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Abstract

Gradient Descent algorithms suffer many problems when learning representa-

tions using fixed neural network architectures, such as reduced plasticity on

non-stationary continual tasks and difficulty training sparse architectures from

scratch. A common workaround is continuously adapting the neural network

by generating and pruning the features, a process often called Generate and

Test. This thesis focuses on neural network pruning in the online, continual

setting. We look at existing pruning metrics and propose a novel pruner that

attempts to estimate the ideal greedy pruner. Additionally, we observe that

greedy pruning can be ineffective when features are highly correlated and does

not remove these redundant features. To mitigate this issue, we also propose

online feature decorrelation. Through empirical experiments in the online su-

pervised learning setting, we show that a greedy pruner combined with the

proposed feature decorrelator allows us to continually replace useless parts

of the network with new features while producing a statistically significant

performance improvement.
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A journey of a thousand miles begins with a single step

– Lao Zi.
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Chapter 1

Introduction

Continual learning, also known as lifelong learning, is the ability of a neural

network to learn on an incrementally arriving stream of data without forget-

ting about past experiences. This ability to learn continually is an essential

characteristic of an intelligent agent. However, most of the core algorithms in

machine learning have been developed and tested in the non-continual setting

where the input stream is independently and identically distributed, and the

learning is stopped after a while. When these algorithms are applied to the

continual setting, we often encounter unexpected problems.

Stochastic gradient descent is one of the prime examples. In the non-

continual supervised learning setting, it works as expected. However, it has

been shown that training a network on a continual non-stationary task while

breaking the i.i.d assumption reduces the plasticity of the network [26]. Re-

duction of plasticity implies that the network’s capacity to learn reduces over

time. Additionally, it is well known that stochastic gradient descent relies

heavily on random initializations to converge to a good representation. Due

to this, training a randomly initialized sparse network has been shown to per-

form worse than training a dense model and then pruning it until we obtain

the same number of weights as the sparsely-initialized one [17].

A common solution has been proposed that solves both of these problems:

instead of training fixed network architectures, the architectures should be

adapted continually [23][17][26]. This can be done by continually removing a

fraction of the least useful features according to some heuristic and replacing
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them with newly generated features. This heuristic is often called a prun-

ing criterion or a utility measure. The new features can be generated either

randomly or according to various other metrics. This process of adding and

removing features is known as Generate and Test or Dynamic Sparse Training.

Various pruning criteria can be used for Generate and Test or Dynamic

Sparse Training. A naive but ideal pruning criterion [7] in the non-continual

setting involves individually removing each weight from the network and then

training all these separate networks to convergence. The goal is to find the

weight that produces the least change in the output. This criterion is not very

practical due to scalability challenges. Therefore, many other pruning methods

[25] have been proposed over the years that estimate the weight’s importance

using indirect heuristics. In this thesis, we propose a novel pruning criterion

that attempts to statistically estimate the ideal criterion directly. Our pruner

works by temporarily removing a small random fraction of the weights from

the network, measuring the impact on the prediction caused by such a change,

and using this difference to update the importance of the removed weights. We

name this algorithm the dropout pruner since we are dropping the weights.

However, a problem occurs when using the generate and test procedure

in the continual setting: we are likely to generate highly correlated features.

These highly correlated features are essentially redundant. If we remove these

features, we can use the freed-up resources to discover a more diverse set of

features and improve the performance. Unfortunately, the greedy pruning

algorithms cannot detect and remove these features. This is because these

features often have high utility estimates and are judged to be very useful by

the greedy pruning algorithms. Therefore, we propose a feature decorrelator

to detect and remove these features. Our decorrelator is scalable and can be

applied in the online continual learning setting. We show how this decorrelator

can be used alongside a greedy pruning algorithm.

1.1 Thesis Contributions

There are three main contributions presented in this thesis:
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1. We propose a novel data-driven pruning algorithm called the dropout

pruner, which attempts to estimate the ideal greedy pruner. We com-

pare this to existing pruning algorithms through some experiments on

MNIST even-odd classification task and show that the dropout pruner

can significantly outperform the other pruning criteria.

2. We show that when using generate and test in the online continual learn-

ing setting, a large subset of our features is highly correlated with each

other. Additionally, we show that the standard greedy pruners cannot

remove these features.

3. We propose online feature decorrelation for removing redundant features

from the network. We run some experiments on a synthetic online super-

vised learning task. We show that using a decorrelator can significantly

reduce the amount of highly-correlated features while resulting in a sta-

tistically significant improvement in online performance.

1.2 Thesis Outline

Chapter 2 discusses the necessary background and the details of some baseline

pruning criteria. Chapter 3 presents the dropout pruning criterion. Chapter

4 contains the experiments for comparing it to other pruning algorithms, an-

alyzing the sensitivity to hyper-parameters changes and discussing the limita-

tions. Chapter 5 presents the online feature decorrelation algorithm. Chapter

6 contains the experiments analyzing the decorrelators on a synthetic online

supervised learning problem. Finally, we conclude in chapter 7.
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Chapter 2

Background

In this chapter, we will discuss some relevant background concepts that will

assist in understanding the algorithms introduced in this thesis. We will also

provide a brief overview of existing methods that will later be used as base-

lines in our experiments. However, this is only a brief overview, and we refer

the reader to a recent survey [25] for a more comprehensive review of neural

network pruning.

2.1 Neural Network Pruning

In recent years, neural networks have found widespread success in various do-

mains, such as computer vision, natural language processing and reinforcement

learning. It is common for these state-of-the-art models to contain billions of

weights and consume a large amount of time and resources to train. At the

same time, it is well known that a significant portion of these weights is un-

necessary for achieving good performance. If these unnecessary weights could

be removed, we could save a large amount of resources while making these

models cheaper to train and deploy. Removing the least useful weights from

the network while trying to preserve the original model performance as much

as possible is known as network pruning. Network pruning can be performed

at two levels of granularity: structured pruning and unstructured pruning.
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Unstructured Pruning Structured Pruning

Pruned WeightUnpruned Weight

Figure 2.1: An example of structured and unstructured pruning on a small 5x5
weight matrix. The pink boxes denote the weights which have been pruned.
Since there is no pattern regarding the location of the pruned weights in un-
structured pruning, we have to store the index of each pruned weight. In
contrast, in the structured pruning example above, we only need to store the
indices of pruned columns. This allows for a much easier hardware accelera-
tion, leading to relatively higher performance gains than unstructured pruning.

2.1.1 Unstructured Pruning

If the pruning is done by removing the individual weights, it is called un-

structured pruning. This is the more straightforward case since the weights

are the smallest units in the network, and measuring their importance is rel-

atively easier. Since there are no structural constraints, unstructured pruning

often leads to a relatively smaller number of weights [5]. However, although we

have lesser number of weights, unstructured pruning generally does not always

lead to an equivalent speedup and reduced resource consumption [25] as the

hardware acceleration is more complicated. This is because, in unstructured

pruning, we need to store and process the indices of all the non-zero elements.

An example is shown in fig. 2.1.
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2.1.2 Structured Pruning

Structured pruning refers to pruning which is done with some structural con-

straints. This means that instead of removing individual weights, we prune at

a higher granularity level such as some fixed patterns [27], features [26], convo-

lutional filters [10], convolutional kernels [14] or transformer attention-heads

[19]. Due to these constraints, we can store the indices of non-zero elements

by using an appropriate low-overhead representation. This makes hardware

acceleration easier on modern hardware. For this reason, structured pruning

is the more desirable method these days.

2.2 Generate and Test

The generate and test methods are a class of algorithms that can be used for

representation learning [9] [29] [26] [28]. As the name implies, these meth-

ods have two main components: a generator and a tester. The generator

is responsible for generating new features or weights. Typically, these gener-

ated features are initialized with random weights. The tester is responsible for

evaluating the usefulness of the generated weights or features using a heuristic.

These heuristics can be used to rank the generated units. We can remove the

least useful units by acting greedily based on these rankings. Since the tester

has a similar goal as the pruners in the network pruning literature, many of

the heuristics used for neural network pruning can be directly used as a tester.

Therefore, this thesis will refer to these heuristics as network pruning metrics.

The generate and test procedure generally runs continually. The generator

periodically generates new features while the tester evaluates and removes the

least useful ones. Throughout this process, the generated features are opti-

mized using gradient descent. The generate and test algorithms are beneficial

for optimizing the networks since gradient descent algorithms rely heavily on

random initializations for learning good features. Fixed network architectures

initialize the features only once at the beginning of the training whereas, with

generate and test, we can keep trying out many different initializations. Fur-

thermore, it has been shown that there is a loss of plasticity, or the ability
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to learn when stochastic gradient descent is used to optimize a network on

continual non-stationary tasks [26]. This problem can be alleviated by us-

ing a generate and test procedure to inject random features into the network

continually.

2.3 Dynamic Sparse Training

Generally, pruning methods begin with a large dense network architecture be-

fore pruning it into a smaller, sparsely connected one. This can take a large

amount of memory and computational resources since we have to train the

initial dense model. An alternative approach is to train sparsely connected

models with random connections from scratch. Dynamic Sparse Training

(DST) [17][23][20][15][24] is a class of algorithms for training sparse neural

network architectures from scratch. DST methods continually adapt the net-

work architecture by generating new features and removing the least useful

ones. Although this is quite similar to generate and test methods, the goal

is different: DST aims to reduce the computational and memory overhead

for training large network architectures by starting with a sparsely connected

one. In contrast, in generate and test, we do not care whether the resulting

architecture is sparse. In a way, DST is an application of the generate and

test.

Sparse Evolutionary Training (SET) [17] is the first known application of

the DST methods for generating sparse neural networks. SET begins with

a sparsely connected network and then periodically removes a fraction of the

least useful weights based on their magnitudes and adds new weights randomly.

Throughout this process, the total number of weights at any given time is kept

constant, thereby maintaining the target sparsity. It has been empirically

shown that sparse neural networks that are obtained by using SET and other

DST approaches [23][20][15][24] achieve significantly lower errors on the test

sets as compared to training dense networks or fixed sparse architectures from

scratch.
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2.4 Network Pruning Criteria

How do we decide which weights or features we should prune? This section

will provide a brief overview of several criteria or heuristics that can be used to

rank weights or features in terms of their importance. These criteria slightly

differ in the case of structured and unstructured pruning. However, since the

basic idea remains the same, we will only consider the unstructured versions

in this section.

To explain these pruning criteria, we will consider a straightforward sce-

nario with a linear function approximator. In this setting, we take the inner

product of the input vector xt ∈ Rd with the weight vector wt ∈ Rd to produce

a prediction1 f̂(xt,wt) : Rd x Rd → R at every step t:

f̂(xt,wt) = wT
t xt =

d∑︂
i=1

wi,txi,t (2.1)

We will use ût(i) : {1, . . . , d} → R to represent the utility of an individual

weight wi,t at step t. Given two weights with different utility values, the

weight with the larger utility is considered more important according to the

pruning criterion. In the following sections, we will discuss different pruning

criteria for updating the utilities ût(·).

2.4.1 Weight Magnitude Criterion

The weight magnitude criterion is one of the simplest and most popular cri-

terion for pruning a neural network [11][4][21][6][13][16]. It is a data-free ap-

proach where we assume that the weights with smaller magnitudes are likely

to be less useful than those with larger magnitudes. The utility ût(i) of a

weight wi,t is calculated as:

ût(i) = |wi,t| (2.2)

Due to the data-free nature of this criterion, if the network weights are not

being updated, this criterion can be applied to prune in a one-shot manner.

1Throughout this thesis, we use the hat symbol (ˆ) above letters to distinguish the
functions from other variables in the equations.
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This can be achieved since we simply need to remove the weights with the

smallest instantaneous magnitude.

2.4.2 Gradient-based Criterion

One way we can determine the importance of a weight is to observe the change

in the loss function L̂(wt) that would occur after removing a single weight from

the weight vector wt. Performing this operation manually is very expensive

and not scalable. However, we can analytically predict this effect by approxi-

mating the loss function using a Taylor series expansion [1][3]:

δL̂(w) = L̂(w + δw)− L̂(w) ≈ ∇wL̂δw +
1

2
δwTHδw (2.3)

where w is the original weight vector, δw is the perturbation of the weight

vector chosen such that it zeroes out a single index wi from w i.e. δw =

(0, . . . ,−wi, . . . , 0). ∇wL̂ is the gradient of the loss function and H is the

Hessian matrix which contains the second-order partial gradients. This is an

approximation since we are ignoring the higher-order terms.

Gradient-based criterion considers only the first-order terms from the Tay-

lor series expansion in 2.3. There are many ways of using this first-order

information to compute the utility in the literature [2][18][22]. In the contin-

ual learning setting, the gradient-based criterion is used update the utility of

a weight wi,t as:

ût+1(i) = α ∗ ût(i) + (1− α) ∗

⃓⃓⃓⃓
⃓ ∂L̂t

∂wi,t

wi,t

⃓⃓⃓⃓
⃓ (2.4)

which is simply the product of weight value wi,t and the gradient with respect

to that weight ∂L̂t

∂wi,t
. This statistic is updated for each weight using a moving

average where α is the decay-rate hyperparameter.

2.4.3 Activation Trace Criterion

The intuition behind activation trace pruner [26][12] is that the weights which

contribute more to their descendant features are likely to be more useful than

the ones that contribute less. In the continual setting, we can update the

9



utility using this criterion as:

ût+1(i) = α ∗ ût(i) + (1− α) ∗ |xi,twi,t| (2.5)

where xi,t is the activation which usually is multiplied with the weight wi,t dur-

ing a regular forward pass (see Eq. 2.1). If the network has only a single layer

of weights, this criterion represents the magnitude of the average contribution

of a weight to the output.
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Chapter 3

Dropout Pruner

A pruner is an essential component of generate and test. A greedy pruner

removes the weights with the least usefulness at the current step, regardless of

whether they will be useful in the future. This chapter will introduce dropout

pruner, a novel pruning criterion for statistically evaluating the usefulness of

networks’ weights in the continual setting.

We will begin by describing an ideal greedy pruner and show that it is

computationally expensive and impractical. Afterwards, we will introduce the

dropout pruner. The motivation for such a pruner is that we want our utility

estimates to statistically measure the impact of removing a weight on the

neural network output instead of using some indirect heuristics, which is the

case with other existing pruning criteria.

3.1 Ideal Greedy Pruner

Consider a scenario where we have a linear function approximator which takes

the dot product of the input vector xt ∈ Rd with the weight vector wt ∈ Rd

to produce a prediction f̂(xt,wt) at every step t.

f̂(xt,wt) = wT
t xt =

d∑︂
i=1

wi,txi,t (3.1)

We aim to remove a single weight wi,t from the weight vector, which will

cause the smallest change in the magnitude of the output f̂(xt,wt). One

straightforward but naive way of achieving this goal is outlined in Alg. 1.
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This algorithm has two hyperparameters. The first is the decay rate α, which

is used when we update the utility estimates ût(·) using an exponential moving

average. The second is the pruning rate T, which determines how often we

prune.

At every step, we perform d+1 forward passes, where d is the number of el-

ements in the weight vector wt. The first forward pass uses the original weight

vector wt = [w1,t, w2,t, w3,t, . . . , wd,t], which gives us the output f̂(xt,wt). The

next d forward passes use a modified weight vector w′
t where one of the el-

ements is zeroed out. For example, the next two forward passes are going

to use w′
t = [0, w2,t, w3,t, . . . , wd,t] and w′

t = [w1,t, 0, w3,t, . . . , wd,t] respectively.

These forward passes with modified weight vectors will likely change the out-

put. This change in the output represents the impact of a single element of

the weight vector on the final prediction. Therefore, for each forward pass

with the modified weight vector, we compute the difference between the two

outputs and use it to update the utility ût(·) of the weight which was set to

zero using an exponential moving average. Once we have these utilities, we

can prune greedily by finding the weight with the smallest utility value and

removing it (in lines 11-13).

This pruner is the ideal pruner in the continual setting since we are sta-

tistically computing the impact of removing every single weight on the neural

network’s output. If we prune greedily according to these estimates, we will

remove the weights which will cause the least change in the output, which is

our goal when pruning neural networks.

Computational Complexity of the Ideal Greedy Pruner

The ideal greedy pruner described above requires the storage of a vector of

utilities of the same dimension as the weight vector wt. Therefore, the memory

complexity is O(d), where d is the dimensionality of the weight vector. Since

we need to perform d+1 forward passes, the computational complexity per step

is O(qd), where q represents the computational complexity of a single forward

pass. This makes the ideal pruner not practical since we usually have a very

large number of weights in neural networks, i.e. d is very large. Performing
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Algorithm 1: Ideal Greedy Pruner

Input : A differentiable function f̂ : Rd x Rd → R
Algorithm Parameter: Decay rate 1 > α > 0
Algorithm Parameter: Pruning rate T > 0

1 u0(·)← 0 ; //Initialize all utilities to 0

2 Loop for t = 1, 2, 3 . . . :

3 Perform a forward pass using wt and get f̂(xt,wt)
4 Loop for i = 0, 1, 2 . . . d:
5 w′

t ← wt ; //Copy

6 w′
i,t ← 0 ; //Set index i of w′

t to 0

7 Perform a forward pass using w′
t and get f̂(xt,w

′
t)

8 z ← | f̂(xt,wt)− f̂(xt,w
′
t) |

9 ût(i)← α ∗ ût−1(i) + (1− α) ∗ z ; //Update utility for wi

10 Update wt using gradient descent
11 if t % T = 0 then
12 j = argmini ût(i) ; //Find weight with least utility

13 Remove wj,t from wt

all these extra forward passes at every step is not scalable.

3.2 Dropout Pruner

Although the ideal pruner we described in the section above is not practical due

to scalability issues, we can modify the algorithm to make it computationally

efficient. The resulting algorithm, which we call the dropout pruner, has two

new hyper-parameters, and its pseudo-code is given in Alg. 2.

The algorithm has three main changes, highlighted in blue for convenience.

The first change that we make is in the number of additional forward passes.

Instead of performing a forward pass for each weight in the weight vector,

we now perform k forward passes, where k is a hyperparameter. We will

show in the experiments section that even with k = 1, the dropout pruner

can perform better than the other greedy pruners. And if we increase k, our

utility estimates become more accurate. In short, instead of performing d+ 1

forward passes at every step, we now only need two forward passes (if k = 1).

The second change we make is that instead of setting a single element of
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Randomly set weights to zeros

X =

1) Regular Forward Pass 2) Forward Pass with Dropout

X =

3) Update Utilities for Dropped Weights

Difference in outputs

}

Figure 3.1: An example of dropout pruner applied on a network with a single
layer of weights. At every step, the output f̂(xt,wt) is produced by taking
an inner product of weight vector wt and the input vector xt. Afterwards, we
randomly drop p% of the weights from the weight vector by setting them to
zeros to obtain a modified weight vector w′

t. Using this modified weight vector,
a forward pass results in another output f̂(xt,w

′
t). In the final step, we use

the absolute difference between the original and the new output to update the
utilities of the weights which were dropped in step 2. In this way, the utility
of a weight is a statistical estimate of the impact a weight has on the output.
Steps 2 and 3 can be repeated multiple times at every time step in order to
obtain a more accurate estimate of the utility.

wt to zero, we randomly sample p% of the weight indices from the weight

vector wt and set them to zeros. An example of this with d = 5 can be

seen in fig. 3.1. In this example, we are performing two forward passes, one

with the original weight vector wt = [w1,t, w2,t, w3,t, w4,t, w5,t] and the next

with w′
t = [w1,t, 0, w3,t, 0, w5,t]. The indices that are set to zeros are chosen

randomly. Note that if the p is too small, we ensure that at least one weight
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Algorithm 2: Dropout Pruner

Input : A differentiable function f̂ : Rd x Rd → R
Algorithm Parameter: Decay rate 1 > α > 0
Algorithm Parameter: Pruning rate T > 0
Algorithm Parameter: Number of forward passes k ≥ 1
Algorithm Parameter: Dropout Probability 1 > p > 0

1 u0(·)← 0 ; //Initialize all utilities to 0

2 Loop for t = 1, 2, 3 . . . :

3 Perform a forward pass using wt and get f̂(xt,wt)
4 Loop for in k:
5 w′

t ← wt

6 Randomly set p% of weights in w′
t to 0

7 Perform a forward pass using w′
t and get f̂(xt,w

′
t)

8 z ← | f̂(xt,wt)− f̂(xt,w
′
t) |

9 Foreach wi,t ∈ w′
t that was set to 0:

10 ût(i)← α ∗ ût−1(i) + (1− α) ∗ z

11 Update wt using gradient descent
12 if t % T = 0 then
13 j = argmini ût(i) ; //Find weight with least utility

14 Remove wj,t from wt

is dropped. For example, if we have 100 weights remaining and p = 0.001%,

we will drop one weight.

The third and final change that we make in the algorithm is regarding how

the utilities are updated. Since the change in the final prediction is caused by

setting multiple elements of the weight vector to zeros, we update the utilities

of all these indices at once. In the given example, the utilities of w2,t and w4,t

will be updated. Like the ideal pruner, this algorithm attempts to directly

measure the impact of the weights on the final prediction. However, due to

the estimates having a high variance, we need a large number of steps or a

large value of k for our utility estimates to be accurate.

In order to extend the dropout pruner to the case where we have multiple

layers of weights, no change is necessary. The sampling of weights (for setting

them to zeros) is done irrespective of the layers, and their impact is measured

using only the output. This is a noisy process since removing a weight from the

earlier layers will also cause a change in the weights in deeper layers. However,
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if we run this algorithm for a large number of steps, the utility estimates will

eventually become an accurate representation of the impact of a weight on the

final prediction.

Computational Complexity of Dropout Pruner

Like the ideal pruner, the dropout pruner has a memory complexity of O(d).

However, the computational complexity is O(qk), where k is the number of

extra forward passes we perform at each step and q is the computational

complexity of a single forward pass. In practice, k << d, and we will show in

the next chapter that even k = 1 is very competitive with other pruners. This

makes the dropout pruner computationally cheap and applicable in practice.

3.3 Summary

In this chapter, we proposed dropout pruner, which statistically estimates the

importance of the weights for pruning neural networks. The dropout pruner

works by randomly setting a fraction of the weights in the network to zeros and

measuring the change caused in the final prediction. This change in prediction

is used to update the utilities of these weights by using an exponential moving

average. This algorithm is scalable and can be applied in continual settings.
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Chapter 4

Experiments on the MNIST
dataset

How does the dropout pruner perform compared to other pruning algorithms?

To answer this question, we run experiments on a simple continual offline

supervised learning task.

4.1 MNIST Even-Odd Classification Task

The MNIST dataset [8] is a collection of hand-written digits and their corre-

sponding labels. It consists of 60,000 training and 10,000 test images. All the

images are of size 28 by 28 pixels. Each image is assigned to one of the ten

classes, each corresponding to a different digit. To make the task simpler, we

make two major changes to the dataset:

1. All the images are resized from 28x28 to 14x14 pixels by center cropping.

We center-crop since the most relevant information in the MNIST dataset

is in this region. Afterwards, we use the statistics from the entire dataset

to normalize all images to have zero mean and unit variance.

2. All the labels are changed into binary labels, which denote whether the

corresponding image contains an odd or an even digit. If the digit is odd,

it is assigned a label of 1, whereas if the digit is even, it is assigned a

label of 0. The reason for this change is to have a benchmark where we

have only a single output node. Although it is possible to prune neural
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networks with multiple output nodes, we do not consider that case in

this thesis.

This chapter contains the results of experiments using this modified dataset,

which is now a supervised learning classification task where the goal is to clas-

sify whether a given digit is an even or an odd number.

4.2 Experimental Setup

The experiments are run in two phases. Firstly, we train several small networks

on the MNIST even-odd classification task. Afterwards, we freeze these models

and prune the learned weights periodically using different pruning criteria. The

details of each of these phases are described in the sections below.

4.2.1 Training Phase

This phase aims to obtain some trained networks that can achieve reasonable

accuracy on the MNIST even-odd classification task. The network architecture

consists of 4 fully-connected layers of 20 ReLU units each. The output is a

linear combination of the final layer with a sigmoid non-linearity. There are

5500 total learnable weights in this architecture. These weights are learned

using the standard Stochastic Gradient Descent algorithm in a batched setting

using a mean-squared error objective function at every step:

MSE(yi, ŷi) =
1

n

n∑︂
i=1

(yi − ŷi) (4.1)

where yi denote the target labels, ŷi denote the prediction and n the number

of samples in the batch. Although this is a classification task, we are using a

regression objective function here since, in the next phase, we want to eval-

uate our pruners using a regression objective. Evaluating using a regression

objective allows us to directly observe the impact of removing a weight on the

output, which will help us determine which pruner is better. In contrast, if we

evaluated using the final accuracy of the prediction, the results might only be

applicable to classification tasks.
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Hyper-parameter Search for Training Phase

Using this setting, we performed an exhaustive hyper-parameter search over

three batch sizes ∈ {16, 64, 128} and 11 learning rates ∈ {0.1, 0.1
2
, 0.1

4
, . . . , 0.1

2048
}.

We train ten runs for each hyper-parameter configuration for 20 epochs each.

An epoch is a complete pass over the entire training set. The hyper-parameter

configuration that achieves the lowest average error during the final 1000 steps

on the test set is used as the best configuration. In order to help deal with

the maximization bias caused due to the hyper-parameter selection process,

we discard these runs and then use the best hyper-parameter configuration to

train for additional 50 independent runs. We freeze the weights for all these

runs and use them to evaluate the pruners in the next phase.

4.2.2 Pruning Phase

This phase aims to evaluate different pruning criterions using the networks

obtained from the training phase. Each model is pruned at a fixed rate of 1

weight every 10,000 steps. After 50 million steps, we end up with only 500

remaining out of the 5,500 weights we started with, a 90% reduction. The

task in this phase is continual, i.e. we care about the performance at every

step (as opposed to performance at only the last step). Additionally, we use a

batch size of 1. The error is reported using root mean square error averaged

over the past 1000 steps for every 10,000 steps:

RMSE(yt, ŷt) =

⌜⃓⃓⎷ 1

T

T∑︂
t=1

(yt − ŷt) (4.2)

where T denotes the total number of steps the error is averaged over, yi denote

the target labels and ŷi denote the prediction. Occasionally, due to pruning,

we end up with a set of weights that have lost all pathways from the input

to the output. These weights contribute nothing to the output. Therefore,

these weights are given a higher priority for removal regardless of the pruning

criterion. Nevertheless, the pruning still takes place at the same fixed schedule

for every criterion to ensure a fair comparison.
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Hyper-parameter Search for Pruning Phase

We search over all the hyper-parameters for every pruning criterion during

the pruning phase. The random pruner and the weight magnitude pruners

have no additional hyper-parameters. For the activation trace pruner, gra-

dient pruner and dropout pruner, we search over the trace decay rates α ∈

{0.001, 0.0001, 0.00001, 0.00001, 0.000001}. Additionally, for dropout pruner,

we search over the dropout rates p ∈ {0.01, 0.005, 0.0025, 0.001, 0.0005, 0.0001}.

We do not perform a search over the dropout pruner hyper-parameter k and

simply keep it fixed at the minimum value (k = 1), unless stated otherwise.

All the hyper-parameter configurations are evaluated using ten runs for 50

million steps. Since we want to see how each pruning criterion performs at

different stages of sparsity, the best configuration is picked based on the lower

overall RMSE in eq. 4.2 achieved over all the steps, averaged over all networks.

As done in the previous phase, we discard these ten runs and then report the

results using 50 new runs for each experiment using the best hyper-parameter

configuration unless stated otherwise.

4.3 Comparison of Pruning Criterions

As the name might suggest, the random pruner removes a random weight

uniformly from amongst all the remaining weights. For this section, we set

the number of dropout forward passes for the dropout pruner to k = 1. The

weight magnitude, activation trace and gradient-based pruning criterions are

defined by Eq. 2.2, Eq. 2.4 and Eq. 2.5 respectively.

The results of experiments from the pruning phase are shown in Fig. 4.1.

This figure shows that the dropout pruner performs worse at the lower sparsity

levels. However, once we are at the sparsity levels of around 65%, the dropout

pruner achieves a significantly lower error than the other pruners.

We hypothesized that the poor early performance of the dropout pruner

might be due to the noisy estimates of weight utilities at the beginning. To

verify this hypothesis, we ran another experiment where we did not perform

pruning for the first 20 million steps. However, all the pruners continue to
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Random Pruner

Activation Trace Pruner

No Pruner

Weight Magnitude Pruner

Gradient Pruner

Dropout Pruner

Figure 4.1: Comparison of different pruning criterions on the MNIST even-odd
classification task. These are the results from the pruning phase described in
section 4.2.2. The weights are not updated during this phase. The y-axis is the
RMSE as computed by eq. 4.2, where the lower value is better. There are two
x-axes, the bottom representing the steps and the top the network’s sparsity
level, i.e. the percentage of the weights removed from the network. The curves
represent the average performance of 50 independent runs whereas the shaded
regions represent the 95% confidence intervals. This plot shows that dropout
pruner performs better in the long run than all the other pruners.

update their utility estimates during this period. This gives every pruner

more time to obtain a more accurate estimate of the weight utilities. After

this phase, we prune at the same rate as before for 50 million steps. The results

can be seen in Fig. 4.2. This plot shows that dropout pruner still outperforms

the other pruners during the beginning and the ending phases. However, it

is still worse during the moderate sparsity phases. To conclude, even if the

pruners are given more time at the beginning to get a more accurate estimate,

it does not cause a significant difference in performance.
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Random Pruner

Activation Trace Pruner

No Pruner

Weight Magnitude Pruner

Gradient Pruner

Dropout Pruner

No Pruning

Figure 4.2: Comparison of different pruning criterions on the MNIST even-odd
classification task with delayed pruning start. These are the results from the
pruning phase described in section 4.2.2. The pruning does not begin until 20
million steps to get better estimates of weight utilities. The weights are not
updated during this phase. The y-axis is the RMSE as computed by eq. 4.2,
where the lower value is better. There are two x-axes, the bottom representing
the steps and the top the network’s sparsity level, i.e. the percentage of the
weights removed from the network. This figure shows that although the results
for most pruners are similar to Fig 4.1, the dropout pruner performs better in
the initial steps when the pruning starts.

4.4 Dropout Pruner: Sensitivity to Dropout

Rate p

The dropout pruner has an important hyper-parameter: the dropout rate p.

This hyper-parameter denotes the percentage of the remaining weights that are

randomly dropped for each dropout forward pass. High dropout rates ensure

that the weights are evaluated more often at the cost of a noisier estimate.

Conversely, lower dropout rates give us more accurate estimates at the cost of

reduced weight coverage, meaning that every weight will have fewer updates

to their utility estimates.
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1%

0.5%

0.25%

0.1%

0.05%

0.001%

Figure 4.3: Sensitivity of the dropout pruner to the dropout rate p, which is
the percentage of the weights that are dropped during the forward pass for
computing the utility estimates. There are two x-axes, the bottom represent-
ing the steps and the top the network’s sparsity level, i.e. the percentage of
the parameters removed from the network. Unlike other experiments in this
chapter, the curves in this figure are averaged over 10 independent runs (in-
stead of 50). This experiment shows the trade-off between the performance at
lower and higher sparsities caused by different dropout rates.

To analyze the effect of this hyper-parameter on the overall performance,

we run an experiment in the same setting as the previous experiments and

change the dropout rate p. We use k = 1 in all these runs and perform

a search over the trace decay rate α for every value of p. Unlike previous

experiments, the results for this experiment are reported using only 10 runs.

The results can be seen in Fig. 4.3. This experiment shows that the higher p

performs better at higher sparsity levels and worse at lower ones. The opposite

is true for lower p as it performs significantly worse at high sparsity levels.
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k=1

k=4

k=2

Figure 4.4: Effect of increasing the number of dropout forward passes k for
a more accurate estimation of weight utilities. There are two x-axes, the
bottom representing the steps and the top the network’s sparsity level, i.e. the
percentage of the weights removed from the network. This figure shows that
increasing the number of forward passes k results in a significantly improved
performance.

4.5 Dropout Pruner: More Forward Passes k

The dropout pruner needs a minimum of two forward passes at every step.

The first is the standard forward pass without any dropped weights, while the

second is a forward pass with dropped weights. The hyper-parameter k refers

to the number of forward passes per step with dropped weights. We run an

experiment to see the effect of increasing k on the overall performance. The

results are shown in Fig. 4.4. This experiment shows that increasing k indeed

results in an improvement at lower and moderate sparsity levels. However, at

the higher sparsity levels, the difference is negligible.

Intuitively, this makes sense. Our estimates of weight utilities are very

noisy at lower and moderate sparsity levels. One reason for the noisy utility
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Random Pruner

Activation Trace Pruner

No Pruner

Weight Magnitude Pruner

Gradient Pruner

Dropout Pruner [k=1]

Dropout Pruner [k=8]

Figure 4.5: Comparison of different pruning criterions on MNIST even-odd
classification task. In this experiment, the pruning is done at the rate of 1
weight per 100 steps as opposed to 10,000 steps in the previous experiments.
Due to the increased pruning rate, the dropout pruner performs significantly
worse than the other pruners at low to moderate sparsity levels. However, if
we increase the value of k, the dropout pruner performs almost as well as the
best pruner in this setting.

estimates is that we have a much larger number of weights to evaluate at these

stages than the later ones.

4.6 Limitations of Dropout Pruner

The dropout pruner statistically estimates the utilities of a random subset of

weights using a single global signal: the difference between the predictions

produced by two forward passes. If we use a very small dropout rate p, we

need a large number of forward passes to ensure that every weight is dropped

enough times to get an accurate estimate of their utility. Conversely, if we use

a large dropout rate p, we still need a large number of forward passes since we

are essentially using a single global signal to update the utilities of multiple
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weights, which is a very noisy estimate. If we have to prune very quickly, our

utility estimates will not be very accurate.

To showcase this limitation, we run another experiment where we prune at

a much faster rate of 1 weight per 100 steps. The pruning is done until a similar

sparsity level is reached as in the previous experiments. The results of this

experiment are shown in Fig. 4.5. This experiment shows that the dropout

pruner performs significantly worse in the early stages of pruning. This is

primarily due to the noisy estimates of utility caused by the faster pruning

rate. Although the dropout pruner catches up at higher sparsity levels, the

gradient pruner performs the best in this setting.

So, how can we deal with this limitation? There are two solutions. We

either have to pruner at a slower rate, or we increase k i.e. the number of

dropout forward passes at each step. Both of these methods ensure that our

estimates of weight utility are more accurate. The results in Fig. 4.5 show

that using the dropout pruner with k = 8 significantly improves performance

and allows us to overcome this limitation.

4.7 Experiment Summary

In this chapter, we empirically demonstrated that the dropout pruner can

perform better than the existing pruners at high sparsity levels. However, due

to the noisy nature of the utility estimates, the dropout pruner performs worse

when we have to prune quickly. The only way to counteract this issue is to

increase k i.e. the number of forward passes with the dropped units. However,

that would increase the amount of processing that needs to be done at every

step. To conclude, if we can afford to prune slowly, the dropout pruner is

ideal. If not, then it is better to use the gradient pruner.
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Chapter 5

Online Feature Decorrelation

When generating a large number of features using generate and test, there is

a likelihood of generating highly correlated features. A correlated feature pair

indicates that their output activations are similar to each other on average.

The presence of highly correlated feature pairs causes some portions of our

representation to be redundant, which is not an efficient usage of our limited

resources. Therefore, it is essential to detect and remove highly correlated

feature pairs. In this chapter, we will discuss why it is particularly important

to decorrelate the features to make pruning effective and then propose some

decorrelators that can achieve this purpose.

5.1 Why is Standard Pruning not Enough?

Standard pruners, including those we introduced in the earlier chapters, cannot

deal with highly correlated features. To understand the reason, consider that

we can loosely categorize all our features ht into four categories. For now, we

will assume that we are given a function r̂ : N x N→ R that provides us with

the correlations of a pair of features and a function û : N → R that gives us

the feature utilities1. The four categories of features are:

1. Features with small utility û and small correlation r̂ with all other fea-

tures in ht

1The specifics of the feature utility function are not crucial for understanding this chapter.
Any utility function that operates on individual weights can be generalized to the case of
features by aggregating the utilities of outdoing weights through summation or average.
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2. Features with small utility û and high correlation r̂ with at least one

other feature in ht

3. Features with high utility û and small correlation r̂ with all other features

in ht

4. Features with high utility û and high correlation r̂ with atleast one other

feature in ht

If we are allowed to keep only a limited number of features, then the only

desirable features are of category 3. We do not need features of categories 1

and 2 since small utility indicates that these features contribute little to the

output. We also do not need highly correlated features since these features are

redundant. Now, considering that the standard pruners remove features with

small utility, the features of categories 1 and 2 will be removed. However, the

features of category 4 cannot be removed using standard greedy pruners since

they have high utilities. If we use generate and test continually, we might end

up with many redundant features. One way of dealing with highly correlated

features is to explicitly compute the feature correlations and eliminate them

separately. In the following sections, we will introduce a novel algorithm to

perform feature decorrelation in an online, continual learning setting.

5.2 Combining Decorrelation with Pruning

We introduce an algorithm that uses û and r̂ to prune in the continual learning

setting, summarized in Alg. 3. We do not describe a generator here as it is

not a necessary component of the pruning algorithm and will only detract

the reader from the main point. The details of how r̂ is computed will be

provided in the later sections. To summarize this algorithm: we first use

the feature utilities û obtained by some pruning criterion to remove the least

useful features. Afterwards, we use the correlation estimates r̂ to decorrelate

features by removing the features with lesser utility from amongst the pairs of

the highly-correlated features.
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Algorithm 3: Structured Feature Pruning and Decorrelation

Input : A vector of feature activations ht ∈ Rd

Algorithm Parameter: Pruning rate T > 0
Algorithm Parameter: Percentage of features to prune 1 > pp > 0
Algorithm Parameter: Percentage of features to decorrelate 1 > pd > 0
Algorithm Parameter: Correlation threshold 1 > c > 0

1 û0(·)← 0 ; //Initialize all utilities to 0

2 r̂0(·)← 0 ; //Initialize all corrrelations to 0

3 v← ∅ ; //Initialize empty feature index pair vector

4 Loop for t = 0, 1, 2, . . . :
5 Perform a forward pass
6 Update ût using a pruning criterion
7 Update r̂t and v using a correlation estimator (Alg. 5 or Alg. 6)
8 Update weights using gradient descent
9 if t % T = 0 then
10 Remove pp% of features from ht based on argmind>i>0 û(i)
11 vremoved ← ∅ ; //Track removed feature indices

//Decorrelate features

12 Loop for {i, j} in shuffle(v):
13 if pd% features are removed then
14 break

15 if |r̂t({i, j})| > c and i /∈ vremoved and j /∈ vremoved then
16 k ← argmink∈{i,j} ût(k)

17 Add k to vremoved

18 Remove k from ht

19 Remove all pairs that contain k from v

We have four hyperparameters: the pruning rate T dictates how often

we remove features. The hyper-parameters pp and pd specify the percentage

of existing features that the pruner and the decorrelator are allowed to prune

every T steps. Finally, the correlation threshold c is used to determine whether

the decorrelator should prune from a feature pair. If |r̂| < c for a feature pair,

we do not consider it highly correlated, and thus, we do not prune it through

the decorrelator.

We define v as a vector of unique unordered index pairs over elements

in the feature vector ht. This vector is used to determine the feature pairs

for which we compute the correlation estimates r̂. For example, if we have
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Algorithm 4: Online Feature Normalization normalize(·)
Input : A vector of feature activations ht ∈ Rd

Input : Curent step t
Algorithm Parameter: Normalization statistics decay rate 1 > β > 0
Algorithm Parameter: Variance cap ϵ > 0
//Initialize normalization statistics

1 if t = 0 then
2 Loop for i = 0, 1, 2, . . . d:
3 µ̂0(i) = 0
4 σ̂0(i) = 1

//Update normalization statistics and normalize features

5 zt ← ∅
6 Loop for i = 0, 1, 2, . . . d:
7 µ̂t(i) = β ∗ µ̂t−1(i) + (1− β) ∗ hi,t

8 σ̂t(i) = β ∗ σ̂t−1(i) + (1− β) ∗ (µ̂t(i)− hi,t)
2

9 σ̂t(i) = max(σ̂t(i), ϵ) ; //Floor the variance estimate

10 zi,t =
1√
σ̂t(i)

(hi,t − µ̂t(i))

only three features, then ht = [h1,t, h2,t, h3,t]. In this case, one possibility is

v = [{0, 1}, {0, 2}, {1, 2}] with r̂(v) ∈ R3, which represents all the possible

combinations of features without replacement. As we will see in the later

sections, how we choose this vector is of paramount importance and determines

the computational complexity of our decorrelators.

The algorithm is straightforward until line 9. In line 10, we use a standard

pruning criterion to remove the features with the smallest utility values. Af-

terwards, we define a vector vremoved, which will be used to track indices of

features removed in the current step. This vector is used to make sure that

when the decorrelator removes a feature hi,t from the highly correlated pair

{hi,t, hj,t}, the feature hj,t is protected from removal by the decorrelator. This

allows us to optimize the weights (using gradient descent) of this feature to

recover from the error incurred due to the removal of feature hi,t. When the

decorrelator operates again T steps later, we can safely remove this feature if

it is still highly correlated with some other feature.

In line 12, we loop over the shuffled vector of feature pairs v rather than

directly finding the feature pair with the highest correlation value, i.e. us-
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Input

Output

Feature Activations

: Correlation estimates updated every step

Figure 5.1: An example of the ideal correlation estimator applied on a network
with a single hidden layer. The input vector x linearly combines with the
weights w(1) to produce a vector of features, which are then normalized to
produce a vector h. Our goal is to find the correlated features from h. We
can represent the pairs of all features in the form of a matrix, as shown on the
right. Each index represents the correlation estimate r̂ of a pair of features.
The pink shade represents the indices we need to update at every step. The
vector v in Alg. 2 is the set of all these indices. Diagonals do not need to be
updated since they are simply a feature’s correlation with itself. Additionally,
since the matrix is symmetric, we only need to store and update one half.

ing argmax{i,j}∈v r̂t({i, j}). Although it is fine to use argmax if we are only

pruning like described in the algorithm, it leads to maximization bias if this

is done along with continuous feature generation. If the feature generator

generates features at a more rapid rate than pd, we are likely to end up in a

case where we keep generating a large number of highly-correlated features.

The decorrelator will be able to remove these features. However, due to the

max operation, we will likely end up with some highly correlated features that

are never removed due to the continuous generation of new highly-correlated

features. We observed this phenomenon in our experiments and found that

randomly sampling highly correlated pairs worked better than argmax.

Finally, in lines 15-19, given a pair of highly-correlated pairs, we only

remove the feature with lower utility. The reasoning for this is straightforward.

Although both features are highly correlated, removing the one with a smaller

contribution to our output is better.
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Algorithm 5: Ideal Correlation Estimator for updating r̂

Input : A vector of feature activations ht ∈ Rd

Input : A correlation function r̂ : N x N→ R
Input : A vector of feature index pairs v ∈ {N,N}(

d
2)

Input : Curent step t
Algorithm Parameter: Correlation estimator decay rate 1 > α > 0
//Initialize correlations of all feature pairs

1 if t = 0 then
2 Loop for i = 0, 1, 2, . . . d:
3 Loop for j in i+ 1, i+ 2, . . . , d:
4 Append {i, j} to v
5 r̂t({i, j}) = 0

//Update correlations of all possible feature pair indices

6 zt ← normalize(ht, t) ; //Get normalized features

7 Loop for {i, j} in v:
8 r̂t({i, j}) = α ∗ r̂t−1({i, j}) + (1− α) ∗ zi,t ∗ zj,t

5.3 Ideal Correlation Estimator

In the previous section, we described a general algorithm to prune and decor-

relate. However, it requires us to have some estimate of correlations of feature

pairs i.e. r̂. One naive but ideal algorithm for computing these estimates is

described in Alg. 5. The basic idea is straightforward: we maintain and up-

date the correlation estimate r̂t at every step for every possible unordered pair

of features. If we look at the algorithm, in lines 1-5, we generate a feature pair

index vector v, which contains all possible unordered pairs of feature indices.

In lines 7-8, this vector v is used to update the correlation estimates at every

step by using a moving average of the product of feature activations.

Note that we are computing the correlations on normalized feature activa-

tions. We normalize features to have zero mean and unit variance. This saves

computation as it allows us to compute the Pearson Correlation of a pair of

features by simply taking a product of their activations. The pseudocode for

normalizing features online is summarized in Alg. 4. The normalization is

done by maintaining each feature’s mean and variance estimates. These es-

timates are updated at every step (lines 7-8). In line 9, we floor the value
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of the variance estimate using a small value ϵ, which is a hyper-parameter.

This is done to prevent the variance from becoming too small. If the variance

estimate becomes too small, the normalized feature values can easily blow up

since these estimates are used in the denominator in line 10.

Finally, note that from the correlation estimator’s point of view, it does

not matter whether or not we use the normalized activations in the forward

pass. We only need the normalized activations to compute the correlations

within the estimator, and the forward pass can be done using the original

non-normalized activations. However, if the features are normalized using

the provided algorithm and used in the forward pass, the resulting gradients

in the backward pass will be biased unless we backpropagate through the

normalization operation.

Computational Complexity of Ideal Estimator

The ideal estimator requires the storage of correlations of all possible unordered

combinations of feature pairs. Since there are
(︁|h|

2

)︁
= |h|∗(|h|−1)

2
such pairs, the

storage complexity is O( |h|∗(|h|−1)
2

) ≈ O(|h|2). Since we have to update all

these correlations, the computational complexity is also O(|h|2).

5.4 Random Correlation Estimator

The ideal decorrelator discussed above is computationally very expensive. This

section proposes a more practical approximation of the ideal decorrelator. The

basic idea of the random decorrelator is: instead of storing and updating the

correlations of all possible combinations of feature pairs, we perform those

operations for n randomly sampled feature pairs, where n is a hyper-parameter.

To ensure coverage, we update the correlation estimates for the sampled feature

pairs for only T steps and then resample the feature pairs once again. The

pseudo-code is shown in Alg. 6.

The vector of feature pairs v is of size n as opposed to
(︁|h|

2

)︁
in the ideal

decorrelation estimator. This vector will contain the index pairs corresponding

to the shaded indices in Fig. 5.2. Although this vector was fixed in the case of
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Sample Pairs at step Resample Pairs at step Resample Pairs at step

: Correlation estimates updated every step

Figure 5.2: An example of the random correlation estimator applied on a
network with a single hidden layer. Instead of updating the correlations for
all possible feature pairs, we sample n random feature pairs and only update
their correlation estimates. These correlation estimates for the selected pairs
are updated for T steps. Every T steps, we resample the pairs again and
repeat the process.

the ideal estimator, this is not the case for random estimator. In lines 8-11, we

remove all the feature pairs from v that turned out to be not highly correlated.

Afterwards, we resample new index pairs until we have a total of n pairs. The

rest of the algorithm is the same as the ideal correlation estimator.

A higher value of T will make the correlation estimates provided by the

random estimator to become more accurate approximations of the ones pro-

vided by the ideal estimator. However, increasing T while keeping n constant

will slow down the discovery of highly correlated feature pairs since it will

result in less frequent resampling of new feature pairs. Finally, note that if

n =
(︁
d
2

)︁
and T =∞, the random and the ideal estimators are the same.

Computational Complexity of Random Estimator

The random decorrelator’s storage and computational complexity is O(n),

where n is a hyper-parameter which dictates the size of vector v. A good

choice for this hyper-parameter is n = d. In this case, the complexity is O(d),

meaning the update remains linear in the number of features.
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Algorithm 6: Random Correlation Estimator for updating r̂

Input : A vector of feature activations ht ∈ Rd

Input : A correlation function r̂ : N x N→ R
Input : A vector of feature index pairs v ∈ {N,N}n
Input : Curent step t
Algorithm Parameter: Correlation estimator decay rate 1 > α > 0
Algorithm Parameter: Pair replacement interval T > 0
Algorithm Parameter: Correlation threshold 1 > c > 0
//Initialize correlations of n random feature pairs

1 if t = 0 then
2 Loop for in 0, 1, 2, . . . n:
3 Sample pair {i, j} from U[0, d] s.t. i ̸= j and {i, j} /∈ v
4 Append {i, j} to v
5 r̂t({i, j}) = 0

//Refresh our pair selections every T steps

6 else if t % T = 0 then
7 m = 0 ; //Count number of removed indices

//Remove feature pairs that are not highly correlated

8 Loop for {i, j} in v:
9 if r̂({i, j}) ≤ c then
10 Remove {i, j} from v
11 m = m+ 1

//Sample new feature pairs until we have n pairs again

12 Loop for in 0, 1, 2, . . .m:
13 Sample pair {i, j} from U[0, d] s.t. i ̸= j and {i, j} /∈ v
14 Append {i, j} to v
15 r̂t({i, j}) = 0

//Update correlations of selected feature pairs

16 zt ← normalize(ht, t) ; //Get normalized features

17 Loop for {i, j} ∈ v:
18 r̂t({i, j}) = α ∗ r̂t−1({i, j}) + (1− α) ∗ zi,t ∗ zj,t

5.5 Summary

A separate decorrelator is necessary to remove redundant features from our

representation. This is especially important if we use a generate and test

procedure to generate new features continuously. We can decorrelate by using

an ideal decorrelator, which computes the correlations of all possible feature

pairs in our network and removes the highly correlated pairs. However, this
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method is not practical due to some obvious scalability issues. We proposed

an approximation of this decorrelator wherein we sample a small number of

random feature pairs, estimate their correlations for a fixed number of steps,

and then sample new feature pairs again. Since we do not need to compute

the correlations of all feature pairs at once, this algorithm scales well and can

be used in practice.
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Chapter 6

Experiments on a Synthetic
Online Supervised Learning
Problem

This chapter will showcase some experiments on a synthetic online supervised

learning problem. These experiments will show how the standard pruners

cannot deal with highly correlated features. We will then demonstrate how

the proposed decorrelators can solve this problem effectively.

6.1 Synthetic Regression Task

This is a supervised regression task where a randomly generated network is

used to produce the prediction targets. We call this network the true network.

The true network is a two-layer network with sigmoid activations in the first

layer. The second layer is a fully connected layer which produces the output.

Each hidden-layer unit is connected to U[1,m] randomly selected input units

xi,t ∈ xt, where m is the total number of input units. All the weights are

randomly sampled from U[−1, 1]. Once these connections and weights are

assigned, the true network is fixed throughout the training.

At every step t, we receive an input vector xt ∈ Rm, where the value of

each element xi,t is randomly sampled from U[−1, 1]. As shown in Fig. 6.1,

the true network uses this input vector along with weights w
(1)
t and w

(2)
t to

produce an output ftarget(xt) ∈ R. This is a regression problem with the goal

of learning to produce this output. The performance is reported using mean
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Input

Target Prediction

Feature Activations

Optimize using Gradient Descent

True Network Learning Network

Discover using Generate & Test

Figure 6.1: The targets in the synthetic supervised learning task are produced
using a true network. All the weights in the true network are sampled from
U[−1, 1] and are then fixed throughout the experiment. The goal in this task is
to learn the mapping xt → f̂ target(·). In our experiments, we try to learn this
mapping using a similarly structured learning network. The outgoing weights
in the learning network are always initialized to zeros. The weights w(1) are
discovered using generate and test procedure over time whereas the weights
w(2) are optimized using SGD. The size of the hidden layer h in the learning
network does not have to be the same as the true network.

squared error averaged over past 1000 steps for every 10,000 steps:

MSE(·) = 1

T

T∑︂
t=1

(f̂(xt)− f̂ target(xt)) (6.1)

where f̂(xt) is the network that we are optimizing. We call this network the

learning network. This kind of regression task allows us to control the relative

complexities of the task and the learner. We keep the depth of the true and

the learning networks the same. Therefore, we can adjust the width of the

hidden layer in the true or the learning networks to make one more complex.

Finally, note that this regression task is noiseless. This is because this task

aims to study the properties of the converged representations. And not having

noise in the targets will help us converge quickly.

6.2 Experimental Setup

The goal of these experiments is to learn the weights of a network f̂(xt) that

can predict the targets produced by the true network f̂ target(xt) at every step
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t. A generate and test procedure is used to discover the hidden layer features

of the learning network. Similar to how the true network is constructed, each

hidden-layer feature we generate through the generator is connected to U[1,m]

randomly selected input units, with the input weights sampled from U[−1, 1].

However, the output weights are initialized to zeros. The outputs of the gen-

erated features are linearly combined to produce the prediction. The input

weights are fixed after generation, whereas the output weights are optimized

using Stochastic Gradient Descent. Before producing the prediction, we nor-

malize the hidden layer features using the normalization algorithm described

in Alg. 4. We do not need to worry about the biased gradients since we do

not optimize the incoming weights w(1) using gradient descent.

After every 20,000 steps, we remove 20% (pp = 0.20) of the least useful

hidden layer features using a pruning criterion. The ideal and random decor-

relators can remove a maximum of 5% (pd = 0.05) of the features. After

removing features, we generate a similar number of new features using the

same generation procedure described above. The random decorrelator evalu-

ates n = 25 random feature pairs for T = 5000 steps.

In this chapter, we consider a feature to be mature if it has existed for

more than 100,000 steps without being replaced by the generate and test pro-

cedure. Additionally, we consider a pair of features to be highly correlated

to each other if their estimate of Pearson correlation r̂ is greater than c = 0.85.

In all our experiments, m = 5, i.e. the input vector xt, has five elements.

All experiments are evaluated using 30 runs for 20 million steps. The shaded

regions in the results represent the standard error.

6.2.1 Algorithms and Hyper-parameters

All the methods we evaluate in this chapter will use the generate and test

procedure. For this purpose, we require a pruning criterion to evaluate the

features. Let ût(·) : N→ R represent the function that computes the utility of

a feature given the feature index. In order to ensure fair evaluation, we will use

the activation trace criterion for all the methods since it is the ideal criterion in

this setting. This is because the activation trace criterion can directly measure
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the contribution of each feature to the output as we have only a single hidden

layer of features. The utilities using this criterion are computed as:

ût(i) = α ∗ ut−1(i) + (1− α) ∗ |hi,t ∗ w(2)
i,t | (6.2)

where hi,t is the feature activation and w
(2)
i,t is the outgoing weight. Notice that,

unlike in the previous chapters (other than chapter 5), where we measured the

utilities of weights, here we are measuring the utilities of features as a whole.

This is done primarily because the correlations can only be measured across

the features. The experiments in this chapter will evaluate four algorithms:

1. No Decorrelator: Use generate and test procedure with the activation

trace pruning criterion.

2. Ideal Decorrelator: Use generate and test procedure with the activation

trace pruning criterion. Decorrelate features using the ideal correlation

estimator.

3. Random Decorrelator: Use generate and test procedure with the acti-

vation trace pruning criterion. Decorrelate features using the random

correlation estimator.

4. L2 Regularizer: Use generate and test procedure with the activation

trace pruning criterion. While optimizing the learning network, use an

objective function with the L2 regularization penalty. We achieve this

by adding a term
∑︁d

i=1(w
(2)
i,t )

2 to the objective function in Eq. 6.1.

We perform an exhaustive search over the regularization hyper-parameter

λ for the L2 regularization method and step sizes for all the methods. All the

hyper-parameters are evaluated using ten runs for 5 million steps. The hyper-

parameter configuration that achieves the lowest average error during the final

1 million steps is selected as the best configuration. For λ, we search over {0.5,

0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005} whereas for step sizes, we

search over {0.05, 0.01, 0.008, 0.005, 0.003, 0.001, 0.0005, 0.0003, 0.0001, 0.00005,

0.00003, 0.00001}. After choosing the best hyperparameter configuration, we
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use it to report the results for a longer duration of 20 million steps using 30

independent runs. This is another method of reducing the maximization bias

caused due to the hyper-parameter selection process.

6.3 Low-Capacity Setting

A low-capacity setting refers to the case where the network being optimized

is not complex enough to achieve a low error on a given task. In our case, we

can mimic this setting by having more features in the true network’s hidden

layer than in the learning network. The learning network’s hidden layer has

d = 25 features, whereas the true network has d = 100 features. The results of

this experiment can be seen in Fig. 6.2. Note that all these runs use generate

and test procedure with the activation trace pruning criterion.

The results show that not using any decorrelator results in a representation

where 60% of the mature features are highly correlated. Even when using an L2

regularizer, around 40% of the features are highly correlated. On the contrary,

using a decorrelator in addition to the regular pruner can eliminate almost

all of these correlated features. Although the ideal decorrelator is not very

practical due to how expensive it is, the random decorrelator can approximate

it well. These results only count the correlated features from amongst the

mature features (as opposed to all of them) since it is clear that the standard

greedy pruning criteria alone will not remove these features.

Considering the resulting change in performance due to these decorrelators,

we observe that having lesser number of highly-correlated features results in a

significantly lower error. This makes sense since, in the low-capacity setting,

our learning network is already very small. Decorrelation helps since it frees

up the resources consumed by the redundant features, allowing the generator

to search for a more diverse set of features.

6.4 High-Capacity Setting

In the high-capacity setting, the learning network’s hidden layer contains more

features than the true network. If we mimic this setting in the synthetic regres-
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Figure 6.2: Comparison of various pruners on the synthetic regression prob-
lem when learning using a generate and test procedure with a low-capacity
learner. The learning network’s hidden layer contains 25 features, whereas
the true network contains 100 features. Top: Shows the error curves using
Mean Squared Error as measured by eq. 6.1, where lower is better. Bottom:
Shows the percentage of mature features that are highly correlated with any
other mature feature. We can observe from this plot that using generate and
test without any decorrelator results in the vast majority of the features being
highly correlated. Using a decorrelator solves this issue while improving the
overall performance.
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sion task, the learning network should be capable of converging to a represen-

tation that can achieve a very low error and make very accurate predictions.

For this experiment, the learning network’s hidden layer consists of 50 fea-

tures, whereas the true network consists of 25 features. The results are shown

in Fig. 6.3.

The bottom plot shows that not using any form of decorrelation results in

a learning network where more than 80% of the mature features are highly

correlated. One might expect that using a decorrelator here would improve

the performance. However, that is not the case. Although using the ideal

decorrelator significantly reduces the highly correlated features, it results in a

higher overall error.

The reason for this behaviour is straightforward. Recall that we needed

a decorrelator to remove the redundant features that a regular greedy pruner

cannot. What kind of features is the greedy pruner not able to remove? These

are the features which have high utility and high correlation values. A feature

having a high utility indicates that this feature contributes heavily to the out-

put. And if such a feature is removed, it will result in an increased error. The

increased error due to decorrelation is noticeable only in the high-capacity set-

ting since removing the redundant features is unnecessary. This is because the

learning network already has enough capacity to learn a good representation.

The purpose of this experiment was to highlight an important limitation

of our feature decorrelation algorithm: simply removing a fixed percentage

of highly correlated features can negatively affect our performance. This

shows that we need a better method for combining the feature decorrelation

with greedy pruning. A better algorithm would have a mechanism to detect

whether the decorrelation is necessary. If decorrelation is unnecessary, the fea-

tures should only be removed based on their utilities measured by the pruning

criterion. Another possible solution is that instead of directly removing the

correlated features, we need to increase the diversity of the highly correlated

features.
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Figure 6.3: The effect of using a decorrelator on the synthetic regression prob-
lem when learning using a generate and test procedure with a high-capacity
learner. The learning network’s hidden layer contains 50 features, whereas the
true network contains 25 features. Top: Shows the error curves using Mean
Squared Error as measured by eq. 6.1, where lower is better. Bottom: Shows
the percentage of mature features that are highly correlated with any other
mature feature. This figure shows that although using a decorrelator reduces
the number of highly correlated features, it is not always helpful in improving
performance.

44



6.5 Scalability of Random Decorrelator

The previous experiments have all been using a tiny learning network. In

the case of learning with 25 features in the hidden layer, there are only 300

possible unique pairs of features. This means that an ideal decorrelator needs

to compute the correlations for only 300 pairs. In the case of the random

decorrelator, we have been computing the correlations for 25 pairs at once,

roughly one-tenth of the total pairs.

How would the random decorrelator perform when the number of features

is huge? If we had 1000 features, we would have 499,5000 possible unique

pairs of features. If the random decorrelator were to compute the correlations

of only 1000 random pairs at once, we would be covering only 0.002% of the

total number of pairs. To answer this question, we run an experiment where

we fix the number of features to 25 while varying the number of random

pairs considered simultaneously. This can give us a rough idea regarding the

behaviour of random decorrelator when we can only consider a tiny percentage

of the total pairs of features. The results of this experiment are shown in Fig.

6.4. Each point in this figure represents the y-axis value averaged over the

final 500,000 steps of 30 independent runs. The x-axis is hyperparameter n,

which represents the number of feature pairs for which the random decorrelator

updates the correlation estimates.

This figure shows that the performance improvement becomes smaller as

n, the number of feature pairs we consider, becomes larger. At 300 random

pairs, the random decorrelator and ideal decorrelator are practically the same.

This is because the main difference between these two decorrelators is the

number of pairs for which the correlation is computed at once. As we reduce

this value, the random decorrelator becomes more of an approximation to the

ideal decorrelator. We are considering only three random feature pairs at the

lower extreme, which is 1% of the total possible feature pairs. Even in this

scenario, the random decorrelator can reduce the number of highly correlated

features by half, from 60% to 30%.

These results show that the random decorrelator can still help us if we have
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Figure 6.4: This figure shows the scalability of random decorrelator in the low-
capacity setting. The learning network’s hidden layer contains 25 features,
whereas the true network contains 100 features. Each point on these plots
represents a separate experiment with 30 runs each. The x-axis is the hyper-
parameter n for the random decorrelator, representing the number of random
feature pairs for which the correlation is computed. Top: Shows the error
measured using MSE averaged over the final 500,000 steps. Bottom: Shows
the percentage of mature features that are highly correlated with any other
mature feature, averaged over final 500,000 steps. This figure shows that
that even if we consider 1% of the total random pairs while using a random
decorrelator, the number of highly correlated features is reduced by half.
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Figure 6.5: The effect of ideal decorrelator in the low-capacity setting when
used only initially. The learning network’s hidden layer contains 25 features,
whereas the true network contains 500 features. If we look at the green curve,
the ideal decorrelator is used for the first 1 million steps. After 1 million steps,
the decorrelator is turned off, and only a greedy pruning criterion (along with
a feature generator) is used. This figure shows that a large amount of highly
correlated features are not due to the learning network’s starting state but
rather due to the generation process.

a huge number of features and only could compute the correlations of a tiny

subset of them at once.

6.6 The Cause of Highly Correlated Features

What causes the learning network to retain a large number of highly corre-

lated features? It is our observation that the generated features are likely to

be highly correlated if we generate a large quantity of them all at once. Con-

versely, fewer features are highly correlated if the feature generation process

is spread out over time. In our experiments, the generation process has been

spread out over time. However, at the beginning of the training, we initialize

the learning network with many features all at once rather than starting with

an empty network. Could this be the reason for our highly-correlated features?
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If that is the case, we only need to decorrelate at the beginning rather than

continuously.

To look into this hypothesis, we run an experiment where the ideal decorre-

lator is applied only during the initial 1 million steps and then turned off. The

results are shown in Fig. 6.5. The green curve shows that the highly-correlated

features are eliminated when the decorrelator is turned on. However, when

the decorrelator is turned off, the number of highly-correlated mature features

suddenly started to increase again. This confirms that the generation process

rather than the starting state of the network results in highly-correlated fea-

tures and that we need to decorrelate continuously if we want to deal with

these features.

6.7 Experiment Summary

In this chapter, we empirically demonstrated that the generate and test pro-

cedure could result in a large portion of the generated features being highly

correlated. If the task is very complex compared to the learner’s capacity, this

reduces performance since these redundant features take up valuable resources.

We demonstrated that using an ideal decorrelator and its computationally effi-

cient approximation; the random decorrelator can effectively deal with highly

correlated features. This enables us to generate a more diverse feature repre-

sentation, resulting in improved performance. However, in the high-capacity

setting, where the task is simpler as compared to the learning capacity of the

learning network, removing a fixed percentage of correlated features can hurt

performance. This is because the decorrelator removes some features with high

utility as they also have high correlation with other features, and the generator

cannot recover from the error incurred due to the continuous removal of such

features.
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Chapter 7

Conclusion

In this thesis, we proposed dropout pruner, a novel pruning algorithm that

attempts to estimate the ideal greedy pruner in the continual learning set-

ting. Through some experiments on the MNIST even-odd classification task,

we demonstrated that the proposed pruning criterion outperforms the other

existing criteria if we are pruning slowly. Additionally, we proposed a decor-

relator to detect and remove redundant features when training online. We

demonstrated that the greedy pruning criteria cannot deal with the highly-

correlated features. However, if we combine the greedy pruning criterion with

the decorrelator, the redundant features are successfully eliminated from our

network. We showed that using a decorrelator along with a greedy pruning

criterion in the low-capacity setting can result in a significantly better perfor-

mance than only using the pruning criterion.

There are a few future directions that can be taken to improve this work:

1. The dropout pruner requires additional forward passes to estimate the

impact of dropped weights on the final output. Perhaps we could remove

this necessity in tasks where observations and predictions are temporally

correlated. For example, a task where the input is raw sensory data and

we need to predict the value function.

2. The dropout pruner performs poorly at the beginning of the pruning

phases due to high variance estimates of utility. However, by the end

of the pruning phases, it outperforms all the other pruners. Maybe we

could get the best of both worlds by mixing different pruning criteria.
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We could use a gradient pruner in the initial pruning phases and switch

to the dropout pruner in the later phases.

3. We have seen from our experiments that highly correlated features are

mainly caused due to the feature generation process. The generators

that we used in our experiments are quite primitive, simply generating

features with random connections and random weights. There is room

for improvement in the generation procedure. If the generator can en-

sure that the newly generated features are sufficiently different from the

existing ones, we can eliminate the need for a decorrelator.

4. The feature decorrelation algorithm can harm the final performance of

our model if the decorrelation by removing a fixed percentage of highly-

correlated features in the high-capacity setting. In order to avoid this, we

need a mechanism to automatically detect whether the decorrelation is

necessary. If the decorrelation is unnecessary, the feature removal should

be solely based on the pruning criterion. Another possible solution is:

instead of directly removing the highly correlated features, we somehow

make the highly-correlated feature pairs more diverse, which will reduce

the correlation.
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