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Abstract 

 

In recent years, N-path filters have gained increasing attention due to their 

programmable center frequency and bandwidth, making them potential candidates 

for software-defined radio applications.  The analytical determination of the 

harmonic transfer functions (HTFs) of these linear, periodically time-varying 

(LPTV) networks has proven to be challenging, especially with arbitrary source and 

load impedances.  In this work, we derive new analytical expressions for the HTFs. 

We start with first-order approximations of the HTFs based on a simplified “Ohm’s-

law” characterization of filter operation and then show how these can be corrected 

via a feedback visualization to obtain infinite-series expressions.  We compare our 

expressions to simulation to illustrate the accuracy of both full and approximate 

versions, and we apply our expressions to study the impact of variations in the 

source and load impedances.  Overall, our approach provides a way to visualize and 

understand the individual terms contributing to the HTFs and adds to the existing 

analytical methods to explore N-path filters. 
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Chapter 1 

Introduction 

 

1.1    Overview 

In recent times, the increasing use of mutually interfering wireless devices has made 

the programmable selectivity of high-Q filtering a critical feature for emerging 

wireless transceivers, such as those targeted for the 3rd-Generation Partnership 

Project (3GPP) bands and license assisted access (LAA) band groups [1].  

Conventionally, this filtering is realized by an array of high-Q LC-filters or devices 

that exploit the mechanical properties of materials, e.g., surface acoustic wave 

(SAW) filters.  While such devices exhibit excellent selectivity and linearity, they 

are not compatible with programmable software-defined transceivers.  

Additionally, these devices lag in competition with solutions using CMOS 

integrated circuit (IC) technology in terms of size and cost-effectiveness.   

The high-Q filtering around a programmable switching frequency offered 

by N-path filters, a class of linear periodically time-varying (LPTV) devices 

comprised of switches and capacitors, makes them an excellent choice for software-

defined radio applications [2].  Moreover, CMOS IC technology is excellently 

suited for realizing well-matched oxide capacitors exhibiting high linearity and fast 
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digital switches with low ON-resistance and parasitics.  Hence, N-path filters can 

be implemented using this technology, providing cost- and size-effective solutions.  

All these factors have increased the interest in N-path filters and mixer-first 

receivers for emergent software-defined radios.  These tunable N-path filters are 

typically assumed to be driven by an antenna acting as a source with a 50-Ω 

impedance and load impedances modeled as capacitors.  However, impedances on 

the source side and the load side of an N-path filter may vary for multiple reasons 

(e.g., environmental effects and user interaction with the antenna).   Such factors 

can cause a deviation in source impedance from the standard 50 Ω and 

corresponding voltage standing wave ratio (VSWR) of 1:1 to a VSWR of 2:1 [3], 

[4].  In addition, the frequency response of the load impedance (also known as the 

baseband impedance) can be affected by non-idealities of the passive and active 

loads used in the N-path filter design [5], [6], [7], [8].  These variations can result 

in significant deviations of the center frequency and bandwidth of N-path filters, 

demanding consideration of these effects in their design [9]. 

Although the nature of the N-path filter circuit may appear simple, to our 

knowledge, analytical expressions for the harmonic transfer functions (HTFs) of an 

N-path filter with arbitrary source and load impedances have not been derived in 

any prior literature.  Due to the LPTV nature of N-path filters, the analysis of their 

characteristics in the presence of arbitrary source and load impedances remains 

challenging using existing approaches [6] – [20].  Recently, in [10], the HTFs of N-

path filters were obtained using conversion matrices, which provides an elegant tool 
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for analyzing LPTV systems. However, this approach limits the source and load 

impedances to lumped elements instead of arbitrary functions of frequency, 

offering only numerical solutions for the HTFs that require heavy matrix 

calculation.  Another earlier work [12] used a state-space analysis to derive closed-

form analytical expressions for the HTFs of an N-path filter with the source 

impedance comprised of a series resistor-inductor (RL) network and the baseband 

impedances as capacitors; while the expressions show excellent agreement with 

simulation, this approach is unable to yield expressions for the HTFs for arbitrary 

source and baseband impedances.  Other methods published to date [14] – [20] 

derived the HTFs of an N-path filter by making different simplifying assumptions, 

but lacking the generality to allow arbitrary source and load impedances. 

This thesis aims to add to the current literature [6] – [20] by presenting an 

intuitive approach for deriving analytical expressions for the harmonic transfer 

functions of an N-path filter with arbitrary source and load impedances.  The 

derived expressions are then used to analyze the impact of variations in the source 

and load impedances on the filter performance. 

 

1.2    Stages of Work 

In this thesis, we present an intuitive approach to obtain analytical expressions for 

the HTFs of N-path filters and apply the expressions to analyze the effect of source- 

and load-impedance variations on filter operation.  To accomplish this goal, the 

work of this thesis can be categorized into the two following stages.    
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1.2.1 Derivation of Analytical Expressions for the HTFs of an N-path 

Filter with Arbitrary Source and Load Impedance 

Summary:   

In the first stage (Chapter 2: Sections 2.2-2.4), the derivation of the HTFs of a 

differential N-path filter with arbitrary source impedance 𝑍𝑆(𝜔) and arbitrary 

baseband impedance 𝑍BB(𝜔) is presented (see Fig. 1.1).  The relation between input 

current and output voltage for the N-path network is determined using time-domain 

analysis.  Then, by applying a Fourier transform, an expression for the frequency-

translated input impedances 𝑍in,𝑚(𝜔) to the N-path network is derived in the 

frequency domain, repeated here for convenience: 

 

Fig. 1.1. (a) Differential N-path filter with arbitrary source and baseband impedances, 𝑍𝑆(𝜔) and 𝑍BB(𝜔), 

respectively. (b) Switching signals with frequency 𝑓LO = 2𝜋/𝑇LO. 
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𝑍in,𝑚(𝜔) ≡
𝑁

𝜋2
∑ 𝑎𝑝 𝑎𝑚−𝑝 𝑍BB(𝜔 − 𝑝𝜔LO)

∞

𝑝=−∞

 (1.1) 

 

where 𝜔LO = 2𝜋/𝑇LO is the local oscillator (LO) frequency, 𝑝 and 𝑞 are odd 

integers such that their sum is an integer multiple of 𝑁, i.e., 𝑝 + 𝑞 =

0, ±𝑁,±2𝑁,±3𝑁,⋯ , and the coefficient 𝑎𝑝 ≡
2𝜋

𝑁
sinc (

𝑝𝜋

𝑁
). 

We utilize this idea of an input impedance looking into the N-path filter to 

write the relation between output voltage 𝑉out(𝜔) and input current 𝐼𝑆(𝜔) in 

“Ohm’s-law” form: 

 

      𝑉out(𝜔) = ∑ 𝑍in,𝑚(𝜔) ∙

∞

𝑚=−∞

𝐼𝑆(𝜔 − 𝑚𝜔LO) (1.2) 

 

Then with interpretative discussion on (1.1) and (1.2), and considering first-order 

filter operation and Kirchhoff’s voltage law, we establish a first-order approximate 

expression for the mth – order HTF: 

 

𝐻𝑚(𝜔) ≈
𝑍in,𝑚(𝜔)

𝑍𝑆(𝜔 − 𝑚𝜔LO) + 𝑍in,0(𝜔 − 𝑚𝜔LO)
≡ 𝐻𝑚

′ (𝜔) (1.3) 

 

where 𝑚 = 𝑝 + 𝑞 is an integer multiple of 𝑁.  
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In the next step, considering multiple up- and down-conversion paths 

resulting from the LPTV nature of the filter, and by using a feedback visualization, 

the approximate expression is generalized into an exact infinite-series form, given 

by (2.28) in Chapter 2, with a clear interpretation for each of the terms that must 

appear; the result (2.28) is the central result of this thesis.  In addition to (2.28), a 

simplified approach is also offered for a quick prediction of the filter response using 

the approximate HTF form in (1.3) and without the need for heavy calculation, by 

approximating 𝑍in,𝑚(𝜔) by the simplified result in (2.30).  Then results from both 

the full infinite series form and the simplified expressions are compared with 

simulation for a typical N-path filter configuration for verification purposes.  

Examples of two such plots are shown in Figs. 1.2 and 1.3. 

Key points: 

1. Analytical expressions for the HTFs of an N-path filter are derived using an 

intuitive approach offering insight on the N-path filter operation.  First, the 

approximate forms of the HTFs given by (1.3) are obtained using a simplified 

form of the relation between the output voltage and the input current in the 

frequency domain.  Then, using a feedback visualization and considering up- 

and down-conversion signal paths through the filter, these approximate 

expressions are corrected to get the exact infinite-series form shown in (2.28), 

while providing an interpretation that specifies the origin of all the terms.  
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Fig. 1.2.  Magnitude of filter response 𝐻0(𝑓) from the infinite-series expression (2.28), calculated as 

described in the text of Chapter 2, compared with simulation as the LO frequency changes from the center of 

low-band (800 MHz) with 200 MHz offset. 

 

 

 

 

 

 

 

 

Fig. 1.3.  Magnitude of filter response 𝐻0(𝑓) from the simplified expressions (1.3) and (2.30) compared with 

simulation as the LO frequency changes from the center of low-band (800 MHz) with 200 MHz offset. 
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2. The derived expressions allow 𝑍𝑆 and 𝑍BB to be arbitrary functions of 

frequency.  However, it should be assumed that 𝑍BB  is band-limited, which 

is the case in practical implementations of N-path filters.  

3. Simplified expressions are obtained from the exact infinite-series forms, 

specified by (1.3) and (2.30).  These can be used for a quick estimation of 

filter characteristics while requiring only light computation. 

4. Both the full infinite-series and simplified expressions are compared with 

simulation while varying 𝑓LO and the number of paths 𝑁 (with the results 

shown in Figs. 2.5 – 2.8). The full infinite-series form exhibits excellent 

accuracy, while the simplified forms are able to predict meaningful trends 

with the cost of reduced exactness. 

 

1.2.2 Application of Derived Expressions of HTFs to Analyze the 

Effect of Source and Load Impedance Variation on N-path Filter 

Performance 

Summary: 

 In this stage (Chapter 2: Section 2.5), we apply the infinite-series form to examine 

the impact of source and baseband impedance.  The source impedance is changed 

from a VSWR of 1:1 to a VSWR of 3:1 while keeping other circuit parameters 

constant.  Multiple impedance points on the VSWR = 3:1 circle are chosen to see 

how  the filter response 𝐻0(𝜔) and higher-order harmonic transfer functions  such  
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Fig. 1.4.  Variation of the filter response 𝐻0(𝑓) as 𝑍𝑆 varies along the VSWR=2:1 circle. In the legend, 𝑍𝑆𝛼,𝛽° 

means source impedance for VSWR= 𝛼:1 and a reflection coefficient angle of 𝛽°.  Results for 𝑍𝑆1,0 are 

provided for reference. 

 

Fig. 1.5.  The magnitude of folding transfer functions 𝐻4(𝑓) for different 𝑍𝑠.  In the legend, 𝑍𝑆𝛼,𝛽° means 

source impedance for VSWR= 𝛼:1 and reflection coefficient angle of 𝛽°. 
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as 𝐻4(𝜔) get affected as the source impedance varies from the inductive to 

capacitive region, shown here in Chapter 1 by Figs. 1.4 and 1.5.   

Filter characteristics such as passband gain, rejection, 3-dB bandwidth and 

center frequency are extracted from the infinite-series form for 𝐻0(𝜔) as the source 

impudence varies.  These results are also obtained using the simplified expressions 

and compared with simulation.  Finally, the impact of the baseband impedance 

variation is also studied. 

Key points: 

1. The infinite-series and simplified expressions are applied to predict filter 

characteristics as the source impedance 𝑍𝑆 varies (with the results in Figs. 

2.10 – 2.15).  The results from the infinite-series form are very satisfactory in 

predicting all aspects of the filter response.  The simplified expressions are 

able to estimate out-of-band (OOB) rejection, center frequency, 3-dB 

bandwidth, and the passband gain with moderate accuracy.  

2. The infinite-series form predicts filter characteristics accurately under the 

variation of baseband impedance 𝑍BB.  In this case, the simplified expressions 

are also able to capture major trends with an error in the magnitude response 

for frequencies away from 𝑓LO (as shown in Figs. 2.16 and 2.17). 

3. The undesired variation in 𝑍𝑆 and 𝑍BB can significantly affect the N-path filter 

performance.  The results from our expressions show that due to varying 𝑍𝑆, 

the 3-dB bandwidth can deviate by four times the expected value, and the 

center frequency can shift by 5% of the LO frequency (as illustrated in Figs. 



                                                                                                           

 

11 

 

2.13 and 2.14).  Similarly, the shape of the filter response can change 

significantly due to variation in 𝑍BB, resulting in unwanted effects on filter 

characteristics.  

 

1.3 Future Work: Analysis of Non-Linear N-path Filters Using    

Volterra Series 

The analytical derivation of harmonic transfer functions presented in this thesis is 

for the N-path filter with linear circuit elements.  Hence, the completed work is 

based on LPTV (linear, periodically time-varying) analysis.  However, in practical 

implementation, circuit elements of the N-path filter can show non-linear attributes.  

For example, switches of the N-path filter are usually implemented using 

MOSFETs.  These switches may exhibit non-linear ID-VDS characteristics while 

operating near the top end of the linear region (also known as the triode region) or 

when subjected to stronger than expected input signals.  This non-linear behavior 

will cause intermodulation distortion to the signals subjected to the filter, which in 

turn can affect the filter transfer functions.  To quantify this effect, non-linear 

analysis techniques such as the Volterra series should be applied. 

  For future work, we propose an extension of the work presented in this 

thesis for N-path filters while considering non-linear switches.  We recognize that 

the Volterra series technique is challenging, but it is well-suited for extending the 

analytical work performed here.   This future work will aim to derive analytical 
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expressions for filter transfer functions in the presence of non-linear switches.  

More details on this are presented in Chapter 3 (Section 3.2).   
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Chapter 2 

Derivation and Interpretation of Expressions 

for the Harmonic Transfer Functions of N-

Path Filters with Arbitrary Source and Load 

Impedances 1 

 

2.1 Introduction 

Compact software-defined cognitive radios are emerging as an integral component 

of modern wireless transceivers for mobile phones and other wireless applications, 

and the explosive growth of mobile communication is driving the demand for these 

devices to support over forty 3rd-Generation Partnership Project (3GPP) bands 

concurrently in the same platform.  Wireless devices are expected to cover the low-

band, mid-band, high-band, ultra-high-band, upcoming sub-6-GHz 5G, and license 

assisted access (LAA) band groups shown in Table 1.1 [1].  The tunable center 

frequency and bandwidth of N-path filters make them an ideal choice for this 

application [2].  These tunable N-path filters are typically assumed to be driven by 

a source having a 50-Ω impedance and a load impedance that is modeled as a 

capacitor.  However, impedances on the source side and the load side of an N-path 

filter may vary for multiple reasons.  For example, environmental effects and user 

interaction with the antenna can cause a deviation in source impedance from the 

 
1 A version of this chapter has been accepted for publication on IEEE TCAS II: Express Briefs.  
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standard 50 Ω and corresponding voltage standing wave ratio (VSWR) of 1:1 to a 

VSWR of 2:1 [3], [4].  In addition, the frequency response of the load impedance 

(also called the baseband impedance) can be affected by non-idealities of the 

passive and active loads used in N-path filter design [5], [6], [7] and [8].  Such 

impedance variations can result in significant deviations of the center frequency 

and bandwidth of N-path filters, which merit consideration in their design; for 

example, in [9], an impedance-matching technique was proposed to counter the 

effects of antenna impedance variation on N-path filters working as receiver front-

ends.  

 Despite the apparent simplicity of the N-path filter circuit, to the best of our 

knowledge, general analytical expressions for the harmonic transfer functions 

(HTFs) of an N-path filter with arbitrary source and load impedances have not been 

derived.  Due to the linear, periodically time-varying (LPTV) nature of N-path 

filters, their characterization in the presence of arbitrary source and load 

impedances remains challenging using existing approaches [6] – [20]. 

 

Table 1.1. 3GPP Bands 

Band 

Group 

Frequency 

Range  
Band Number 

Low-band 600-1000 MHz 5, 8, 12, 13, 14, 17, 18, 19, 20, 

26, 27, 28, 44, 68, 71 

Mid-band 1500-2200 MHz 1, 2, 3, 4, 10, 11, 21, 24, 25, 33, 

34, 35, 36, 37, 39, 65, 66, 70 

High-band 2300-2700 MHz 7, 30, 38, 40, 41 

Ultra-High-

band 

3300-3800 MHz 22, 42, 43 

5G-band 3300-4900 MHz 77, 78, 79 

LAA-band 4990-6000 MHz 46 
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Fig. 2.1. (a) Differential N-path filter with arbitrary source and baseband impedances, 𝑍𝑆(𝜔) and 𝑍BB(𝜔), 

respectively. (b) Switching signals with frequency 𝑓LO = 2𝜋/𝑇LO. 

 

Recently, [10] obtained the HTFs of N-path filters using conversion 

matrices, an approach that was initially proposed in [11] to analyze general LPTV 

circuits.  While this matrix-based approach is indeed a promising tool to analyze 

LPTV systems, the source and load impedances need to be defined by specifying 

lumped elements instead of arbitrary functions of frequency, and the HTFs can only 

be solved numerically, requiring the inversion of a large matrix typically of a size 

exceeding 1000 x 1000, which may limit insight.  Another earlier work [12] used a  

state-space analysis, originally proposed in [13] for the analysis of LPTV circuits, 

to derive closed-form analytical expressions for the HTFs of an N-path filter in the 
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special case where the source impedance was a series resistor-inductor (RL) 

network and the baseband impedances were capacitors.  The derived expressions 

show excellent agreement with simulation, but utilization of this approach to obtain 

expressions for the HTFs with general source and baseband impedances becomes 

more complicated.  Other approaches published to date derived the HTFs of an N-

path filter by making several simplifying assumptions, such as the source 

impedance being purely resistive [14], [15], [16], [17] the source impedance being 

modeled by a specific resistor-inductor-capacitor (RLC) configuration [6], the load 

impedance being modeled as an ideal capacitor or resistor-capacitor (RC) 

configuration [15], or considering only frequencies close to the local oscillator 

(LO), [7], [8], [18], [19] and [20]. 

It is noteworthy that other approaches have been presented to analyze a 

variety of LPTV circuits.  In [21], mixers and samplers are analyzed by 

decomposing the circuits into polyphase multipath RC kernels.  Analysis of 

transistor RC circuits using signal-flow graphs was presented in [22] and [23], and 

in [24], the transfer characteristics of a sample-and-hold circuit was obtained by 

utilizing an infinite series of impulse responses in the time domain. 

In this thesis, we add to the existing body of approaches [6] – [20] 

specifically for N-path filters by presenting an intuitive approach to obtain 

analytical expressions for the HTFs.  The relation between input current and output 

voltage for the N-path network is determined using a time-domain analysis similar 

to the steps presented in [25], but now for an arbitrary number of paths 𝑁.  Then, 
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by applying a Fourier transform, expressions for the frequency-translated input 

impedances to the N-path network are derived in the frequency domain.  The 

derivation then utilizes this input impedance, based on an “Ohm’s-law” form to the 

filter response, to establish approximate forms for the HTFs.  By then considering 

multiple up- and down-conversion paths resulting from the LPTV nature of the 

filter, and by using a feedback visualization, the approximate expressions are 

generalized into exact infinite-series forms, with a clear interpretation for each of 

the terms that must appear.  Throughout the derivation, the source and baseband 

impedances, 𝑍𝑆(𝜔) and 𝑍BB(𝜔), as shown in Fig. 2.1(a), are kept as general 

functions of frequency 𝜔, with the only condition being that 𝑍BB(𝜔) be band-

limited in nature.  The resulting analytical expressions thus apply to a wide-range 

of RLC configurations representing 𝑍𝑆(𝜔) and 𝑍BB(𝜔), allowing us to 

accommodate effects such as antenna impedance variation in 𝑍𝑆(𝜔) and baseband 

impedance variation in  𝑍BB(𝜔).     

 In Section 2.2 of this chapter, we present the derivation of the HTFs as we 

have just described.  The analysis is focused on a differential N-path filter due to 

its practical advantage over a single-ended configuration, but for completeness, 

expressions for a single-ended N-path filter are also provided.  In Section 2.3, a 

simplified approach is offered for a quick prediction of the filter response using the 

approximate HTF expressions and without the need for heavy calculation.  In 

Section 2.4, we compare our expressions, both the full infinite-series forms and the 

simplified forms, to simulation and discuss their accuracy and limitations.  Results 
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are obtained for different numbers of paths N and by varying the LO frequency 

around the center of a band group.  In Section 2.5, we apply our expressions to 

examine the impact of source and baseband impedance.  The source impedance is 

changed from a VSWR of 1:1 to a VSWR of 3:1, and it is shown that the center 

frequency and bandwidth of the N-path filter vary by 5% and 50%, respectively, 

necessitating the need for tuning circuits. Similarly, the impact of the baseband 

impedance variation is also studied.  Finally, the conclusions of our work are 

presented in Section 2.6.   

 

2.2 Derivation of HTFs  

We start with deriving expressions for the HTFs of the differential N-path filter 

with a source impedance 𝑍S(𝜔) and baseband impedance 𝑍BB(𝜔), as depicted in 

Fig. 2.1 (a).  Let us define the waveforms 𝑠𝑙(𝑡) that are driving the switches 𝑠𝑙 of 

the filter, with 1 ≤ 𝑙 ≤ 𝑁 and 𝑁 being the number of paths, as shown over one 

period 𝑇LO of the LO in Fig. 2.1 (b):   

 

𝑠𝑙(𝑡) = {  1, (𝑙 − 1)
𝑇LO

𝑁
< 𝑡 < 𝑙

𝑇LO

𝑁
0,                              otherwise

  (2.1) 

   

When 𝑠𝑙(𝑡) is equal to 1, the switch 𝑠𝑙 is ON (closed) and the switch resistance is 

zero; otherwise, the switch is OFF (open) and the switch resistance is infinite. 
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2.2.1 Relationship Between Input Current and Output Voltage 

When one of the N-path switches is open, the current ±𝑖𝑆(𝑡) delivered by the source 

cannot flow through the corresponding baseband impedance 𝑍BB.  On the other 

hand, a closed switch makes the current through the corresponding 𝑍BB equal to 

±𝑖𝑆(𝑡).  Hence, the time-dependent current 𝑖BB𝑙(𝑡) through 𝑍BB of the 𝑙𝑡ℎ path can 

be written as 

 

𝑖BB𝑙(𝑡) = [𝑠𝑙(𝑡) − 𝑠𝑘(𝑡)] ∙ 𝑖𝑆(𝑡) (2.2) 

 

 
 

  

where 𝑘 ≡ {[(𝑙 − 1) +
𝑁

2
]  mod 𝑁} + 1, defined such that for each (𝑙, 𝑘) pair, 𝑠𝑙(𝑡) 

and 𝑠𝑘(𝑡) are shifted in time by 𝑇LO/2, i.e., are out of phase by 180o.  Here, and in 

the analysis to follow, lowercase symbols will be used to represent time-domain 

quantities and uppercase symbols to represent their corresponding Fourier 

transforms (e.g., 𝐼𝑆(𝜔) = ℱ{𝑖𝑆(𝑡)}). 

The voltage across 𝑧BB(𝑡) in the 𝑖𝑡ℎpath is the time-domain convolution 

between 𝑧BB(𝑡) and the current through the 𝑖𝑡ℎ path:  

 

𝑣BBi(𝑡) = {[𝑠𝑖(𝑡) − 𝑠𝑗(𝑡)] ∙ 𝑖𝑆(𝑡)} ⊛ 𝑧BB(𝑡) (2.3) 

  

 

where the symbol ⊛ represents the convolution-integral operation.  Since the 

switches connected to the positive node of the output voltage are never ON 
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simultaneously, this voltage can be written as a sum of non-overlapping 

components 𝑠𝑖(𝑡) ∙ 𝑣BBi(𝑡): 

 

𝑣out+(𝑡) = ∑𝑠𝑖(𝑡) ∙ 𝑣BBi(𝑡)

𝑁

𝑖=1

  (2.4) 

 

Taking the (non-unitary) Fourier transform of (2.4), one obtains the frequency 

response relation 𝑉out+(𝜔) = ∑ ℱ{𝑠𝑖(𝑡) ∙ 𝑣BBi(𝑡)}
𝑁
𝑖=1 , where 

 

ℱ{𝑠𝑖(𝑡) ∙ 𝑣BBi(𝑡)} 
 

 

=
1

4𝜋2
𝑆𝑖(𝜔) ⊛ {[[𝑆𝑖(𝜔) − 𝑆𝑘(𝜔)] ⊛ 𝐼𝑆(𝜔)] ∙ 𝑍BB(𝜔)} 

 

(2.5) 

 

Here, in (2.5), by recognizing that the waveforms 𝑠𝑖(𝑡) are periodic with period 

𝑇LO, the Fourier transform 𝑆𝑖(𝜔) of 𝑠𝑖(𝑡) in (2.1) can be expressed as 

 

𝑆𝑖(𝜔) = 

ℱ{𝑠𝑖(𝑡)} = ∑ 𝑎𝑝 ∙ 𝛿(𝜔 − 𝑝 ∙ 𝜔LO) ∙ 𝑒−𝑗
2𝜋
𝑁

(𝑖−1)

∞

𝑝=−∞

 
(2.6) 

 

where 𝜔LO = 2𝜋/𝑇LO and 𝑎𝑝 =
2𝜋

𝑁
sinc (

𝑝𝜋

𝑁
), with 𝑝 ∈ 𝒵 and 𝒵 denoting the set of 

integers.  Using (2.6), algebraic manipulation can be used to reveal that (2.5) can 

be expressed in the following form:   
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ℱ{𝑠𝑖(𝑡) ∙ 𝑣BBi(𝑡)} 
 

 

=
1

4𝜋2
∑ ∑ {𝑎𝑝𝑎𝑞𝑒

−𝑗(𝑝+𝑞)
2𝜋
𝑁

(𝑖−1)
(1 − 𝑒−𝑗𝜋𝑞)

∞

𝑞=−∞

∞

𝑝=−∞

 

 

 

∙ 𝑍BB(𝜔 − 𝑝𝜔LO) ∙ 𝐼𝑆[𝜔 − (𝑝 + 𝑞)𝜔LO]} (2.7) 

 

where 𝑝, 𝑞 ∈ 𝒵.  Hence, the Fourier transform of 𝑣out+(𝑡) in (2.4) becomes 

 

𝑉out+(𝜔) =
1

4𝜋2
∑ ∑ {𝑎𝑝𝑎𝑞 ∙ χ𝑝,𝑞

∞

𝑞=−∞

∞

𝑝=−∞

  

∙ 𝑍BB(𝜔 − 𝑝𝜔LO) ∙ 𝐼𝑆[𝜔 − (𝑝 + 𝑞)𝜔LO]} (2.8) 

 

where 

χ𝑝,𝑞 = ∑𝑒−𝑗(𝑝+𝑞)
2𝜋
𝑁

(𝑖−1)

𝑁

𝑖=1

(1 − 𝑒−𝑗𝜋𝑞) 

 

 

 

= {
2𝑁,   𝑝 + 𝑞 = 𝑁 ∙ ℎ,   ℎ ∈ 𝒵 and 𝑝, 𝑞 odd
0,                                                  otherwise

 

 
(2.9) 

 

Consequently, 𝑉out+(𝜔) in (2.8) can be simplified to read 

 

𝑉out+(𝜔) =
𝑁

2𝜋2
∑ ∑ {𝑎𝑝𝑎𝑞 ∙

∞

𝑞=−∞

∞

𝑝=−∞

𝑍BB(𝜔 − 𝑝𝜔LO) 

 

 

∙ 𝐼𝑆[𝜔 − (𝑝 + 𝑞)𝜔LO]} (2.10) 
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with 𝑝 + 𝑞 = ℎ ∙ 𝑁, ℎ ∈ 𝒵 and 𝑝, 𝑞 odd. 

Using a similar approach, an expression can be derived for 𝑉out−(𝜔), and it can be 

shown that 𝑉out−(𝜔) = −𝑉out+(𝜔).  Finally, the differential output voltage of the 

N-path filter, defined as 𝑉out(𝜔) = 𝑉out+(𝜔) − 𝑉out−(𝜔), can then be determined 

as 

 

𝑉out(𝜔) =
𝑁

𝜋2
∑ ∑ {𝑎𝑝 𝑎𝑞 𝑍BB(𝜔 − 𝑝𝜔LO)

∞

𝑞=−∞

∞

𝑝=−∞

 

 

 

∙ 𝐼𝑆[𝜔 − (𝑝 + 𝑞)𝜔LO]} (2.11) 

 

where 𝑝 + 𝑞 = ℎ ∙ 𝑁, ℎ ∈ 𝒵 and 𝑝, 𝑞 are odd. 

It is to be noted that any non-zero ON resistance (or impedance) of the N-

path switches can be absorbed into the baseband impedance 𝑍BB as a series 

component without loss of generality.  

 

2.2.2 Frequency-Translated Input Impedances 

To further simplify (2.11), we define a frequency-translated input impedance 

looking into the 𝑁 paths as 

 

𝑍in,𝑚(𝜔) =
𝑁

𝜋2
∑ 𝑎𝑝 𝑎𝑚−𝑝 𝑍BB(𝜔 − 𝑝𝜔LO)

∞

𝑝=−∞

 (2.12) 

 



  

 

23 

 

with 𝑚 = 𝑝 + 𝑞 = ℎ ∙ 𝑁, ℎ ∈ 𝒵, and 𝑝, 𝑞 odd.  Using (2.12), (2.11) can be rewritten 

as 

                     𝑉out(𝜔) = ∑ 𝑍in,𝑚(𝜔) ∙

∞

𝑚=−∞

𝐼𝑆(𝜔 − 𝑚 ∙ 𝜔LO) 

                                      = 𝑍in,0(𝜔) 𝐼𝑆(𝜔) 

      +𝑍in,𝑁(𝜔) 𝐼𝑆(𝜔 − 𝑁𝜔LO) + 𝑍in,−𝑁(𝜔) 𝐼𝑆(𝜔 + 𝑁𝜔LO) 

+𝑍in,2𝑁(𝜔) 𝐼𝑆(𝜔 − 2𝑁𝜔LO)+𝑍in,−2𝑁(𝜔) 𝐼𝑆(𝜔 + 2𝑁𝜔LO) 

+⋯ (2.13) 

 

where the sum in (2.13) contains terms only for choices 𝑚 = 0,±𝑁,±2𝑁,±3𝑁,⋯, 

and for each 𝑚, the summation in (2.12) for 𝑍in,𝑚(𝜔) is to be evaluated for all odd 

𝑝 such that 𝑚 − 𝑝 is also an odd integer. 

The frequency-translated relation between 𝐼𝑆(𝜔) and 𝑉out(𝜔) in (2.13) is a 

result of the LPTV nature of N-path filters, involving an infinite number of 

sidebands at frequencies ±𝑚𝜔LO [26].  In (2.13), it will be useful to define the 

argument of the summation as a voltage quantity 𝑉out,𝑚(𝜔): 

 

𝑉out,𝑚(𝜔) = 𝑍in,𝑚(𝜔) ∙ 𝐼𝑆(𝜔 − 𝑚𝜔LO) (2.14) 

 

As we will explain shortly in subsection 2.2.4 below, 𝑉out,𝑚(𝜔) can be interpreted 

as the component of output voltage that has resulted from the N-path filter action 

causing the frequency shift of an input current 𝐼𝑆(𝜔) by 𝑚𝜔LO.   
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2.2.3 Harmonic Transfer Functions 

From the general input-output relation of an LPTV system [26], it is known that the 

input-output voltage relation of an N-path filter is of the following form: 

 

𝑉out(𝜔) = ∑ 𝐻𝑚(𝜔)

∞

𝑚=−∞

∙ 𝑉in(𝜔 − 𝑚𝜔LO)  (2.15) 

 

where 𝐻𝑚(𝜔) is the 𝑚th-order HTF, with 𝐻𝑚(𝜔) ≠ 0 for 𝑚 =

0, ±𝑁,±2𝑁,±3𝑁,⋯,  and 𝐻𝑚(𝜔) = 0 otherwise [26].  The goal is to find 

expressions for the HTFs 𝐻𝑚(𝜔) in terms of circuit parameters.  To do that, we will 

use an interpretative approach, as discussed in the following subsections. 

 

2.2.4 Interpretation of 𝒁𝐢𝐧,𝒎(𝝎) and 𝑽𝐨𝐮𝐭,𝒎(𝝎) 

A.  Meaning of 𝑽𝐨𝐮𝐭,𝒎(𝝎): 

From the basics of switching operation, we know that the input current 𝐼𝑆(𝜔) in 

Fig. 2.1 (a) gets up- and down-converted by each pair (𝑠𝑖, 𝑠𝑗) of the N-path switches 

to appear as the currents 𝐼BB𝑖(𝜔).  These frequency translations of 𝐼𝑆(𝜔) are 

denoted by 𝑝 ∙ 𝜔LO, where 𝑝 is an odd integer since the switches in this case are 

differential and driven at a fundamental frequency𝜔LO.  The resulting voltages 

𝑉BB𝑖(𝜔)across the impedances 𝑍BB(𝜔) will again get up and down-converted by 

the switches to appear as an output voltage component, with the frequency 

translation in these cases denoted by 𝑞 ∙ 𝜔LO, where 𝑞 is an odd integer, for a total 
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frequency translation of 𝐼𝑆(𝜔) being (𝑝 + 𝑞) ∙ 𝜔LO.  We can imagine such 

contributions from each pair of switches (𝑠𝑖 , 𝑠𝑗), i.e., from each of the 𝑁 paths,  

adding to create an output voltage component that we can label as 𝑉out,𝑚(𝜔), where 

𝑚 = 𝑝 + 𝑞 indexes the frequency translation.  Here, the phase relations among the 

N-path switches can be shown to ensure that the only translations to survive are 

those for which 𝑚 is an integer multiple of the number of paths 𝑁.  

Thus, 𝑉out,𝑚(𝜔) is the output-voltage component resulting from a frequency 

translation of an input current 𝐼𝑆(𝜔) by 𝑚 ∙ 𝜔LO  due to the N-path switching, where 

𝑚 = 𝑝 + 𝑞 must be an integer multiple of 𝑁, and 𝑝 and 𝑞 must be odd. Adding the 

contributions 𝑉out,𝑚(𝜔) over all possible frequency translation paths 𝑚 will yield 

the final output voltage 𝑉out(𝜔)as embodied by the combination of (2.13) and 

(2.14): 𝑉out(𝜔) = ∑ 𝑉out,𝑚(𝜔)∞
𝑚=−∞ .  

 

A.  Meaning of 𝒁𝐢𝐧,𝒎(𝝎): 

Since 𝑉out,𝑚(𝜔) is created from 𝐼𝑆(𝜔) being frequency shifted by 𝑚𝜔LO, we can 

define an associated impedance 𝑉out,𝑚(𝜔)/𝐼𝑆(𝜔 − 𝑚𝜔LO), which according to 

(2.6) is 𝑍in,𝑚(𝜔).  𝑍in,𝑚(𝜔) can hence be interpreted as an input impedance to the 

N-path filter, through which 𝐼𝑆(𝜔 − 𝑚𝜔LO) must flow to create the output voltage 

component  𝑉out,𝑚(𝜔). 
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2.2.5 Approximate Form of 𝑯𝟎(𝝎) 

Let us consider an example of an N-path filter with 𝑁 = 4, with the input voltage 

𝑉in(𝜔) set to a single tone at 𝜔in.  The linearity of the LPTV system confirms that  

Fig. 2.2. Primary (𝑝 + 𝑞 = 0) up- and down-conversion paths of a single-tone input.  The paths are shown 

for illustration, as discussed in the text, with the components drawn only to show their position on the 

frequency axis, not their relative magnitudes. We have assumed a 4-path filter for the sake of discussion. The 

sketch applies to a single pair of switches (𝑠𝑖 , 𝑠𝑗) in Fig. 2.1 (a), and summing the illustrated contribution 

over all the switch pairs yields 𝑉out,0(𝜔). 
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𝑉in(𝜔) will create a tone in 𝐼𝑆(𝜔) at the same frequency 𝜔in.  With this input, we 

look at the frequency-translation paths that satisfy the relation 𝑝 + 𝑞 = 0 ∙ 𝑁 = 0,  

as illustrated in Fig. 2.2 for a single pair of switches (𝑠𝑖, 𝑠𝑗).  The tone in 𝐼𝑆(𝜔) at 

𝜔in will get up- and down-converted by 𝑝 ∙ 𝜔LO to appear as 𝐼BBi(𝜔), where 

positive 𝑝 represents up-conversion and negative 𝑝 represents down-conversion.  

The resulting voltage 𝑉BBi(𝜔) across the corresponding 𝑍BB(𝜔) due to the current 

𝐼BBi(𝜔) will get up- and down-converted by 𝑞 ∙ 𝜔LO to contribute to the output 

voltage, with  𝑞 = −𝑝 to guarantee 𝑝 + 𝑞 = 0.  Adding all such contributions from 

all the switch pairs (𝑠𝑖, 𝑠𝑗), which could be illustrated with similar diagrams, gives 

the output voltage component 𝑉out,0(𝜔).  As illustrated in Fig. 2.2, 𝑉out,0(𝜔) thus 

represents the most direct way that the N-path switching can cause a voltage 

component to appear at the original input frequency 𝜔in, and hence the most direct 

contribution determining 𝐻0(𝜔).  We can hence make a first-order approximation 

to 𝐻0(𝜔) as follows: 

 

𝐻0(𝜔) ≈
𝑉out,0(𝜔)

𝑉in(𝜔)
  (2.16) 

 

Now, from (2.14), we know 𝑉out,0(𝜔) is created by 𝐼𝑆(𝜔) flowing through 𝑍in,0(𝜔): 

 

𝑉out,0(𝜔) = 𝑍in,0(𝜔) ∙ 𝐼𝑆(𝜔) (2.17) 

 

Furthermore, an expression for the input voltage 𝑉in(𝜔) follows from applying 
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Kirchhoff’s voltage law to the circuit of Fig. 2.1(a): 

 

𝑉in(𝜔) = 𝑍𝑆(𝜔) ∙ 𝐼𝑆(𝜔) + 𝑉out(𝜔) (2.18) 

 

From (2.13) and (2.14), the total output voltage is 𝑉out(𝜔) = ∑ 𝑉out,𝑚(𝜔),∞
𝑚=−∞  

and from the basics of N-path switching, we can expect the fundamental component 

𝑉out,0(𝜔) to be the dominant term in this sum, i.e., to a first approximation, we can 

use 𝑉out(𝜔) ≈ 𝑉out,0(𝜔), and thus (2.17) and (2.18) imply 

 

𝑉in(𝜔) ≈ 𝑍𝑆(𝜔) ∙ 𝐼𝑆(𝜔) + 𝑍in,0(𝜔) ∙ 𝐼𝑆(𝜔) (2.19) 

 

Now solving for 𝐼𝑆(𝜔) 

 

𝐼𝑆(𝜔) ≈
𝑉in(𝜔)

𝑍𝑆(𝜔) + 𝑍in,0(𝜔)
 

(2.20) 

 

The use of (2.20) is equivalent to the first-order approximation that the filter 

behaves like a simple impedance 𝑍in,0(𝜔) for the purposes of relating 𝑉in(𝜔) and 

𝐼𝑆(𝜔), and we will see that this approach is sufficient to obtain approximate results 

for the HTFs.  For example, using (2.20) in (2.17), along with (2.16), yields an 

approximate expression for the zeroth-order HTF as 
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𝐻0(𝜔) ≈
𝑍in,0(𝜔)

𝑍𝑆(𝜔) + 𝑍in,0(𝜔)
 ≡ 𝐻0

′(𝜔) (2.21) 

 

where here and elsewhere in this thesis, the primed notation shall be used to refer 

explicitly to the approximate forms of the HTFs.   

It is important to note that in deriving the approximate form (2.21) for 

𝐻0(𝜔), only the most direct frequency-translation paths (which we will call the 

primary frequency-translation paths) leading to an output component at 𝜔in have 

been considered, i.e., only those paths involving 𝑝 + 𝑞 = 0, as illustrated in Fig. 

2.2, have been considered.  To get the exact expression for  𝐻0(𝜔), all possible 

frequency paths leading to an output component at 𝜔in need to be considered, and 

we will correct (2.21) to account for such paths after first obtaining approximate 

forms for 𝐻𝑚(𝜔),𝑚 ≠ 0. 

 

2.2.6 Approximate Form of 𝑯𝒎(𝝎),𝒎 ≠ 𝟎 

Continuing the example of a filter with 𝑁 = 4 from the previous subsection, let us 

discuss the frequency-translation paths involving 𝑝 + 𝑞 = 4. As shown in the top 

half of Fig. 2.3, up- and down-conversions corresponding to these paths will lead 

an input current tone at frequency 𝜔in to create an output voltage component at a 

frequency 𝜔in + 4𝜔LO, which is 𝑉out,4(𝜔).  This is the most direct way an output 

voltage component can appear at 𝜔in + 4𝜔LO and hence contribute to 𝐻4(𝜔).  

Thus, as in the previous subsection, a first-order approximation of 𝐻4(𝜔) is 
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Fig. 2.3. Secondary (𝑝 + 𝑞 = ±4)  up- and down-conversion paths of a single-tone input.  The paths are 

shown for illustration, as discussed in the text, with the components drawn only to show their position on the 

frequency axis, not their relative magnitudes.   
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𝐻4(𝜔) ≈
𝑉out,4(𝜔)

𝑉in(𝜔 − 4𝜔LO)
  (2.22) 

 

However, from (2.14), 𝑉out,4(𝜔) results from 𝐼𝑆(𝜔 − 4𝜔LO) flowing through 

𝑍in,4(𝜔),  

 

𝑉out,4(𝜔) = 𝑍in,4(𝜔) ∙ 𝐼𝑆(𝜔 − 4𝜔LO) (2.23) 

 

and by continuing to assume that 𝑉in(𝜔) and 𝐼𝑆(𝜔) are dominated by the 

fundamental filter output 𝑉out,0(𝜔), even though our focus is now on 𝐻4(𝜔), we 

can again employ (2.20) with a frequency translation of 4𝜔LO, and use the result to 

combine (2.22) and (2.23), thus obtaining an approximate expression for the fourth-

order HTF: 

 

𝐻4(𝜔) ≈
𝑍in,4(𝜔)

𝑍𝑆(𝜔 − 4𝜔LO) + 𝑍in,0(𝜔 − 4𝜔LO)
≡ 𝐻4

′(𝜔) 

 

(2.24) 

 

The above approach will hold for any 𝑚 = 𝑝 + 𝑞, where 𝑚 is an integer 

multiple of 𝑁.  Hence, an approximation for the mth-order HTF can be found as  

 

𝐻𝑚(𝜔) ≈
𝑍in,𝑚(𝜔)

𝑍𝑆(𝜔 − 𝑚𝜔LO) + 𝑍in,0(𝜔 − 𝑚𝜔LO)
≡ 𝐻𝑚

′ (𝜔) (2.25) 
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2.2.7 Exact Expressions for the HTFs  

As shown in the middle of Fig. 2.3, the output voltage component 𝑉out,4(𝜔) can be 

viewed as acting like a feedback into the input of the filter, creating a component 

in input current 𝐼𝑆(𝜔) at the same frequency, but with a phase (not shown in Fig. 

2.3) that opposes 𝑉in(𝜔),  consistent with KVL in (2.18).  As further illustrated in 

Fig. 2.3, this component in 𝐼𝑆(𝜔) at 𝜔in + 4𝜔LO can go through up- and down-

conversion paths corresponding to 𝑝 + 𝑞 = −4, creating an output voltage 

component at the frequency 𝜔in, as shown in the bottom half of Fig 3, and the 

impact of this frequency translation by −4𝜔LO can be represented by the 

approximate version of the fourth-order, frequency-shifted HTF 𝐻′
−4(𝜔 − 4𝜔LO).  

In fact, the overall input- to output-voltage frequency translation shown from the 

top to the bottom of Fig. 2.3, which lands an output component back at 𝜔in, can be 

represented by the effects of a product of 𝐻′4(𝜔) and −𝐻′−4(𝜔 − 4𝜔LO), and this 

product must contribute to 𝐻0(𝜔), where the minus sign is needed on 

−𝐻′−4(𝜔 − 4𝜔LO) because the feedback component 𝑉out,4(𝜔) has a phase that is 

opposite to that of 𝑉in(𝜔). 

   The act of an output-voltage component feeding back into the filter can be 

represented by the block diagram in Fig. 2.4, where the action of the transfer-

function components 𝐻′
4(𝜔) and −𝐻′−4(𝜔 − 4𝜔LO) just discussed are shown for 

illustration.  Of course, many such combinations are possible.       
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Fig. 2.4. Effects of secondary frequency-translation paths involving 𝑝 + 𝑞 = ±4 represented by a feedback 

block diagram. 

 

An overall combination where the feedback is used once can be called a secondary 

frequency-translation path (in contrast to the primary paths considered in subsection 

2.2.5).  To correct the earlier approximate expression (2.21) for 𝐻0(𝜔), we must 

add the impact of all such secondary paths: 

 

𝐻0(𝜔) = 𝐻′
0(𝜔) − 𝐻′

4(𝜔) ∙ 𝐻′
−4(𝜔 − 4𝜔LO) + ⋯ (2.26) 

 

where only the secondary path explicitly discussed so far is shown for now in 

(2.26).  However, even further correction beyond the secondary paths is necessary.   

Further contributions to 𝐻0(𝜔) can occur due to frequency translation paths 

involving the feedback path twice.  For example, the original input voltage 𝑉in(𝜔) 
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can be translated by 𝐻′0(𝜔) and then fed back into the filter and translated by 

𝐻′
4(𝜔), and then again fed back into the filter and translated by 𝐻′−4(𝜔 − 4𝜔LO).  

These kinds of paths, that use the feedback path twice, can be called tertiary 

frequency-translation paths.  Since the phase reversal happens twice in these paths, 

the terms representing them will have a positive sign, and based on the discussion 

so far, we would write 

 

𝐻0(𝜔) = 𝐻′0(𝜔) − 𝐻′4(𝜔) ∙ 𝐻′−4(𝜔 − 4𝜔LO) 
 

                     + 𝐻′0(𝜔) ∙ [𝐻′4(𝜔) ∙ 𝐻′
−4(𝜔 − 4𝜔LO)] 

 

                      +⋯ 
(2.27) 

 

where only the corrections explicitly discussed so far are shown in (2.27). 

If we account for all possible secondary and tertiary, and even higher-order 

paths, based on this feedback visualization, it is possible to write a general 

expression for 𝐻0(𝜔) that starts with the first term as the approximate result 𝐻′0(𝜔) 

specified by (2.21) and then includes all possible corrections, each of which will 

involve terms with factors comprised of the approximate transfer functions 𝐻′𝑟(𝜔), 

and 𝐻′𝑟(𝜔 − 𝑠𝜔LO), with 𝑟, 𝑠 being integer multiples of 𝑁.  In executing such a 

procedure, we note that factors we might envisage containing higher powers 

[𝐻′𝑟(𝜔 − 𝑠𝜔LO)]𝑛, 𝑛 > 1 must be excluded, because they would represent an 

overlapping of identical frequency-translation paths, and hence would amount to 

double-counting.  



  

 

35 

 

In addition, factors involving frequency translations of 𝐻′0(𝜔), such as  

𝐻′0(𝜔 − 𝑢𝜔LO), with 𝑢 being a non-zero integer multiple of 𝑁, should not appear, 

because they would contradict the definition of 𝐻′0 as the fundamental filter 

transfer function, which implies no frequency translation.  Using these ideas, one 

can write out the exact expression for the zeroth-order HTF of an N-path filter in 

infinite-series form, given by (2.28) with 𝑚 = 0, where 𝛿𝑚,0 refers to the Kronecker 

delta and 𝑖, 𝑗, 𝑘, 𝑙 are non-zero integer multiples of 𝑁.  While the result may appear 

involved, the form simply follows from our discussion and visualization of filter 

operation, which corrects the approximate transfer functions by way of the 

simplified feedback visualization.  

Similarly, using the feedback visualization but with a net frequency shift of 

𝑚𝜔LO, one can write the exact expression for the mth-order HTF, where  𝑚 is a 

non-zero integer multiple of 𝑁, by correcting the earlier approximate expression 

(2.25), with the result specified again by (2.28) but with 𝑚 ≠ 0.  In (2.28) for 𝑚 ≠

0, terms with [𝐻′𝑟(𝜔 − 𝑠𝜔LO)]𝑛, 𝑛 > 1and 𝐻′0(𝜔 − 𝑢𝜔LO), with 𝑟, 𝑠 being integer 

multiples of 𝑁 and 𝑢 being a non-zero integer multiple of 𝑁 do not appear for the 

same reasons stated earlier.  In these expressions, if the order of the term is 𝑥, the 

frequency-translation paths associated with those terms use the feedback path 

(𝑥 − 1) times.  Hence, all odd-order terms have positive signs and all even-order 

terms have negative signs.  
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𝐻𝑚(𝜔) = 𝐻′𝑚(𝜔) − [1 − 𝛿𝑚,0] ∙ 𝐻′
0(𝜔)𝐻′

𝑚(𝜔) 

−

[
 
 
 
 

∑ 𝐻′𝑖(𝜔)𝐻′𝑗(𝜔 − 𝑖𝜔LO)

𝑖+𝑗=𝑚
𝑖,𝑗≠0 ]

 
 
 
 

+ 𝐻′
0(𝜔) ∙

[
 
 
 
 

∑ 𝐻′
𝑖(𝜔)𝐻′

𝑗(𝜔 − 𝑖𝜔LO)

𝑖+𝑗=𝑚
𝑖,𝑗≠0 ]

 
 
 
 

 

 

+  

[
 
 
 
 

∑ 𝐻′𝑖(𝜔)𝐻′𝑗(𝜔 − 𝑖𝜔LO)𝐻′𝑘[𝜔 − (𝑖 + 𝑗)𝜔LO]

𝑖+𝑗+𝑘=𝑚
𝑖,𝑗,𝑘≠0 ]

 
 
 
 

 

−𝐻′
0(𝜔) ∙

[
 
 
 
 

∑ 𝐻′
𝑖(𝜔)𝐻′

𝑗(𝜔 − 𝑖𝜔LO)𝐻′
𝑘[𝜔 − (𝑖 + 𝑗)𝜔LO]

𝑖+𝑗+𝑘=𝑚
𝑖,𝑗,𝑘≠0 ]

 
 
 
 

 

−

[
 
 
 
 

∑ 𝐻′𝑖(𝜔)𝐻′𝑗(𝜔 − 𝑖𝜔LO)𝐻′𝑘[𝜔 − (𝑖 + 𝑗)𝜔LO]

𝑖+𝑗+𝑘+𝑙=𝑚
𝑖,𝑗,𝑘,𝑙≠0

𝐻′𝑙[𝜔 − (𝑖 + 𝑗 + 𝑘)𝜔LO]

]
 
 
 
 

 

 

First-order  

approximation 
Impact of 2nd-order paths 

involving 𝐻′
0(𝜔)   

 Impact of 2nd-order paths not 

involving 𝐻′
0(𝜔)   

 Impact of 3rd-order paths 

involving 𝐻′
0(𝜔)   

 Impact of 3rd-order paths not involving 𝐻′
0(𝜔)   

 Impact of 4th-order paths involving 𝐻′
0(𝜔)   

 Impact of 4th-order paths not involving 𝐻′
0(𝜔)   
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+ 𝐻′
0(𝜔) ∙ 

[
 
 
 
 

∑ 𝐻′𝑖(𝜔)𝐻′𝑗(𝜔 − 𝑖𝜔LO)𝐻′𝑘[𝜔 − (𝑖 + 𝑗)𝜔LO]

𝑖+𝑗+𝑘+𝑙=𝑚
𝑖,𝑗,𝑘,𝑙≠0

𝐻′𝑙[𝜔 − (𝑖 + 𝑗 + 𝑘)𝜔LO]

]
 
 
 
 

 

+⋯ (2.28) 

 

 Finally, it is worth noting that the result (2.28) can also be obtained by using a 

brute-force algebraic approach that involves successively eliminating 𝐼𝑆(𝜔 −

𝑚𝜔LO) from (2.13) using (2.18) and comparing with (2.15); we omit the details of 

this process for the sake of brevity, but mention it to confirm the validity of our 

intuitive approach establishing (2.28).     

 

2.2.8 Single-Ended N-path Filter  

In our previous analysis, a differential N-path was considered.  However, using a 

similar approach, it can be shown that (2.28) can also be used for a single-ended N-

path filter by replacing (2.12) for the frequency-translated input impedance looking 

into the N-path switches with 

 

𝑍in,𝑚(𝜔) =
𝑁

4𝜋2
∑ 𝑎𝑝 𝑎𝑚−𝑝 𝑍BB(𝜔 − 𝑝𝜔LO)

∞

𝑝=−∞

   (2.29) 

 

 Impact of 5th-order paths involving 𝐻′
0(𝜔)   
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where 𝑚 = 𝑝 + 𝑞 = ℎ ∙ 𝑁, and 𝑝, 𝑞, and ℎ are integers.  In [27], an expression for 

the input impedance of a single-ended N-path mixer was derived that is a special 

case, which can be obtained by using 𝑚 = 0 and 𝑁 = 4 in the more general 

expression (2.29). 

   

 

 

2.3 Simplified Calculation of HTFs  

In the previous section, we derived the exact expressions for the HTFs in (2.20).  

While we obtained these expressions on an intuitive basis, using them for 

calculations could be tedious.  A key simplification can be achieved by recognizing 

that higher-order terms, i.e., involving more factors of the approximate transfer 

functions, represent increasingly involved sequences of frequency-translation 

paths, and each such path weakens the signal contribution, and we can thus expect 

the significance of the terms to decrease with their order.  Hence, to predict the 

important features of N-path filters, such as 3-dB bandwidth, center frequency, out-

of-band rejection, and passband gain, it is reasonable to employ only the first order-

approximate expressions (2.21) and (2.25), disregarding all the higher-order 

corrections suggested by (2.28).    

In addition, for the purpose of calculating the impedance 𝑍in,𝑛(𝜔) using 

(2.12), which is required in (2.21) and (2.25), we can retain from (2.12) only the 

terms with 𝑝 = 1,−1, 3 and −3, which are the most important for evaluating the 
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filter’s HTFs around its desired operational frequency 𝜔LO, assuming that 𝑍BB(𝜔) 

is band limited, which is the case for practical N-path filters: 

 

𝑍in,𝑛(𝜔) ≈ 
 

4

𝑁
 sinc (

𝜋

𝑁
) sinc (

𝜋(𝑛 − 1)

𝑁
) 

× [𝑍BB(𝜔 − 𝜔LO) + 𝑍BB(𝜔 + 𝜔LO)] 

 

+
4

𝑁
 sinc (

3𝜋

𝑁
) sinc (

𝜋(𝑛 − 3)

𝑁
) 

× [𝑍BB(𝜔 − 3𝜔LO) + 𝑍BB(𝜔 + 3𝜔LO)] 

 

 

(2.30) 

For the rest of the thesis, we will use the term “simplified expressions” to 

refer to the approximate expressions (2.21) and (2.25) in conjunction with (2.30).  

In the next section, we will show these simplified expressions work well to predict 

the important filter characteristics in a number of cases. 

 

 

 

2.4 Verification of Infinite-Series Expressions  

To validate the derived expressions for the HTFs in Section 2.2, we compare results 

from the infinite-series expression in (2.28), and from the simplified expressions in 

(2.21), (2.25), and (2.30), with simulations of the N-path filter circuit in Fig. 2.1(a).    
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First, we choose a 4-path filter (𝑁 = 4) with switch resistance 𝑅sw = 2 Ω and a 

purely capacitive baseband impedance with 𝐶BB = 50 pF.  The source impedance 

is considered to be resistive with 𝑅𝑆 = 50 Ω, and the LO frequency is set to 800 

MHz and then varied to be 600 MHz and 1000 MHz (±200 MHz from the original 

800 MHz), covering the low-band range of Table I.   

All simulations in this thesis were obtained from Cadence SPECTRE, using 

ideal circuit elements such as ideal switches with periodically time-varying switch 

resistance.  Harmonic transfer functions of the N-path filters were found using 

harmonic-balance (HB) analysis, which is a powerful technique to analyze high-

frequency non-linear circuits such as mixers and power amplifiers.  HB analysis is 

a steady-state frequency-domain analysis that can compute circuit responses to one 

or multiple fundamental frequencies under time-varying (periodic and quasi-

periodic) conditions [28].  

To calculate the infinite-series expressions for the HTFs using (2.28), we 

retain only the first four terms on the right side, i.e., up to third-order terms 

involving 𝐻′0(𝜔).  Here, for any sums occurring in the retained terms, the number 

of terms is restricted by limiting the summation indices 𝑖, 𝑗 to ±𝐿, i.e., 𝑖, 𝑗 =

±𝑁,±2𝑁,±3𝑁,⋯ ,±𝐿, where 𝐿 is an integer multiple of 𝑁.  For calculating 

𝑍in,𝑛(𝜔) using (2.12), the number of terms can be limited by restricting the 

summation index 𝑝 in (2.12) to ±𝑀, i.e., 𝑝 = ±1,±3,±5,⋯ ,±𝑀, where 𝑀 is odd.  

Increasing the number of terms in the calculation iteratively and comparing the 

differences in obtained results, one can find how many terms are sufficient for the 
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infinite series to converge, i.e., one can find suitable choices of 𝐿 and 𝑀.  For the 

cases presented in this thesis, it was found that using 𝐿 = 16 and 𝑀 = 21 are 

adequate for convergence and these parameters are used throughout the thesis for 

calculating the infinite series expressions unless specified otherwise.  It is important 

to note that the infinite series in (2.12) and (2.28) will converge only for band-

limited 𝑍BB(𝜔).  The faster the magnitude of 𝑍BB(𝜔) vanishes with frequency, the 

faster the series will converge.  Hence, the choice of the number of terms depends 

on the behavior of 𝑍BB(𝜔).  Generally, increasing the number of paths of the filter 

𝑁 may also require a higher number of terms for achieving convergence. 

Fig. 2.5 shows the filter response 𝐻0(𝜔) from the infinite-series expressions 

are in excellent agreement with simulation, and as expected, the center frequency, 

i.e., the frequency at the peak of the filter response, coincides with the LO 

frequency.  This LO-controlled tuning is one of the key features of N-path filters 

and is correctly predicted by our expressions.  Fig. 2.6 shows our simplified 

expressions predict the filter shape well around the LO frequency.  However, while 

the locations of the peaks at higher harmonics of 𝑓LO are accurately predicted, the 

magnitudes show deviation from simulation. 

Next, we fix the LO frequency to 𝑓LO = 800 MHz and vary the number of 

paths 𝑁 = 4, 8, and 16, holding all other circuit parameters fixed, and continue to 

use 𝑀 = 21 and 𝐿 = 16 for all values of 𝑁 in the calculation of the infinite-series 

expressions.  Close agreement with simulation is demonstrated in Fig. 2.7,  which  
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Fig. 2.5.  Magnitude of filter response 𝐻0(𝑓) from the infinite-series expression (2.28), calculated as 

described in the text, compared with simulation as the LO frequency changes from the center of low-band 

(800 MHz) with 200 MHz offset. 

 

Fig. 2.6.  Magnitude of filter response 𝐻0(𝑓) from the simplified expressions (2.21), (2.25), and (2.30) 

compared with simulation as the LO frequency changes from the center of low-band (800 MHz) with 200 

MHz offset. 
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Fig. 2.7.  Magnitude of filter response 𝐻0(𝑓) from the infinite-series expression (2.28), calculated as 

described in the text, compared with simulation as the number of paths varies (𝑁 = 4, 8, 16). 

 

Fig. 2.8.  Magnitude of filter response 𝐻0(𝑓) from the simplified expressions (2.21), (2.25), and (2.30) 

compared with simulation as the number of paths varies (𝑁 = 4, 8, 16). 
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also shows that doubling the number of paths N effectively halves the bandwidth of 

the response, i.e., the number of paths can dictate the bandwidth of the N-path filter.  

Additionally, our expressions and the simulations show that the passband gain 

increases with 𝑁, since there is decreased loss to higher harmonics.   

In Fig. 2.8, the comparison between our simplified expressions and 

simulation are shown.  The responses around 𝑓LO are well predicted by the 

simplified expressions.  However, the magnitude of the peak at 𝑓LO and the 

passband gain deviates from simulation.  Also, the simplified expressions show 

deviation from simulation at frequencies further away from 𝑓LO and for a higher 

number of paths. 

Overall, these results indicate that the infinite-series expressions with an 

adequate number of terms can predict filter response very closely.  In addition, the 

simplified expressions can be useful for a quick estimation of the filter response, 

but with the tradeoff of diminished accuracy, particularly at frequencies removed 

from 𝑓LO. 
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2.5 Application of Infinite-Series Expressions to Analyze Source 

and Baseband Impedance Variation   

2.5.1 Variation of Source Impedance 𝒁𝑺  

In the previous section, it was shown that the center frequency and bandwidth of 

the filter response can be controlled by the LO frequency and the number of paths 

of the N-path filter. In this section, the consequences of source impedance variation 

on these and other filter characteristics will be investigated.  We will use simulation 

as our reference, but will also compare the results to those predicted by our 

expressions. 

  The source impedance at the fundamental frequency 𝜔LO is varied from a 

perfect matching condition of VSWR=1:1 to modified values situated along 

VSWR=2:1 (𝑆11 = −9.5 dB) and VSWR=3:1 (𝑆11 = −6 dB) circles of a Smith 

Chart, as shown in Fig. 2.9.  A 4-path filter with LO frequency 𝑓LO = 800 MHz 

and switch resistance 𝑅sw = 2 Ω is considered.  The baseband impedance is chosen 

to be purely capacitive; hence, 𝑍BB(𝜔) = 1 𝑗𝜔𝐶BB⁄  with  𝐶BB = 50 pF.   

To implement the varying 𝑍𝑆 , impedance points are selected on the VSWR 

circles, with the reflection coefficient angle ∠Γ (the angle between the real 

impedance line and a vector from the center of the Smith Chart to the impedance 

point) varying from 0o to 360o at 45𝑜 intervals.  For 180o < ∠Γ < 360o, we 

assume a source impedance 𝑍𝑆=𝑅𝑆 + 𝑗𝜔𝐿𝑆 by computing the corresponding values 

of 𝑅𝑆 and 𝐿𝑆 for 𝜔 = 𝜔LO, and for 180o < ∠Γ < 360o, we use 𝑍𝑆 = 𝑅𝑆 + 1 𝑗𝜔𝐶𝑆⁄  

by computing the corresponding values of 𝑅𝑆 and 𝐶𝑆 for 𝜔 = 𝜔LO.   
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Fig. 2.9.  VSWR=1:1, VSWR=2:1, and VSWR=3:1 circles on a Smith Chart.  In the figure, 𝑍𝑆𝛼,𝛽° means 

source impedance for VSWR =𝛼:1 and a reflection coefficient angle of 𝛽°. 

 

 

Fig. 2.10.  Variation of filter response 𝐻0(𝑓) as 𝑍𝑆 varies along the VSWR=2:1 circle. In the legend 𝑍𝑆𝛼,𝛽° 

means source impedance for VSWR= 𝛼:1 and a reflection coefficient angle of 𝛽°.  Results for 𝑍𝑆1,0 are 

provided for reference. 
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The filter responses for such source impedances are plotted in Fig. 2.10 for 

the VSWR=2:1 circle.  In this case, we show results from our infinite-series 

expressions along with results from simulations, and there is excellent agreement;  

as illustrated, the infinite-series expressions capture the significant variation in the 

filter response as the source impedance varies along the VSWR=2:1 circle.   

To further illustrate the accuracy of our expressions with varying 𝑍𝑆, we use 

Figs. 11 – 13 to examine passband gain [defined as the peak magnitude of 𝐻0(𝑓)], 

out-of-band (OOB) rejection, 3-dB bandwidth, and center frequency, all as 𝑍𝑆 at 

the fundamental varies along the VSWR=2:1 circle.  The infinite-series expressions 

show excellent agreement with simulation for all these characteristics.  Our 

simplified expressions can also be used to predict OOB rejection and 3-dB 

bandwidth without significant error, as shown in Figs. 12 and 13.  However, for the 

passband gain, while our simplified expressions predict the correct trends, as shown 

in Fig. 2.11, the exact values do deviate from simulation for a resistive source 

impedance (Γ = 0𝑜 , 180𝑜) and capacitive source impedance (180o < ∠Γ < 360o); 

hence, while the simplified expressions could still be used to assess trends, accurate 

numerical values in these specific cases require the full infinite-series expressions 

with an adequate number of terms. 
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Fig. 2.11. Passband gain variation as 𝑍𝑆 varies along the VSWR=2:1 circle. The horizontal axis represents the 

reflection coefficient angle of 𝑍𝑆. 

 

Fig. 2.12. Variation in rejection at ±400 MHz offset from 𝑓LO = 800 MHz as 𝑍𝑆 varies along the VSWR=2:1 

circle. The horizontal axis represents the reflection coefficient angle of 𝑍𝑆. 
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Fig. 2.13. 3-dB bandwidth variation as 𝑍𝑆 varies along the VSWR=2:1 circle.  The horizontal axis represents 

the reflection coefficient angle of 𝑍𝑆.  

 

Fig. 2.14. Variation of center frequency 𝑍𝑆varies along VSWR=2:1 and VSWR=3:1 circles. This 

result is obtained using our simplified expressions. The horizontal axis represents the reflection coefficient 

angle of 𝑍𝑆. 
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Important aspects of 𝑍𝑆 variation that can impact N-path filter design are 

captured by our expressions.  For example, results from both the infinite-series and 

simplified expressions in Fig. 2.13 show that 𝑍𝑆 variation can cause significant 

fluctuation (by more than a factor of two) in the 3-dB bandwidth.  In Fig. 2.14, we  

show the variation of center frequency as the source impedance varies along the 

VSWR=2:1 circle from our simplified expressions (which concur exactly with the 

infinite-series expressions for this property), and it can be seen that the center 

frequency varies by 40 MHz (from band 20 toward band 14). Such results 

demonstrate that 𝑍𝑆 variation can significantly impact the behavior of N-path filters.   

To handle such variations, additional tuning techniques will need to be 

employed in real implementations.  It is worth adding that the deviations of the filter 

characteristics become even more prominent as the VSWR increases to 3:1, as 

shown by the results for VSWR=3:1 in Fig. 2.14. 

Lastly, we also examine the accuracy of the higher-order transfer functions 

calculated from our infinite-series and simplified expressions under conditions of 

varying 𝑍𝑆 .  For example, Fig. 2.15 shows 𝐻4(𝑓) as found from our expressions 

and simulation.  Both the infinite-series and simplified expressions are in agreement 

with simulation as 𝑍𝑆 varies, and as shown, the results demonstrate that source-

impedance variation can significantly impact the higher-order transfer functions, 

just as we found for 𝐻0(𝑓). 
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Fig. 2.15.  Magnitude of folding transfer functions 𝐻4(𝑓) for different 𝑍𝑠. In the legend, 𝑍𝑆𝛼,𝛽° means source 

impedance for VSWR= 𝛼:1 and reflection coefficient angle of 𝛽°. 

 

 

2.5.2 Variation of Baseband Impedance 𝒁𝑩𝑩  

The baseband impedance 𝑍BB of the N-path filter can deviate from ideal 

values due to the presence of parasitic elements and non-idealities that depend on 

the circuit architecture and choice of technology.  The effect of such parasitic 

variation is considered on a 4-path filter with 𝑓LO = 800 MHz and 𝑅sw = 2 Ω.   

With 𝑍𝑆 fixed at an ideal 50 Ω, we define two cases: (a) purely capacitive baseband 

impedance with 𝐶BB = 50 pF; (b) baseband impedance consisting of an inductor 

𝐿BB = 126.6 pH in parallel with 𝐶BB = 50 pF such that they resonate at 2.5𝜔LO.  

Results from the infinite-series expressions and simplified expressions are plotted 

alongside simulation in Figs. 16 and 17, respectively.   
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Fig. 2.16.  Magnitude of filter response 𝐻0(𝑓) from our infinite-series expressions and simulations as a 

parasitic inductance 𝐿BB = 126.6 pH is added in parallel with a purely capacitive baseband impedance 𝑍BB =

1/𝑗𝜔𝐶BB, with 𝐶BB = 50 pF.  

 

 

Fig. 2.17.  Magnitude of filter response 𝐻0(𝑓) from our simplified expressions and simulations as a parasitic 

inductance 𝐿BB = 126.6 pH is added in parallel with a purely capacitive baseband impedance 𝑍BB =

1/𝑗𝜔𝐶BB, with 𝐶BB = 50 pF.  
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It is evident that the infinite-series expressions are in excellent agreement 

with simulation, and the simplified expressions predict the filter response closely 

around 𝑓LO and also captures the changes in filter shape, but there is an error in 

predicting the exact magnitude of the peaks.  

In this example, the parallel LC resonance makes 𝑍BB act as an open circuit 

at 2.5𝜔LO, causing 𝑉BBi(𝜔) to peak at 2.5𝜔LO, which translates to peaks in 𝑉out(𝜔) 

at 1.5𝜔LO and 0.5𝜔LO (among other frequencies), as discussed in Section 2.2.  

Hence, the frequency for the peak magnitude of 𝐻0 can shift from 𝜔LO to 1.5𝜔LO 

and 0.5𝜔LO, impacting the bandwidth of the filter, as demonstrated in Figs. 16 - 17, 

and as also captured by our expressions. 

 

 

2.6 Conclusions 

The following conclusions can be drawn from this work that derives and applies 

novel analytical expressions to describe the operation of N-path filters: 

1. Analytical expressions for the HTFs of an N-path filter can be derived using 

an intuitive approach offering insight on the N-path filter operation.  First, 

approximate forms [namely, (2.21) and (2.25)] are derived based on a 

simplified “Ohm’s-law” characterization of filter operation. Then, using a 

feedback visualization and considering up- and down-conversion signal paths 

through the filter, these approximate expressions can be corrected to get an 

exact infinite-series form [shown in (2.28)], which while appearing involved, 
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benefits from a clear interpretation of the origin of all terms.  

2. The expressions allow 𝑍𝑆 and 𝑍BB to be arbitrary functions of frequency, with 

the only assumption being that 𝑍BB is band-limited, which should be true in 

practical implementations of N-path filters.   

3. Simplified expressions obtained from the exact infinite-series forms are also 

offered (in Section 2.3), which can be used for a quick prediction of filter 

characteristics and trends with less computation. 

4. A comparison (in Figs. 2.5 – 2.8) of the expressions to circuit simulation 

while varying 𝑓LO and the number of paths 𝑁 shows the full infinite-series 

forms are indeed accurate, while the simplified forms predict the important 

trends with the tradeoff of diminished accuracy, particularly at frequencies 

removed from 𝑓LO. 

5. Both the infinite-series and simplified expressions predict filter behavior as 

the source impedance 𝑍𝑆 varies (Figs. 2.10 – 2.15).  The infinite-series 

expressions are able to predict all aspects of filter response very closely, and 

the simplified expressions accurately predict OOB rejection, center 

frequency, 3-dB bandwidth and the correct trend in passband gain.  

6. Under variation of the baseband impedance 𝑍BB, the infinite-series 

expressions again predict filter characteristics very accurately, and the 

simplified expressions also predict the correct trends, but with error in the 

exact magnitude in the response peaks for frequencies away from 𝑓LO (Figs. 

2.16 – 2.17). 
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7. The results from our expressions reveal that varying 𝑍𝑆 and 𝑍BB can 

significantly disrupt the expected operation of an N-path filter.  For example,  

due to varying 𝑍𝑆, the 3-dB bandwidth can change by more than four times 

the expected value and the center frequency can shift by 5% of the LO 

frequency (Figs. 2.13 – 2.14). Similarly, variation in 𝑍BB can fundamentally 

change the shape of the filter response, translating the peaks in the response 

and altering the bandwidth (Figs. 2.16 – 2.17). 

 

While detailed circuit simulation can always be used to predict N-path filter 

behavior, a wealth of alternative approaches [6] – [20] have recently been proposed, 

each with its own advantages for gaining insight into filter operation.  Overall, our 

work adds to these existing studies, with the distinguishing features of offering a 

novel interpretative derivation that reveals the origin of the terms in infinite-series 

analytical forms, simplified expressions from the exact infinite-series forms for 

quicker calculation, and validity under arbitrary source and load conditions, 

providing an additional tool to those in [6] – [20] to help understand and optimize 

N-path filters. 
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Chapter 3 

Conclusions and Future Work  

 

3.1 Summary of Conclusions 

The conclusions from each stage of the work are summarized in this chapter.  The 

full details of the work conducted in each stage leading to these conclusions are 

discussed in the previous chapter of this thesis.  Here, we list the specific findings 

and then indicate the overall contribution of each stage.  

 

3.1.1 Stage I: Derivation of Analytical Expressions for HTFs of N-path     

Filter with Arbitrary Source and Load Impedance 

The specific conclusions from the first stage (Chapter 2: Sections 2.2 – 2.4) are as 

follows: 

 

1. Analytical expressions for the harmonic transfer functions (HTFs) of an N-

path filter can be obtained by applying an interpretive derivation method 

while providing intuition on the N-path filter operation.  First, utilizing a 

simplified “Ohm’s-law” characterization of filter operation, approximate 

forms of the HTFs [given by (2.21) and (2.25)] are derived.  In the next step, 

these approximate expressions are adjusted to acquire an exact infinite-series 
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form for the 𝑚th-order HTF [shown in (2.28)] using a feedback visualization 

and considering up- and down-conversion signal paths through the filter.  

Although the exact infinite-series form seems complex, the interpretations of 

the terms in the series are provided in light of the feedback visualization and 

up- and down-conversion paths.  

2. The derivation is done while keeping 𝑍𝑆 and 𝑍BB as arbitrary functions of 

frequency, with the only assumption being that 𝑍BB is band-limited to ensure 

the convergence of the infinite series.  This assumption is true in practical 

implementations of N-path filters.   

3. Simplified expressions for the HTFs are also offered [by combining (2.25) 

and (2.30)] as tools for quick estimation of filter response and important 

characteristics while involving lighter computation than the exact infinite-

series form. 

4. When comparing with simulation, both the infinite-series and the simplified 

expressions are applied to obtain filter response under the variation of 𝑓LO and 

the number of paths 𝑁 (with the results in Figs. 2.5 – 2.8).  The results show 

that the full infinite-series form is correct in predicting all aspects of the filter 

response, while the simplified expressions can predict the important trends 

with less accuracy, particularly at frequencies away from 𝑓LO. 

 

Overall, our novel analytical method of obtaining the HTFs of the N-path 

filter adds to the prior approaches [6] – [20], with the distinctive features of 
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providing an interpretative derivation that attaches meaning to the terms in the 

derived infinite-series form for the HTFs.  Our approach also offers simplified 

expressions of the HTFs for quicker estimation of filter characteristics that can 

capture important trends of the filter response with reduced accuracy but with the 

advantage of shortened calculation. 

 

3.1.2   Stage II: Application of Derived Expressions of HTFs to Analyze 

the Effect of Source and Load Impedance Variation on N-path 

Filter Performance 

The specific conclusions from the second stage (Chapter 2: Section 2.5) are as 

follows:  

 

1. Both the infinite-series and simplified expressions of HTFs are applied to 

predict the N-path filter characteristics under the condition of varying 

source impedance 𝑍𝑆 (Figs. 2.10 – 2.15).  The results show that the infinite-

series form can predict all features of filter response very accurately, while 

the simplified expressions are able to offer correct out-of-band (OOB) 

rejection, center frequency, 3-dB bandwidth, and trend in passband gain as 

𝑍𝑆 varies.  

2. In the case of the baseband impedance 𝑍BB variation, the infinite-series form 

can provide filter characteristics very satisfactorily. On the other hand, the 

simplified expressions also predict the correct trends in filter response, but 
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with error in the exact magnitude response for frequencies away from 𝑓LO 

(Figs. 2.16 – 2.17). 

3. It can be concluded that varying 𝑍𝑆 and 𝑍BB can significantly affect the 

expected response of the N-path filters.  For example, in the case of varying 

𝑍𝑆, the 3-dB bandwidth of the filter can undesirably increase by more than 

four times the expected value and the center frequency can shift by 5% of 

the LO frequency (Figs. 2.13 – 2.14), tuning the filter out of the intended 

frequency band.  Similarly, variation in 𝑍BB can fundamentally change the 

shape of the filter response.  As a result, the center frequency of the filter 

can shift significantly and the bandwidth can alter drastically (Figs. 2.16 – 

2.17).    

 

Finally, the analytical expressions derived in this thesis, both the infinite-

series and simplified forms, exhibit utility in analyzing filter response under source 

and load impedance variation.  Although circuit simulation tools are available to 

predict N-path filter characteristics, numerous alternative approaches [6] – [20] 

have been proposed to capture filter response in different analytical fashions.  Our 

work presented in this thesis adds to these works in the existing literature while 

offering an insightful derivation of the HTFs under arbitrary source and load 

conditions, which will hopefully aid in the design of N-path filters for optimized 

performance in modern RF transceivers.  
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3.2 Future Work: Analysis of Non-Linear N-path Filters Using 

Volterra Series 

3.2.1   Introduction 

The analytical derivation of harmonic transfer functions presented in this thesis is 

for the N-path filter with linear circuit elements.  Hence, the work presented in this 

thesis is based on LPTV (linear, periodically time-varying) analysis.  However, in 

practice, circuit elements of the N-path filter can show non-linear characteristics 

when implemented using real-world devices.  For example, switches of the N-path 

filter, usually implemented using MOSFETs, may exhibit non-linear ID-VDS 

characteristics while operating near the top end of the linear region (also known as 

the triode region) or when subjected to a stronger than expected input signal.  As a 

result, intermodulation distortion to the subjected signals can occur, affecting the 

filter transfer functions.  To analyze this effect quantitatively, non-linear analysis 

techniques such as Volterra series [29] should be applied. 

As future work, we propose an extension of the analysis presented in this 

thesis for N-path filters while considering non-linear switches.  We recognize that 

the Volterra series technique is challenging, but it is well-suited for extending the 

analytical work offered in the previous chapter.  This future work will aim to derive 

analytical expressions for filter transfer functions in the presence of non-linear 

switches.  Below we will outline the proposed steps to achieve this aim. 
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3.2.2   Modeling the Non-linear Switches Using Time-Varying 

Volterra Circuits 

Let us assume that the I-V characteristics of the non-linear switches (see the left-

hand side of Fig.  3.1) can be described by the following relation:  

 

𝑣(𝑡) = 𝑅1(𝑡) ∙ 𝑖(𝑡) + 𝑅2(𝑡) ∙ [ 𝑖(𝑡) ]2 + 𝑅2(𝑡) ∙ [ 𝑖(𝑡) ]3 (3.1) 

 

where 𝑣(𝑡) is the voltage across the terminals of the switch and 𝑖(𝑡) is the current 

through the switch, and where 𝑅1(𝑡), 𝑅2(𝑡), and 𝑅3(𝑡) are the first-order (linear), 

second-order, and third-order time-varying coefficients of resistance, respectively.  

During the ON state of a switch, these coefficients hold constant values  𝑅1(𝑡) =

𝑅1, 𝑅2(𝑡) = 𝑅2, and 𝑅3(𝑡) = 𝑅3, whereas during the OFF state,  𝑅1(𝑡) = 𝑅2(𝑡) =

𝑅3(𝑡) = ∞.  Note that only up to third-order non-linearity is considered here 

because coefficients of higher than third-order are usually negligible for MOSFETs 

[30]. 

According to the method described in [31], the non-linear switch can be 

modeled by multi-linear time-varying Volterra circuits of different orders (see the 

right-hand side of Fig. 3.1).   Here, 𝑖𝑛(𝑡) is the current through the nth-order Volterra  
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Fig. 3.1.  Non-linear switch model (left-hand side) and equivalent time-varying Volterra circuits.   

 

circuit and 𝑣𝑛(𝑡) is the voltage across it (where 𝑛 = 1,2,3).   Note that each order 

of Volterra circuits is linear when considered separately.  The dependent voltage 

sources 𝑒𝑛(𝑡) in Fig. 3.1 are given by the following relations: 

 

𝑒1(𝑡) = 0 (3.2) 

 

𝑒2(𝑡) = 𝑅2(𝑡) ∙ [ 𝑖1(𝑡) ]
2 (3.3) 

 

𝑒3(𝑡) = 2𝑅2(𝑡) ∙ 𝑖1(𝑡) ∙ 𝑖2(𝑡) + 𝑅3(𝑡) ∙ [ 𝑖1(𝑡) ]
2 (3.4) 
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and it was shown in [31] and [32] that the voltages and currents in the equivalent 

Volterra circuits follow the principle of superposition: 

 

𝑣(𝑡) = ∑ 𝑣𝑛(𝑡)

3

𝑛=1

 (3.5) 

 

𝑖(𝑡) = ∑ 𝑖𝑛(𝑡)

3

𝑛=1

 (3.6) 

 

It is important to note that the dependent voltage source 𝑒𝑛(𝑡) of nth-order 

Volterra circuit is a function of the currents 𝑖1(𝑡), 𝑖2(𝑡),⋯ , 𝑖𝑛−1(𝑡) through all the 

lower order Volterra circuits.  Thus, one would need to solve the Volterra circuits 

sequentially from the lowest to the highest order and then find the complete 

response of a non-linear switch using (3.5) and (3.6).  

 

3.2.3   Solving Equivalent Volterra Circuits for the N-path Filter 

Applying the equivalent Volterra circuits for the non-linear switches discussed 

above, one can decompose the circuit of the N-path filter with non-linear switches 

into first-, second-, and third-order Volterra circuits in which the non-linear 

switches are replaced by their corresponding order of Volterra circuits.  Now each 

of these Volterra circuits is an LPTV circuit when considered separately, and the 

expressions for their corresponding response can be solved sequentially (first-, 
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second-, and then third-order).  Note that the first-order circuit is essentially the N-

path circuit that is addressed in this thesis, and the result can be reused in this non-

linear analysis.  Upon solving all three Volterra circuits, their responses can then be 

combined using the superposition principle to get the complete response of the filter. 

 One of the key challenges in this work will be to find elegant solutions for 

the second- and third-order Volterra equivalent circuits of the N-path filter without 

involving brute-force algebra so that more in-depth understanding into the filter 

operation can be achieved.  To overcome this difficulty, one might need to apply 

necessary yet valid assumptions to simplify the problem. 

 This non-linear analysis will provide analytical tools and insight to the 

circuit designers for predicting important non-linear characteristics such as 1-dB 

compression point (A1dB) and third-order input-intercept point (IIP3) when 

optimizing N-path filters for modern RF applications.  

This concludes the M.Sc. thesis, with the title of Analytical Expressions for the 

Harmonic Transfer Functions of N-path Filters with Arbitrary Source and Load 

Impedances. 
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