
IET Generation, Transmission & Distribution

Special Issue: New Trends in the Planning of Distribution Network with
High Penetration of Renewables and Flexible Loads

GPU-based parallel real-time volt/var
optimisation for distribution network
considering distributed generators

ISSN 1751-8687
Received on 29th November 2017
Revised 17th March 2018
Accepted on 3rd May 2018
E-First on 7th June 2018
doi: 10.1049/iet-gtd.2017.1887
www.ietdl.org

Shengjun Huang1,2 , Venkata Dinavahi1
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
2College of Information System and Management, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of
China

 E-mail: shengjun@ualberta.ca

Abstract: Although the wide integration of advanced metering infrastructure on distribution network facilitates the application of
volt/var optimisation (VVO) in real-time circumstance, the contradiction between heavy computation load and low solution
efficiency is still a big challenge, thus the system scales investigated in the literature are limited. In this study, the full AC real-
time VVO is formulated based on particle swarm optimisation (PSO) framework and direct approach (DA) power flow method,
where all components, such as distributed generator and on-load tap changer transformer, are formulated and integrated into
the iterative DA process. Since both PSO and DA are suitable for parallel implementation, the graphics processing unit (GPU) is
introduced for acceleration in order to achieve the possibility for real-time application. All the solution process is executed by
GPU with the well-established data structure and thread organisation pattern, resulting in high efficiency by guaranteeing
coalesced access within each warp. Case studies are conducted on four systems with sizes ranging from 136-bus to 1760-bus.
Solution accuracy and convergence property are validated by the popular open source package Matpower. Based on the results
from solution efficiency comparison between CPU sequential, CPU parallel, and GPU parallel programs, the promise of the
proposed parallel implementation scheme for practical application is established.

Nomenclature
[] vector or matrix of a series of elements
ΔQi

c reactive power in each switch step of the switched
capacitor (SC) at node i

ΔV voltage updating at nodes in each iteration
min, max minimum and maximum values, respectively
ai j

t tap ratio of the on-load tap changer (OLTC) between
nodes i and j

Bl branch current of branch l
BCBV branch-current to bus-voltage matrix
BIBC bus-injection to branch-current matrix
DLF distribution load flow matrix
f i

g power factor of the distributed generator (DG) installed at
node i

Ii
k equivalent current injection of bus i at iteration k

nb total number of buses
nc total number of circuits/branches
Pi

d active power demand at node i

Pi
g active power output of the DG installed at node i

Ploss total active power losses
Qi

c reactive power injection of the SC at node i

Qi
d reactive power demand at node i

Qi
g reactive power output of the DG installed at node i

si
c switch step of the SC at node i

Si j
t short circuit admittance of OLTC between nodes i and j

Vi
k bus voltage of bus i at iteration k

Yi shunt admittance at node i
Yi j total lumped shunt admittance for medium-length line

between nodes i and j
zi j/zl series impedance of branch ij or line l
Pi j real power flow of branch ij
Qi j reactive power flow of branch ij
Si j

max maximum complex power of branch ij

1Introduction
Distribution network is the final stage in the power delivery to
bridge individual consumers with the transmission system [1]. One
of its major responsibilities is the voltage and reactive power (var)
management, i.e. achieving high efficiency, reliability, and quality
on the power supply. A lot of control devices are available to fulfil
that goal, such as on-load tap changer (OLTC) transformer, voltage
regulator, and switched capacitor (SC), and so on. In terms of how
to determine/adjust the operating parameters of these facilities, the
volt/var optimisation (VVO) was proposed [2–4]: minimising
system active power losses while satisfying equality constraints to
node active and reactive power balances, as well as lower/upper
bounds of node voltages.

Similar to the unit commitment problem in the transmission
network, VVO is usually performed on a Day-Ahead time span
based on the forecast demand [2, 5], which is marked as DAVVO
henceforth in this paper for brevity. The daily operational
constraints, e.g. the times of switching operations in a single day
should be restricted to a specified number for the purpose of
diminishing degradation, are frequently considered in the DAVVO
formulation. Although DAVVO has been thoroughly investigated
[2–14], its capability to withstand fast variation is limited.

In the last decades, distributed generators (DGs), including fuel
cell, photovoltaic cell, wind turbine, micro-turbine, and so on, have
been widely integrated into distribution networks, which is of great
significance for the reduction of transmission loss as well as carbon
emission. On the other hand, the high penetration of DG also
brings large fluctuations, resulting in the fact that the DAVVO
solution is non-optimal or even infeasible. Therefore, real-time
VVO (RTVVO) has been proposed [15–18] to address these issues.

The popularity of the utilisation of new technologies, such as
advanced metering infrastructure (AMI), keeps increasing in the
context of smart grid. Two-way communication can be provided by
the AMI system to collect the information/data from smart meters
and distribute the instruction/command to devices at the same time,
i.e. RTVVO is technically possible from the perspective of

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

4472

READ O
NLY

communication [19]. Nevertheless, in terms of fast computation for
real-time decision making, the technique is far from mature.

Due to different nature of control devices, VVO is
conventionally formulated as a mixed-integer non-linear
programming (MINLP) problem with complex numbers and
constraints. Two types of methods have been widely utilised for the
solution of such a non-deterministic polynomial hard (NP-hard)
problem: (i) mathematical programming methods, including robust
optimisation [4, 7], mixed-integer programming [2, 8], Benders
decomposition [9], model predictive control [10], and so on; (ii)
meta-heuristic methods, such as genetic algorithm (GA) [11, 12],
particle swarm optimisation (PSO) [13, 14], simulated annealing
[15], and so on. A common feature for many of the proposed
mathematical programming methods is the relaxation of original
variables and constraints [11]. For example, linear power flow
formulation is utilised in [2], and integer variables are relaxed into
continuous during computation and discretised subsequently in [6].
Although relaxation can facilitate computation and mathematical
programming methods are deterministic, the accuracy is sacrificed.
On the other hand, the meta-heuristic methods are capable to
address various types of problems of their original form, such as
non-linear, non-convex, mixed-integer, NP-hard, combinatorial,
and so on. Therefore, the AC power flow (ACPF) calculation for
distribution network can be fully integrated into the VVO
framework. Nevertheless, they are usually computational intensive
and the global optimality is not guaranteed since their searching
process is probabilistic. Although it may trap in and terminate at a
local optimal solution, the solution quality is still satisfactory due
to its large global searching capability.

In order to alleviate the computational burden and accelerate the
solution process of VVO, parallel computing technique has been
introduced in [13]. The parallel realisation of PSO was fulfilled
with OpenMP [20] on CPU, resulting speedups of 1.95×, 3.42×,
and 3.72× with two, four, and eight threads, respectively. It is
observable that the parallel efficiency faced with the bottleneck on
the eight threads. In addition, the investigated system is only 14-
bus, which is partially due to the contradiction between real-time
requirement and solution efficiency. Actually, for other references
related to VVO, whether the real time and ACPF are considered or
not, the target system scales are also limited. Table 1 gives a brief
summary of these references. It is noticeable that all the RTVVO
literature enables full ACPF since the feasibility is of higher
priority in real-time circumstance, where the in-time corrective
operation is very difficult. On the other hand, without the
introduction of high-performance computation platform and
parallel computing technique, the system scale is restricted.

Since the capability for general-purpose scientific computing
has been revealed by Nvidia in late 2006 with the release of
compute unified device architecture (CUDA) [21], the graphics
processing unit (GPU) has gained a lot of popularity on the power
systems optimisation and simulation problems, such as transient
stability simulation [22], electromagnetic transient simulation [23,

24], static security analysis [25], real-time optimal power flow
[26], dynamic state estimation [27, 28], and so on; nevertheless, it
has never been introduced for RTVVO to the best of our
knowledge. Therefore, this paper intends to fill this gap. The main
contributions of this work are as follows:

• Instead of utilising of DCPF or other types of relaxations, full
ACPF calculation of distribution network has been integrated
into RTVVO based on the DA [29] with the consideration of
DG, OLTC, SC, and medium-length lines. Inspired by the well-
known backward–forward sweeping method, the DA provides a
very compact vectorised formulation with outstanding
computational and convergence properties [30]. Nevertheless,
during the application of DA on RTVVO in the previous work
[15], the formulation details are not sufficient, e.g. transformers
are simplified as branches.

• Based on full ACPF, the RTVVO solution framework has been
developed, where PSO is utilised for evolution and convergence.
In order to achieve the capability for real-time application, the
GPU parallel computing technique has been introduced to
accelerate the RTVVO solution process. A lot of details are
revealed to facilitate the parallel implementation: (i) redesign
the data structure of matrix [DLF] in DA; (ii) reorganise the
thread organisation to translate the memory access pattern from
scattered into coalesced in each step.

• Different with the previous work with limited system size, the
proposed parallel implementation framework has been validated
on a lot of distribution networks with the scale ranging from
136-bus to 1760-bus. In addition to the accuracy validation with
open source package Matpower [31], the solution efficiency
comparison is conducted between CPU sequential (both
Matpower in Matlab and DA in C++), CPU parallel (with
OpenMP), and GPU parallel (with CUDA) programs. As
indicated by results, the proposal is promising for practical
application.

The remaining of this paper is organised as follows. Section 2 is
devoted to the problem formulation, including the iterative process
of DA method, mathematical model of components, and the whole
MINLP optimisation model of RTVVO. PSO solution framework
for this problem is briefly introduced in Section 3. Implementation
details related to parallel computing on GPU are revealed in
Section 4, such as the design of data structure and organisation of
threads. Section 5 validates the solution accuracy and efficiency of
the proposed implementation scheme with case studies on four test
systems. Finally, conclusion and future work are summarised in
Section 6.

2Problem formulation
In this work, three types of control devices (SC, OLTC, and DG)
are considered for VVO with the objective of minimising the total

Table 1 Parts of references for VVO
References Scales RTVVO Full ACPF Parallel GPU-enabled
[13], 2015 14-bus × √ √ ×

[7], 2015 30-bus × × × ×
[17], 2016 33-bus √ √ × ×

[18], 2016 33-bus √ √ × ×

[15], 2015 37-bus √ √ × ×

[5], 2017 37-bus × √ × ×

[3], 2009 68-bus × √ × ×

[2], 2015 69-bus × × × ×
[14], 2010 70-bus × √ × ×

[6], 2014 119-bus × × × ×
[4], 2017 123-bus × × × ×
[11], 2006 220-bus × √ × ×

proposed work 1760-bus × √ √ √

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

4473

READ O
NLY

active power loss. Based on the integration of AMI, a general
implementation scheme of RTVVO for distribution network is
given in Fig. 1. At the beginning, information related to the current
and historical status of SC, OLTC, DG, and load is sampled and
collected through smart meters and AMI. Based on these data as
well as the parameters of all components (including short/medium-
length line and other devices), the RTVVO module performs the
fast computing and outputs the optimal coordinated schedule for
different types of equipment within a fixed time interval, e.g. 10 s.
Finally, these instructions are distributed to the corresponding
control devices via AMI. Except for the information collection and
instruction distribution, the solution of MINLP RTVVO problem
turns to be the most important task, which is addressed with
RTVVO module in Fig. 1. Within RTVVO module, the ACPF
calculation will be intensively involved, thus its solution efficiency
is of great significance for the whole decision-making process. In
this paper, the DA proposed in [29] is utilised for distribution
network ACPF calculation. It should be noted that the DA is robust
for various types of distribution networks, whatever it is single-
phase balanced or three-phase unbalanced, radial or weekly
meshed. In the following, the single-phase balanced radial
distribution network is presented for illustration.

2.1 DA power flow method

Given a distribution network with nb nodes (where node 1 is
regarded as the reference bus), the equivalent current injection for
node i at the kth iteration can be described as

Ii
k =

Pi
d + jQi

d

Vi
k
v

∗

, i ∈ [2, nb] , (1)

where ∗ is the conjugate operator. Accordingly, the branch current
vector can be obtained

[Bl]nc × 1 = [BIBC]nc × (nb − 1)[I](nb − 1) × 1 . (2)

Subsequently, the vector for voltage updating can be generated

[ΔV
k](nb − 1) × 1 = [BCBV](nb − 1) × nc[Bl]nc × 1 . (3)

Finally, node voltage vector can be updated

[Vk + 1](nb − 1) × 1 = [V0](nb − 1) × 1 + [ΔV
k](nb − 1) × 1, (4)

where [V0] is a vector with all elements valued as the voltage of
reference bus.

Given an initial flat voltage profile, (1)–(4) can be solved
sequentially and iteratively until the system reaches a steady state,
i.e. the node voltage difference between two successive iterations is
less than the specified threshold.

Ultimately, the total active power loss can be obtained

Ploss = ∑
l = 1

nc

zl |Bl|
2 . (5)

2.2 Mathematical formulation of components

The above formulation is the basic version of DA, where the
transformers and lines are formulated as simple series impedances.
Although this is acceptable for short-length lines and untapped
transformers, modifications are required to deal with other
common devices shown in Fig. 1, such as DG, SC, medium-length
line, and OLTC transformer.

2.2.1 Constant power factor model of DG: DG can be installed
by the combination of different energy sources (fuel, wind, and
solar) and conversion devices (induction generator, static power
converter, and synchronous generator), resulting in various output
characteristics [15]. In order to formulate them, three models are
developed [32]: constant power factor model, constant voltage
model, and variable reactive power model, of which the first one is
utilised in this work due to its great popularity. It should be noted
that the DA method is capable for all three DG models mentioned
above.

With specified active power output and power factor, the
reactive power output can be calculated [32]

Qi
g = Pi

gtan cos−1
f i

g , (6)

then the equivalent node current injection given in (1) should be
updated as

Ii
k =

(Pi
d − Pi

g) + j(Qi
d − Qi

g)

Vi
k

∗

, i ∈ [2, nb] . (7)

2.2.2 Discrete steps of SC: Given an SC with step si
c, its reactive

power injection can be given as

Qi
c = si

cΔQi
c . (8)

Accordingly, based on (7), the node current injection needs to be
updated

Ii
k =

(Pi
d − Pi

g) + j(Qi
d − Qi

g − Qi
c)

Vi
k

∗

, i ∈ [2, nb] . (9)

2.2.3 Pi-equivalent model of medium-length line: Given a
medium-length line between nodes i and j with series impedance zi j

and total lumped shunt admittance Yi j, a pi-equivalent model can
be formulated as Fig. 2. Take the shunt admittance Yi = Yi + 0.5Yi j

into consideration, the node current injection given in (7) should be
updated as

Ii
k =

(Pi
d − Pi

g) + j(Qi
d − Qi

g − Qi
c)

Vi
k

∗

+ YiVi
k, i ∈ [2, nb] . (10)

Fig. 1 Schematic of RTVVO framework for the distribution network

Fig. 2 Pi-equivalent model of the medium-length line

4474 IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

READ O
NLY

2.2.4 Pi-equivalent model of OLTC transformer: Given an
OLTC transformer between nodes i and j with short circuit
admittance Si j

t and regulation tap ai j
t , a pi-equivalent model can be

formulated as Fig. 3. Similar to Fig. 2 and (10), the node current
injection needs to be updated with the following shunt admittances:

Yi = Yi +
1 − ai j

t

(ai j
t)

2 Si j
t , Y j = Y j +

ai j
t − 1
ai j

t
Si j

t . (11)

In addition to the shunt admittances, the variation on the series
impedance shown in (12) also needs to be integrated into the DA
iterative solution process

zi j =
ai j

t

Si j
t

. (12)

Initially, zi j is implicitly included in (3) according to the following
relationship:

[BCBV](nb − 1) × nc = [BIBC]nc × (nb − 1)
T [z](nb − 1) × (nb − 1), (13)

where [z] is a diagonal matrix with all elements are corresponding
zi j. It should be noted that, the radial distribution network always
has nc = nb − 1, thus the matrix multiplication in (13) is
established; while for the meshed networks, as reported in [29, 30],
similar processes are also possible. According to (2), (3), and (13),
(3) can be rewritten as

[ΔV
k] = [BIBC]T[z][BIBC][I] = [DLF][I] . (14)

It should be noted that [BIBC] is constant since it is determined by
the network topology, whereas [DLF] may change as the variation
of parameter ai j

t .

2.3 Mathematical formulation of RTVVO

Based on the DA power flow method and component modelling,
the mathematical formulation of RTVVO can be given as follows.

2.3.1 Objective function: The objective of RTVVO is to
minimise the total active power loss

min
[Pg], [f

g], [sc] , [at]
Ploss = ∑

l = 1

nc

zl |Bl|
2 . (15)

It should be noted that the objective function (15) can be easily
extended to more sophisticated ones, such as minimisation of
switching operations of OLTC and SC, minimisation of voltage
derivation, and minimisation of overall energy consumption, based
on the combination of DA and PSO, which will be explained in the
next section. For more details on the construction and calculation
of objective function, please refer to [17].

2.3.2 Constraints: For this practical problem, the constraints
include:

• Distribution network power flow equations

steady state of (1) − (14) . (16)
• Active power constraints of DG

Pi
g, min ≤ Pi

g ≤ Pi
g, max, Pi

g is continuous . (17)
• Power factor constraints of DG

f i
g, min ≤ f i

g ≤ f i
g, max, f i

g is continuous . (18)
• Switch step of SC

si
c, min ≤ si

c ≤ si
c, max, si

c is discrete (integer) . (19)
• Tap of OLTC transformer

ai j
t, min ≤ ai j

t ≤ ai j
t, max, ai j

t is discrete (integer) . (20)
• Bus voltage magnitude limits

V
min ≤ |Vi | ≤ V

max . (21)
• Distribution line thermal limits

Pi j
2 + Qi j

2 ≤ Si j
max . (22)

• Reactive power overcompensation limits

∑
i = 1

nb

Qi
c + ∑

i = 1

nb

Qi
g ≤ ∑

i = 1

nb

Qi
d . (23)

It is noticeable that the practical operation limits for SC and
OLTC are usually included in DAVVO, e.g. there are maximum
allowable daily operating times for each device. Since the RTVVO
is designed for a specified time point rather than the whole day,
these constraints cannot be directly added. Instead, it can be
replaced by another constraint in this work: a component is
available for adjusting new commands only when it has been
working at a fixed status for a specified number of time intervals.
Accordingly, if OLTC mk is not available for adjusting at the
current RTVVO, then the values of amk

t, min and amk
t, max in constraint

(20) should be adjusted into the former status of amk
t , thus OLTC

mk will still working at a constant status in the next time interval.
That is the reason why historical operation data is required in
RTVVO module. Similar operations can also be conducted on (19)
for SC.

3Solution framework
In this paper, the PSO framework is utilised for the solution of
RTVVO, where DA is integrated for the fitness evaluation of each
particle. A general flowchart is given in Fig. 4, where the data
exchanging with Fig. 1 is highlighted with dashed lines. Since the
PSO has been fully established in the literature, only a few basic
details are introduced here:

• Solution encoding: The decision variables in RTVVO are Pi
g, f i

g,
si

c, and ai j
t , where the former two are encoded as continuous

numbers and the rest are regulated as integer. A single particle is
the vector xi = [Pi

g, f i
g , si

c, ai j
t] containing all the decision

variables.
• Solution initialisation: All particles are uniformly sampled

within the solution space shaped by constraints (17)–(20).
Rounding process will be carried out for the integer decision
variables si

c and ai j
t .

• Fitness evaluation: Penalty factor will be added in objective
function (15) to punish the violations of constraints (21)–(22).
On the other hand, constraint (16) will be satisfied by DA power
flow, and (17)–(20) will be addressed in solution updating
process. To sum up, for a given solution, the fitness evaluation
process starts with the distribution network power flow
calculation with DA method, resulting in that the branch current
and node voltage are available. Based on these data, the

Fig. 3 Pi-equivalent model of the OLTC transformer

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

4475

READ O
NLY

objective value of power loss and other sophisticated goals can
be generated. Finally, the constraints of (21)–(22) and others
(might be included in the future) are validated to determine
whether adding a penalty to the obtained objective value or not.

• Velocity updating: Mechanism reported in [33, 34] is utilised for
the velocity updating. Equations (24) and (25) correspond to
continuous and discrete decision variables, respectively

vi
k + 1 = w0vi

k + c1w1(pi
k − xi

k) + c2w2(gk − xi
k), (24)

vi
k + 1 = round w0W0vi

k + c1W1(pi
k − xi

k) + c2W2(gk − xi
k) ,(25)

where w0 = 1 − 0.6k /N , c1 = 2, c2 = 2 are fixed parameters; k
is the current iteration order; N is the maximum number of
iterations; w1 and w2 are uniformly random numbers within
[0 , 1]; W0 is random number taking discrete values of 0, −1, or
1; W1 and W2 are random discrete numbers of either 0 or 1.
Compared with (24), (25) provides more possibilities by the
introduction of W0, W1, and W2, such as temporarily eliminating
the influence of velocity, local best, and global best by setting
W0, W1, and W2 as 0, respectively. The search direction can even
be turned totally inverse if W0 = − 1. These possibilities bring
more diversity to the searching process, resulting in larger global
searching capability.

• Solution updating: The solution updating is performed with
(26). It can be seen from the initialisation process and (25) that
the discrete decision variables are always kept in integer form. If
the updated decision variable is out of the range regulated by
(17)–(20), it will be forced to the nearest boundary

xi
k + 1 = xi

k + vi
k + 1 . (26)

 
Algorithm 1: PSO framework for RTVVO
1: Prepare matrix [BIBC] based on graph searching.
2: Input state variables Pi

d, Qi
d, zi j, Yi j, ΔQi

c, and Si j
t .

3: Initialise the population.
4: for each iteration do
5:  for each particle do
6:   Read decision variables Pi

g, f i
g, si

c, and ai j
t .

7:   Update network configurations Qi
g, Qi

c, Yi, and zi j

according to (6), (8), (11), and (12).
8:   Update matrix [DLF] = [BIBC]T[z][BIBC].
9:   Initialise a flat node voltage vector [V0].
10:   whilemax |Vk − V

k − 1| >∈ do
11:    Calculate [Ik] according to (10).
12:    Compute [ΔV

k] based on (14).
13:    Update [Vk + 1] based on (4), and set k = k + 1.
14:   end while
15:   Calculate the active power loss based on (2) and (5).
16:   Check the constraints (21)–(22) and update the fitness

value with penalty factor if it is required.
17:  end for
18:  Determine the local and global particles, update the

velocity and position [Pi
g , f i

g , si
c, ai j

t] based on (24)–(26).
19: end for
20: Output the global best particle.

• Termination criteria: In order to guarantee fair comparison in
case studies, i.e. the computation load for different runs are the
same and insensitive to random numbers, the PSO will terminate
at a fixed number of iteration in this paper. It is also easy to be
extended to other criteria, such as terminating if the global best
has not been updated for a specified number of iterations. It
should be noted that the global optimality of the final solution is
not guaranteed whatever termination criteria is utilised since the
searching process is probabilistic and the probability to sink in
local optima always exist.

4Parallel implementation
For the purpose of facilitating description, the solution process
given in Section 3 is summarised as Algorithm 1 with the detailed
data flow from DA and PSO. Since all particles are mutually
independent, each particle at a specified iteration can be
manipulated with one thread or block on GPU, therefore, the
parallel implementation seems to be trivial. However, in order to
gain superior performance, the design of data structure and thread
organisation require further investigation.
 

Algorithm 2: DLF translating from {p, i, xp , xx} to {p, i, x}
1: Initialise all x(i) into 0 (suppose x has nx elements).
2: for i = 1⋯nx do
3:  for j = xp(i)⋯(xp(i + 1) − 1) do
4:   x(i) = x(i) + z(xx(j)).
5:  end for
6: end for

4.1 Data structure

As can be seen from Algorithm 1, each particle maintains a copy of
all intermediate vectors and matrix [DLF], whereas the matrix
[BIBC] is constant and the same for all particles. For different
vector copies across particles, they are stored as a unified matrix
with each row corresponds to one particle. An illustrative example
for vector [Y] is given in Fig. 5. In this paper, both [DLF] and
[BIBC] are stored with the compressed sparse row (CSR) format
[35] since it enables fast row access and matrix–vector
multiplications. As the CSR structure {p, i, x} can be decomposed
into three arrays p, i, and x, the unified vector storage pattern
shown in Fig. 5 is also valid for matrix storage. Since the [DLF]
across different particles have the same pattern, vectors p and i are
the same for each particle, thus only vector x is required in
different particles for distinction, i.e. the storage space for p and i
is saved.

Although the sparse technique has been utilised, the calculation
of [DLF] by two times of matrix multiplication
[DLF] = [BIBC]T[z][BIBC] is still computationally intensive. In
Fig. 6, at least 27 atom operations are involved. As the matrix

Fig. 4 General flowchart of the PSO utilised in the RTVVO module

Fig. 5 Unified vector storage structure across different particles

4476 IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

READ O
NLY

[BIBC] is fixed and all its elements are either 0 or 1, we intend to
improve the computation efficiency by translating the matrix
multiplication into the point-wise substitution. Fig. 6 gives an
illustrative example. First, we change the CSR format of [DLF]
from {p, i, x} into {p, i, xp, xx}. The array xx is derived from x by
decomposing all atom operations into successive entries, i.e.
expanding one element z1 + z2 into two elements 1 and 2. For each
original element of x, its new order in xx is recorded as the array
xp. Just like the array p, one more element is supplemented at the
end. Given an array [z], it is easy to obtain {p, i, x} from
{p, i, xp, xx} by Algorithm 2 with only 16 atom operations. The
performance difference between matrix multiplication and point-
wise substitution is much larger for bigger systems, which will be
demonstrated in case studies.

4.2 Thread organisation

CUDA provides a three-level parallelism based on thread hierarchy
[21]: different streaming multiprocessor (SM) in GPU is possible
for concurrent execution; each SM can launch multiple blocks at
the same time; the threads within one block will be executed
simultaneously. Different blocks are independent with each other,
while threads within one block can cooperate via shared memory
or barrier. The barrier synchronises all threads in one block by
forcing them to wait at a specified point until everyone has
reached. The shared memory is possessed by each block and is
visible to all threads within that block, but the size is limited. Since
the access latency of shared memory is low, it should be fully
utilised when it is possible. In addition, each thread can access the
much bigger global memory of GPU with a higher latency.

Although SM receives computation task in the unit of block, it
creates, manages, schedules, and executes threads in groups of 32
and named warps [21]. A warp executes one common instruction at
a time. If the target address for all 32 threads is successive, the
access can be fulfilled with full efficiency (called coalesced
access); otherwise, the divergence (scattered access) will occur and
result into the low bandwidth. Since the efficiency of warps
dominates the whole solution performance, how to guarantee
successive data access is of high priority when organising threads
[25].

In the following subsections, key steps of Algorithm 1 are tuned
for coalesced access with thread organisation.

4.2.1 Parallel regular mapping: There are a lot of element-wise
calculations and updating operations in Algorithm 1, such as lines
7, 9, 11, 13, and 16, which can be regarded as regular mapping.
Take the line 11 as an example, the last term of (10) is Ii = YiVi,
Fig. 7 illustrates the thread organisation pattern, where ⊗
represents the element-wise mapping process. In alliance with Fig.
5, vectors [Y] and [V] across particles are stored in one matrix. It
can be seen that there is no leap during the access, thus we
naturally distribute each particle (one row) into one block. In Fig.
7, all particles are concurrently executed since multiple blocks can
be launched at the same time. Within all blocks, coalesced access is
fulfilled by each warp, e.g. the successive address from Y0 to Y31

are accessed by threads 0 to 31.

4.2.2 Parallel reduction: Different with regular mapping process,
where the length of the input vector is the same as the output
vector, the reduction process takes a vector as input but output only
one scale value. This type of operation is also involved in
Algorithm 1, such as the maximising in line 10, the minimising in
line 18, and the summation in line 15. It should be noted that the
reduction operation in line 15 is due to (5), where the term zl |Bl|

2 is
calculated with parallel regular mapping and stored as an
intermediate vector. Similar to Fig. 7, each particle (vector) is
handled with one block. The thread organisation for parallel
reduction within each block is illustrated in Fig. 8. The first step is
copying the original vector [a] stored in global memory into [b] in
shared memory. During this step, reduction process may be
required, e.g. reducing a0 and a1024 to b0. There should be a barrier at
the end of this step to guarantee that all shared memory has

finished data updating, otherwise, dirty data will appear and result
into a wrong output. The following steps are familiar with the first
one, except that both input and output data are stored in the shared
memory and the number of active thread is reduced into half of the
former. It can be seen that the coalesced access is guaranteed at
each step, i.e. there is no leap within each warp.

4.2.3 Parallel matrix–vector multiplication: Although the
matrix–matrix multiplication in [DLF] = [BIBC]T[z][BIBC] has
been eliminated by data structure design in the above, the matrix–
vector multiplication is inevitable in line 12 of Algorithm 1. In
alliance with the previous process, each block is assigned to one
particle, i.e. one matrix–vector multiplication process will be
fulfilled within one block. Fig. 9 demonstrates two types of thread
organisation for parallel matrix–vector multiplication within each
block. After the updating in line 8 of Algorithm 1, the matrix
[DLF] is stored in CSR format, which is shown in the bottom of
Fig. 9. The naive parallel implementation of matrix–vector
multiplication is to assign each row into one thread as shown in
Fig. 9a. However, the scattered access will appear when the CSR
format is utilised for matrix storage. For example, thread 0 to 3
need to access the first non-zero number in the corresponding row
at the same time, but these numbers are discontinuous in the vector
x. On the other hand, we assign each row into one warp as shown
in Fig. 9b, where the coalesced access has been achieved with
illustrative dashed arrows. It should be noted that the parallel
reduction for summation in each row is required.

4.2.4 Parallel irregular mapping: Based on the above parallel
processing, each step in Algorithm 1 can be efficiently executed
except for line 8, where irregular mapping is confronted. Actually,
line 8 of Algorithm 1 is realised with Algorithm 2. Conventionally,
if each block is assigned to one particle, the scattered access will
appear as shown in Fig. 10a. The reason lies in line 4 of Algorithm
2. During the process to access z(xx(j)), although j is in successive
for each thread, the result of xx(j) is discontinuous, resulting in
irregular access of vector [z]. In this example, x(0) and x(1)
correspond to z(2) and z(1), respectively. In order to achieve the
coalesced access, matrices [x] and [z] shown in Fig. 10a are
transposed, and we distribute each element to one block as shown
in Fig. 10b. For the new scheme, threads 0 and 1 in block 0 are
launched to update x(0) for particle 1 and 2, respectively. Since the
mapping relationship between x(0) and z(2) holds for all particles,
these two threads should access z(2) of particles 1 and 2, thus the
successive addresses are accessed.

4.2.5 Parallel matrix transpose: In the process of parallel
irregular mapping, matrix transpose is involved. In order to
coordinate with other processes, parallel matrix transpose should
be executed. Fig. 11 illustrates two kinds of implementation. As
shown in Fig. 11a, the naive matrix transpose will result in
scattered access. Nevertheless, the transposing process is divided
into two steps in Fig. 11b with the introduction of shared memory.
In step 1, a small piece of the original matrix is copied into shared
memory with one warp for each row. Step 2 is copying that piece
from shared memory to target address with one warp for each
column of the original matrix (when transposed, it appears as one
row in the new matrix). It can be seen that in each step, the
coalesced access is obtained. The reason for transposing piece by
piece is that the size of shared memory is limited.

5Case studies
In this section, four distribution networks retrieved from [36] are
employed for case studies. Based on the original network topology
and component data, a lot of VVO devices are added. For
simplicity, the parameter of each type of component added into
different networks is identical. For each system, a maximum of
30% of the total active demand can be provided with DGs. Each
DG has a capacity of 0.5 MW, with a power factor between −0.9
(lagging) and 0.9 (leading). A maximum of 10% of the total
reactive demand can be supported by SC. The number of

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

4477

READ O
NLY

switchable stages for each SC is 5, and the stage step is 0.04 MVar.
The number of OLTC and medium-length line equal to 10 and 1%
of the total number of branches, respectively. Each OLTC has a tap
ratio from 0.9 to 1.1 and can be divided into 21 steps. Table 2
summarises the basic configuration of each system with the
number of components. All the detailed data is randomly generated
according to Table 2, such as where to install these components.
Since different types of implementation utilise the same randomly
generated input data, the comparison on solution accuracy and
efficiency is reasonable. It should be noted that only RTVVO

module (i.e. the decision-making process) shown in Fig. 1 is
considered in case studies, whereas communication between
RTVVO module and network components are out of the scope of
this paper, which means the component data/status is directly
generated and given as input for RTVVO module without the
utilisation of AMI aggregator.

In order to validate the performance of the GPU-based parallel
RTVVO, four types of implementation have been carried out for
comparison:

• CPU_M: PSO framework given in Fig. 4, where the fitness
evaluation of each particle is performed by Matpower with the
built-in Newton–Raphson method;

• CPU_S: sequential version of Algorithm 1 in CPU with C++;
• CPU_P: parallel version of Algorithm 1 in CPU with OpenMP,

where 12 threads are launched;
• GPU_P: parallel version of Algorithm 1 in GPU with CUDA.

For each implementation, the population size of PSO is set as
512, and the maximum number of iteration is 200. All tests are
implemented on the same platform including: Intel Xeon E5-2620
CPU with 32 GB RAM, Nvidia GeForce GTX 1080 GPU, Matlab
version 2017a, CUDA version 8.0, and Visual Studio 2015.

5.1 Solution validation

Although the main objective of this paper is achieving high
solution efficiency from parallel processing with GPU, the
accuracy and convergence property of RTVVO should be
guaranteed. Without loss of generality, the 1760-bus system is
employed for validation.

5.1.1 Accuracy: In this work, the distribution network power flow
should be calculated for thousands of times, thus its accuracy must
be validated. In Section 2, formulations of DG, OLTC, and SC are
integrated into the solution framework of DA method. Therefore,
open source package Matpower is introduced to validate the
accuracy of DA. On the other hand, parallel implementation of DA
on GPU may also introduce errors, thus the comparison between
sequential and parallel is implemented. In this test, 20 PSO
particles are randomly generated and solved with either DA or
Matpower in all four implementation environments. The average
difference on the obtained active power loss for different methods
is reported in Table 3. It can be seen that the error between
Matpower and DA is smaller than 10−6, which means the accuracy
of the developed DA is acceptable. On the other hand, the
difference of DA running on different platforms is smaller than
10−8, indicating that parallel implementation does not spoil the
accuracy.

Fig. 6 Sparse storage patterns of DLF matrix in CSR format with {p, i , x} and {p, i, xp, xx}

Fig. 7 Thread organisation for parallel regular mapping

Fig. 8 Thread organisation for parallel reduction within each block

Fig. 9 Thread organisation for parallel matrix–vector multiplication
within each block
(a) One thread per row (scattered access), (b) One warp per row (coalesced access)

4478 IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

READ O
NLY

5.1.2 Convergence property: According to the above accuracy
analysis, it can be concluded that the difference in the power flow
calculation is negligible. Thus, the convergence test is devoted to
the validation of the PSO framework. Based on the same input data
and PSO parameters, the convergence property of two types of
implementation CPU_M and GPU_P corresponding to iteration is
demonstrated in Fig. 12. Although there are fluctuations in each
line, the convergence property is similar: (i) the objective value
drops very fast in the first 40 iterations, indicating that the PSO is
effective to find a high-quality solution for this problem; (ii) the
improvement during the next 40 iteration is still observable, which
is due to the disturbance introduced in (25); (iii) finally, the
population turns to be stable in the remaining iterations, showing
that the particles searching around the obtained global best optimal.

5.2 Solution efficiency

In this subsection, the improvement on the solution efficiency
gained by two proposals given in Section 4 will be exemplified on
four test systems.

5.2.1 Performance improvement gained by data structure
design: As shown in Fig. 6, the number of atom operations
required by Algorithm 2 is smaller than the matrix–matrix
multiplication. Quantitative results on four large systems are given
in Table 4. It can be seen that the data structure redesign is
beneficial to reduce over 50% of the atom operations for all test
systems although the sparsity of [BIBC] and [DLF] are different.
In addition to the superiority of fewer atom operations, the number
of index calculation when traversing CSR matrices is smaller for
Algorithm 2. Therefore, Algorithm 2 is at least two times faster
than the matrix–matrix multiplication.

5.2.2 Performance improvement gained by GPU parallel
implementation: In order to validate the performance of various
methods, all of them are executed for 20 times with the same input
data. One of them has been demonstrated with Fig. 12. The average
execution time for different methods is collected in Table 5. It can
be seen that the CPU_M takes much longer time than the other
methods for all test systems. The reason is two-fold: (i) the
complexity of Newton–Raphson method is higher than DA; (ii) the
execution efficiency of C++ code is higher than the Matlab code.
Although the CPU_S is much faster than CPU_M, its application in
real-time circumstance is still questionable since minutes of time is
required. According to the data reported in Table 5, the capability
of CPU_P and GPU_P for practical application is promising. A
similar conclusion can also be drawn if the average ACPF
execution time is considered.

Taking the execution time of CPU_M for different systems as
the basis, the achieved speedup can be obtained as shown in
Table 6. The superiority of DA over Matpower in this kind of
problem is established. Consider CPU_S as the benchmark, the
speedup is reported in Table 7. It can be seen that the parallel
efficiency of OpenMP and CUDA are satisfactory with ranges
from 10.20 to 11.40 and from 19.97 to 62.28, respectively. In
addition, the speedup goes higher as the system scale increases.

5.3 Discussion

One of the main contributions of this paper is the parallel
calculation of large numbers of distribution network power flows
with DA method. Its performance within PSO framework has been
illustrated in the above tests. In this section, we intend to validate
that the proposal is also beneficial for other types of population-
based meta-heuristic algorithm frameworks, such as GA and ant
colony optimisation (ACO). Within various framework, although

Fig. 10 Thread organisation for parallel irregular mapping
(a) One block per particle (scattered access), (b) One block per element (coalesced
access)

Fig. 11 Thread organisation for parallel matrix transpose
(a) Naive matrix transpose (scattered access), (b) Shared memory harnessed transpose
(coalesced access)

Table 2 Number of components for different test systems
Cases Branches DG SC OLTC Medium-length line
136-bus 135 12 4 14 1
415-bus 415 86 52 42 4
880-bus 873 74 37 87 9
1760-bus 1746 150 74 175 17

Table 3 Average active power loss error between different
implementations for the 1760-bus system in 20 trials
Methods CPU_M CPU_S CPU_P GPU_P
CPU_M 0 4.91 × 10−7 4.56 × 10−7 9.16 × 10−7

CPU_S 4.91 × 10−7 0 6.21 × 10−9 8.13 × 10−9

CPU_P 4.56 × 10−7 6.21 × 10−9 0 2.79 × 10−9

GPU_P 9.16 × 10−7 8.13 × 10−9 2.79 × 10−9 0

Fig. 12 Convergence property of two types of implementations CPU_M
and GPU_P

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

4479

READ O
NLY

the evolutionary strategy and process are different, the fitness
evaluation step are the same. Actually, it is the essential component
of these three algorithms and dominates the efficiency of each
algorithm, therefore, lines 6–16 in Algorithm 1 are integrated into
GA and ACO frameworks as an independent module. Different
from the above tests, the termination criteria is changed, i.e. the
solution process will be terminated if the global best value has not
been updated for 30 iterations.

Fig. 13 illustrates the main results. It can be seen from Fig. 13a
that the PSO gains smaller power loss than GA and ACO, showing
that the velocity updating strategy 25 is beneficial to increase the
PSO global searching capability. The objective function values of
GA and ACO are similar, which means there are several local
optimal solutions, and both of them cannot jump out to get a lower
power loss without specific improvements. Fig. 13b reports the
number of iterations utilised before termination. PSO utilises the
largest numbers of iterations due to the continuous updating of
objective function values, whereas GA and ACO are terminated
due to the lack of diversity and searching capability. Fig. 13c
shows similar trends with Fig. 13b, which means the execution
time is proportional to the number of iterations, i.e. lines 6–16 in
Algorithm 1 gains the same efficiency in different frameworks.
Therefore, it can be concluded that the proposal is suitable for
various types of population-based meta-heuristic algorithms. It
should be noted that, although PSO consumed the longest time, it
gained the best objective value. Given that the GPU_P has gained
satisfactory performance in the above sections, the optimality is of
higher priority in this section since all three algorithms equipped
with the same kernel and running on the same platform. Therefore,
to sum up, the GPU_P gains a better trade-off between efficiency
and optimality than GA and ACO.

6Conclusion

The popularity of RTVVO is increasing with the widely utilisation
of AMI; nevertheless, the computation efficiency is still not
sufficient to meet with the practical requirements, e.g. making the
decision within 10 s. This paper intends to enhance the
performance via parallel processing with GPU. PSO is employed
as the solution framework for RTVVO, where the full ACPF is
tackled with the DA method. In the iterative process of DA, the
detailed mathematical models for DG and other VVO control
devices are integrated. Although PSO and DA are suitable for
parallel processing, the best performance is far away to be reached
by the naive implementation due to the random access of
addresses, therefore designs on data structure and thread
organisation are proposed. After tuning, all threads in one warp are
assigned to access the successive address, i.e. coalesced access is
achieved. In the case study, four systems with the size ranging from
136-bus to 1760-bus are introduced. The results indicate that the
accuracy and convergence property is satisfactory, and the parallel
efficiency is suitable for practical application.

Table 4 Number of atom operations for updating of [DLF] with two different methods
Cases Dimensions [BIBC] [DLF] Atom operations Improvement

Non-zeros Sparsity Non-zeros Sparsity M–M multiplication Algorithm 2
136-bus 135 976 5.36% 2,465 13.53% 26,504 12,746 51.91%
415-bus 415 1,950 1.13% 3,585 2.08% 28,010 13,030 53.48%
880-bus 873 23,147 3.04% 125,285 16.44% 4,220,153 2,098,503 50.27%
1760-bus 1746 46,294 1.52% 250,570 8.22% 8,440,306 4,197,006 50.27%

Table 5 Execution time of the RTVVO for various implementation schemes
Cases Total RTVVO execution time, s Average execution time for single ACPF, ms

CPU_M CPU_S CPU_P GPU_P CPU_M CPU_S CPU_P GPU_P
136-bus 574.46 47.34 4.64 2.37 5.61 0.46 0.045 0.023
415-bus 1295.36 96.36 8.95 3.06 12.65 0.94 0.087 0.030
880-bus 2744.32 184.88 16.77 3.80 26.80 1.81 0.164 0.037
1760-bus 5149.69 336.92 29.55 5.41 50.29 3.29 0.289 0.053

Table 6 Achieved speedup over CPU_M for various
methods
Cases CPU_M CPU_S CPU_P GPU_P
136-bus 1.00 12.13 123.81 242.39
415-bus 1.00 13.44 144.73 423.32
880-bus 1.00 14.84 163.64 722.19
1760-bus 1.00 15.28 174.27 951.88

Table 7 Achieved speedup over CPU_S for various
methods

CPU_M CPU_S CPU_P GPU_P
136-bus 0.082 1.00 10.20 19.97
415-bus 0.074 1.00 10.77 31.49
880-bus 0.067 1.00 11.02 48.65
1760-bus 0.065 1.00 11.40 62.28

Fig. 13 Performance comparison between PSO, GA, and ACO

4480 IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

READ O
NLY

Future work will consider more practical concerns, such as the
device action time, communication bandwidth, AMI aggregation
process, and so on. In addition, various types of distribution
networks will be investigated, such as weakly meshed and three-
phase unbalanced systems. For the latter system, more complicated
components are required to be formulated, such as the phase
shifting transformer. On the other hand, the hot start strategy is also
possible to accelerate the solution process since the environment
variation between two successive decision points is minor.

7Acknowledgments
This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC). Shengjun Huang was
sponsored by the China Scholarship Council (CSC) under grant no.
201403170337.

8References
[1] Zhu, J.: ‘Optimization of power system operation’ (John Wiley & Sons, New

Jersey, 2015, 2nd edn.)
[2] Ahmadi, H., Marti, J. R., Dommel, H. W.: ‘A framework for volt-VAR

optimization in distribution systems’, IEEE Trans. Smart Grid, 2015, 6, (3),
pp. 1473–1483

[3] Saric, A. T., Stankovic, A. M.: ‘A robust algorithm for volt/Var control’. Proc.
Power Syst. Conf. Expo., Seattle, WA, USA, Mar. 2009, pp. 1–8

[4] Zheng, W., Wu, W., Zhang, B., et al.: ‘Robust reactive power optimisation
and voltage control method for active distribution networks via dual time-
scale coordination’, IET Gener. Transm. Distrib., 2017, 11, (6), pp. 1461–
1471

[5] Sayadi, F., Esmaeili, S., Keynia, F.: ‘Two-layer volt/var/total harmonic
distortion control in distribution network based on PVs output and load
forecast errors’, IET Gener. Transm. Distrib., 2017, 11, (8), pp. 2130–2137

[6] Mohapatra, A., Bijwe, P. R., Panigrahi, B. K.: ‘An efficient hybrid approach
for volt/Var control in distribution systems’, IEEE Trans. Power Deliv., 2014,
29, (4), pp. 1780–1788

[7] Rahimi, S., Zhu, K., Massucco, S., et al.: ‘Stochastic volt-Var optimization
function for planning of MV distribution networks’. Proc. IEEE Power
Energy Soc. Gen. Meeting, Denver, CO, USA, Jul. 2015, pp. 1–5

[8] Borghetti, A.: ‘Using mixed integer programming for the volt/var
optimization in distribution feeders’, Electr. Power Syst. Res., 2013, 98, pp.
39–50

[9] Fang, X., Li, F., Wei, Y., et al.: ‘Reactive power planning under high
penetration of wind energy using benders decomposition’, IET Gener.
Transm. Distrib., 2015, 9, (14), pp. 1835–1844

[10] Wang, Z., Wang, J., Chen, B., et al.: ‘MPC-based voltage/var optimization for
distribution circuits with distributed generators and exponential load models’,
IEEE Trans. Smart Grid, 2014, 5, (5), pp. 2412–2420

[11] Malachi, Y., Singer, S.: ‘A genetic algorithm for the corrective control of
voltage and reactive power’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 295–
300

[12] Ulinuha, A., Masoum, M., Islam, S.: ‘Hybrid genetic-fuzzy algorithm for
volt/var/total harmonic distortion control of distribution systems with high
penetration of non-linear loads’, IET Gener. Transm. Distrib., 2011, 5, (4), pp.
425–439

[13] Fukuyama, Y.: ‘Parallel particle swarm optimization for reactive power and
voltage control verifying dependability’. Proc. IEEE Congr. Evol. Comput.,
Sendai, Japan, May 2015, pp. 304–310

[14] Niknam, T., Firouzi, B. B., Ostadi, A.: ‘A new fuzzy adaptive particle swarm
optimization for daily volt/Var control in distribution networks considering
distributed generators’, Appl. Energy, 2010, 87, (6), pp. 1919–1928

[15] Chaudhary, D., Sun, W., Zhou, Q., et al.: ‘Chance-constrained real-time
volt/var optimization using simulated annealing’. Proc. IEEE Power Energy
Soc. Gen. Meeting, Denver, CO, USA, Jul. 2015, pp. 1–5

[16] Zakariazadeh, A., Modaghegh, H., Jadid, S.: ‘Real time volt/Var control using
advance metering infrastructure system in FAHAM project’. Proc. Int. Conf.
and Exhibition on Electricity and Distribution, Stockholm, Sweden, Jun.
2013, pp. 1–4

[17] Manbachi, M., Sadu, A., Farhangi, H., et al.: ‘Real-time co-simulation
platform for smart grid volt-var optimization using IEC 61850’, IEEE Trans.
Ind. Inf., 2016, 12, (4), pp. 1392–1402

[18] Manbachi, M., Sadu, A., Farhangi, H., et al.: ‘Real-time co-simulated
platform for novel volt-VAR optimization of smart distribution network using
AMI data’. Proc. IEEE Int. Conf. Smart Energy Grid Eng., Oshawa, Canada,
Aug. 2015, pp. 1–7

[19] Feng, X., Peterson, W., Yang, F., et al.: ‘Smarter grids are more efficient’,
ABB Rev., 2009, 3, pp. 33–37

[20] Chandra, R., Dagum, L., Kohr, D., et al.: ‘Parallel programming in OpenMP’
(Morgan Kaufmann, San Francisco, 2001)

[21] NVIDIA: ‘CUDA c programming guide 8.0’ (NVIDIA Corporation, Santa
Clara, CA, USA, 2017)

[22] Jalili-Marandi, V., Zhou, Z., Dinavahi, V.: ‘Large-scale transient stability
simulation of electrical power systems on parallel GPUs’, IEEE Trans.
Parallel Distrib. Syst., 2012, 23, (7), pp. 1255–1266

[23] Zhou, Z., Dinavahi, V.: ‘Fine-grained network decomposition for massively
parallel electromagnetic transient simulation of large power systems’, IEEE
Power Energy Tech. Syst. J., 2017, 4, (3), pp. 51–64

[24] Yan, S., Zhou, Z., Dinavahi, V.: ‘Large-scale nonlinear device-level power
electronic circuit simulation on massively parallel graphics processing
architectures’, IEEE Trans. Power Electron., 2017, PP, (99), pp. 1–19

[25] Zhou, G., Feng, Y., Bo, R., et al.: ‘GPU-accelerated batch-ACPF solution for
N-1 static security analysis’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 1406–
1416

[26] Huang, S., Dinavahi, V.: ‘Fast batched solution for real-time optimal power
flow with penetration of renewable energy’, IEEE Access, 2018, PP, (99), pp.
1–13

[27] Karimipour, H., Dinavahi, V.: ‘Parallel relaxation-based joint dynamic state
estimation of large-scale power systems’, IET Gener. Transm. Distrib., 2016,
10, (2), pp. 452–459

[28] Karimipour, H., Dinavahi, V.: ‘Extended Kalman filter-based parallel dynamic
state estimation’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 1539–1549

[29] Teng, J.: ‘A direct approach for distribution system load flow solutions’, IEEE
Trans. Power Deliv., 2003, 18, (3), pp. 882–887

[30] Cano, J., Mojumdar, M. R., Norniella, J. G., et al.: ‘Phase shifting transformer
model for direct approach power flow studies’, Int. J. Electr. Power Energy
Syst., 2017, 91, pp. 71–79

[31] Zimmerman, R., Murillo-Sanchez, C., Thomas, R.: ‘MATPOWER: steady-
state operations, planning, and analysis tools for power systems research and
education’, IEEE Trans. Power Syst.., 2011, 26, (1), pp. 12–19

[32] Teng, J.: ‘Modeling distributed generations in three-phase distribution load
flow’, IET Gener. Transm. Distrib., 2008, 2, (3), pp. 330–340

[33] Murugan, P: ‘Modified particle swarm optimisation with a novel initialisation
for finding optimal solution to the transmission expansion planning problem’,
IET Gener. Transm. Distrib., 2012, 6, (11), pp. 1132–1142

[34] Huang, S., Dinavahi, V.: ‘Multi-group particle swarm optimization for
transmission expansion planning solution based on LU decomposition’, IET
Gener. Transm. Distrib., 2017, 11, (6), pp. 1434–1442

[35] Davis, T.A.: ‘Direct methods for sparse linear systems’ (Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, 2006)

[36] Roberge, V.: ‘Distribution feeder reconfiguration (DFR) test cases’, http://
roberge.segfaults.net/joomla/index.php/dfr, (accessed July 2017)

IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 20, pp. 4472-4481
© The Institution of Engineering and Technology 2018

4481

READ O
NLY

http://roberge.segfaults.net/joomla/index.php/dfr
http://roberge.segfaults.net/joomla/index.php/dfr

