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Abstract

One of the main criticisms of previously studied label noise models in the PAC-learning frame-

work is the inability of such models to represent the noise in real world data. In this thesis, we

study this problem by introducing a framework for modeling label noise and suggesting four new

label noise models. We prove positive learnability results for these noise models in learning sim-

ple concept classes and discuss the difficulty of the problem of learning other interesting concept

classes under these new models. In addition, we study the previous general learning algorithm,

called the minimum pn-disagreement strategy, that is used to prove learnability results in the PAC-

learning framework both in the absence and presence of noise. Because of limitations of the mini-

mum pn-disagreement strategy, we propose a new general learning algorithm called the minimum

nn-disagreement strategy. Finally, for both minimum pn-disagreement strategy and minimum nn-

disagreement strategy, we investigate some properties of label noise models that provide sufficient

conditions for the learnability of specific concept classes.
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Chapter 1

Introduction

1.1 Problem definition
The classification task is an important problem studied in the field of machine learning. The goal is
to learn the behavior of a function by just observing some examples of the form (input, output) of the
function. This function is a mapping from a set called the input space to another finite set. A specific
version of this task is when the latter set is {0, 1}. This problem is called binary classification.

There are many learning models proposed for the binary classification task. This thesis is based
on Valiant’s probably approximately correct (PAC) model of learning [37]. In this model, the goal
is to find an algorithm, called the learning algorithm, that finds an arbitrarily accurate estimate of the
underlying binary valued function, called the target concept, by observing a number of examples of
it. It is assumed that the input part of each example is drawn according to some unknown probability
distribution over the input space. In the PAC-learning model, the input part of any example is called
the instance and the output part of it is called the label. It is assumed that the learning algorithm
is provided with a set of binary valued functions from which to choose its estimate of the target
concept. Any function in this set is called a concept and the set itself is called the concept class.
The learning algorithm is required to return highly accurate estimates of the target concept no matter
what the underlying target concept and distribution are, but since the process of drawing examples
from the target concept is stochastic, the learning algorithm is allowed to fail with some probability.
Finally, the learning algorithm is only allowed to use a number of examples that is polynomial in the
inverse of its estimation error and the inverse of its probability of failure.

In the PAC-learning model it is assumed that the learning algorithm is only provided with noise-
free examples. However, in real world applications, the source from which the examples are drawn
may be erroneous. For example, consider the task of classifying a set of MRI brain images into
two groups, the group of MRI images showing a tumor in the brain and the group without a tumor.
The human who classifies the instances may make mistakes on some instances due to, for example,
tiredness. Several different kinds of scenarios can be considered about the origin of noise in real
world applications. However as mentioned above it is usually far from reality to assume that there
is no noise in the examples.

Noise can be considered as any process that distorts the examples. Different kinds of noise
model have been considered in the PAC-learning framework. We divide these noise models into
two categories in this thesis. In the first category, called label noise, only the labels of examples are
exposed to noise. In the second type, either merely the instance or both instance and label are noisy.
The focus of this thesis is on the former.

One of our main criticisms of previously proposed noise models in the PAC-learning literature
is that such models cannot describe the real world scenarios of why noise happens in practice.
Although the mathematical analysis of these models is interesting and insightful, we feel that there
is a notable gap between real world noise models and noise models that can be perfectly analyzed
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using mathematics. This is the first problem we address in this thesis.
Also, to our knowledge, there is no attempt in unifying different types of label noise in the PAC

model and study interesting properties of them. This is the second problem we address in this thesis.
Finally, although the approach that is mainly used to deal with noise in the previously studied

noise model is universal for some types of noise (and the noise-free case), it is no longer universal for
more general types of noise. In this approach, which we call the minimum pn-disagreement strategy,
the learning algorithm, after observing a number of examples, returns a concept from the concept
class that has the smallest number of wrong label predictions on the instances of these examples.
Generalizing the minimum pn-disagreement strategy is the last problem we address in this thesis.

1.2 Approach to the problem
We try to solve the first problem regarding realistic noise models by introducing four new label noise
models. We call these models locally variable noise models due to the fact that an instance can only
get a noisy label if it has instances with different labels in its proximity. We define the proximity
based on two different measures. One measure can be simply defined using any arbitrary metric and
the other one can be defined using the amount of the probability mass around an instance. We then
show some positive and negative learnability results with respect to our new noise models for simple
concept classes.

We address the second problem regarding unifying the noise models by introducing a new label
noise framework. In this new framework, label noise is defined as a function over the input space,
the concept class, and the class of all possible distributions over the input space. We then show
that this new framework can describe many of the previously proposed label noise models in the
PAC-learning framework.

To address the last problem regarding the generality of the minimum pn-disagreement strategy,
we propose a new learning algorithm for learning in the presence of noise called the minimum nn-
disagreement strategy. In this new method, the learning algorithm first tries to find out how concepts
may change in the presence of noise. Then the learning algorithm returns a concept that after being
changed by the noise, labels the instances of the examples similar to the labels of examples that the
learning algorithm receives. Finally, we investigate general properties of noise models that make
some concept classes learnable with respect to such noise models.

1.3 Contributions
The contributions of this work can be listed as follows.

1. First, a new framework for label noise is presented in this thesis. We show that almost all
the previously studied label noise models in the PAC setting can be modeled in this new
framework.

2. We introduce four new label noise models. These models are important as they model the
label noise in a more realistic way than previously studied label noise models. We also show
some positive and negative learnability results for these new noise models regarding some
simple concept classes.

3. We study general characteristics of label noise models that make learning of certain concept
classes possible. We also introduce a new general learning algorithm and introduce some
sufficient learnability conditions when we use this specific learning algorithm.
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1.4 Outline
This thesis is organized as follows. Chapter 2 introduces some preliminaries and the formal def-
inition of our framework for PAC-learning in the presence of noise. It further demonstrates how
previously studied noise models can be cast into our new framework.

In Chapter 3, our locally variable noise models are introduced and a few learnability results for
simple concept classes with respect to these noise models are reported.

Chapter 4 deals with learning from noisy examples when the input space is finite. Finiteness of
the input space in general eases learning.

In Chapter 5, the minimum pn-disagreement strategy for PAC-learning in the presence of noise
is studied in more detail. We show the applications of this strategy in a previously studied label noise
model. We also study some general characteristics of noise models that provide sufficient conditions
for learning concept classes with respect to such noise models.

Our new general learning algorithm, the minimum nn-disagreement strategy, for PAC-learning
under noise is presented in Chapter 6. As in Chapter 5, we also propose some general characteristics
of noise models that give sufficient conditions for learning concept classes in the presence of noise
using our proposed method.

Other research related to noise models in PAC-learning is reviewed in Chapter 7, which also
includes a brief review of the noise models in other learning frameworks.

Chapter 8 summarizes this thesis, draws conclusions and outlines directions for future research.
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Chapter 2

Formal Framework for Learning
with Label Noise

In this chapter, we define the basic notation that we use throughout this thesis and introduce our
generic framework for learning with label noise. More notation will be introduced in the next chap-
ters when needed. Many of the definitions in this section and Section 2.1 are adapted from the
textbook by Kearns and Vazirani [25].

By N we denote the set of all natural numbers, including 0. R denotes the set of all real numbers.
If A is any arbitrary set, 2A denotes the power set of A, i.e., the set of all subsets of A, and |A|
denotes the cardinality of A, where |A| =∞ if A is an infinite set.

We denote by X an arbitrary metric space called the input space and by dist an arbitrary metric
on X . In most cases below, X will be either finite or equal to Rn for some n ∈ N.

A concept c over X is a subset of X or, equivalently, a binary-valued function on X . Hence we
use c ⊆ X and c : X → {0, 1} interchangeably to refer to a concept c. A concept class over X is a
set of concepts over X , typically denoted by C.

A probabilistic concept c : X → [0, 1] over X is a real-valued function that assigns to each
element of X a value in the closed interval [0, 1]. A probabilistic concept can be treated like a set
in which membership is probabilistic. Intuitively, for any x ∈ X , c(x) = p indicates that, with
probability p, x belongs to the set associated with c, and with probability 1 − p, x does not belong
to the set associated with c. Note that a concept is a special case of a probabilistic concept.

Let DX denote the class of all probability distributions over X . If D ∈ DX is a probability
distribution over X and c is a probabilistic concept over X then the oracle EX(c,D) is a procedure
that on each call returns a pair (x, y) ∈ X×{0, 1}, called an example, where (i) x ∈ X is drawn with
respect to the distribution D and (ii) y ∈ {0, 1} is drawn with respect to the Bernoulli distribution
over {0, 1} that assigns the probability c(x) to 1 and the probability 1 − c(x) to 0. In an example
(x, y), x is usually called the instance and y is called the label. Note that repeated calls to EX(c,D)

are always treated as independent samplings. If c : X → {0, 1} is a concept, then the label y of the
example (x, y) returned by EX(c,D) is uniquely defined by the instance x.

The following is a standard definition in many mathematics textbooks such as the book by
Rudin [30].

Definition 2.1. LetX be an input space andD a distribution. The support of distributionD, denoted
by supp(D), is the smallest closed set X ⊆ X with Prx∼D[x ∈ X −X] = 0.

Therefore, all the instances of examples returned from an oracle are in supp(D) and no instance
can be sampled from X − supp(D).

Every multi-set S of elements in X × {0, 1} is called a sample over X . Note that it is important
to consider samples as multi-sets, since, as is typical in statistical machine learning, the multiplicity
with which examples occur in a sample will contain important information.
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The problem that we are dealing with in this thesis is a classification task, which is an important
machine learning problem. In a classification task, upon seeing a sample of examples (known as the
training set) from an oracle EX(c,D), a procedure predicts the label of potentially unseen instances
(known as the test set) drawn fromD. This procedure is usually called the learning algorithm1 and c
is called the target concept. If c : X → {0, 1}, the classification task is called binary classification.

For the rest of this document, we do not explicitly mention the input space X that concept
classes, distributions and samples are defined over, when X is clear from the context.

2.1 PAC-learning framework
We focus on a specific framework for classification, called PAC-learning, which is due to Valiant [37].
The formal definition of this framework is as follows.

Definition 2.2. (Valiant [37]) A concept class C is probably approximately correctly learnable
(PAC-learnable), if there exists a learning algorithm L and a m : (0, 1

2 ) × (0, 1
2 ) → N such

that: for any target concept c∗ ∈ C, for all ε, δ ∈ (0, 1
2 ) and for any distribution D ∈ DX , if L is

given access to EX(c∗, D) and inputs ε and δ, then with probability at least 1 − δ, after seeing a
sample S of m(ε, δ) examples, where m(ε, δ) is polynomial in 1

ε and 1
δ , L outputs a concept c ∈ C

satisfying Prx∼D[c(x) 6= c∗(x)] ≤ ε.

A concept class is PAC-learnable if a polynomial number of examples is, with high probability,
sufficient to find a concept in the class that disagrees with the target concept only in a low-probability
subset of the input space, no matter what the underlying distribution is on the input space. The error
of such a concept, ε, is caused by the fact that the learner sees only a finite number of examples. The
learner is not required to succeed all the time, it is allowed to fail with probability of at most δ. This
will happen when the examples are not representative of the underlying distribution2. By changing
the size of the sample in the PAC-learning framework, the error (ε) and the probability of failure of
the learner (δ) can be set to be arbitrarily small.

In the literature, for some concept classes polynomial-time learning algorithms L are proposed
(for example [2, 37]). A concept class C is efficiently PAC-learnable if it is PAC-learnable with a
learning algorithm L that runs in time polynomial in 1

ε and 1
δ .3

The complexity of learning in the PAC-learning framework depends on the underlying concept
class. The following two definitions introduce the measure of complexity of a concept class called
the VC-dimension.

Definition 2.3. (Kearns and Vazirani [25]) Let X be an input space. Let X = {x1, . . . , xm} ⊆ X .
For any concept class C, let

ΠC(X) = {(c(x1), . . . , c(xm)) : c ∈ C}.

If ΠC(X) = {0, 1}m then we say X is shattered by C.

“Therefore, X is shattered by C if C realizes all possible dichotomies of X” [25].

Definition 2.4. (Vapnik and Chervonenkis [40]) LetX be an input space and C a concept class over
X . The Vapnik-Chervonenkis dimension (VC-dimension) of C is defined as follows. If arbitrarily
large finite sets X ⊆ X can be shattered by C, then the VC dimension of C is ∞. Otherwise the
VC-dimension is the cardinality d of the largest set X ⊆ X that is shattered by C.

1In this document we use the terms “learning algorithm” and “learner” interchangeably.
2In the literature, sometimes the probability of success of the algorithm is considered instead of the probability of failure.

This probability, which is called confidence, is at least 1− δ.
3Often the concept class C is parameterized by a parameter n, that is C = ∪n≥1Cn and all concepts in Cn share a

subdomain Xn and X = ∪n≥1Xn. In such cases a polynomial dependence on n is also allowed [25]. In this thesis, this
additional parameter is not relevant and hence omitted.
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Blumer et al. [7] showed that the sufficient and necessary condition of learning in the PAC

framework is determined by the VC-dimension of the concept class.

Theorem 2.5. (Blumer, Ehrenfeucht, Haussler and Warmuth [7]) A concept class C of VC-
dimension d is PAC-learnable iff d <∞.

The proof of Theorem 2.5 is not presented in this thesis and the reader is referred to the article
by Blumer et al. [7] for more details. However, a short description of the idea of the proof can be
found in Section 5.1.

2.2 Noise in PAC-learning
In many real world applications examples are not usually noise-free. Informally, noise can be con-
sidered as any type of distortion in the examples returned to the learner by the oracle. In this section,
we define a specific kind of noise, called label noise, in which only the label of the examples can be
flipped.

Definition 2.6. A label noise model over X is a mapping

Φ : 2X ×DX ×X → 2[0,1]. (2.1)

A label noise model Φ overX is called deterministic if |Φ(c,D, x)| = 1 for all c ∈ 2X ,D ∈ DX ,
and x ∈ X . Otherwise, Φ is called non-deterministic.

Deterministic label noise models immediately induce probabilistic concepts in the following
way.

Definition 2.7. Let Φ be a deterministic label noise model over X . For D ∈ DX and c ∈ 2X , the
function Φc,D : X → [0, 1], determined by {Φc,D(x)} = Φ(c,D, x) for all x ∈ X , is called the
Φ-noisy concept with respect to D and c. Then EXΦ(c,D) = EX(Φc,D, D).

For convenience, we do not explicitly specify the input space X that the noise model is defined
over when X is clear from the context. Also in this thesis, we only focus on label noise and not any
other type of noise. The reader is referred to Sections 7.2.2 and 7.3 for more details on other types
of noise.

A noisy concept Φc,D resulting from a deterministic label noise model Φ by fixing a distribution
D and a concept c can be thought of as a probabilistic concept that results from c by applying a
certain label noise process described by Φ. In particular, sampling according to c and D (through
EX(c,D)), followed by applying the label noise model, is defined as sampling according to the
corresponding noisy concept Φc,D and D (through EX(Φc,D, D)).

For instance, if Φ(c,D, x) = 0.4 then EXΦ(c,D) has a probability of 40% to label x with 1 if
x is sampled. If the non-noisy concept c satisfies c(x) = 1, this corresponds to a probability of 60%

of mislabeling the particular instance x. This probability of mislabeling of instance x is formally
defined as follows.

Definition 2.8. Let X be an input space, C a concept class, D ∈ DX a distribution and Φ a
deterministic label noise model. For any x ∈ X and c ∈ C, the noise rate nrc,D(x) is defined as
follows.

nrc,D(x) = |c(x)− Φc,D(x)| (2.2)

So we can think of the oracle EXΦ(c,D) as executing the following sequence of instructions:

1. Simulate EX(c,D) and let (x, c(x)) denote the resulting example.

2. With probability nrc,D(x), let y = 1− c(x). Otherwise, let y = c(x).

3. Return (x, y).

6



Figure 2.1: Deterministic label noise oracle

For illustration, see Figure 2.1.
If Φ is a non-deterministic label noise model then there exist D, c, and x such that Φ(c,D, x)

contains more than one value in [0, 1]. This models a situation in which the noise model applied to
the examples returned by EX(c,D) has a non-deterministically chosen noise rate. In such a case,
we can think of the oracle EXΦ(c,D) as executing the following sequence of instructions:

1. Simulate EX(c,D) and let (x, c(x)) denote the resulting labeled example.

2. Non-deterministically, pick any value p′ ∈ Φ(c,D, x).

3. With probability p = |c(x)− p′|, let y = 1− c(x). Otherwise, let y = c(x).

4. Return (x, y).

For illustration, see Figure 2.2.

Figure 2.2: Non-deterministic label noise oracle

We use the definition of label noise models in order to model noise flipping the observed labels
in examples presented to a learner that tries to identify an unknown target concept c∗ in a given
concept class C from a sample drawn i .i .d . with respect to some unknown but fixed probability
distribution D. Our corresponding definition of learnability is a variant of Valiant’s original model
of PAC learning [37], cf . Definition 2.2.

7



Definition 2.9. Let ε, δ ∈ [0, 1
2 ). Let C be a concept class and D ⊆ DX a class of distributions. Let

Φ be a label noise model. C is PACε,δ-learnable with respect to Φ and D if there exists a learning
algorithm L4 and a function m : (0, 1

2 )× (0, 1
2 )→ N such that for all ε ∈ (ε, 1

2 ), for all δ ∈ (δ, 1
2 ),

for all D ∈ D, and for all target concepts c∗ ∈ C the following property is fulfilled:

L, given ε and δ, requests a sample S ofm(ε, δ) many independent draws from EXΦ(c∗, D),
where m(ε, δ) is polynomial in 1

ε and 1
δ . Then L, with probability of at least 1− δ, re-

turns a concept c ∈ C such that Prx∼D[c(x) 6= c∗(x)] ≤ ε.

The following definition determines under what condition two noisy oracles can potentially dis-
play the same stochastic behavior.

Definition 2.10. Let Φ and Φ′ be label noise models, c, c′ two concepts, D ∈ DX a distribution
and x ∈ X . We say that EXΦ(c,D) and EXΦ′(c

′, D) have potentially equivalent behavior on x if
Φ(c,D, x) ∩ Φ′(c′, D, x) 6= ∅. EXΦ(c,D) and EXΦ′(c

′, D) have potentially equivalent behavior
on D if they have potentially equivalent behavior on all x ∈ supp(D).

The following two lemmas state the learnability result for the case that two noisy oracles can
potentially produce the same set of examples. These lemmas will be used frequently in Chapters 3
and 5.

Lemma 2.11. Let ε, δ ∈ [0, 1
2 ). Let C be a concept class. Let D ⊆ DX be a class of distributions.

Let Φ be a deterministic label noise model and Φ′ be a non-deterministic label noise model such that
for any c ∈ C and any D ∈ D, EXΦ(c,D) and EXΦ′(c,D) have potentially equivalent behavior
on D. Let L be a learning algorithm that PACε,δ-learns C with respect to Φ′ and D. Then L
PACε,δ-learns C with respect to Φ and D.

Proof. Let D ∈ D be a distribution. Let x ∈ X be any instance drawn with respect to D and c∗ ∈ C
the target concept. EXΦ′(c

∗, D) can always choose p′ = Φ(c∗, D, x) in its non-deterministic step
when x is drawn with respect to D.

Therefore, EXΦ′(c
∗, D) can label any sample S the same way as EXΦ(c∗, D). Since L can

PACε,δ-learn C with any sample S drawn from EXΦ′(c
∗, D) (given a sufficient sample size), then

L can also PACε,δ-learn C with the specific kind of sample just described. Therefore, L can also
PACε,δ-learn C with respect to Φ and D.

Lemma 2.12. Let Φ be a label noise model. Let C be a concept class, c, c′ ∈ C with c 6= c′ and
D ⊆ DX . Let ε < 1

2Prx∼D[c(x) 6= c′(x)]. If there is some D ∈ D such that EXΦ(c,D) and
EXΦ(c′, D) have potentially equivalent behavior onD, then C is not PACε,δ-learnable with respect
to Φ and D for any δ ∈ (0, 1

2 ).

Proof. Let Prx∼D[c(x) 6= c′(x)] = ε. Since EXΦ(c,D) and EXΦ(c′, D) have potentially equiv-
alent behavior, these two oracles can label any set of instances drawn with respect to D in the
same way. Therefore, no learning algorithm L can distinguish between the examples drawn from
EXΦ(c,D) and EXΦ(c′, D). Since we only consider deterministic learning algorithms in this the-
sis, in the best case, L will have an error of ε

2 . This will happen, if L returns a concept c′′ ∈ C
(if such a concept exists) such that Prx∼D[c(x) 6= c′′(x)] = Prx∼D[c′(x) 6= c′′(x)] = ε

2 because
otherwise the error of L is at least greater than ε

2 for one of the cases that c or c′ is the target concept.
Therefore, no learning algorithm L can PACε,δ-learn C with respect to Φ and D for any ε < ε

2 .

2.3 Classic examples of label noise models
In this section we introduce some of the classic label noise models in the literature, reformulated in
our generic label noise framework introduced in Definition 2.6. We consider the model of random

4In this thesis we just consider deterministic learning algorithms, not randomized ones.
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classification noise, as defined by Angluin and Laird [2], its generalization called constant-partition
classification noise, introduced by Decatur [14] and studied by Ralaivola, Denis, and Magnan [29],
and the model of malicious misclassification noise, which is due to Sloan [32].

We start with the most benign type of label noise introduced by Angluin and Laird.

Definition 2.13. (Angluin and Laird [2]) Let η ∈ [0, 1). The η-random classification noise model
is a label noise model Φrcn(η), defined by

Φrcn(η)(c,D, x) =

{
{1− η} , if c(x) = 1 ,

{η} , if c(x) = 0 ,

where c ∈ 2X , D ∈ DX , and x ∈ X .

The random classification noise model has also been called the classification noise model [2]
and the random misclassification noise model [32] in the literature.

For every example (x, y) that a learning algorithm L draws from the oracle EXΦrcn(η)
(c,D),

y = c(x) will hold with probability 1 − η. With probability η, the label will be flipped, i .e.,
y = 1− c(x).

In particular, the model of random classification noise does not depend on the distribution D.
Moreover, the value of a noisy concept in an instance x ∈ X does not depend on values of the
underlying target concept c other than the value c(x) itself. Furthermore, the model of random
classification noise is a deterministic label noise model.

The first learnability result with respect to random classification noise is due to Angluin and
Laird.

Theorem 2.14. (Angluin and Laird [2]) Let C be a finite concept class. Let η ∈ [0, 1
2 ). Then C is

PAC0,0-learnable with respect to η-random classification noise and DX .

The proof of Theorem 2.14 can be found in Section 5.1. This proof gives us insights for many
of the proofs and arguments in the rest of this thesis.

Angluin and Laird [2] have a more general learning algorithm than the one introduced in the
proof of Theorem 2.14. Their algorithm can PAC0,0-learn any finite concept class under random
classification noise knowing only an upper bound ηb on η such that η ≤ ηb < 1

2 instead of knowing
η itself. They also have an algorithm for estimating ηb from the sample. They show that estimating
this upper bound increases the required sample size only slightly. The reader is referred to the article
by Angluin and Laird [2] for more details on the algorithm and its correctness.

Laird [27] proved a stronger version of Theorem 2.14, for concept classes of finite VC-dimension
instead of finite concept classes.5

Theorem 2.15. (Laird [27]) Let C be a concept class of VC-dimension d < ∞. Let η ∈ [0, 1
2 ).

Then C is PAC0,0-learnable with respect to η-random classification noise and DX .

The proof of Theorem 2.15 can be found in Section 5.1.
Next, we consider a generalization of the random classification noise model, introduced by De-

catur.

Definition 2.16. (Decatur [14]) Let k ∈ N and η = (η1, . . . , ηk) ∈ [0, 1)k. Let π = (π1, . . . , πk) ⊆
(X ×{0, 1})k be a k-tuple of pairwise disjoint sets such that π1∪· · ·∪πk = X ×{0, 1}. The (η, π)-
constant-partition classification noise (CPCN) model is a label noise model Φcpcn(η,π), defined by

Φcpcn(η,π)(c,D, x) =

{
{1− ηi} , if c(x) = 1 ,

{ηi} , if c(x) = 0 ,

where c ∈ 2X , D ∈ DX , x ∈ X , and i ∈ {1, . . . , k} is such that (x, c(x)) ∈ πi.
5Finite concept classes also have finite VC-dimension but concept classes of finite VC-dimension may have an infinite

number of concepts.
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For every example (x, y) that a learning algorithm L draws from the oracle EXΦcpcn(η,π)
(c,D),

the probability with which the label y disagrees with c(x) is determined by which partition πi of
X × {0, 1} the example (x, c(x)) belongs to.

Other than that, the CPCN model behaves like the random classification noise model, i .e., it is
deterministic, independent of the distribution D, and produces noisy concepts whose value for an
instance x does not depend on values of the underlying target concept c other than the value c(x)

itself.
Later, Ralaivola, Denis and Magnan proved that CPCN is equivalent to random classification

noise as far as learnability is concerned [29].

Theorem 2.17. (Ralaivola, Denis, Magnan [29]) Let C be a concept class. Let k ∈ N, η =

(η1, . . . , ηk) ∈ [0, 1
2 )k and η′ ∈ [0, 1

2 ). Let π = (π1, . . . , πk) ⊆ (X × {0, 1})k be pairwise disjoint
sets such that π1 ∪ · · · ∪ πk = X × {0, 1}. Then the following statements are equivalent.

1. C is PAC-learnable.

2. C is PAC0,0-learnable with respect to Φrcn(η′) and DX .

3. C is PAC0,0-learnable with respect to Φcpcn(η,π) and DX .

4. C has finite VC-dimension.

The reader is referred to the article by Ralaivola et al. [29] for the proof.
The last model of label noise discussed in this section is a weaker version of random classifica-

tion noise that is due to Sloan.

Definition 2.18. (Sloan [32]) Let η ∈ [0, 1). The η-malicious classification noise model is a label
noise model Φmcn(η), defined by

Φmcn(η)(c,D, x) =

{
[1− η, 1] , if c(x) = 1 ,

[0, η] , if c(x) = 0 ,

where c ∈ 2X , D ∈ DX , and x ∈ X .

Malicious classification noise has also been called malicious misclassification noise [32] in the
literature.

For every example (x, y) that a learning algorithm L draws from the oracle EXΦmcn(η)
(c,D),

y = c(x) will hold with probability at least 1 − η. Beyond this probability of at least 1 − η, we
cannot make any assumption at all about the label y.

In particular, as is the case for random classification noise, the label noise model in malicious
classification noise does not depend on the distribution D. Also, the value of a noisy concept for an
instance x ∈ X does not depend on values of the underlying target concept c other than the value
c(x) itself. In contrast to random classification noise, the model of malicious classification noise is
a non-deterministic label noise model.

Sloan proved the first learnability result with respect to malicious classification noise.

Theorem 2.19. (Sloan [31, 32]) Let C be a finite concept class. Let η ∈ [0, 1
2 ). Then C is PAC0,0-

learnable with respect to Φmcn(η) and DX .

Sloan proved this theorem with an approach similar to that used by Angluin and Laird [2] for the
random classification noise model. He argued that the η-malicious noise oracle will be less harmful
than an η-random classification process, because it flips the label of at most as many examples as
are flipped by the random classification noise. The reader is referred to the article by Sloan [31] for
more details.

Similar to the case of random classification noise, the learnability results for finite concept
classes can be generalized to the classes of finite VC-dimension.
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Theorem 2.20. Let C be a concept class of VC-dimension d < ∞. Let η ∈ [0, 1
2 ). Then C is

PAC0,0-learnable with respect to Φmcn(η) and DX .

It should be mentioned that this theorem has not been proved in the literature before. But it is not
hard to show that the idea of the proof of Theorem 2.19 together with the generalization technique
in converting the proof of Theorem 2.14 to the proof of Theorem 2.15 can be combined here as well
to prove Theorem 2.20. The proof is omitted due to this similarity.

Some other classic noise models, such as noise models generated by the malicious error ora-
cle [23, 38] and the random attribute error oracle [32] cannot be modeled with Definition 2.6, since
they are not purely label noise models. In these models, the instance x ∈ X can also be distorted.
Such models are beyond the scope of this thesis. Therefore, for the remainder of this thesis we
simply use the terms “noise” and “label noise” interchangebly unless explicitly stated otherwise.
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Chapter 3

Locally Variable Noise

One of our main criticisms of the classic noise models introduced in Section 2.3 is that most of them
assume that the noise rate is independent of the instances, distribution and the target concept. How-
ever, in many real world applications the noise rate depends on at least one of these parameters [8].
For example, instances may be less likely to be mislabeled if all instances in their local neighbour-
hood have the same label, as opposed to the case when the target concept labels half of the points in
the neighbourhood with label 0 and the other half with label 1 (see Figure 3.1).

Figure 3.1: Distance Ball Noise Model

In this chapter, we introduce four new label noise models in which the noise rate for any instance
depends on the instance itself, on the underlying target concept and (in all but one model) also on
the underlying distribution. These noise models are a step from conventional noise models towards
noise models that appear in real world applications. Also, these noise models are local in the sense
that they yield noisy concepts that assign a label to a point x ∈ X depending on the labels of
other points in the proximity of x. The measure of proximity can be either a distance metric or the
probability mass. The next two sections introduce these noise models formally based on these two
measures of proximity.

3.1 Distance ball noise models
For our first noise model, we use the underlying distance metric, dist, to define the measure of
proximity.

Definition 3.1. For any radius ρ ≥ 0 and any instance x ∈ X , the ρ-distance ball DBρ(x) around
x is defined by

DBρ(x) = {x′ ∈ X | dist(x, x′) ≤ ρ} ,

where dist is an arbitrary metric on X that has been fixed a priori.
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Then, we introduce our first label noise model, called the ρ-distance malicious classification
noise model1. This model goes back to a suggestion made by Shai Ben-David (personal correspon-
dence with Sandra Zilles).

Definition 3.2. Let ρ ≥ 0. The ρ-distance malicious classification noise model Φdmball(ρ) is a label
noise model defined as

Φdmball(ρ)(c,D, x) =

{
{c(x)} , if c(x) = c(x′) for all x′ ∈ DBρ(x) ,

[0, 1] , otherwise ,

where c ∈ 2X , D ∈ DX , and x ∈ X .

For every example (x, y) that a learning algorithm L draws from the oracle EXΦdmball(ρ)
(c,D),

y = c(x) will be guaranteed if all points in the ρ-distance ball around x have the same label under c
(see Point A in Figure 3.1). If both positively and negatively labeled points lie in the ρ-distance ball
around x, we cannot make any assumption at all about the label y (see Point B in Figure 3.1).

The label noise model here does not depend on the distribution D. However, unlike for the
classic models considered in Section 2.3, the value of a noisy concept for an instance x ∈ X depends
on some of the values of the underlying target concept c other than the value c(x) itself.

Like malicious classification noise, the model of distance malicious classification noise is in
general a non-deterministic label noise model.

Distance malicious classification noise is a strong adversarial noise model. Even simple concept
classes may not be PAC-learnable with respect to such a noise model. One such simple concept
class is the class of one-dimensional threshold functions defined as follows.

Definition 3.3. Let X ⊆ R and C1
thr = {cθ | θ ∈ R}, where

cθ(x) =

{
1 , if x ≥ θ ,
0 , if x < θ .

C1
thr is called the class of one-dimensional threshold functions.

We show that the class of one-dimensional threshold functions is not PACε,δ-learnable with
respect to distance malicious classification noise and DX for any arbitrary ε, δ ∈ [0, 1

2 ).

Proposition 3.4. Let ρ > 0 and ε, δ ∈ [0, 1
2 ). Let X = R. C1

thr is not PACε,δ-learnable with respect
to Φdmball(ρ) and DX .

Proof. Let x1, x2 ∈ X such that dist(x1, x2) ≤ ρ
2 and x1 < x2. The distance between x1 and x2

guarantees that the ρ-distance ball around either of x1 or x2 contains the other point. Let D be such
that Prx∼D[x = x1] = ε+ 1−ε

2 , Prx∼D[x = x2] = 1−ε
2 and Prx∼D[x /∈ {x1, x2}] = 0. Therefore,

supp(D) = {x1, x2}.
Let C = {c, c′} where c(x) = cx1−ρ(x) and c′(x) = cx2(x) for all x ∈ X (as illustrated in

Figure 3.2). We show that EXΦdmball(ρ)
(c,D) and EXΦdmball(ρ)

(c′, D) have potentially equivalent
behavior on D. Therefore, we can use Lemma 2.12 to show that C1

thr is not PACε,δ-learnable with
respect to Φdmball(ρ) and DX .

For any x ∈ supp(D), Φdmball(ρ)(c,D, x) = {1} because the ρ-distance ball around x only
contains points with label 1. Also, for any x ∈ supp(D), Φdmball(ρ)(c

′, D, x) = [0, 1] because
the ρ-distance ball around x contains points with both labels 0 and 1. Thus, Φdmball(ρ)(c,D, x) ∩
Φdmball(ρ)(c

′, D, x) 6= ∅ for all x ∈ supp(D). Therefore, EXdmball(ρ)(c,D) and EXdmball(ρ)(c
′, D)

have potentially equivalent behavior on D based on Definition 2.10.
Since Prx∼D[c(x) 6= c′(x)] > ε, therefore, C1

thr is not PACε,δ-learnable with respect to
Φdmball(ρ) and DX .

1We simply write distance malicious classification noise instead of ρ-distance malicious classification noise when ρ is
clear from the context.
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Figure 3.2: C1
thr is not PAC-learnable with respect to Φdmball(ρ) and DX .

It seems like choosing an arbitrary label from the distance ball around a point as the label of
that point gives too much freedom to the oracle. We mitigate this a bit in our second noise model,
called the ρ-distance random classification noise model2. This model is a deterministic version of
ρ-distance malicious classification noise and was also inspired by a suggestion by Shai Ben-David.

Definition 3.5. Let ρ ≥ 0. The ρ-distance random classification noise model Φdrball(ρ) is a label
noise model defined as

Φdrball(ρ)(c,D, x) = {Prx′∼D[c(x′) = 1 | x′ ∈ DBρ(x)]} ,

where c ∈ 2X , D ∈ DX , and x ∈ supp(D). Φdrball(ρ)(c,D, x) = {0} for x /∈ supp(D).

For every example (x, y) that a learning algorithm L draws from the oracle EXΦdrball(ρ)
(c,D),

y = c(x) will be guaranteed if all points in the ρ-distance ball around x have the same label under
c (see Point A in Figure 3.1). If both positively and negatively classified points lie in the ρ-distance
ball around x, then the label y will be drawn from {0, 1} according to the distribution of labels
within the ρ-distance ball around x (see Point B in Figure 3.1).

This label noise model depends on the distribution D. Moreover, the value of a noisy concept
for an instance x ∈ X depends on some of the values of the underlying target concept c other than
the value c(x) itself.

One simple observation about the relation of these two distance noise models is as follows. Any
concept class that is PAC-learnable with respect to distance malicious classification noise and a
class of distributions is also PAC-learnable with respect to distance random classification noise and
the same class of distributions.

Proposition 3.6. Let ρ ≥ 0 and ε, δ ∈ [0, 1
2 ). Let D ⊆ DX be a class of distributions. Any concept

class C that is PACε,δ-learnable with respect to Φdmball(ρ) and D is also PACε,δ-learnable with
respect to Φdrball(ρ) and D.

Proof. Let L be a learning algorithm that PACε,δ-learns C with respect to Φdmball(ρ) and D. Let
D ∈ D be a distribution and c∗ ∈ C the target concept.

In the rest of this proof, we show that the two oracles EXΦdmball(ρ)
(c∗, D) and EXΦdrball(ρ)

(c∗, D)

have potentially equivalent behavior onD. Since Φdmball(ρ) is a non-deterministic label noise model
and Φdrball(ρ) is a deterministic one, we can apply Lemma 2.11 to show that L PACε,δ-learns C with
respect to Φdrball(ρ) and D.

Let us analyze a possible behavior of EXΦdmball(ρ)
according to the following cases.

1. c∗(x) = c∗(x′) for all x′ ∈ DBρ(x). In this case Φdmball(ρ)(c
∗, D, x) = Φdrball(ρ)(c

∗, D, x) =

{c∗(x)} based on Definitions 3.2 and 3.5 respectively. Therefore, EXΦdrball(ρ)
(c∗, D) and

EXΦdmball(ρ)
(c∗, D) have potentially equivalent behavior on all such x.

2We simply write distance random classification noise model instead of ρ-distance random classification noise model
when ρ is clear from the context.
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2. Otherwise, Φdmball(ρ)(c
∗, D, x) = [0, 1], in particular Φdrball(ρ)(c

∗, D, x) is contained in
Φdmball(ρ)(c

∗, D, x). Therefore, EXΦdmball(ρ)
(c∗, D) and EXΦdrball(ρ)

(c∗, D) also have po-
tentially equivalent behavior on all x that are not satisfying the condition of case 1.

And, hence, EXΦdmball(ρ)
(c∗, D) and EXΦdrball(ρ)

(c∗, D) have potentially equivalent behavior onD.
Note that since the number of examples drawn by the learning algorithm does not play any role

in our argument, the polynomial sample bounds needed in the definition of PAC-learnability are
preserved.

Unlike the case of distance malicious classification noise, the class of one-dimensional thresh-
old functions is PAC0,0-learnable with respect to distance random classification noise and DX . To
prove this we need some preliminaries. We first show that the noisy concept resulting from apply-
ing distance random classification noise to any concept in the class of one-dimensional threshold
functions is a non-decreasing function.

Lemma 3.7. Let ρ ≥ 0. LetX ⊆ R. Let c∗ ∈ C1
thr be the target concept andD ∈ DX a distribution.

Φdrball(ρ)c∗,D
(x) is a non-decreasing function with respect to x ∈ X .

Proof. We show that Φdrball(ρ)c∗,D
(x) never decreases when x is increasing. Let θ∗ ∈ R such that

x ≥ θ∗ implies c∗(x) = 1 and x < θ∗ implies c∗(x) = 0.
Let x1, x2 ∈ X such that x1 ≤ x2. Based on the positions of x1 and x2 in R the following three

cases can happen:

1. x1 < θ∗− ρ: based on Definition 3.5, Φdrball(ρ)c∗,D
(x1) = c∗(x1) = 0. Since Φ is always in

[0, 1], Φdrball(ρ)c∗,D
(x1) ≤ Φdrball(ρ)c∗,D

(x2).

2. x2 > θ∗+ ρ: based on Definition 3.5, Φdrball(ρ)c∗,D
(x2) = c∗(x2) = 1. Since Φ is always in

[0, 1], Φdrball(ρ)c∗,D
(x1) ≤ Φdrball(ρ)c∗,D

(x2).

Figure 3.3: When x1 ≥ θ∗ − ρ and x2 ≤ θ∗ + ρ

3. x1 ≥ θ∗ − ρ and x2 ≤ θ∗ + ρ: in this case (as illustrated in Figure 3.3),

Prx∼D[θ∗ ≤ x ≤ x1 + ρ] ≤ Prx∼D[θ∗ ≤ x ≤ x2 + ρ], (3.1)

because Prx∼D[θ∗ ≤ x ≤ x2 + ρ] = Prx∼D[θ∗ ≤ x ≤ x1 + ρ] + Prx∼D[x1 + ρ ≤ x ≤
x2 + ρ]. Similarly,

Prx∼D[x1 − ρ ≤ x < θ∗] ≥ Prx∼D[x2 − ρ ≤ x < θ∗]. (3.2)

Therefore, using Equations 3.1 and 3.2 respectively,

Φdrball(ρ)c∗,D
(x1) =

Prx∼D[θ∗ ≤ x ≤ x1 + ρ]

Prx∼D[x1 − ρ ≤ x < θ∗] + Prx∼D[θ∗ ≤ x ≤ x1 + ρ]

≤ Prx∼D[θ∗ ≤ x ≤ x2 + ρ]

Prx∼D[x1 − ρ ≤ x < θ∗] + Prx∼D[θ∗ ≤ x ≤ x2 + ρ]

≤ Prx∼D[θ∗ ≤ x ≤ x2 + ρ]

Prx∼D[x2 − ρ ≤ x < θ∗] + Prx∼D[θ∗ ≤ x ≤ x2 + ρ]

= Φdrball(ρ)c∗,D
(x2)
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Next, we present a theorem by Kearns and Schapire [24] and then we describe the proof sketch.
The idea that they used in their proof can be applied in our proof of PAC0,0-learnability of a class
of one-dimensional thresholds on the line with respect to distance random classification noise and
DX .

As we mentioned in Chapter 2, any set of functions f : X → [0, 1] can be considered as a
concept class. Therefore, an oracle can be defined when any of the functions in the set is selected as
the target concept in the same way as the oracle was defined when a probabilistic concept is chosen
as the target concept from a concept class. The following theorem shows that for a specific type of
such a set of functions, an algorithm exists that, with high probability, returns good estimates of the
value of the target probabilistic concept for a given fraction of probability mass on X . Note that the
learning framework is different here than the learning framework of PAC-learning with respect to
noise (Definition 2.9) because the learner returns a function of the form f : X → [0, 1] instead of a
function of the form c : X → {0, 1}.

Theorem 3.8. (Kearns and Schapire [24]) Let ε, δ, γ ∈ (0, 1
2 ). Let X = R and F the set of all

non-decreasing functions f : X → [0, 1]. There exists an algorithm L that, for any target function
f∗ ∈ F and D ∈ DX , using

m = d 4

εγ
edmax(

64 ln( 221

(εγ)2δ )

εγ
,

2 ln(
4d 4
εγ e
δ )

γ2
)e

examples drawn with respect to EX(f∗, D), will return a function f̂ : X → [0, 1] with the property
that

Prx∼D[|f̂(x)− f∗(x)| > γ] ≤ ε

with probability of at least 1− δ.

The proof sketch below, except for slight changes in wording and notation, is the same as in the
article by Kearns and Schapire [24].

Sketch of the Proof. (Kearns and Schapire [24]) Let

s1 = d 4

εγ
e,

and

s2 = dmax(
64 ln( 221

(εγ)2δ )

εγ
,

2 ln(
4d 4
εγ e
δ )

γ2
)e.

L draws a sample of m = s1s2 examples (xi, yi) where xi ∈ X and yi ∈ {0, 1} for 1 ≤ i ≤ m.
Let the examples be sorted by their instances such that x1 ≤ . . . ≤ xm. First, let us assume
x1 < . . . < xm. Later we show how to remove this assumption.
X can be partitioned into s1 disjoint intervals, each interval Ij , 1 ≤ j ≤ s1, containing exactly

s2 instances of S i .e., I1 = (−∞, xs2 ], Ij = (x(j−1)s2 , xjs2 ] for 2 ≤ j ≤ s1 − 1 and Is1 =

(x(t−1)s2 ,+∞). Let φj = 1
s2

∑js2
i=(j−1)s2+1 yi. L will return a step function f̂ such that for any

x ∈ Ij , f(x) = φj .
The high level idea of the proof can be described as follows. We show that for 1 ≤ j ≤ s1,

Prx∼D[x ∈ Ij ] is at most εγ2 with high probability. Next we show that if f∗ increases by at most
γ
2 on any interval Ij , then f̂ is close to f∗ on all points x ∈ Ij . On the other hand, since f∗ is
non-decreasing and can only take values between 0 and 1, f∗ can increase by more than γ

2 in at
most 2

γ of the intervals. Since an interval has weight of at most εγ2 under the distribution, the sum of
weights of all such intervals under the distribution is at most 2

γ ×
εγ
2 = ε with probability of at least

1− δ
2 .
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To remove the assumption that no instance is sampled more than once, we replace the input
space X and distribution D with a new input space X ′ and distribution D′ under which an instance
is very unlikely to be sampled more than once. Let X ′ = X × T and D′ = D × U where U is the
uniform distribution over the set T = {0, . . . , 2k − 1} for k = d2 log(m) + log( 1

δ )e. Then X ′ is
linearly ordered under the lexicographic ordering i .e., (x1, t1) ≤ (x2, t2) iff x1 < x2 or x1 = x2

and t1 < t2. Therefore, the chance that any instance is being labeled twice in a sample of size m is(
m
2

)
2−k ≤ m22−k−1 ≤ δ

2 .
Therefore, L with probability of at least (1 − δ

2 )(1 − δ
2 ) > 1 − δ will return a function f̂ such

that Prx∼D[|f∗(x)− f̂(x)| > γ] ≤ ε. �

Using the above theorem, we can easily obtain the following corollary.

Corollary 3.9. Let ρ ≥ 0 and ε, δ, γ ∈ (0, 1
2 ). Let X = R. There exists an algorithm L, that for any

target concept c∗ ∈ C1
thr and D ∈ DX , using

m = d 4

εγ
edmax(

64 ln( 221

(εγ)2δ )

εγ
,

2 ln(
4d 4
εγ e
δ )

γ2
)e

examples drawn with respect to EX(c∗, D), will return a function f̂ : X → [0, 1] with the property
that

Prx∼D[|f̂(x)− Φdrball(ρ)c∗,D
(x)| > γ] ≤ ε

with probability of at least 1− δ.

Proof. In Lemma 3.7, we proved that the noisy (probabilistic) concepts resulting from applying
ρ-distance random classification noise model to concepts in C1

thr from a set of non-decreasing func-
tions. Therefore, we can directly apply Theorem 3.8.

Now, we have all the prerequisites to show that the class of one-dimensional threshold functions
is PAC0,0-learnable with respect to distance random classification noise and DX .

Proposition 3.10. Let ρ ≥ 0. Let X = R. C1
thr is PAC0,0-learnable with respect to Φdrball(ρ) and

DX .

Proof. Let ε, δ ∈ (0, 1
2 ) and D ∈ DX a distribution. Let

s1 = d 64

ε2δ
e,

and

s2 = dmax (
210 ln( 231

ε4δ3 )

ε2δ
,

25 ln( 24s1
δ )

ε4
)e.

The learning algorithm L starts by drawing a sample S of m = s1s2 examples (xi, yi) where
xi ∈ X and yi ∈ {0, 1} for 1 ≤ i ≤ m. Let the examples be sorted by their instances such that
x1 ≤ . . . ≤ xm. First let us assume x1 < . . . < xm. Later we show how to remove this assumption.
X can be partitioned into s1 disjoint intervals, Ij , 1 ≤ j ≤ s1, as in the proof sketch of Theorem 3.8.
Also, using the same argument as in the proof sketch of Theorem 3.8, Prx∼D[x ∈ Ij ] is at most ε

2δ
32

with probability of at least 1− δ
8 for all 1 ≤ j ≤ s1.

After drawing the sample two cases can happen based on whether the sample has a clear bound-
ary between points with different labels or not. We will define L by a case distinction and for each
case we prove the learner will fulfill the learnability conditions of Definition 2.9.

1. There exists at least one set of three examples {(x1, y), (x2, 1 − y), (x3, y)} ⊆ S such that
x1 < x2 < x3 for some y ∈ {0, 1} (see Figure 3.4).
Let θ∗ ∈ R such that cθ∗ is the target concept and c the concept returned by L. In this case,

17



Figure 3.4: Case 1 in the proof of Proposition 3.10 for y = 1

dist(x2, θ
∗) ≤ ρ because at least the label of one of the instances x1, x2 or x3 is flipped by

Φdrball(ρ). Then based on the number of intervals that intersect with DBρ(x2), two subcases
can happen.

1(a). DBρ(x2) has intersection with at most b 32
εδ c intervals i .e., there exists no n1, n2 ∈

N, n1 ≥ b 32
εδ c and n2 ≤ s1 − n1 such that for any 0 ≤ i ≤ n1 − 1

DBρ(x2)|S ∩ In2+i 6= ∅.

Let c ∈ C1
thr, returned by L, be such that c(x) = 1 iff x ≥ x2. Note that because

dist(x2, θ
∗) ≤ ρ, Prx∼D[c(x) 6= cθ∗(x)] ≤ Prx∼D[x ∈ DBρ(x2)]. We show that

c has error of at most ε with probability of at least 1 − δ
8 . This happens because

DBρ(x2) intersects with at most b 32
εδ c intervals and, with probability of at least 1− δ

8 ,
Prx∼D[x ∈ Ij ] ≤ ε2δ

32 for all 1 ≤ j ≤ s1. Therefore, Prx∼D[c(x) 6= cθ∗(x)] ≤
Prx∼D[x ∈ DBρ(x2)] ≤ b 32

εδ c ×
ε2δ
32 ≤

32
εδ ×

ε2δ
32 = ε with probability of 1− δ

8 .

1(b). DBρ(x2) has intersection with more than b 32
εδ c intervals i .e., there exists some

n1, n2 ∈ N, n1 ≥ b 32
εδ c and n2 ≤ s1 − n1 such that for any 0 ≤ i ≤ n1 − 1

DBρ(x2) ∩ In2+i 6= ∅.

We can use algorithm L in Corollary 3.9 to find a function f̂ : X → [0, 1] such that
with probability of at least3 1 − δ

8 , for x in at least b(1 − δ
4 )s1c of the intervals we

have |f̂(x)− Φdrball(ρ)cθ∗ ,D
(x)| ≤ ε2

4 < ε
4 .

Let DBρ(x2)|S be the set of instances in S that are in DBρ(x2). Let L return a (not

necessarily unique) concept c ∈ C1
thr that labels the leftmost b(1−f̂(x2))|DBρ(x2)|S |c

points in DBρ(x2)|S with 0 and labels the rightmost df̂(x2)|DBρ(x2)|S |e points in
DBρ(x2)|S with 1 (see Figure 3.5). We now show that c has error of at most ε2 with
probability of at least 1− 3δ

8 .

Figure 3.5: Case 1(b). in the proof of Proposition 3.10

3This probability is not 1− δ
4

because we have already assumed that no instance is sampled more than once.
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Since more than b 32
εδ c intervals intersect with DBρ(x2), we can find a lower bound on

the cardinality of DBρ(x2)|S .

|DBρ(x2)|S | ≥ (b32

εδ
c+ 1− 2)× s2 + 2

≥ (
32

εδ
− 2)× dmax(

210 ln( 231

ε4δ3 )

ε2δ
,

25 ln( 24s1
δ )

ε4
)e+ 2

≥ (
32

εδ
− 2)×max(

210 ln( 231

ε4δ3 )

ε2δ
,

25 ln( 24s1
δ )

ε4
)

> (
32

εδ
− 2)× 32

ε2
ln(

210

ε2δ
)

=
210

ε3δ
ln(

210

ε2δ
)− 64

ε2
ln(

210

ε2δ
)

>
25

ε2
ln(

4

δ
)

Using Lemma A.1 in the Appendix, 25

ε2 ln( 4
δ ) examples are sufficient so that with

probability of at least 1 − δ
4 , Prx∼D[x ∈ DBρ(x2) and c(x) = 0] deviates no more

than ε
4 from 1 − f̂(x2). Since f̂ has error of at most ε

4 with probability of at least
1− δ

8 , therefore, Prx∼D[x ∈ DBρ(x2) and c(x) = 0] deviates at most by ε
4 + ε

4 = ε
2

from 1− f̂(x2) with probability of at least (1− δ
8 )(1− δ

4 ) > 1− 3δ
8 . Therefore, with

probability of at least 1− 3δ
8 , Prx∼D[c(x) 6= cθ∗(x)] ≤ ε

2 Prx∼D[x ∈ DBρ(x2)] ≤ ε
2 .

2. There exists no set of three examples {(x1, y), (x2, 1− y), (x3, y)} ⊆ S such that x1 < x2 <

x3 for any y ∈ {0, 1}.

Figure 3.6: x− and x+ in the proof of Proposition 3.10

Let θ∗ ∈ R such that cθ∗ is the target concept. Also let us define x− and x+ as follows (see
Figure 3.6).

x− =

{
max {x | (x, 0) ∈ S} , if ∃(x, 0) ∈ S ,
x+ − 1 , if @(x, 0) ∈ S,

and

x+ =

{
min {x | (x, 1) ∈ S} , if ∃(x, 1) ∈ S ,
x− + 1 , if @(x, 1) ∈ S .

Let L return a (not necessarily unique) concept c ∈ C1
thr such that c(x) = 1 iff x ≥ x+.

We know that θ∗ ∈ [x− − ρ, x+ + ρ) because otherwise neither x− nor x+ could be sampled
with labels 0 and 1 respectively.

We can use the same case distinction that we used for the number of intervals that intersect
DBρ(x2) for the number of intervals that intersect θ∗ ∈ [x−−ρ, x+ +ρ). The proof is similar
in each of the subcases to the corresponding subcases in Case 1. Therefore, c has an error of
at most ε = max (ε, 3ε

8 ) with probability of at least min (1− δ
8 , 1−

3δ
8 ) = 1− 3δ

8 .
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To remove the assumption that no instance is sampled more than once, we can use the same tech-
nique as in the sketch of the proof of Theorem 3.8. We can replace the input spaceX and distribution
D with a new input space X ′ and distributionD′ under which an instance is very unlikely to be sam-
pled more than once. Let X ′ = X × T and D′ = D × U where U is the uniform distribution over
the set T = {0, . . . , 2k − 1} for k = d2 log(m) + log( 1

δ )e. Therefore, the chance that any instance
is being labeled twice in a sample of size m is

(
m
2

)
2−k ≤ m22−k−1 ≤ δ

8 .
Therefore, L returns a concept that has error of at most ε with probability of at least (1− 3δ

8 )(1−
δ
8 ) > 1− δ

2 > 1− δ.

3.2 Weight ball noise models
In the next two noise models, we use the mass under the underlying distribution as the measure of
proximity.

Definition 3.11. For any D ∈ DX , ω ∈ [0, 1], and x ∈ X , the ω-weight ball WBω(x) around x is
defined as

WBω(x) = DBρ(x) , where ρ = sup{ρ′ | Pr x′∼D[x′ ∈ DBρ′(x)] ≤ ω} .

Our first weight ball label noise model is called ω-weight malicious classification noise4.

Definition 3.12. Let ω ∈ [0, 1]. The ω-weight malicious classification noise model Φwmball(ω) is a
label noise model, defined by

Φwmball(ω)(c,D, x) =

{
{c(x)} , if c(x) = c(x′) for all x′ ∈WBω(x) ,

[0, 1] , otherwise ,

where D ∈ DX , c ∈ 2X , and x ∈ X .

For every example (x, y) that a learning algorithm L draws from the oracle EXΦwmball(ω)
(c,D),

y = c(x) will be guaranteed if all points in the ω-weight ball around x have the same label under c.
If both positively and negatively labeled points lie in the ω-weight ball around x, we cannot make
any assumption at all about the label y.

The label noise model here depends on the distribution D. Moreover, the value of a noisy
concept for an instance x ∈ X depends on some of the values of the underlying target concept c
other than the value c(x) itself.

Like the malicious classification noise and the distance malicious classification noise models,
the model of weight malicious classification noise is a non-deterministic label noise model.

The adversarial power in weight malicious classification noise is not as strong as the adversar-
ial power in distance malicious classification noise. To illustrate this, we show that the class of
one-dimensional threshold-functions, which is not PACε,0-learnable with respect to ρ-distance ma-
licious classification noise and DX for any ε ∈ [0, 1

2 ), is PACω,0-learnable with respect to ω-weight
malicious classification noise and DX .

Proposition 3.13. Let ω ∈ [0, 1
2 ). Let X = R. C1

thr is PACω,0-learnable with respect to Φwmball(ω)

and DX .

Proof. Let ε ∈ (ω, 1
2 ), δ ∈ (0, 1

2 ) and ω′ = ε − ω. Let the learning algorithm L be as follows. L
upon seeing a sample S returns any concept in the concept class that has the smallest number of
wrong label predictions for instances in S .5 We will show that using a sample S of

m ≥ 2

ε− ω
(ln(

1

δ
) + ln(

2

ε− ω
)) =

2

ω′
(ln(

1

δ
) + ln(

2

ω′
))

4We simply write weight malicious classification noise instead of ω-weight malicious classification noise when ω is clear
from the context.

5This is the minimum pn-disagreement strategy (Definition 5.9) that will be introduced in Chapter 5.
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examples, the concept returned by L will have an error of at most ε with probability of at least 1− δ.
Let M = {x | (x, y) ∈ S for some y ∈ {0, 1}} ∪ {−∞,+∞} be the union of the set of

distinct instances in the sample with {−∞,+∞}. Then |M | ≤ m + 2. Let x1 and x2 be any two
consecutive points in M i .e., there is no x3 ∈M such that x1 < x3 < x2. Using Lemma A.5 from
the Appendix, m examples guarantee that

with probability of at least 1− δ, Prx∼D[x1 < x < x2] ≤ ω′. (3.3)

Also let
X− = {x | ∃x′ ≥ x : (x′, 0) ∈ S and ∀x′′ ≤ x : (x′′, 1) /∈ S},

X+ = {x | ∃x′ ≤ x : (x′, 1) ∈ S and ∀x′′ ≥ x : (x′′, 0) /∈ S},

X−+ = X − X− −X+.

Note that L can always return a concept cθ where θ ∈ X−+. θ does not need to be in X− because
for such θ there exists e > 0 such that cθ+e where θ + e ∈ X−+ has at most the same number of
wrong label predictions on the instances of S than cθ. Also θ does not need to be in X+ because for
such θ there exists e > 0 such that cθ−e where θ− e ∈ X−+ has at most the same number of wrong
label predictions on the instances of S than cθ.

After drawing the sample, two cases can happen based on whether the sample has a clear bound-
ary between points with different labels or not i .e., whether M ∩ X−+ = ∅ or M ∩ X−+ 6= ∅. We
consider these two cases separately below.

1. M ∩ X−+ = ∅. Also let us assume M ∩ X− 6= ∅ and M ∩ X+ 6= ∅. The same argument as
here can be used when either M ∩ X+ = ∅ or M ∩ X− = ∅, following Cases 1(a) and 1(b),
respectively.

Let cθ be the concept returned by L and cθ∗ the target concept. Based on the position of θ and
θ∗ the following two subcases (1(a) and 1(b)) can be considered.

Figure 3.7: Case 1(a) part (i) in the proof of Proposition 3.13

1(a). θ∗ < θ. Let x′ be such that (x′, 1) ∈ S and, for all (x, 1) ∈ S , dist(x′, θ) ≤
dist(x, θ). Now, based on the position of θ∗ and x′ the following two cases can
happen.

(i). If θ∗ ≤ x′ (see Figure 3.7) then Prx∼D[cθ(x) 6= cθ∗(x)] ≤ Prx∼D[θ ≤
x < x′] = Prx∼D[θ < x < x′] ≤ ω′ < ε with probability of at least
1− δ, based on the property in Equation 3.3.

(ii). Otherwise (see Figure 3.8) Prx∼D[cθ(x) 6= cθ∗(x)] = Prx∼D[θ ≤ x <

x′] + Prx∼D[x′ ≤ x < θ∗] = Prx∼D[θ < x < x′] + Prx∼D[x′ ≤
x < θ∗] because θ∗ > x′. Furthermore, Prx∼D[θ < x < x′] ≤ ω′

with probability of at least 1− δ based on the property in Equation 3.3.
Also Prx∼D[x′ ≤ x < θ∗] ≤ Prx∼D[x′ ≤ x ≤ θ∗] ≤ ω because oth-
erwise x′ would have been labeled 0 in S. Therefore, Prx∼D[cθ(x) 6=
cθ∗(x)] ≤ ω′ + ω = ε with probability of at least 1− δ.
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Figure 3.8: Case 1(a) part (ii) in the proof of Proposition 3.13

1(b). θ∗ ≥ θ. Let x′ such that (x′, 0) ∈ S and, for all (x, 0) ∈ S, dist(x′, θ) ≤ dist(x, θ).
Now, based on the position of θ∗ and x′ the following two cases can happen.

(i). If θ∗ ≤ x′ then Prx∼D[cθ(x) 6= cθ∗(x)] = Prx∼D[θ∗ ≤ x ≤ x′] +

Prx∼D[x′ < x < θ] because θ∗ > x′. Furthermore, Prx∼D[θ∗ ≤ x ≤
x′] ≤ ω because otherwise x′ would have been labeled 1 in S. Also
Prx∼D[x′ < x < θ] ≤ ω′ with probability of at least 1 − δ based on
the property in Equation 3.3. Therefore, Prx∼D[cθ(x) 6= cθ∗(x)] ≤
ω + ω′ = ε with probability of at least 1− δ.

(ii). Otherwise, based on the property in Equation 3.3, Prx∼D[cθ(x) 6=
cθ∗(x)] = Prx∼D[θ∗ ≤ x < θ] < Prx∼D[x′ < x < θ] ≤ ω′ < ε

with probability of at least 1− δ.

Figure 3.9: Case 2 in the proof of Proposition 3.13

2. M ∩ X−+ 6= ∅. Let xmax = max {x | x ∈ X−+ ∧ (x, 0) ∈ S} and xmin = min {x | x ∈
X−+ ∧ (x, 1) ∈ S} (see Figure 3.9). Note that both xmin and xmax exists (if only one of xmin

and xmax exist, it would have been contained in either X− or X+ and thus not it X−+.) Let
cθ be the concept returned by L and cθ∗ the target concept. If θ∗ is greater than or equal to θ
then Prx∼D[cθ(x) 6= cθ∗(x)] ≤ ω < ε because otherwise xmax would have been labeled 1.
Similarly, if θ∗ < θ then Prx∼D[cθ(x) 6= cθ∗(x)] ≤ ω < ε because otherwise xmin would
have been labeled 0. Therefore, cθ will have an error of at most ε with probability 1 in this
case.

However, the class of one-dimensional threshold functions is still not PACε,0-learnable with
respect to ω-weight malicious classification noise and DX when ε ∈ [0, ω).

Proposition 3.14. Let ω ∈ (0, 1
2 ), ε ∈ [0, ω) and δ ∈ [0, 1

2 ). Let X = R. C1
thr is not PACε,δ-

learnable with respect to Φwmball(ω) and DX .

Proof. Let Ω ∈ (ε, ω). Let x1, x2, x3 ∈ X such that

x1 < x2 < x3,

and
dist(x1, x2) < dist(x2, x3).
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Let D be such that

Prx∼D[x = x1] = Ω, P rx∼D[x = x2] = ω − Ω, P rx∼D[x = x3] = 1− ω,

and
Prx∼D[x /∈ {x1, x2, x3}] = 0.

Therefore, supp(D) = {x1, x2, x3}.
Let C = {c, c′} with c(x) = cx1−dist(x1,x2)(x) and c′(x) = cx2(x) for all x ∈ X . We show that

EXΦwmball(ω)
(c,D) and EXΦwmball(ω)

(c′, D) have potentially equivalent behavior on D. Therefore,
we can use Lemma 2.12 to show that C1

thr is not PACε,δ-learnable with respect to Φwmball(ω) and
DX .

For any x ∈ supp(D), Φwmball(ω)(c,D, x) = {1} because the ω-weight ball around x only
contains points with label 1. For x3, Φwmball(ω)(c

′, D, x3) = {1}. Also for any x ∈ {x1, x2},
Φwmball(ω)(c

′, D, x) = [0, 1] because the ω-weight ball around x contains points with both labels
0 and 1. Thus, Φwmball(ω)(c,D, x) ∩ Φwmball(ω)(c

′, D, x) 6= ∅ for all x ∈ supp(D). Therefore,
based on Definition 2.10, EXΦwmball(ω)

(c,D) and EXΦwmball(ω)
(c′, D) have potentially equivalent

behavior on D.
Since Prx∼D[c(x) 6= c′(x)] = Ω > ε, therefore, C1

thr is not PACε,δ-learnable with respect to
Φwmball(ω) and DX .

Although not as strong as distance malicious classification noise, still the adversarial character-
istics of distance weight classification noise is strong enough to make simple concept classes not
PAC-learnable with respect to such a noise model. One such concept class is the class of two-
dimensional axis-parallel halfspaces defined as follows.

Definition 3.15. Let X = R2 and C2
thr = {cθ | θ ∈ R}, where

cθ(x, x
′) =

{
1 , if x ≥ θ ,
0 , if x < θ .

C2
thr is called the class of two-dimensional axis-parallel halfspaces.

We show that the class of two-dimensional axis-parallel halfspaces is not PACε,δ-learnable with
respect to weight malicious classification noise and DX for any ε, δ ∈ (0, 1

2 ).

Proposition 3.16. Let ω ∈ (0, 1
2 ) and ε, δ ∈ [0, 1

2 ). Let X = R2. C2
thr is not PACε,δ-learnable with

respect to Φwmball(ω) and DX .

Proof. Let m = d 1
ω e. Let {x1, . . . , x2m} ∈ X such that for 1 ≤ i ≤ m, xi = (0, i) and for

1 + m ≤ i ≤ 2m, xi = ( 1
2 , i − m) (see Figure 3.10). Let D be a probability distribution such

that for 1 ≤ i ≤ m, Prx∼D[x = xi] = 1+ω
2m and for 1 + m ≤ i ≤ 2m, Prx∼D[x = xi] = 1−ω

2m .
Therefore, supp(D) = {x1, . . . , x2m}.

Let C = {c, c′} where c(x) = c−1(x) and c′(x) = c1(x) for all x ∈ X . We show that
EXΦwmball(ω)

(c,D) and EXΦwmball(ω)
(c′, D) have potentially equivalent behavior on D. Therefore,

we can use Lemma 2.12 to show that C2
thr is not PACε,δ-learnable with respect to Φwmball(ω) and

DX .
For any x ∈ supp(D), Φwmball(ω)(c,D, x) = {1} because the ω-weight ball around x only

contains points with label 1. Moreover, for any x ∈ supp(D), Φwmball(ω)(c
′, D, x) = [0, 1] because

the ω-weight ball around x contains points with both labels 0 and 1.6 Thus, Φwmball(ω)(c,D, x) ∩
Φwmball(ω)(c

′, D, x) 6= ∅ for all x ∈ supp(D). Using Definition 2.10, EXΦwmball(ω)
(c,D) and

EXΦwmball(ω)
(c′, D) have potentially equivalent behavior on D.

Since Prx∼D[c(x) 6= c′(x)] = 0.5 > ε as ε[0, 1
2 ), therefore, C2

thr is not PACε,δ-learnable with
respect to Φwmball(ω) and DX .

6Because for any point xi, 1 ≤ i ≤ m, the ball around xi only contains xi and xi+m and for any point xi, 1 + m ≤
i ≤ 2m, the ball around xi only contains xi and xi−m.
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Figure 3.10: Geometry of the input space when ω = 7
12 and m = 2.

Like distance malicious classification noise, it seems like choosing an arbitrary label from the
weight ball around a point as the label of that point gives too much freedom to the oracle. We
mitigate this a bit in our next noise model, called the ω-weight random classification noise7. This
model is a deterministic version of ω-weight malicious classification noise.

Definition 3.17. Let ω ∈ [0, 1]. The ω-weight random classification noise model Φwrball(ω) is a
label noise model defined as

Φwrball(ω)(c,D, x) = {Pr x′∼D[c(x′) = 1 | y ∈ WBω(x)]} ,

where D ∈ DX , c ∈ 2X , and x ∈ supp(D). Φwrball(ω)(c,D, x) = {0} for x /∈ supp(D).

For every example (x, y) that a learning algorithm L draws from the oracle EXΦwrball(ρ)
(c,D),

y = c(x) will be guaranteed if all points in the ω-weight ball around x have the same label under
c. If both positively and negatively labeled points lie in the ω-weight ball around x, then the label y
will be drawn from {0, 1} according to the distribution of labels within the ω-weight ball around x.

This label noise model depends on the distribution D. Moreover, the value of the noise function
in an instance x ∈ X depends on some of the values of the underlying target concept c other than
the value c(x) itself.

Similar to distance ball models, we can show that any concept class that is PAC-learnable with
respect to Φwmball and a class of distributions is also PAC-learnable with respect to Φwrball and the
same class of distributions.

Proposition 3.18. Let ω ∈ [0, 1] and ε, δ ∈ [0, 1
2 ). Let D ⊆ DX be a class of distributions. Any

concept class C that is PACε,δ-learnable with respect to Φwmball(ω) andD is also PACε,δ-learnable
with respect to Φwrball(ω) and D.

The proof is exactly the same as the proof of Proposition 3.6 replacing Φdmball(ρ) and Φdrball(ρ)

with Φwmball(ω) and Φwrball(ω) respectively.

one-dimensional threshold functions
ρ-distance ω-weight

malicious classification No Yes (ε ∈ [ω, 1
2 ), δ ∈ [0, 1

2 ))
noise model No (ε ∈ [0, ω), δ ∈ [0, 1

2 ))
random classification Yes (ε, δ ∈ [0, 1

2 )) Yes (ε ∈ [ω, 1
2 ), δ ∈ [0, 1

2 ))
noise model Open (ε ∈ [0, ω), δ ∈ [0, 1

2 ))

Table 3.1: Summary of learnability results with our noise models on C1
thr.

7We simply write weight random classification noise instead of ω-weight random classification noise when ω is clear
from the context.
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Table 3.1 summarizes the learnability results of our noise models for the class of one-dimensional
threshold functions. The question of whether one-dimensional threshold functions are PACε,δ-
learnable with respect to ω-weight random classification noise remains open for ε ∈ [0, ω) and
δ ∈ [0, 1

2 ).
Note that noise models that depend both on the target concept and on the instances make learning

very difficult. We do not have any strong general learnability results for our new models. Still we
hope that they can serve as first steps in the direction of modeling noise in a more realistic way.
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Chapter 4

Learning under Label Noise in Finite
Input Spaces

In this chapter, we assume thatX is finite. Therefore, the VC-dimension of any concept class and the
support of any distribution over X is finite. Having a finite input space makes the learning easier, as
a learner can easily estimate the weight of the important parts of the distribution by sampling. Also
throughout this chapter we assume the noise model is deterministic.

First, in the following corollary, we show that the learnability result with respect to the CPCN

model (Theorem 2.17) implies learnability with respect to any arbitrary noise model when the input
space is finite and the noise rate for any point is strictly less than a half. A condition on the noise
model is that its value on instance x does not depend on the distribution and not on any other values
of the target concept c∗ than the value c∗(x) itself.

Corollary 4.1. Let X be a finite input space, C a concept class andDX the class of all distributions.
Let Φ be a deterministic noise model such that

1. nrc,D(x) < 1
2 for all x ∈ X , c ∈ C and D ∈ DX , and

2. nrc,D(x) = nrc′,D′(x) for all D,D′ ∈ DX and all c, c′ ∈ C with c(x) = c′(x).

Then C is PAC0,0-learnable with respect to Φ and DX .

Proof. Let c∗ ∈ C be the target concept and D ∈ DX a distribution. Let k = |{nrc,D′(x) | x ∈ X}|
for some c ∈ C and D′ ∈ DX . Note that k is finite because X is finite. Let η = (η1, . . . , ηk) be such
that

1. ηi ∈ {nrc∗,D(x) | x ∈ X} for all 1 ≤ i ≤ k.

2. ηi 6= ηj for all 1 ≤ i, j ≤ k and i 6= j.

Let π = (π1, . . . , πk) such that πi = {x | x ∈ X and nrc∗,D(x) = ηi} × {0, 1}. Let Φ′ be a
CPCN model with parameters η and π. This is well-defined because of condition 2 of the corollary.
EXΦ(c∗, D) and EXΦ′(c

∗, D) have potentially equivalent behavior on D because Φ(c∗, D, x) =

Φ′(c∗, D, x) due to the way we construct Φ′.
Since π1 ∪ . . . ∪ πk = X × {0, 1} and η ∈ [0, 1

2 )k (due to the assumption of the corollary),
Theorem 2.17 can be used to show that C is PAC0,0-learnable with respect to Φ′ and DX . Us-
ing Lemma 2.11, C is also PAC0,0-learnable with respect to Φ and DX because EXΦ(c∗, D) and
EXΦ′(c

∗, D) have potentially equivalent behavior on D, and Φ and Φ′ are both deterministic label
noise models.

Next we show that, when the input space is finite, we can generalize the result of Corollary 4.1
to the case that the noise rate for any point just needs to be different than a half instead of strictly
less than a half. However, as in Corollary 4.1, the noise rate still depends only on the point itself.
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Like Corollary 4.1 this problem can also be cast into a problem in the CPCN framework. How-
ever, we cannot use the learnability results with respect to CPCN anymore, because the learnability
result with respect to CPCN only holds when the noise rate is strictly less than a half. First we need
to state and prove the following lemma which is a generalization of Lemma A.5 in the Appendix.

Lemma 4.2. (Generalized Coupon Collector Problem) Let n ∈ N. Let A1, . . . , Ak be events with
probability greater than or equal to p. Then in a sequence of

m =
n

p
ln(

k

1− (1− δ) 1
n

) (4.1)

independent trials, the probability that every event occurs at least n times is at least 1− δ.

Proof. Using Lemma A.5 in the Appendix, replacing δ by 1− (1− δ) 1
n , a sequence of

m′ =
1

p
ln(

k

1− (1− δ) 1
n

)

independent trials is sufficient such that, with probability of at least (1− δ) 1
n , every event A1, .., Ak

occurs at least once.
Let the following denote a sequence of n×m′ trials, partitioned into n pairwise disjoint sets of

size m′.
t11, . . . , t1m′︸ ︷︷ ︸

1

t21, . . . , t2m′︸ ︷︷ ︸
2

. . . tn1, . . . , tnm′︸ ︷︷ ︸
n

In each of these sets, with probability of at least (1 − δ) 1
n each event A1, . . . , Ak occurs at least

once. The probability that in all of the sets each event A1, . . . , Ak occurs at least once is at least
((1 − δ) 1

n )n = 1 − δ due to the independence of the trials. Therefore, with probability of at least
1 − δ each of the events A1, . . . , Ak occurs at least n times in a sample of size m = n × m′, as
denoted in Equation 4.1.

The statement of the generalization of Corollary 4.1 is as follows.

Proposition 4.3. Let X be a finite input space. Let C be a concept class and Φ a deterministic noise
model such that

1. nrc,D(x) 6= 1
2 for all x ∈ X , c ∈ C and D ∈ DX , and

2. nrc,D(x) = nrc′,D′(x) for all D,D′ ∈ DX and all c, c′ ∈ C with c(x) = c′(x).

Then C is PAC0,0-learnable with respect to Φ and DX .

Proof. LetX = {x1, . . . , xn}. Without loss of generality, let for all i ∈ {1, . . . , n−1}, P rx∼D[x =

xi] ≥ Prx∼D[x = xi+1]. Then, for any ε > 0, there exists a value kε ∈ {1, . . . , n} such that
Prx∼D[x = xi] ≥ ε

n iff i ≤ kε. Thus

n∑
i=kε+1

Prx∼D[x = xi] < (n− kε)
ε

n
≤ (n− 1)

ε

n
< ε

Let
η = min1≤i≤n|

1

2
− nrc∗,D(xi)|

for arbitrary c∗ ∈ C and D ∈ DX and L a learning algorithm with the following strategy. L draws
a sample S of size m (as in Equation 4.7) examples from EXΦ(c∗, D). L returns a concept c that
labels any point x ∈ X as follows.
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1. If x is sampled at least m1 times in S , where m1 is as in Equation 4.2 and nrc∗,D(x) < 1
2 , c

will return the label that is observed more often for x in the sample (if one label is observed
more often than the other).

2. If x is sampled at least m1 times in S, where m1 is as in Equation 4.2 and nrc∗,D(x) > 1
2 ,

c will return the label that is observed less often for x in the sample (if one label is observed
more often than the other).

3. Otherwise, c(x) will be defined such that c ∈ C if possible.1

In the rest of the proof, we exploit the finiteness of X to show that in order for c to have an error of
at most ε with probability of at least 1− δ, it is sufficient for c to label points with higher mass under
D ({x1, . . . , xkε}) correctly. Moreover, in order to predict a label of any point correctly with high
probability, that point should be sampled often enough so that the learner can use the noise rate of
that point to predict its label. Since X is finite, a large enough sample size will guarantee that with
high probability any point that the learner is interested in will be sampled a sufficient number of
times. The rest of this proof deals with computing a large enough sample size to achieve this goal.

When examples are drawn from EXΦ(c∗, D), the average of the labels observed for any instance
x in S is a random variable with expectation Φc∗,D(x). Let for any instance x in S, Φ̂c∗,D(x) denote
an estimate of the expectation of this random variable computed from the sample. Φ̂c∗,D(x) can be
easily calculated by summing up the labels that are observed for instance x, and dividing the sum
by the total number of times that x is sampled.

If with high probability, for any x ∈ {x1, . . . , xkε}, Φ̂c∗,D(x) deviates less than η from its
expectation, Φc∗,D(x), then x is seen with one label more often than with the other one in the
sample. Knowing whether nrc∗,D(x) is less or greater than a half, L can easily decide which label
(the more observed one or the less observed one) is the correct label of x. Therefore, with high
probability, L returns the correct label for the points x1, . . . , xkε . As we described, predicting the
Φ̂c∗,D values with any amount of deviation strictly less than η is sufficient for L to return a concept
that with probability of at least 1− δ has error of at most ε. For simplicity, we choose the deviation
of η2 .

We can use the Hoeffding inequality (Lemma A.1 in the Appendix) to bound the probabil-
ity of deviation of Φ̂c∗,D from Φc∗,D by at most η

2 . Based on this inequality, if any point x ∈
{x1, . . . , xkε} is sampled at least

m1 ≥
2

η2 ln(1− (1− δ
2 )

1
n )

(4.2)

times, the estimation of Φ̂c∗,D(x) is guaranteed to deviate at most η2 from Φc∗,D(x) with probability
of at least 1− δ

2 , as we will see next. Using the Hoeffding inequality, for any point x ∈ {x1, . . . , xkε}

Pr[|Φ̂c∗,D(x)− Φc∗,D(x)| ≥ η

2
] ≤ e−2( η2 )2m1

where the probability is taken over a sample of of size m, i .i .d . from D. Inserting m1 from Equa-
tion 4.2

Pr[|Φ̂c∗,D(x)− Φc∗,D(x)| ≥ η

2
] ≤ 1− (1− δ

2
)

1
n

Let δ′ = 1− (1− δ
2 )

1
n . Therefore, for any point x ∈ {x1, . . . , xkε}

Pr[|Φ̂c∗,D(x)− Φc∗,D(x)| ≤ η

2
] ≥ 1− δ′ (4.3)

If we want Equation 4.3 to be satisfied for all the points x ∈ {x1, . . . , xkε} at the same time

Pr[∀x ∈ {x1, . . . , xkε} : |Φ̂c∗,D(x)− Φc∗,D(x)| ≤ η

2
] ≥ (1− δ′)kε ≥ (1− δ′)n (4.4)

1As we will see in the rest of this proof, with probability of at least 1− δ, this will be possible.
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since kε ≤ n. Replacing δ′ by 1− (1− δ
2 )

1
n in Equation 4.4 and simplifying yields

Pr[∀x ∈ {x1, . . . , xkε} : |Φ̂c∗,D(x)− Φc∗,D(x)| ≤ η

2
] ≥ (1− δ

2
) (4.5)

Now that we know how many times points with higher mass under D should be sampled during
the sampling process, to get a good estimate of their Φc∗,D values, we need to compute a sample
size such that any one of these points (x ∈ {x1, . . . , xkε}) occurs at least m1 times in the sample
with probability of at least 1− δ

2 . Using Lemma 4.2 we need

m ≥ m1n

ε
ln(

n

1− (1− δ
2 )

1
m1

) (4.6)

examples so that with probability at least 1 − δ
2 every point x ∈ {x1, . . . , xkε} is sampled at least

m1 times. This comes from the fact that in our problem k ≤ n, p ≥ ε
n and δ is replaced by δ

2 in
Lemma 4.2. Replacing m1 in Equation 4.6 implies that

m ≥ 2n

εη2 ln(1− (1− δ
2 )

1
n )

ln(
n

1− (1− δ
2 )

η2 ln(1−(1− δ
2
)
1
n )

2

) (4.7)

examples are sufficient such that any point x ∈ {x1, . . . , xkε} is at least sampledm1 times in S with
probability 1− δ

2 .
The analysis of this proof consists of two phases. First we showed that with probability of at least

1− δ
2 , drawingm1 examples is sufficient to have an estimate of Φ̂c∗,D(x) that does not deviate more

than η
2 from Φc∗,D(x) for any x ∈ {x1, . . . , xkε}. Then, we showed that drawing m examples is

sufficient so that, with probability of at least 1− δ
2 , any point x ∈ {x1, . . . , xkε} is sampledm1 times.

Therefore, the probability of success in both phases of the algorithm is (1− δ
2 )× (1− δ

2 ) ≥ 1− δ.
Note that the error of c is at most ε with probability of at least 1− δ because with probability of

at least 1− δ, c predicts the labels of points x ∈ {x1, .., xkε} correctly and
∑kε
i=1 Prx∼D[x = xi] >

1− ε.

In Proposition 4.3, the noise rate for any point in the input space only depends on the point
itself. The following proposition deals with a situation where the noise rate for any point also
depends on the underlying target concept. However, in this case, it is necessary to assume that for
any point the noise rate is either less than or greater than a half for all concepts. Thus, it generalizes
Proposition 4.3.

Proposition 4.4. Let X be a finite input space, C a concept class and Φ a deterministic label noise
model such that, for all x ∈ X

1. nrc∗,D(x) 6= 1
2 for all c∗ ∈ C.

2. [nrc,D(x) > 1
2 ⇔ nrc′,D(x) > 1

2 ] for all c, c′ ∈ C.

for all D ∈ DX . Then C is PAC0,0-learnable with respect to Φ and DX .

Sketch of the Proof. Let c∗ ∈ C be the target concept and D ∈ DX a distribution. The idea of the
proof is very similar to the one of Proposition 4.3. The learning algorithm estimates the values of
Φc∗,D for points with higher mass under D and returns the concept whose noise rates are closest to
nrc∗,D. The only difficulty may arise, because the learner does not know based on Φ̂c∗,D whether the
noise rate is less than a half and the actual label is the more observed label or the noise rate is greater
than a half and the actual label is the less often observed label. However, the second condition on Φ

will prevent this situation from happening. It is not hard to show that the same number of examples
as in the proof of Proposition 4.3 is sufficient here, too. �
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Chapter 5

Minimum pn-disagreement
Strategies

In this chapter we study a general learning algorithm with respect to noise (specifically label noise)
called the minimum pn-disagreement strategy1. We consider the application of this strategy for
learning in the presence of random classification noise. Also, we investigate the general charac-
teristics of a label noise model that makes certain concept classes learnable with a minimum pn-
disagreement strategy. In particular, we formulate a new sufficient condition for learnability with
respect to label noise (Theorem 5.16).

First, we need to introduce some more notation. Also throughout this chapter we assume the
label noise models are deterministic unless stated otherwise.

For a fixed target concept in a concept class and distribution, the pp-difference of a concept with
respect to the target concept and the distribution is defined as follows.

Definition 5.1. Let C be a concept class, D a distribution and c∗ ∈ C the target concept. For any
concept c ∈ C, the ∆pp

c∗,D(c) between c and c∗ is defined as

∆pp
c∗,D(c) = Ex∼D[|c(x)− c∗(x)|] (5.1)

For the sake of convenience, we simply write ∆pp(c) instead of ∆pp
c∗,D(c) whenever c∗ and D

are clear from the context2.
The pp-difference of a concept, c, has been considered as the error of c in the literature [2,

25] because for a large enough sample from a noise-free oracle, it is expected that c has error in
predicting a fraction of ∆pp(c) of the instances. We can easily write ∆pp in terms of probability as
we did in the previous chapters.

Remark 5.2. Let C be a concept class and D a distribution. Let c∗ ∈ C be the target concept. Then

∆pp(c) = Prx∼D[c(x) 6= c∗(x)] (5.2)

for all c ∈ C.

For a fixed error parameter, a fixed distribution, and a fixed target concept, we can divide the
concepts in a concept class into two disjoint groups.

Definition 5.3. (Angluin and Laird [2]) Let C be a concept class and D a distribution. Let c∗ ∈ C
be the target concept and ε ∈ (0, 1). A concept c ∈ C is if ∆pp(c) ≤ ε. c is if ∆pp(c) > ε.

1The term “strategy” in this chapter is referring to what we call a “learning algorithm” throughout this thesis.
2The designation pp is used here to show that the disagreement is measured between two “pure” concepts in the sense

that both of these two concepts are not noisy and, therefore, are mappings from the input space to {0, 1}.

30



Since any target concept, c∗, has ∆pp(c∗) equal to zero, the target concept is always ε-good
regardless of the value of ε. However, when we are dealing with a noisy oracle there may be no
concept that has zero disagreement with the examples returned by a noisy oracle. But first we need
to show how we can measure the disagreement between a concept and the target concept in the
presence of noise.

Definition 5.4. Let C be a concept class and D a distribution. Let c∗ ∈ C be the target concept and
Φ a deterministic noise model. For any concept c ∈ C, the ∆pn

c∗,D,Φ(c) between c and c∗ is defined
as

∆pn
c∗,D,Φ(c) = Ex∼D[|c(x)− Φc∗,D(x)|] (5.3)

For the sake of convenience, we write ∆pn(c) instead of ∆pn
c∗,D,Φ(c) whenever c∗, D and Φ are

clear from the context3. As in the case of pp-disagreement we can write pn-disagreement in terms
of probability instead of expectation. But first we need the following definition.

Definition 5.5. Let c be a concept and D a distribution. Let Φ be a deterministic noise model. We
denote by ĉ(x) the random variable defined as

ĉ(x) =

{
1 with probability Φc,D(x)
0 otherwise (5.4)

Therefore, we can write the pn-disagreement of a concept c as the probability of disagreement
between the labels c(x) and a label drawn at random from ĉ∗(x) where x is drawn at random with
respect to the underlying distribution. The following proposition shows that this gives us the same
outcome as Definition 5.4.

Proposition 5.6. Let C be a concept class and D a distribution. Let c∗ ∈ C be the target concept
and Φ a noise model. Then

∆pn
c∗,D,Φ(c) = Prx∼D,y∼ĉ∗(x)[c(x) 6= y] (5.5)

for all c ∈ C.

Proof. We can break down the expectation based on whether c(x) = 0 or c(x) = 1 and then we can
use Definition 5.5 to replace the Φc∗,D values.

Ex∼D[|c(x)− Φc∗,D(x)|] =

∫
x

|c(x)− Φc∗,D(x)|dx

=

∫
x|c(x)=0

Φc∗,D(x)dx+

∫
x|c(x)=1

(1− Φc∗,D(x))dx

=

∫
x|c(x)=0

Pry∼ĉ∗(x)[y = 1]dx+

∫
x|c(x)=1

Pry∼ĉ∗(x)[y = 0]dx

=

∫
x|c(x)=0

Pry∼ĉ∗(x)[c(x) 6= y]dx+

∫
x|c(x)=1

Pry∼ĉ∗(x)[c(x) 6= y]dx

= Prx∼D,y∼ĉ∗(x)[c(x) 6= y].

The following example shows how ∆pp and ∆pn can be computed.

Example 5.7. Let X = {x1, x2}, C = {c1, c2, c3} the concept class described in Table 5.1 and
D ∈ DX a distribution. Let Prx∼D[x = x1] = 0.25 and Prx∼D[x = x2] = 0.75. Let Φ be a
deterministic label noise model with nrc∗,D(x1) = 0.75 and nrc∗,D(x2) = 0.25 for any c∗ ∈ C (see
Table 5.1).
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concept/label x1 x2 concept/value x1 x2

c1 1 1 Φc1,D 0.25 0.75
c2 0 1 Φc2,D 0.75 0.75
c3 1 0 Φc3,D 0.25 0.25

Table 5.1: Concept class in Example 5.7

concept ∆pp ∆pn

c1 0.25|1− 0|+ 0.75|1− 1| = 0.25 0.25|0.25− 0|+ 0.75|1− 0.75| = 0.25
c∗ = c2 0.25|0− 0|+ 0.75|1− 1| = 0 0.25|0.75− 0|+ 0.75|1− 0.75| = 0.31
c3 0.25|1− 0|+ 0.75|0− 1| = 1 0.25|0.25− 0|+ 0.75|1− 0.25| = 0.69

Table 5.2: ∆pn values in Example 5.7

We can use Definitions 5.1 and 5.4 to compute the ∆pp and the ∆pn values respectively for the
case that c2 is the target concept as in Table 5.2.

We can estimate the ∆pn values with sampling. We call this estimation the pn-disagreement
between a concept and the sample.

Definition 5.8. (Angluin and Laird [2]) Let c be a concept. Let S = {(x1, y1), . . . , (xm, ym)} be
a sample of size m ∈ N. The Fpn(c,S) between c and S is defined as follows

Fpn(c,S) =
1

m

m∑
i=1

|yi − c(xi)| (5.6)

Fpn(c,S) is an unbiased4 estimator of ∆pn. The minimum pn-disagreement strategy simply
returns the concept that has the smallest pn-disagreement with the sample. We adapt the definition
of this strategy from Angluin and Laird [2].

Definition 5.9. (Angluin and Laird [2]) Let C be a concept class and S a sample. A learning
algorithm L is called a for C if upon seeing S, L returns a (not necessarily unique) concept c̄ ∈ C
such that

c̄ ∈ arg minc∈C Fpn(c,S) (5.7)

The minimum pn-disagreement strategy has also been called in the machine learning literature
(see e.g., [39]).

In the absence of noise, ∆pp and ∆pn values are equal for any pair of concept and target concept
in the concept class. Thus, ∆pp can be estimated using Fpn when there is no noise. Since ∆pp of
the target concept is always zero in the noise-free case, any learning algorithm that upon sampling
returns a concept that is consistent (has pn-disagreement of 0) with the sample is also a minimum
pn-disagreement strategy.

5.1 Minimum pn-disagreement strategies for learning with ran-
dom classification noise

In this section we consider the applications of minimum pn-disagreement strategies for learning
concept classes with respect to the most benign label noise model, random classification noise.

3The designation pn is used here to show that the disagreement is measured between a “pure” concept and a “noisy” one.
A concept is noisy in the sense that it is a mapping from the input space to [0, 1] resulting from applying a noise model when
sampling from a “pure” concept.

4lim|S|→∞ E[Fpn(c,S)] = ∆pn(c)

32



This will provide us some insight for the next section where we are seeking general features of a
noise model in which learning with respect to noise is possible with the minimum pn-disagreement
strategy.

In the random classification noise model, pn-disagreement values have a linear relationship with
the corresponding pp-disagreement values. We state the following lemma and its proof from the
article by Angluin and Laird [2].

Lemma 5.10. (Angluin and Laird [2]) Let η ∈ [0, 1). Let C be a concept class andD a distribution.
For any concept c ∈ C in the presence of η-random classification noise, Φrcn(η),

∆pn(c) = η + (1− 2η)∆pp(c) (5.8)

Proof. Let c∗ ∈ C be the target concept. For any example (x, y) drawn from EXrcn(η)(c
∗, D), the

probability that the label y of the example disagrees with c(x) is equal to the probability that (x, y)

is drawn from the area in which c(x) 6= c∗(x) and reported correctly by EXrcn(η)(c
∗, D) (which

happens with probability of 1 − η) plus the probability that (x, y) is drawn from the area in which
c(x) = c∗(x) and reported incorrectly by EXrcn(η)(c

∗, D) (which happens with probability of η).
Therefore,

∆pn(c) = (1− η)∆pp(c) + η(1−∆pp(c)) = η + (1− 2η)∆pp(c)

Next, we show that Theorem 2.14 can be proved using minimum pn-disagreement strategies.
This proof is adapted from the article by Angluin and Laird [2]. As a reminder, the statement of the
theorem is as follows.

Let C be a finite concept class. Let 0 ≤ η < 1
2 . Then C is PAC0,0-learnable with respect

to η-random classification noise and DX .

Proof of Theorem 2.14. (Angluin and Laird [2]) Let ε, δ ∈ (0, 1
2 ). Let c∗ ∈ C be the target concept

and D ∈ DX a distribution. We will show that if L draws a sample S of

m ≥ 2

ε2(1− 2η)2
ln(

2n

δ
)

examples from EXrcn(η)(c
∗, D) and returns a (not necessarily unique) concept c̄ ∈ C such that

c̄ ∈ arg minc∈CFpn(c,S)

then c̄ has error of at most ε with probability at least 1− δ.
Using Equation 5.8 in Lemma 5.10, for any concept c ∈ C

∆pn(c) = η + (1− 2η)∆pp(c)

Since η < 1
2 , for any c ∈ C, ∆pn(c) ≥ η and specifically for c∗, ∆pn(c∗) = η because ∆pp(c∗) = 0.

Also for any ε-bad concept c ∈ C

∆pn(c) = η + (1− 2η)∆pp(c) > η + (1− 2η)ε

As a result there is a separation of at least (1 − 2η)ε between the ∆pn value of the target concept
and the ∆pn value of any ε-bad concept. For the rest of this proof, we assume any occurrence of c
refers to an ε-bad concept.

We now show that m examples are sufficient so that, with probability of at least 1− δ, no ε-bad
concept minimizes the Fpn value. In order for some ε-bad concept c to minimize Fpn on a randomly
drawn sample of size m, at least one of the following inequalities has to be fulfilled.

Fpn(c,S) ≤ η +
(1− 2η)ε

2
(5.9)
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Fpn(c∗,S) ≥ η +
(1− 2η)ε

2
(5.10)

Otherwise an ε-good concept will minimize Fpn. We bound the probability that either Equation 5.9
or Equation 5.10 happens by at most δ. First let us start with Equation 5.9.

Prx∼D[Fpn(c,S) ≤η +
(1− 2η)ε

2
] < LE(η + (1− 2η)ε,m, η +

(1− 2η)ε

2
)

= LE(η + (1− 2η)ε,m, η + (1− 2η)ε− (1− 2η)ε

2
)

where LE is the function defined in Definition A.2 in the Appendix. Since m ≥ 2
ε2(1−2η)2 ln( 2n

δ ),

by applying Lemma A.4 from the Appendix, with s = ε(1−2η)
2 and replacing δ by δ

2n ,

Prx∼D[Fpn(c,S) ≤η +
(1− 2η)ε

2
]

< LE(η + (1− 2η)ε,m, η + (1− 2η)ε− (1− 2η)ε

2
)

≤ δ

2n

Therefore, the probability that there exists an ε-bad concept that fulfills Fpn(c,S) ≤ η + (1−2η)ε
2 is

at most (n− 1) δ
2n <

δ
2 because the number of ε-bad concepts in C is at most n− 1 (since c∗, which

is ε-good, is assumed to be in C).
Now, we consider Equation 5.10. By applying Lemma A.4 from the Appendix

Prx∼D[Fpn(c∗,S) ≥ η +
(1− 2η)ε

2
] ≤ GE(η,m, η +

(1− 2η)ε

2
))

where GE is the function defined in Definition A.2 in the Appendix. Since m ≥ 2
ε2(1−2η)2 ln( 2n

δ ),

by applying Lemma A.4 from the Appendix, with s = ε(1−2η)
2 and replacing δ by δ

2n ,

GE(η,m, η +
(1− 2η)ε

2
)) ≤ δ

2n

≤ δ

2

Therefore, the probability that an ε-bad concept minimizes Fpn is less than δ
2 + δ

2 = δ. So with
probability at least 1− δ, c̄ has an error of at most ε. �

The same argument as in the proof of Theorem 2.14 cannot be applied when the concept class
is not finite because then the sample size, m, becomes infinite. In the rest of this section, we show
how Laird solved this problem. First, we show any subset of the input space can divide the concept
class into finitely many equivalence classes.

Definition 5.11. (Laird [27]) Let X ⊆ X . Any concept c ∈ C splits X into two disjoint sets c ∩X
and X − c. Two concepts c1, c2 are X- if they split X into the same sets. Any set of all pairwise
X-equivalent concepts in C is called an X-.

For the sake of convenience, we write equivalent and equivalence instead of X-equivalent and
X-equivalence when X is clear from the context. The following lemma by Laird shows the rela-
tionship between the number of equivalence classes and the size of X .

Lemma 5.12. (Laird [27]) Let X ⊆ X and C a concept class of VC-dimension d ∈ N. For any X
with at least d elements, X divides C into at most |X|d + 1 equivalence classes.
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For any pair of concept and target concept, the input space can be divided into two disjoint sets:
the set of all the points that the concept labels the same as the target concept and the set of all the
points that the concept labels differently from the target concept. The following theorem, by Blumer,
Ehrenfeucht, Haussler and Warmuth [7], states that in a large enough sample, with high probability,
at least one instance is drawn from the latter set for all ε-bad concepts.

Theorem 5.13. (Blumer, Ehrenfeucht, Haussler and Warmuth [7]) Let C be a concept class of
VC-dimension of at most d <∞, D a distribution and c∗ ∈ C the target concept. Let ε, δ ∈ (0, 1

2 ).
Let Xc = {x|c(x) 6= c∗(x)} for c ∈ C. Let m1 : [0, 1]× [0, 1]× N → N be the function defined as
follows.

m1(ε, δ, d) = dmax (
4

ε
log

2

δ
,

8d

ε
log

8d

ε
)e (5.11)

Then a set of m1(ε, δ, d) instances in X , drawn i .i .d . from D, will have a non-empty intersection
with Xc for each ε-bad concept c, with probability at least 1− δ.

Theorem 5.13 with Lemma 5.12 can be used to prove that any concept class of finite VC-
dimension is PAC-learnable in the noise-free setting (see Theorem 2.5 for more details). The high
level idea of the proof of Theorem 2.5 can be described as follows. m1(ε, δ, d) examples (m1, for
short) divide C into at most m1

d + 1 equivalence classes (using Lemma 5.12). So although C may
have an infinite number of concepts, there is a polynomial set of equivalence classes5 of concepts
given a finite sample. Then, using Theorem 5.13, for any ε-bad concept c ∈ C, m1 examples are
sufficient so that with probability of at least 1− δ, at least one example is sampled from the area in
which c disagrees with the target concept. Therefore, with a sample S of size m1, with probability
of at least 1 − δ, all equivalence classes that contain an ε-bad concept will disagree with the target
concept on at least one example from S. Thus, all the equivalence classes that are consistent with
the sample do not contain any ε-bad concepts. So it is sufficient for the learning algorithm to choose
an arbitrary concept from any of those equivalence classes. Based on the argument above, any such
concept is ε-good with probability of at least 1 − δ. The reader is referred to the article by Blumer
et al. [7] for more details.

Although the proof is for a noise-free setting, the idea of the proof can be used in the noisy
setting as well. In the presence of noise, there may be no concept that is consistent with the sample.
But in the case of random classification noise, as we showed in the proof of Theorem 2.14, the target
concept has the smallest ∆pn value among all the concepts in the concept class, specifically, smaller
than the ∆pn value of any the ε-bad concepts.

We next show how Laird proved Theorem 2.15. In the proof of the theorem, he showed that a
sufficiently large sample size will guarantee that with high probability no ε-bad concept will have a
smaller pn-disagreement with the sample than the target concept. As a reminder, the statement of
Theorem 2.15 is as follows.

Let C be a concept class of VC-dimension d < ∞. Let η ∈ [0, 1
2 ). Then C is PAC0,0-

learnable with respect to η-random classification noise and DX .

Proof of Theorem 2.15. (Laird [27]) Let ε, δ ∈ (0, 1
2 ). Let c∗ ∈ C be the target concept and

D ∈ DX a distribution. The learner L first draws a sample S1 of size m1( ε2 ,
δ
3 , d) (m1, for short)

from EXrcn(η)(c
∗, D), where m1 is the function in Equation 5.11. Using Lemma 5.12, S1 divides C

into N equivalence classes where N ≤ md
1 + 1. Let CN = {c1, . . . , cN} be such that each concept

ci ∈ C, for 1 ≤ i ≤ N , belongs to a different equivalence class. These N concepts can be used as
representatives for the N equivalence classes.

Theorem 5.13 will guarantee that, with probability of at least 1− δ
3 , there is at least one equiva-

lence class that contains only ε
2 -good concepts because no ε

2 -bad concept can be in the same equiv-
alence class as the target concept. Therefore, at least the equivalence class that contains the target

5This may sound incorrect at first glance, becauseX in Definition 5.11 and Lemma 5.12 is a subset of unlabeled instances
ofX and the sample S is a multi-set of (instance, label) pairs. Laird [27] shows that the same argument holds when the learner
just considers the instance part of the sample S and ignores all the labels.
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concept only contains ε
2 -good concepts. Therefore,

with probability at least 1− δ

3
, there is at least one

ε

2
-good concept in CN . (5.12)

In the rest of this proof we show that using a large enough sample, with high probability, the
concept in CN that minimizes Fpn is ε-good. This part of the proof is very similar to what we
previously showed in the proof of Theorem 2.14. We, however, repeat in order to avoid references
to that proof.

Let m2 : [0, 1]× [0, 1]× [0, 1]× N→ N be a function defined as follows.

m2(ε, δ, η,N) = d 8

ε2(1− 2η)2
ln(

3N

δ
)e (5.13)

Let S2 be a sample containing S1 and enough additional examples (if needed) so that it contains at
least m2(ε, δ, η,N) examples (m2, for short). Therefore, the total number of examples needed for
L is max(m1,m2). Let L return a concept that has the minimum Fpn with S2.

Using Lemma 5.10, under random classification noise, for any ε-bad concept c ∈ C, ∆pn(c) =

η+ ∆pp(c)(1−2η) > η+ ε(1−2η). On the other hand, for any ε
2 -good concept c′ ∈ C, ∆pn(c′) =

η+ ∆pp(c′)(1− 2η) ≤ η+ ε
2 (1− 2η). Therefore, there is a separation of at least (η+ ε(1− 2η))−

(η + ε
2 (1 − 2η)) = ε

2 (1 − η) between the ∆pn value of any ε
2 -good concept and the ∆pn value of

any ε-bad concept. For the rest of this proof, we assume any occurrence of c and c′ refers to ε-bad
and ε

2 -good concepts respectively.
In order for some ε-bad concept in CN to minimize Fpn, at least one of the following inequalities

would have to be fulfilled. For at least one ε-bad concept in CN

Fpn(c,S) ≤ η +
3(1− 2η)ε

4
(5.14)

or for all ε2 -good concepts in CN

Fpn(c′,S) ≥ η +
3(1− 2η)ε

4
(5.15)

Otherwise an ε-good concept minimizes Fpn. Therefore, L fails only if any of the following cases
happens.

1. There is no ε
2 -good concept in CN . This will happen with probability of at most δ3 because

of 5.12.

2. Considering Equation 5.14, for at least one ε-bad representative, Fpn(c,S2) is at most η +
3ε
4 (1− 2η). Applying Lemma A.4 from the Appendix

Prx∼D[Fpn(c,S2) ≤ η +
3ε(1− 2η)

4
]

< LE(η + (1− 2η)ε,max(m1,m2), η +
3(1− 2η)ε

4
)

≤ δ

3N

Therefore, the probability that there exists an ε-bad concept in CN that satisfies Equation 5.14
is at most (N − 1) δ

3N < δ
3 because the number of ε-bad concepts is at most N − 1. (There is

at least one ε
2 -good concept in CN with probability of at least 1− δ

3 .)

3. Considering Equation 5.15, all of the ε
2 -good representatives have Fpn(c′,S2) of at least η +

36



3(1−2η)ε
4 . Again by applying Lemma A.4 from the Appendix

Prx∼D[Fpn(c′,S2) ≥η +
3(1− 2η)ε

4
]

≤ GE(η +
(1− 2η)ε

2
,max(m1,m2), η +

3(1− 2η)ε

4
)

≤ δ

3N

Therefore, the probability that all of the ε
2 -good concepts in CN satisfy Equation 5.15 is at

most ( δ
3N )N ≤ δ

3N ≤
δ
3 because the number of ε

2 -good concepts is at most N .

So the total probability of the failure of the algorithm is at most 3 × δ
3 = δ. Therefore, with

probability of at least 1− δ, the concept returned by L has error of at most ε. �

5.2 Sufficient conditions for learning with minimum pn-disagreement
strategies

In this section, we investigate the properties of a label noise model that guarantee the minimum
pn-disagreement strategy can be used to learn a concept class with respect to the noise model. pn-
unambiguity is the first such property, defined as follows.

Definition 5.14. Let C be a concept class, D ⊆ DX a class of distributions and Φ a deterministic
noise model. Φ is with respect to C and D if there exists a function g : (0, 1

2 ) → (0, 1) such that
for any target concept c∗ ∈ C, for any distribution D ∈ D, for any ε ∈ (0, 1

2 ) and for any pair of
concepts c, c′ ∈ C

∆pp(c′)−∆pp(c) > ε⇒ ∆pn(c′)−∆pn(c) ≥ g(ε). (5.16)

Otherwise Φ is with respect to C and D.

Proposition 5.15 shows that η-random classification noise is pn-unambiguous with respect to
any concept class and DX when η < 1

2 .

Proposition 5.15. Let C be a concept class. The η-random classification noise model, Φrcn(η), is
pn-unambiguous with respect to C and DX iff η < 1

2 .

Proof. As we previously showed in Equation 5.8 of Lemma 5.10, for any concept c ∈ C, under
random classification noise

∆pn(c) = η + (1− 2η)∆pp(c)

Let ε ∈ (0, 1
2 ) and c, c′ ∈ C such that ∆pp(c′)−∆pp(c) > ε. When η < 1

2 , (1−2η) > 0. Therefore,

∆pn(c′)−∆pn(c) = η + (1− 2η)∆pp(c′)− (η + (1− 2η)∆pp(c))

= (1− 2η)(∆pp(c′)−∆pp(c)) > ε(1− 2η) > 0

The function g defined by g(ε) = ε(1 − 2η) witnesses that Φ is pn-unambiguous. When η ≥ 1
2 ,

(1− 2η) ≤ 0. Therefore,

∆pn(c′)−∆pn(c) = (1− 2η)(∆pp(c′)−∆pp(c)) ≤ 0

Thus no such function g as defined in Definition 5.14 exists and, therefore, Φ is pn-ambiguous.

pn-unambiguity of any noise model with respect to a concept class of finite VC-dimension and
a class of distributions is a sufficient condition for PAC0,0-learnability of that concept class with
respect to the noise model and the class of distributions. This is stated in the following theorem, the
main result of this section.
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Theorem 5.16. Let C be a concept class of VC-dimension d < ∞ and Φ a deterministic noise
model. If Φ is pn-unambiguous with respect to C and DX then C is PAC0,0-learnable with respect
to Φ and DX .

Proof. Let ε, δ ∈ (0, 1
2 ). Let c∗ ∈ C be the target concept ,D ∈ DX a distribution and L a minimum

pn-disagreement strategy. The total number of examples drawn by the learner, L, is determined in
exactly the same way as in the proof of Theorem 2.15. We briefly repeat the explanation for ease of
reference.

As in the proof of Theorem 2.15 in Section 5.1, L first draws a sample S1 of size m1( ε2 ,
δ
3 , d)

(m1, for short) to find a set of N ≤ m1
d + 1 representative concepts CN = {c1, . . . , cN} of N

equivalence classes, among which at least one is ε
2 -good with probability of at least 1− δ

3 .
In the rest of this proof, we show that a large enough sample guarantees that, with high proba-

bility, the concept in CN that minimizes Fpn is ε
2 -good. The idea of this part is very similar to the

corresponding part in the proof of Theorem 2.15.
Let m2 : [0, 1]× [0, 1]× N→ N be a function defined as follows.

m2(ε, δ,N) = d 2

g( ε2 )2
ln(

3N

δ
)e

Let S2 be a sample that contains S1 and enough additional examples (if needed) so that it contains
at least m2(ε, δ,N) (m2, for short) examples. Therefore, the total number of examples that L draws
from the noisy oracle is max(m1,m2).

Since Φ is pn-unambiguous with respect to C andDX , there exists a function g such that for any
ε and for any pair of concepts c, c′ ∈ C with ∆pp(c′) − ∆pp(c) > ε

2 , ∆pn(c′) − ∆pn(c) ≥ g( ε2 ).
Therefore, there is a separation of at least g( ε2 ) between the ∆pn values of any pair of concepts that
have at least a difference of ε

2 between their ∆pp values. For the rest of this proof, any occurrence
of c′ and c refers to ε-bad and ε

2 -good concepts respectively.
In order for some ε-bad concept in CN to minimize Fpn at least one of the following inequalities

would have to be fulfilled. For all the ε
2 -good concepts in CN

Fpn(c,S) ≥ ∆pn(c) +
g( ε2 )

2
(5.17)

or for at least one ε-bad concept in CN

Fpn(c′,S) ≤ ∆pn(c) +
g( ε2 )

2
(5.18)

because otherwise an ε-good concept minimizes Fpn. Therefore, L fails only if any of the following
cases happens.

1. There is no ε
2 -good concept in CN . As in the proof of Theorem 2.15, this will happen with

probability of at most δ3 .

2. Considering Equation 5.17, all ε2 -good concepts in CN have Fpn(c,S2) of at least ∆pn(c) +
g(ε)

2 . Applying Lemma A.4 from the Appendix

Prx∼D[Fpn(c,S2) ≥∆pn(c) +
g( ε2 )

2
]

≤ GE(∆pn(c),max(m1,m2),∆pn(c) +
g( ε2 )

2
))

≤ δ

3N

Therefore, the probability that all of the ε
2 -good concepts satisfy Equation 5.17 is at most

( δ
3N )N ≤ δ

3N ≤
δ
3 because the number of ε

2 -good concepts in CN is at most N .
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3. Considering Equation 5.18, for at least one ε-bad concept in CN , Fpn(c′,S2) is at most
∆pn(c) +

g( ε2 )

2 . Again by applying Lemma A.4 from the Appendix

Prx∼D[Fpn(c′,S) ≤ ∆pn(c) +
g( ε2 )

2
]

< LE(∆pn(c) + g(
ε

2
),max(m1,m2),∆pn(c) +

g( ε2 )

2
)

≤ δ

3N

Therefore, the probability that there exists an ε-bad concept in Cn that satisfies Equation 5.18
is at most (N − 1) δ

3N < δ
3 because the number of ε-bad concepts in CN is at most N − 1.

(There is at least one ε
2 -good concept in CN with probability of at least 1− δ

3 .)

So the total probability of failure of the algorithm is at most 3× δ
3 = δ. Therefore, with probability

of at least 1− δ the concept returned by L has an error of at most ε.

Corollary 5.17. Let C be a PAC-learnable concept class and Φ a deterministic noise model. If Φ is
pn-unambiguous with respect to C and DX then C is PAC0,0-learnable with respect to Φ and DX .

Now we introduce the second property of label noise models, called pn-monotonicity, defined
as follows.

Definition 5.18. Let C be a concept class, D ⊆ DX a class of distributions and Φ a deterministic
noise model. Φ is with respect to C and D if for any target concept c∗ ∈ C, for any distribution
D ∈ D and for any pair of concepts c, c′ ∈ C

∆pp(c′) > ∆pp(c)⇒ ∆pn(c′) > ∆pn(c) (5.19)

Next, we show that pn-unambiguity of a noise model with respect to a concept class and a class
of distributions implies the pn-monotonicity of such a noise model with respect to the same concept
class and the same class of distributions.

Proposition 5.19. Let C be a concept class, D ⊆ DX a class of distributions and Φ a deterministic
noise model. If Φ is pn-unambiguous with respect to C and D then Φ is pn-monotonic with respect
to C and D.

Proof. Let D ∈ D be a distribution and c∗ ∈ C the target concept. Let c, c′ ∈ C be such that
∆pp(c′) > ∆pp(c). Let ε = ∆pp(c′)−∆pp(c)

2 . Since Φ is pn-unambiguous with respect to C and
D there exists a function g such that ∆pn(c′) − ∆pn(c) ≥ g(ε) > 0 and thus ∆pn(c′) > ∆pn(c).
Therefore, Φ is pn-monotonic with respect to C and D.

Using Proposition 5.15 and then Proposition 5.19, we can easily show that the η-random classi-
fication noise model is pn-monotonic with respect to any concept class and DX when η < 1

2 .

Corollary 5.20. Let C be a concept class. The η-random classification noise model, Φrcn(η), is
pn-monotonic with respect to C and DX if η < 1

2 .

We believe that the reverse direction of Proposition 5.19 is not true i .e., the pn-monotonicity
of a noise model with respect to a concept class and a class of distributions does not imply the pn-
unambiguity of such a noise model with respect to the same concept class and the same class of
distributions. This is stated in the following conjecture.

Conjecture 5.21. There exists a concept class C, a distribution D ∈ DX and a deterministic noise
model Φ such that Φ is pn-monotonic with respect to C and {D} but it is pn-ambiguous with respect
to C and {D}.
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We also believe that not all concept classes of finite VC-dimension are PAC0,0-learnable with
respect to a pn-monotonic noise model and DX . This is stated in the following conjecture.

Conjecture 5.22. There exists a concept class C of finite VC-dimension and a deterministic noise
model Φ such that Φ is pn-monotonic with respect to C and DX but C is not PAC0,0-learnable with
respect to Φ and DX .

However, any finite concept class is PAC0,0-learnable with respect to DX and a noise model
that is pn-monotonic with respect to the concept class and DX .

Proposition 5.23. Let C be a finite concept class and Φ a deterministic noise model. If Φ is pn-
monotonic with respect to C and DX then C is PAC0,0-learnable with respect to Φ and DX .

Sketch of the Proof. Let k = minc,c′∈C |∆pn(c) −∆pn(c′)|. We know k exists because the concept
class is finite. Since Φ is pn-monotonic with respect to C and DX , the target concept has the
minimum ∆pn value among all the concepts in C. Therefore, there is a separation of at least k
between the ∆pn value of the target concept and that of any other concept in C.

The rest of the proof is very similar to the proof of Theorem 5.16 because the minimum pn-
disagreement learning algorithm can use this separation of ∆pn values to find a sample size to
guarantee that with high probability no ε-bad concept minimizes Fpn. �

Unfortunately, for all of our locally variable noise models, defined in Chapter 3, there exists a
pair of concept class and distribution such that the concept class is not PAC-learnable with respect
to any of the noise models and that distribution, even though the class is PAC-learnable in the
noise-free setting.

Proposition 5.24. Let ε, δ ∈ [0, 1
2 ). For any of the noise models Φ introduced in Chapter 3, there

exists a concept class C of finite VC-dimension and a distribution D such that C is not PAC0,0-
learnable with respect to Φ and {D}.

Proof. For Φdrball(ρ) and Φdmball(ρ), let ρ > 0, X = R and x1, x2 ∈ R with dist(x1, x2) < ρ.
Let D be a uniform distribution such that Prx∼D[x = x1] = Prx∼D[x = x2] = 0.5. Therefore,
supp(D) = {x1, x2}.

Let C = {c, c′}with c = {x1}, c = {x2}. In the rest of the proof, we show that EXΦdrball(ρ)
(c,D)

and EXΦdrball(ρ)
(c′, D) have potentially equivalent behavior on D. Therefore, Lemma 2.12 can be

used to show that C is not PACε,δ-learnable with respect to Φdrball(ρ) and DX .
Based on the definition of ρ-distance random classification noise (Definition 3.5), for all x ∈

{x1, x2}, Φdrball(ρ)(c,D, x) = Φdrball(ρ)(c
′, D, x) = {0.5}. As a result, EXdrball(ρ)(c,D) and

EXdrball(ρ)(c
′, D) have equivalent behavior on D based on Definition 2.10.

Since Prx∼D[c(x) 6= c′(x)] = 1 > ε for any ε ∈ [0, 1
2 ), C is not PACε,δ-learnable with respect

to Φdrball(ρ) and DX . Also, using the contrapositive of Proposition 3.6, C is not PACε,δ-learnable
with respect to Φdmball(ρ) and {D}.

For Φwrball(ω) and Φwmball(ω), let ω ∈ (0, 1), t = d 1
ω e and X = {x1, . . . , x2t}. Also let

dist(xi, xi+t) < dist(xi, x) for 1 ≤ i ≤ t and x 6= xi+t and x 6= xi. LetD be a uniform distribution
such that Prx∼D[x = x1] = . . . = Prx∼D[x = x2t] = 1

2t . Therefore, supp(D) = {x1, . . . , x2t}.
Let C = {c, c′} such that c(xi) = 1 for 1 ≤ i ≤ t, c(xi) = 0 for t + 1 ≤ i ≤ 2t and

c′(x) = 1 − c(x) for all x ∈ X . We show that EXΦwrball(ω)
(c,D) and EXΦwrball(ω)

(c′, D) have
potentially equivalent behavior on D. Therefore, we can use Lemma 2.12 to show that C is not
PACε,δ-learnable with respect to Φwrball(ω) and DX .

Based on the definition of ω-weight random classification noise (Definition 3.17), for all x ∈
X , Φwrball(ω)(c,D, x) = Φwrball(ω)(c

′, D, x) = {0.5}. As a result, based on Definition 2.10,
EXwrball(ω)(c,D) and EXwrball(ω)(c

′, D) have potentially equivalent behavior on D.
Since Prx∼D[c(x) 6= c′(x)] = 1 > ε for any ε ∈ [0, 1

2 ), C is not PACε,δ-learnable with respect
to Φwrball(ω) and DX . Also, using the contrapositive of Proposition 3.18, C is not PACε,δ-learnable
with respect to Φwmball(ω) and {D}.
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Based on Theorem 5.16, any concept class of finite VC-dimension is PAC0,0-learnable with
respect to DX and any noise model that is pn-unambiguous with respect to that concept class and
DX . Therefore, we can use Theorem 5.16 and Proposition 5.24 to conclude the following corollary.

Corollary 5.25. For the deterministic noise models Φ introduced in Chapter 3, there exists a concept
class C of finite VC-dimension and a distribution D such that Φ is pn-ambiguous with respect to C
and {D}.

Also, based on Proposition 5.23, any finite concept class is PAC0,0-learnable with respect toDX
and any noise model that is pn-monotonic with respect to that concept class and DX . Therefore,
we can use Proposition 5.23 and Proposition 5.24 to conclude the following corollary because the
counterexample in the proof of Proposition 5.24 is regarding a finite concept class.

Corollary 5.26. For the deterministic noise models Φ introduced in Chapter 3, there exists a finite
concept class C and a distribution D such that Φ is not pn-monotonic with respect to C and {D}.

We can use Example 5.7 to show that there exists a concept class, a noise model and a distribution
such that the noise model is neither pn-unambiguous nor pn-monotonic with respect to the concept
class and the distribution. Therefore, the concept class is not PAC0,0-learnable with respect to
the noise model and any class of distributions containing that specific distribution. However, the
concept class is still PAC0,0-learnable with respect to that noise model and the class of all possible
distributions. The example is repeated here for ease of reference.

Example 5.27. Let X = {x1, x2}, C = {c1, c2, c3} the concept class described in Table 5.3 and
D ∈ DX a distribution. Let Prx∼D[x = x1] = 0.25 and Prx∼D[x = x2] = 0.75. Let Φ be a
deterministic label noise model with nrc∗,D(x1) = 0.75 and nrc∗,D(x2) = 0.25 for any c∗ ∈ C (see
Table 5.3).

concept/label x1 x2 concept/value x1 x2

c1 1 1 Φc1,D 0.25 0.75
c2 0 1 Φc2,D 0.75 0.75
c3 1 0 Φc3,D 0.25 0.25

Table 5.3: Concept class in Example 5.27

As we showed in Example 5.7, the ∆pp and ∆pn values for the case that c2 is the target concept
can be computed as in Table 5.4. Since ∆pn(c2) > ∆pn(c1) but ∆pp(c1) > ∆pp(c2), Φ is not pn-
monotonic with respect to C and {D} (see Table 5.4). Using the contrapositive of Proposition 5.19,
Φ is pn-ambiguous with respect to C and {D}. Since the minimizer of the ∆pn is not the target
concept, the minimum pn-disagreement strategy cannot be used to PAC0,0-learn C with respect to
Φ and {D}. However, C is PAC0,0-learnable with respect to Φ and DX using Proposition 4.3.

concept ∆pp ∆pn

c1 0.25 0.25
c∗ = c2 0 0.31
c3 1 0.69

Table 5.4: ∆pn values in Example 5.27

Examples such as Example 5.27, that are PAC0,0-learnable but are not PAC0,0-learnable using
the minimum pn-disagreement strategy, make us ask for a more general strategy. We introduce one
such strategy in Chapter 6 and show that the new strategy can be used to PAC0,0-learn the concept
class in Example 5.27 with respect to the noise model in the example and DX .
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Chapter 6

Minimum nn-disagreement
Strategies

In this chapter, we study a new general learning algorithm with respect to label noise called the
minimum nn-disagreement strategy. As in Chapter 5, we consider the application of this strategy
with random classification noise. Furthermore, we investigate the general characteristics of a label
noise model that makes the learnability of certain concept classes possible with the minimum nn-
disagreement strategy.

As in Chapter 5, we assume the noise model is deterministic. We start by introducing more
notation.

For any fixed concept and distribution, the nn-difference of a concept with respect to the target
concept and the distribution is defined as follows.

Definition 6.1. (Kearns and Schapire [24]) Let C be a concept class and D a distribution. Let
c∗ ∈ C be the target concept and Φ a deterministic noise model. For any concept c ∈ C, the
nn-difference ∆nn

c∗,D,Φ(c) between c and c∗ is defined as

∆nn
c∗,D,Φ(c) = Ex∼D[|Φc,D(x)− Φc∗,D(x)|] (6.1)

For the sake of convenience, we write ∆nn(c) instead of ∆nn
c∗,D,Φ(c) whenever c∗, D and Φ are

clear from the context1.
∆nn has also been called variational distance in the literature [24]. Also it is not hard to verify

that unlike the case of ∆pn, for any target concept c∗ ∈ C, ∆nn(c∗) is always 0.
Unlike the case of ∆pp and ∆pn, ∆nn cannot be written in terms of probability instead of

expectation with the same pattern as ∆pp and ∆pn. This is shown in the following proposition.

Proposition 6.2. There exists a concept class C, a target concept c∗ ∈ C, a distribution D and a
deterministic noise model Φ such that

∆nn
c∗,D,Φ(c) 6= Prx∼D,y∼ĉ,y′∼ĉ∗ [y 6= y′] (6.2)

for some c ∈ C.

Proof. Prx∼D,y∼ĉ,y′∼ĉ∗ [y 6= y′] is the probability that the i .i .d . draws y and y′, from the random
variables ĉ and ĉ∗ respectively, disagree with each other. Since each of these random variables can
only take values 0 and 1, the disagreement happens when one variable takes the value 0 and the
other one 1. For convenience and ease of readability, in the rest of the proof we write Pr[] and E[]

1The designation nn is used here to show that the disagreement is measured between two “noisy” concepts in the sense
that both of the concepts are mappings from the input space to [0, 1].
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instead of Prx∼D,y∼ĉ,y′∼ĉ∗ [] and Ex∼D[] respectively.

Pr[y 6= y′]

= Pr[y = 1 and y′ = 0] + Pr[y = 0 and y′ = 1]

= E[Φc,D(x)(1− Φc∗,D(x))] + E[(1− Φc,D(x))Φc∗,D(x)]

= E[Φc,D(x)− Φc,D(x)Φc∗,D(x) + Φc∗,D(x)− Φc∗,D(x)Φc,D(x)]

= E[Φc,D(x) + Φc∗,D(x)− 2Φc,D(x)Φc∗,D(x)]

We give an example in which E[|Φc,D(x) − Φc∗,D(x)|] is not equal to E[Φc,D(x) + Φc∗,D(x) −
2Φc,D(x)Φc∗,D(x)]. Let X = {x}, C = {c} with c(x) = 1 and the target concept c∗ = c. The only
distribution D over X assigns all the probability mass to point x. Let Φc,D(x) = 0.4. As a result,
Φc∗,D(x) = 0.4. Therefore,

Pr[y 6= y′] =E[Φc,D(x) + Φc∗,D(x)− 2Φc,D(x)Φc∗,D(x)]

= 0.4 + 0.4− 2× 0.4× 0.4 = 0.48

but as we mentioned before, ∆nn(c∗) = 0.

We again use Example 5.7 to show how ∆nn can be computed. We will reintroduce the example
briefly.

Example 6.3. Let X = {x1, x2}, C = {c1, c2, c3} the concept class described in Table 5.1 and
D ∈ DX a distribution. Let Prx∼D[x = x1] = 0.25 and Prx∼D[x = x2] = 0.75. Let Φ be a
deterministic label noise model with nrc∗,D(x1) = 0.75 and nrc∗,D(x2) = 0.25 for any c∗ ∈ C (see
Table 5.1).

We can use Definitions 6.1 to compute the ∆nn values for the case that c2 is the target concept
as in Table 6.1.

concept ∆pp ∆nn

c1 p 0.25|0.25− 0.75|+ 0.75|0.75− 0.75| = 0.13
c∗ = c2 0 0.25|0.75− 0.75|+ 0.75|0.75− 0.75| = 0
c3 1 0.25|0.25− 0.75|+ 0.75|0.25− 0.75| = 0.5

Table 6.1: ∆nn values in Example 6.3

Similar to the case of pn-disagreement, we can also define a measure of disagreement between
a concept and a sample as follows.

Definition 6.4. Let C be a concept class, D a distribution, and Φ a deterministic noise model. Let
S = {(x1, y1), . . . , (xm, ym)} be a sample of size m. For any concept c ∈ C, Fnn(c,S) is defined
as follows.

Fnn(c,S) =
1

m

m∑
i=1

| Φc,D(xi)−
#+(xi,S)

#(xi,S)
| (6.3)

where for all x ∈ X , #+(x,S) = |{j ∈ {1, . . . ,m} | x = xj ∧ yj = 1}| and #(x,S) = |{j ∈
{1, . . . ,m} | x = xj}|.

Unlike Fpn, the learner cannot compute Fnn directly, because it does not know the distribution,
and without that it cannot compute the Φc,D(xi) values. However, the learner can estimate Fnn. But
first we need the following definition.
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Definition 6.5. Let D be a distribution and S = {x1, . . . , xm} a sample of m instances drawn
i .i .d . from D. We define the estimated distribution of D, D̂, as follows.

Prx′∼D̂[x′ = x] = #(x,S) · 1

m
(6.4)

for all x ∈ X where #(x,S) = |{j ∈ {1, . . . ,m} | x = xj}|.

Now, we can define the estimate F̂nn ofFnn as follows. We call this estimate the nn-disagreement
between a concept and the sample.

Definition 6.6. Let C be a concept class, D a distribution, and Φ a deterministic noise model. Let
S = {(x1, y1), . . . , (xm, ym)} be a sample of size m. Let D̂ be the estimated distribution of D as
in Definition 6.5 using the unlabeled instances of S. For any concept c ∈ C, the nn-disagreement
F̂nn(c,S) is defined as follows.

F̂nn(c,S) =
1

m

m∑
i=1

| Φc,D̂(xi)−
#+(xi,S)

#(xi,S)
| (6.5)

where for all x ∈ X , #+(x,S) = |{j ∈ {1, . . . ,m} | x = xj ∧ yj = 1}| and #(x,S) = |{j ∈
{1, . . . ,m} | x = xj}|.

Next, we define a smooth noise model as a noise model in which the estimate F̂nn is close to
Fnn using only a polynomial number of examples.

Definition 6.7. Let C be a concept class, D ∈ DX a class of distributions, ε, δ ∈ (0, 1
2 ) and

Φ a deterministic noise model. Φ is smooth with respect to C and D iff there is a function M :

(0, 1
2 )× (0, 1

2 )→ N such that

1. M(ε, δ) is polynomial in 1
ε and 1

δ .

2. For all ε, δ, for all target concepts c∗ ∈ C and for all D in D if S is a sample of at least
M(ε, δ) examples drawn from EXΦ(c∗, D) then, with probability of at least 1 − δ, for all
c ∈ C we obtain |Fnn(c,S)− F̂nn(c,S)| < ε.

The minimum nn-disagreement strategy simply returns a concept in the concept class that has
the smallest estimated nn-disagreement with the sample.

Definition 6.8. Let C be a concept class and S a sample. A learning algorithm L is called a
minimum nn-disagreement strategy if upon seeing S, L returns a (not necessarily unique) concept
c̄ ∈ C such that:

c̄ ∈ arg minc∈C F̂nn(c,S) (6.6)

6.1 Minimum nn-disagreement strategies for learning with ran-
dom classification noise

As in Section 5.1, we consider the application of minimum nn-disagreement strategies for learning
with respect to random classification noise.

Similar to the case of pn-disagreement, the nn-disagreement of any concept also has a linear
relationship with the pp-disagreement of the same concept in the presence of random classification
noise.

Lemma 6.9. Let η ∈ [0, 1). Let C be a concept class and D a distribution. For any concept c ∈ C
in the presence of η-random classification noise, Φrcn(η),

∆nn(c) = |1− 2η|∆pp(c) (6.7)
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Proof. Let c∗ ∈ C be the target concept. Based on Definition 2.13, Φrcn(η)c∗,D
(x) = Φrcn(η)c,D

(x)

iff c∗(x) = c(x). Otherwise one of the values Φrcn(η)c∗,D
(x) and Φrcn(η)c,D

(x) is equal to 1 − η
and the other one is equal to η. Therefore,

∆nn(c) = Ex∼D[|η − (1− η)||c(x)− c∗(x)|]
= |1− 2η|Ex∼D[|c(x)− c∗(x)|]
= |1− 2η|∆pp(c)

Next we show that, in the presence of random classification noise, the concept that minimizes
the pn-disagreement also minimizes the nn-disagreement.

Proposition 6.10. Let η ∈ [0, 1
2 ) and C a concept class. For any target concept c∗ ∈ C, and any

distribution D ∈ DX in the presence of random classification noise, Φrcn(η), arg minc∈C∆
pn(c)

and arg minc∈C∆
nn(c) exist and

arg minc∈C∆
pn(c) = arg minc∈C∆

nn(c) (6.8)

Proof. Note that both arg minc∈C∆
pn(c) and arg minc∈C∆

nn(c) exist because both ∆pn and ∆nn

have a linear relationship with ∆pp and the target concept always has the smallest ∆pp in the concept
class. Let c̄ ∈ arg minc∈C∆

nn(c). Using Equation 6.7 in Lemma 6.9 and since (1− 2η) > 0,

∆nn(c) = (1− 2η)∆pp(c)

Therefore, c̄ ∈ arg minc∈C(1 − 2η)∆pp(c) and also c̄ ∈ arg minc∈Cη + (1 − 2η)∆pp(c). Using
Equation 5.8 in Lemma 5.10, c̄ ∈ arg minc∈C∆

pn(c). We can use the similar technique to show that
any minimizers of ∆pn are also members of the set of all minimizers of ∆nn.

Therefore, the minimum pn-disagreement strategy and the minimum nn-disagreement strategy
are equivalent for the random classification noise model.

6.2 Sufficient conditions for learning with minimum nn-disagreement
strategy

In this section, we investigate the properties of a label noise model that guarantee that the minimum
nn-disagreement strategy can be used to learn a concept class. nn-unambiguity is the first such
property, defined as follows.

Definition 6.11. Let C be a concept class, D ⊆ DX a class of distributions and Φ a deterministic
noise model. Φ is nn-unambiguous with respect to C and D if there exists a function g : (0, 1

2 ) →
(0, 1) such that for any target concept c∗ ∈ C, for any distribution D ∈ D, for any ε ∈ (0, 1

2 ) and
for any pair of concepts c, c′ ∈ C

∆pp(c′)−∆pp(c) > ε⇒ ∆nn(c′)−∆nn(c) ≥ g(ε). (6.9)

Otherwise Φ is nn-ambiguous with respect to C and D.

Next, we show that η-random classification noise is nn-unambiguous with respect to any concept
class and DX when η 6= 1

2 . The proof of the following proposition is analogous to the proof of
Proposition 5.15. However, the random classification noise model is nn-unambiguous not only
when η < 1

2 but also when η > 1
2 .

Proposition 6.12. Let C be a concept class and η ∈ (0, 1). The η-random classification noise model,
Φrcn(η), is nn-unambiguous with respect to C and DX iff η 6= 1

2 .
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Proof. As we previously showed in Lemma 6.9, in the presence of random classification noise

∆nn(c) = |1− 2η|∆pp(c)

for all c ∈ C. Let c, c′ ∈ C such that ∆pp(c′) > ∆pp(c). Let ε = ∆pp(c′)−∆pp(c)
2 . When η 6= 1

2 ,
|1− 2η| > 0. Therefore,

∆nn(c′)−∆nn(c) = |1− 2η|∆pp(c′)− |1− 2η|∆pp(c)

= |1− 2η|(∆pp(c′)−∆pp(c)) = 2ε|1− 2η| > 0

The function g defined by g(ε) = ε|1 − 2η| witnesses that Φ is nn-unambiguous with respect to C
and DX . When η = 1

2 , |1− 2η| = 0. Therefore,

∆nn(c′)−∆nn(c) = 0

Thus no such g as defined in Definition 6.11 exists and, therefore, Φ is nn-ambiguous.

Smoothness and nn-unambiguity of a noise model with respect to a concept class and a class of
distributions is a sufficient condition for PAC0,0-learnability of that concept class with respect to
the noise model and the class of distributions. This is stated in the following Theorem.

Theorem 6.13. Let C be a concept class of VC-dimension d < ∞ and Φ a deterministic noise
model. If Φ is both nn-unambiguous and smooth with respect to C and DX then C is PAC0,0-
learnable with respect to Φ and DX .

Proof. Let D ∈ D, ε, δ ∈ (0, 1
2 ) and c∗ ∈ C the target concept. Let L be a minimum nn-

disagreement strategy. We show that the concept returned by L has an error of at most ε with
probability of at least 1− δ.

As in the proof of Theorem 2.15 in Section 5.1, L first draws a sample S1 of size m1( ε2 ,
δ
4 , d)

(m1, for short) to find a set of N ≤ m1
d + 1 representative concepts CN = {c1, . . . , cN} of N

equivalence classes, among which at least one is ε
2 -good with probability of at least 1− δ

4 .
Let S2 be a sample that contains S1 and enough additional examples (if needed) so that it con-

tains at least M(
g( ε2 )

4 , δ4 ) (M , for short) examples. Since Φ is smooth with respect to C and DX ,
|S2| examples will guarantee that for all c ∈ C we can have an estimate F̂nn(c,S2) for Fnn(c,S2)

such that |F̂nn(c,S2)−Fnn(c,S2)| < g( ε2 )

4 , with probability of at least 1− δ
4 .

Let S3 be a sample that contains S2 and enough additional examples (if needed) so that it con-
tains at least m2 ≥ 8

g( ε2 )2
ln( 4

δ ) examples. Therefore, the total number of examples that L draws
from the noisy oracle is max(m1,m2,M).

Since Φ is nn-unambiguous with respect to C andDX , there exists a function g such that for any
ε and for any pair of concepts c, c′ ∈ C with ∆pp(c′) − ∆pp(c) > ε

2 , ∆nn(c′) − ∆nn(c) ≥ g( ε2 ).
Therefore, there is a separation of at least g( ε2 ) between the ∆nn values of any pair of concepts that
have at least a difference of ε

2 between their ∆pp values. For the rest of this proof, any occurrence
of c′ and c refers to ε-bad and ε

2 -good concepts respectively.
In order for some ε-bad concept in CN to minimize Fnn at least one of the following inequalities

would have to be fulfilled. For all the ε
2 -good concepts in CN

Fnn(c,S) ≥ ∆nn(c) +
g( ε2 )

4
(6.10)

or for at least one ε-bad concept in CN

Fnn(c′,S) ≤ ∆nn(c) +
3g( ε2 )

4
(6.11)

because otherwise an ε-good concept minimizes Fnn. Note that, unlike other proofs in Chapter 5,
we need an additional gap of 2 × g( ε2 )

4 =
g( ε2 )

2 between the Fnn values due to the error that may
happen in estimating Fnn values. As mentioned in Definition 6.8, this estimate, F̂nn, will be used
by L instead of Fnn. Therefore, L fails only if any of the following cases happens.
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1. There is no ε
2 -good concept in CN . As in the proof of Theorem 2.15, this will happen with

probability of at most δ4 .

2. The estimate F̂nn of Fnn has deviation of more than g( ε2 )

4 for at least one of the concepts. This

will happen with probability of at most δ4 because of the sample size of at least M(
g( ε2 )

4 , δ4 ).

3. Considering Equation 6.10, all ε2 -good concepts in CN have Fnn(c,S3) of at least ∆nn(c) +
g( ε2 )

4 . Applying Lemma A.4 from the Appendix

Prx∼D[Fnn(c,S3) ≥∆nn(c) +
g( ε2 )

4
]

≤ GE(∆nn(c), |S3|,∆nn(c) +
g( ε2 )

4
)

≤ δ

4N

Therefore, the probability that all of the ε
2 -good concepts satisfy Equation 6.10 is at most

( δ
4N )N ≤ δ

4N ≤
δ
4 because the number of ε

2 -good concepts in CN is at most N .

4. Considering Equation 6.11, for at least one ε-bad concept in CN , Fnn(c′,S3) is at most
∆nn(c) +

3g( ε2 )

4 . Again by applying Lemma A.4 from the Appendix

Prx∼D[Fnn(c′,S3) ≤ ∆nn(c) +
3g( ε2 )

4
]

< LE(∆nn(c) + g(
ε

2
), |S3|,∆nn(c) +

3g( ε2 )

4
)

≤ δ

4N

Therefore, the probability that there exists an ε-bad concept in Cn that satisfies Equation 6.11
is at most (N − 1) δ

4N < δ
4 because the number of ε-bad concepts in CN is at most N − 1.

(There is at least one ε
2 -good concept in CN with probability of at least 1− δ

4 .)

So the total probability of failure of the algorithm is at most 4× δ
4 = δ. Therefore, with probability

of at least 1− δ the concept returned by L has an error of at most ε.

Corollary 6.14. Let C be a PAC-learnable concept class and Φ a deterministic noise model. If
Φ is both nn-unambiguous and smooth with respect to C and DX then C is PAC0,0-learnable with
respect to Φ and DX .

Next we introduce a second property of noise models called nn-monotonicity.

Definition 6.15. Let C be a concept class, D ⊆ DX a class of distributions and Φ a deterministic
noise model. Φ is nn-monotonic with respect to C and D if for any target concept c∗ ∈ C, any
distribution D ∈ D and any pair of concepts c, c′ ∈ C:

∆pp(c′) > ∆pp(c)⇒ ∆nn(c′) > ∆nn(c) (6.12)

With the same technique as in the proof of Proposition 5.19, we show that nn-unambiguity of a
noise model with respect to a concept class and a class of distributions implies the nn-monotonicity
of the noise model with respect to the same concept class and the same class of distributions.

Proposition 6.16. Let C be a concept class, D ⊆ DX a class of distributions and Φ a deterministic
noise model. If Φ is nn-unambiguous with respect to C and D then Φ is nn-monotonic with respect
to C and D.
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Proof. LetD ∈ D be a distribution and c∗ ∈ C the target concept. Let c, c′ ∈ C such that ∆pp(c′) >

∆pp(c). Let ε = ∆pp(c′)−∆pp(c)
2 . Since Φ is nn-unambiguous there exists a function g such that

∆nn(c′) −∆nn(c) ≥ g(ε), and since g(ε) > 0, ∆nn(c′) > ∆nn(c). Therefore, Φ is nn-monotonic
with respect to C and D.

Using Proposition 6.12 and then Proposition 6.16, we can show that η-random classification
noise is nn-monotonic with respect to any concept class and DX when η 6= 1

2 .

Corollary 6.17. Let C be a concept class and η ∈ (0, 1). The η-random classification noise model,
Φrcn(η), is nn-monotonic with respect to C and DX if η 6= 1

2 .

Similar to Chapter 5, we believe that the reverse direction of Proposition 6.16 is not true i .e., the
nn-monotonicity of a noise model with respect to a concept class and a class of distributions does
not imply the nn-unambiguity of such a noise model with respect to the same concept class and the
same class of distributions. This is stated in the following conjecture.

Conjecture 6.18. There exists a concept class C, a distribution D ∈ DX and a deterministic noise
model Φ such that Φ is nn-monotonic with respect to C and {D} but it is nn-ambiguous with respect
to C and {D}.

We also believe that not all concept classes of finite VC-dimension are PAC0,0-learnable with
respect to an nn-monotonic noise model and DX . This is stated in the following conjecture.

Conjecture 6.19. There exists a concept class C of finite VC-dimension and a deterministic noise
model Φ such that Φ is smooth and nn-monotonic with respect to C and DX but C is not PAC0,0-
learnable with respect to Φ and DX .

However, any finite concept class is PAC0,0-learnable with respect to DX and a noise model
that is both nn-monotonic and smooth with respect to the concept class and DX .

Proposition 6.20. Let C be a finite concept class and Φ a noise model. If Φ is both nn-monotonic
and smooth with respect to C and DX then C is PAC0,0-learnable with respect to Φ and DX .

Sketch of the Proof. The sketch is exactly the same as the sketch of the proof of Proposition 5.23
replacing any occurrence of ∆pn with ∆nn and replacing the reference to Theorem 5.16 with a
reference to Theorem 6.13. �

Note that we do not need the learning algorithm in the proof of Proposition 6.20 to be a minimum
nn-disagreement strategy. However, the minimum nn-disagreement strategy can be used as the
learning algorithm to prove the result. The same argument can be made for Proposition 5.23 and
minimum pn-disagreement strategies.

We use Example 5.27 to show that there exists a concept class and a noise model and a distri-
bution such that the noise model is nn-monotonic (nn-unambiguous) with respect to the concept
class and DX but it is neither pn-monotonic nor pn-unambiguous with respect to the same con-
cept class and any class of distributions containing that specific distribution. Also as we showed in
Chapter 5, the concept class in the following example is not PAC0,0-learnable with any minimum
pn-disagreement strategy. We repeat the example briefly for ease of reference.

Example 6.21. Let X = {x1, x2}, C = {c1, c2, c3} the concept class described in Table 6.2 and
D ∈ DX a distribution. Let Prx∼D[x = x1] = p and Prx∼D[x = x2] = 1 − p where p ∈ [0, 1].
Let Φ be a deterministic label noise model with nrc∗,D(x1) = 0.75 and nrc∗,D(x2) = 0.25 for any
c∗ ∈ C (see Table 6.2).

∆nn values can be computed similar to Example 6.3 (See Table 6.3). Therefore, for any concept
c ∈ C , ∆nn(c) = 0.5∆pp(c) and Φ is nn-unambiguous (with g(ε) = ε

2 ), and also nn-monotonic
(using Proposition 6.16) with respect to C and DX 2.

2Because the parametric distribution D can represent all the distributions on X .
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concept/label x1 x2 concept/value x1 x2

c1 1 1 Φc1,D 0.25 0.75
c2 0 1 Φc2,D 0.75 0.75
c3 1 0 Φc3,D 0.25 0.25

Table 6.2: Concept class in Example 6.21

concept ∆pp ∆nn

c∗ = c1 0 0
c2 p 0.5p
c3 1− p 0.5(1− p)

concept ∆pp ∆nn

c1 p 0.5p
c∗ = c2 0 0
c3 1 0.5

concept ∆pp ∆nn

c1 1− p 0.5(1− p)
c2 1 0.5

c∗ = c3 0

Table 6.3: ∆nn values in Example 6.21

But as we have already shown in Example 5.27, Φ is neither pn-monotonic nor pn-unambiguous
with respect to C and DX .

Finally, C is PAC0,0-learnable with respect to Φ and DX using Theorem 6.13 because Φ is
smooth with respect to C and DX .

Using Example 6.21, we can conclude the following corollary.

Corollary 6.22. There exists a deterministic label noise model Φ and a concept class C such that
C is PAC0,0-learnable by minimum nn-disagreement strategy with respect to Φ and DX but not by
minimum pn-disagreement with respect to Φ and DX .

We can use Theorem 6.13 and Proposition 5.24 to conclude the following corollary.

Corollary 6.23. For the deterministic noise models Φ introduced in Chapter 3, there exists a concept
class C of finite VC-dimension and a distribution D such that Φ is nn-ambiguous with respect to C
and D.

Also, using Corollary 6.23 and the contrapositive of Proposition 6.16, we can conclude the
following corollary.

Corollary 6.24. For the deterministic noise models Φ introduced in Chapter 3, there exists a concept
class C of finite VC-dimension and a distribution D such that Φ is not nn-monotonic with respect to
C and D.
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Chapter 7

Related Work

While previous models of learning (e.g., [16]) require the learner to exactly determine the target
concept but allow the learner to run in unbounded time, Valiant’s PAC model of learning [37]
requires the learner to return a concept which is a close approximation of the target concept in a
time-efficient way [13]. However, one of the criticisms of the PAC model is the assumption that the
examples that the learner receives from the oracle are noise-free [13]. To compensate, many noise
models (e.g., [2, 31, 37]) have been introduced for PAC-learning. In this thesis, we divide the noise
models for PAC-learning into two groups. The first type of noise is when the instances of examples
are not noisy but the labels can be flipped by the noisy oracle (e.g., [2, 14, 32]). We call this type
of noise label noise (see Definition 2.6). The second type of noise is when the instances can be
distorted by the noisy oracle (e.g., [17, 23, 37]). As we will see in Section 7.2.2, in this type of noise
the labels may or may not be distorted by the oracle.

This chapter is organized as follows. First, the model of learning from statistical queries is
introduced. Although not a noise model itself, the statistical query model can be used to prove
various learnability results in the PAC-learning framework with noise. In the next section, different
noise models in PAC-learning are discussed in more detail. Finally, the last section of the chapter is
about noise models outside of the PAC-learning framework.

7.1 Statistical query model
Kearns [22] introduced a model of learning called learning from statistical queries. In this model
the standard PAC-learning oracle, EX, is replaced by a weaker oracle called STAT. Rather than
returning individual examples like EX, STAT provides accurate estimates of probabilities over the
sample space generated by EX.

Let a query Q be a function Q : X × {0, 1} → {0, 1} and τ ∈ (0, 1] be a parameter called
tolerance. For any concept c and distribution D, STATQ,τ (c,D) returns an estimate of the prob-
ability that Q(x, c(x)) = 1 when x is drawn according to D. This estimate deviates at most by τ
from the actual value, Prx∼D[Q(x, c(x)) = 1]. Chernoff bounds (see Lemma A.1 in the Appendix)
immediately imply that EX with high probability can simulate STAT by estimating the probability
that Q(x, c(x)) = 1 using O( 1

τ2 ) examples. Therefore the statistical query model is a restriction of
the PAC model.

A concept class C is efficiently learnable from statistical queries if there exists a learning algo-
rithm L such that for any target concept c∗ ∈ C, for any distributionD ∈ DX , and for any ε ∈ (0, 1

2 ),
the following holds: if L is given input ε and access to STAT(c∗, D), then (1) for every query (Q, τ)

made by L, Q can be evaluated in time polynomial in 1
τ where 1

τ is bounded by a polynomial in 1
ε ,

and (2) L will halt in time bounded by a polynomial1 in 1
ε and output a a concept c ∈ C that satisfies

1More accurately, all the polynomials in the definition of learnability from statistical queries should also be polynomial
in the size of the representation of the target concept and also the complexity parameter of the concept class as introduced in
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Prx∼D[c(x) 6= c∗(x)] ≤ ε [22].
Kearns [22] showed that any learning algorithm that is based on statistical queries can be auto-

matically converted to a learning algorithm in the PAC framework. Therefore, any concept class
that is efficiently learnable from statistical queries is also PAC-learnable.

The statistical query model of learning is important because virtually all known PAC-learning
algorithms in the presence of noise can be either obtained from statistical query model algorithms
or can be easily cast into a problem in the statistical query model. This is discussed in Section 7.2
with more details for specific noise models.

7.2 Noise in the PAC-learning framework
As we said earlier in this chapter, we distinguish between two different types of noise in PAC-
learning in this thesis. The next two sections introduce some models from each of these types.

7.2.1 Label noise models in the PAC-learning framework
Angluin and Laird [2] introduced the first label noise model. In this noise model, called the η-
random classification noise, the label of each example is subject to being flipped with some fixed
but unknown probability η < 1

2 (see Definition 2.13).
η is limited to be strictly less than a half in the random classification noise model. Clearly, when

η = 1
2 the oracle will not convey more information to the learner about the label of examples than

an unbiased coin. When η > 1
2 , however, there is still information about the target concept, but it

is equal to the information about the complement of the target concept with η′ = 1 − η < 1
2 . If

the learner knows a priori that η > 1
2 it can flip the label of all examples and use the new examples

to learn an approximation of the target concept. Also this situation can be recognized in concept
classes that are not closed under complement [2].

Angluin and Laird [2] showed that any finite concept class is PAC0,0-learnable with respect to
random classification noise and DX . In their method first they assumed the learner is provided with
an upper bound of strictly less than a half on η. They showed that having this upper bound, instead of
the exact noise rate itself, is sufficient for their learning algorithm to be able to learn in the presence
of random classification noise. Then, they showed that this upper bound can be estimated from the
sample. Later, Laird in his PhD thesis [27] showed that any concept class of finite VC-dimension is
PAC0,0-learnable with respect to random classification noise and DX .

Kearns [22] showed that using a sample of O( 1
τ2(1−2η)2 log( 1

δ )) examples, EXΦrcn(η)
can simu-

late STAT with probability at least 1− δ by estimating any query, Prx∼D[Q(x, c(x)) = 1]. There-
fore, any learning algorithm that is based on statistical queries can be automatically converted to a
learning algorithm in the presence of η-random classification noise for any η < 1

2 . Thus, any con-
cept class that is efficiently learnable from statistical queries is also PAC0,0-learnable with respect
to random classification noise and DX .

The second label noise model was introduced by Sloan [31]. In this noise model, called η-
malicious classification noise, with unknown probability η < 1

2 on each example, the adversary
decides whether to flip the label of the example or not before returning it to the learner. Otherwise,
the correct example will be returned to the learner (see Definition 2.18).

Sloan [31] showed that the malicious classification noise model is weaker than the random clas-
sification noise model, in the sense that in malicious classification noise the label of at most a fraction
η of the examples will be flipped as opposed to random classification noise where the label of exactly
a fraction η of the examples will be flipped. Using this simple observation, Sloan proved that finite
concept classes are PAC0,0-learnable with respect to malicious classification noise and DX [31].

In both of the above models, it is assumed that the probability with which the label of any
example is flipped (this probability is defined as the noise rate in Definition 2.8) is constant and,

footnote 3 in Chapter 2.
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therefore, independent of the example. Although having a constant noise rate is more realistic than
having no noise at all, the noise rate is usually not constant in real world data [8]. It has been shown
that learning when the noise rate varies among examples is a difficult problem in general [2, 14].
However, specific kinds of variable noise rate have been studied in the literature.

The very first variable label noise model was proposed by Decatur [14]. In this noise model,
called the constant partition classification noise (CPCN), X ×{0, 1} is divided into a finite number
of partitions. The noise model in each partition is an η-random classification noise with η < 1

2 but
η can be different in different partitions (see Definition 2.16).

Later, Ralaivola, Denis and Magnan [29] showed that any concept class that is PAC0,0-learnable
with respect to random classification noise and DX is also PAC0,0-learnable with respect to CPCN

and DX and vice versa.
Kearns [22] introduced another variable label noise model called η-variable classification noise.

In this model, first, an infinite sequence of noise rates η1, . . . , ηm, . . . with ηi ∈ [0, 1] for all i is
fixed by an adversary in advance. The only restriction on this sequence is that for any m ∈ N,
1
m

∑m
i=1 ηi ≤ η where η < 1

2 . Then, a sample with the number of examples requested by the
learner is drawn from a noise free oracle and for the ith example in the sample with probability ηi
the label will be flipped before the example is returned to the learner.

Kearns [22] showed that any concept class that is PAC0,0-learnable with respect to η-random
classification noise and DX is also PAC0,0-learnable with respect to η-variable classification noise
and DX and vice versa.

It should be mentioned that all the label noise models introduced in this section can be repre-
sented by our model of label noise (see Definition 2.6) except the η-variable classification noise. The
latter cannot be represented in our model of label noise because the noise function in the η-variable
classification noise depends on the sample sequence instead of the instances themselves.

7.2.2 Other noise models in the PAC-learning framework
The main difference when the instances are subject to noise (regardless of whether the label is being
flipped or not) compared to when the noise is only in the labels, is that the distribution of training
instances is different than the distribution of testing instances.

One of the very first noise models that considers only distortion in instances (and not in the
labels) was proposed by Goldman and Sloan [17]. This noise model, called the η-uniform random
attribute noise, is designed for the case that the input space is a subset of {0, 1}n for some n ∈ N.
An instance can therefore be regarded as a vector of n bits. Under uniform random attribute noise,
with some fixed but unknown probability η < 1

2 each bit of any instance will be flipped. Then the
distorted instance along with the label of the undistorted instance is returned to the learner.

Goldman and Sloan [17] introduced an algorithm that sample-efficiently PAC0,0-learns the class
of monomials over n variables with respect to η-uniform random attribute noise for any η < 1

2 .
They also introduced another instance noise model, called the η-product random attribute noise,

for the case that the input space is a subset of {0, 1}n for some n ∈ N [17]. In this model the
noise rate is an unknown vector of size n, (η1, . . . , ηn), where ηi ≤ η for all i. Under product
random attribute noise, the ith bit of the instance of any example is flipped with probability ηi.
Then the distorted instance along with the label of the undistorted instance is returned to the learner.
Therefore, uniform random attribute noise can be considered as a special case of product random
attribute noise when all the elements of the noise rate vector are equal.

Goldman and Sloan [17] showed that any distinct2 concept class over {0, 1}n is PAC η
2 ,0

-
learnable with respect to η-product random attribute noise and DX .

In many other noise models, not only the instance but also the label of the examples will be
flipped. The first such model is proposed by Valiant [38]. In this model, called the η-malicious

2A concept class C is distinct if there exist two concepts c, c′ ∈ C and x1, x2, x3, x4 ∈ X such that x1 ∈ c, x1 ∈
c′, x2 /∈ c, x2 ∈ c′, x3 ∈ c, x3 /∈ c′, x4 /∈ c, x4 /∈ c′, i .e., there exist two concepts in the concept class that are not subset
of each other, have non-empty intersection and their union is not the whole input space.
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noise, with an unknown but fixed probability η < 1
2 , an example is returned to the learner about

which no assumption whatsoever can be made. With probability 1 − η the learner will receive the
correct example.

In that paper, Valiant proposed an algorithm for learning Boolean formulas in conjunctive normal
form. He then showed that his algorithm can be modified to tolerate η-malicious noise for very small
η compared to the maximum error that the concept returned by the learning algorithm is allowed to
have.

Later, Kearns and Li [23] studied the η-malicious noise model in more detail. They showed that
any concept class of finite VC-dimension is PAC η

1−η ,0
-learnable with respect to η-malicious noise

and DX .
A more powerful adversarial noise model was later proposed by Bshouty et al. [8]. In this model,

called the η-nasty noise model, an adversary gets to see the whole sample and then chooses to distort
E examples, where E is a random variable distributed by the binomial distribution with parameters
η and the size of the sample. As in malicious noise, about theseE distorted examples no assumption
whatsoever can be made. In their paper, Bshouty et al. [8] argued that the η-nasty noise model not
only generalized some previous noise models, including random classification noise and CPCN, but
also, it could model real world situations better than those models.

Bshouty et al. [8] showed that any concept class of finite VC-dimension is PAC2η,0-learnable
with respect to η-nasty noise and DX .

More complex noise models can be produced by combining two different noise models. These
noise models are usually called hybrid noise models. One such hybrid noise model is proposed by
Decatur [13]. In this model, called (η, η′)-classification and malicious (CAM) noise each example
is exposed to random classification noise with probability η and malicious noise with probability η′.
Therefore, for each example with probability of 1− η− η′ the undistorted example will be returned
to the learner.

Decatur [13] showed that the algorithm of Angluin and Laird [2] for random classification noise
can be used to learn a finite concept class with respect to (η, η′)-CAM noise when3 η < 1

2 and
η′ < ε

4 ( 1
2 − η). He then showed that learning algorithms in the statistical query model can further

improve the maximum malicious noise rate η′ in CAM to η′ < τ( 1
2 − η) where τ is the tolerance of

the learning algorithm.
A different kind of noise in PAC-learning model, known as distribution noise, was first intro-

duced by Bartlett [4]. He proposed a distribution noise model in which the training instances are
drawn from a distribution while the testing instances may be drawn from a different distribution [4].
However, the learner always receives examples with the correct label. Decatur [12] also introduced
three different distribution noise models in which the distribution that the training and testing in-
stances are drawn from may change during sampling. The reader is referred to their papers [4, 12]
for more details.

7.3 Noise outside the PAC-learning framework
Learning from a noisy oracle has been considered in other learning frameworks as well. One such
framework, which has become popular recently, is the active learning framework [1, 11]. Active
learning can be considered as a variant of PAC-learning in which the learner can interactively
choose instances from the input space that then will be labeled by the oracle. The term passive
learning is then used to describe the normal PAC-style learning models based on i .i .d . sampling.
The goal of active learning is to (exponentially) decrease the sample complexity of passive learning
by this different sampling technique. The first active learning method, called selective sampling,
was introduced by Cohn, Atlas and Ladner [11]. Selective sampling can be considered as an exten-
sion of minimum pn-disagreement strategies in the absence of noise. Later, the effect of noise in
active learning was studied by Kääriäinen [21] who found lower bounds on the sample complexity

3With the additional assumption that at least one ε
2

-good concept exists in the concept class.
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of active learning under random classification noise. He proved that active learning can result in an
exponential reduction in sample complexity compared to passive learners in the presence of random
classification noise if the noise is not-persistent4. Later, Balcan, Beygelzimer and Langford [3] pro-
posed the first active learning algorithm that is robust to arbitrary types of noise. They showed that
their algorithm, called A2, never uses more examples than passive learners. A2 can be considered
as a robust version of selective sampling. Finally, recently Hanneke [19] proposed the first lower
and upper bounds on the sample complexity of active learning with persistent random classification
noise.

Tsybakov [36] proposed a noise condition to make learnability easier. His condition bounds the
probability mass of the areas in the input space which that noise rates very close to the information-
theoretic bound of a half. Tsybakov showed that under this condition, the empirical risk converges
surprisingly quickly to the risk of the concept that minimizes the risk in the concept class. His noise
condition has been widely used (see e.g., [5, 10, 33]).

Noise has been also studied in exact learning models. In exact learning, as opposed to models
like PAC-learning, the learning algorithm is required to identify the target concept, rather than
approximating it with high probability [19]. Grabowski [18] and Stephan [34] considered many
variants of noise in the recursion-theoretic framework of Gold’s [16] model of identification in the
limit. Within the grammatical inference framework of identification in the limit, noise was modeled
and analyzed by Tantini, de la Higuera and Janodet [35]. Both these exact learning frameworks are
beyond the scope of this thesis.

Finally, the effect of noise in data has been studied in practical settings as well. The reader is
referred to [26, 28, 41] for more details.

4In not-persistent random classification noise, the learner can potentially receive different labels by requesting the label
of an instance twice.
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Chapter 8

Conclusions

8.1 Summary
In this thesis, we considered the problem of PAC-learning in the presence of label noise. We in-
troduced a framework for label noise in which any label noise model that depends on a specific
instance, specific target concept in the concept class, and a distribution over the input space can be
modeled. We also proposed a generalized definition of learning in the presence of label noise. We
showed that almost all previously studied label noise models could be modeled in this framework
and their learnability results could be interpreted using our learnability definition.

We also proposed four new label noise models. We claim that these models are a step towards
more realistic noise models compared to the previously studied noise models. One way to interpret
this is by considering the simple fact that in any classification task some instances are harder to label
than other instances. Intuitively, we expect instances closer to the decision boundary to be harder to
classify than instances that are further from the decision boundary. Our ball noise models constitute
one way of capturing this property.

However, like any other problem, there is a trade-off between the complexity of the noise model
and the ease of mathematically analyzing it. Not surprisingly, when the model is getting closer to
real world scenarios, it is more difficult to provide mathematical support for it. In spite of this,
we showed some learnability results for our noise models for the simple concept class of one-
dimensional threshold functions. We also showed that learnability may still be difficult even for
concept classes with high similarity to the class of one-dimensional threshold functions, like the
class of two-dimensional axis-parallel threshold functions.

The minimum pn-disagreement strategy is the algorithm that has been used widely in the past
for proving learnability results in the presence of noise (and even in the noise-free case). As has
previously been shown in the literature (e.g ., in the article by Angluin and Laird [2]), there exists
a combination of noise model, concept class and distribution in which the concept returned by the
minimum pn-disagreement strategy has arbitrarily large error. One situation in which this can hap-
pen is when the noise rates for some of the instances are greater than or equal to a half for a specific
combination of concept class and distribution. Therefore, many previously studied noise models
limit themselves to situations in which the noise rate is strictly less than a half for all instances. We
briefly looked at the effect of having instances with noise rate greater than or equal to a half in the
context of finite input spaces in Chapter 4, providing new general learning results (Propositions 4.3
and 4.4).

The inability of minimum pn-disagreement to deal with such problems brings up the problem
of finding more general strategies. We proposed the minimum nn-disagreement strategy as such
a generalization. Instead of computing the disagreement between the sample and a concept, the
minimum nn-disagreement strategy computes the disagreement between the sample and the noisy
version of the concept. One of the advantages of this technique is that under this new setting the
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target concept always minimizes the nn-disagreement in contrast to pn-disagreement where the
target is not necessarily a minimizer.

We introduced a simple example in which PAC-learnability is possible using minimum nn-
disagreement strategies but not using minimum pn-disagreement strategies. However, unfortunately,
estimating the nn-disagreement is not as straightforward as estimating the pn-disagreement.

Finally, we investigated the general characteristics of a noise model under which minimum pn-
disagreement or minimum nn-disagreement strategies can be used to learn specific concept classes.
In each of these cases, we showed that it is sufficient if the noise model always guarantees that the
target concept has the smallest disagreement value among all concepts in the concept class, with
an additional assumption that there is a separation between the disagreement value of any ε-good
concept and any ε-bad concept for different values of ε.

8.2 Open problems and future work
As we previously specified, there are some open problems directly mentioned in this thesis. First
of all, the question whether the class of one-dimensional threshold functions is PACε,0 learnable
with respect to ω-weight random classification noise is open for ε ∈ (0, ω). Second, in Chapter 5,
we conjectured that pn-unambiguity and pn-monotonicity are not equivalent properties for a noise
model (the same for nn-unambiguity and nn-monotonicity in Chapter 6). Finally, we showed that
in the case of random classification noise, the minimum pn-disagreement strategy and the minimum
nn-disagreement strategy are equivalent and we also proposed an example in which the minimum
pn-disagreement strategy will fail in learning although the minimum nn-disagreement strategy will
succeed. Based on these observations, we believe that any concept class that is learnable using a
minimum pn-disagreement strategy with respect to a noise model Φ is also PAC0,0-learnable with
respect to Φ using a minimum nn-disagreement strategy but a proof of this claim is still open.

In addition to the open problems already mentioned in the thesis, we suggest further extensions
of this work. First, our attempt to design more realistic noise models did not yield strong PAC-
learnability results. We showed there exists a combination of concept class and distribution in which
the concept class is not PAC-learnable with respect to our noise models. However, the general
question of which specific combinations of distribution and concept class guarantee PAC-learnablity
with respect to our noise models is both an interesting and a reasonable question. Additionally, one
should study the question of which changes can be applied to our noise models so that learning of
interesting concept classes would be possible.

Second, we can study the applications of our new label noise models in other learning models
like the model of active learning. We expect that the sampling technique of active learning, by
focusing on the more interesting parts of the input space, will help in the learning process, especially
in combination with our deterministic noise models. Also as mentioned in the related work chapter,
the statistical query model of learning can be used to prove PAC-learnability results in the presence
of noise. The question of studying our label noise model (or even any noise model that can be
modeled in our label noise framework) in a statistical query setting seems like a potentially insightful
direction of extending our work.

Finally, we can investigate other properties of noise models that provide sufficient learnability
conditions for specific concept classes when a general learning strategy is being used. Further-
more, the question of whether the properties mentioned in this thesis for the noise models (like
pn-unambiguity, nn-unambiguity etc.) are also necessary conditions for learning specific concept
classes in the PAC model is open.

8.3 Final word
Finally, we briefly list the most important contributions of this thesis as (i) introducing a framework
for unifying different label noise models, (ii) proposing four new label noise models that are more
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similar to noise in real world applications and providing initial learnability results for them and
finally (iii) suggesting a new general leaning algorithm for PAC-learning with respect to label noise
along with studying the desirable characteristic of label noise models.
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Appendix A

Some Tools for Probabilistic Analysis

In this appendix, we list the definitions and lemmas that are used throughout this thesis without
proofs. The reader is referred to the references mentioned at the beginning of each lemma for proof
and more details.

The Hoeffding inequalities bound the probability that a random variable deviates from its mean.

Lemma A.1. (Hoeffding [20]) Let X1, . . . , Xn be independent random variables with E[Xi] ∈
[0, 1] for 1 ≤ i ≤ n. Let S =

∑n
i=1Xi and s ≥ 0. Then

Pr[
S

n
− E[S]

n
≥ s] ≤ e−2s2n,

and

Pr[
S

n
− E[S]

n
≤ s] ≤ e−2s2n.

In particular, if for all 1 ≤ i ≤ n, E[Xi] = p with p ∈ [0, 1]

Pr[S ≥ (p+ s)n] = Pr[S − pn ≥ sn] = Pr[
S

n
− p ≥ s] ≤ e−2s2n,

and
Pr[S ≤ (p− s)n] = Pr[S − pn ≤ sn] = Pr[

S

n
− p ≤ s] ≤ e−2s2n.

Sometimes, these inequalities are referred to by the name of Chernoff bounds because Cher-
noff [9] first discovered them.

Angluin and Laird introduced the following notation, which indicates the probability of observ-
ing at least (at most) a specific number of heads in m times flipping a biased coin with probability p
of coming up heads on each flip.

Definition A.2. (Angluin and Laird [2]) Let C be a biased coin with probability p ∈ [0, 1] of heads.
Let q ∈ (0, 1) and m ∈ N. Let GE(p,m, q) denote the probability of observing at least bqmc heads
in m independent flips of C, i .e.,

GE(p,m, q) =

m∑
i=bqmc

(
m

i

)
pi(1− p)m−i. (A.1)

Similarly, let LE(m, p, q) denote the probability of observing at most bqmc heads in m independent
flips of C, i .e.,

LE(p,m, q) =

bqmc∑
i=0

(
m

i

)
pi(1− p)m−i. (A.2)
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The Hoeffding inequalities (Lemma A.1) can be used to bound the probabilities introduced in
Definition A.2.

Lemma A.3. (Angluin and Laird [2]) Let s ∈ (0, 1) and s = |q − p|. Then

GE(p,m, p+ s) ≤ e−2s2m, (A.3)

and
LE(p,m, p− s) ≤ e−2s2m. (A.4)

Setting the right hand side of Equations A.3 and A.4 equal to δ and solving for m we get the
following lemma.

Lemma A.4. (Angluin and Laird [2]) Let p ∈ [0, 1] and s, δ ∈ (0, 1). If

m ≥ 1

2s2
ln(

1

δ
)

then
LE(p,m, p− s) ≤ δ,

and
GE(p,m, p+ s) ≤ δ.

Finally, the coupon collector problem is a classic problem in probability theory that can be found
in many textbooks of the field like the one by Feller [15]. We state the lemma from the article by
Benedek and Itai [6].

Lemma A.5. (Coupon Collector Problem) (Benedek and Itai [6]) Let A1, . . . , Ak be events with
probability of greater than or equal to p. Then in a sequence of

m =
1

p
ln(

k

δ
) (A.5)

independent trials, the probability that every event occurrs at least once is greater than 1− δ.
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