
Exotic Fusion Categories and Their Modular Data

by

Paul Garrett Budinski

A thesis submitted in partial fulfillment of the requirements for the

degree of

Master of Science

in

Mathematics

Department of Mathematical and Statistical Sciences

University of Alberta

c⃝ Paul Budinski, 2021



ii

Abstract
The majority of known examples of fusion categories come directly from classical

structures – vector spaces, groups, representations, and the like. In recent years

the technique of constructing fusion categories as endomorphisms on Cuntz alge-

bras was developed and has already lead to completely new examples of fusion

categories. Somewhat surprisingly, the fusion categories found seem to belong to

infinite families. We push the Cuntz construction further and find more examples

within two potentially infinite families, the near group fusion categories and the

Haagerup-Izumi fusion categories.

For all of the newly cataloged fusion categories, we also compute their modu-

lar data. In the case of the Haagerup-Izumi series, we find that all new examples

satisfy the conjecture of [10], which posits an unexpectedly simple form for the

modular data in terms of certain bilinear forms. In the case of near group cate-

gories associated to an odd ordered abelian group, we find that the modular data

of new examples also satisfy a similar conjecture (found in [6]). When the order

of the group is even, no such conjecture existed; we provide a new conjecture

which predicts the modular data for all current examples.
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Chapter 1

Introduction

Math and physics have a long history, with advances in one often spurring break-

throughs in the other. Recently, conformal field theories (CFTs) have sparked a

great deal of completely new mathematics. CFTs are two-dimensional quantum

field theories which exhibit conformal symmetry – they describe the motion of

subatomic particles in two dimensions (one spatial, one time), roughly speak-

ing. The best mathematical description of CFTs are vertex operator algebras

(VOAs) which axiomatize the key notions of a CFT. They were first introduced

by Borcherds in [2] in the context of CFTs and the monstrous moonshine conjec-

tures, however they have found a life of their own in numerous areas. Despite

their usefulness, VOAs are still poorly understood in the grand scheme of things,

partly because they are so new. However, one can define the representation cate-

gory of a VOA (similarly to how one defines group representation) which provides

a more down-to-Earth approach to their study. The representations of a VOA are

relatively well behaved, and when the VOA satisfies some additional conditions

(specifically if the VOA is rational and C2-cofinite), then the associated represen-

tation category will be a modular tensor category (MTC). They are special for

many reasons – they yield numerical invariants for knots, for one. But the key

property of an MTC is a piece of associated combinatorial data, called modular

data, which amounts to a representation of SL(2,Z). As far as invariants go, it is

a good one (although it is not a complete invariant), so understanding modular

data is an important part of understanding a given MTC.

The current problem with MTCs is that the best current examples are also

the most mundane, in the sense that they are built using classical techniques.
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They come directly from lattices, groups, Lie algebras, etc, which is somewhat

surprising given their applicability to mathematics which should, by all rights, be

completely new. The solution, of course, is to find exotic examples of MTCs or

at least their modular data, which is the goal of this thesis. Our plan is first to

construct exotic fusion categories C by means of the Cuntz algebra construction.

Then we make use of the tube algebra associated to each C to find the modular

data of Z(C), the center of C, which is an MTC. In this way we can avoid dealing

explicitly with the details of the MTCs.

Before explaining further details, we would be remiss to ignore the impor-

tance of fusion categories in their own right. Historically, fusion categories were

(and are) studied for more than their association to physics. They play an im-

portant role in the theory of Von Neumann algebras too. In particular, any finite

depth, finite index subfactor yields two related fusion categories. We will not

make use of this correspondence directly, but it is important to mention as much

of the literature uses the language of subfactors rather than fusion categories.

See [22] for more details on the correspondence.

The fusion categories we construct will fall into two classes: near-group fusion

categories and Haagerup-Izumi fusion categories. Both classes were proposed by

Izumi in [16] where he also constructed the first two examples of each. Initially

it was expected that both series would terminate quickly, although Evans and

Gannon released a series of work ([10], [7], [6]) in which they constructed

more examples in each class and now the prevalent notion is that both series

are infinite. A portion of our novel results (found in Chapters 3 and 4) find

further examples in each class as well, which strongly supports the notion that

these are in fact infinite classes of fusion categories.

The method we use to construct the fusion categories is called the Cuntz

algebra construction. The idea is to interpret the objects of the fusion category

as algebra endomorphisms on a particular infinite dimensional algebra, and use

the natural structure imposed by the (potential) fusion category to determine

the endomorphisms in terms of complex solutions to a system of polynomial

equations. The method was pioneered by Izumi in [15] for specific small index

subfactors at which point it was noticed that the construction would generalize
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to hypothetical higher index subfactors at the cost of more equations in more

variables. From a theoretical point of view, therefore, the problem was reduced

to only checking for solutions to equations, but the problem became necessarily

more complex from a computational standpoint.

With the fusion categories found, the next problem is to describe the associ-

ated MTC. This is done through Ocneanu’s tube algebra (See [9]). In this thesis,

we focus on the most important part of the MTC, the modular data. In the tube

algebra setting, this is done by solving another (much simpler) system of polyno-

mial equations.

The modular data of our new fusion categories is our second and more impor-

tant result. In addition to the numerical data, we also conjecture a simple form

for the modular data which is not at all expected from its tube algebra definition.

The plan for the remainder of this thesis is as follows. Chapter 2 covers the

essential background – we define the relevant categorical notions of fusion cat-

egories and MTCs and outline both the Cuntz algebra construction and the tube

algebra method. We end the section by briefly summarizing key results of sym-

metric forms which play a role in later chapters. Chapter 3 details our results

for near group categories, and chapter 4 does the same for the Haagerup-Izumi

categories. Finally in chapter 5 we pose a few outstanding questions which we

hope to answer in future works.

Throughout this paper, we assume basic knowledge of category theory. (A

good introduction for those unfamiliar is [21]). We also assume that the reader

is familiar with Galois theory of fields as it plays a small but significant role in

the classification of near group categories.
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Chapter 2

Background

2.1 Fusion Categories

As one of the primary goals of this thesis is the construction of new fusion cat-

egories, it is important to give sufficient background. The formal definition of

fusion categories is a long list of conditions but they are all motivated by finite

dimensional vector spaces, as we will see. For most purposes it is enough to

know that the definition exists and we will occasionally make use of some of the

properties, but as with many categorical concepts we try to avoid getting too in-

volved with the details. The purpose of the remainder of the subsection will be to

familiarize the reader with some of the relevant concepts from the basic theory

of fusion categories, starting from the definition. To make things more concrete

we provide plenty of examples in the latter part of the subsection. This section

primarily follows [1], particularly chapters 1 and 2.

Definition 2.1.1 (Fusion Category). Let k be an algebraically closed field with
Char(k) = 0. A k-linear, semisimple, rigid monoidal category C is called a fusion
category if there are finitely many isomorphism classes of simple objects, the spaces
of morphisms are finite dimensional, and End(1) = k.

Throughout the remainder of this thesis, we will specialize to the case k = C.

The various conditions required of a fusion category are defined as follows:

Definition 2.1.2 (k−linear). A k−linear category is one in which all Hom-sets have
the structure of a k vector space.
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We denote the identity morphism of an object X by 1X .

Definition 2.1.3 (Isomorphism). A morphism f : X → Y is an isomorphism if
there exists another morphism g : X → Y such that fg = 1X and gf = 1Y .

Definition 2.1.4 (Monomorphism). A morphism f : A → B is called a monomor-
phism if for all morphisms g, h : C → B, f ◦ g = f ◦ h implies h = g.

A monomorphism is the categorical generalization of an injection and behaves

in much the same way.

Definition 2.1.5 (Direct Sum). Let C be a k-linear category and X, Y ∈ C objects.
Then an object Z ∈ C is said to be a direct sum of X and Y if there are morphisms

u ∈ Hom(X,Z), u′ ∈ Hom(Z,X),

v ∈ Hom(Y, Z), v′ ∈ Hom(Z, Y ),

such that

u ◦ u′ + v ◦ v′ = 1Z ,

u′ ◦ u = 1X , v′ ◦ v = 1Y .

Write Z = X ⊕ Y .

It is best to think about u and v as embeddings and u′, v′ as projections.

Definition 2.1.6 (Semisimple). A semisimple category is one in which each object
is a direct sum of simple objects. An object X is simple if the only monomorphisms
into X come from 0 and X itself. That is, if i : Y ↪→ X is a monomorphism, then
Y ∼= X or Y ∼= 0.

Intuitively speaking, a simple object is one with no nontrivial “sub” objects.

The lack of a monomorphism is the lack of an embedding of a smaller object into

the simple one. For example, C considered as a vector space over itself has no

nontrivial subspaces, and as we will see, it is a simple object in the category of

vector spaces over C.
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Definition 2.1.7 (Natural Transformation/Natural Isomorphism). Let F ,G : C →
D be functors. A natural transformation ν : F → G is a family {νX} of morphisms
indexed by objectsX in C satisfying two properties. First, νX is a morphism F(X) →
G(X). Second, for every morphism f ∈ HomC(X, Y ), the equality

νY ◦ F(f) = G(f) ◦ νX

holds. If for all X ∈ C, νX is an isomorphism in D, then ν is called a natural
isomorphism.

Less formally speaking, a natural transformation is a map of functors which

respects their structure. It is no coincidence that this looks similar to the defini-

tion of every other structure preserving map (i.e. morphism) and we will make

use of this fact in a key example later. It is common to define only the morphisms

of a natural transformation, leaving the functors implicit, which we will often do

moving forward.

Definition 2.1.8 (Monoidal Category). A category C is called monoidal if it con-
tains the following data:

1. A functor ⊗ : C × C → C, called the tensor product.

2. For all objects U, V,W ∈ C, a natural isomorphism

αU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

called the associativity isomorphism.

3. For each V ∈ C, natural isomorphisms

λV :1⊗ V → V ;

ρV :V ⊗ 1 → V

In addition, the following diagrams must commute:



Chapter 2. Background 7

X ⊗ Y

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

ρX
⊗1Y

αX,1,Y

1X⊗λ
Y

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z))

αW⊗X,Y,Z αW,X,Y⊗Z

αW,X,Y ⊗1Z

αW,X⊗Y,Z

1W⊗αX,Y,Z

They are called the triangle and pentagon identities, respectively.

The necessity of the triangle and pentagon identities is not immediately ap-

parent, but they are needed for the following reason. In a more concrete setting,

say a ring, the associativity axiom parallels property (2) of a monoidal category.

That is, associativity of multiplication tells us that (ab)c = a(bc), for all a, b, c in

the ring. It’s easy to extend this inductively to any finite product, so that any

bracketing is equal. We can therefore drop the bracketing entirely. The issue

in a monoidal category is that αU,W,V is not equality, but natural isomorphism.

It is still possible to show that any word X1 ⊗ X2 ⊗ · · · ⊗ Xn, bracketed any

way you like, is naturally isomorphic to any other bracketing of the same string.

What the pentagon axiom adds to this is the statement that any such isomor-

phism (in the case n = 4) is identical. That is, there is a unique isomorphism

(W ⊗X)⊗ (Y ⊗ Z) → W ⊗ (X ⊗ (Y ⊗ Z)).

Similar issues occur since the isomorphisms λV and ρV are not equalities. The

triangle condition ensures that given a word X ⊗ 1 ⊗ Y , we can collapse the

unit object either to the right or the left, and that the choice yields the same

isomorphism.

The well known Mac Lane coherence theorem [23] essentially states that the

triangle and pentagon identities are necessary and sufficient to ensure that we
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can freely rearrange brackets and collapse unit elements in words of any length.

That is, given any choice of valid bracketing, it is possible to rearrange it to some

other bracketing in many (possibly) different ways by applying α to different

objects in different orders, but the coherence theorem ensures that the way you

move from one word to another doesn’t matter. The isomorphisms you get will

be the same.

Definition 2.1.9 (Dualizable object). An object X is called (right) dualizable if
there exists another object X∗ and morphisms

ϵX : X∗ ⊗X → 1, ηX : 1 → X ⊗X∗

such that the following compositions are the identity:

X 1⊗X (X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X ⊗ 1 X

X∗ X∗ ⊗ 1 X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ 1⊗X∗ X∗

Left duals are defined analogously and denoted ∗X. The morphisms ϵX and

ηX are called evaluation and coevaluation respectively. If X and Y are objects

with duals, and f ∈ Hom(X, Y ) then there is a morphism f ∗ ∈ Hom(Y ∗, X∗)

defined as the composition

Y ∗ Y ∗ ⊗X ⊗X∗ Y ∗ ⊗ Y ⊗X∗ X∗.
1Y ∗⊗ηX 1Y ∗⊗f⊗1X∗ ϵY ⊗1X∗

Definition 2.1.10 (Rigid). A category is called rigid if every object has a left and
right dual.

Rigidity is compatible with the a monoidal category in the following way:

Lemma 2.1.11. Let C be a rigid, monoidal category. Then there are unique isomor-
phisms

1∗ → 1, ∗1 → 1

(X ⊗ Y )∗ → Y ∗ ⊗X∗

and

α∗
XY Z = αZ∗Y ∗X∗
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Proof. The first map is evidently

1∗ 1∗ ⊗ 1 1
ρ−1 ϵ1

and the second is the analogous statement for left duals. For the second state-

ment, we see that

(Y ∗ ⊗X∗)⊗ (X ⊗ Y ) → (Y ∗ ⊗ (X∗ ⊗X))⊗ Y → (Y ∗ ⊗ 1)⊗ Y → 1

defines a morphism ϵX⊗Y : (Y ∗ ⊗ X∗) ⊗ (X ⊗ Y ) → 1. A similar composition

works to define ηX⊗Y .

Finally, the following commutative diagram shows the last statement:

(X ⊗ (Y ⊗ Z))∗ ((X ⊗ Y )⊗ Z)∗

(Z∗ ⊗ Y ∗)⊗X∗ Z∗ ⊗ (Y ∗ ⊗ Z∗)

α∗
XY Z

αZ∗Y ∗X∗

The vertical arrows are the isomorphisms found earlier.

There are plenty of examples of fusion categories, most of which are con-

structed directly from classical structures, such as vector spaces, groups, repre-

sentations, etc. The most fundamental is Vectk, as many of its properties serve

as the inspiration behind the abstract definitions given above. As a result, the

definitions can be understood very concretely as they apply to Vectk, so they

provide useful intuition before seeing more complicated examples.

Example 2.1.1 (Vectk). Vectk is the category of finite dimensional vector spaces

over a field k. The morphisms are linear maps. It is well known that for all vector

spaces U, V , {f : U → V |f is linear} is itself a vector space under pointwise

addition and scalar multiplication, so Vectk is k−linear.

The next condition to check is semisimplicity. If dim(V ) = n, then V ∼= kn,

so V is a direct sum of n copies of k. k is simple, because any non-trivial vector

space either has dimension 1 and is isomorphic to k, or has dimension > 1, in

which case there is no injection into k. This also shows that k is the only simple

object, up to isomorphism.
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The tensor product is exactly the tensor product on vector spaces and we

can use it to build up the associativity isomorphism as follows. Starting with

vector spaces X, Y, Z, there is a map tx : Y × Z → (X ⊗ Y ) ⊗ Z defined by

tx(y, z) = (x⊗ y)⊗ z. This map is obviously bilinear (and bijective) and so by the

universal property of the tensor product, it induces a linear map Tx : Y ⊗ Z →
(X ⊗ Y ) ⊗ Z. Then define a new map T : X × (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z by

T (x,
∑
y ⊗ z) = Tx(

∑
y ⊗ z), which is again bilinear and bijective. Applying the

universal property once more, we get a linear bijection of vector spaces αX,Y,Z :

X ⊗ (Y ⊗ Z) → (X ⊗ Y )⊗ Z, which is the desired isomorphism.

We took the tensor unit to be the base field k, and we know that as vector

spaces k ⊗ V ∼= V and V ⊗ k ∼= V . Here again we just take λV , ρV to be the

following isomorphisms, defined on basis elements,

λV (1⊗ v) = cv, ρV (v ⊗ 1) = cv. (v ∈ V, c ∈ k)

and extend linearly to arbitrary elements. Verifying naturality and the triangle

and pentagon identities are tedious diagram chases. Roughly speaking, naturality

holds because the isomorphisms are entirely independent of basis or ground field

choice. The triangle identity holds because the tensor product is k−bilinear, so

cx⊗ y = x⊗ cy.

We are left to check rigidity. It is no surprise that the dual of a vector space

is also its (left and right) dual in Vectk as well. The evaluation map is equally

clear, since it is where the name comes from:

ϵX(f ⊗ x) = f(x), (x ∈ X, f ∈ X∗).

It extends to arbitrary tensors linearly. Coevaluation is defined by

ηX(1) =
∑
i

xi ⊗ x∗i ,

where the xi form a basis of X and the x∗i form the corresponding dual basis.

The best way see why this is the correct map is to use the fact that X ⊗ X∗ ∼=
Hom(X,X) by the isomorphism x ⊗ f ↦→ f(−) · x. Passing

∑
i xi ⊗ x∗i through



Chapter 2. Background 11

this isomorphism yields the identity transformation, so ηX is defined by sending

1 to 1X . For this reason, it is also sometimes called the unit, with ηX then being

the counit. It is not obvious from the definition that ηX should be independent of

choice of basis, but under this perspective it is.

Example 2.1.2 (G graded vector spaces). For a fixed group G and field k, con-

sider the category whose objects are G-graded finite dimensional vector spaces

V =
⨁

g∈G Vg. We call g = |Vg| the degree of V . The morphisms are given by

linear maps which respect the grading. That is, the morphisms are all linear

transformations f : V → W such that f(Vg) ⊂ Wg. We denote it by VectG.

Define a tensor product on VectG by

(V ⊗W )g =
⨁
h∈G

Vh ⊗ Vh−1g.

The tensor identity here is just k itself, viewed as a vector space. With these

choices, we can define λV and ρV by

λV (a⊗ v) = av = ρV (v ⊗ a)

and the associativity isomorphism is just shifting brackets. Then this defines a

monoidal category. The category is clearly k−linear. Additionally, we have simple

objects given by kg, g ∈ G. We now have to find duals for every object. We have

(V ∗)g = Homg(V, k)

∼= Hom(Vg−1 , k)

= (Vg−1)∗.

In the above, Homg(V, k) denotes the degree g linear transformations, which are

linear transformations f : V → W such that f(Vh) ⊆ Vgh. The isomorphism

follows because the only degree g maps V → k are those whose domain is V−g.

Since G is finite, there are finitely many simple objects, and clearly all objects

are finite direct sums of these. Since the identity object is ke = k, we have

End(1) = End(k) = k.
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Example 2.1.3 (Rep(G)). Let G be a finite group and k an algebraically closed

field of characteristic 0. Then the following data defines a fusion category, called

Rep(G). The objects are pairs (V, ρ) of vector spaces V and representations

ρ : G → GL(V ). To see what the morphisms should be, consider G as a cate-

gory with one object, ∗, and morphisms g : ∗ → ∗ which correspond to group

elements and obey the structure of the group, in the sense that composition of

morphisms is the group multiplication. Then a representation ρ is just a functor

G→ Vectk, sending ∗ to V and group elements to linear maps in GL(V ). In this

context, we think of Rep(G) as a category whose objects are functors, making

the morphisms natural transformations. So, to find all the morphisms, we have

to describe the natural transformations between two representations. Since G

only has one object, any natural transformation η will be completely described

by the corresponding morphism η∗, so we are free to identify them. All that is

left is to apply the naturality condition. For any morphism g and representations

ρ, ρ′, the following diagram must commute:

ρ(∗) ρ′(∗)

ρ(∗) ρ′(∗)

η

ρ(g) ρ′(g)

η

In other words, we are looking for all linear transformations η such that η◦ρ(g) =
ρ′(g) ◦ η, for all g ∈ G. Such maps are called intertwiners.

Now it remains to see why Rep(G) is a fusion category. It is k-linear be-

cause the set of morphisms have a natural vector space structure. Simple objects

correspond to irreducible representations (irreps). By Maschke’s theorem, every

representation is a direct sum of irreps, so Rep(G) is semisimple.

The tensor product is the tensor product of representations, and the tensor

unit 1 = (k, 1) is the base field together with the trivial representation.

Other properties all work out in essentially the same way as in Vectk.

The last definition of this section plays an important role in simplifying our

final results.

Definition 2.1.12 (Equivalence of (fusion) categories). Let C,D be (fusion) cate-
gories. Then C and D are equivalent as categories if there exist functors F : C → D,
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G : D → C such that F ◦ G ∼= 1D and G ◦ F ∼= 1C, where the isomorphisms in both
cases are natural.

If in addition F and G both preserve duals, direct sums, and tensor products,
then C and D are equivalent as fusion categories.

2.2 Modular Tensor Categories

This subsection lays the groundwork necessary to define Modular Tensor Cate-

gories (MTCs). As motivation, turn back to vector spaces: Two finite dimensional

vector spaces V and W always satisfy V ⊗W ∼= W ⊗ V , however as objects in

Vectk, they are distinct. This suggests that we should define a commutativity

isomorphism, similar to the associativity isomorphism defined on monoidal cate-

gories. It takes some work to ensure that everything still works coherently, so we

have to wade through that. One result of that work will be the twist, which is the

key feature of a ribbon category. It also allows us to define the categorical notion

of trace, which generalizes the trace of a linear map on a vector space. This in

turn is key to the long sought definition of an MTC.

Definition 2.2.1 (Braided Monoidal Category). A braided monoidal category is a
monoidal category C with natural isomorphisms

σX,Y : X ⊗ Y → Y ⊗X, (X, Y ∈ Ob(C))

called the braiding for which the following diagrams commute:

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

αX,Y,Z

σX,Y ⊗Id

σX,Y ⊗Z

αY,Z,X

αY,X,Z Id⊗σX,Z

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y

α−1
X,Y,Z

Id⊗σY,Z

σX⊗Y,Z

α−1
Z,X,Y

α−1
X,Z,Y σX,Z⊗Id
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These diagrams say that the isomorphisms built up by applying associativity

and commutativity in different orders will be equal.

At this point, if we were to continue relying on the example of finite dimen-

sional vector spaces, we would be led astray. In Vectk, the braiding satisfies

σY,X ◦σX,Y = IdX⊗Y , but this is not true for a general braided monoidal category.

The ones for which that equality holds are called symmetric monodial categories.

Example 2.2.1. Take the category of Z-graded vector spaces. We have the usual

tensor product of graded vector spaces, but we can define a grading which is not

the obvious one. Define

σX,Y (X ⊗ Y ) = λ|X||Y |(Y ⊗X),

where λ is a non-zero element of the underlying field, and |X|, |Y | denote the

degrees of X and Y respectively. It is easy to chase this σ through the diagrams

in Definition 2.2.1 and see that it satisfies the coherence conditions. Evidently,

σ2 = Id if and only if λ2 = 1, so this braiding is generally not symmetric.

We move forward by again considering vector spaces. In Vectk there is a

canonical map δ : X → X∗∗ given by x ↦→ evx. This map satisfies the following

properties:

δX⊗Y = δX ⊗ δY , δ1 = 1, δX∗ = (δ∗X)
−1. (2.2.1)

Continuing with the theme of generalizing key properties on maps of vector

spaces, it is natural to ask when braided categories have maps satisfying these

properties, as they are not in any way guaranteed. Before answering that ques-

tion, there is another similar map which is guaranteed, given by

X∗∗ X∗∗ ⊗X ⊗X∗ X∗∗ ⊗X∗ ⊗X X.
id⊗ηX

ψ

id⊗σX,X∗ ϵX∗∗⊗id

Since it goes in the reverse direction and is also an isomorphism it makes sense

to compose the two and then see how close the resulting map is to the identity. It



Chapter 2. Background 15

is not hard to see that this composition is the identity if and only if the category is

symmetric, as in the case of vector spaces. This leads to the following important

definition.

Definition 2.2.2 (Twist). Let C be a braided monoidal category with natural iso-
morphisms {δ} whose components satisfy (2.2.1) and {ϕ} whose components are
defined as above. A twist is a natural isomorphism {θV : V → V } whose compo-
nents are θV = ϕV δV

Lemma 2.2.3. The twist satisfies the following properties:

θX⊗Y = σY XσXY (θX ⊗ θY ),

θ1 = id

To prove this now we would require a tedious diagram chase, so instead we

refer to Chapter 2 of [1] where somewhat more theory is developed, including

a graphical depiction of morphisms in a braided category. In that framework

it becomes easy to prove many properties of braided categories, as it translates

commutative diagrams into so-called braid diagrams, which are extremely intu-

itive.

Definition 2.2.4 (Ribbon Category). A ribbon category is a rigid braided monoidal
category with a twist that additionally satisfies

(θV )
∗ = θV ∗

for all objects V .

The twist in a ribbon category allows us to define the notion of trace, which

as we will see is useful in multiple contexts.

Definition 2.2.5 (Trace). Let f ∈ Hom(V, V ). Then define

tr(f) = ηV σV V ∗ ◦ (θV f ⊗ 1) ◦ ϵV .

To understand the categorical trace, it is best to consider its relation to the

trace of a matrix.
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Example 2.2.2. Let V be a vector space with dim(V ) = n and A an n×n matrix.

Then, tr(A) =
∑n

i=1Aii.

Let T : V → V be a linear transformation with A as its matrix, after choosing

a basis B = {ei}ni=1. We define tr(T ) = tr(A) and notice that this definition is

independent of basis. But, we can define tr(T ) in a more complicated way as

well. Let {e∗i }ni=1 be the dual basis for B. Then,

T (ei) =
n∑
j=1

Aijej

so that Aij = e∗i (T (ej)). Substituting in to the original formula, we find

tr(T ) =
n∑
i=1

e∗i (T (ei)).

Now recalling how evaluation and coevaluation worked in Vect, it is easy to see

why the categorical trace has the definition it does.

The presence of the twist in the categorical definition ensures compatibility

and the braid ensures that the objects appear in the correct order, but details such

as those are less important for us as we will not be dealing explicitly with them.

One important feature of the usual trace of matrices is that tr(1) = dim(V )

where 1 is the identity map on V . This motivates the following definition:

Definition 2.2.6 (Quantum/Global Dimension). Let C be a ribbon category and
X ∈ C. Let Irr(C) be the set of isomorphism classes of simple objects and suppose
that |Irr(C)| <∞. Then the quantum dimension ofX is given by dim(X) = tr(1X).
The global dimension of the ribbon category C is dim(C) =

∑
X∈Irr(C) dim(X)2.

This is a good notion of dimension, not only because it is the “correct” dimen-

sion in Vectk, but also because it obeys some of the expected properties of a di-

mension. That is, dim(X⊗Y ) = dim(Y ⊗X) and dim(X⊕Y ) = dim(X)+dim(Y ).

Definition 2.2.7 (Modular Tensor Category (MTC)). A category C is called a mod-
ular tensor category if it is a semisimple ribbon category with Irr(C) finite, and if
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the matrix S defined by

Sij = tr(σViVj ◦ σVjVi), Vi, Vj ∈ Irr(C),

is invertible.

The motivation behind this definition (in particular requiring non-degeneracy

of the S matrix) comes from the physical interpretation of MTCs as representation

categories of VOAs. A second combinatorial invariant works with the S matrix to

form the so called modular data of the MTC. It is defined by

T = (tij) = δijθi.

Finding modular data is one of the primary goals of this thesis, but we will cover

exactly what it is in section 2.3.

2.3 Modular Data

From this point on we can safely ignore MTCs and restrict ourselves to their

modular data, which is their most important feature. As a simple combinatorial

invariant, it captures some of the information about an MTC without digging too

deeply into the blood and guts of the category itself. This section follows the

exposition of [11].

Definition 2.3.1 (Modular Data). Modular data consists of a finite set Φ contain-
ing an identity element 1, together with complex matrices (Sab)a,b∈Φ and (Tab)a,b∈Φ,
satisfying the following properties:

1. S is unitary and symmetric, and T is diagonal of finite order.

2. S1,b > 0 for all b ∈ Φ.

3. S2 = (ST )3.
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4. The numbers

N c
a,b =

∑
d∈Φ

SadSbdScd
S1d

(2.3.1)

are non-negative integers for all a, b, c ∈ Φ.

Proposition 2.3.2. For S and T defined as in Definition 2.3.1, the maps(
0 −1

1 0

)
↦→ S,

(
1 1

0 1

)
↦→ T

define a representation of SL(2,Z).

Proposition 2.3.3. The S and T matrices of a unitary MTC define modular data.

We define unitary in section 2.4, and it can be dropped if one is willing to

loosen the definition of modular data slightly by removing condition 2. For a

proof of this proposition, see chapter 3 of [1]. Further exposition on the relation-

ship between modular data and MTCs can be found both there and in [20]. It is

important to summarize the key properties of modular data that we will be mak-

ing use of, but in order to do that, we need the following standard terminology.

• The numbers N c
a,b are called fusion coefficients, and (2.3.1) is called Ver-

linde’s formula.

• An element of Φ is called a primary.

The best way to think about the fusion coefficients is as matrices. That is, for

a fixed primary a we can form the matrix Na defined by (Na)b,c = N c
a,b. This

interpretation, together with (2.3.1), tells us that the Na are simultaneously di-

agonalizable by S and that the columns of S are eigenvectors of the Na, each

with eigenvalue Sa,b/S1,b.

Definition 2.3.4 (Simple Currents). A simple current is a primary a ∈ Φ such that
Sa,1 = S1,1.
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To each simple current j, we can associate a phase φj : Φ → C∗ and a permu-

tation J of Φ such that

J0 = j

SJa,b = φj(b)Sab

TJa,JaT a,a = φj(a)Tj,jT1,1

(Tj,jT1,1)
2 = φj(j).

We also call the permutation J associated to j a simple current. The set of simple

currents J forms an abelian group under composition of permutations, called the

center of the modular data.

In some sense, simple currents are the most interesting primaries. For a gen-

eral primary a, Sa,1 ≥ S1,1. Since Sa,1/S1,1 is always an eigenvalue of Na (the

maximal real eigenvalue, called the Perron-Frobenius eigenvalue), we see that if

a is a simple current, then the maximal eigenvalue of Na is just 1.

2.4 Center

Although exotic fusion categories are interesting in their own right, our main

use for them is to construct exotic MTCs using the Drinfel’d double construction.

Some of the details are technical, but the idea itself is quite simple. We can think

of a fusion category as the categorization of a ring, and a braided fusion category

(e.g., an MTC) as the categorification of a commutative ring. Every ring has a

center which is commutative, so at first glance it seems reasonable to expect an

analogous result from fusion categories, and indeed there is. It is also called the

center, or the Drinfel’d double.

It is easy to define the center of any ring R as

Z(R) = {r ∈ R | rs = sr ∀s ∈ R}.
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The most obvious categorization of this definition is

Z(C) = {r ∈ C | r ⊗ s ∼= s⊗ r ∀s ∈ C},

for C a category, is essentially correct up to some technical details. The biggest

issue is the isomorphism r⊗ s ∼= s⊗ r. In principal there are many isomorphisms

which may work, but which would define entirely different categories, so it is

important to resolve that ambiguity.

Definition 2.4.1 (Half Braidings). Let C be a fusion category and X ∈ C an object.
A half braiding for X is a natural isomorphism {EX} with EX(−) : X ⊗ (−) →
(−) ⊗X. The naturality assumption is the statement that this diagram commutes,
for all f ∈ Hom(X,Z):

X ⊗ Y Y ⊗X

X ⊗ Z Z ⊗X.

EX(Y )

idX⊗f f⊗idX
EX(Z)

The maps must also satisfy the braid condition

X ⊗ Y ⊗ Z Y ⊗ Z ⊗X

Y ⊗X ⊗ Z.

EX(Y )

EX(Y⊗Z)

EX(Z)

Definition 2.4.2 (Center). Let C be a fusion category. The center of C, denoted Z(C)
is a category whose objects are pairs (X, EX), for X ∈ C and EX a half braiding. The
sets of morphisms are

Hom((X, EX), (Y, EY )) = {f ∈ Hom(X, Y )|EY (Z) ◦ (f ⊗ idX) = idX ⊗ f ◦ EX(Z))}.

There is a tensor unit given by (1, E1) where 1 is the tensor unit in C and E1(X) = idX

for all X. The tensor product is given by

(X, EX)⊗ (Y, EY ) = (X ⊗ Y, EX⊗Y ),

EX⊗Y = (EX ⊗ IdY ) ◦ (idX ⊗ EY )
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Finally there is a braiding defined by σ(X,EX),(Y,EY ) = EX(Y )

With the composition and tensor product of morphisms taken to be the same

as in C, Z(C) inherits the structure of a braided tensor category. With significantly

more work, Z(C) can be shown to be modular as well. For a detailed exposition,

see [24].

The half braidings determine a braiding on Z(C) and as a result we can com-

pute the S matrix entries explicitly in terms of half braidings. The T matrix is

found similarly. A convenient way to do that is to use the tube algebra, described

in [24]. This realization allows us to find the S and T matrices by solving a set

of polynomial equations of degree 1 and 2. The tube algebras for the classes of

fusion categories we find in this thesis are worked out in detail in sections 6 and

8 of [16]. In chapters 3 and 4 we give the relevant polynomial equations.

2.5 Cuntz Algebra Construction

As we saw in the previous section, given a fusion category, we can associate an

MTC. While this is much simpler than constructing MTCs directly, it comes with

the problem that the most well understood examples of fusion categories are

the simplest, most classical ones. As a result, the MTCs we can construct using

straightforward methods are also only the most obvious examples. One would

hope that there are plenty of interesting, truly strange examples of both fusion

categories and MTCs.

Perhaps the best approach to find them (that we know) is with the so-called

Cuntz algebra construction. It allows us to take advantage of the fact that any

fusion category can be interpreted as the category of endomorphisms of some

algebra A. (Strictly speaking this is slightly inaccurate, but we will provide a

more accurate picture later in this section). The properties of the Cuntz algebra

(defined below) allow us to completely determine certain systems of endomor-

phisms in terms of a relatively small number of complex parameters, and hence

completely understand them as a fusion category.
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Definition 2.5.1 (Cuntz Algebra). Let H be a separable Hilbert space. Let S1, S2, ..., Sn

be isometries on H; ie,

S†
iSj = δij,

n∑
i=1

SiS
†
i = 1. (2.5.1)

Then the algebra generated by the Si is called a Cuntz algebra and is denoted On.

Equations (2.5.1) are collectively called the Cuntz relations.

The above definition may at first seem strange, as intuition from finite di-

mensions implies that, if S†
iSi = 1, then also SiS

†
i = 1. This fails for infinite

dimensions though, as the following example demonstrates.

Example 2.5.1. Let H = ℓ2. Define S1 and S2 by

S1((a1, a2, ...)) = (a1, 0, a3, 0, ...),

S2((a1, a2, ...)) = (0, a2, 0, a4, ...).

These obviously satisfy the conditions of the Cuntz algebra.

As the example makes clear, the key difference when moving from a finite

dimensional setting to an infinite dimensional one is that we can project onto a

proper subspace which is isomorphic to the original space. In the example, S1 and

S2 do this in two different ways, such that they “add past” each other when being

recombined. Intuitively the same thing happens for any isometries satisfying the

Cuntz relations. Recalling the definition of direct sum in a k−linear category,

there is a clear analogy present. This is key in understanding the relevance of the

Cuntz algebra On to the construction of fusion categories, as we will see.

The notation On makes no reference to the many possibly different isome-

tries which could generate the Cuntz algebra. Indeed, our use of the as opposed

to a is similarly unjustified. The following theorem ensures this terminology is

appropriate.

Theorem 2.5.2. Let H be a separable Hilbert space, and let {Si}ni=1 and {Ŝi}ni=1 be
two sets of isometries, both satisfying (2.5.1). Then the C∗-algebras generated by
{Si}ni=1 and {Ŝi}ni=1 are naturally isomorphic.
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The proof of this theorem can be found in [3] (Statement 1.9), where further

details on Cuntz algebras in general are also given.

The best way to understand the construction is by example. Let G be a finite

abelian group of order n. Denote by [x] the isomorphism class of any simple

object x ∈ C, for C a fusion category. Chapter 3 shows that any (hypothetical)

near group category of type G+ n′ would have to satisfy the fusion rules

[g][h] = [gh], [g][ρ] = [ρ][g] = [ρ], [ρ]2 = n′[ρ] +
∑
g∈G

[g],

for all g, h ∈ G. We can ask which (if any) endomorphisms on some Cuntz alge-

bra satisfy analogous rules. Additionally, we want the endomorphisms to respect

the ∗ structure on the Cuntz algebra, and so they should be ∗-endomorphisms.

That is, we are looking for algebra endomorphisms f which additionally satisfy

f(x†) = f(x)† for all x ∈ A and a Hermitian conjugate †. Although this assump-

tion isn’t strictly necessary, it does simplify the working out considerably. Any

resultant fusion category will have additional structure as well.

Definition 2.5.3 (Unitary category). A C- linear category C is called unitary (or
C∗) if there is a conjugate-linear operation †: Hom(X, Y ) → Hom(Y,X) such that

(f †)† = f

(fg)† = g†f †

(f ⊗ g)† = f † ⊗ g†

k† = k, (k ∈ C),

whenever the above expressions make sense. Additionally, we must have f †f = 0 if
and only if f = 0.

The † operation is often denoted by ∗, although we have reserved that no-

tation for dual objects/morphisms. In our context, every fusion category and

indeed MTC will be unitary as well, as a result of the assumption on the endo-

morphisms which we use to construct them. The benefit of this assumption is
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ease of calculation and slightly simpler results – for example, dimension is espe-

cially well behaved in unitary categories as it is always positive, which may not

be the case in nonunitary ones. The drawback is that not every fusion category

satisfying a given set of fusion rules will be unitary, so we are necessarily miss-

ing some. The generalization to nonunitary categories is a good deal of work

(see [7]), but as we will see later, it seems to already be possible to recover the

nonunitary numerical data from the unitary data, albeit not in the most useful

form.

The most important distinction for the time being between unitary and nonuni-

tary categories is the ease with which the Cuntz algebra construction can be

accomplished. It is a theorem of [14] that any unitary fusion category can be

realized as the category of endomorphisms on a hyperfinite von Neumann alge-

bra (which the Cuntz algebras are). With that theorem, most of the legwork is

done and we can freely ignore any theoretical concerns. Additionally, the assum-

tion that the endomorphisms are ∗-endomorphisms allow for a greater degree of

computational simplicity, as we will see in the following example: Zoom in to the

simplest possible case, where G is the trivial group:

Example 2.5.2. Suppose we have a unitary fusion category whose simple objects

are 1 and ρ, with fusion rules

[ρ][ρ] = [1] + [ρ].

The goal of the Cuntz algebra construction is to reinterpret 1 and ρ as endomor-

phisms on an algebra A. The hom-spaces are spaces of intertwiners. That is, for

a ∈ A, a ∈ Hom(X, Y ) if X(b)a = aY (b) for all b ∈ A. The advantage of this in-

terpretation is that we handle the tensor product easily – it becomes composition

of morphisms. However this interpretation makes sums more difficult. The most

obvious translation would be to require

ρ(ρ(x)) = x+ ρ(x), ∀x ∈ A,
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but this falls apart. If this were the equation, then applying it to 1, we get

ρ(ρ(1)) = 1 = 1 + ρ(1) = 2,

which is obviously nonsense. To fix this, we have to consider a slightly more

complicated expression which is exactly what we need to define addition and be

compatible on the level of the category. Take s, s†, t, t† ∈ A satisfying

ss† + tt† = 1, s†s = t†t = 1 s†t = t†s = 0. (2.5.2)

Then suppose ρ and 1 satisfy

ρ(ρ(x)) = sxs† + tρ(x)t†. (2.5.3)

This solution evidently solves the unit problem caused by the obvious equation

ρ2(x) = x+ ρ(x).

The similarity here to the direct sum of objects in a category (Def 2.1.5) is

not a coincidence. Equation (2.5.3) is the culmination of the previous discussion

about projections in infinite dimensional spaces. Essentially, A is replaced by two

orthogonal copies of itself; one is the image of s and the other is the image of t.

Then 1 acts on the first copy and ρ on the second. In this way, on the level of the

category, we really are taking direct sums of objects.

Now, it’s obvious that s, s†, t, t† generate some subalgebra of A, call it As,t,

but it isn’t obvious that ρ restricts to an endomorphism of that subalgebra. If

it did, then ρ would be determined by how it acts on s, s†, t, t† and we could in

principle solve for it exactly. The first step is therefore to check that ρ restricts to

an endomorphism on As,t.

It suffices to show that ρ sends s, s†, t, t† to elements of As,t. As ρ is a ∗−endomorphism,

it’s enough to consider s and t. There are a few intermediate steps to achieve

that. First, we’ll show that s, s†, t, t† are all intertwiners for appropriately chosen

endomorphisms. Starting with (2.5.3) and multiplying on the right by s, we get

ρ(ρ(x))s = sxs†s+ tρ(x)t†s = sx.
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Similarly, we can show that

ρ(ρ(x))t = tρ(x), (2.5.4)

s†ρ(ρ(x)) = xs†, (2.5.5)

t†ρ(ρ(x)) = ρ(x)t†. (2.5.6)

Therefore, on the level of the category, we must have

s ∈ Hom(ρ2, 1),

s† ∈ Hom(1, ρ2),

t ∈ Hom(ρ2, ρ),

t† ∈ Hom(ρ, ρ2).

Next we must show that each of these spaces is in fact generated by s, s†, t or t†,

respectively. The computation is essentially the same in each case, so doing it

explicitly for s will suffice.

Suppose that r ∈ Hom(ρ2, 1). Then

xs†r = s†ρ(ρ(x))r = s†rx,

so s†r ∈ Hom(1, 1) = C, since 1 is a simple object. The same trick with t† yields

t†r ∈ Hom(ρ, 1) = 0. Then

r = (ss† + tt†)r = ss†r + tt†r = ss†r ∈ Cs,

so r is a multiple of C. Since r was arbitrary, it follows that Hom(ρ2, 1) = Cs.
Analogous computation shows that

Hom(1, ρ2) = Cs†,

Hom(ρ2, ρ) = Ct,

Hom(ρ, ρ2) = Ct†.

We now know what all of the intertwiners look like, and there is enough to
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show that ρ restricts to an endomorphism of As,t. Consider the following two

equations:

s†ρ(s)ρ(x) = s†ρ(sx) = s†ρ(ρ2(x)s) = s†ρ2(ρ(x))ρ(s)

= ρ(x)s†ρ(s),

t†ρ(s)ρ(x) = t†ρ(sx) = t†ρ2(ρ(x))ρ(s)

= ρ2(x)t†ρ(s).

Thus s†ρ(s) ∈ Hom(ρ, ρ) = C and t†ρ(s) ∈ Hom(ρ2, ρ) = Ct. So there exist

a, b ∈ C such that s†ρ(s) = a and t†ρ(s) = bt. Putting it all together,

ρ(s) = (ss† + tt†)ρ(s) = as+ bt2,

so ρ(s) ∈ As,t. Due to unitarity, we know that ρ(s†) = ρ(s)†, so

ρ(s†) = ρ(s)† = (as+ bt2)† = as† + b(t†)2.

We can compute ρ(t) similarly:

ρ(x)s†ρ(t) = s†ρ2(ρ(x))ρ(t) = s†ρ(ρ2(x)t) = s†ρ(tρ(x)) = s†ρ(t)ρ2(x).

So, s†ρ(t) ∈ Hom(ρ, ρ2) = Ct†. Hence s†ρ(t) = ct† for some c ∈ C.

As before, we can show that Hom(ρ2, ρ2) = Css† ⊕ Ctt†. Then,

t†ρ(t)ρ2(x) = t†ρ(tρ(x)) = t†ρ(ρ2(x))ρ(t) = t†ρ2(ρ(x))ρ(t) = ρ2(x)t†ρ(t),

so t†ρ(t) = dss†+ ett†. Putting it all together as before yields ρ(t) = cst†+ dtss†+

ett†, and then ρ(t†) = ρ(t)† gives the last result.

The upshot of this working out is that ρ(As,t) ⊆ As,t, and as a result restricts

to an endomorphism of As,t. Moreover, we learn ρ exactly up to 5 complex pa-

rameters which are relatively straightforward to solve for. To do so, we use the

fact that ρ is a unital algebra endomorphism and so must respect addition and

multiplication.
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The obvious place to start is by applying ρ to (2.5.2):

ρ(s)ρ(s)† + ρ(t)ρ(t)† = 1, ρ(s)†ρ(s) = ρ(t)†ρ(t) = 1, ρ(s)†ρ(t) = ρ(t)†ρ(s) = 0.

After substituting in the expressions we found previously, we get numerous iden-

tities further restricting the 5 parameters. Additionally using (2.5.3) applied to

the generators forces a = (−1±
√
5)/2. From there one can show that b = c =

√
a,

e = −a, and d = 1 are the only possible solutions.

The above example generalizes very smoothly to general near group cate-

gories, but the detailed proof is more technical and no more enlightening than

the example was. It, and other Cuntz algebra constructions for hypothetical fu-

sion categories, can be found in [16], [6], and [7].

2.6 Symmetric Forms, Quadratic forms, and Gauss

Sums

Quadratic forms play an important role in Chapter 3, so a slight detour now will

be useful. In this section, G is a finite abelian group of order n, ξn = e2πi/n, and

T = {z ∈ C : |z| = 1}.

Definition 2.6.1. A pairing on G is a map ⟨·, ·⟩ : G × G → T such that ⟨g, ·⟩ and
⟨·, g⟩ are both 1-dimensional representations of G, for all fixed g ∈ G. That pairing
is called symmetric if ⟨g, h⟩ = ⟨h, g⟩ for all g, h ∈ G. It is called nondegenerate if
⟨g, ·⟩ ≠ ⟨h, ·⟩, whenever g ̸= h.

Pairings are maps to roots of unity. That is, when G = Zn, any symmetric

pairing is ⟨g, h⟩ = ξmghn for some m ∈ Z. Nondegeneracy is the condition that

gcd(m,n) = 1. When G is noncyclic but still finite and abelian, we can split it

into a direct product of cyclic groups, and the pairing will likewise split.

Related to any symmetric form is one or more quadratic forms.



Chapter 2. Background 29

Definition 2.6.2. A quadratic form on G is a map q : G → T such that q(g) =

q(−g) and

q(g)q(h)q(g + h) = ⟨g, h⟩, (g, h ∈ G),

for some nondegenerate symmetric pairing ⟨, ⟩.

The question of whether or not quadratic forms and nondegenerate symmetric

pairings are in one to one correspondence is natural to ask. Evidently there are

at least as many quadratic forms as there are symmetric pairings, so it suffices to

see if more than one quadratic form can yield the same pairing. The answer to

that is yes, in general there are more quadratic forms than symmetric pairings,

but the number of them is under control and there is a complete classification of

quadratic forms. We provide only the classification; see [26] for more details.

Fact 2.6.3. Any quadratic form can be factored into a product of the following four
types of indecomposable quadratic form.

Type pk: q(g) = ξmg
2

pk
, where g ∈ Zpk , p is an odd prime, and k ∈ N.

Type 2k: q(g) = ξmg
2

2k+1, for g ∈ Z2k , k ∈ N, and m = ±1,±3 mod 8.

Type 2k2k1: q(g, h) = ξgh
2k

, for (g, h) ∈ Z2k × Z2k , k ∈ N.

Type 2k2k2: q(g, h) = ξg
2+2gh+h2

2k
, for (g, h) ∈ Z2k × Z2k , k ∈ N.

The way to build arbitrary quadratic forms on an abelian group G is to first

factor G into a direct product of cyclic groups of prime power order. Then any

quadratic form on G will factor as a product of indecomposable quadratic forms

defined on the factors of G.

Related to quadratic forms is the notion of a Gauss sum. They will play an

important role in the modular data of the near group categories.

Definition 2.6.4. Given a group G and a quadratic form q on G, define the Gauss
sum of q on G as

aq =
1√
|G|

∑
g∈G

q(g).
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If a quadratic form q splits as the product of indecomposables, its Gauss sum

does as well. That is, aq = aq1aq2 · · · aqn, where q = q1q2 · · · qn. As a result, we

only need the Gauss sums for each type of indecomposible quadratic form to get

the full picture.

Fact 2.6.5. The Gauss sums for each of the indecomposable quadratic forms are

Type pk:

aq =

⎧⎨⎩
(

2m
p

)
if pk = 1 mod 4(

2m
p

)
i if pk = 3 mod 4

,

where
(

2m
p

)
is the Legendre symbol of 2m and p.

Type 2k:

aq =

⎧⎨⎩−ξ−m8 if m = ±3 and k odd

ξ−m8 else
.

Type 2k2k1: aq = 1.

Type 2k2k2: aq = (−1)k.

The proof of this fact is purely number theory, so we omit it here. It can be

found in [26].

Specializing to Type pk for k = m = 1 and rearranging yields the classic Gauss

sum

√
paq = g1 =

⎧⎨⎩
√
p if p = 1 mod 4

i
√
p if p = 3 mod 4

,

which we will make some use of as well.
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Chapter 3

Near Group Categories

The quintessential example of fusion categories is the representation category of

a finite group G, so it is natural to look for fusion categories which are pertur-

bations of these basic ones. One way to achieve this is to add one simple object.

So, where the group category has simple objects [g] corresponding to elements

g ∈ G, the new category would have those simple objects, together with an ad-

ditional one called [ρ]. The first step to a fusion category is finding a sensible

tensor product. Obviously, the objects corresponding to the group should have a

tensor product such that [g][h] = [gh]. So it remains to find [ρ][g], [g][ρ], and [ρ]2.

It turns out that given our choice that the only simple objects are ρ and the g’s,

there is very little freedom here. First, consider [ρ][g]. Since fusion categories are

semisimple, [ρ][g] has to be of the form

[ρ][g] = nρ[ρ] +
∑
h∈G

ng[h]

If [ρ][g] were to contain any terms with any h, then [ρ][g] = [h]+ ..., so [ρ][g][g−1] =

[hg−1] + ... = [ρ]. Since [ρ] is simple, we therefore must have [ρ] = [hg−1]. But this

breaks the group law, so it is impossible. Therefore, [ρ][g] = nρ[ρ]. Recall that nρ
is a non-negative integer though, and by multiplying on the right by g−1, we get

[ρ] = nρ[ρ][g
−1], so [ρ][g−1] = n−1

ρ . The only non-negative integer with an inverse

is 1, so [ρ][g] = [ρ] for all g ∈ G. Similarly, [g][ρ] = [ρ].

We also see that [ρ]∗ = [ρ] since the dual of any simple object is simple. Obvi-

ously the only candidate is [ρ] itself.
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Finally, we compute [ρ][ρ]. By semi-simplicity,

[ρ][ρ]∗ = [ρ]2 = nρ[ρ] +
∑

g∈G\{1}

ng[g] + [1].

Then we can multiply by any h ∈ G on both sides, so that

[ρ]2 = nρ[ρ] + [h]
∑
g

ng[g] + [h]

By the above, some term in the sum has to be exactly 1, and notice that there

is only one copy of h. Since h was arbitrary, this has to hold for all h ∈ G,

hence [ρ]2 = nρ[ρ] +
∑

g∈G[g]. The convention is to call n′ := nρ, and a near

group category is labeled as being of type G + n′, where G is the group and n′

is the coefficient of ρ in the expansion of [ρ][ρ]. Some effort has already been

put into classifying such categories. In particular, Theorem 2 in [6] states that

n′ = 0, n − 1, or n′ ∈ nZ are the only possible values of n′ which can yield

valid fusion categories. When n′ > n, there are only a few known examples of

near group fusion categories, and the prevailing assumption is that there are only

finitely many such cases. The fusion categories of type G+ 0 are called Tambara

Yamagami categories and section 2 of [29] contains a complete classification.

Fusion categories of type G+ n− 1 are classified in [6] (Proposition 5).

Thus the most plentiful remaining source of near group fusion categories are

those of type G + n, which are the focus of this chapter. We continue the work

done by [6], which classified all such categories for |G| ≤ 13. We also construct

the near group categories using the Cuntz algebra construction, however due to

both better computing power and different computational approaches, we were

able to construct examples for all cyclic G with |G| < 31, the data of which are in

section 3.3.

3.1 Numerical Data

Throughout this subsection, G is a finite abelian group of order n, and Ĝ are the

irreps of G. We will also switch to additive notation. Since G is finite and abelian,
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these are exactly the one dimensional representations of G. In fact, G ∼= Ĝ. The

isomorphism G ∼= Ĝ is then given by g ↦→ ⟨g, ·⟩, for any nondegenerate pairing

in the sense of Definition 2.6.1. When G = Zn, any ψ ∈ Ĝ is uniquely defined

by ψ(1), which will always be equal to ξmn for some m ∈ Z. As a result, the

nondegenerate symmetric pairings are given by ⟨g, h⟩ = exp[2πimgh/n] where

gcd(m,n) = 1.

The first theorem of this section is that any near group fusion category will

yield certain numerical constants, among them a nondegenerate symmetric pair-

ing.

Theorem 3.1.1. Let G be a finite abelian group with |G| = n. Let δ = n+
√
n2+4n
2

.
Let c ∈ C and a : G→ C, b : G→ C be functions satisfying

a(0) = 1, (3.1.1)

a(x) = a(−x), (3.1.2)

a(xy)⟨x, y⟩ = a(x)a(y), (3.1.3)∑
x∈G

a(x) =
√
nc−3, (3.1.4)

b(0) =
−1

δ
, (3.1.5)∑

y∈G

⟨x, y⟩b(y) =
√
ncb(x), (3.1.6)

a(x)b(−x) = b(x), (3.1.7)∑
x∈G

b(x+ y)b(x) = δy,0 −
1

δ
, (3.1.8)∑

x∈G

b(x+ y)b(x+ z)b(x) = ⟨y, z⟩b(y)b(z)− c

δ
√
n
. (3.1.9)

Then c, a, b determine a near group fusion category of typeG+n. Two such categories
C1 and C2 determined by c1, a1, b1 and c2, a2, b2 respectively are equivalent (as fusion
categories) if there is ϕ ∈ Aut(G) such that ⟨x, y⟩1 = ⟨ϕx, ϕy⟩2, a1(x) = a2(ϕx),
b1(x) = b2(ϕx) and c1 = c2.

This is Corollary 5 of [6], and a proof can be found there.
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From this point on, we restrict to G = Zn. A close look at these equations

yields a few simplifying ideas. Consider (3.1.3) and take y = −x. Then ⟨x,−x⟩ =
a(x)2, so |a(x)| = 1 and

a(x)2 = e−2πx2im/n.

Solving for a(x) depends on whether n is even or odd. If n is odd, then we must

have

a(x) = e−πix
2m/n =

(
e2πix

2m/n
)n−1

2
.

If instead n is even, then we introduce a possible sign and have

a(x) = sxe−πix
2m/n, s = ±1.

However we can absorb any potential factor of −1 by taking m ∈ {1, 2, ..., 2n}
and coprime to n in this case. In all cases, a(x)−1 = a(x).

Shifting attention to (3.1.4), we see that the left side will always be a sum of

some roots of unity so we can easily find a list of possibilities for c using Gauss

sums. We split into cases again. Now it depends on the value of n mod 4. If

n = 1 mod 4, then

c−3
√
n =

∑
x∈G

a(x) =
∑
x∈G

(
e2πix

2m/n
)n−1

2
=

(
mn−1

2

n

)√
n = ±

√
n.

Rearranging, we see that c3 = ±1, so c will be a 6th root of unity. If n = 3 mod 4,

similar logic shows that c3 = ±i, so c is going to be a 12th root of unity. Finally

in the even case, c will always be a 24th root of unity.

Now rearranging equation (3.1.7) lets us eliminate half the b(x) values, since

we get b(−x) = a(x)b(x). And we can do better by eliminating b(0) = 1/δ since

it is always the same. As a consequence of equation (3.1.8), we can write all the

data in exponential form so that b(x) = 1√
n
exp (ij(x)), where −π < j(x) ≤ π.

This allows an additional simplification when n is even. By equation (3.1.7),



Chapter 3. Near Group Categories 35

when x = n/2, we have x = −x. Multiplying on both sides by b(n/2) and rear-

ranging yields b(n/2) = ±
√
a(n/2)/n.

The final simplification comes from (3.1.6) and (3.1.7). Let b = (b(0), b(1), ..., b(n−
1))T . Then, after substituting into (3.1.6) with (3.1.7), we see that b is an eigen-

vector for Mx,y = a(y)⟨x, y⟩/
√
n with eigenvalue c. This result is most useful

when checking completeness, as we will see.

The best way to solve for the numerical data from this point seems to be

to first guess at a possible c, of which there are only ever a few choices. Then

iteratively solve the other equations, working from the simplest linear ones to the

more complicated nonlinear ones. If ever a choice of c fails, scrap that solution

and work on the next one. Of course, there may be more than one c which

works, and as mentioned each c will yield a different fusion category, so it is

always important to check all possibilities.

Additionally, all values are algebraic, and hence they have an associated min-

imal polynomial. Because we are only solving the equations numerically, finding

the associated minimal polynomial is not always immediate. However, given nu-

merical solutions of a few digits of accuracy, it’s easy to use numerical methods

to increase the accuracy arbitrarily. Languages such as Mathematica and Maple

have in-built functions (FindIntegerNullVector in Mathematica) which can find

algebraic approximations of inexact numbers such as the ones appearing as solu-

tions to the defining equations of the Near Group categories. From those we can

get minimal polynomials. We will see this in more detail in the next section.

3.2 Near Group Categories and Galois

Fusion categories are algebraic in the sense that their constraints arise as polyno-

mial matrix equations over C. This opens the door for automorphisms σ of C to

act on a fusion category in the following way. Fix σ ∈ Aut(C), and a basis for all

Hom spaces in the fusion category. With a choice of basis, the morphisms of the

fusion category can be expressed as matrices over C; letting σ act on these ma-

trices entrywise will yield another (probably inequivalent) fusion category which

obeys the same fusion rules as the initial category. As a caveat, unitarity is not an
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algebraic condition in this sense, and in general automorphisms will not preserve

unitarity.

To be more explicit, we look at near group categories specifically. If σ ∈
Aut(C) were to send a solution (c, a, b) of the equations in Theorem 3.1.1 to

another solution, it must satisfy

σ(δ) = δ (3.2.1)

σ(b(g)) = σ(b(g)). (3.2.2)

In this case, we define bσ(g) = σ(b(g)), and similarly for aσ. cσ depends on

σ(
√
n), since σ(

√
n) = ±

√
n. cσ needs to absorb the negative sign if σ acts as

multiplication by −1.These satisfy Theorem 3.1.1. It should also be noted that

(3.2.2) has been redundant in cases we have seen for cyclic G – whenever σ(δ) =

δ, (3.2.2) has always held.

Finding σ for which (3.2.1), (3.2.2) hold therefore allows us to classify fusion

categories based on their Galois associates. To achieve such a classification, we

first have to find the Galois group associated to a given near group category, and

see how its elements σ permute the numerics which define the fusion category.

There is a chain of field extensions

k ⊇ Q[ξlcm(24,2n,n+4)] ⊇ Q[
√
n2 + 4n] ⊇ Q

whose components work like this: Q[
√
n2 + 4n] contains δ, and our eventual

goal will be for this to be the base field in some Galois extension, guaranteeing

(3.2.1) is satisfied by any Galois automorphism of the largeest field extension k.

The next extension, Q[ξlcm(24,n,n+4)], contains all values ⟨g, h⟩, a(g) and c, for all

g, h ∈ G. We can see that it is an extension by considering quadratic Gauss sums.

Note that this is exactly the reason we’ve picked this extension – it’s in a sense

the minimal (ie, roots of unity with the smallest denominators) extension that

always contains all of these values. Lastly we define k to be the large extension

containing all b(g)’s and their Galois associates, in addition to the other ones. In

general we don’t know what k will look like, only that it is an algebraic extension.

Now, let σ ∈ Gal(Q[ξlcm(24,2n,n+4)] : Q[
√
n2 + 4n]). Then we can parameterize
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σ by 3 values, ℓ24, ℓ2n, ℓn+4, where ℓj ∈ Z×
j for j = 24, 2n, n + 4. We can see what

these numbers mean by looking at how σ acts on certain data. First, consider

σ(ξ24). It has to take ξ24 to another 24th root of unity, say ξℓ2424 . Similarly, we

need σ(ξn+4) = ξ
ℓn+4

n+4 . Lastly σ(ξ2n) = ξℓ2n2n . If n is odd, we can simplify slightly

by considering ξn. The difference allows us to deal with a with no ambiguity, so

is preferential for that reason. This parameterization tells us exactly what σ does

to a general element of Q[ξlcm(24,n,n+4)], so importantly it tells us how σ will act

on c, a(g), and ⟨g, h⟩. That is, c is a 24th root of unity, ⟨g, h⟩ are 2nth roots of

unity, and a is determined by the other data. The presence of n + 4 ensures that

this is actually an extension of Q[
√
n2 + 4n]. Put another way, there is a group

embedding Gal(Q[ξlcm(24,2n,n+4)] : Q[
√
n2 + 4n]) → Z×

24 × Z×
2n × Z×

n+4.

There are also constraints on the possible values of ℓ24, ℓ2n and ℓn+4. In partic-

ular, we need ℓi = ℓj mod gcd(i, j). Another restriction comes from the fact that

σ has to fix
√
n2 + 4n (and therefore δ) since it is in the base field. This restriction

plays out in the following way:

There are 3 cases, and in all of them we assume n is square-free. If n = 1

mod 4 then we have by Gauss sums,

√
n =

n−1∑
j=0

ξj
2

n .

Then

σ(
√
n) =

n−1∑
j=0

ξℓnj
2

n =

(
ℓn
n

) n−1∑
j=0

ξj
2

n =

(
ℓn
n

)√
n.

Thus, σ(
√
n) depends only on the quadratic residue of ℓn mod n.

In the next case we have n = 3 mod 4. Then

σ(
√
n) = σ(−i)

n−1∑
j=0

ξℓnj
2

n =

(
ℓn
n

)
(−i)ℓ24

n−1∑
j=0

ξj
2

n =

(
ℓn
n

)
(−i)ℓ24

√
n.

Here, σ(
√
n) depends on the quadratic residue of ℓn mod n and on ℓ24 mod 4.
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The final case is if n = 2. Then

√
2 = ξ8 − ξ38 ,

both of which are 24th roots of unity. So σ acts on them by raising them to ℓ24.

So the result is only dependent on ℓ24 mod 8.

So overall, the fact that σ has to fix
√
n2 + 4n, together with the above re-

strictions, gives a small number of options for (ℓ2n, ℓn+4, ℓ24). Note that fixing√
n2 + 4n is a somewhat artificial constraint arising because we are looking only

at unitary categories. If that requirement were dropped, then σ wouldn’t have to

fix
√
n2 + 4n. We don’t have to restrict σ so that σ(

√
n) =

√
n (instead we could

have σ(
√
n) = ±

√
n) because anytime there’s a −

√
n that appears, it’s always

next to c, so we can absorb the extra −1 by the c.

Now we have σ ∈ Gal(Q[ξlcm(n,n+4,24)] : Q[
√
n2 + 4n]), but these σ lift to at

least one σ ∈ Gal(k : Q[
√
n2 + 4n]). In practice, one of these obeys bσ(g) =

b(ℓ2ng). As a result, we have automorphisms which take all the data of one fusion

category satisfying some fusion rules to data of another which satisfy the same

fusions. That is, applying σ to the fusion equations of one category gives valid

fusions which define some other category (in the same Galois orbit).

The most important and explicit example of σ ∈ Aut(C) which satisfies (3.2.1)

and (3.2.2) is complex conjugation. For n = 1, this fixes the data, and for n = 5,

the two complex conjugate fusion categories are equivalent. However, for all

other cases we have found, complex conjugation sends a near group category to

an inequivalent one.

Example 3.2.1 (G = Z6). The first step is solving the equations directly in Math-

ematica. The method is covered in general elsewhere. Recall that we first find all

values of m which yield possible non-degenerate bilinear forms ⟨g, h⟩ and a(g)’s,

then we find the possible values of c (which are 24th roots of unity). Then for

each pairing of m and c, we try to solve the remaining equations for b(g). Suc-

cessful solutions are then kept. In the case of Z6 this method returns 8 solutions

over 4 different values of m. The values of m are ±1,±5 and are taken mod 2n,

which avoids the need to deal explicitly with a(g). We get one possible c value for
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each m, given by ξ±1
24 , ξ±5

24 respectively. For each (m, c) pair, there are 2 possible

solutions for the b(g), of which we only need to list the b(1), b(2), b(3), since the

others are determined from those alone. Note that this is specific to G = Z/6Z
and in general there won’t be 2 solutions for a given (m, c) pair. All the solutions

are summarized below, where :

m c {b(1), b(2), b(3)}
1 1 {2.95526, 0.0553542,−0.785398}
1 1 {−2.43166, 2.03904,−0.785398}
5 5 {2.91503,−1.59091, 2.35619}
5 5 {−0.29704,−0.503485, 2.35619}
−5 −5 {−2.91503, 1.59091,−2.35619}
−5 −5 {0.29704, 0.503485,−2.35619}
−1 −1 {−2.95526,−0.0553542, 0.785398}
−1 −1 {2.43166,−2.03904, 0.785398}

Since c is always some 24th root of unity, it suffices to record the power mod

24. So, the first entry in the c column is shorthand for ξ24. In the b column, it

is sufficient to give the argument of b(g) since the norm is always known, which

again helps with economy of notation. We can eliminate half of these by noting

that they are equivalent in the usual sense (ie, there is an element of Z×
6
∼= Z2

that permutes b(g)’s and corresponds to complex conjugation. So there are 4

inequivalent categories, so we are down to the following collection (which has

been reordered conveniently):

m c {b(1), b(2), b(3)}
1 1 {2.95526, 0.0553542,−0.785398}
−1 −1 {−2.95526,−0.0553542, 0.785398}
5 5 {2.91503,−1.59091, 2.35619}
−5 −5 {−2.91503, 1.59091,−2.35619}

What remains is to find which of the above categories are Galois associates of

one another. In order to do so, we find the valid parameterizations of σ. First
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ℓ24. Since ℓ24 controls c, any σ that sends the first category to the second would

have to have ℓ24 = −1, and similar for the other 2 categories (with 5 and −5

respectively). Next, ℓ6 controls how σ acts on m. That is, σ(m) = ℓnm, so again

if we want to transform the first category into the second, we need ℓ6 = −1, and

similar to get to the other 2 categories. Now that ℓ6 and ℓ24 are determined, we

compute σ(
√
6). By applying the general formulas written above, it isn’t hard to

see that σ(
√
6) =

√
6. Therefore, whatever value for ℓ10 is chosen, it has to result

in σ(
√
10) =

√
10.

There are 2 restrictions for ℓ10. We need
(
ℓ10
5

)
= 1, ℓ10 = −1 mod 2. Obvi-

ously −1 does the job, so we pick that. One does similar computations for each of

the other categories in the Galois orbit and we find that each category is actually

in the same Galois orbit.

The main purpose of these Galois-theoretic considerations is classification.

For example, when G is cyclic, all quadratic forms are Galois associates so we

may expect that every near group fusion category for a given group G belongs in

the same Galois orbit. However, our requirement that any Galois automorphism

fixes δ can occasionally interfere. For example, when G = Z14, quadratic forms

m = 1 and 5 are associated by a σ with ℓ2n = 5, but no value of ℓ18 will allow σ to

fix δ. Therefore these Galois considerations can differentiate, at times, between

near group categories for the same group.

A secondary benefit of this classification is that it is in principle always possi-

ble to find exact values for the b(g). The b(g) from the same Galois orbit have to

be roots of a polynomial with coefficients in Q[δ], or equivalently Q[1/δ]. So we

can use the approximate solutions together with a function like FindIntegerNul-

lVector in Mathematica to find the exact polynomial which has the all b(g), for g

in a single Aut(G) orbit as solutions. We can make the polynomials smaller by

restricting to the ones whose roots are the b(g) which will be permuted to each

other by the Galois action. When G = Zn, the Galois action can relate b(g) to b(h)

if gcd(g, n) = gcd(h, n). The coefficients of each such polynomial lie in Q[δ]. We

have explicitly found these polynomials for all Galois orbits for n ≤ 19, but for

reasons of space did not include them here. The fact that the coefficients do lie

in Q[δ] is a highly nontrivial consistency check.
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3.3 Results

3.3.1 New Solutions

The following table contains the data found by solving equations (3.1.1)-(3.1.9).

For convenience we have included data for all n ≤ 30, however the data for

n ≤ 13 was given previously in [6]. All other data is new. The rightmost vec-

tor contains the arguments of the values b(1), ..., b(⌊n/2⌋) which are sufficient,

together with the m and c values, to reconstruct the entire category. We have

proven that this is the complete list of near group fusion categories for n ≤ 20

by using the technique of section 3.3.2 We have not yet applied this technique to

the data for higher values of n, and are in fact convinced that our list incomplete

for higher n as we have found no fusion categories associated to G = Z29, which

was unexpected. The most likely explanation was that the level of precision used

at the higher orders was insufficient for Mathematica to find numerical solutions.

This could likely be rectified by increasing the precision at the cost of a great deal

more time.

The table contains only one representative from each equivalence class of so-

lutions. In addition, it is easy to see that for any set of solutions {m, c, b(1), ..., b(⌊n/2⌋)},

the set {−m, c, b(1), ..., b(⌊n/2⌋)} of complex conjugates is also a solution. A pair

of complex conjugate solutions will not in general yield equivalent fusion cate-

gories, however for economy of notation we do not include the complex conju-

gate solutions.

The second column of the table labels each category.

Group id m c j-values

Z1 J1
1 1 1 ∅

Z2 J1
2 1 e

πi5
6 (0.78539816)

Z3 J1
3 1 e−

πi
6 (−2.8484536)

Z4 J1
4 1 e

3πi
4 (−0.60623837,−1.5707963)

Z5

J1
5 1 −1 (−1.256637, 1.256637)

J2
5 2 e

2πi
3 (−1.0071249, 0.3425266)



Chapter 3. Near Group Categories 42

Z6

J1
6 1 e

πi
12 (2.9552611, 0.055354168,−0.78539816)

J2
6 5 e

2πi
3 (2.915033694,−1.5909100, 2.3561944)

Z7 J1
7 1 −i (1.0516925,−1.793625, 0.31433)

Z8

J1
8 1 e

πi
12 (−0.87227636, 2.7042615,−2.9767963, 3.1415926)

J2
8 3 e

7πi
12 (2.46404903,−3.0755747,−0.4918869, 0)

Z9 J1
9 1 e−

2πi
3 (−2.695680, 1.3670127, 1.418824,−2.383744)

Z10

J1
10 1 e

3πi
4

(1.3447773, 2.868685, 1.7756309,

−0.64512913,−2.3561944)

J2
10 7 e

πi
4

(−3.077894, 2.519776,−1.424024,

3.089463,−0.78539816)

Z11

J1
11 1 e−

5πi
6

(1.9464713, 2.0140743,−1.7487929,

0.3352432,−0.1427077)

J2
11 1 e−

πi
6

(0.53877136,−2.8317431, 0.2827610,

0.46457259, 2.5063157)

Z12

J1
12 5 e−

7πi
12

(−3.0822445, 0.34946402, 3.0450322,

0.7241984, 0.3823471,−1.570796)

J2
12 7 e−

5πi
12

(2.457353,−2.19152,−0.01465,

−2.566258, 0.834821, 1.57079)

Z13

J1
13 1 −1

(−2.4521656, 1.9847836, 0.42579608,

1.4322079,−1.4550587, 1.1404478)

J2
13 1 −1

(1.4550587, 1.3924399,−1.9847836,

−1.2761619, 0.44776608,−1.4322079)

Z14

J1
14 1 e

3iπ
4

(1.87376, 0.0185449,−3.10904,−1.89339,

1.16017, 2.11217, 2.35619)

J2
14 1 e

−7iπ
12

(−2.41283, 3.02475, 0.68568− 2.28102,

−0.637960, 2.372581, 2.356194)

J3
14 1 e

iπ
12

(−0.558150, 2.97988,−2.424590, 0.936766,

0.527876, 1.161870, 2.35619)

Z15

J1
15 1 e

5iπ
6

(−1.01545, 2.20285,−2.83256,−2.18868,

0.316256, 0.200722,−1.23945)
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J2
15 2 e

iπ
6

(0.401455,−0.88942,−0.444928,−2.93185,

2.25265,−1.13932,−0.192544)

Z16

J1
16 3 e

iπ
4

(−1.22125, 3.09812, 2.33936, 0.158883,

−1.22173, 0.463885,−1.94633, 0)

J2
16 7 e−

3iπ
4

(−0.529358,−2.25148,−1.16791,−1.968,

0.778733,−2.75884, 0.604348, 0)

Z17

J1
17 1 e

2iπ
3

(−1.0887, 2.5331, 2.52182,−3.02391,

−0.54935, 0.751107,−1.19756,−1.95719)

J2
17 3 e−

iπ
3

(−2.66814,−1.49455, 0.05387,−0.68249,

−2.78657, 1.35454,−2.42922, 3.04137)

Z18

J1
18 1 e

iπ
12

(1.99030, 0.09075,−2.18014,−0.46248, 1.76048,

2.53944,−0.33425,−0.69650, 0.78539)

J2
18 1 e

iπ
12

(−2.98189, 2.05308,−0.97584,−0.50514,−3.11965,

0.77820, 2.83684,−1.90854, 0.78539)

J3
18 5 e−

7iπ
12

(1.51593, 0.77871, 1.66021,−2.42632,−2.81552,

2.07003, 1.23103,−1.22981, 0.78539)

J4
18 5 e−

7iπ
12

(0.12038,−0.22167,−2.47985,−1.26222, 1.69815,

−1.19521,−1.69711, 2.45944, 0.78539)

Z20

J1
19 3 e

7iπ
12

(−1.5127,−0.890643, 1.30931,−1.13839, 0.20962,

0.273548,−2.18102, 2.42318,−0.526725,−1.5708)

J2
20 11 e

11iπ
12

(2.72115, 0.992739,−1.17994,−2.84756,−1.0912,

0.858831, 1.16108, 2.03227,−1.83605, 1.5708)

J3
20 −11 e

7iπ
12

(−0.494129,−1.55212,−2.32162, 0.84703,−0.501398,

−0.192497, 3.10287,−0.98733, 0.99974, 1.5708)

J4
20 −13 e−

11iπ
12

(−2.84215, 0.344274, 1.80207,−1.46345,−1.11517,

3.09009,−1.3632, 0.516509, 0.0505006, 1.5708)

J5
20 −17 e−

7iπ
12

(−1.98394,−2.7756,−2.93184,−2.39503, 0.995018,

2.1585,−0.138982,−2.60336,−0.997964, 1.5708)

Z21

J1
21 2 e

2iπ
3

(2.3933,−1.47535, 2.23778, 0.539435, 2.51576,

−2.84378, 0.0418671,−1.58297, 0.263239,−0.806736)
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J2
21 2 e

2iπ
3

(−1.2963, 0.0268746,−1.93267,−1.20054, 1.60254,

2.69878, 2.97437, 2.76233, 0.235483,−3.00924)

J3
21 10 e−

2iπ
3

(1.20054,−2.76233, 1.13308, 0.405745,−1.5955,

1.93267,−2.97437,−1.51324,−1.78921,−1.16992)

Z22

J1
22 7 e−

3iπ
4

(0.755936,−1.14865,−2.06555, 1.44476,

0.551473, 0.700735,−2.83509,−1.27481,

−1.92804, 2.87422, 0.785398)

J2
22 13 e−

iπ
4

(−1.26051,−2.80831,−1.69908, 0.720007,

1.20588, 0.433743, 2.80737,−2.20926,

−0.458365, 2.64826, 2.35619)

Z23

J1
23 5 i

(−1.76047,−0.375616, 2.40657, 2.05459,

−1.31021, 0.483545, 0.528361, 1.18299,

−0.618369, 2.20518,−0.0253942)

J2
23 5 e−

5iπ
6

(1.86586,−2.15342, 2.88027,−2.60841,

1.95124, 1.47718,−1.07496, 1.56657,

−0.0352662,−1.99727,−2.196)

J3
23 7 e−

5iπ
6

(2.10274,−1.5813, 1.64514, 0.617117,

−1.65773,−0.00698851, 1.30304,−1.64838,

−2.46684,−0.0482917,−1.22686)

Z24

J1
24 5 e

5iπ
12

(2.63607, 2.98277,−0.0872789,−2.07559,

0.964404,−0.674997, 1.35112, 2.50614,

−3.00963,−1.94611, 1.9158,−3.14159)

J2
24 11 e−

iπ
12

(2.8668, 2.43273,−2.76482,−0.982608,

−2.32205, 1.33428,−0.133956,−2.42274,

0.0471326, 1.07842, 2.59359, 0)

J3
24 17 e

5iπ
12

(−0.513063,−2.74273,−1.36543, 1.58574,

1.97488,−0.441133,−1.61338, 1.49992,

−2.26249, 2.01451,−0.633811, 0)

Z25

J1
25 2 1

(−0.811805, 2.78414,−1.77457,−2.79598,

2.80126,−3.11719,−2.12186, 0.744012,

0.00166425, 0.545179,−0.858711, 1.96473)
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Z26

J1
26 5 e

5iπ
12

(2.2905, 2.85751, 2.46178,−2.68877,−2.33487,

1.48568,−0.440556,−0.870636, 2.50794,

−2.96212,−0.236236,−0.355171, 0.785398)

J2
26 −5 e−

11iπ
12

(−1.30992,−0.996996, 0.820776, 1.2368, 1.48965,

−0.883537, 1.2369,−0.954417, 0.773047,

−0.749557,−2.14603, 2.24306,−0.785398)

Z28

J1
28 5 e

3iπ
4

(0.0150253,−1.48202,−0.535171, 0.374327, 2.17644,

2.68597, 0.523946, 0.378741,−1.07881,−1.87416,

1.90304,−2.23839,−1.49048,−1.5708)

J2
28 11 e−

3iπ
4

(2.17012, 1.75765,−1.43258, 1.21786, 1.40787,

1.76022, 0.0256398, 0.867112,−2.34929, 0.4615,

−1.59022,−2.21831, 1.57147, 1.5708)

Z30

J1
30 7 e

7iπ
12

(−0.288937,−1.12986,−1.47505, 1.84459,−1.19226,

−1.56207, 1.77504, 0.0821613, 0.30487,−0.858915,

1.62322, 2.74184,−2.38889,−0.663313,−2.35619)

J2
30 11 e−

iπ
12

(−1.41372, 1.89281, 0.731926, 1.83499, 0.525567,

−3.11733,−0.803273,−2.97259,−0.141535,−0.071548,

−2.78467,−2.9665,−1.00904, 0.698041,−2.35619)

J3
30 −7 e−

11iπ
12

(0.633287, 1.54544,−0.810544, 2.5788, 1.49368,

−1.87101, 2.57613,−1.98519,−1.67296,−1.44005,

1.39576, 1.04269, 0.662849,−0.913612,−0.785398)

J4
30 11 e

5iπ
12

(2.58849, 3.11313,−0.0158919, 2.83496, 2.43301,

−0.188801,−2.33047,−1.2354,−0.331939, 0.469661,

−1.23594, 2.24009,−0.734497,−2.41457,−0.785398)

TABLE 3.1: Near Group Fusion Categories

It should be noted that even in hindsight, there is no other known way to find

these fusion categories, making them truly exotic. The fact that we have found

many examples, and that there seem to more examples as n grows, is compelling

evidence that there are infinitely many near group categories.
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3.3.2 Consistency and Completeness

Before proceeding to find the modular data, there are two questions which need

to be addressed. The first was hinted at earlier, being: How do we know whether

or not this list is complete? The second is due to the fact that we provide floating

point solutions (and indeed solved the equations in floating point). It is not

apparent that these floating point solutions correspond to exact solutions. That

is, how do we know that the relatively few digits included in the the table are

sufficient?

We will answer the latter question first. The process is best explained by

example, so we will consider Z14. There are two distinct Galois orbits. in the chart

above, the first solution is in a distinct Galois orbit from the second two, which

share one. Focusing on the first orbit, we can construct minimal polynomials

which have the b(g) as roots. The best way we have found to accomplish this

is by first renormalizing the b(g) by considering
√
nb(g). This causes the b(g) to

become algebraic integers, so the resulting minimal polynomials will be monic

and generally have smaller coefficients. We then group the b(g) according to

which will be permuted to each other by the Galois action. As we discussed

above, for any ℓ ∈ Z×
n , b(ℓ)(g) := b(ℓg) satisfies (3.1.5)-(3.1.9), provided we

also replace a(g) by a(ℓ)(g) := a(ℓg). In all cases we have seen, there is a lift

σ ∈ Gal(k : Q) of that ℓ in Gal(Q[ξn] : Q) such that σ2 fixes δ and c (this happens

automatically), commutes with complex conjugation, and sends b(g) to b(ℓ)(g).

In the cyclic case, we expect that there will be a Galois automorphism sending

b(g) to b(h) exactly when gcd(g, n) = gcd(h, n). This happens in all examples we

have seen, but if not it simply means that the polynomial would factor, i.e, would

not be minimal. In our example of Z14, the numbers k with gcd(k, 14) = 1 are

1, 3, 5, 7, 9, 11, 13.

Let p(x) be the unique monic polynomial satisfying p(x) = 0 if and only if

x =
√
14b(g) for some g ∈ Z14 with gcd(g, 14) = 1. Then p(x) can be written

p(x) = 1 +
√
14a1X + a2X

2 + · · ·+
√
14a13X

13 +X14.

We multiply the odd coefficients by
√
14, because this ensures all coefficients
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ai ∈ Q+ 1/δQ. In this particular example, the denominators are 3. There is also

a symmetry present whereby ai = a14−i, or more generally ai = an−i. This is a

result of the fact that x is a root if an only if 1/x is. For this particular polynomial,

the coefficients are

(a1, ..., a7) =
1

3
(1 + 5/δ, 17− 56/d, 2 + 49/δ, 46− 280/δ, 1 + 128/δ, 67− 490/δ).

Note that there will be an integer N > 0 (n2 times the lowest common multiple

of the denominators of the ai will always work) such that Nb(g) is an algebraic

integer. Why this is important will be clear shortly.

Next, we redefine our approximate solutions to be the corresponding exact

solutions of this polynomial, divided by
√
n. We need to show that (3.1.6) -

(3.1.9) are exactly satisfied. Equation (3.1.7) is automatically satisfied by con-

struction. To show (3.1.6), (3.1.8), and (3.1.9) are also satisfied, we multiply

them by N,N2, and N3 respectively. Then the differences between their left and

right sides will be algebraic integers. An algebraic integer is 0 if and only if all of

its Galois associates have modulus < 1, and we have complete control over these

associates thanks to the polynomial p(x). We also know how the Galois automor-

phism acts on a(g) thanks to (3.1.7), so it suffices to show that the difference

between the left side and right side of (3.1.6), (3.1.8), and (3.1.9) is small for

all associates, which is easily done by computer. That is how we show that our

solutions are indeed exact.

To ensure that we’ve found a complete set of solutions for each n, we essen-

tially use Bezout’s theorem together with a methodical approach to narrow the

number of solutions we are looking for in a given step. To demonstrate, we will

take the example of Z14.

Example 3.3.1. There are two potential quadratic forms (up to equivalence)

for Z14, determined by m = 1, 5. We’ll start by looking at m = 1. We know

that b(7) is fixed up to a sign, and we can use the eigenvalue equation to find

eigenvectors and eigenvalues. We find three eigenvalues, the first of which is
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c1 ≈ 0.707 + 0.707i. For this eigenvalue, we find four eigenvectors, given by

E1 =

(0, 0.829301, 0.457973 + 0.160252i, 0.365222 + 0.457973i,

−0.030148 + 0.267573i, 0.23856− 0.114884i, 0.1904 + 0.1904i, 0,

−0.1904− 0.1904i,−0.23856 + 0.114884i, 0.030148− 0.267573i,

−0.365222− 0.457973i,−0.457973− 0.160252i,−0.829301)

E2 =

(0,−0.617942 + 0.070785i,−0.368164− 0.492158i,−0.339626− 0.26149i,

−0.081295− 0.180726i, 0.039317 + 0.300332i,−0.262135 + 0.109378i, 0,

0.262135− 0.109378i,−0.039317− 0.300332i, 0.081295 + 0.180726i,

0.339626 + 0.26149i, 0.368164 + 0.492158i, 0.617942− 0.070785i)

E3 =

(−0.39439 + 0.044437i, 0.290314,−0.083359− 0.029169i,

0.029169 + 0.036576i, 0.014289− 0.126817i, 0.302773− 0.145808i,

−0.090241− 0.090241i, 0.39439− 0.49455i,−0.090241− 0.090241i,

0.302773− 0.145808i, 0.014289− 0.126817i, 0.029169 + 0.036576i,

−0.083359− 0.029169i, 0.290314)

E4 =

(−0.320498 + 0.004805i, 0.32199 + 0.070785i,−0.240122− 0.223003i,

0.048552 + 0.188424i,−0.098185 + 0.070764i, 0.292109− 0.091685i,

−0.098522− 0.190875i, 0.704098− 0.514291i,−0.098522− 0.190875i,

0.292109− 0.091685i,−0.098185 + 0.070764i, 0.048552 + 0.188424i,

−0.240122− 0.223003i, 0.32199 + 0.070785i)

As b is an eigenvector, we are looking to express it as a linear combination of the

Ei. That is, we are trying to find complex numbers e1, e2, e3, e4 such that

e1E1 + e2E2 + e3E3 + e4E4 = b.

Since b(7) is known up to a sign, we can fix it by first assuming it is positive.

We also know b(0). Thus we can immediately eliminate 2 of the 4 parameters.

Writing the remaining parameters in terms of their real and imaginary parts, we

are left with four unknown real parameters to solve for, and by using the linear

equations we can reduce it to two real parameters. The final step is to use the
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norm condition on two of the b(g), say b(1) and b(2). Doing so results in two

quadratic equations in two variables, so Bezout’s theorem tells us there will be

exactly four solutions. A solver finds these easily. However, plugging the newly

found solutions in for the norm of b(3) results in nonsense, so there are in fact no

valid solutions for this choice of sign of b(7), this value of c, and this value of m.

The next step is to back up, and choose b(7) to be negative. Doing the same

process, we find valid solutions here. Repeat this process with each possible

eigenvalue; for Z14, we found that only the demonstrated one worked.

As the above example shows, the key to check for completeness is to reduce

the number of parameters as much as possible and apply Bezout’s theorem. After

each possibility has been exhausted, we know that we have checked every poten-

tial solution and hence our list must be complete. Despite the advancements of

computing, modern solvers still miss some solutions due to floating point issues

or other problems, so these checks are important.

3.3.3 Modular Data

The following formulae for the S and T matrix were derived in [16] in detail

using the tube algebra construction. We only reproduce the relevant results for

convenience here. To construct the S and T matrices which define the modular

data for the near group fusion categories, we need to find all functions ξ : G→ T
and values τ ∈ G, ω ∈ T which satisfy∑

g∈G

ξ(g) =
√
nω2a(τ)c3 − nδ−1, (3.3.1)

c
∑
g∈G

b(k + g)ξ(g) = ω2c3a(τ)ξ(k + τ)−
√
nδ−1, (3.3.2)

ξ(τ − g) = ωc4a(g)a(τ − g)ξ(g), (3.3.3)∑
g∈G

ξ(g)b(g − k)b(g − h) = c−2b(k − h− τ)ξ(g)ξ(h)a(k − h)− c2δ−1. (3.3.4)
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The S and T matrices for a near group fusion category of type G+ n are param-

eterized by a set of primaries Φ which splits into 4 distinct subsets of primaries

given by

• ag, g ∈ G,

• bh, h ∈ G,

• cl,k = ck,l, l, k ∈ G, l ̸= k,

• dj, j corresponding to a triple (ωj, ξj, τj).

We will soon find a more natural parameterization for the dj. There are n(n+

3) total primaries, with n each of type a and b, n(n−1)/2 of type c, and n(n+3)/2

of type d. In block form the T and S matrices are given by

T = diag(⟨g, g⟩, ⟨h, h⟩, ⟨k, l⟩, ωj) (3.3.5)

S =
1

λ

⎛⎜⎜⎜⎜⎝
⟨g, g′⟩−2 (δ + 1)⟨g, h′⟩−2 (δ + 2)⟨g, k′ + l′⟩ δ⟨g, τj′⟩

(δ + 1)⟨h, g′⟩−2 ⟨h, h′⟩−2 (δ + 2)⟨h, k′ + l′⟩ −δ⟨h, τj′⟩
(δ + 2)⟨k + l, g′⟩ (δ + 2)⟨k + l, h′⟩ S(k,l),(k′,l′) 0

δ⟨τj, g′⟩ −δ⟨τj, h′⟩ 0 Sj,j′

⎞⎟⎟⎟⎟⎠ .

(3.3.6)

Sj,j′ is given by

Sj,j′ = ωjωj′
∑
g∈G

⟨τj + τj′ + g, g⟩

+δωjωj′a(τj)a(τj′)n
−1
∑
g,h∈G

ξj(g)ξj′(h)⟨τj − τj′ + h− g, h− g⟩
, (3.3.7)

and

S(k,l),(k′,j′) = (δ + 2)(⟨k, k′⟩⟨l, l′⟩+ ⟨k, l′⟩⟨l, k′⟩).

The majority of the T and S matrix entries are easy, however the lower right

corner of each is comparatively very complicated. It is for this block that we
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need to solve (3.3.1)-(3.3.4). This is no great challenge for a computer to solve

numerically to a high degree of precision, given high precision values for the

data of the fusion category itself. It is possible, in principle, to solve all of the

equations exactly, given exact data for the fusion category, however the time cost

of solving even small cases exactly was prohibitive. Despite this, it was possible to

find some exact values without much effort. As T has finite order, all of its entries

must be roots of unity, so ωj must have an argument which is a rational multiple

of π. Given the high precision we can work with, it’s easy to ask Mathematica (or

another language) to find close rational approximations for the exponent of the

ωj.

Finding modular data numerically using the above formulas is not difficult,

but it is also not enlightening. It would be much more preferable to find another

expression for the modular data, specifically the lower right corners of the S and

T matrices, which do not rely at all on (3.3.1)-(3.3.4), and in turn on the fusion

category.

Evans and Gannon provide a conjecture ([6], Conjecture 2) in the cases where

n is odd which simplifies these corners considerably, doing away with the need

to ever find the fusion categories or solve numerical equations in the first place.

We present one form of it below.

Conjecture 3.3.1. Let G be a finite abelian group of odd order n and let G + n be
an associated near group fusion category. Then its modular data is determined by
some choice of data (H, ⟨, ⟩, q, ⟨, ⟩′, q′), where

• H is an abelian group of order n+ 4

• ⟨, ⟩ (resp. ⟨, ⟩′) is a nondegenerate symmetric form on G (resp. H).

• q (resp. q′) is an associated quadratic form for ⟨, ⟩ (resp. ⟨, ⟩′).

The S and T matrices are identical to 3.3.5 and 3.3.6, respectively, except for the
lower right corners, which are

t(τ,γ),(τ,γ) = ⟨τ, τ⟩⟨γ, γ⟩′, (τ ∈ G, γ ∈ H \ {0})

s(τ,γ),(τ ′,γ′) = −δ⟨τ, τ ′⟩
(
⟨γ, γ′⟩′ + ⟨γ, γ′⟩′

)
, (τ, τ ′ ∈ G, γ, γ′ ∈ H \ {0}).
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This conjecture also offers a new parameterization of the dj primaries. Namely,

we now parameterize them as dτ,γ = dτ,−γ, τ ∈ G, γ ∈ H ̸= 0.

Because G has odd order, each quadratic form is compatible with exactly

one nondegenerate symmetric form, so there is actually very limited freedom.

The quadratic forms are particularly simple. In the case of a cyclic group (in

this thesis, all G and nearly all H are cyclic), the associated quadratic form is

q(g) = exp(2πig2m/n) for some m coprime with the order of the group.

We have verified that the conjecture holds for n ≤ 29. It is still an open ques-

tion whether any choice of (H, q, q′) yields the modular data of some category.

Moving on, the question of simplification in the even case is more difficult.

This is to be expected for a few reasons. One, there are more quadratic forms on

even G. The second comes down to the fact that even G have fixed points under

the action of the simple currents whereas odd G do not. We will see both of

these factors coming into play later. In the following, we restrict to cyclic groups

G of even order. Eventually we would like to generalize our results to noncyclic

abelian groups as well.

To state the conjecture we need to first develop some additional notation.

As in the odd case, the modular data here is dependent on a small number of

parameters which there is some apparent freedom to chose. It will be useful to

factor groups into their odd and even part, so in the following, for any group G,

denote by Ge the set of elements in G of order a power of 2, and by Go those

elements with odd order, so that G = Go ×Ge.

Let G be a cyclic group of even order and write it as Z2s × Go. Choose a

nondegenerate symmetric pairing ⟨, ⟩ on G and a compatible quadratic form q.

Let H be an abelian group of odd order (n+ 4)/2t, where 2t is the highest power

of 2 dividing n + 4. Let Γ = Z2t+s−1 × Z2 × Go ×H. Finally let α : G → Γ be an

embedding given by α(1) = (2t−1, 1, 1, 0).

Definition 3.3.2. A triple (H, q′, ι) is called compatible with (G, q) if the following
properties hold:

1. q′ is a nondegenerate quadratic form on Γ such that q′(α(g)) = ⟨g, g⟩.

2. The Gauss sum aq′ satisfies aq′ = −1.
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3. ι is an involution on Γ satisfying q′(ιγ) = q′(γ), for all γ ∈ Γ, and ι(γ) = γ if
and only if γ ∈ α(G).

q′ is the product of four (possibly three) quadratic forms, one for each element

in the direct product factorization of Γ (or if s = t = 1, one for the Z2 × Z2 com-

ponent). We will see that the bracketed case never occurs. We fix the notation

q′H for the factor of q′ which sees H, and likewise for the other factors.

We can classify Γ by s and t into three distinct cases. If s = 1 then n = 2k for

some k odd. Hence n + 4 = 2(k + 2), so t = 1 as well. If s = 2, then n = 4k,

for k odd, so n + 4 = 4(k + 1). Thus t ≥ 3. Finally, if s ≥ 3, then n = 2sk, so

n + 4 = 4(2s−2k + 1) and we have t = 2. Each of the three cases have slightly

different analysis, but in each case it is possible to heavily restrict the possible

compatible triples.

Proposition 3.3.3. Let G, q, and H be as above. Then compatible q′, ι are de-
termined entirely by q′H and possibly a value a ∈ Z2t+s−1 subject to the following
conditions:

If s = t = 1,

q′Z2×Z2
(x, y) = ibx

2+by2 ,

ι(x, y, g, h) = (y, x, g,−h),

for b ∈ {±1} determined by the Gauss sum condition.
If s = 2,

q′Z2t+1
(x) = ξax

2

2t+2 , q′Z2
(y) = iby

2

ι(x, y, g, h) = ((4N − 1)x+ 4y, x+ y, g,−h).

Here a ∈ Z2t+2 is odd and determined up to equivalence by Gauss sums up to a
possible shift by 2t+1, b is such that ib = ⟨1, 1⟩Gei

2t−2, and N is determined by
requiring a(2N −N2) = b2t−3 mod 2t−1.
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If s ≥ 3,

q′Z2s+1
(x) = ξax

2

2s+2 , q′Z2
(y) = iby

2

ι(x, y, g, h) = ((N2s − 2s−1 + 1)x+ 2sy, x+ y, g,−h).

Here a ∈ Z2s+2 is odd and determined up to equivalence by Gauss sums up to a
possible shift by 2s+1, b is determined by ξa+b2

s

2s = ⟨1, 1, ⟩Ge, andN = (ab−1)/2+2s−3

mod 2.

Proof. The proof is split into sections dependent on the value of s, but for each s

the mechanics rely on Gauss sums together with property 2. First there are some

commonalities which can be dealt with immediately.

By property 1 of compatible triples, q′ is fixed on Go by ⟨, ⟩. Similarly ι fixes Go

and acts on H as multiplication by −1. The reason for this is straightforward. H

is a cyclic group of odd order, and it suffices to consider the case where |H| = pk,

for some prime p and k ∈ N. If |H| contains more than one distinct prime factor,

it can be further split into a direct product and the individual factors dealt with as

we do in this case. Note that we only need to know ιH(1) as ι is a homomorphism

and H is generated by 1. Suppose ιH(1) = c for some c ∈ Zpk . Since ι is an

involution, we must have ι2H(1) = 1 = c2 mod pk, and the only two solutions

are c = ±1. Since ι fixes an element g if and only if g ∈ α(G), it follows that

c = −1, otherwise there would be extraneous elements fixed by ι (for example,

(0, 0, 0, 1)).

If s = t = 1, Go has order n/2 andH has order (n+4)/2, both odd. Exactly one

of these will be equal to 1 mod 4 and the other will be 3 mod 4. Thus together

their quadratic forms will contribute ±i to the overall Gauss sum. Therefore the

only possibility to define q′Z2×Z2
is q′Z2×Z2

(g, g′) = ibg+bg
′ with b = ±1 to ensure the

correct overall sum of −1. The definition of α forces ιZ2×Z2(x, y) = (y, x), which

completes the first case.

The final two cases are done similarly, so we focus only on the case s = 2.

The form of q′ is forced in both cases since those are the only quadratic forms for

cyclic groups which are a power of 2. That alone limits to a ∈ Z2s+t odd. The

Gauss sum for q′Z2s+t
depends on a mod 4 which allows us to determine whether
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a = 1 or −1 mod 4. Any choice of a ∈ Z2t+1 that is consistent with the correct

value of a mod 4 will yield an equivalent quadratic form, however there will

still be ambiguity as q′Z2t+1
(x) sees a mod 2t+2. As a result, after the choice of a

mod 2t+1 is made, it may be necessary to shift it by 2t+1.

The only uncertainty in b is the sign, but property 1 implies ib = ⟨1, 1⟩Gei
2t−2

and hence fixes it for any choice of symmetric pairing.

Finally it remains to see how ι is fixed, and the only mysterious part is how

it acts on Γe. In general an automorphism will act on elements(x, y) ∈ Γe by

(x, y) ↦→ (cxx+cyy, dxx+dyy) for cx, cy, dx, dy ∈ Z. So, to determine ι, it is enough

to find those coefficients. For a general automorphism this would be hopeless,

but because ι additionally satisfies 3, we can find it exactly. First, looking at

dx and dy, we see that it only matters whether they are odd or even so we can

assume dx, dy ∈ {0, 1}. Consider ι(2t−1, 1) = (2t−1cx + cy, dy). This is a fixed point

of ι, so dy = 1 follows by comparing the second coordinates. We must also have

cy = 2tc′y for c′y = 0, 1. If c′y is 0, then ι(0, 1) = (0, 1), which is a contradiction as

(0, 1) should not be a fixed point of ι. Thus cy = 2t. Substituting this back in to

ι(2t−1, 1) we can see that cx = 3 mod 4, so c = 4N − 1 for some N .

To find dx and to restrict N , we need to look at a norm condition. For dx,

consider

⟨(1, 0), (0, 1)⟩ = ⟨ι(1, 0), ι(0, 1)⟩.

Working this out yields cx = 1. The condition on N comes from the equality

q(1, 0) = q(ι(1, 0)), which can easily be worked out as well.

The proof when s ≥ 3 is essentially the same.

A different parameterization of the primaries dj is now more natural. It is

given by dγ = d−γ for γ ∈ Γ, γ ̸= α(g) for any g ∈ G. In the previous notation,

we used τ ∈ G; the new parameterization replaces τj by α−1(−γ − ιγ).

Conjecture 3.3.4. Let G be a finite abelian group of even order n and let G+ n be
an associated near group fusion category. Then its modular data is determined by
some choice of compatible triple (H, q′, ι).



Chapter 3. Near Group Categories 56

The S and T matrices are identical to (3.3.5) and (3.3.6), respectively, except
for the lower right corners, which are

Tγ,γ = q′(γ), (γ ∈ Γ \ α(G))

Sγ,γ′ =
−1√
m

(⟨γ, γ′⟩′ + ⟨γ, ιγ′⟩′) , (γ, γ′ ∈ Γ \ α(G)),

where ⟨, ⟩′ is the symmetric pairing defined by

⟨γ, γ′⟩′ = q′(γ)q′(γ′)q′(γ + γ′).

In all cases, the modular data found has agreed with the even or odd con-

jecture respectively. The following table contains the group H and the quadratic

form q′H which works for each near group category. When a is necessary we also

include it. We have not yet found the modular data for even n when n ≥ 18, but

it will be forthcoming.

Group id H q′H a

Z1 J1
1 Z5 ξ2h

2

5

Z2 J1
2 Z3 ξh

2

3

Z3 J1
3 Z7 ξh

2

7

Z4 J1
4 {0} 1 −3

Z5

J1
5 Z2

3 ξh
2+h′2

3

J2
5 Z9 ξ2h

2

9

Z6

J1
6 Z5 ξ2h

2

5

J2
6 Z5 ξ−h

2

5

Z7 J1
7 Z11 ξ2h

2

11

Z8

J1
8 Z3 ξh

2

3 11

J2
8 Z3 ξh

2

3 1

Z9 J1
9 Z13 ξ2h

2

13

Z10

J1
10 Z7 ξ−k

2

7

J2
10 Z7 ξ3k

2

7
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Z11

J1
11 Z15 ξ2h

2

15

J2
11 Z15 ξh

2

15

Z12

J1
12 {0} 1 3

J2
12 {0} 1 −25

Z13

J1
13 Z17 ξ3h

2

17

J2
13 Z17 ξ3h

2

17

Z14

J1
14 Z2

3 ξh
2−h′2

3

J2
14 Z9 ξ−2h2

9

J3
14 Z9 ξ−h

2

9

Z15

J1
15 Z19 ξ6h

2

19

J2
15 Z19 ξ6h

2

19

Z16

J1
16 Z5 ξ2h

2

5 −11

J2
16 Z5 ξ4h

2

5 −33

Z17

J1
17 Z21 ξ2h

2

21

J17r Z21 ξ−4h2

21

Z21

J1
21 Z25 ξh

2

25

J2
21 Z25 ξ2h

2

25

J3
21 Z25 ξ2h

2

25

Z23

J1
23 Z3 × Z9 ξ2h

2

9 ξ2h
′2

3

J2
23 Z27 ξ2h

2

27

J3
23 Z27 ξh

2

27

Z25 J1
25 Z29 ξ2h

2

29

TABLE 3.2: Near Group Modular Data

All that remains is to show that the conjecture yields valid modular data,

which is the content of the next proposition.

Proposition 3.3.5. The S and T matrices defined by Conjecture 3.3.4 define mod-
ular data.
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Proof. The majority of the proof is very straightforward, albeit computationally

heavy. We have to show that the four properties which define modular data are

satisfied. T is clearly diagonal and of finite order, and S is symmetric. We can

check unitarity in blocks, and because the only change is the bottom right corner,

there are actually only 4 calculations that need to be done, corresponding to the

rightmost column (or bottom row) of S. There is nothing for it but to go through

them one by one. Starting with the top right block, it corresponds to the block

product

S11S14 + S12S24 + 0 + S14S44,

where the indices denote which blocks we multiply, according to the 4× 4 pat-

tern given in (3.3.6). The third summand contains multiplication with a 0 block

which explains the presence of 0 in the above. For the remaining three terms,

the majority of entries in the resulting matrices are 0. In each of the terms, the

nonzero entries are identical, and can be computed easily by simplifying with the

fact that
∑n−1

j=0 ξ
j
n = 0. Across the terms the non-zero entries occur at the same

place. They work out to

− 1

(n+ 4)δ
+

δ

(n+ 4)(n)
− 1

n+ 4
=
d2 − nd− n

n2d+ 4nd2
= 0,

as δ is a root of x2 − nx − n. The next block down, (SS)24 is identical, except

the signs are switched. The (SS)34 block is slightly different. Only the first two

terms, S31S14, S32S24 have any non-zero entries. In the former case, they are all

−1/
√
m, and the corresponding entries of the second term are 1/

√
m. Finally is

the bottom right corner. Three of the four terms have non-zero entries, as in the

first case. The first two summands have identical entries and all non-zero entries

are 1/(n+ 4). In the final term, not all entries are identical (as is expected). The

entries along the main diagonal are n+2
n+4

, as expected, and nonzero entries off the

main diagonal correspond to those from the other two terms. They all work out

to be −2/(n+ 4), as needed.
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That the topmost row of the S matrix consists of positive real numbers is

obvious.

The next step is to check that S2 = (ST )3, or equivalently TST = STS,

however the computation is nearly identical to the one above, so we omit the

details.

The final step is to check that Verlinde’s formula holds. Since the only change

to the matrix is in the lower right hand corner, we only need to check N c
ab where

Verlinde’s formula includes entries from that lower right corner. This will happen

whenever a, b or c is one of the dγ primaries. Since the fusion coefficients satisfy

N c
ab = N c

ba, this cuts down on the number of cases to consider. There is nothing

for it but to start computing. We will start with the case c = ag, g ∈ G and b = dγ,

γ ∈ Γ \ {α(G)}.

We have

N
ag
dγah

=
∑
d∈Φ

SdγdSahdSagd

S1d

=

∑
al∈G

SdγalSahalSagal

S1al

+
∑
bl∈Φ

SdγblSahblSagbl

S1bl

+
∑
cl,k∈Φ

Sdγcl,kSahcl,kSagcl,k

S1cl,k

+
∑
dη∈Φ

SdγdηSahdηSagdη

S1dη

.

All of the Sdγcl,k entries are 0, so the third sum disappears. In what remains,

there is a good deal of cancellation. Looking at the first two sums, we notice that

SdγSal = −SdγSbl and Sahal = Sahbl/(δ + 1). In all cases, the denominator is the

coefficient of the S matrix entry, because the bilinear form will always by 1. We

can therefore re-write the sum as

N
ag
dγah

= −δ
∑
al∈Φ

SdγalSahalSagal +
1

δ

∑
dη∈Φ

SdγdηSahdηSagdη .

Every entry of the S matrix is a bilinear form, so we can split each sum into

products of sums of roots of unity. By looking at the coefficients, it becomes

obvious that the sums cancel, so any potential square roots are eliminated. The
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other computations are extremely similar.

One potential value of these conjectures is that they suggest a possible direct

construction of MTC’s by using well understood ones as building blocks, some-

what akin to the semidirect product of groups.
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Chapter 4

Haagerup-Izumi Fusion Categories

As alluded to earlier, there is a relationship between fusion categories and sub-

factors. In particular, any subfactor satisfying a certain finiteness condition yields

two (possibly equivalent) fusion categories, which are generated by a simple

object whose dimension δ is the square root of the index of the subfactor. His-

torically, subfactors were the primary subject of study, and so to motivate the

existence of Haagerup-Izumi fusion categories, which were the first examples of

exotic fusion categories, we need to digress slightly into the world of subfactors.

We endeavor to keep this brief exposition non-technical.

The discovery of the Haagerup Izumi fusion categories were one result of a

huge effort by many people to classify all subfactors of small index. The first

work towards this goal was done by Jones, specifically the Jones index theorem,

which states that the only possible indices < 4 are given by 4 cos2(π/n) for n ∈ N,

and that there are subfactors with each of these dimensions. (See [18] for Jones’

original statement and proof). Although there are infinitely many subfactors

of index D with 4 < D < 5, one can completely classify the ones satisfying a

particular finiteness condition, and as it turns out there are only 10. For a review,

see [17].

The construction of these new subfactors (and hence fusion categories) was

arduous and an effort to simplify and possibly generalize it, led to the use of the

Cuntz algebra construction by Izumi in [16]. In particular, Izumi found a new

construction of the Haagerup subfactor (the smallest one of index > 4). This

construction fit the Haagerup into a potentially infinite family of subfactors, al-

though it was widely expected to terminate. A similar potential family, proposed
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by Haagerup, was shown to terminate, and the prevailing expectation was that

exotic subfactors, like sporadic groups, were few and far between. However,

Izumi showed that the next hypothetical subfactor did exist, and then Evans-

Gannon found 7 more in [10]. That work provided evidence that Izumi’s family

of subfactors might indeed be infinite. In this chaper, we continue this investi-

gation and find the next 11 inequivalent fusion categories, providing yet more

evidence supporting the infinitude of the Haagerup-Izumi subfactors.

Returning to a categorical perspective, the family consists of fusion categories

whose isomorphism classes of simple objects are [g], g ∈ G, where G is a finite

abelian group of odd order ν, and [gρ], g ∈ G. The fusion rules these objects

satisfy are

[g][h] = [g + h],

[g][hρ] = [(g + h)ρ] = [hρ][−g],

[gρ][hρ] = [g − h]
∑
l∈G

[lρ]

for all g, h ∈ G.

It is worth noting that in the simplest case, where G is the trivial group, these

fusion rules are the same as the near group rules, and that when G = Z3, these

rules define the Haagerup fusion category.

By using the Cuntz algebra construction in an analogous way to the near

group case, one can interpret these hypothetical fusion categories as endomor-

phisms which are defined by functions A : G × G → C satisfying certain condi-

tions, given in the next section. In the same was as before, any solution to those

equations then yields a fusion category whose simple objects obey the above fu-

sion rules.

The previous work by Izumi and Evans-Gannon also included using the Tube

algebra to find modular data for each of their new fusion categories in this family.

Despite it’s complicated appearance, a conjecture made by Evans-Gannon in [10]

suggests that it has a much simpler form, which is still mysterious.

Our purpose in this section is to continue this classification effort and lend

more evidence to the conjectured form of the modular data. We accomplish
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this by using slightly faster techniques to push the analysis further. The same

technique to prove completeness we outlined in the previous section also works

for the new categories, although it has not been done here yet.

For the remainder of this chapter, let G be a group of odd order ν = 2n + 1,

n ∈ N, let δ = n+
√
n2+4n
2

, µ = ν2 + 4, m = (ν2 + 3)/2, and λ = 2ν + ν2δ

4.1 Numerical Data

The equations to be solved are given by the following theorem, the proof of which

is in [16].

Theorem 4.1.1. Let G be a finite abelian group with |G| = ν = 2n + 1 for some
n ∈ N. Then for every function A : G×G→ C satisfying

A(x, y) = A(y, x), (4.1.1)

A(x, 0) = δx,0 −
1

δ − 1
, (4.1.2)

A(x, y) = A(−y, x− y) = A(y − x,−x), (4.1.3)∑
v∈G

A(x+ v, y)A(v, y) = δx,0 −
δy,0
δ
, (4.1.4)∑

v∈G

A(v, x+ y)A(v + z, x)A(v + w, y) = A(x+ w, z)A(y + z, w)

− δx,0δy,0
δ

,

(4.1.5)

for all w, x, y, z ∈ G, there is an associated fusion category.

An equivalent interpretation of the above theorem is as a matrixAwith entries

Ax,y = A(x, y).

Evidently, solving these equations quickly becomes impossible by hand. Even

asking a computer to solve them for exact values, or without some simplification

is unfeasible after a small number of cases. Obviously, (4.1.1) implies that only

half the matrix entries need to be solved for. The first row/column as well as the

diagonal are also easily handled by (4.1.2) and (4.1.3) when x = y. When x ̸= y,
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applying (4.1.3) further reduces the number of independent variables, but the

number still grows rapidly as G grows in size.

Izumi shows that (4.1.1)-(4.1.4) imply two more key equations. The equa-

tions are

A(x+ y, z)A(z, y) = A(−y, x)A(x, z − y), (4.1.6)

|A(x, y)| =
√
δ, (4.1.7)

which hold whenever x ̸= 0, y ̸= 0, x ̸= y. By applying (4.1.6) iteratively, we can

reduce the number of independent variables to only (ν−1)/2. At this point, there

is little to do but solve the remaining equations (4.1.4)-(4.1.5) by computer. As

long as ν is relatively small, doing so numerically with Grobner basis techniques

is fast enough, but even that rapidly becomes too slow.

To remedy that, we exploited the fact that Mathematica can quickly find a

single solution to an equation if given a near enough guess. Since every solution

occurs on the same circle in C, we found that it was very effective to choose

(ν−1)/2 points on the circle |z| =
√
δ randomly as a starting guess, and then find

a solution to a random subset of equations (4.1.4)-(4.1.5). It is simple to check

if a given solution holds for all the equations – if it does, then it must define a

valid fusion category, and if not, another guess was made.

The downside to this method is that there is no guarantee that we have found

every fusion category for a given G, as it only finds one solution per iteration.

Using techniques similar to those discussed in Chapter 3 does allow proof of

completeness, although for these categories we have not checked.

In general there are quite a few possible Haagerup-Izumi categories for a

given group G, however many of them will be equivalent. Roughly speaking,

equivalent categories are ones whose A matrices are permutations of each other.

Explicitly,two categories with matrices A,A′ are equivalent as fusion categories

if there is α ∈ Aut(G) such that A′(g, h) = A(αg, αh) for all g, h ∈ G. Given

any category in one of these equivalence classes, it is easy to recover all others.

Therefore we only include the data for one representative in each equivalence

class.
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There is a convenient way to encode the data which we will make use of. Since

all the norms are known, it is convenient to write the solutions in exponential

form. Equation (4.1.6) implies that there are j2, ..., jn+1 ∈ R so that whenever

0 < g < h < ν, we have

A(g, h) =

√
δ

δ − 1
exp(i(jh − jg − jh−g)

j1 = 0

jn+1+i = jn+1 + jn + jn−i, (i = 1, ..., n)

So it is sufficient to record only the real values j2, ..., jn+1. Let Jn be the vector of

these values for Zn.

For groups of order up to and including 19, the data is already known (See

[16], [10]), so here we only include the new data. For n = 21, 23, ..., 29, the

inequivalent Haagerup Izumi fusion categories are defined by the following data:

J3 (1.292076)

J5 (0.1846862, 1.5984702)

J7 (2.471228, 0.51685555, 0.2137724)

J9 (2.396976693, 2.079251103,−0.2079168419,−2.508673987)

J ′
9 (−2.364737070, 1.031057162, 1.569692175, 0.3383837765)

J11 (0.9996507, 2.7258434,−0.5714203,−1.7797340, 1.2675985)

J ′
11 (−2.6444397,−1.7629598,−2.6444440, 2.7572657, 0.1128260)

J13
(−3.1050384, 0.5993399,−0.111708,

−0.969766, 1.336848, 1.00483129)

J15
(−1.0777623,−.7748018,−2.171863,−1.6068402,

−.257508, 2.092502, .72289565)

J17
(−1.466074, .291489, 3.130735,−2.693185,

1.398153,−.611938,−1.667078,−1.754821)

J19
(−2.677465, 1.088972,−.899442, .015448,−1.240928,

−.493394, 1.839879,−1.525884,−2.084374)

J ′
19

(.896858,−.882585,−2.369855,−1.873294,−1.711620,

−.119360, 2.972018,−2.460652, .041334)
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J21
(0.25589, 2.91947, 2.95031, 1.34158,−0.00657636,

1.09014, 0.995409,−1.43622,−3.87381,−6.21603)

J ′
21

(−1.14961,−0.178414,−0.154739,−0.514173,−3.05836,

−2.62586,−4.39012,−5.88175,−3.47616,−0.929352)

J23
(0.563764, 0.594463,−1.12818,−0.851944, 1.58917, 1.71948,

2.46679, 1.88085, 4.76295, 7.7649, 6.02719)

J ′
23

(−2.23747,−3.37377,−5.69085,−6.36094,−4.47943,−3.86521,

−3.64149,−6.19999,−4.63387,−5.21694,−6.54144)

J25
(−0.512715,−0.641389,−0.589682, 0.488945,−2.54182,−5.31712,

−4.83123,−7.63854,−5.66053,−6.35959,−4.72535,−3.70291)

J ′
25

(1.38074, 4.37021, 2.42757, 4.15235, 2.43798, 5.34476,

2.52854, 3.17897, 4.43158, 6.18022, 5.84135, 4.62718)

J27
(−2.40925,−0.856315,−3.25019,−3.146,−0.992676,−2.73419,−5.34819,

−3.31672,−1.22844,−2.07258,−2.88104,−3.97986,−5.94286)

J ′
27

(−3.04159,−1.73766,−3.8587,−6.47742,−3.55205,−2.79902,−2.76745,

−3.5036,−1.35632,−2.32267,−0.236228, 1.8383, 2.92363)

J ′′
27

(1.42374, 2.46901, 5.48056, 7.80536, 10.8124, 8.50623, 8.33284,

7.82228, 10.9555, 12.2511, 11.6376, 13.2468, 11.9087)

J29
(−1.18059,−2.08283,−4.94069,−4.67359,−5.71711,−8.06591,−6.40435,

−4.1734,−3.39334,−2.56513,−2.82481,−4.5671,−3.34917,−4.91401)

J29
(−1.48096,−1.40231, 1.01155,−2.61335, 0.81622, 2.00311, 1.38423,

2.69419,−1.27127,−0.461116, 1.49623, 0.390362, 0.604392,−2.95981)

TABLE 4.1: Haagerup-Izumi Fusion Categories

4.2 Modular Data

For relevant details including the explicit tube algebra construction, see [16]. The

process to find the modular data for the Haagerup-Izumi categories is similar to

the one to find the Near Group categories. Here we are solving for functions
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C : G×G→ C and roots of unity ω which satisfy the following equations:∑
k∈G

C(0, k) = ω − ωδ−1, (4.2.1)

ωC(g, h)−
∑
k∈G

A(g + k, 2h)C(h, k) = δh,0ωδ
−1, (4.2.2)

ωC(p, s)C(h, r)δ = δs,hδr, p+ ωA(p+ h, 2s)δr,s

+ δ
∑
k,l∈G

C(k, l)A(h+ l − s, r + k − s)A(r − k − s, l − k − s+ p)

A(h+ p− k, r + s− k),

(4.2.3)

0 = 1 + ϕ(g)ω

+ δω
∑
t,k,l∈G

ϕ(l)C(k, t)A(t+ l + g, k + l)A(t− l − g, k − l). (4.2.4)

λ

ν
= 1 + ωjωj′ + δωj

∑
k,q∈G

Cj′(k, l)Cj(k, l) (4.2.5)

These equations must hold for all g, h, p, s, r ∈ G and for all ϕ ∈ Ĝ. For each

category we will find exactly m different values for ω and each one will have a

corresponding function C. This is guaranteed by the double construction. We

denote these by ωj and Cj respectively, and (4.2.5) is the only equation which

involved more than one value of ω. Where only one value is needed, we don’t

include the additional notation for readability.

Equations (4.2.1) and (4.2.2) can be solved easily by computer as they are

linear, and they will often determine ωj and Cj completely. The remaining equa-

tions will be needed if there are still infinitely many solutions after the linear ones

are solved. In a typical example, there will be between 0 and 2 free parameters

after solving (4.2.1) and (4.2.2), so it is generally sufficient to choose only a few

of the supplementary, more complicated equations to check. Of course it is trivial

to ensure that the numerical solutions satisfy all necessary equations once they

are found. For the proof that these equations will always completely determine

the modular data, see [7], Proposition 2.

As in the near group case, we can use these values to construct the T and S

matrices. Both matrices are split into 16 blocks according to the combinations of
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the 4 different types of primaries. Sticking with the notation of [7], the primaries

are

• 0 and b

• aψ = aψ, for ψ ∈ Ĝ, ψ ̸= 1

• ch,ϕ = c−h,ϕ, for h ∈ G, h ̸= 0, ϕ ∈ Ĝ.

• dl, for l = 1, ...,m.

There are respectively 2, n, nν,m of each type of primary. Then the matrices are

given in block form by

T = diag(12; 1n;ϕ(h);ωj) (4.2.6)

S =
1

ν

⎛⎜⎜⎜⎜⎝
B 12×n 12×nν C

1n×2 2n×n D 0n×m

1nν×2 Dt E 0nν×m

Ct 0m×n 0m×nν F

⎞⎟⎟⎟⎟⎠ . (4.2.7)

Whenever a constant is subscripted, that is a block of the size prescribed by the

subscript consisting only of that constant. The remaining blocks are as follows:

B =
1

2

(
1− ν√

µ
1 + ν√

µ

1 + ν√
µ

1− ν√
µ

)
, (4.2.8)

C =
ν
√
µ

(
11×m

−11×m

)
, (4.2.9)

Dψ,(h,ϕ) = ψ(h) + ψ(h), (4.2.10)

E(h,ϕ),(h′,ϕ′) = ϕ′(h)ϕ(h′) + ϕ′(h)ϕ(h′), (4.2.11)

Fj,j′ =
ν

λ

(
ωjωj′ + δ

∑
g,p∈G

Cj(−g, p)Cj′g, p+ g

)
. (4.2.12)

Again the bizarre entries are those in the lower right corner.

As in the near group case, there is numerical evidence suggesting a simple

formula for the ωj and the lower right corner of the S matrix.
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Conjecture 4.2.1. Let G be a group of odd order ν and C any associated fusion
category as defined above. Then there is another abelian group H of order ν2 + 4

together with a nondegenerate symmetric pairing ⟨·, ·⟩ : H ×H → T such that

• The lower corners of S and T are parameterized by m = (ν2 + 4)/2 elements
h ∈ H, h ̸= 0, h = −h,

• ωh = exp(2πim⟨h, h⟩),

• Sh,h′ = − 2√
λ
cos(2π⟨h, h′⟩).

This conjecture was first stated in [7] and we have found no improvements or

refinements. However all of our numerical data does support it. Specifically, the

following symmetric pairings generate modular data which is numerically close

to the data found directly from the complicated equation (4.2.12).

J7 ⟨l, l′⟩ = ll′/53

J9 ⟨l, l′⟩ = ll′/85

J ′
9 ⟨l, l′⟩ = 12ll′/85

J11 ⟨l, l′⟩ = ll′/125

J ′
11 ⟨(l1, l2), (l′1, l′2)⟩ = 2l1l

′
1/25 + 2l2l

′
2/5

J13 ⟨l, l′⟩ = ll′/173

J15 ⟨l, l′⟩ = ll′/229

J17 ⟨l, l′⟩ = ll′/293

J19 ⟨l, l′⟩ = ll′/365

J ′
19 ⟨l, l′⟩ = 22ll′/365

J21 ⟨l, l′⟩ = 3ll′/445

J ′
21 ⟨l, l′⟩ = ll′/445

J23 ⟨l, l′⟩ = 6ll′/533

J ′
23 ⟨l, l′⟩ = ll′/533

J25 ⟨l, l′⟩ = 5ll′/629

J ′
25 ⟨l, l′⟩ = ll′/629

J27 ⟨l, l′⟩ = 2ll′/733

J ′
27 ⟨l, l′⟩ = 2ll′/733
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J ′′
27 ⟨l, l′⟩ = 2ll′/733

TABLE 4.2: Haagerup-Izumi Modular Data

The only cases where there was ambiguity about the group H was when n =

11, 29. T he n = 11 case was done in [7], as were all cases n < 21. When

n = 29, preliminary checks revealed that in both cases, H ̸= Z845. We have not

yet checked the other possibility for H, H = Z5 × Z13 × Z13 but will do so soon.

The most interesting observations regarding the modular data and the fu-

sion categories themselves are the following: First, as was predicted in [10], the

modular data is simpler when µ is prime. When it is, the linear equations are

enough to determine it without ambiguity, but when µ is composite the situation

is more complicated and requires the additional equations. This is, in part, be-

cause when µ is composite, there can be more than one root of unity ω which

satisfies the same linear equation and this introduces the ambiguity.

The second interesting result is related to the G = Z27 fusion categories and

modular data. In particular, it is noteworthy since we have found 3 inequivalent

fusion categories, which is more than any other case. However, their modular

data is identical. Numerically, the Cj solutions are different, however for all

three equivalence classes of fusion category, they generate the same S matrices,

and the T matrix is identical in all cases. This was unexpected, as although

modular data is not a complete invariant, finding inequivalent fusion categories

which share the same modular data is not in general easy. Having found three

inequivalent fusion categories is therefore remarkable. We currently have no

compelling reason explaining this result, however it is an interesting question to

address in the future.
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Chapter 5

Future Work

Our key results were the discovery of new fusion categories in two potentially infi-

nite families and the apparently simple forms their modular data takes. The most

natural question, therefore, is whether or not these classes of fusion categories

are truly infinite.Our data suggests that the existence of these fusion categories

is not just an accident of small numbers, but rather that they are part of a larger

family, but this is of course not a proof.

A second natural question concerns the modular data. In particular, it is not

at all clear why certain symmetric pairings generate modular data corresponding

to valid fusion categories and others do not. It seems possible that there is a

related class of fusion category which would account for this apparent surplus

of modular data. One potential source would be the non-unitary analogues of

the fusion categories found here. Some exploration into those has been done in

[7] but more is needed. It would also be desirable to predict which symmetric

pairing belongs to which fusion category without having to first compute the

modular data directly from the tube algebra construction. At present, there is

no apparent pattern, so the use of our conjectures is limited by the fact that the

longer, more computationally heavy approach is still needed to find the modular

data numerically, at which point it is possible to compare all possible conjectured

forms to find a match.
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