 6;

then we can find an adequate test input by minimizing the function 3 i+32, where

f k i f k > i + j
1 [0 otherwise

3 \ \ i ~ j I i f i o j
2 [0 otherwise

Therefore, a specific path reaching and satisfying the conditions in the predicates

on line 6 and line 20 should be chosen, and then the conditions in both predicates

can be converted to a function to transform it to be a minimization problem.

As for

tri>3 in if(tri>3) online 18,

GADGET fails to satisfy tri>3, because each of the conditions

i=j in if(i=j) on line 6;

i - k in if(i=k) on line 8;

j=k in if0= j) on line 10;

is treated separately in the coverage table and there is no mechanism to connect

the local variable tri on line 18 to above conditions. Due to GADGET having no

knowledge of the structure of the program, there is no mechanism to allow it to

derive the relationship between the local variable tri and the inputs of i, j and k.

Suppose that GADGET has the inputs that satisfy the program reaching line 18

Page 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(say, i= io k) , and uses the fitness function3 = i , the chance
[0 otherwise

that GA makes i=j=k is extremely slim, due to 3 is equal to 2 for the whole

duration of the GA process. The search is effectively equivalent to a random

search. If we can use program dependence analysis to derive the fact that the

value of tri is changed at lines 7, 9, 11 and push the test data generator to

produce input that choose a path to go through lines 7, 9, 11, the chance to

satisfy the desired condition tri>3 on line 18 is much bigger.

Some branches can be traversed by GADGET in Michael [2001] described in the

previous chapter. Michael’s approach fails in some cases that are difficult for GA

to score, especially when the program gets bigger and complicated, since it has

no assistance from program dependence analysis. Michael’s approach depends

completely on the power of GA and all it has is the information of the targeted

predicates and if they have been reached or not. PDG analysis is helpful to

resolve this shortcoming by providing some extra program information for GAs

to work successfully. Because static analysis like PDG analysis is relatively

computational expensive, comparing to dynamic approaches without static

analysis, there is always no hurt to apply PDG analysis only after using dynamic

approach to have some branches tested. To further reduce the computational cost,

we apply control dependence analysis first, and data dependence analysis is

added only when GA and GA with control dependence fail to have the targeted

branches tested. The idea of using data dependence is to find out all possible

related paths in the PDG with regard to the target predicate, and then a GA is

used with data dependence to generate test cases to traverse each related paths

that reach the targeted predicate and traverse the targeted branch. With the

programs getting bigger, the use of GA to generate test cases to traverse all the

possible paths could be very expensive. We only need to do it on those tough

branches on which GA and GA with control dependence analysis are

unsuccessful.

Let’s consider the triangle program once again to see how path selection

mechanism works in the proposed approach, and take those failed cases of

Page 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GADGET for TDGen to do program dependence analysis to find the right path

to reach and satisfy the untested branches. From the proposed solution by

GADGET, one untested branch that GADGET is incapable to traverse is the true

branch of

else if((tri==l)&&(i+j>k)) on line 20;

From the PDG of the procedure triang in the triangle program (See figure 5.4),

we can see that node 20 is control dependent on nodes 3(F), 12(F), and 18(F), i.e.,

to reach node 20, the FALSE branches of predicates 3, 12 and 18 must be taken,

although there are still several paths between node 3 and node 12 on the control

flow graph. To take the true branch of node 20, the conditions in the predicates

are also needed to be satisfied, so tri=l and i+j>k. With control dependence

analysis and the condition information from the targeted branch, the constraint

that we can get from the PDG is:

ENTER triang

J f «i<=0)ll(k<=0)||(j<=0)h

It (i= k) . l f (j= k) If (tri= 0)

It (tri>3)

Figure 5.4: Control Dependence and Data Dependence Analysis for Node 20

Page 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i>0 && j>0 && k>0) && (trioO) && (tri>3)

AND

(tri=l) && (i+j>k)

The constraint after deleting overlapped conditions is:

(i>0 && j>0 && k>0)&& (tri=l) && (i+j>k)

With the constraint that we get after the control dependence analysis, one more

constraint (i>0 && j>0 && k>0) is obtained than Michael’s approach in this

case. This constraint can keep GA from wasting time and resource to generate

test cases with i<=0|[j<=0||k<=0.

When GA fail to generate test cases to test the targeted branch with the

constraints obtained from control dependence analysis, it means that GA fail to

find the proper path to reach the targeted predicate or fail to traverse either the

true or the false branch. Therefore, Data dependence analysis needed to be

considered to find all related paths that reach the targeted predicated and may

traverse the targeted branch, and GA needs to try to generate test cases to

traverse each of the paths, so as to fulfill the goal of testing the targeted branch.

We need to do data dependence analysis on each variable in the constraint that

we have got from the control dependence analysis. In the previous case, since i, j

and k in the condition (i+j>k) and condition (i>0 && j>0 && k>0) are only data

dependent on input variables, no further data dependence analysis is necessary.

For the condition of tri=l, we need to undertake data dependence analysis to see

where the variable tri is manipulated. This allows us to generate new inputs to

try to traverse the paths that may change the value of tri. This approach shows

that tri at node 20 is data dependent on nodes 7, 9 and 11, i.e., when the value of

tri at node 7 or 9 or 11 is changed, it will propagate into value of tri at node 20.

In the PDG, node 7, 9 and 11 are three assignment statements of tri. Only those

assignments of tri that are control dependent on nodes other than the entry node

may change the value at node 20, so assignments of tri that are only control

Page 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependent on the entry node are not able to change the value of tri at node 20 no

matter which path is chosen. The nodes that assignments of tri are control

dependent on are considered instead of nodes of the assignment nodes

themselves. For instance, for nodes 7, 9 and 11, nodes 6, 8 and 10 are considered

instead. The different execution combinations of the assignments of tri that tri at

node 20 is data dependent on change the value of the tri at node 20. Each

combination is a possible path to reach the targeted branch and change the value

of tri, thus by trying all different combinations of whether predicates 6, 8 or 10 is

satisfied, a combination or path can be found to make the value of tri at node 20

change from tri=0 to tri-1 . The permutation operation is used for the

combination of the different predicates in the data dependent analysis. For each

of predicates 6, 8 and 10, both control dependence analysis and data dependence

analysis need to be proceeded with regard to node 20. (See figure 5.5 for the

constraint information obtained from control and data dependence analysis)

The control dependence analysis (connected by bold black lines) and the analysis

of the predicates themselves (connected by thin black lines) use AND operations,

and the data dependence analysis (connected by bold grey lines) uses

permutation operations (e). The constraint that test cases have to satisfy to test

the FALSE branch of node 20 is

i+j>k

AND

tri=l

AND

(i>0 && j>0 && k>0&&i=j) (i>0 && j>0&&k>0&&i=k) (i>0 && j>0

&& k>0 && j=k)

AND

(i>0&&j >0&&k>0)

Page 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 (FALSE)

3 (FALSE)) ------- *\ i>0&j>0&k>0 |

i=k

3 (FALSE) > > | i>0&j>0&k>0C 20 (TRUE) >

3 (FALSE) > — t i>0&j>0&k>0
6 (TURE) >

(FALSE) 3 — C i>0&j>0&lo0 |
(TRUE) >^ z lm L S E))- trioO

i=k

3 (FALSE) >

trioO

- ♦ (6 (TURE) y

> X 8 (TRUE)x n (FALSE)>

Conditions in a Predicate 3 (FALSE) }

- X 10 (TRUE) y
Control Dependence

Data Dependence

Figure 5.5: Constraints Information from Control and Data Dependence

Analysis

AND

trio O

AND

(i>0 && j>0 && k>0 && i=j) (i>0 && j>0&&k>0&&i=k) (i>0 &&

j>0 && k>0 && j=k)

AND

tri<=3

Page 60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AND

(i>0 && j>0 && k>0 && i=j) (i>0 && j>0&&k>0&&i=k) (i>0 &&

j>0 && k>0 && j=k)

Finally, by deleting the duplicate constraints, the ultimate constraint for the GA

to generate inputs is

i+j>k

AND

tri=l

AND

(i>0 && j>0 && k>0&&i=j) (i>0 && j>0 && k>0 && i=k) (i>0 &&

j>0 && k>0 && j=k)

AND

(i>0&&j >0&&k>0)

and they can be further simplified to

i+j>k && tri=l && (i=j i=k j=k) && (i>0 && j>0 && k>0)

Since the different permutations of i=j, i=k, j - k manipulate the value of tri on

node 20, and each permutation is the possible path to reach node 20 and satisfy

the condition of tri=l in node 20. The eight permutations of i=j, i=k, j= k are as

follows:

I. i o j && i o k && j o k

II. i==j && i o k &&j o k

III. i o j && i==k && j o k

IV. i o j && i o k && j==k

Page 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V. i==j && i==k && j o k

VI. i==j && i o k && j==k

VII. i o j && i==k && j==k

VIII. i==j && i==k &&j ==k

TDGen first randomly chooses one of the above eight permutations and construct

a constraint with i+j>k && tri=l&& (i>0 && j>0 && k>0), then GA tries to

find test cases to satisfy the constraint to ensure the selected path is traversed. If

GA fails to generate at least one test case to satisfy the constraint, another

permutation will be selected to construct another constraint and GA will try

again to find a test case to satisfy it. The process will keep going until all

permutations or related paths are tried. TDGen will give up working on the

targeted branch, when the GA fails to find a test case to traverse one of the paths

obtained from the control and data dependence analysis and the targeted branch.

The reason that the algorithm gives up testing targeted branch is that either the

targeted branch is unreachable or non-traversable or the GA cannot find a test

case to satisfy the constraint from PDG analysis, sequentially, cannot find a test

case to reach and traverse the targeted branch.

The control and data dependence analysis in this section is only for illustrating

the proposed approach, since it’s practically impossible to manually generate a

PDG to analyze the control and data dependence for a practical real world

program. CodeSurfer is used to get results of control and data dependence

analysis, and it makes PDG analysis easier and applicable on large programs.

5.4. The Genetic Algorithm in TDGen

When a path is selected and the constraint is constructed, a fitness function needs

to be constructed for the GA to evaluate the fitness of each test case it generates.

Table 5.6 shows the fitness functions corresponding to basic relational operations

in source code.

Page 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on the rule, For example, the constraint of permutation II is:

i+j>k && tri=l && (i==j && i o k &&j o k) && (i>0 && j>0 && k>0)

Table 5.6: Rules to Build Fitness Function for Basic Relational Operations

Example Fitness function (p is a preset penalty) value)

If (a)...
fO TRUE

3 = \p FALSE

If (a=b)
„ f 0 a = b
3 = \

[abs(a - b) + p a ^ b

If f a o b)
„ fO a ^ bM h[p a - b

If (a<b)
f 0 a < b

3 =
[(a - b) + p a > b

If (a<=b) „ \ 0 a ^ b 3 = \
[(a - b) + p a > b

The maximum operator is used for AND operations, and minimum operator is

used for OR operations. The fitness function for permutation II is:

f 0 i + j > k \ 0 tri = 1
3 = maximum (< , < ,

{(i + j - k) + p otherwise [abs(tri - 1) + p otherwise

j 0 i = j J 0 i o k JO j o k J 0 i > 0

[abs(i - j) + p i ^ j ' [p otherwise ’ [p otherwise ’ [- i + p otherwise ’

j 0 j > 0 j 0 k > 0 ^

[- j + p otherwise ’ \ - k + p otherwise

After the test data generator initializes the first population for the genetic

algorithm, each test case is evaluated according to the fitness function, and given

a fitness value. If the constraint involves temporary variables, for example, tri in

Page 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the case of permutation II, the program needs to be run with each generated test

case to get the value of the tri at the line #20 of the triangle classification

program. If the designated program location where the temporary variables lie

has not been reached by the test case, a special penalty is given as the fitness

value for the part of the fitness function with the temporary variables, and in the

case of permutation II, the fitness function for “tri= l” is changed to:

0 tri = 1
■ abs(tri - 1) + p tri 0 1

p' tri unreached

p’ is a penalty bigger than p, because we believe that test cases that reach the

predicate being evaluated should be fitter than test cases unable to reach the

predicate.

Tournament selection with replacement between two individuals is used as the

selection scheme in our GA. To generate a parent, the GA takes out two

individuals randomly with uniform possibility from the current population pool,

compares the fitness values of the two selected individuals, chooses the one with

the better fitness value as a parent, and puts the two individuals back to the

population pool for the next selection of a parent.

For the genetic operations, real coding is used for both crossover and mutation

operations. Not every pair of parents do crossover to generate a new pair of

offspring of the next generation. A crossover and a mutation probability are set

up so that each pair of parents just has the presetting probability to do crossover,

and each of the offspring after the crossover operations only mutates with the

presetting probability. A random number between 0 and 1 is generated to decide

if a crossover operation or a mutation operation is needed. If the random number

is less than the presetting crossover probability or mutation probability, a

crossover or mutation operation needs to be done, otherwise, the crossover or

mutation operation is skipped. If crossover is skipped, both of the parents will be

kept intact, and passed on to the mutation procedure. Single crossover is used for

crossover operator. If the mutation is needed to do on one individual, one of the

Page 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

three mutation operators, uniform random mutation, non-uniform random

mutation and Muhlenbein’s mutation, is randomly chosen as the mutation

operator applied on the individual. The reason of randomly selecting mutation

operator is to introduce more randomness of mutation operations, and to reduce

the shortcomings of different mutation operators when they are used separately.

In the new generation, the best individual of the past generation is always kept

and passed to the new generation. By doing this, we want to make sure the

evolution process won’t degenerate from one generation to the next generation,

and the best individual won’t be lost by any chance.

When the new generation is produced, the fitness evaluation procedure will be

done again to evaluate each of the individuals in the new generation. The GA

keeps doing evaluation, crossover and mutation until the fitness function reach

its target minimum value zero, i.e., the constraint is satisfied by at least one of

the individual in the current generation. The test case or test cases that satisfy the

constraint are used to run the tested program to verify if the targeted branch is

traversed or not. When it is confirmed that the targeted branch is tested, the

coverage table is updated and the test cases are recorded. The GA gives up if a

test case cannot be found to satisfy the constraint after a certain amount of

generations, or the values of fitness function stops getting smaller in a certain

amount of generations.

During the GA process, every time a new generation is generated, the program is

run with each individual test case to see if the branch coverage has any

improvement. The reason to do this is that some untested branches may be

traversed coincidentally when the GA works on other branches. In fact, this kind

of coincidences can happen a lot in the GA evolving process. In the triangle

program, it’s easy to get three integers constructing an isosceles triangle when

the GA is trying to generate i, j, k to satisfy the requirement of getting an

equilateral triangle. When an untested branch is traversed, no matter whether it is

the targeted untested branch or not, the coverage table is updated with the new

achievement and the test case is recorded.

Page 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After testing the targeted branch is fulfilled or some other untested branches are

traversed, another untested branch will be selected as the next target according to

the two selection metrics in 5.2. The control dependence and data dependence

analysis are repeated, and new GA procedure is used to satisfy the obtained

constraint. The recursive process terminates when all the branches in the

coverage table are tested, or a preset coverage percentage is reached, or no more

branch has been left for testing.

5.5. Discussion of Computational Cost

Since the TDGen is a heuristic process, it is hard for us to predict how many

iterations there will be for each chosen requirement. However, there are several

facts that influence how complex the proposed approach could be.

In the real world, the programs under test are larger and more complicated than

triangle classification program. The control dependence and data dependence

analysis can become very complicated. In addition, the constraint information

that the algorithm gets from the PDG analysis may be extremely complex. If

there are many OR operators in the predicate for the targeted branch, or the data

dependence analysis produces a lot of permutation operations in final constraints

to guide the GA, the entire process of the data generator to find a proper input to

reach and traverse the targeted branch will be very difficult and computational

expensive. Suppose the number of permutation operations in the final constraints

is N, then there will 2N possibilities that the date generator has to try to find the

solution constraints, and the corresponding test cases. Although if the data

generator is given enough time to do the exhausted search, i.e. try all 2N possible

combinations of all constraints, and the data generator is capable to find the

solution, the cost will be high when N is huge. For instance, if there is 20

permutation operations in the constraint we get from the PDG analysis, in the
20worst case of exhausted search, the data generator has to get 2 =1048576

different constraints and try to generate millions of test cases to satisfy 1048576

constraints one by one, and the tested program needs to be run for each generated

test case.

Page 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the triangle classification example which has a relatively complicated

nesting structure in a 42 line program, we can see that although the constraint

that we get from the PDG analysis is complex at first, it becomes simpler after

the redundant conditions have been deleted. We anticipate that in most practical

programs, this is the typical case that the constraint could be simplified to make

the GA process easier. The probability of a program to have very complicated

data dependence among local variables is not very often. Therefore, we believe

that TDGen works for most practical programs with reasonable complexity of

data dependence.

5.6. Issues Regarding Loops and Arrays

Loops are always tough for automatic test data generation researches. No method

can handle them perfectly, either it is ignored in dynamic test data generators or

it is handled in an inefficient way, which makes it impossible to apply on big

programs in the real world, such as unrolling in the static test data generation. In

TDGen, only false branch and the first iteration of true branch are considered, so

loops are treated like they are condition structures, and predicates in loops are

handled as if they are predicates in condition structures. In this way, we avoid

trying to unroll the loops, while we still partially consider them in the program

dependence analysis.

In program dependence analysis, each element of an array is treated like it is a

distinct variable, and values of elements of non-input arrays can be obtained by

augmenting the source code to output the values, like the way temporary

variables are handled. When arrays involved in data dependence analysis, they

could make the results very complicated. However, since data dependence is

applied only when GA and GA with control dependence fail, the chance of

TDGen to solve arrays is bigger than each of the three single methods.

5.7. Results on the Triangle Program

In Section 5.3, it is discussed that how GADGET fails to reach the predicates on

line 18, 20 and 24, and test the true branches of them. In this section we use

Page 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TDGen to work on each of the three branches that GADGET was unable to test.

To test the true branch of the predicate, if tri>3on line 18, TDGen needs to

generate three equivalent integers to make up of an equilateral triangle. As for

the true branch of i f ((tri==l)&&(i+j>k)) on line 20 and the true branch of if

((tri==3)&&(j+k>i)) on line 24, two sets of three integers with i= jo k and

io j= k respectively are needed to construct isosceles triangles.

For each predicate, a PDG graph (if it is not provided in Section 5.3), the

constraint derived using PDG analysis and the result of two trials using the GA

with corresponding fitness functions is presented:

1. if(tri>3) online 18;

The PDG is showed in Figure 5.6 and the constraint derived from the PDG

analysis is:

(i=j i=k j=k) && (i>0 && j>0 && k>0) &&tri>3

ENTER triang

If (tri>3)

Dependence

Figure 5.6: Control Flow and Data Dependence Analysis for Node 18

Page 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When i=j=k is selected, the condition of tri>3 is satisfied and the true branch of

node 18 is traversed.

For i=j=k && (i>0 && j>0 && k>0), the fitness function is

J 0 i = j f o i = k
3 = maximum . . , i

{ a b s (i - j) + p i ^ j [a b s (i - k) + p i * k

J 0 j = k J O i > 0 J O ; > 0

\ a b s (j - k) + p j ^ k ’ [- i + p otherwise ’ j + P otherwise

J O k > 0 J 0 tri > 3

[- k + p otherwise’ [3 - tri + p otherwise

Trial #1: 827077106 827077106 827077106 in Generation #309

Trial #2: 1190496163 1190496163 1190496163 in Generation #179

2. i f ((tri==l)&&(i+j>k)) online 20;

As the demonstration in last section shows, the constraints are

i+j>k && (i=j i=k j=k) && (i>0 && j>0 && k>0) && tri=l

By selecting the combination of i=j, i o k , j o k , the condition of (tri==l) &&

(i+j>k) is satisfied and the true branch of the node 20 is traversed.

J 0 i + j > k r o i = j
3 = maximum (1 . , < . ,

[{k - i -]) + p o th erw ise [abs(i - j) + p i * j

JO i o k JO j o k J O i > 0 J 0 j> 0
[p otherwise ’ J p otherwise ’ \ - i + p otherwise ’ [- j + p otherwise

| 0 k > 0 | 0 tri = 1
\ - k + p otherwise [abs (t r i - 1) + p otherwise

Trial #1: 296576321 296576321 71684961 in Generation #158

Page 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trial #2: 342425063 342425063 606335952 in Generation #161

3. if((tri==3)&&(j+k>i)) on line 24;

Figure 5.7 is the PDG showing the control and data dependence analysis for

node 24 and the constraints derived from the PDG analysis are:

j+k>i && (i=j i=k j=k) && (i>0 && j>0 && k>0) && ((tr io l) ||

(i+j<k)) && ((tri <>2)|| (i+k<j»

ENTER triang

df ((i<=0)||(k<=0)||a<=0)h

return 4

Jf (({i+j<=k)||0+k<»i)l|{l+k<=j)V return trireturn tri

20 '
If ((tri=1&&(l+j>k)h

If ((trias2&&(hk>j))

Control Flow r 24
J f ((trl=3&&(j+k>M

Data Dependence

TURE

Figure 5.7: Control Flow and Data Dependence Analysis for Node 24

By selecting the combination of i o j , i o k , j=k, the condition of (tri==3) &&

(j+k>i) is satisfied and the true branch of node 24 is traversed.

Page 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f 0 j + k > i f 0 i o j f 0 i o k
3 = maximum (< , < , <

[(l — j — k) + p otherwise [p otherwise [p otherwise

J 0 j = k J O i > 0 J O j> 0
Ja b s (j - k) + p j ^ k ’ [- i + p otherwise ’ [- j + p otherwise

f 0 k > 0 (0 f r i ' o l [0 i + j < k
< , minimum A),
[— k + p otherwise [p otherwise [(i + j - k) + p otherwise

f 0 t r i o 2 (0 i + k < j
minimum (X A))

[p otherwise [(y — i — k) + p otherwise

Trial #1: 827556323684491746 684491746 in Generation #157

Trial #2: 24076905 790891888 790891888 in Generation #50

The results of one complete run of TDGen on the triangle classification program

are in table 5.7. The integers in the table represent the test case that achieves the

branch coverage percentage progress. The population size for the GA is 100,

which means 100 runs per generation..

Table 5.7 Test Cases that Traverse Untested Branches for Triangle

Classification Program

Gen# Statement # Integer 1 Integer 2 Integer 3 Branch

Coverage

1 4 -1003681762 -1789385610 1053597848 20.0%

1 14 270799300 1034857710 266378176 60.0%

1 15 1028865792 480254158 1012693452 63.3%

154 9, 26 461096133 1980897956 461096133 80.0%

338 7, 9, 11, 19 1070096700 1070096700 1070096700 83.3%

496 9, 23 400533888 416625066 400533888 86.7%

Page 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

972 7,21 1607086370 1607086370 331820571 93.3%

1136 11,25 548879073 1915612299 1915612299 100.0%

Comparing to the result from Michael [2001] in Table 5.5, although more runs of

the program are needed, TDGen got the full branch coverage of the triangle

program.

Page 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Empirical Results

In order to determine the effectiveness of TDGen, a number of experiments on

several programs are done and results are reported. The programs tested with

TDGen are as follows:

1. Bubble sort

2. Greatest common divisor

3. Conversion o f a hexadecimal number to a decimal number

4. Bonus calculation

5. Quadratic formula

6. Triangle Classification

For each programs, 10 runs of TDGen are performed, as well as 10 runs of

random testing for the purpose of comparison. Although we use branch coverage

in TDGen, results of both statement coverage and branch coverage are generated.

Results of statement coverage of TDGen are only for the reference purpose, and

we believe with some adjustment of TDGen, better performance of TDGen with

statement coverage could be obtained.

The GA in TDGen uses 100 individuals per iteration/generation, and the

maximum of the GA to give up satisfying a constraint and go to the next

constraint is 300 generations. We choose 0.4 as the crossover probability and 0.1

as the mutation probability in the experiments. To produce a fair comparison,

random testing is designed to randomly generate 100 test cases in an iteration,

which is the size of the population of the GA.

The results of the experiments on the first two programs don’t give much

difference between TDGen and random testing, and both statement coverage and

branch coverage are achieved within first several iterations. The reason is that

the source code of the programs doesn’t involve nested conditional structures, or

Page 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the predicates of conditional structures and loops can be easily satisfied. The

code of the programs is mainly straight lines or branches that are easily traversed

by random test cases.

The results of the programs #3 to #6 in the list, hex-dec conversion, bonus

calculation, quadratic formula and triangle classification, however, show the

difference between TDGen and random testing. The source code of these four

programs is provided in the Appendix. Table 6.1 summarizes the test results of

the programs using TDGen and random testing. Mean, minimum and maximum

number of generations to achieve the highest statement coverage and branch

coverage are showed in the result table.

Table 6.1 Results of TDGen on the Four Programs

P ro g ram G enera to r T o ta l R uns
M ax. S ta tem en t /
B ran ch C o v erag e

M ean M in M ax

H ex -D ee
T D G en 10 96 .43 /92 .85 15 8 25

R an d o m 10 9 6 .43 /92 .85 33 14 58

B onus
T D G en 10 100/100 33 23 46

R an d o m 10 100/100 261 108 447

Q uadratic
T D G en 10 100/100 267 171 323

ran d o m 10 76 .67 /77 .78 1 1 1

T riang le
T D G en 10 100/100 973 644 1534

R an d o m 10 62.5 /63 .33 2 1 5

In the table, TDGen and random testing both reached the same highest statement

and branch coverage for Hex-Dee Conversion program and Bonus program.

However, random testing used an average of 33 iterations (100 cases / iteration),

i.e. 33 generations in the GA process, to reach the maximum coverage for the

Hex-Dee program, while it only took TDGen 15 iterations on average, and the

minimum and maximum iteration that TDGen required to achieve the highest

coverage are lower than those of random testing. For the bonus program, the

difference is even bigger. TDGen only used approximately as one eighth of the

iterations as random testing to reach 100% coverage, and the maximum

iterations that TDGen needed is less than half of the minimum iterations that

random testing needed. In the cases of quadratic formula program and triangle

classification program, random testing didn’t have any improvement since the

Page 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first several iterations, and the statement and branch coverage achievement were

poor. Random testing was just simply doing fruitless randomly test data

generation, and eventually gave up. Comparing to random test data generator,

TDGen achieves 100% statement coverage and branch coverage.

For all the programs, figures are given to graphically show the difference of the

coverage improvement between TDGen and random testing. In each figure, the

horizontal axis is the number of iterations run by test data generators, and the

vertical axis gives the coverage percentage achieved. For random testing, only

the mean values are showed in the graph, and for the statement and branch

coverage graphs of TDGen, minimum, maximum and mean achieved coverage

percentage values are displayed.

Figure 6.1, 6.2 and 6.3 summarize graphically the results of the experiments

using random testing and TDGen on Hex-Dee program. Although the highest

achieved statement coverage and branch coverage are the same for both random

testing and TDGen, random testing needs almost twice the effort that TDGen

needs to achieve the highest coverage.

100

<n
bocdu<x>
>oo

' - - f t o c > i - 0 0 < 0 0 * 0 0 < - o 0 t - 0 0

I te ra tions (100 cases/ite ra tion)

S tatem en t Coverage —» —-Branch Coverage

Figure 6.1 Statement Coverage and Branch Coverage of Random Testing on

Hex-Dee Conversion Program

Page 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

-m ■-'- - m - ■

80 -

CD

40 -

11 er at i ons (100 cases/ i t er at i on)
a — Ave. — - Min. - - ♦ - - Max.

Figure 6.2 Statement Coverage of TDGen on Hex-Dee Conversion Program

100

i *•

05

20

11 erat i ons (100 cases/ i t erat i ons)

a— Ave. - Min. - - ♦ - - Max.

Figure 6.3 Branch Coverage of TDGen on Hex-Dee Conversion Program

Figure 6.4 to 6.6 summarize the results of experiments using random testing and

TDGen on Bonus program.

Page 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

, o o
, o

oo oo o o oo

I te ra tions (100 cases/itera tion)

Statement Branch

Figure 6.4 Statement Coverage and Branch Coverage of Random Testing on

Bonus Program

100

m— ■ —

O)

t era t i ons (100 cases/i t era t i on)

■a— Ave. ■ Min. Max.

Figure 6.5 Statement Coverage of TDGen on Bonus Program

Page 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 -

oo jsI ■------M

o>

t erat i ons (100 cases/i t erat i on)

■ Min. ------- Max.■A— Ave.

Figure 6.6 Branch Coverage of TDGen on Bonus Program

COC
3OS
o
CO
cl)

■g3

10

9

8

7

6

5

4

3

2

1

0
1 50 100 150 200 250 300 350 400 450 500

Ite ra tions (100 te s t cases/itera tion)

Figure 6.7 Cumulative Frequencies of Runs to Achieve 100% Statement and

Branch Coverage of Random Testing on Bonus Program

Page 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 5 10 15 20 25 30 35 40 45 50
Ite ra tions (100 cases/itera tion)

Figure 6.8 Cumulative Frequencies of Runs to Achieve 100% Statement and

Branch Coverage of TDGen on Bonus Program

Figure 6.7 and 6.8 are the graphs showing cumulative frequencies of runs to

achieve 100% coverage. The difference in the results of the bonus program is

quite obvious. The range of runs achieving full coverage of TDGen is from 23 to

46. By contrast, the range for random testing is from 108 to 447, which is far

greater than that of TDGen. The coverage graph and cumulative frequency

figures of random testing show that there is one run failing to achieve full

coverage within 500 iterations. The results of random testing indicate random

testing has great difficulty working on large search space, and the chance of

random testing to get the solution depends on the ratio of the domain of the

solution to the total search space. The performance of random testing is quite

unpredictable and good results depend on serendipity.

Results of random testing and TDGen on quadratic formula program are

provided in Figure 6.9 to 6.11. Figure 6.9 shows that random testing failed to

achieve any progress after the first iteration. In the program, inputs are real

numbers, which have continuous search space. In this case, the chance of random

testing to satisfy a=0 is almost zero when a is a real number variable. On the

Page 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contrary, with the assistance of GA and PDG analysis, TDGen achieved full

statement and branch coverage within 350 iterations for all 10 runs.

80
79
78

& 77
^ 76
S’ 75
£ 74
8 73

72
71
70

to oo

Ite ra tions (100

oo

cases

£
OOto

/ i tera tion)

to

■ Statement Coverage Branch Coverage

Figure 6.9 Statement Coverage and Branch Coverage of Random Testing on

Quadratic Formula Program

CD

70 -

I O t o O t o or - r» c\/ Cty CO

II er at i ons (100 cases/ i t er at i on)

Figure 6.10 Statement Coverage of TDGen on Quadratic Formula Program

Page 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 -

95 -

90 - -wf
a « "
CD
ffl 8 0 - -

75 -

70 -

65

11 erat i ons (100 cases/ i t erat i on)

■a— Ave. — ■*- - Min. Max.

Figure 6.11 Branch Coverage of TDGen on Quadratic Formula Program

1 50 100 150 200 250 300 350
Ite ra tions (100 cases/itera tion)

Figure 6.12 Cumulative Frequencies of Runs with 100% Statement and

Branch Coverage of TDGen on Quadratic Formula Program

Figure 6.12 is the Cumulative Frequencies of Runs with 100% Statement and

Branch Coverage of TDGen on Quadratic Formula Program. The best run got

Page 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100% coverage at 171st iteration, and it took the worst run 323rd iterations to get

full coverage.

Figure 6.13 to 6. 15 are graphs of results using random testing and TDGen on

triangle classification program. Random testing graph shows random testing was

wasting effort during most of the time after it got the initial coverage percentage.

Because of nested conditional statements and the variable with enumerated type

in predicates in the triangle program, the chance that random test data generator

to get lucky is very slim. The result graphs of TDGen indicate that TDGen kept

getting gradual progress during all the process, and the difference between the

worse case and best case is fairly reasonable.

500400200 300100
Ite ra tions (100 cases/itera tion)

BranchStatement

Figure 6.13 Statement Coverage and Branch Coverage of Random Testing on

Triangle Classification Program

Page 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

JD r • - B '

O)

o o o ooo

11 erat i ons (100 cases/ i t erat i on)

Figure 6.14 Statement Coverage of TDGen on Triangle Classification

Program

100 M W

M

CT>

O OO O O O

11 erat i ons (100 cases/ i t erat i on)

* — AVE. - - MIN. - - ♦ - - MAX.

Figure 6.15 Branch Coverage of TDGen on Triangle Classification Program

Page 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2 Statement Coverage Results of TDGen on Triangle Classification
Program

Statement Iterations
Coverage

(%)
1 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600

1 62.5 62.5 80 87.5 90 90 95 95 95 95 95 97.5 100 100

2 57.5 62.5 80 87.5 90 90 97.5 100 100 100 100 100 100 100

3 62.5 62.5 80 82.5 85 95 95 95 95 97.5 100 100 100 100

4 62.5 62.5 77.5 85 92.5 97.5 97.5 97.5 97.5 97.5 97.5 100 100 100

Vid 5 62.5 77.5 77.5 85 85 92.5 92.5 97.5 97.5 97.5 100 100 100 100
d

6 62.5 62.5 77.5 85 92.5 92.5 97.5 100 100 100 100 100 100 100

7 57.5 62.5 80 87.5 90 90 97.5 100 100 100 100 100 100 100

8 57.5 62.5 80 87.5 90 90 92.5 97.5 97.5 97.5 97.5 100 100 100

9 62.5 62.5 80 82.5 82.5 85 85 90 95 95 95 97.5 97.5 100

10 62.5 62.5 87.5 87.5 92.5 92.5 97.5 97.5 97.5 100 100 100 100 100

Ave. 61 64 80 85.8 89 91.5 94.8 97 97.5 98 98.5 99.5 99.8 100

Min. 57.5 62.5 77.5 82.5 82.5 85 85 90 95 95 95 97.5 97.5 100

Max. 62.5 77.5 87.5 87.5 92.5 97.5 97.5 100 100 100 100 100 100 100

Table 6.2 and 6.3 give all coverage results of the 0 runs of TDGen on triangle

classification program. These two tables also indicate that TDGen was getting

progress gradually on statement and branch coverage.

Table 6.3 Branch Coverage of TDGen on Triangle Classification Program

Branch
Coverage

(%)

Iterations

1 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600

1 63.3 63.3 80 86.7 90 90 93.3 93.3 93.3 93.3 93.3 96.7 100 100

2 60 63.3 80 86.7 90 90 96.7 100 100 100 100 100 100 100

3 63.3 63.3 80 83.3 86.7 93.3 93.3 93.3 93.3 96.7 100 100 100 100

4 63.3 63.3 76.7 86.7 93.3 96.7 96.7 96.7 96.7 96.7 96.7 100 100 100

Vid 5 63.3 76.7 76.7 86.7 86.7 93.3 93.3 96.7 96.7 96.7 100 100 100 100
=3t-H 6 63.3 63.3 76.7 86.7 93.3 93.3 96.7 100 100 100 100 100 100 100

7 60 63.3 80 86.7 90 90 96.7 100 100 100 100 100 100 100

8 60 63.3 80 86.7 90 90 93.3 96.7 96.7 96.7 96.7 100 100 100

9 63.3 63.3 80 83.3 83.3 86.7 86.7 90 93.3 93.3 93.3 96.7 96.7 100

10 63.3 63.3 86.7 86.7 93.3 93.3 96.7 96.7 96.7 100 100 100 100 100

AVE. 62.3 64.7 79.7 86 89.7 91.7 94.3 96.3 96.7 97.3 98 99.3 99.7 100

MIN. 60 63.3 76.7 83.3 83.3 86.7 86.7 90 93.3 93.3 93.3 96.7 96.7 100

M AX. 63.3 76.7 86.7 86.7 93.3 96.7 96.7 100 100 100 100 100 100 100

Page 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
£

oo00
o o o o05 o

oo

I te ra tions (100 cases/itera tion)

Figure 6.16 Cumulative Frequencies of Runs with 100% Statement and

Branch Coverage of TDGen on Triangle Classification Program

Figure 6.16 shows cumulative frequencies of runs with 100% statement and

branch coverage. The range of number of iterations that TDGen took to achieve

100% coverage is approximately from 700 to 1600. The reasons of the difference

may be: 1) when TDGen uses data dependence analysis to try different paths,

there might be permutation operations in the constraint obtained. TDGen then

randomly chooses a permutation, so the faster TDGen can get to the right path,

the less iterations it needs; 2) genetic algorithm is a dynamic process with

randomness in it, and the speed of the evolutional process to converge to the

solution varies from one trial to another.

The experiments of above programs show that TDGen outperforms random

testing on programs with some complexity. The performance of random testing

varies from one program to another, and in some case, its success depends on

coincidence. On the contrary, the performance of TDGen is solid, and it keeps

achieving progress on statement coverage or branch coverage during the whole

process. For those programs with little complexity, TDGen and random testing

Page 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both achieve 100% statement and branch coverage immediately. However, for

those programs with nested conditions and variables with enumerated type in

predicates that random testing has difficulty to handle, TDGen has better

performance with the help of program dependence graph and genetic algorithm.

Experiments also show that random testing has trouble with large search space,

and the GA of TDGen is much more efficient working on large search space than

random testing.

Three programs that GADGET failed to get 100% condition-decision coverage

are tested using TDGen with the change from branch coverage to condition-

decision coverage as the adequacy criterion. Table 6.4 shows the coverage

percentages that GA in GADGET and GA in TDGen achieved.

Table 6.4 Results on Three Programs Using Condition-decision Coverage

GA in GADGET GA in TDGen

Binary Search 70% 100%

Quadratic 75% 100%

Triangle 94.29% 100%

With the PDG analysis, TDGen achieved 100% coverage for all three programs.

The GA in TDGen works more effectively than the GA in GADGET, and

TDGen outperforms GADGET in all three cases.

Page 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Conclusion and Future Works

This thesis presents a new approach for automatic test data generation using a

genetic algorithm directed by program dependence graphs of the tested program.

Two metrics are used in the proposed approach to be the criterion for target

branch selection, and we believe the introduction of the target selection criterion

can be helpful when testing on large programs. Path selection algorithm with

program dependence analysis and the use of the genetic algorithm are the key

techniques for TDGen to be successful.

Generating test cases using program dependence graphs and GA is proved to

outperform random testing in the experiments of testing several programs, and it

achieves higher coverage than GADGET on testing the triangle program. As

compared to the previous automatic test data generation researches, we believe

that TDGen is more likely to find test cases that other test data generation

methods may be not able to get.

Several areas of possible future research are presented below:

• Although only branch coverage is chosen as the test adequacy criteria, the

new approach can also be extended to other test criteria, such as path

coverage and condition-decision coverage.

• Not all crossover and mutation operators have been tested to tune the GA

to achieve the optimization. We believe there is some room to tune the

GA in TDGen to get better performance with less computational cost.

• TDGen is just a prototype of an automatic test data generator, and there is

still some work to do to make it a complete automatic test data generation

tool. When a complete tool is developed, it will enable us to investigate

the performance of TDGen on large programs.

Test data generation is a very complex problem and finding a thorough and

perfect solution is extremely difficult. Any technique for automatic test data

generation has limitations. TDGen has great potential in the area of automatic

Page 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test data generation. Its power lies in that it inherits the simplicity and flexibility

of genetic algorithms, while providing relatively more static analysis information

of the tested programs to the genetic algorithm to make it work effectively and

efficiently.

Page 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

Anderson [2001]

Back [2000]

Barker [1985]

Clarke [1985]

Darringer [1978]

Davis [1991]

De Jong [1975]

DeMillo [1991]

Paul Anderson, Tim Teitelbaum. Software Inspection Using

CodeSurfer. Proceeding of the First Workshop on Inspection

in Software Engineering, 2001

T. Back, D. B. Fogel, Z. Michalewicz, (eds.), Evolutionary

Computations I, Institute of Physics Publishing, Bristol, 2000.

J. E. Barker. Adaptive selection methods for genetic

algorithms. In Proceedings of the First International

Conference on Genetic Algorithms and Their Applications.

Morgan Kaufmann, 1985.

A. Clarke and D. J. Richardson. Applications of Symbolic

Evaluation. The Journal of Systems and Software, Vol. 5, No.

1, pp. 15-35, Jan., 1985

J. A. Darringer and J. C. King. Applications of Symbolic

Execution to Program Testing. IEEE computer, Vol. 11, No.

4, April 1978.

L. Davis. Handbook of Genetic Algorithms. Van Nostrand

Reinhold, New York, 1991.

K. A. De Jong. An Analysis of the Behavior of a Class of

Genetic Adaptive Systems. PhD thesis, University of

Michigan, 1975.

Richard A. DeMillo, A. Jefferson Offutt. Constraint-Based

Automatic Test Data Generation. IEEE Transactions on

Software Engineering, 17(9): 900-910, September 1991

Page 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Duran [1981] J. W. Duran, and S. Ntafos. A report on random testing,

Proceedings 5th Int. Conf. on Software Engineering held in

San Diego C.A., pp. 179-83, March 1981

Eshelman [1989] L. J. Eshelman, A. Caruana, J. D. Schaffer. Biases in the

Crossover Landscape. Proceedings of the Third International

Conference on Genetic Algorithms, pp. 86-91, 1989

Eshelman [1993] L. J. Eshelman and J. D. Schaffer. Real-Coded Genetic

Algorithms and Interval-Schemata. Foundation of Genetic

Algorithms, Morgan Kaufmann, pp. 187—202, 1993.

Fogel [1995] D. B. Fogel, Evolutionary Computation, Toward a New

Philosophy of Machine Intelligence, IEEE Press, Piscataway,

1995.

Ferguson [1997] R. Ferguson and B. Korel. The Chaining Approach for

Software Test Data Generation. ACM Transaction Software

Engineering Methodology, vol. 5, No. 1, pp. 63-86, Jan. 1996.

Ferrante [1987] Jeanne Ferrante. Program Dependence Graph and its use in

optimization. ACM Transaction on Programming

languages and Systems, Vol. 9, No. 3, July 1987, 319-349.

Gallagher [1997] M. J. Gallagher and V. L. Narasimhan. Adtest: A Test Data

Generation Suite for Ada Software Systems. IEEE

Transactions. Software Engineering, Vol. 23, No. 8, pp. 473-

484, Aug. 1997.

GrammaTech [1999] GrammaTech, Inc. Codesurfer user guide and reference

manual.

Goldberg [1989] D. E. Goldberg. Genetic Algorithms in Searching,

Optimization, and Machine Learning. Addison-Wesley, 1989

Page 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Goldberg [1991] D. E. Goldberg. Real-coded Genetic Algorithms, Virtual

Alphabets, and Blocking. Complex Systems 5, 153-171.

Goldberg and Deb [1991] David E. Goldberg and Kalyanmoy Deb. A

comparative analysis of selection schemes used in

genetic algorithms. Foundations of Genetic

Algorithms, pp. 69-93, San Mateo, 1991. Morgan

Kaufmann.

Herrera [1996]

Godefroid [2002] Patrice Godefroid and Sarfraz Khurshid. Exploring Very

Large State Spaces Using Genetic Algorithms. Proceedings of

TACAS'2002 , Grenoble, April 2002.

Herrera [1994] F. Herrera, E. Herrera-Viedma, M. Lozano and J. L.

Verdegay. Fuzzy Tools to improve Genetic Algorithms.

Proceedings of Second European Congress on Intelligent

Techniques and Soft computing, pp. 1532-1539, 1994.

F. Herrera, M. Lozano and J. L. Verdegay. Tackling

Real-Coded Genetic Algorithms: Operators and Tools for

Behavioral Analysis.

S. Horwitz, T. Reps, and D. Binkley, Interprocedural slicing

using dependence graph, ACM Transactions on Programming

Languages and Systems 12, 1, 1990, pp. 26-60

Horwitz [2002], Susan Horwitz. Tool support for improving test coverage. In

Proceedings of ESOP 2002: European Symposium on

Programming, (Grenoble, France, April 8-12, 2002).

Holland [1975] J. H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, 1975.

Howden [1975] W. E. Howden. Methodology for the Generation of Program

Test Data. IEEE Transactions on Software Engineering, (SE-

24), May 1975

Horwitz [1990]

Page 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In ce [1987] D. C. Ince The automatic generation of test data. The

Computer Journal, Volume 30, No. 1, 1987, pp. 63 - 69.

Korel [1996]

Kuck [1981]

Michael [2001]

Korel [1990] B. Korel. Automatic Software Test Data Generation. IEEE

transaction on software engineering volume: 16 pp.: 870-879,

Aug. 1990.

B. Korel. Automatic Test Data Generation for Programs with

Procedures. Proceedings of International Symposium of

Software Testing and Analysis, pp. 209-215, 1996.

D. J. Kuck, R. H. Kuhn, B. Leasure, D. A. Padua, and M.

Wolfe. Dependence Graphs and Compiler Optimizations.

Conference Record of the Eighth ACM symposium on

Principles of Programming Languages, pp. 207-218

Christoph C. Michael, Gary McGraw and Michael Schatz.

Generating Software Test Data by Evolution. IEEE

transactions on software engineering, Vol. 27, No. 12,

December 2001.

Michalewicz [1992] Genetic Algorithms + Data Structures = Evolution

Programs. Srpinger-Verlag, New York, 1992.

Mitchell [1996] M. Mitchell. An Introduction to Genetic Algorithms. MIT

Press, 1996.

Miihlenbein [1993] H. Miihlenbein and D. Schlierkamp-Voosen. Predictive

Models for the Breeder Genetic Algorithm I. Continuous

parameter Optimization. Evolutionary Computation 1, pp.

25-49, 1993.

Offutt [1988] A. Jefferson Offutt. Automatic Software Testing (Ph. D).

Georgia Institute of Technology, 1988.

Page 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Offutt [1999] A. Jefferson Offutt, Zhenyi Jin, Jie Pan. The Dynamic

Domain Reduction Procedure for Test Data Generation.

Software—Practice and Experience, 29(2): 167—193, January

1999.

Pargas [1999] Roy P. Pargas, Mary Jean Harrold and Robert R. Peck. Test-

Data Generation Using Genetic Algorithms. Journal of

Software Testing, Verification and Reliability, 1999.

Radcliffe [1991] N. J. Radcliffe. Forma Analysis and Random Respectful

Recombination. Proceedings of the Fourth International

Conference on Genetic Algorithms, pp. 222-229, 1991.

Roper [1994] Marc Roper. Software Testing. McGraw-Hill, c l 994

Schlierkamp-Voosen [1994] D. Schlierkamp-Voosen. Strategy adaptation by

Competition. Proceedings of Second European

Congress on Intelligent Techniques and Soft

Computing, pp. 1270-1274, 1994.

Syswerda [1989] G. Syswerda. Uniform Crossover in Genetic Algorithm.

Proceedings of the Third International Conference on Genetic

Algorithms, pp. 2-9, 1989.

Sturgis [1985] H. Sturgis. An Effective Test Strategy. Technical report CSL-

85-8, Xerox Parc, Nov. 1985

Tracey [2000] Nigel James Tracey. A Search-Based Automated Test-Data

Generation Framework for Safety-Critical Software (Ph. D).

University of York, Sept. 2000.

Voas [1991] J. M. Voas, L. Morell, and K. W. Miller. Predicting Where

Faults Can Hide From Testing. IEEE Software, Vol. 8, No. 2,

pp. 41-58, 1991

Page 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Voigt [1994]

Wright [1990]

Wright [1991]

Yang [1995]

H. M. Voigt and T. Anheyer. Modal Mutations in

Evolutionary Algorithms. Proceedings of the First IEEE

Conference on Evolutionary Computation, pp. 88-92, 1994.

A. Wright. Genetic Algorithms for Real Parameter

Optimization. Foundations of Genetic Algorithms, First

Workshop on the Foundations of Genetic Algorithms and

Classifier Systems, Morgan Kaufmann, Los Altos, CA, pp.

205-218, 1990.

A. Wright. Genetic Algorithms for Real Parameter

Optimization. Foundations of Genetic Algorithms, Morgan

Kaufmann Publishers, pp. 205-218, 1991.

X. Yang., B. F. Jones, and D. Eyres. The automatic generation

of software test data from Z specifications, Research Project

Report III, CS-95-2, February 1995

Page 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix

Program Listings:

This Appendix contains listings of C programs. They are used for experiments of

which the results are presented in Chapter 6. They are Hex-Dee Conversion Program,

Bonus program, Quadratic Formula Program and Triangle Classification Program.

Some comments are given in some programs. The statements are numbered based on

coverage results generated by gcov (a test coverage program) of GCC. The

numbering of triangle program is different from that used in Chapter 5.

Hex-Dee Conversion Program

include <stdio.h>
define MAX 5
int htoi (char[]);

int main ()
1
2
3
4
5
6
7

char t[MAX];
char c;
int i;
i=0;
printf("Input a hex number:");
while ((c=getchar())!='\n')

8 if(c>='0' &&c<='9'||c>=’a'&&c<=,f||c>=,A'&&c<='F')

9
10

t[i]=c;
i++;

else

11
12

printf("Not a valid hex number\n");
return 0;

13 if (i<=MAX)

Page 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 t[i]=V ;
15 printf("decimal number: %d\n",htoi(t));

}
else

16 printf("Maximum 7 digits of hex number\n");
17 return 0;

}

long int htoi(char s[])
18 { int j;
19 long int n;
20 n=0;
21 for (j=0;s[j]!='\n';j++)

{
22 if (s[j]>='0'&&sU]<='9')
23 n=n*16+s[j]-'0';
24 if (s[j]>='a'&&s[j]<-f)
25 n=n*16+s[j]-'a'+10;
26 if (s[j]>='A'&&s[j]<-F)
27 n=n*16+s[j]-A'+10;

}
28 return (n);

}

Page 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bonus Program

include <stdio.h>

int main()
1 {
2 int i;
3 double bonus, bonl, bon2, bon4, bon6, bonlO;
4 bon 1=100000*0.1; //bonus for 0 to 100000
5 bon2=bonl+100000*0.075; //bonus for 100000 to 200000
6 bon4=bon2+200000*0.05; //bonus for 200000 to 400000
7 bon6=bon4+200000*0.03; //bonus for 400000 to 600000
8 bonl0=bon6+400000*0.015; //bonus for 600000 to 1000000
9 printf ("input the profit
10 scanf ("%d", &i);
11 if (i<=100000)
12 bonus=i*0.1;
13 else if (i<=200000)
14 bonus=bon 1+(i-100000) *0.075;
15 else if (i<=400000)
16 bonus=bon2+(i-200000)*0.05;
17 else if (i<=600000)
18 bonus=bon4+(i-400000)*0.03;
19 else if (i<=1000000)
20 bonus=bon6+(i-600000)*0.015;
21 else if (i>1000000)
22 bonus=bonl0+(i-1000000)*0.01;
23 printf ("Bonus for profit amount of %d is %10.2f. \n", i, bonus);
24 return 0;

}

Page 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Quadratic Formula Program

include <math.h>
include <stdio.h>

double x l, x2, disc, p, q;

1 int greater_than_zero (float a, float b) {
2 xl=(-b+sqrt (disc))/(2*a);
3 x2=(-b-sqrt (disc))/(2*a);
4 return 0;

}

5 int equal_to_zero (float a, float b) {
6 xl=x2=(-b)/(2*a);
7 return 0;

}

8 int smaller_than_zero (float a, float b) {
9 p=-b/(2*a);
10 q=sqrt(-disc)/(2*a);
11 return 0;

}

12 int main() {
13 float a, b, c;
14 printf ("\nlnput a, b, c:\n");
15 scanf ("%f%f%f", &a, &b, &c);
16 if (a==0)

{
17 printf ("\nNot a quadratic equation.\n");
18 return 0;

}
19 printf ("\nequation: %5.2f*x*x+%5.2f*x+%5.2f=0\n", a, b, c);
20 disc=b*b-4*a*c;
21 printf ("root:\n");
22 if (disc>0)

{
23 greater_than_zero(a, b);
24 printf ("xl=%5.2f \nx2=%5.2f\n", x l, x2);

}
25 else if (disc==0)

{
26 equal_to_zero (a, b);
27 printf ("xl=%5.2f \nx2=%5.2f\n", x l, x2);

}

Page 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
{

28 smaller_than_zero (a, b);
29 printf ("xl=%5.2f+%5.2fi \nx2=%5.2f-%5.2fi\n", p, q, p, q);

}
30 return 0;

}

Page 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Triangle Classification Program

#include <stdio.h>

int triang (int i, int j, int k)
1 {
2 int tri;
3 if ((i<=0)||(j<=0)||(k<=0))
4 return (4);
5 tri=0;
6 if (i==j)
7 tri+=l;
8 if (i==k)
9 tri+=2;
10 if (j==k)
11 tri+=3;
12 if (tri==0)

{
13 if ((i+j <=k) 11 (j +k<=i) 11 (i+k<=j))
14 tri=4;

else
15 tri=l;
16 return tri;

}
17 if (tri>3)
18 tri=3;
19 else if ((tri==l)&&(i+j>k))
20 tri=2;
21 else if ((tri==2)&&(i+k>j))
22 tri=2;
23 else if ((tri==3)&&(j+k>i))
24 tri=2;

else
25 tri=4;
26 return tri;

}

int main (void)
27 {
28 int a, b, c, t;
29 printf("");
30 scanf ("%d %d %d", &a,&b,&c);
31 t=triang (a,b,c);
32 if (t==l)
33 printf("scalene\n");

Page 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34 if (t==2)
35 printf("isosceles\n");
36 if (t==3)
37 printf(" equilateral\n");
38 liII«4-t

39 printf("not triangle\n");
40 return (0);

}

Page 101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

