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Abstract

Advanced process control and monitoring rely on the accurate description of complex

processes and their dynamic behaviors. Typically, numerous industrial processes are

characterized by either partial differential equations (PDEs) or ordinary differential

equations (ODEs), depending on whether their dynamics evolve spatiotemporally or

temporally. Consequently, these processes are classified as distributed parameter sys-

tems (DPS) or lumped parameter systems (LPS). The underlying fact is that most of

the large-scale chemical and petrochemical processes are influenced by both tempo-

ral and spatial factors, and the existence of the spatial variable in the mathematical

model rises challenges in the controller and estimator designs. The focus of this the-

sis is to develop advanced controllers and observers for the improvement of control

performance and reliable monitoring realizations for large-scale DPS processes.

Continuous-time DPS can be considered an important representation of complex

industrial processes, while it is more valuable to obtain discrete-time models for the

design of controllers and observers when it comes to practical implementation in

digital devices. This thesis provides a discrete-time infinite-dimensional modelling

framework specifically designed for large-scale DPS while preserving essential model

properties (such as stability, observability, input-output mapping and etc.), where no

model spatial discretization or spatial model reduction is required.

Considering the inherent complexity and numerous constraints involved in chem-

ical and petrochemical industry processes, the utilization of model predictive control

(MPC) offers significant advantages. This thesis introduces an MPC design based

on developed discrete-time infinite-dimensional models, aiming to achieve satisfac-
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tory performance while handling input and output constraints and addressing the

constrained stabilization of disturbed DPS. Additionally, a tracking MPC scheme is

formulated for a class of large-scale DPS in a late lumping manner, with the objective

of achieving the desired target set-points while accommodating system constraints.

Furthermore, to address scenarios where an accurate model of the underlying dynam-

ical system is unavailable, a robust MPC scheme is proposed, incorporating multiple

DPS models to ensure system stabilization.

Due to the difficulties in obtaining state information in DPS, state estimation tech-

niques are employed to incorporate controller design. To estimate the spatiotemporal

state, the discrete-time Luenberger observer and Kalman filter are proposed for the

considered large-scale DPS. To account for the constrained actuator and parameter

in the estimation, moving horizon estimation (MHE) is developed by extending the

MHE theory of LPS. Additionally, the distributed nature of DPS introduces complex-

ity in terms of sensor placement. This thesis explores the sensor location selection

problem along with estimator design accounting for the delayed measurements by

minimizing the variance of estimation error.

The effectiveness of the developed discrete-time controllers and estimators are

demonstrated by numerical simulations of various large-scale DPS, including tubular

reactor, pipeline system, and continuous pulp digester.
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Chapter 1

Introduction

In this chapter, the motivations of this thesis are introduced first. Subsequently,

existing works on dynamic modeling, optimal control, and estimation of DPSs are

briefly reviewed and summarized. Lastly, the research contributions and outline of

the thesis are provided.

1.1 Motivation

In industrial practice, especially in chemical and petrochemical engineering processes,

the states, inputs, and outputs of a mathematical model that describe the dynamic

systems may depend on both temporal and spatial variables. Among these models,

PDEs are commonly employed to capture transport (transport-reaction) phenomena,

offering a more precise representation by considering temporal and spatial derivatives.

Research in this field remains active, combining classical mathematical analysis tech-

niques with modern computational techniques to facilitate process simulation and

numerical studies of complex problems [5, 6, 7].

Tubular reactors encompass a broad range of processes within the fields of chemical

and biochemical engineering, as discussed in references [8, 9, 10]. For example, there

exist various simple and/or complex reversible reactions in tubular reactor systems

in the chemical and biological processes, such as polymerization and isomerization,

and general esterification. Another representative application is the continuous pulp

digester, which is a large vertical tubular reactor in which wood chips react with an

aqueous solution, referred to as white liquor, to remove the lignin from the cellulose

fibers. The product of the digesting process is cellulose fibers, or pulp, which are

1



used to make paper products. The reacting flow dynamics in the above industrial

processes are usually described by nonlinear PDEs derived from conservation laws,

originating from mass and energy balances, and which belong to the class of DPS.

As one of the most representative and cost-effective ways for material transporta-

tion, pipelines have been widely utilized in the oil, gas and water distribution industry.

Non-reacting flow dynamics in long-range pipeline systems can be also modelled as

the DPS as their dynamics depend both on time and space. The real-time transient

model, constructed based on the conservation of mass, momentum, and energy bal-

ance laws, has gained widespread utilization as a prominent example of first principle

modelling [6], [11]. More specifically, it can be characterized by the Euler equations

in one dimension, constituting a system of nonlinear coupled hyperbolic PDEs.

The majority of research has been conducted for the above industrial processes

within the framework of continuous-time infinite-dimensional settings or discretizing

the original PDEs to a set of ODEs. However, this raises concerns regarding the per-

formance of controllers designed for continuous-time DPS when implemented numeri-

cally. Moreover, with the increasing utilization of digital technology in modern control

systems, it becomes necessary to transform the overall system into a discrete version

to enable controller implementation while ensuring the performance of discretization.

In such cases, bilinear transform techniques can be employed to circumvent the need

for repetitive and laborious derivations when similar results obtained for continuous

systems are required for discrete systems [12]. Specifically, Cayley transformation

has been widely utilized for establishing 1-1 correspondences of continuous-time and

discrete-time PDE systems in terms of energy-preserving, reachability, stability, sta-

bilizability, controllability and observability, and optimality [13, 14]. Motivated by

this, in this thesis, the conversions of the continuous-time infinite-dimensional system

representation to the discrete-time infinite-dimensional model for a class of complex

DPS, are done by the application of Cayley-Tustin transformation.

Advanced process control, monitoring, and decision-making in the context of DPS

usually require the advanced control realization which is usually constrained by phys-

ical limitations of well-built plants or natural limits on the actuator power. Among

these, MPC is a representative algorithm used for synthesizing optimal control strate-

gies. This approach involves solving an open-loop optimal control problem over a

2



finite horizon at each sampling instant. By utilizing an optimization algorithm, a

sequence of optimal control moves is determined, and the first move in the sequence

is applied to the process. The research area of MPC of linear and nonlinear LPS has

flourished over the past decades [15, 16, 17, 18]. However, MPC design for complex

large-scale infinite-dimensional systems has not been fully investigated. This thesis is

devoted to exploring advanced controller design to improve the processes operations

of the above DPS, accounting for distributed parameter nature for optimal process

performance characteristics, and satisfying the constraints and/or limitations.

As the system state of DPS is distributed over a region in space and only a finite

number of sensors can be installed, measurement of the entire state is never possible

for systems described by PDE. In this case, state estimation is often necessary for

control problems and/or for monitoring purposes. In addition, the knowledge of the

system state variables might be limited by the time delay in obtaining the measure-

ments, the disturbance corrupting the data, which leads to a more complex problem.

Compared to LPS, it is more demanding for DPS settings to account for the effects

that sensors or actuators have on spatially and time-varying states. Thus, the need

arises to develop a range of state estimators that are specifically designed for infinite-

dimensional systems in various scenarios. This thesis presents several observer designs

based on extensions of Luenberger observer, Kalman filter, and moving horizon esti-

mator theories, aiming to enhance control and monitoring performance for complex

DPS in various scenarios within the framework of discrete-time infinite-dimensional

systems.

Furthermore, practical applications often involve time-varying operating condi-

tions. For instance, in a pipeline system, batch transportation introduces changes in

several parameters of the mathematical model. Similarly, variations in the properties

of wood entering the digester, such as softwood and hardwood, impact the param-

eters and operation of the continuous pulp digester system. In such cases, accurate

model parameters are often unavailable or unknown, and hence a robust controller

is typically required. To tackle this challenge, this thesis investigates a robust model

predictive controller capable of handling the multi-model infinite-dimensional system

and satisfying the system constraints.
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1.2 Literature Review

1.2.1 Distributed parameter systems

The representation of systems using linear ODEs typically involves expressing them

as a collection of n first-order differential equations, where the solution resides in the

real-valued space Rn. In contrast, DPS is characterized by PDEs, which can also be

formulated in a similar manner. However, there is a notable distinction: the state

space is no longer defined in Rn but expands to an infinite-dimensional Hilbert space.

Likewise, the matrix A, which was previously used in the finite-dimensional case,

is replaced by an operator that operates within this infinite-dimensional space. As

a result, systems modeled with PDEs are often referred to as infinite-dimensional

systems. The majority of DPS models can be derived from the first principles, which

include conservation laws of continuity, momentum, and energy. Given these physical

conservation laws, the well-defined inputs, states, and outputs can be identified with

a corresponding physical meaning. For different purposes (such as state estimation

or control), different types of inputs and outputs of interest can be considered. To

complete a physical realization by DPS, corresponding boundary conditions (BCs)

and initial conditions (ICs) need to be given.

Typical distributed parameter systems are characterized by prominent spatial vari-

ations along which temporal and spatial evolution of physical properties takes place.

A general second-order DPS model is formulated as follows:

∂2x (ζ, t)
∂t2

= f
(
x (ζ, t) ,u (t) ,

∂x (ζ, t)
∂ζ

,
∂x (ζ, t)
∂t

,
∂2x (ζ, t)
∂t∂ζ

,
∂2x (ζ, t)
∂ζ2

)
(1.1a)

y (t) = g (x (ζ, t) ,u (t)) (1.1b)

with initial condition and boundary conditions given as:

x (ζ,0) = x0(ζ) (1.2a)
∂x (0, t)
∂ζ

+ qx (0, t) = 0 (1.2b)

where x(ζ, t), u(t) and y(t) are the state, input and output of interest, and ζ and t

stand for spatial coordinate and time. f and g are two nonlinear or linear functions of

state x, input u, first-order spatial derivative of state ∂x(ζ,t)
∂ζ and second-order spatial
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derivative of state ∂2x(ζ,t)
∂ζ2

. In addition, ∂x(ζ,t)
∂t represents temporal derivative of state

and we assume ∂2x(ζ,t)
∂t∂ζ =

∂2x(ζ,t)
∂ζ∂t . In the formulation of LPS, there are no spatial

derivative terms in Eq.(1.1a). The spatial characteristics make DPSs more difficult

for control, estimation and stabilization realization, compared to LPSs.

As for the initial condition, it is provided as a spatial function given by Eq.(1.2a).

In addition, a general mixd Robin boundary condition at ζ = 0 is described as

Eq.(1.2b), which is more physically realistic for in-situ processes. When the pa-

rameter q = 0, it can lead to the well-known Neumann boundary condition with flux

of state equal to zero. In contrast, one attains the Dirichlet boundary condition when

x (0, t) = 0.

To classify the above DPS model, one can arrange Eq.(1.1a) into the following

expression:

A
∂2x (ζ, t)
∂t2

+ 2B
∂2x (ζ, t)
∂t∂ζ

+ C
∂2x (ζ, t)
∂ζ2

= F
(
x (ζ, t) ,u (t) ,

∂x (ζ, t)
∂ζ

,
∂x (ζ, t)
∂t

)
(1.3a)

Then, the above equation is referred as:

• Parabolic PDE, if B2 − AC = 0, for reaction-diffusion and conduction problems.

• Hyperbolic PDE, if B2 − AC > 0, for vibration and wave motion problems.

• Elliptic PDE, if B2 − AC < 0, for steady-state, potential-type problems.

There is only a single state x(ζ, t) in the DPS Eq.(1.1a), and the state varies in one

spatial dimension ζ . In real industrial processes, models often tend to be multi-states

described, and states or BC are coupled, which poses a significant challenge in state

estimation, control, and output regulation.

1.2.2 Discretization of distributed parameter systems

Continuous-time DPSs can envision as good representatives of complex industrial

processes, while it is more practical and valuable for designers to obtain discrete-time

models for the sake of digital controllers and observers design. Since most of the

control systems used in industry are embedded control systems, it is quite common

to implement discrete-time control strategies with just a digital-to-analog converter.

Thus the discretization of a model before designing a controller is necessary. Hence,
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this section will summarize a brief review of discretization methods for DPS and

compare the pros and cons associated with different discretization techniques.

The finite difference method (FDM) is the most widely utilized approach for the

discretization of PDE modelling, which is quite simple to understand and implement

in a large class of PDE models in one dimensional. Forward Euler discretization

(explicit Euler) and backward Euler discretization (implicit Euler) have a wide range

of applications when it comes to FDM for PDEs. Both the explicit and implicit

Euler discretization methods can be easily implemented on digital devices. However,

explicit Euler discretization in space and in time is not numerically stable, while

implicit Euler in both time and space is unconditionally numerically stable despite

the original instability [19, 20]. Moreover, the implicit Euler discretization method

might cause computation inefficiency and lead to the inversion of large matrices which

may be typically ill-posed. Hence, some researchers apply explicit Euler in time and

implicit Euler in space, which is computationally effective compared to implicit Euler

both in time and space and is numerically stable if Lax conditions are satisfied. On

the other hand, the obtained numerical model can only provide estimation of states at

the spatial discretization points instead of spatial states between discretized points.

To address these, the finite element model (FEM) is proposed and applied in many

engineering areas, which is suitable for numerical simulation of nontrivial structures or

shapes [21]. With the rapid advances in computing technology, increasingly advanced

grid techniques have been developed and applied for FEM computation with higher

precision and efficiency while the computing time and storage requirement are very

high. Since nontrivial geometries are not focused in this thesis proposal, FEM will

not be of interest in this proposal.

Along this line, in order to ensure energy and guarantee structure preservation,

a set of significant efforts were presented. In particular, the Cayley-Tustin time dis-

cretization framework was proposed by Havu, V. and Malinen, J [13, 14], which was

demonstrated to be a symmetric and symplectic integration scheme. Another novel

energy-preserving approach was introduced by L. Lefevre and coworkers [22, 23].

Their method of spatial discretization for infinite-dimensional systems can preserve

the model structure during the model reduction. The main difference is that the

Cayley-Tustin time discretization method does not alter the system theoretic proper-
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ties (such as stability, controllability, and observability) which play a significant role

in the controller design [24]. However, the implication of Cayley-Tustin approach for

control and estimator designs of large-scale DPS has not been fully investigated.

Motivated by the aforementioned considerations, the Cayley-Tustin method will

be utilized for the time discretization of continuous-time PDEs, which avoids changing

the nature of the transformed system when implementing the designed controller and

estimator.

1.2.3 Optimal control and estimation of distributed parameter
systems

In general, there are two classes of controller and estimator design methodologies that

have been proposed to represent infinite-dimensional systems, called early lumping

and late lumping [8]. The early lumping approximates the DPS to LPS by applying

some type of spatial approximation to a continuous model to arrive at a discrete

model, which is used for the controller design. The main advantage of early lump-

ing approaches is that it is simpler to be conducted by exploring finite-dimensional

control theories and methods. However, it is worth noting that through early lump-

ing, the fundamental control theoretical properties (controllability, observability, and

stabilizability) might be lost and/or altered significantly, see [8, 25]. Moreover, high-

accuracy control usually requires that the PDEs be approximated with a large number

of ODEs, which dramatically increases the complexity of the calculations and imple-

mentation. In contrast, the late lumping uses the PDEs model for the controller

design without spatial approximation. The approximation is performed only for im-

plementation purposes of the controller. Late lumping allows the control designer to

avoid losing the distributed nature of the DPS and to take full advantage of their

natural properties. The design procedure of early lumping and late lumping is shown

in Fig. 1.1.
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Figure 1.1: Design procedure via early lumping and late lumping

Over the past decades, a number of researchers have explored many problems

related to control of a system described by PDEs, such as optimal control [26, 27,

28], internal model control [29, 30, 31, 32], nonlinear and robust control [25, 33,

34], predictive control [35, 36, 37, 11, 38], and adaptive control [39, 40]. Among

these, MPC as a popular and widely deployed methodology in the chemical process

control, pipeline control and pulp and paper industries is capable of handling such

requirements [6, 7, 36]. The main idea of MPC can be traced its origins back to

the optimal linear quadratic regulator (LQR) developed by Kalman in 1960 [41, 42]

and application of it originated in the chemical industry and petroleum refineries in

the 1970s [43, 44]. It is an online-optimization based method, and can take physical

constrains of inputs, states and outputs into account. Given that, there are a lot of

applications of MPC for chemical process controls [15, 17, 43]. When it comes to

MPC design for infinite-dimensional systems, some significant works have proposed

and extended the framework of distributed and boundary actuation with states and

outputs constraints [45, 46]. Most of these contributions have been developed based

on continuous-time infinite-dimensional models or continuous-time finite-dimensional

models through model reductions or spatial discretization techniques. Therefore, the
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design of MPC for discrete-time infinite-dimensional models carries great importance

from both theoretical and practical perspectives.

The standard formulations of MPC minimize a nominal objective function using

a single linear time-invariant model to predict future plant behavior. However, the

main shortcoming is that such control techniques that provide optimal performance

for a particular model may perform very poorly when implemented on a physical sys-

tem which is not exactly described by the model [47]. Therefore, the robust control

strategies are considered which concern that the systems are uncertain in some sense.

A robust controller indicates that it is able to guarantee the closed-loop stability

for different operating conditions of the process. The design of optimization-based

robust controller for lumped parameter system has received plentiful attention and

can be grouped into four main categories, including min-max control formulations,

stabilizing state-feedback schemes, control Lyapunov functions, and cost-contracting

constraints [48]. For the robustness of state-of-the-art model predictive controller

design of distributed parameter systems, there are limited references available. One

work conducted by Miriam and coworkers is that an order-reduced continuous-time

DPS model by proper orthogonal decomposition (POD) is developed for robust non-

linear MPC design [49]. However, there are not extensive research addressing the

robust MPC design for discrete-time DPS without model reduction.

Most control schemes are derived under the assumption that the state of the

system is known explicitly. However the state is often not measured directly in real-

world applications due to the physical constraints of sensor installation, and/or the

prohibitive expense of implementing spatially-distributed sensors, so estimates of the

actual state based on output measurements must be used instead. Studies focusing

on the estimation of state/output and parameters for infinite-dimensional systems

have received relatively less attention compared to the aforementioned contributions

on controller designs and model stabilization. The estimation theory was initially

developed with seminal contributions of Luenberger [50, 51] and Kalman [42] who in-

troduced basic concepts of state Luenberger observer and Kalman filter designs from

the deterministic and stochastic point of view, respectively. In addition, the exist-

ing finite-dimensional concepts of the observer design was extended to the infinite-

dimensional setting, in the case of continuous models [52]. In recent studies, the
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Luenberger observer and Kalman filter were extended for linear discrete-time infinite-

dimensional systems [53]. However, these two classical estimators are commonly em-

ployed for estimation purposes but fall short in accounting for system constraints [54].

An alternative tool, MHE, has emerged as a superior estimation technique [55]. MHE

is an optimization-based state estimation method that utilizes a sequence of recent

measurements to estimate the current state of a system, which has gained significant

attention in the research community, particularly for LPS [56, 57, 58], but has been

rarely explored for DPS modelled by PDEs [59, 60].

The accuracy of the estimation depends not only on the type of estimator but also

on the location of the sensors, especially for DPS. The sensor placement problem has

been considered by many researchers in the area of chemical process control, and a

number of different performance criteria for sensor placement have been taken into

account. One of the earliest approaches is to maximize the observability through a

choice of the sensor locations to improve the degree of complete observability for the

deterministic state reconstruction problem [61, 62]. For the system with stochastic

disturbances, unmeasured states can be estimated with the Kalman filter, and the

optimal selection of measurements can be determined by minimizing the average vari-

ance of the state estimates [63] or the steady-state error variance [64]. There are also

some other criteria to evaluate the performance of sensor locations including detection

of load disturbances and location for optimal control [61]. These approaches have ma-

ture applications on the lumped parameter systems which are described by ordinary

differential equations, and have been gradually extended and applied to the DPS in

recent years. For example, the modal observability and controllability measures was

utilized to determine optimal sensor and actuator locations of parabolic PDEs [65].

The optimal area for sensing or actuation in advective PDEs was determined by max-

imizing the support of the observability or controllability Gramian, respectively [66].

It was demonstrated that the nuclear norm of the solution to the operator Riccati

equation is the steady-state minimum error variance of an estimate for DPS [67]. The

placement of a single sensor and/or a single actuator in advection-diffusion equations

with proportional feedback control was addressed [68]. Most of the previous contribu-

tions of the sensor selection for DPS mainly consider the spectral systems described

by parabolic PDEs, which can be addressed by means of model reduction techniques
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also known in estimation and control theory as the early lumping approach. How-

ever, for non-spectral systems (e.g., first order hyperbolic PDEs), where the slow-fast

dynamic separation does not hold there are less contributions in the literature.

1.3 Main Contributions

There is now fairly extensive theory extending the common approaches to controller

and estimation design for lumped systems to DPS. However, for most contributions, a

finite-dimensional approximation of the system is first obtained and controller design

is based on this finite-dimensional approximation. The major challenge is to account

for the characteristics of infinite-dimensional systems when extending the applica-

tion of optimal control and estimation techniques for lumped parameter systems.

Additionally, if the systems of interest are non-spectral systems, which implies that

does not have eigenvalues and corresponding eigenvectors, all previous designs which

rely on spectral decomposition of dynamics can not be used. Thirdly, disturbances,

constraints and uncertainties issues widely presented in industrial process system en-

gineering pose another layer of technical challenge to the estimation and control of

DPS.

The objective of this thesis is to explore advanced and robust optimal controller

designs to improve the performance of large-scale distributed parameter chemical and

petrochemical systems and provide reliable monitoring realizations in process systems

without the need of finite-dimensional approximation.

The main contributions of the thesis are summarized as follows:

• Discrete-time dynamic modeling of large-scale distributed parameter chemical

and petrochemical systems, including a spatially varying jacket tubular reac-

tor, a pipeline network system, and a continuous pulp digester. The obtained

discrete-time systems preserve the infinite-dimensional properties and can facil-

itate the controller and estimator design without any approximation or lumping

in the spatial domain.

• Development and deployment of optimization-based predictive controllers for

discrete-time large-scale distributed parameter systems to achieve stabilization
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and/or set-point tracking while accounting for the system constraints.

• Designs of discrete-time infinite-dimensional Luenberger, Kalman filter, and

moving horizon estimator for spatio-temporal state estimation under determin-

istic and stochastic conditions, and state/parameter estimation under the con-

sideration of physical constraints, respectively.

• Investigation of selection of sensor location for first-order hyperbolic PDE sys-

tems by minimizing the variance of estimation error while accounting for the

delayed measurements.

• Design of robust MPC for a class of discrete-time distributed parameter systems

with multiple models, where the robustness is guaranteed based on restricting

the future behavior of the controller cost function for each plant in the uncer-

tainty description.

1.4 Thesis Outline

The outline of the thesis is organized as follows:

Chapter 2 addresses the model predictive controller design for a jacket tubular

reactor with a simple reversible exothermic reaction (A 
 B). Using energy and

mass balance laws, four nonlinear hyperbolic partial differential equations are derived

to model the tubular reactor dynamics in terms of two concentrations, the reactor

temperature, and the spatially varying jacket temperature. The nonlinear continuous-

time model is linearized and discretized in time by the use of the Cayley-Tustin

transform without spatial discretization or model reduction. Along these lines, a

state-feedback model predictive controller is formulated to realize model stabilization

with respect to input and output constraints. To account for the state estimation, a

Luenberger observer-based model predictive control frame is further developed, and

observer gains are obtained as solutions of an operator Riccati equation. Finally, two

numerical examples are provided to demonstrate the feasibility and applicability of

the proposed MPC designs.

Chapter 3 proposes an optimization-based control, state, and parameter estima-

tion strategy for distributed parameter pipeline systems with boundary actuation.
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The spatial-temporal pressure and velocity model dynamics within the pipelines

are described by a system of six coupled one-dimensional first-order nonlinear hy-

perbolic PDEs. To address the discrete-time modelling challenge and preserve the

infinite-dimensional nature of the pipeline system, the Cayley-Tustin transformation

is deployed for model time discretization without any spatial discretization or model

reduction. Considering the lack of full state information across entire pipelines, un-

known states and uncertain parameters are estimated using MHE. Based on the esti-

mated states and parameters, a tracking MPC strategy for the discrete-time infinite-

dimensional pipeline system is proposed, which enables specific operation while ensur-

ing physical constraint satisfaction. The performance of the control and estimation

is assessed via numerical examples.

Chapter 4 explores the design of a model predictive controller of the continu-

ous pulp digester process consisting of the co-current zone and counter-current zone

modeled by a set of nonlinear coupled hyperbolic PDEs. The distributed param-

eter system of interest is not spectral, and slow–fast dynamic separation does not

hold. To address this challenge, the nonlinear continuous-time model is linearized

and discretized in time utilizing the Cayley-Tustin discretization framework, which

ensures system theoretic properties and structure preservation without spatial dis-

cretization or model reduction. The discrete model is used in the full state model

predictive controller design, which is augmented by the Luenberger observer design to

achieve the output constrained regulation. Finally, a numerical example is provided

to demonstrate the feasibility and applicability of the proposed controller designs.

Chapter 5 investigates the state estimation and sensor placement for a continu-

ous pulp digester with delayed measurements. The underlying model of interest is

heat transfer in a pulp digester modeled by two coupled hyperbolic partial differential

equations and an ordinary differential equation. Output measurements are considered

with delay due to the possible low sampling rate. The Cayley-Tustin transformation

is utilized to realize model time discretization in a late lumping manner which does

not account for any type of spatial approximation or model reduction. The discrete

Kalman filter is applied to estimate the system states using the delayed measurements.

The selection of sensor location is addressed along with estimator design accounting

for the delayed measurements and investigated by minimizing the variance of esti-
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mation error. The performance of the state estimator is evaluated, and the sensor

placement is analyzed through simulation studies, which offers a planning view of

sensor location in industrial applications.

Chapter 6 proposes a robust model predictive control strategy for a class of linear

infinite-dimensional transport-reaction models emerging from chemical engineering

practice. The model uncertainty is assumed to be described by a discrete set of linear

models (multi-plant uncertainty), and the robustness is achieved by assembling cost-

contracting constraints for all the possible models in the uncertainty domain. The

properties of the closed-loop system are analyzed, and the effectiveness of the proposed

approach is demonstrated through a comparison with the nominal stabilizing MPC.

Chapter 7 summarizes the main results of this thesis and discusses future research

directions.
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Chapter 2

Model Predictive Control of Jacket
Tubular Reactor with Reversible
Exothermic Reaction

2.1 Introduction

Tubular reactors play a significant role in chemical engineering practice. Models of

various types of tubular reactors are usually described by nonlinear partial differential

equations (PDEs) derived from conservation laws, originated from mass and energy

balances and which belong to the class of distributed parameter systems (DPS) [8].

The salient feature of these models is temporal and spatial state dependence that

captures the kinetics properties within the reactors and can be connected with the

phase change, generation, and/or consumption of chemical species [69].

Due to the numerous industrial applications of tubular reactors, the corresponding

issues of modelling and controlling are of great importance for the safety and economic

operations [70, 71, 72, 73], and hence have been explored in many studies over the

years. For instance, a series of contributions were focused on the first-order exothermic

irreversible reaction A→ bB within the uniform jacket tubular reactors [74, 75, 76].

An ideal plug-flow tubular reactor having a simple exothermic consecutive reaction

A → B → C with the co-current cooling [77] and A + B → C with advection and

axial diffusion were further investigated [78]. In addition, the reversible reactions

aA
 rR were widely studied especially in chemical and biological proceses, such as

polymerization and isomerization, enzyme kinetics and racemization of molecules with

mirror-image structures [79, 80, 81]. Based on the mathematical models of various
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reaction systems, significant research efforts have been made towards control designs

[82, 83]. In particular, a globally stabilizing boundary feedback control law was

developed to stabilize the unstable steady states of temperature and concentration

on the inlet side of the tubular reactor [84]. Furthermore, the backstepping-based

infinite-dimensional observers were proposed for a class of linear parabolic PDEs [85].

Along the same line, the dynamic analysis and linear quadratic optimal control had

extensively developed for a class of tubular reactors [74, 86, 87]. However, when

it comes to the controller design for reversible reaction systems, there are limited

attention in research literature [88, 79, 89, 90]. The inevitable difficulty comes from

the infinite-dimensional nature of heterodirectional hyperbolic systems, which is a

limiting factor when controller designs and monitoring realizations are considered.

Motivated by these observations, the objective of this chapter is the simple reversible

reaction which is described by the nonlinear coupled 4 × 4 hyperbolic PDEs.

Considering the typical requirements for operation of tubular reactors in prac-

tice, such as the temperature and concentration of reactants not exceeding certain

ranges, as well as the physical limits of actuators or sensors, MPC as a popular and

widely deployed methodology in the process industry is capable of handling such re-

quirements. The main idea of MPC can be dated back to the 1960s and application

of it originated in chemical industry in the 1970s [91]. Basically, a model of inter-

est is implemented as an optimization problem, which is then solved to determine

the best set of inputs for decisions. The optimization problem needs to be reformu-

lated iteratively as time increase, and only the first input is implemented every time.

Over the past two decades, MPC has been extensively used in linear and nonlinear

finite-dimensional systems [16, 17]. MPC theory is now a mature body of knowledge

encompassing stability and robustness of linear and nonlinear models, which has sig-

nificant impact on industrial process control and has been extended to the control of

the infinite-dimensional systems, and especially tubular reactor systems [92, 93]. More

specifically, a nonlinear MPC for a tubular reactor was developed by combining data-

driven and model reduction approaches, where the proper orthogonal decomposition

(POD) and finite element Galerkin projection methods were applied to approximate

the PDE system [5]. Similar methods (POD and Galerkin projection) were utilized

to derive the low-order linear model that captures the dominant dynamics of the
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PDEs, which were subsequently used for MPC design of distributed reactor models

with axial and radial diffusion [94]. An economic MPC framework was proposed for

a tubular reactor and the reduced-order model was constructed based on the basis of

historical data-based empirical eigenfunctions and Galerkin’s method [95]. However,

those approaches are only applicable for the Riesz spectral systems (parabolic, and

higher order dissipative PDEs) and not suitable for non-spectral systems, such as the

hyperbolic PDEs. There are other extensions in this area, for instance, a nonlinear

MPC scheme for continuous emulsion co-polymerization in a tubular reactor was pre-

sented [96], where the PDEs were converted to a system of ODEs using the method

of lines. A general nonlinear MPC framework for low-density polyethylene tubular

reactors was developed [97], where the cascade PDEs-ODEs system were discretized

in space and time for implementation by using the implicit Euler and finite element

scheme. In addition, there are some other works on linear model predictive controller

designs of transport reaction systems based on online model reduction [98, 99] and

structure-preserving discretization framework [76, 36, 38].

Most of the aforementioned works depend on spatial approximation (discretiza-

tion) in the controller design stage. However, the main drawback of these approaches

lies in that the spatial discretization might induce numerical instability and/or the

fundamental control theoretical properties (controllability, observability, and stabi-

lizability) might be lost and/or altered significantly [8, 19]. On the other hand, the

obtained discrete model can only provide approximate states at the spatial discretiza-

tion points instead of the spatial states between discretized point. In general, these

approaches belong to early lumping, since spatial discretization needs to preformed

in the design stage. In contrast, late lumping takes full advantage of the available

distributed parameter control theory and utilizes the infinite-dimensional setting for

controller design, and only performs lumping along some spatial approximation for

the purpose of implementation.

In a late lumping manner, the Cayley-Tustin time discretization framework was

proposed by Havu, V. and Malinen, J [14, 13], which was demonstrated to be a sym-

metric and symplectic integration scheme that ensures energy and structure preser-

vation. Another novel energy-preserving approach was introduced by L. Lefevre and

coworkers [22, 24, 23]. Their method of spatial discretization for infinite-dimensional
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systems can preserve the model structure during the model reduction, and consist

in splitting the initial structured infinite-dimensional model into N finite-dimensional

sub-models with the same energetic behavior [22]. Comparing with the Cayley-Tustin

time discretization method, the main similarity is that both approaches guarantee

structure preserving numerical integration. The main difference is that the Cayley-

Tustin time discretization method does not alter the system theoretic properties (such

as stability, controllability, and observability) which play a significant role in the con-

troller design [24, 100]. However, this perspective is not investigated when using the

framework [22, 24, 23].

Motivated by the aforementioned considerations, we extend the finite-dimensional

MPC setting to the jacket tubular reactor with a simple reversible reaction modeled

by the 4 × 4 hyperbolic PDEs, and in particular the Cayley-Tustin method is uti-

lized for time discretization of continuous hyperbolic PDEs model, and in the linear

MPC controller design in a late lumping manner, which achieves satisfactory per-

formance with respect to input and output constraints and accounts for constrained

stabilization of the disturbed system.

The five contributions of this work are summerized next: 1). A partial differential

equation model is established for a jacked tubular reactor with consideration of a

simple reversible reaction (A 
 B), which is a common practice in chemical engi-

neering but has not been fully investigated in the literature since it accounts for the

heterodirectional hyperbolic systems. 2). A spatially varying jacket temperature is

considered instead of uniformly distributed jacket temperature along with the con-

centration of reactants and products, and the temperature of the reactor to reflect the

spatiotemporal dynamics of the reactor system. 3). Cayley-Tustin time discretization

is utilized to preserve system properties (such as stability, controllability, observabil-

ity). 4). A full state feedback MPC controller is designed and implemented to address

the physical constraints in actuators and sensors. 5). Considering the common sce-

nario of unavailability of full state information and the existence of disturbance, an

observer-based MPC is designed using the state estimated by the Luenberger observer

and finding the observer gain by solving an operator Riccati equation.

The organization of this chapter is described next. In Section 2.2, the infinite-

dimensional state space model is introduced. Furthermore, the linearized model and
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Cayley-Tustin time discretization for the tubular reactor are provided. In Section

2.3, the model predictive controllers are designed including state feedback MPC and

observer-based MPC. Finally, in Section 2.4, the performance of the presented state

feedback MPC and observer-based MPC are demonstrated by two numerical exam-

ples, where the influence of constraints, penalty weights and disturbances on the MPC

performance is further analyzed. Concluding remarks are drawn in Section 2.5.

2.2 Problem Formulation

In this section, we introduce the problem formulation. First, the mathematical model

of the jacketed tubular reactor is presented with a simple reversible reaction taking

place. Second, the model linearization around the equilibrium point is proposed to

construct a linearized model. Finally, the discrete-time infinite-dimensional model is

obtained utilizing the Cayley-Tustin transform framework.

2.2.1 Model description

Figure 2.1 shows a schematic of a tubular reactor. This tubular reactor is a non-

isothermal reactor where an elementary, exothermic first-order reversible reaction

takes place (A
 B).

CA0 , CB0 , T0

A ⇌	B
CA , CB , T

TC0

Tc

0 L

Figure 2.1: Jacket tubular reactor representation.

The mathematical model for the considered tubular reactor is based on the fol-

lowing assumptions. 1) Uniform radial velocity and distribution. 2) Uniform radial

temperature and concentration distribution. 3) Constant density and volume of the
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liquid within the reactor. The heat capacity of the reactant, diffusion, and dispersion

are neglected.

Under these simplifying assumptions, the dynamics of the process are typically

described by the following four nonlinear PDEs which are derived from energy and

mass balance principles [101, 92, 102]. In particular, one considers the spatially

varying jacket temperature that can be described by another hyperbolic PDE.
∂CA(ζ, t)

∂t
= −v

∂CA(ζ, t)
∂ζ

− k1e−
E1

T (ζ ,t)R CA(ζ, t) + k2e−
E2

T (ζ ,t)R CB(ζ, t)

∂CB(ζ, t)
∂t

= −v
∂CB(ζ, t)

∂ζ
+ k1e−

E1
T (ζ ,t)R CA(ζ, t) − k2e−

E2
T (ζ ,t)R CB(ζ, t)

∂T(ζ, t)
∂t

= −v
∂T(ζ, t)
∂ζ

+
−∆H
ρCp

k1e−
E1

T (ζ ,t)R CA(ζ, t) −
−∆H
ρCp

k2e−
E2

T (ζ ,t)R CB(ζ, t)

+
U

ρCpV
(Tc(ζ, t) − T(ζ, t))

∂Tc(ζ, t)
∂t

= vc
∂Tc(ζ, t)
∂ζ

−
U

ρCpV
(Tc(ζ, t) − T(ζ, t)) + b(ζ)ū(t)

(2.1)

In these equations, CA,CB denote the concentration of reactant and product, re-

spectively. The temperature inside of the reactor is T and Tc is the temperature

of cooling medium flowing around the wall of the tubular reactor. The symbols

v, vc,E1,E2, k1, k2,R,∆H, ρCp,U,V denote the superficial fluid velocity, the velocity of

cooling fluid, the activation energy of reactant and product, the kinetic constant of

A and B, the ideal gas constant, the enthalpy, constant heat capacity, product of the

density and heat capacity of the fluid in the reactor, the heat transfer coefficient, the

volume of reactor, respectively [103]. Parameters of the reactor considered are shown

in Table 2.1 .

Table 2.1: Notation and values of parameters

Process parameters Notations Numerical Values
Fluid velocity in reactor v 0.025m/s
Fluid velocity in jacket vc 0.1m/s
Length of the reactor L 1m
Activation energy of reactant E1 46.15kJ/mol
Activation energy of product E2 209.29 kJ/mol
Heat transfer parameter U

ρCpV 0.2s−1

Idea gas constant R 8.314J/(mol.K)
Stoichiometric coefficient −∆H

ρCp
−4250 K.L/mol
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In addition, ζ (ζ ∈ [0, L]) and t (t ∈ [0,∞)) denote the spatial variable and

temporal variable, respectively. The boundary actuation is ū(t) and it is characterized

by b(ζ), which is given as b(ζ) = 1
2ζ̄L

1[ζL−ζ̄L,ζL+ζ̄L](ζ). In summary, the controlled

variables are the concentration CA,CB and the temperature T of the reactor, and the

corresponding manipulated variable is the inlet flow temperature of the jacket. The

mathematical model in Eq.(2.1), represents a nonlinear relation between controlled

variables and manipulated variables.

Correspondingly, the following boundary conditions are considered for t ∈ [0,∞):

CA(0, t) = CA0,CB(0, t) = 0,T(0, t) = T0,Tc(L, t) = TC0 (2.2)

with the given initial conditions for ζ ∈ [0, L]:

CA(ζ,0) = CA(ζ),CB(ζ,0) = 0,T(ζ,0) = T(ζ),Tc(ζ,0) = Tc(ζ) (2.3)

The output is taken as the following form:

y(t) = C


CA(ζ, t)
CB(ζ, t)
T(ζ, t)
Tc(ζ, t)

 (2.4)

where C(·) = diag{
∫ L
0
(·)δ(ζ − L)dζ,

∫ L
0
(·)δ(ζ − L)dζ,

∫ L
0
(·)δ(ζ − L)dζ,

∫ L
0
(·)δ(ζ)dζ } and

δ(ζ) is the Dirac function which can capture spatial measurement points of interest.

2.2.2 System linearization

The mathematical model described above is composed of a set of PDEs that accurately

describe the dynamics of the tubular reactor from spatial and temporal dimensional.

It is however a fully coupled and nonlinear PDEs model that is difficult to solve

directly and analyze further. Linearizing this system around some steady states of

interest is one way to proceed [76].

Firstly, the steady-state model of Eq.(2.1) can be simply obtained as the time
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t →∞, which means that all derivatives with respect to time are equal to zero.

− v
∂CAss

∂ζ
− k1e−

E1
TssR CAss + k2e−

E2
TssR CBss = 0

− v
∂CBss

∂ζ
+ k1e−

E1
TssR CAss − k2e−

E2
TssR CBss = 0

− v
∂Tss

∂ζ
+
−∆H
ρCp

k1e−
E1

TssR CAss −
−∆H
ρCp

k2e−
E2

TssR CBss +
U

ρCpV
(Tcss − Tss) = 0

vc
∂Tcss

∂ζ
−

U
ρCpV

(Tcss − Tss) = 0

(2.5)

The steady states can be solved numerically by the finite difference method. More

specifically, the derivatives with respect to the axial variable can be replaced by

the first-order backward and the first-order forward differences. As a result, the

corresponding steady states profiles are illustrated in Figure 2.2.
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Figure 2.2: Steady-states profiles of the tubular reactor.

By applying the state transformation and linearization, the original nonlinear

PDEs in Eq.(2.1) can be linearized around the steady states.

X =


x1(ζ, t)
x2(ζ, t)
x3(ζ, t)
x4(ζ, t)

 =

CA(ζ, t) − CAss (ζ, t)
CB(ζ, t) − CBss (ζ, t)

T(ζ, t) − Tss(ζ, t)
Tc(ζ, t) − Tcss (ζ, t)

 (2.6)

Moreover, the steady states CAss,CBss,Tss,Tcss need to satisfy their corresponding

boundary conditions indicated in Eq.(2.2) respectively. Therefore, the linearized

infinite-dimensional model is obtained as the following form:

∂X(ζ, t)
∂t

= V
∂X(ζ, t)
∂ζ

+ A(ζ)X(ζ, t) + B(ζ)u(t) (2.7)
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where u(t) is the corresponding input action of the linearized system and the following

notations are used in this equation.

V = diag{−v,−v,−v, vc}, A(ζ) =


−N1 N2 −G1 0
N1 −N2 G1 0
βN1 −βN2 G2 α
0 0 α −α

 ,B(ζ) = [0; 0; 0; b(ζ)]

α =
U

ρCpV
, β =

−∆H
ρCp

, µ1 =
E1

R
, µ2 =

E2

R
,N1 = k1e−

µ1
Tss ,N2 = k2e−

µ2
Tss

G1 = N1µ1
CAss

T2
ss
− N2µ2

CBss

T2
ss
,G2 = βN1µ1

CAss

T2
ss
− βN2µ2

CBss

T2
ss
− α (2.8)

The linearized system has the corresponding boundary conditions of

x1(0, t) = 0, x2(0, t) = 0, x3(0, t) = 0, x4(L, t) = 0 (2.9)

and the initial conditions:

x1(ζ,0) = CA(ζ) − CAss (ζ), x2(ζ,0) = CB(ζ) − CBss (ζ)

x3(ζ,0) = T(ζ) − Tss(ζ), x4(ζ,0) = Tc(ζ) − Tcss (ζ)
(2.10)

The linearized jacket tubular reactor model is now complete and the standard infinite-

dimensional continuous-time state-space model can be formulated as:

ÛX(ζ, t) = AX(ζ, t) + Bu(t)

Y (t) = CX(ζ, t)
(2.11)

subject to the boundary conditions Eq.(2.9) and the initial conditions Eq.(2.10). The

state X(ζ, t) ∈ X, with X = L2((0, L),R4) being defined as a real separable Hilbert

space with inner product 〈·, ·〉. The input u(t) ∈ L2
loc([0,∞),U) and output y(t) ∈

L2
loc([0,∞),Y), where U and Y are real separable Hilbert spaces.

In this form, one can define the operator A(·) = V ∂(·)
∂ζ + A(ζ)(·) on its domain

D(A) = {ψi(ζ) ∈ L2(0,1)|ψi(ζ) is absolutely continuous, dψi
dζ ∈ L2(0,1), with i = 1,2,3,

4, and ψ1(0) = 0,ψ2(0) = 0,ψ3(0) = 0, ψ4(1) = 0}. A is the infinitesimal generator of

a C0-semigroup on X. Also, the input operator B is defined as a bounded operator

B =[ 0; 0; 0; b(ζ)]. The operator B can approximate "point actuation" by using

a small interval shape function [52]. To construct the model predictive controller

in the next section, the adjoint operator of A needs to be predetermined. For this

system, the adjoint operator A∗ is easily found using the inner product formula,
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〈Aϕi, φi〉 = 〈ϕi,A
∗φi〉, i = 1,2,3,4, and is:

A∗(·) = −V
∂(·)

∂ζ
+ A∗(ζ)(·) (2.12)

with its domain defined as D(A∗) = {φi(ζ) ∈ L2(0,1), φi(ζ) is absolutely continuous,
dφi
dζ ∈ L2(0,1), with i = 1,2,3,4, and φ1(1) = 0, φ2(1) = 0, φ3(1) = 0, φ4(0) = 0}.

The output is obtained:

Y (t) = C


x1(ζ, t) + CAss (ζ)
x2(ζ, t) + CBss (ζ)
x3(ζ, t) + Tss(ζ)
x4(ζ, t) + Tcss (ζ)

 = C

x1

x2

x3

x4

 +

CAss(L)
CBss(L)
Tss(L)
Tcss(0)

 , (2.13)

In an analogous manner, by 〈Cϕi, φi〉 = 〈ϕi,C
∗φi〉, i = 1,2,3,4, C∗ operator is deter-

mined as:

C∗(·) = diag{δ(ζ − L)
∫ L

0
(·)dη, δ(ζ − L)

∫ L

0
(·)dη, δ(ζ − L)

∫ L

0
(·)dη, δ(ζ)

∫ L

0
(·)dη}

(2.14)

The detailed manipulation of the adjoint operator A∗ and C∗ refer to the Appendix

A.1 and A.2.

2.2.3 Model discretization

Based on the linearized infinite-dimensional system, we introduce the Cayley-Tustin

discretization framework to transform the continuous system to the discrete-time one.

Let us consider the above linear system in Eq.(2.11) and a given a time discretization

h > 0, and the Cayley-Tustin discretization is given by

X( jh) − X(( j − 1)h)
h

≈ A
X( jh) + X(( j − 1)h)

2
+ Bu( jh),X(0) = X0

Y ( jh) ≈ C
X( jh) + X(( j − 1)h)

2

(2.15)

for j ≥ 1, where we omit the spatial dependence of x for brevity. Then let
u(h)j
√

h
be

an approximation of u( jh) by the mean value within a given sampling time,
u(h)j
√

h
=

1
h

∫ jh
( j−1)h u(t)dt. It has been shown in [14] that

u(h)j
√

h
converges to u( jh) as h → 0

in several different ways, similar for Y ( jh). Further, rewriting Eq.(2.15) gives the

discrete time dynamics Eq.(2.16). It is frequently called Tustin discretization in the
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engineering literature, which is discovered in 1940s by Tustin and referred as Tustin

transform in digital and sample-data control literature [19].

X (h)j − X (h)j−1

h
≈ A

X (h)j + X (h)j−1

2
+ B

u(h)j
√

h
,X (h)0 = X0

Y (h)j
√

h
≈ C

X (h)j + X (h)j−1

2

(2.16)

Through some basic computations, the following infinite-dimensional discrete-time

state space model is obtained:

X (h)j = Ad X (h)j−1 + Bdu(h)j

Y (h)j = Cd X (h)j−1 +Ddu(h)j

(2.17)

where Ad, Bd, Cd, Dd are the discrete-time spatial operators and we denote:(
Ad Bd
Cd Dd

)
=

(
[δ − A]−1[δ − A]

√
2δ[δ − A]−1B

√
2δC[δ − A]−1 C[δ − A]−1B

)
(2.18)

where δ = 2/h and the resolvent is R(δ,A)(·) = (δI−A)−1(·). Clearly, one must sat-

isfy δ ∈ ρ(A) so that the resolvent operator is well-defined. In particular, C(δ−A)−1B

denotes the transfer function of the linearized continuous model. The unbounded op-

erators A of the continuous-time system are mapped into bounded operators Ad in

the discrete-time counterpart through Cayley transform. In addition, it has been

demonstrated that the controllability and stability are invariant under this transfor-

mation [76]. The continuous state evolutional operator A is discretized in time and

Ad can be described by the resolvent operator with Ad(·) = [δI − A]−1[δI +A](·) =

−I(·) + 2δ[δI − A]−1(·) = −I(·) + 2δR(δ,A)(·), where I is an identity operator.

2.2.4 Resolvent operator

In order to obtain the above discrete-time spatial operators which are generated by

the Cayley-Tustin discretization, the resolvent operator needs to be determined. In

general, there is a link between the resolvent operator and the analytical solution

in Laplace-domain for the continuous-time model, such as R(s,A)(·) = [sI − A]−1(·),

which means one can obtain the resolvent operator by applying the Laplace transform.

To better understand the resolvent operator, let us consider the following model:

Ûz(ζ, t) = Az(ζ, t), z(ζ,0) = z0(ζ) (2.19)
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where A is defined as a spatial derivative operator. Through applying the Laplace

transform, one attains the associated resolvent operator R(s,A) as follows:

z(ζ, s) = [sI − A]−1z0(ζ) = R(s,A)z0(ζ) (2.20)

This illustrates that the resolvent operator is mapping the initial condition z0(ζ) to

the solution z(ζ, s) in Laplace-domain.

Following this line, for the linearized hyperbolic PDEs in Eq.(2.7), the Laplace

transform is applied giving:

∂X(ζ, s)
∂ζ

= FX(ζ, s) − V−1X(ζ,0) (2.21)

where

F = V−1[(SI − A(ζ)] =


−

s+N1
v

N2
v −

G1
v 0

N1
v −

s+N2
v

G1
v 0

βN1
v −

βN2
v

s+G2
v

α
v

0 0 − α
vc

s+α
vc


and V is defined in Eq.(2.8). Because of the diagonal form of V , it is clear that V

is invertible, which means the well-posedness is guaranteed. Based on the semigroup

operator theory [52], a frequency-domain solution is generated under the zero-input

condition as follows:
x1(ζ, s)
x2(ζ, s)
x3(ζ, s)
x4(ζ, s)

 = eFζ


x1(0, s)
x2(0, s)
x3(0, s)
x4(0, s)

 −
∫ ζ

0
eF(ζ−η)V−1


x1(η,0)
x2(η,0)
x3(η,0)
x4(η,0)

 dη (2.22)

For notational simplicity, eFζ can be denoted as eFζ = [Fi j(ζ, s)]4×4 with i, j = 1,2,3,4.
The frequency-domain solution of the distributed parameter system is:

x1(ζ, s)
x2(ζ, s)
x3(ζ, s)
x4(ζ, s)

 =

F11(ζ, s) F12(ζ, s) F13(ζ, s) F14(ζ, s)
F21(ζ, s) F22(ζ, s) F23(ζ, s) F24(ζ, s)
F31(ζ, s) F32(ζ, s) F33(ζ, s) F34(ζ, s)
F41(ζ, s) F42(ζ, s) F43(ζ, s) F44(ζ, s)



x1(0, s)
x2(0, s)
x3(0, s)
x4(0, s)

 +∫ ζ

0


F11(ζ − η, s) F12(ζ − η, s) F13(ζ − η, s) F14(ζ − η, s)
F21(ζ − η, s) F22(ζ − η, s) F23(ζ − η, s) F24(ζ − η, s)
F31(ζ − η, s) F32(ζ − η, s) F33(ζ − η, s) F34(ζ − η, s)
F41(ζ − η, s) F42(ζ − η, s) F43(ζ − η, s) F44(ζ − η, s)



1
v 0 0 0
0 1

v 0 0
0 0 1

v 0
0 0 0 − 1

vc



x1(η,0)
x2(η,0)
x3(η,0)
x4(η,0)

 dη (2.23)

Considering that the corresponding boundary conditions Eq.(2.9) are bidirectional,

one needs to convert them to one side in order to determine the resolvent operator as
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follows:

(1) At ζ = 0, one can substitute x1(0, s) = 0, x2(0, s) = 0, x3(0, s) = 0 into Eq.(2.23)

which results in F14(0, s) = 0, F24(0, s) = 0, F34(0, s) = 0.

(2) At ζ = L, one can substitute x4(L, s) = 0 into Eq.(2.23) which yields

x4(0, s) = −
1

F44(L, s)

∫ L

0
[
1

v
F41(L − η, s)x1(η,0) +

1

v
F42(L − η, s)x2(η,0)+

1

v
F43(L − η, s)x3(η,0) −

1

vc
F44(L − η, s)x4(η,0)]dη

(2.24)

Consequently, the resolvent operator can be determined utilizing Eq.(2.23) and

Eq.(2.24) in the following form:
x1(ζ, s)
x2(ζ, s)
x3(ζ, s)
x4(ζ, s)

 =

R11(F, s) R12(F, s) R13(F, s) R14(F, s)
R21(F, s) R22(F, s) R23(F, s) R24(F, s)
R31(F, s) R32(F, s) R33(F, s) R34(F, s)
R41(F, s) R42(F, s) R43(F, s) R44(F, s)



x1(η,0)
x2(η,0)
x3(η,0)
x4(η,0)

 (2.25)

The associated resolvent operators can be expressed as
Ri1(F, s)(·) = −

Fi4(ζ,s)
F44(L,s)

∫ L
0

1
v F41(L − ε, s)(·)dε +

∫ ζ

0
1
v Fi1(ζ − η, s)(·)dη, i = 1,2,3,4

Ri2(F, s)(·) = −
Fi4(ζ,s)
F44(L,s)

∫ L
0

1
v F42(L − ε, s)(·)dε +

∫ ζ

0
1
v Fi2(ζ − η, s)(·)dη, i = 1,2,3,4

Ri3(F, s)(·) = −
Fi4(ζ,s)
F44(L,s)

∫ L
0

1
v F43(L − ε, s)(·)dε +

∫ ζ

0
1
v Fi3(ζ − η, s)(·)dη, i = 1,2,3,4

Ri4(F, s)(·) =
Fi4(ζ,s)
F44(L,s)

∫ L
0

1
vc

F44(L − ε, s)(·)dε −
∫ ζ

0
1
vc

Fi4(ζ − η, s)(·)dη, i = 1,2,3,4

(2.26)

Now, the discrete-time operators in Eq.(2.18) can be solved by straightforwardly

substituting the above resolvent operators. Afterwards, the discrete-time linear model

is obtained:

X(ζ, k) = Ad X(ζ, k − 1) + Bdu(k)

Y (k) = Cd X(ζ, k − 1) +Ddu(k)
(2.27)

with the boundary conditions Eq.(2.9) and the initial conditions Eq.(2.10).

2.3 MPC Formulation

The formulation of the model predictive controller is developed for the discrete-time

PDE model Eq.(2.27). In particular, the constrained optimal controller design for the

finite-dimensional system theory is extended and deployed for the infinite-dimensional

system. Two cases to demonstrate the performance of the controller: one, including
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the state feedback MPC with the assumption that full states are available, and two

a Luenberger observer-based MPC to reconstruct the state from the available output

measurements. These two cases are shown schematically in Figure 2.3. One notes

that, in the MPC formulation, the state and output are denoted as Z(ζ, k) and V(k)

to avoid the confusion in the notation.

Plant

Observer

MPC Y(k)

u(k)

𝑋"(𝜉,k)

State Feedback MPC 

Observer-Based MPC

𝑋(𝜉,k)

Figure 2.3: Scheme of state feedback MPC and observer-based MPC.

2.3.1 State feedback MPC

In this section, the MPC design for the finite-dimensional system is extended to

the discrete-time infinite-dimensional tubular reactor model based on the previous

contributions [18, 76, 36]. The predictive controller is founded as the solution of

an optimization problem such that the following open-loop objective function on an

infinite horizon is minimized at a given sampling time k:

min
uN

∞∑
j=0

VT
k+ j |kQVk+ j |k + uT

k+ j |k Ruk+ j |k + ∆uT
k+ j |k S̄∆uk+ j |k (2.28)

where Q is a symmetric positive semidefinite spatial operator, and R is a symmetric

positive definite spatial operator. Vk+ j |k and uk+ j |k represent the output and input

variables at future time k+ j predicted at current time k, and the term ∆uk+ j |k denotes

the change of an input vector at time k + j as ∆uk+ j |k = uk+ j |k − uk+ j−1|k . The vector

uN includes the control sequence {uk |k,uk+1|k,uk+2|k, ...,uk+N−1|k} and the first element

uk |k will be injected to the plant as the future control action.

A typical feature in MPC is that the infinite-horizon objective function can be

cast into a finite-horizon objective function by assuming that the inputs are zero
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beyond the control horizon N, i.e., uk+N |k = 0, j ≥ N. In addition, one penalty term

needs to be added to the objective function in order to approximate the inputs and

outputs beyond the horizon [104]. In this case, under the assumption of observability,

the terminal output penalty term can be written as the corresponding state penalty

term. Since the state is a spatio-temporal variable, the penalty term is given in the

form of the inner product. Therefore, the finite horizon objective function with input

and output constraints can be formulated as follows:

min
uN

N−1∑
j=0

VT
k+ j |kQVk+ j |k + uT

k+ j |k Ruk+ j |k + 〈Zk+N−1|k, Q̄Zk+N−1|k〉

s.t. Zζ,k−1|k = Xζ,k−1|k

Zk+ j |k = Ad Zk+ j−1|k + Bduk+ j |k

Vk+ j |k = Cd Zk+ j−1|k +Dduk+ j |k

umin ≤ uk+ j |k ≤ umax

Vmin ≤ Vk+ j |k ≤ Vmax

(2.29)

where N is the prediction horizon, Q̄ is the spatial operator to penalize the terminal

state which depends on the stability of the given model. umin and umax are the lower

and upper bound vectors of the manipulated input u(t). Moreover, Vmin and Vmax are

lower and upper output constraints, respectively. It is important to note that the

input and output constraints are imposed for two fundamentally different reasons.

The input constraint usually represents physical limits of the control actuator or

available control actuation, such as the limitation of the flow valve. For the output

constraint, it usually represents the typical requirements among operation of tubular

reactors in practice, such as the temperature of product not exceeding certain ranges,

as well as the physical limits of actuators or sensors.

According to the nature of transport reaction systems, one can define Q̄ as the

infinite sum Q̄ =
∑∞

i=0A
∗i
d C
∗
dQCdA

i
d which can be determined from the solution of

the following discrete Lyapunov equation [104]:

A∗dQ̄Ad + C
∗
dQCd = Q̄ (2.30)

In particular, it can be demonstrated that the unique solution of the discrete

Lyapunov equation is directly related to the continuous one which is shown as follows
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[52]:

A∗Q̄ + Q̄A = −C∗QC (2.31)

The assumption of C being infinite-time admissible forA is required which denotes

the continuous-time Lyapunov equation having solutions [105]. By multiplying a

spatial function X(ζ) and substituting operator A on both sides, we can obtain:

A∗Q̄X + Q̄AX = −C∗QCX

− V
∂Q̄X
∂ζ
+ATQ̄X + Q̄

(
V
∂X
∂ζ
+AX

)
= −C∗QCX

− VQ̄
∂X
∂ζ
− V

∂Q̄
∂ζ

X +ATQ̄X + VQ̄
∂X
∂ζ
+ Q̄AX = −C∗QCX

∂Q̄
∂ζ
= V−1ATQ̄ + V−1Q̄A + V−1C∗QC

where Q̄ ∈ D(A∗). As a result, the straightforward algebraic manipulation of the ob-

jective function presented in Eq.(2.29) leads to the following quadratic programming

optimization problem.

min
U

J =
1

2
UT HU +UT 〈I,FZζ,k−1|k〉 + 〈Zζ,k−1|k, Q̄Zζ,k−1|k〉

s.t. Umin ≤ U ≤ Umax

Vmin ≤ GU + SZζ,k−1|k ≤ Vmax

(2.32)

where U = {uk+n}
N
n=1 and H ∈ L(U) is positive and self-adjoint. By direct calculation,

it is straightforward to find:

hi,j =


D∗dQDd + B

∗
dQ̄Bd + R for i = j

D∗dQCdA
i− j−1
d Bd + B

∗
dQ̄Ai− j

d Bd for i > j
h∗j,i for i < j

(2.33)

with F given by F = {D∗dQCdA
k−1
d + B∗dQ̄Ak

d}
N−1
k=1 .

The constraints of Eq.(2.32) can be written in the form:
I
−I
G
−G

 U ≤


Umax

−Umin

Vmax − SZζ,k−1|k
−Vmin + SZζ,k−1|k

 (2.34)

where G is a lower triangular matrix given by

gi,j =


Dd for i = j

CdA
i− j−1
d Bd for i > j
0 for i < j

and S = {CdA
k−1
d }Nk=1.
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2.3.2 Observer-based MPC

In the previous section, we assumed that the states are available at each sample

time k. In other words, it requires knowledge of the current state of the system in

order to compute the solution of optimal input formulated at each interval. However,

in most applications, state information is not always known. Therefore, for output

feedback, a Luenberger observer which can reconstruct the states based on the output

measurements is needed. In general, there are two ways to design the Luenberger

observer, including the continuous-time observer based on the continuous system

model and discrete one under the discrete setting.

Firstly, let us recall the linearized continuous-time model:

ÛX(ζ, t) = AX(ζ, t) + Bu(t)

Y (t) = CX(ζ, t)
(2.35)

The Luenberger observer is presented by the following equations:

Û̂X(ζ, t) = A X̂(ζ, t) + Bu(t) + Lc(Y (t) − Ŷ (t))

Ŷ (t) = C X̂(ζ, t)
(2.36)

where Lc is the continuous observer gain to be designed. Stability of the observer

implies that the state estimation error, e(ζ, t) = X(ζ, t) − X̂(ζ, t), converges to zero

within a certain time. The error dynamic equation is shown as follows:

Ûe(ζ, t) = (A − LcC)e(ζ, t) (2.37)

The design problem is to choose an appropriate observer gain Lc such that the

operator Ac = A−LcC is stable which guarantees the stability of the error dynamics.

According to the infinite-dimensional features, the observer gain Lc can be obtained

by solving the following Lyapunov equation:

〈Qc X,A∗c X〉 + 〈A∗c X,Qc X〉 = −〈M X,X〉,X ∈ D(A∗c) (2.38)

where M is positive definite design parameter and Qc is a nonnegative self-adjoint

operator which maps from D(A∗c) to D(Ac). Let us assume that the pair (A,C)

is exponential detectable, then if there exists a nonnegative self-adjoint operator Qc

which is the solution of the following operator Riccati equation [53]:

AQc +QcA
∗ − 2QcC

∗CQc + M = 0,on D(A∗) (2.39)
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The observer gain Lc = QcC
∗ is an exponentially stabilizing gain which guarantees

the exponentially stability of Ac = A − LcC.

In a similar manner, one can design a discrete Luenberger observer based on the

following discrete-time model:

X(ζ, k) = Ad X(ζ, k − 1) + Bdu(k)

Y (k) = Cd X(ζ, k − 1) +Ddu(k)
(2.40)

The observer is constructed by the following equations:

X̂(ζ, k) = Ad X̂(ζ, k − 1) + Bdu(k) + Ld(Y (k) − Ŷ (k))

Ŷ (k) = Cd X̂(ζ, k − 1) +Ddu(k)
(2.41)

where Ld is the discrete observer gain to be designed. Similarly, we can obtain

the error dynamic as ek = (Ad − LdCd)ek−1. To obtain a stabilizing observer gain

Ld = QdC
∗
d , Qd which is nonnegative self-adjoint operator must be found by solving

the following Discrete Lyapunov equation:

〈X, [Ã∗dQdÃd −Qd]X〉 = −〈X, [C̃∗d N C̃d]X〉 (2.42)

where Ãd = Ad − LdCd = −I(·) + 2δ[δI − Ac]
−1 and C̃d =

√
2δC[δ − Ãd]

−1. It can be

demonstrated that the solution of the discrete Lyapunov equation is also the solution

of the continuous Lyapunov equation under the Cayley-Tustin time discretization

setting [53, 106]. Therefore, the discrete Luenberger observer gain can be obtained

by constructing the continuous observer gain.

According to the principle of predictive control, the state estimated by the observer

at the current moment will be used as the starting point for predicting the future

dynamics of the system. Hence, the observer-based MPC can be reconstructed by

setting the initial state equal to the estimate of the current state at each time k, i.e.,

Zζ,k−1|k = X̂ζ,k−1|k . One can obtain the estimate of the current state from Luenberger

observer, from which one can reconstruct the entire state trajectory [107]. In this
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case, the observer-based MPC is directly formulated as follows :

min
uN

N−1∑
j=0

VT
k+ j |kQVk+ j |k + uT

k+ j |k Ruk+ j |k + 〈Zk+N−1|k, Q̄Zk+N−1|k〉

s.t. Zζ,k−1|k = X̂ζ,k−1|k

Zk+ j |k = Ad Zk+ j−1|k + Bduk+ j |k

Vk+ j |k = Cd Zk+ j−1|k +Dduk+ j |k

umin ≤ uk+ j |k ≤ umax

Vmin ≤ Vk+ j |k ≤ Vmax

(2.43)

where uN,N,Q,R, Q̄ are as in Eq.(2.29). As for implementation, the Luenberger ob-

server design and MPC must be performed iteratively until the performance is ac-

ceptable.

2.4 Simulation Study

In this section, the performance of the two MPC formulations developed in the pre-

vious section is demonstrated through two case studies. Case study 1 illustrates the

state feedback MPC design where all states of the system are assume to be available

or measurable. The sensitivity analysis of input and output weights and constraints

of MPC formulation is given. Considering the unavailability of state measurements in

realistic tubular reactors, the observer is designed to reconstruct the states, based on

which an observer-based MPC is simulated as Case study 2. Both of the controllers

are designed to satisfy the input and output constraints requirements and achieve

system stabilization at the same time. The resulting constrained optimization prob-

lems become quadratic programming problems which are solved using the MATLAB

subroutine QuadProg.

The parameter values used in Eq.(2.32) and for simulations are listed in Table 2.1.

For the initial conditions of the dynamic system, we consider x1(ζ,0) = 0.019ζ, x2(ζ,0)

= 0.03ζ, x3(ζ,0) = 0.02ζ, x4(ζ,0) = 0.02(1 − ζ). In addition, ζ̄L = 0.15 is chosen

for the input operator. In both cases, the horizon of N = 15 is selected with the

terminal constraint formulation. The input and output weights are chosen as R = 5

and Q = diag{0.5,0.5,0.5,0.5} for MPC implementation, respectively. The input
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and output constraints are considered as umin = −0.5, umax = 0.05, Vmin = −0.5

and Vmax = 9 with respect to state perturbation. As for the Cayley-Tustin time

discretization, we choose h = 2 at the time discretization interval which implies δ = 1.

The spatial discretization interval is taken as dζ = 0.01.

As shown in Figure 2.4, the open-loop states converge to their corresponding

steady states rapidly which indicates the original plant is intrinsically stable. By

implementing the proposed MPC frameworks, we aim to steer the convergence rate

without violating the physical constraints of actuators and sensors. In order to clearly

show the perturbation of each state, the linearized states are depicted in Figure 2.5,

where it is apparent that all states go to close zero within the considered time range.

Figure 2.4: Open-loop steady state profiles of the tubular reactor.
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Figure 2.5: Perturbations of open-loop state profiles of the tubular reactor from
Eq.(2.27).

2.4.1 Case study 1: State feedback MPC

By implementing the optimal control input on the plant model, the states of the

closed-loop system under the MPC law given by Eq.(2.32) are obtained and shown

in Figure 2.6. The closed-loop system is stabilized because all of the states go to zero

with a faster convergence rate compared with the open-loop states shown in Figure

2.5. This can also be verified from the output profiles shown in Figure 2.7, where the

four outputs under the state feedback MPC law converge to steady states which are

faster than the corresponding open-loop profiles. In this case, we aim to steer the

temperature of the reactor without exceeding its corresponding physical constraint.

It can be observed from Figure 2.8(a), compared with the open-loop temperature

profiles, the closed-loop profile converge to steady state at a faster rate and satisfy

the constraints simultaneously. The corresponding manipulated input is given in

Figure 2.8(b). The control effort is required on the half of the time horizon to keep

the output inside the range of set limits and after that, the requirement for input

control is not obvious.
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Figure 2.6: Perturbations of closed-loop state profiles of the tubular reactor under
the state feedback MPC law from Eq.(2.32).
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Figure 2.7: Performance comparison of open-loop and closed-loop output profiles
under the state feedback MPC law from Eq.(2.32).
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Figure 2.8: (a) Comparison between profiles of the open-loop and closed-loop outputs
(y3) using the state feedback MPC from Eq.(2.32). (b) Input profile calculated in the
state feedback MPC case from Eq.(2.32).

In addition, the influence of the choice of the input and output weights (Q and

R) on the state feedback MPC performance is investigated below, where the average

absolute error is taken as the evaluation index. With the same objective function and

horizon, different input and output constraints (with ±5% and ±10% based on the

chosen case umin = −0.5, umax = 0.05, Vmin = −0.5 and Vmax = 9) are implemented.

As illustrated in Table 2.2, it is apparent that the state feedback MPC generally

presents a very small average absolute error which stays within a reasonable range

(4.46×10−5 to 1.00×10−3) under these conditions considered. In particular, when the

input and output weights are chosen as R = 5 and Q = diag{0.5,0.5,0.5,0.5} for

MPC implementation, the average absolute error is smallest and which is the case

considered in this chapter.

Table 2.2: Performance comparison of the state feedback MPC with different input
and output weights and constraints

Weights +10% +5% base case -5% -10%
Q=diag {0.5, R=5 1.00×10−3 1.00×10−3 1.00×10−3 7.91×10−4 4.46×10−5

0.5, 0.5, 0.5} R=10 5.03×10−3 5.03 ×10−3 5.03×10−3 4.51×10−3 3.51×10−3

Q=diag {5,5 R=5 1.32×10−3 1.51×10−3 1.67×10−3 1.83×10−3 2.14×10−3

5,5} R=10 5.71×10−4 8.53×10−4 8.79×10−4 9.95×10−4 1.77×10−3
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2.4.2 Case study 2: Observer-based MPC

The performance of observer-based MPC is now described. Compared with the im-

plementation of state feedback MPC, the MPC is now implemented based on the

estimate states. Firstly, in order to obtained the estimate states, the observer design

implies that the expression in Eq.(2.39) is applied, with a arbitrary choice of the de-

sign parameter M(ζ) and Ψ(ζ) in the domain of D(A∗), which leads to the following

equations:

AQcΨ(ζ) +QcA
∗
Ψ(ζ) + MΨ(ζ) − 2QcC

∗CQcΨ(ζ) = 0

V
∂Qc

∂ζ
Ψ(ζ) + VQc

∂Ψ

∂ζ
+ A(ζ)QcΨ(ζ) +Qc[−V

∂Ψ

∂ζ
+ A(ζ)∗Ψ(ζ)] + MΨ(ζ)− 2QcC

∗CQcΨ(ζ)=0

V
∂Qc

∂ζ
Ψ(ζ) + A(ζ)QcΨ(ζ) +QcA(ζ)∗Ψ(ζ) + MΨ(ζ) − 2QcC

∗CQcΨ(ζ) = 0

which yields
dQc

dζ
= V−1[2QcC

∗CQc − 2A(ζ)Qc − M]

Therefore, one needs to choose Qc which in the domain of A and positive function

M to ensure the nonnegative definiteness of Qc. Choosing M to be 0.001, Qc can be

solved numerically and then the observer gain is found L = QcC
∗. As shown in Figure

2.9, the estimation error of the designed Luenberger observer converges to zero with

time increasing.

Figure 2.9: Evolution of the observer error e(ζ, t).
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As shown in Figure 2.10, output profiles under the observer-based MPC law con-

verge to steady states that are similar to the corresponding state feedback output

profiles as shown in Figure 2.7. The third output under the observer-based MPC

law has a faster convergency rate than the open-loop profile. The obvious difference

between them is that the observer-based MPC keeps the output within the given

constraints to satisfy the requirements. The input manipulation obtained from the

observer-based MPC, which is the solution of the constrained optimization problem

in Eq.(2.43) as shown in Figure 2.11. The comparison of plant outputs and observer

outputs are shown in Figure 2.12. The estimated outputs have a slight overshoot com-

pared with plant outputs but there are no obvious differences in terms of convergency

rates.
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Figure 2.10: Performance comparison of open-loop and closed-loop output profiles
under the observer-based MPC law from Eq.(2.43).
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Figure 2.11: Input profile computed by the observer-based MPC in Eq.(2.43).
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Figure 2.12: Estimated output profiles using the Luenberger observer.

In order to further investigate the performance of the proposed MPC design, we

consider two truly unknown disturbances which makes the open-loop system poten-

tially unstable. In addition, we assumed the addition of disturbance does not affect

the feasibility of input and output constraints. Specifically, two types of disturbance

including input disturbance and distributed disturbance were injected to the system.

In this first scenario, we consider the input disturbance, d(t) = 0.0005 sin(0.06t).

The perturbations of open-loop state profiles shown in Figure 2.13 have shown the

sinusoidal trend given by the disturbance signal considered here, and the proposed

MPC design can stabilize the unstable modes as illustrated in Figure 2.14. As shown

in Figure 2.15, it is apparent that the open-loop output responses oscillate due to

input disturbance injection. The MPC controller is able to simultaneously realize

disturbance rejection and converge to steady states in a short time, and satisfies

the given constraints. The corresponding manipulated input is given in Figure 2.16.

Therefore, it can be clearly seen that under the consideration of input disturbance,

the proposed MPC achieves a good control performance.
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Figure 2.13: Perturbations of open-loop state profiles under the consideration of
input disturbance.

Figure 2.14: Perturbations of closed-loop state profiles under the consideration of
input disturbance with the observer-based MPC law from Eq.(2.43).
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Figure 2.15: Closed-loop output profiles under the consideration of input disturbance
with the observer-based MPC law from Eq.(2.43).
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Figure 2.16: Input profile calculated in the observer-based MPC case from Eq.(2.43).

In this second scenario, we consider the distributed disturbance which is expressed

by a step signal, d(t) =
{
0.0001, t ∈ [32,62]

0 otherwise . As shown in Figure 2.17, the open-

loop outputs show significantly oscillation when the step disturbance is applied. The

closed-loop output profiles show that the disturbance does not affect the designed

control law because of the fast convergency rate and good disturbance rejection. The

corresponding manipulated input is given in Figure 2.18. It is apparent that the

control actions become more reliable and the system converges faster.
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Figure 2.17: Closed-loop output profiles considering the distributed disturbance
under the observer-based MPC law from Eq.(2.43).
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Figure 2.18: Input profile generated by the observer-based MPC from Eq.(2.43).

Finally, the performance of open-loop, state feedback MPC and observer-based

MPC are compared from the perspectives of average settling time and absolute error

under the consideration of two types of disturbances with the same overall simulation

time of 120 seconds. More specifically, the settling time is calculated as the time

taken by the outputs response to reach the steady states with 2% tolerance in this

case. The absolute error is defined as the absolute difference of the controlled outputs

and the outputs according to steady states at 120s. The average settling time and

absolute error are calculated by taking average of all outputs. For the disturbance

signals, we consider two same types of disturbance including input disturbance and
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distributed disturbance.

Table 2.3: Performance comparison of open-loop and closed-loop systems with differ-
ent types of disturbance.

Types of disturbance Input disturbance Distributed disturbance
Specifications Settling time Abs. error Settling time Abs. error
Open-loop - - 5.13 ×10−2 75.5s 1.10
State feedback MPC 42s 3.73×10−4 67s 4.33×10−3

Observer-based MPC 45s 9.75×10−4 68s 4.93×10−3

As illustrated in Table 2.3, it is apparent that the settling time of state feed-

back MPC is slightly smaller than the observer-based MPC under the consideration

of input sinusoidal disturbance, while the open-loop system the settling time is not

achieved during the overall simulation. The average absolute error of open-loop sys-

tem is 5.13 ×10−2, which is worse than the error of two strategies controller (9.75×10−4

and 3.73×10−4 respectively) where the observer-based MPC shows a competitive per-

formance to the state feedback MPC. Under the proposed distributed disturbance

consideration, the overall trend is similar to the input disturbance but the open-loop

system shows a worse absolute error than other cases. Through the simulation stud-

ies, it can be seen that the feasibility and applicability for MPC design are valid.

As expected, the two constrained predictive controllers developed in this chapter are

able to minimize the energy cost and/or prevent damage to equipment (sensors and

actuators) in order to improve the safety and efficiency of the system.

The novelty of the proposed design method lies in the combination of Cayley-

Tustin time discretization of PDE model with MPC application in tubular reactor

with reversible reaction. Therefore, the proposed design outperforms other numerical

simulation methods by using Cayley-Tustin time discretization because of numerical

stability, energy-preserving, theoretic properties (such as stability, controllability, and

observability) preserving in a late lumping manner. The construction of the model

predictive controller of infinite-dimensional system leads to a finite-dimensional con-

strained quadratic optimization problem which is easily solvable by using standard

numerical optimization methods.
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2.5 Conclusions

In this chapter, the model predictive control algorithms were developed for a jacket

tubular reactor as the distributed parameters system, considering the input and

state constraints. The plant was described by a set of nonlinear coupled hyper-

bolic PDEs considering a simple reversible exothermic reaction taking place in the

reactor (A 
 B). In particular, a spatially varying jacket temperature was consid-

ered in this chapter instead of a constant one. After applying linearization around

a given equilibrium operating point of interest, a linearized PDE model was ob-

tained for the modelling tubular reactor dynamics. For model time-discretization,

the Cayley-Tustin transform was utilized to map the continuous-time system to the

discrete-time model representation without spatial discretization and model reduction

which preserves the input-output stability of the plant. Model predictive controllers

were formulated on that basis to realize model stabilization and account for input

and output constraints. For state estimation, an observer-based MPC realization was

proposed and realized by solving the corresponding operator Riccati equation which

was utilized in the construction of Luenberger observer gains. Finally, two numerical

examples were provided to demonstrate the feasibility of the proposed MPC design.

They show that for the tubular reactor, the proposed MPC was capable of steering

the original dynamics to steady states at a faster convergence rate without violating

physical constraints and made a good performance in the presence of disturbances.
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Chapter 3

Tracking Model Predictive Control
and Moving Horizon Estimation
Design of Distributed Parameter
Pipeline Systems

3.1 Introduction

Pipelines have emerged as a highly economical and efficient means of transporting

different hydrocarbons, including petroleum, crude oil, and diesel fuel. To meet the

growing demands of energy transportation, extensive pipeline networks spanning long

distances have been constructed to efficiently distribute various oil and gas commodi-

ties from reservoirs to markets and chemical plants. The ensuing challenge is the

realization of energy scheduling under the complicated configurations of distributed

pipeline networks and operational requirements. Consequently, advanced control and

estimation methodologies are required to be tailored to pipeline transportation sys-

tems to realize robust, efficient, and safe operations.

Long-range pipeline systems belong to the distributed parameter system (DPS) as

their dynamics depend both on time and space. Compared to the lumped parameter

system (LPS), commonly characterized by ordinary differential equations (ODEs),

DPS is often modelled by PDEs derived from first principles. DPS models are ca-

pable of describing the flow dynamics of transported fluid/gas within the pipeline

system systematically [108]. The real-time transient model, constructed based on the

conservation of mass, momentum, and energy balance laws, has gained widespread
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utilization as a prominent example of first principle modelling [6], [11]. More specif-

ically, it can be characterized by the Euler equations in one dimension, constituting

a system of nonlinear coupled hyperbolic PDEs.

In the realm of controller design for distributed parameter pipeline systems, an

extensive range of model-based control techniques have been explored. For instance,

the design of discrete-time output regulators has been investigated to accommodate

various operational requirements for different configurations of gas pipeline networks

[109]. The backstepping technique has been applied to address the estimation and

control of different topologies of pipeline systems [110, 111]. In order to fulfill the

varying operational demands and satisfy the constraints associated with pipeline sys-

tems, there has been significant interest in exploring a variety of optimization-based

approaches. Among these, a representative approach is MPC, commonly referred to

as receding horizon control, which aims to determine the optimal control action by

minimizing cost functions of interest while simultaneously adhering to various con-

straints. For example, a formulation of nonlinear MPC was introduced to minimize

the operational expenses of gas pipeline networks [112] and was further extended

and incorporated with a robust optimization strategy to address parametric uncer-

tainty within the dynamic model [113]. A receding horizon optimal control algorithm

was developed specifically for continuous-time hydraulic pipeline systems [11]. The

optimal control design scheme considered sufficient conditions to ensure the global

asymptotic stability of the system. A nonlinear MPC was proposed with the aim of

facilitating fast closed-loop dynamics while ensuring compliance with all major con-

straints within the pipeline system [114]. A novel optimization strategy was presented

to improve economic performance by coordinated dispatch, which took into account

the spatio-temporal interactions between gas and electric transmission networks [115].

Achieving reliable control in pipeline systems typically relies on accurate informa-

tion about the system’s state. However, the compact installation of pressure and flow

meters is often cost-prohibitive and impractical when it comes to long-range pipeline

networks. This challenge has spurred the application of state and parameter estima-

tion techniques which are based on the sensor’s measurements at a limited number of

locations along the pipeline system. Classical estimators like the Kalman filter or the

Luenberger observer are commonly employed for estimation purposes but fall short
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in accounting for system constraints [54]. An alternative tool, MHE, has emerged as

a superior estimation technique [55]. MHE is an optimization-based state estimation

method that utilizes a sequence of recent measurements to estimate the current state

of a system, which has gained significant attention in the research community, partic-

ularly for LPS [56, 57, 58], but has been rarely explored for DPS modelled by PDEs.

As an illustration, a moving horizon estimator was proposed to realize the tracking of

internal space-time flow and pressure profiles specifically during dynamic transients in

pipeline systems [59]. Two estimation problems were formulated for state estimation

and joint state and parameter estimation utilizing a reduced model of a natural gas

system [60].

Most of the existing contributions on MPC and MHE designs of DPS are based

on early lumped methods, which first approximate the spatial variables by utilizing

finite difference methods, spectral approaches, and/or finite element techniques, and

then apply finite-dimensional state estimation and control methods to the resulting

lumped parameter systems. These early lumping approaches are simpler to conduct

by exploring finite-dimensional control theories and methods but may cause stability

inconsistency and result in the loss of important system properties [116]. In contrast,

late lumping approaches refer to that state estimation and control design steps are

carried out directly on the original DPS by using infinite-dimensional control theories,

and then spatial approximation or discretization is performed in the numerical simu-

lation stage for realization purposes. The notable advantage of this approach is that it

eliminates the need for spatial discretization of the PDEs in the design stage, which

directly treats the original DPS while designing estimators and controllers. Along

this line, a novel MPC was developed in the late lumping manner for regular linear

DPS, containing stable regular systems and exponentially stabilizable systems [38].

An MHE was proposed to tackle the challenge of constrained output estimation for

discrete-time PDE models while considering system and measurement disturbances

[117]. The proposed designs in [38, 117] were mainly verified via scalar PDEs, and not

for the systems of PDEs representing pipeline networks, and the parameter estimation

was not investigated in [117].

In addition to this, when applying MPC and MHE design to a distributed pa-

rameter pipeline system, several challenges arise. Firstly, the model under consider-
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ation is characterized by a set of first-order hyperbolic PDEs that are not spectral,

thereby indicating the absence of slow-fast dynamic separation. Secondly, in indus-

trial applications, parameters such as pipe friction are often not accurately known,

and unmeasurable states further complicate the task of state and parameter estima-

tion, necessitating careful consideration during the design of the estimator. Thirdly,

to track the desired output and stabilize the system around the corresponding steady

state, one needs to first find the steady state by solving a static equation and utilize

it in an MPC scheme [118], while the potential challenge is that a feasible solution

may not always exist.

Motivated by the preceding discussions, to meet the various operational demands

in the pipeline industry, this chapter aims to develop discrete-time tracking MPC for

a distributed parameter pipeline system with branched topology by using the first

principle model and MHE design for the purpose of state and parameter estimation.

The controller and estimator designs are based on the late lumping method, which

avoids spatially discretizing the PDEs so that the infinite-dimensional nature of the

original pipeline system is preserved. A preliminary study was previously conducted

in [119], focusing on output tracking for a single pipe through the design of a two-layer

model predictive controller (consisting of a trajectory planner and tracking MPC).

However, in this work, we extend the scope to address a more complex and commonly

encountered type of pipeline network by incorporating state/parameter estimation

into the design of a novel tracking MPC. The main contributions of this chapter are

summarized as follows:

1). A branched pipeline network modelled by six nonlinear coupled first-order

hyperbolic PDEs with a boundary input is proposed and investigated. The Cayley-

Tustin method is employed to establish the corresponding discrete-time infinite-

dimensional model, which preserves the continuous-time system properties without

requiring spatial approximation or order reduction [14]. Along this line, one can

obtain the analytical solution for the distributed parameter pipeline systems.

2). The MHE design of a discrete-time distributed parameter pipeline system is

proposed to realize the state estimation (of pressure and flow velocity) and constrained

parameter estimation (of friction coefficient) based on the available plant or input

information and measurement that are corrupted with bounded disturbances.
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3). The single-layer tracking MPC scheme is proposed for discrete-time distributed

parameter pipeline network systems to enable specific operations while maintaining

physical flow constraints, by extending the recently published contribution [120] on

tracking MPC design for finite-dimensional systems to that of infinite-dimensional

systems.

4). Finally, the effectiveness of the proposed designs is verified via case stud-

ies. Sensitivity studies are further provided to show the robustness of the proposed

designs.

This chapter is organized as follows. In Section 3.2, the description of the mathe-

matical model of a pipeline network is introduced, and the linearized model is derived

based on specific space-varying equilibrium profiles for the system. The discrete-time

infinite-dimensional realization is realized for the resulting model using the Cayley-

Tustin approach. In Section 3.3, the tracking MPC scheme and the state and param-

eters estimation are proposed. The validation results are shown to demonstrate the

estimator and controller performance in Section 3.4. Finally, Section 3.5 provides the

conclusions.

3.2 Mathematical Model

In this section, the isothermal Euler equations in the form of first-order coupled

nonlinear hyperbolic PDEs are introduced for modelling the flow dynamics of a single

liquid pipeline. Based on these, we establish the dynamic model for a branching

pipeline network. Using the Cayley–Tustin transform, we further develop an infinite-

dimensional discrete-time pipeline model with a closed-form solution, which will be

used for MPC and MHE designs in Section 3.3.

3.2.1 Single pipeline dynamics

In this study, the following assumptions are considered [119]: (1) The transported flow

is a one-dimensional single-phase liquid flow, where mass flux, density, and pressure

are only functions of time and axial position; (2) each pipe is a rigid buried pipe, and

any change in cross-sectional area along the liquid stream can be considered negligible;

(3) small variations in density represent the presence of local compressibility. (4)
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the transported flow is assumed to be viscous and isothermal, implying that any

temperature changes resulting from pressure variations and friction effects can be

disregarded.

The fluid flow dynamics can be mathematically described by a set of coupled

nonlinear first-order hyperbolic PDEs [1][119]:

∂ρ

∂t
+ v

∂ρ

∂ζ
+ ρ

∂v

∂ζ
= 0

ρ
∂v

∂t
+ ρv

∂v

∂ζ
+
∂p
∂ζ
+ ρg sin(α) + ρ

λv |v |

2D
= 0

∂p
∂t
+ v

∂p
∂ζ
+ a2ρ

∂v

∂ζ
= 0

(3.1)

with the boundary conditions:

ρ(l, t) = ρl(t), v(0, t) = u(t), p(l, t) = pl(t) (3.2)

for (ζ, t) ∈ (0, L) × (0,∞). In (3.1), the state variables are represented by v (flow

velocity), p (flow pressure) and ρ (flow density). The term g sin(α) represents the

ζ -component of the original gravity acceleration, where g denotes the gravity acceler-

ation and α denotes the inclination angle. The parameter a represents the propagation

velocity of sound within the fluid, λ denotes a dimensionless friction coefficient, and

D refers to the pipe diameter. System (3.1) can be derived from the well-known water

hammer equations [121], which are relatively straightforward mathematical models

that make assumptions of isentropic flow. For buried pipelines, temperature differ-

ences between a pipe segment and the ground can be neglected in practice. Along

this line, one can approximately model the fluid flow dynamics as an isothermal

process without invoking the energy conservation law. A similar formulation of the

gas pipeline flow system can be found in [122] that mass flow rate and pressure are

regarded as system states.

The process of determining steady states for each state involves equating the

temporal derivative terms to zero in (3.1), leading to the following expressions:

vss
dρss

dζ
+ ρss

dvss

dζ
= 0

ρssvss
dvss

dζ
+

dpss

dζ
+ ρssg sinα + ρss

λvss |vss |

2D
= 0

vss
dpss

dζ
+ a2ρss

dvss

dζ
= 0

(3.3)
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Linearization can be achieved by utilizing the derived steady state profiles and

introducing new state variables v̄(ζ, t) = v(ζ, t) − vss(ζ), p̄(ζ, t) = p(ζ, t) − pss(ζ) and

ρ̄(ζ, t) = ρ(ζ, t) − ρss(ζ). By considering p̄ = a2 ρ̄ (since a2 = dp/dρ), the system can

be reduced to the following two-state pipeline model:

∂

∂t

[
p̄(ζ, t)
v̄(ζ, t)

]
+ A

∂

∂ζ

[
p̄(ζ, t)
v̄(ζ, t)

]
+ B

[
p̄(ζ, t)
v̄(ζ, t)

]
= 0 (3.4)

where
A =

[
0 N
G 0

]
,N = a2ρss,G =

1

ρss

B =
[
0 0
Q F

]
,Q =

g sinα

a2ρss
+

λv2
ss

2Da2ρss
,F =

λvss

D

(3.5)

The corresponding boundary conditions are specified as:

p̄(L, t) = 0, v̄(0, t) = u(t) (3.6)

By performing basic algebraic manipulations, the state space representation of the

boundary control system (BCS) is obtained as follows:

∂x(ζ, t)
∂t

= Āx(ζ, t), B̄x(ζ, t) = u(t)

yc(t) = Cc x(ζ, t), ym(t) = Cmx(ζ, t)
(3.7)

where x(ζ, t) = [p̄(ζ, t); v̄(ζ, t)] and x(·, t) ∈ X with X = L2((0, L)2,R) defined to be a

separable Hilbert space. The input, controlled and measured outputs of the system are

represented by u(t) ∈ L2
loc([0,∞),U), yc(t), ym(t) ∈ L2

loc([0,∞),Y ), respectively, where U

and Y are finite-dimensional. The continuous-time operators are represented by the

following notations:

Ā = −

[
0 N ∂

∂ζ

G ∂
∂ζ +Q F

]
B̄ = [0,

∫ L

0
δ(η)(·)dη]

Cc = [

∫ L

0
δ(η − ηc)(·)dη,0]

Cm = [

∫ L

0
δ(η − ηm)(·)dη,0]

(3.8)

where δ represents the Dirac delta function, and ηc and ηm are the arbitrary point of

interest along the pipeline axial direction. This indicates that the input of the system
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is the velocity of the fluid entering the system from the upstream direction, controlled

through boundary actuation. The flow pressure at the point ηc is designated as the

controlled output, while the measured output is taken as the pressure at ηm. The do-

main of Ā is D(Ā) = {φ(ζ) = [φ1(ζ); φ2(ζ)] ∈ X|φ(ζ) is absolutely continuous, dφ
dζ ∈

L2(0, L), and φ1(L) = 0}.

However, the inclusion of u(t) at the boundary in equation (3.7) leads to an inho-

mogeneous boundary condition. In order to obtain homogeneous boundary conditions

and simplify the process of designing the controller, an abstract linear state-space

model is formulated as follows:

∂x(ζ, t)
∂t

= Ax(ζ, t) + Bu(t)

yc(t) = Cc x(ζ, t), ym(t) = Cmx(ζ, t)
(3.9)

where A takes the same expression as Ā, but with a different domain as: D(A) =

{φ(ζ) = [φ1(ζ); φ2(ζ)] ∈ X|φ(ζ) is absolutely continuous, dφ
dζ ∈ L2(0, L), and φ1(L) =

0, φ2(0) = 0}. After calculating the following inner product formula ([123], Remark

10.1.6), one can determine the expression of operator B:〈
Āx,ψ

〉
= 〈x,A∗ψ〉 +

〈
B̄x,B∗ψ

〉
(3.10)

where the adjoint operator can be found through solving the inner product formula

〈Aφ,ψ〉 = 〈φ,A∗ψ〉, which has the expression as:

A∗ =

[
0 G ∂

∂ζ −Q
N ∂
∂ζ −F

]
(3.11)

with the associated domain defined as: D(A∗) = {ψ(ζ) = [ψ1(ζ);ψ2(ζ)] ∈ X|ψ(ζ) is

absolutely continuous, dψ
dζ ∈ L2(0, L), and ψ1(L) = 0,ψ2(0) = 0}. Therefore, (3.10)

leads to (3.12) by substituting operators Ā and A∗:〈
B̄x,B∗ψ

〉
= Nu(t)ψ1(0) (3.12)

Finally, the operator B has the expression as B = [Nδ(ζ); 0].

3.2.2 Dynamics of liquid flow for a network

In this section, a general branching pipeline networks is considered as shown in Fig.

3.1. The pipeline system is assumed to have three interconnected pipe segments, with
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pipe 1 branching out into two separate pipes that supply two consumer communities

after being connected to a pump station. In this architecture, the velocity of pumped

flow is considered as the boundary actuation at the upstream of pipe 1. Fig. 3.1

also illustrates the coordinate systems corresponding to the pipes. This means that

the pressure in the end of pipe 1 is identical to those in the beginning of pipe 2 and

3, and the sum of flows at the branching point are equal to zero [111]. The state

variables at the opposite end of the pipes (v1(0, t); v2(l2, t), v3(l3, t)) are governed by

the discharged flow from the pump station and consumer flows. Mathematically, the

boundary conditions are expressed as follows:

Figure 3.1: Sketch of the branching pipeline system under consideration.

v1(0, t) = u(t), v2(l2, t) = v2(t), v3(l3, t) = v3(t),

p1(l1, t) = p2(0, t) = p3(0, t), v1(l1, t) = v2(0, t) + v3(0, t)
(3.13)

v2(t) and v3(t) are the given flows to consumers that may vary with time. The initial

conditions for the three pipes are specified as pi(ζ,0) = pi(ζ), vi(ζ,0) = vi(ζ), ζ ∈

[0, li], i = 1,2,3. In addition, we assume that pressure and flow are measured at

the other end of the branching point, namely pm(t) = [p1(0, t), p2(l2, t), p3(l3, t)] are

measured. Along this line, three pipeline segments can be modelled as a cascaded

PDE system. In this work, we aim to control the flow or pressure at any location

within the pipeline network via manipulating the inlet flow of pipe 1. It is worth

noting that measurements are not available at the branching point.

Based on the continuity and momentum balance laws, the dynamics of the overall
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pipe flow are mathematically described in the continuous-time setting as follows [109]:

∂xe(ζ, t)
∂t

= Aexe(ζ, t) + Beue(t)

ye
c(t) = C

e
c xe(ζ, t)

ye
m(t) = C

e
mxe(ζ, t)

(3.14)

where the extended state xe(ζ, t) = [x(1)(ζ, t); x(2)(ζ, t); x(3)(ζ, t)] and the input ue(t) =

[u(t),0,0]. The superscript (i) denotes the number of the ith pipe segment. The

representation of extended operators is shown below:

Ae = bdiag[A(1),A(2),A(3)]

Be = [B;0;0]

Ce
c = [0,0,Cc]

Ce
m = bdiag[C(1)m ,C

(2)
m ,C

(3)
m ]

(3.15)

where

A(i) = −

[
0 N ∂

∂ζ

G ∂
∂ζ +Q(i) F(i)

]
, i = 1,2,3

C
(i)
m = [

∫ L

0
δ(η − ηmi)(·)dη,0], i = 1,2,3

(3.16)

and D(Ae) = {φ(ζ) = [φ1(ζ); φ2(ζ); ...; φ6(ζ)] ∈ L2(0, L)6 |φ(ζ) is abs. cont., and

φ2(0) = 0, φ4(l2) = 0, φ6(l3) = 0, φ1(l1) = φ3(0) = φ5(0), φ2(l1) = φ4(0) + φ6(0)}. In

equation (3.15), 0 denotes the vector of two zero elements. Considering the difficul-

ties in addressing unbounded operators and handling constraints, we will convert the

continuous-time model into a discrete-time one to facilitate the MPC/MHE design.

3.2.3 Model time discretization

In this section, we discretize the linearized continuous-time model (3.14) by em-

ploying a time discretization scheme. More specifically, we apply the Cayley-Tustin

time discretization framework [14] since this transformation leads to a discrete-time

infinite-dimensional model and important system properties (stability, input-output

mapping) stay invariant, which provides essential theoretical guarantees when apply-

ing discrete-time designs back to the original continuous-time systems [100, 124, 125].
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Given a time discretization parameter h > 0, one can apply the Cayley-Tustin

time discretization to the continuous-time pipeline model (3.14) as follows:

xe((k + 1)h) − xe(kh)
h

≈ Ae xe((k + 1)h) + xe(kh)
2

+ Beue(kh)

ye
c(kh) ≈ Ce

c
xe((k + 1)h) + xe(kh)

2

ye
m(kh) ≈ Ce

m
xe((k + 1)h) + xe(kh)

2

(3.17)

The continuous-time input signal can be linked to the discrete-time counterpart via:
ue(kh)
√

h
= 1

h

∫ (k+1)h
kh ue(t)dt. As reported in [14], the difference between continuous- and

discrete-time inputs ‖ ue(kh)
√

h
− ue(t)‖ converges to zero as h→ 0. In a similar way, one

can obtain the discrete-time outputs from their continuous-time counterparts. Along

this line, the discrete-time distributed parameter pipeline system is formulated as:

xk+1 = Ad xk + Bduk

yck = Ccd xk +Dcduk

ymk = Cmd xk +Dmduk

(3.18)

where one denotes discrete-time spatial operators Ad, Bd, Ccd, Dcd, Cmd, Dmd as

follows: 
Ad Bd
Ccd Dcd
Cmd Dmd

 =

−I(·) + 2γR(γ,A)

√
2γR(γ,A)B

√
2γCcR(γ,A) Gc(γ)√
2γCmR(γ,A) Gm(γ)

 (3.19)

where γ = 2/h. R(γ,A) denotes the resolvent operator R(γ,A) = (γI − A)−1 with

s evaluated at γ. Gc(γ) and Gm(γ) are transfer functions from input to controlled

output yc(t) and measured output ym(t), respectively. For simplicity, superscript e in

x, u, y and all discrete operators in (3.18) and (3.19).

3.2.4 Resolvent operator

To fully establish the discrete-time model (3.18), it is crucial to find the resolvent

operator based on its continuous-time equivalent. This can be done by performing

the Laplace transformation and considering the zero input condition. This results

in a solution in the frequency domain for the distributed parameter pipeline system,

expressed as follows:

xe(ζ, s) = eMζ xe(0, s) +
∫ ζ

0
eM(ζ−η)P(ζ, s)xe(η,0)dη (3.20)
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where
M = bdiag[W (1),W (2),W (3)], eMζ = bdiag[eW (1)ζ, eW (2)ζ, eW (3)ζ ]

W (i) =

[
−

Q(i)
G −

(F(i)+s)
G

− s
N 0

]
, eW (i)ζ =

[
M (i)11(ζ, s) M (i)12(ζ, s)
M (i)21(ζ, s) M (i)22(ζ, s)

]
, i = 1,2,3

P(ζ, s) = A−1 =

[
0 P12(ζ, s)

P21(ζ, s) 0

]
Through further mathematical transformations, the state evolution matrix is derived

with closed-form analytical expressions, given by:

M (i)11(ζ, s) = e−
Q(i)ζ
2G (cosh(

H

2G
√

N
ζ) −

Q(i)
√

N
H

sinh(
H

2G
√

N
ζ))

M (i)12(ζ, s) = e−
Q(i)ζ
2G (−

2
√

N(F(i) + s)
H

)sinh(
H

2G
√

N
ζ))

M (i)21(ζ, s) = e−
Q(i)ζ
2G (−

2Gs
√

NH
)sinh(

H

2G
√

N
ζ))

M (i)22(ζ, s) = e−
Q(i)ζ
2G (cosh(

H

2G
√

N
ζ) +

Q(i)
√

N
H

sinh(
H

2G
√

N
ζ))

where

H =
√

NQ(i)2 + 4Gs2 + 4FGs, i = 1,2,3

By evaluating the frequency-domain solution (3.20) at the boundary conditions x2(0, s)

= 0, x1(l1, s) = x3(0, s) = x5(0, s), x2(l1, s) = x4(0, s) + x6(0, s), x4(l2, s) = 0, x6(l2, s) = 0,

one can solve for x1(0, s), x2(0, s), x4(0, s), x6(0, s) and then determine the final form

of the resolvent operator:

xe(ζ, s) = R(s,Ae)xe(ζ,0) (3.21)

where R(s,Ae) = [Ri j(s,Ae)]6×6, with i, j = 1,2, ...,6. The analytic expressions of the

extended resolvent operator is shown in Appendix A.3. Therefore, one can determine

the discrete-time model (3.18) of the liquid pipeline by substituting the obtained

resolvent operator into (3.19).

3.3 Controller and Estimator Design

In this section, a tracking MPC scheme is introduced for the pipeline network to steer

the controlled output to a desired set-point in an infinite-dimensional discrete-time

setting. Due to the absence of sensors distributed throughout the entire pipeline

network, non-measurable states and uncertain parameters are estimated using MHE.
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3.3.1 MHE formulation

In industrial applications, it is often necessary to reconstruct unmeasured states using

a limited number of measurements. In comparison to other estimation techniques,

MHE enables the simultaneous estimation of both states and parameters, incorporat-

ing recent measurements and accommodating constraints in a single problem formu-

lation [126][127]. Based on the MHE designs for lumped parameter systems [57][58]

[128] [129], this section proposes an MHE for a discrete-time pipeline system (3.18)

that accounts for constraints, with the objective of determining the optimal possible

estimation of the state evolution and parameters by utilizing current and past input

and output information [55].

To model the actual fluid flow dynamics in a better way, a state disturbance term

ω defined in finite-dimensional Hilbert spaces W is introduced to (3.18), which is

equipped with a spatial operator G. Measurement disturbances in the output ym

in (3.18) are considered and expressed by v, which is defined in finite-dimensional

Hilbert spaces Y . It is worth noting that the considered process and measurement

disturbance are added in the continuous-time model, and both are norm bounded

and distributed with zero means. Along a similar procedure as Section 3.2.3 (3.18),

we further obtain the following discrete-time model:

xk+1 = Ad xk + Bduk + Gdωk

ymk = Cmd xk +Dmduk + vk

(3.22)

where the discrete operator Gd have a similar expression as Bd in (3.19), that is

Gd =
√

2γR(γ,A)G. For simplicity, we denote vk = Gmd + v̄k (Gmd is the transfer

function from ω to ym). In (3.22), the controlled output is not taken into account in

this estimation problem.

When it comes to industrial applications, parameters such as pipe friction (i.e., λ

in (3.1)) are often not accurately known due to various factors, e.g., surface roughness,

and fluid parameters, making it difficult to model accurately. Therefore, estimating

the friction coefficient λ is crucial for pipeline modelling.

Based on the preceding model description, one can formulate the MHE problem.

More specifically, at any stage k = Ne,Ne + 1, ..., the optimization objective is to

find estimates of system states xk−Ne, ..., xk and parameter λ using measurements
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{y j}
j=k
j=k−Ne

, {u j}
j=k
j=k−Ne

and a prediction x̄k−Ne of the state xk−Ne . x̂k−Ne |k, ..., x̂k |k are

introduced to denote the estimates of xk−Ne, ..., xk at stage k respectively. Therefore,

at stage k, the optimal estimation of the state and parameter is obtained by solving

the following optimization problem:

min
x̂k−Ne |k,λ̂k−Ne |k

Jk(x̂k−Ne |k ; λ̂k−Ne |k) (3.23)

where Jk(x̂k−Ne |k ; λ̂k−Ne |k) is defined as follows:

〈

[
x̂k−Ne |k − x̄k−Ne

λ̂k−Ne |k − λ̄k−Ne

]
, µ

[
x̂k−Ne |k − x̄k−Ne

λ̂k−Ne |k − λ̄k−Ne

]
〉

+

k∑
j=k−Ne

〈ymj − Cd(λ̂ j)x̂ j |k − Dd(λ̂ j)u j, ymj − Cd(λ̂ j)x̂ j |k − Dd(λ̂ j)u j〉

(3.24)

where 〈·〉 is the inner product. Ne denotes the estimation horizon and µ ≥ 0 is

utilized to adjust the trade-off between the two components of the cost. The first

component in the cost function (3.24), is the weighted term, penalizing the distance of

the current estimated state from its prediction. The second term in (3.24) represents

the prediction error, which is calculated based on the recent measurements.

The optimization problem (3.23) should respect the state equality constraints:

x̂ j+1|k = Ad(λ̂ j)x̂ j |k + Bd(λ̂ j)u j, j = k − Ne, ..., k − 1 (3.25)

and the following parameter constraints:

λ̂ j ∈ [λmin, λmax] (3.26)

The prediction is determined using the state space model (3.22) with the assumption

that ωk = 0 based on the estimate x̂k−Ne |k−1. Then, the prediction is computed as

x̄k−Ne+1 = Ad(λ̂k−Ne |k)x̂k−Ne |k + Bd(λ̂k−Ne |k)uk−Ne
(3.27)

for k = Ne+1,Ne+2, .... Considering that the infinite-dimensional estimate x̂k−Ne |k may

not be feasible in practice, an auxiliary disturbance is introduced as Gwω̂k−Ne−1|k =

x̂k−Ne |k − x̄k−Ne [117]. Therefore, the minimization problem is converted to:

Jk(ω̂k−Ne−1|k ; λ̂k−Ne |k) = 〈

[
Gwω̂k−Ne−1|k

λ̂k−Ne |k − λ̄k−Ne

]
, µ

[
Gwω̂k−Ne−1|k

λ̂k−Ne |k − λ̄k−Ne

]
〉

+

k∑
j=k−Ne

〈ymj − Cd(λ̂ j)x̂ j |k − Dd(λ̂ j)u j, ymj − Cd(λ̂ j)x̂ j |k − Dd(λ̂ j)u j〉

(3.28)
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Then, at any stage k = Ne + 1,Ne + 2, ..., by solving the optimization problem

(3.28), and an optimal trajectory of the system state { x̂k−Ne |k, · · · , x̂k |k} and parameter

{λ̂k−Ne |k, · · · , λ̂k |k} are obtained. From the solution, the current optimal estimate of

the current state and parameter are denoted as x̂k ← x̂k |k and λ̂k ← λ̂k |k , respectively.

At the next sampling instance, k+1, the estimation window is shifted one step ahead,

and one can obtain the state estimate x̂k+1 and parameter estimate λ̂k+1.

3.3.2 Tracking MPC formulation

In this chapter, the focus is on investigating whether the considered pipeline network

can be manipulated to achieve a desired pressure or flow within a specified timeframe,

aiming to meet a given demand. While there are various objective functions for

optimizing oil and gas transportation, this study specifically addresses the goal of

reaching desired set-points efficiently [130].

To track a desired output, we aim to formulate a tracking-type objective function.

The synthesis is based on the infinite-dimensional discrete-time state-space model

(3.18). Specifically, the proposed MPC integrates trajectory planning and tracking

by formulating them as a unified optimization problem. The decision variables in this

problem include a planned reachable trajectory, characterized by its desired state,

along with the corresponding sequence of inputs and future control inputs [131]. The

optimization problem aims to minimize the following cost function:

VN (xs,us, ys
c,Uk) = Vt(xs,us, ys

c,Uk) + VP(xs,us, ys
c) (3.29)

which includes a tracking cost term and a penalty term that accounts for the deviation

between the desired equilibrium and the target set-point:

Vt(xs,us, ys
c,Uk) =

Nc−1∑
j=0

〈(yc,k+ j |k − ys),Qc(yc,k+ j |k − ys)〉 (3.30a)

+ 〈(uk+ j |k − us),Rc(uk+ j |k − us)〉 + 〈(xk+Nc−1|k − xs), Q̄c(xk+Nc−1|k − xs)〉

VP(xs,us, ys
c) =

T−1∑
j=0

ys
c( j) − yr( j)

2

S (3.30b)

where Nc is the prediction horizon and Nc ≤ T . Qc and Rc are symmetric positive

semidefinite operators, while S is a symmetric positive definite spatial operator. The
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spatial operator Q̄c is specifically utilized to penalize the terminal state which is es-

sential for ensuring the stability of the model. The superscripts ’s’ and ’r’ represent

the desired equilibrium and the expected output signal, respectively. In this formu-

lation, Uk := {uk+1|k, · · · ,uk+Nc |k} is the input sequence to be optimized. In (3.30a),

the term Vt penalizes the deviation of the open-loop predicted trajectory from the

planned reachable reference within the prediction horizon Nc. In (3.30b), the term VP

is designed to penalize the deviation between the planned reachable trajectory and

the reference to be tracked predicted over a single period T [120].

Therefore, for the given current estimated state x̂k at time k, the following optimal

control problem is constructed:

min
xs,us,Uk

VN (xs,us,Uk) (3.31a)

s.t. xk+ j+1|k = Ad(λ̂k)xk+ j |k + Bd(λ̂k)uk+ j |k (3.31b)

yc,k+ j |k = Cd(λ̂k)xk+ j |k +Dd(λ̂k)uk+ j |k (3.31c)

xk |k = x̂k (3.31d)

uk+ j |k ∈ [umin,umax] (3.31e)

xs = Ad(λ̂k)xs + Bd(λ̂k)us (3.31f)

ys
c = Cd(λ̂k)xs +Dd(λ̂k)us (3.31g)

The optimal solution to this optimization problem is indicated by (xs∗,us∗,U∗k). Con-

straints (3.31b)-(3.31d) specify the predicted trajectories of the system starting from

the currently estimated state x̂k derived from the estimator (3.28). Constraint (3.31e)

denotes the input constraints. Constraints (3.31f)-(3.31g) define the planned desired

steady state prediction.

In order to determine Q̄c in the objective function, one needs to solve the following

discrete-time Lyapunov equation:

A∗dQ̄cAd − Q̄c = −C
∗
dQcCd (3.32)

or equivalently, by solving the continuous-time Lyapunov equation:

A∗Q̄c + Q̄cA = −C
∗QcC (3.33)

on the dual space of X−1. It worth noting that the operator Q̄c is the unique positive

self-adjoint solution of (3.32) and (3.33) if A is strongly stable [100]. The adjoint
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operator can be determined using the formula 〈Aψ, φ〉 = 〈ψ,A∗φ〉:

A∗ = bdiag[A(1)
∗

,A(2)
∗

,A(3)
∗

] (3.34)

with the same domain of Ae, where

A(i)
∗

=

[
0 G ∂

∂ζ −Qi

N ∂
∂ζ −Fi

]
, i = 1,2,3 (3.35)

By multiplying both sides of equation (3.33) with a spatial function X(ζ), and sub-

stituting the expressions of operator A and A∗, one can finally obtain Q̄c using

numerical integration.

3.3.3 Implementation strategy

In the following, we propose a scheme and an algorithm for iteratively running the

proposed MHE and MPC. Fig. 3.2 depicts the block diagram of the comprehensive

control strategy.

Figure 3.2: Block diagram of the overall control strategy.

By following the above workflow chart, the linearized continuous-time infinite-

dimensional pipeline model is discretized in time into a discrete-time counterpart
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using Cayley-Tustin approach as in Section 3.2.3. Considering the presence of mea-

surement and plant disturbances, we deploy MHE for state and parameter estimation.

The MHE receives the process measurements continuously and provides the estimated

states and parameters based on the input u(k). In this case, only one value from the

sequence is retained [132], specifically, the last instance in the sequence. The discrete-

time operators obtain the estimated parameter λ̂ to realize the parameter update. The

tracking MPC obtains the estimated state and updated discrete-time operators, and

predicts the future progression of the system across the entire prediction horizon for

the given set-points. The first input u(k) from the optimal input trajectory, derived

from solving the optimization problem, is applied to the plant for implementation.

The aforementioned implementation strategy of the proposed tracking MPC and

MHE algorithm is summarized in Table 3.1.

Table 3.1: Implementation algorithm of the proposed MHE and MPC

Implementation Algorithm of the Proposed MHE and MPC
Initialize:
1) Specify the scalar weight µ and horizons Ne in (3.28);
2) Specify the prediction horizons Nc, the positive definite function Qc,
Rc and determine Q̄ in (3.31);
At time k:
3) Collect measurements {y j}

j=k
j=k−Ne

, {u j}
j=k
j=k−Ne

and obtain prior
estimate x̂k−Ne |k−Ne−1;
4) Solve (3.28) for ω̂k−Ne−1|k and λ̂k−Ne |k subject to constraint (3.25-3.27);
5) Obtain { x̂ j |k}

j=k
j=k−Ne

and {λ̂ j |k}
j=k
j=k−Ne

using optimal estimate
ω̂k−Ne−1|k from step 4);
6) Update R(s,Ae) in (3.21) and discrete-time operators based on λ̂k |k ;
7) Solve (3.31) for {U j}

j=k+Nc

j=k with updated operators and x̂k |k and λ̂k |k ;
8) Implement the optimal control action u∗k+1|k to the discrete-time plant;
9) Repeat steps 3)-9) with k ← k + 1;

3.4 Simulation Results

In this section, the considered branching pipeline network is used to verify the ef-

fectiveness of the proposed MHE and tracking MPC designs. First, the estimation

performance of the proposed MHE is tested with different horizon lengths and dis-

turbance levels. Then, the control performance of the tracking MPC is investigated
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via sensitivity analysis. Finally, by implementing the MHE and MPC recursively, the

results are provided for the considered branching pipeline network.

The pipeline parameters are given in Table 3.2, and the equilibrium profiles are

shown in Fig. 3.3 for each pipe segment by using (3.3). The pipeline system is

transformed into a discrete-time one by performing the Cayley-Tustin approach,

where all the discrete-time operators have analytical expressions. For all the sim-

ulation cases, the time discretization interval is selected as h = 8s. The obtained

integral operators are computed utilizing the trapezoidal rule with spatial discretiza-

tion interval ∆ζ = 0.01 for numerical realization. The following initial conditions

are considered x1(ζ,0) = 0.79ζ, x2(ζ,0) = 0.01ζ, x3(ζ,0) = 7890 + 13.15ζ, x4(ζ,0) =

51 − 0.0051ζ, x5(ζ,0) = 7890 + 14.15ζ, x6(ζ,0) = 51 − 0.0051ζ . The constraints on λ

are λmin = 0.002 and λmax = 0.5, and constraints on u are umin = 0.9 and umax = 5.6

for all the simulation. The proposed MHE and MPC framework are implemented in

MATLAB (MathWorks R2019a) and the MATLAB built-in fmincon function is used

to solve the optimization problem in each iteration.

Table 3.2: Notations and values of parameters [1]

Description Notation Value
Pipeline length Li, i = 1,2,3 10,000 m

Pipeline diameter Di, i = 1,2,3 0.2065 m
Inclination angle [α1, α2, α3] [-0.00256,0.00456, 0.00156]
Speed of sound a 1059 m/s

Gravity acceleration g 9.81 m/s2
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Figure 3.3: Steady states of pressure (black solid line) and flow velocity (blue dashed
line) for pipe 1, 2, 3 (top to bottom), respectively.

3.4.1 Performance of proposed MHE

The performance of the state and parameter estimation by solving the problem defined

in (3.28) are analyzed in this section. In this case, we consider constraints on the

process and measurement noise, ωk ∈ [−rw,rw] and vk ∈ [−rv,rv]. The priori estimate

of x0 at the initial step is taken as zero. To quantify the estimation performance, we

consider the Normalized Root Mean Square Error (NRMSE) to evaluate the output

estimation error:

RMSE =
1

S

S∑
s=1

√√√ T∑
k=1

ek,s
2

T
, NRMSE =

RMSE
ȳ

(3.36)

where ek,s denotes the output estimation error at time k in the s-th simulation run. S

and T are the number of simulation runs and simulation horizon. ȳ is the mean value

of the measurements. In this case, the values of S and T are taken as 400 and 200,

respectively. We investigate the influence of different estimation horizon, disturbance

levels and value of µ on the estimation performance of proposed MHE, as shown from

Table 3.3 to 3.6.
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Table 3.3: Estimation performance (NRMSE, ×10−4) of ym1 for different Ne, rw,rv and
µ

Ne rw rv
µ

0.1 0.01 0.001 0.0001 0

5 0.4 0.4 5.9238 4.4226 4.4422 4.4568 6.2809
0.04 0.04 5.2431 4.2173 4.2481 4.2430 5.8457

10 0.4 0.4 3.1700 3.1743 3.1742 3.1681 3.1741
0.04 0.04 3.1899 3.1882 3.1880 3.1880 3.1880

15 0.4 0.4 2.7840 2.7833 2.7832 2.7832 2.7832
0.04 0.04 2.6524 2.6519 2.6519 2.6519 2.6519

Table 3.4: Estimation performance (NRMSE, ×10−4) of ym2 for different Ne, rw,rv and
µ

Ne rw rv
µ

0.1 0.01 0.001 0.0001 0

5 0.4 0.4 4.1664 4.1635 4.1634 4.1655 4.2634
0.04 0.04 4.0516 4.0507 4.0507 4.0507 4.0612

10 0.4 0.4 3.6110 3.7890 3.6129 3.6128 3.6042
0.04 0.04 3.5728 3.7422 3.5689 3.5691 3.5689

15 0.4 0.4 3.2816 3.2813 3.2812 3.2812 3.2812
0.04 0.04 3.1234 3.1231 3.1231 3.1231 3.1231

Table 3.5: Estimation performance (NRMSE, ×10−4) of ym3 for different Ne, rw,rv and
µ

Ne rw rv
µ

0.1 0.01 0.001 0.0001 0

5 0.4 0.4 3.4256 3.4249 3.4247 3.4239 3.4247
0.04 0.04 3.3805 3.3990 3.3988 3.3988 3.4214

10 0.4 0.4 2.9451 2.9247 2.9415 2.9415 2.9358
0.04 0.04 2.8760 2.8609 2.8703 2.8704 2.8702

15 0.4 0.4 2.9113 2.9107 2.9106 2.9106 2.9106
0.04 0.04 2.8343 2.8339 2.8338 2.8338 2.8338
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Table 3.6: Parameter estimation performance (RMSE) for different Ne, rw,rv and µ

Ne rw rv
µ

0.1 0.01 0.001 0.0001 0

5 0.4 0.4 0.0980 0.1148 0.0834 0.0833 0.1095
0.04 0.04 0.0771 0.1174 0.0745 0.0777 0.0745

10 0.4 0.4 0.0449 0.0377 0.0377 0.0450 0.0377
0.04 0.04 0.0259 0.0260 0.0260 0.0260 0.0260

15 0.4 0.4 0.0277 0.0277 0.0277 0.0277 0.0277
0.04 0.04 0.0185 0.0185 0.0185 0.0185 0.0185

Tables 3.3 - 3.5 present the estimation performances (in terms of NRMSE) for

the three measured outputs with different values for parameters Ne and rw, rv and

µ. The performance is dependent on both Ne and µ. For µ ranging from 0.1 to 0,

the MHE performances are quite similar. The performance is strongly affected by

Ne. Specifically, the larger Ne is, the better estimation performance becomes. For the

performance of parameter estimation (Table 3.6), in general, the estimation errors

(RMSE) decrease with larger of estimation horizon and smaller disturbance level.

With the fixed estimation horizon length Ne, rw and rv, the estimation results are

improved by applying smaller µ. Fig. 3.4 illustrates the parameter estimates for all

the cases. We observe that the error is relatively large even in scenarios with low-

level disturbances, but this error is influenced by the choice of the estimation horizon.

With a larger estimation horizon, the estimated friction coefficient λ̂ is closer to the

true value.
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Figure 3.4: Parameter estimates for different Ne and rw, rv. The λtrue for each pipeline
is 0.011.
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Figure 3.5: Trajectories of estimated outputs (red dashed line) and real outputs (blue
dashed line).
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Figure 3.6: Profiles of state estimation error.

Fig. 3.5 presents a comparison between the estimated outputs, disturbed outputs

and the real outputs. It is evident from the graph that the intrinsic dynamics of

the pipeline model are stable, as the open-loop outputs tend to steady states. The

estimation error profiles for each state are illustrated in Fig. 3.6. Despite some initial

oscillations, the error profiles gradually converge to zero, indicating that the estima-

tion process is accurate and reliable. This is a crucial aspect for the pipeline system,

as accurate estimations are essential for maintaining stable operation. Overall, the

results presented in this section demonstrate the effectiveness and reliability of the

proposed MHE for the pipeline model.

3.4.2 Performance of proposed tracking MPC

In this section, the proposed tracking MPC is implemented to the pipeline system,

and the closed-loop performance is analyzed. The location ηc = 7250m in the third

pipe is chosen, and the set-point is selected as yr = 1.3408 × 106. The control and

prediction horizons are both set to 45 steps in this case.
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Figure 3.7: Profiles of closed-loop states under MPC and the desired equilibrium
states for the set-point are denoted by red dashed line.

The results depicted in Figs. 3.7 - 3.9 provide insights into the performance of

the MPC on the closed-loop pipeline system. After implementing the MPC control

law into the pipeline model, the resulting closed-loop state profiles are shown in Fig.

3.7. The results clearly demonstrate the stabilization of the closed-loop system, given

that the states in each pipe are able to track their desired steady states with faster

convergence rates. This is also supported by the output profiles depicted in Fig. 3.8,

which show that the controlled output under the MPC law converges to the considered

set-point. The corresponding manipulated input is illustrated in Fig. 3.9.

Table 3.7: Performance comparison of tracking MPC with different cost weights

Qc Rc
S

1 10 100

1 1 2.8717 0.3511 0.2232
5 4.6151 0.3127 0.1712

5 1 1.0470 1.0470 1.0470
5 1.0470 1.0470 1.0470
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Figure 3.8: Trajectories of yc for the closed-loop system (blue solid line), the open-
loop output (red dashed line), the trajectory planner (green circled line) and the
target reference (black solid line).

0 200 400 600 800 1000 1150
0

1

2

3

4

5

6

Figure 3.9: Trajectories of input for the closed-loop system (blue solid line), the
desired input (green circled line) and constraints (black dashed line).

Furthermore, the performance comparison of the tracking MPC with different

cost weights (Qc and Rc) and parameter S is investigated. To reduce the influence of

transient dynamics, the normalized mean absolute error calculated over time range

[800,1150] is used for performance evaluation. As illustrated in Table 3.7, it is evi-

dent that by using the tracking MPC, the tracking error is small and stays within a
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reasonable range (0.1712 to 4.6151) under these conditions considered. Specifically,

when selecting the weights as Qc = 1, Rc = 5 and S = 100 for MPC implementa-

tion, the normalized mean absolute error is minimized, which corresponds to the case

discussed in Section 3.4.3.

3.4.3 Performance of combined MHE and tracking MPC

Instead of using full information of system states and the actual parameter value,

the estimated states and parameter obtained from MHE are utilized in MPC. The

combined control and state and parameter estimation approach proposed in Section

3.3 is implemented into the branching pipeline model. In this case, we also test a case

of controlling the flow velocity at ηc = 7250m in the third pipe, but instead of one

set-point, two set-points are considered, i.e., yr =

{
1.3337 × 106, t < 800s

1.4137 × 106,otherwise . We have

chosen for an estimation horizon of 15 sampling periods and prediction horizons of

45 sampling periods. For initializing the implementation algorithm shown in Table

3.1, we take Qc = 1,Rc = 5,S = 100 and µ = 0.001.
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Figure 3.10: Trajectories of yc for the closed-loop system (blue solid line), the open-
loop output (red dashed line), the trajectory planner (green circled line) and the
target reference (black solid line); Each set-point tracking is marked with a different
color.
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Figure 3.11: Trajectories of input for the closed-loop system (blue solid line), the
desired input (green circled line) and constraints (black dashed line).

Fig. 3.10 shows the trajectories of closed-loop output yc (MPC) (blue solid line),

the open-loop output yc (red dashed line), the trajectory planner ys (green circled

line) and the target reference yr (black solid line). The trajectory planner gradually

converges to the given set-points around 500s, after that, a small deviation can be

observed between the trajectory of the planner and the set-points. Additionally, the

closed-loop output trajectory yc converges to the planner trajectory ys in a similar

manner. When there is a sudden change in the set-point, the system is able to

converge to the new trajectory of the planner within 100s. The corresponding input

actions are illustrated in Fig. 3.11, where the green circled line denotes the desired

input, and the solid blue line denotes the desired input to track the considered set-

points. It is worth noting that the control actions satisfy the considered constraints,

and control effort is necessary to achieve output tracking of the first set-point in the

first half of the time horizon. While less control action is required to track the second

set-point after that. Fig. 3.12 illustrates the state evolution profiles of the branched

pipeline system under the control of the MPC scheme. Figures in the first column

are the pressure and flow velocity of pipe 1, second column denotes those of pipe 2,

and third column denotes those of pipe 3. The closed-loop states demonstrate the

ability to converge towards the target steady state profiles, where the red dashed line
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denotes the steady state profile corresponding the first set-point, and the blue dashed

line denotes the steady state profile corresponding the second set-point. The overall

performance of the combined MHE-MPC strategy is remarkable as the controlled

pressure are kept close to the reference values.

Figure 3.12: The closed-loop state profiles, the desired equilibrium state for set-point
1 (red dashed line) and the desired equilibrium state for set-point 2 (blue dashed
line).

3.5 Conclusions

In this chapter, a receding horizon control and estimation framework has been pro-

posed and implemented for distributed parameter pipeline systems. The branched

pipeline network was modelled by six linearized first-order coupled hyperbolic PDEs

with boundary actuation. The Cayley-Tustin time discretization approach was ap-

plied to convert the continuous-time linearized pipeline systems into a discrete-time

infinite-dimensional model while preserving important system properties. To meet

flow regulation within pipeline systems and handle physical constraints on inputs and

outputs, a novel tracking MPC was designed. Furthermore, the MHE was applied in

jointly estimating the spatial-temporal states and unknown parameters. Finally, the

applicability and robustness of the proposed MPC and MHE designs were demon-

strated via numerical examples.
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Chapter 4

Dynamic Modelling and Model
Predictive Control of a Continuous
Pulp Digester

4.1 Introduction

The pulp and paper industry has a profound influence on the economy of the world,

which produces pulp, paper, paperboard, and various cellulose-based products. Even

though electronic media and paperless communication have been widely expanded,

the global pulp and paper market is growing steadily at a rate of over 1% per year

[133, 134]. For instance, the global consumption of paper and board amounted to an

estimated 399 million metric tons in 2020. It is expected that demand will increase

steadily over the next decade, reaching approximately 461 million metric tons in 2030

[135]. The vast majority of increasing demand mainly comes from the following cat-

egories of products [136]: personal hygiene paper products, food packaging products,

corrugated packaging materials, and paper-based medicinal materials (shown in Fig-

ure 4.1), which are closely related to the growing e-commerce business and awareness

of safety and hygiene, especially under the pandemic situation of COVID-19. Ad-

vanced process control and state-of-the-art process optimization techniques would

provide enormous opportunities for maximized efficiency and optimized energy usage

to satisfy the steadily growing need.
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Figure 4.1: The categories of paper products

The pulp and paper mills aim to convert wood chips into pulp, the raw material

for different types of products. In general, a pulping process can be classified into

mechanical pulping, chemical pulping, and thermomechanical pulping according to

the fundamental mechanism of separating wood fibers [137]. More than two-thirds

of globally produced pulp comes from Kraft pulping which belongs to the chemical

pulping process [138]. In the Kraft pulping process, the conversion of wood chips

into pulp mainly takes place in a pressured vertical cylindrical reactor known as the

pulp digester, which operates in a batch manner or as a continuous process. Due

to lower space requirements and lower energy costs, continuous pulp digesters are

predominantly used in industrial applications [134]. As illustrated in Figure 4.2, the

typical continuous digesters consist of three basic zones: an impregnation zone, a cook

zone, and a wash zone. White liquor and pre-steamed wood chips are introduced at

the top of the digester into the impregnation zone where the liquor penetrates the wet

chips. After that, the two streams flow downwards into the cook zone where the most

delignification reactions occur. Then, the spent liquor is withdrawn from the digester

at extraction screens. At the same time, the cooked pulp moves downwards to the

wash zone where the chips are washed by the counter-current flow of cold wash liquor.

The cooked pulp is then removed from the bottom of the digester. In particular, the

cooking degree is evaluated by the Kappa number, which denotes the residual lignin

content of the pulp.
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Figure 4.2: Simplified scheme of a continuous pulp digester [3]

Due to the complex nature of the delignification process, numerous mathematical

models for the pulp digesters have been proposed over the last few decades. Three

widely used dynamic models are known as the Purdue, Gustafson, and Andersson

models, which have similar conceptual bases and assumptions [139, 140, 141]. These

kinetic models show the effect of a change of temperature on the reaction rate con-

stants for different wood components according to the Arrhenius expression [134]. The

main differences are the numbers of wood components, the assumption of consecutive

or parallel reactions, and the assumption about how the delignification reaction takes

place along the digester length. Among them, the most commonly used model is the

extended Purdue model, which is followed and further developed by other researchers

[3, 142, 143].

When it comes to the controller design for the pulp digesters, a wide variety of

control methods, such as reduced dimension control, robust control, and generic al-

gorithms have been investigated [144, 7]. Since one of the main objectives of the

pulp digester is to produce pulp with specific properties with minimum chemical and

energy inputs, the digester is usually operated in a constrained setting[145]. In this
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case, model predictive control (MPC) as a widely deployed methodology in differ-

ent types of processes is capable of handling such requirements. Michaelsen et al.

[146] developed a model predictive controller for a Kamyr digester using a real-time

mechanistic model compensated by an optimal state estimator and the performance

demonstrated to be superior when compared with proportional-integral (PI) control

in offline simulations. Lee and Datta [147] designed a model predictive control system

coupled with an extended Kalman filter for a batch-type pulp digester. Along the

same line of work, Wisnewski and Doyle [148] analyzed the performance of linear

MPC and nonlinear MPC for set-point tracking and unmeasured disturbance rejec-

tion. Alexandridis and Sarimveis [149] employed an adaptive MPC based on a radial

basis function ANN model for Kappa number control of continuous pulp digesters.

H.-K. Choi and J. S.-I. Kwon [150, 151, 152, 153] developed a class of MPC for contin-

uous pulp digester and batch pulp digester based on the proposed multi-scale model.

However, even though the aforementioned works have made a valuable contribution

toward the modelling and controller design for the pulp digester, there still some as-

pects which did not receive much attention and/or accurate consideration. First of

all, most of the works depend on the approximation of the PDE into a large-scale

ordinary differential equation (ODE), which is generally prone to approximation error

and is difficult to capture the spatial kinetics properties within the digester. In addi-

tion, these approaches need to perform the spatial discretization in an early lumping

manner, which dramatically increases the complexity of the calculations and might

induce numerical instability and/or alter the fundamental control theoretical proper-

ties, such as controllability, observability, and stabilizability [8, 19]. Secondly, grade

transitions have increased significance in pulping mills, which is necessitated by opti-

mal production scheduling and planning policies. Hundreds of grade transitions are

required every year for pulp digesters, which is even more frequent when the market

demand increases [143, 152]. The targets of operational variables are considerably

different to meet various market demands, the shift operations, therefore, need to

be taken into account when the controller is developed and its realization. Thirdly,

the co-current flow and counter-current flow in the digester need to be considered

in accurate manner, mainly due to the fact that the main control manipulation is

performed in the top part of the digester, while the controlled variable is physically
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measured at the outlet of the digester [134].

Motivated by the aforementioned issues, this chapter considers a bilinear transfor-

mation of a continuous infinite-dimensional system to a discrete one by the application

of the Cayley-Tustin time discretization approach, in which the physical character-

istics (energy) and theoretical properties of considered systems are preserved [14].

In addition, the finite-dimensional MPC setting is extended to the distributed pa-

rameter pulp digester system to realize constant target tracking and achieve optimal

grade transitions. The cascade zones (cook zone and wash zone) of the digester are

considered as an extended distributed parameter system, which is described by the

system of 10 transport-reaction hyperbolic PDEs.

In this chapter, the claimed novelty is the extension of linear MPC designs for the

finite-dimensional system to the infinite-dimensional one to realize constant set-points

tracking. Particularly, the pulp digester system described by a set of coupled nonlin-

ear hyperbolic PDEs is considered, which can capture the spatiotemporal evolution

of wood chips and wash liquor. In addition, the linearized continuous-time model is

transformed to a linear discrete-time infinite-dimensional model, and the fundamen-

tal continuous-time properties (including stability, controllability and observability)

are preserved under the Cayley–Tustin transformation. Moreover, a discrete-time

observer for the system of hyperbolic PDEs is proposed, accounting for the available

output measurement and the system states reconstruction. Finally, the controller de-

sign provides optimal asymptotic stabilization and target tracking realization of the

system with the inclusion of output and input constraints.

The chapter is organized as follows: we initially present a dynamic model to de-

scribe the delignification process in the continuous pulp digester. Then, the developed

model is linearized and discretized in time by utilizing the Cayley-Tustin approach.

Lastly, we propose a Luenberger observer-based model predictive controller for the

discrete model to realize the target tracking. The simulation results demonstrate the

performance of the proposed controller design.
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4.2 Problem Formulation

In this section, the mathematical model of the pulp digester process is introduced.

In particular, the equilibrium profiles are calculated to proceed with the linearization

of the original nonlinear system. For the sake of simplicity, an infinite-dimensional

representation is given to illustrate the linearized system. Finally, a discrete-time

model is obtained utilizing the Cayley-Tustin discretization framework.

4.2.1 Model description

The main section of a continuous pulp digester can be divided into the co-current

zone and counter-current zone, which are also referred to as cook zone and wash zone

respectively, as shown in Figure 4.3. Each zone can be modelled by a set of nonlinear

coupled PDEs, which are derived from the first principle. The models of cook zone

and wash zone are similar, but different flow direction of the liquor. Generally, each

volume in the digester contains three phases, solid phase, entrapped liquor phase,

and free liquor phase. In particular, the combination of solid phase and entrapped

liquor phase is further referred to as the wood chip phase, and the details of the

conceptual model of the mass in the digester are shown in Figure 4.4. The wood

chips are often assumed to consist of five components, and the entrapped liquor and

free liquor contain four same components. For more details of the model, one can see

the references [3, 154].
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Figure 4.3: The cook zone and wash zone in a digester

Figure 4.4: The conceptual model of the mass in a digester

Based on the model proposed by Michelsen [154], the following assumptions are

considered to obtain a simple model which describes some dominant dynamics of the

process. Wood chips are assumed to be of equal size and to have a constant volume

during cooking. The volume flows of wood chips and free liquor are assumed to be

equal at all space positions, and the chip compaction profile is assumed to be sta-

tionary, expressed as a piecewise linear function of position. The cross-sectional area
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is assumed to be constant in the digester. For simplicity, the degradation of carbo-

hydrates is assumed to follow a lignin reduction linearly and the concentrations of

dissolved solids in the entrapped liquor and free liquor can be omitted [154, 155, 156].

There is a linear approximation relationship between the lignin and carbohydrate in

solid phase, ρcarb = 0.36 + 0.84ρlig, as a result, the lignin and carbohydrate need not

necessarily be regarded as being two states of the system [154]. In addition, according

to Gustafson et al. [140], the carbohydrate reaction rate in the bulk delignification

period is proportional to the lignin reaction rate as Rcarb = 0.47Rlig.

Hence, from control and monitoring point of view, the following variables are

important, which are considered as the states of the model:

ρs(z, t): concentration of lignin of solid phase (%)

ρe(z, t): concentration of alkali of entrapped liquor phase (g/l)

ρ f (z, t): concentration of alkali of free liquor phase (g/l)

Tc(z, t): temperature of wood chip phase (K)

T f (z, t): temperature of free liquor phase (K)

Based on the abovementioned assumption, the mathematical models of cook zone

and wash zone can be simplified to the following equations:

0 ≤ z ≤ Lco



∂ρCs (z,t)
∂t = −vc

∂ρCs (z,t)
∂z − RCs

∂ρCe (z,t)
∂t = −vc

∂ρCe (z,t)
∂z +

DC
EA

εc
(ρCf (z, t) − ρ

C
e (z, t)) − ρODW (b1 + 0.47b2)RCs

∂ρC
f
(z,t)
∂t = −v f

∂ρC
f
(z,t)
∂z −

DC
EA

ε f
(ρCf (z, t) − ρ

C
e (z, t))

∂T Cc (z,t)
∂t = −vc

∂T Cc (z,t)
∂z +

[
1.47ρc∆HRRCs +U(TCf (z, t) − TCc (z, t))

]
/Cpe

∂T C
f
(z,t)
∂t = −v f

∂T C
f
(z,t)
∂z −U(TCf (z, t) − TCc (z, t))/Cp f + b(z)u(t)

0 ≤ z ≤ Lws



∂ρWs (z,t)
∂t = −vc

∂ρWs (z,t)
∂z − RWs

∂ρWe (z,t)
∂t = −vc

∂ρWe (z,t)
∂z +

DW
EA

εc
(ρWf (z, t) − ρ

W
e (z, t))−ρODW (b1 + 0.47b2)RWs

∂ρW
f
(z,t)

∂t = v f
∂ρW

f
(z,t)

∂z −
DW
EA

ε f
(ρWf (z, t) − ρ

W
e (z, t))

∂TWc (z,t)
∂t = −vc

∂TWc (z,t)
∂z +

[
1.47ρc∆HRRWs +U(TWf (z, t) − TWc (z, t))

]
/Cpe

∂TW
f
(z,t)

∂t = v f
∂TW

f
(z,t)

∂z −U(TWf (z, t) − TWc (z, t))/Cp f

(4.1)

where the superscript C andW indicate the cook zone and wash zone, respectively.

RCs and RWs are the rate of consumption of mass of solid per chip volume in cook

zone and wash zone, describing by the Arrhenius coefficients, RCs = A1e
−

E1
T Cc ρCe (ρ

C
s −
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ρ0
s ), RWs = A1e

−
E1
TWc ρWe (ρ

W
s − ρ

0
s ). ρ0

s denotes the non-reactive lignin in wood. The

mass diffusion rate DE A usually take the form, DCE A = 0.16

√
TCc e

−2452.4

T Cc (−2.0ρCs +

0.13(
ρCe

32.0 )
0.55+0.58) and DWE A = 0.16

√
TWc e

−2452.4

TWc (−2.0ρWs +0.13(
ρWe
32.0 )

0.55+0.58). εc is

the chip compaction, which increases from the entry through the cook zone, reaching

a maximum at the main extraction, εc(z) = ε10+ε11z, and ε f (z) = 1−εc(z). U denotes

the heat-transfer coefficient, and the heat capacities of the entrapped and free liquor

phases (Cpe and Cp f ) are determined by the mixing rules based on weighted averages

[142]. In this case, the input is the temperature of free liquor and the distribution

is described by the actuation distribution function b(z) = 1[za−ε,za+ε]. The controlled

output is defined as the concentration of lignin of solid phase at the outlet in wash

zone, and the measurements of each state at the outlet are assumed available which

are taken as the measured outputs. Under the beforementioned assumptions, the

Kappa number can be approximated as a nonlinear relation with the concentration

of lignin of solid phase, where Kappa(z, t) = (653.4ρCs (z, t))/(1.84ρCs (z, t) + 0.36).

The boundary conditions for the cook zone are given at z = 0 (see Figure 4.3):

ρCs (0, t) = ρs0, ρ
C
e (0, t) = ρe0, ρ

C
f (0, t) = ρ f0,T

C
c (0, t) = Tc0,TCf (0, t) = T f 0 (4.2)

and for the wash zone at z = 0 and z = Lws:

ρWs (0, t) = ρ
C
s (Lco, t), ρWe (0, t) = ρ

C
e (Lco, t), ρWf (Lws, t) = ρ f0,

TWc (0, t) = T Cc (Lco, t),Twash
f (Lws, t) = Tf 0 (4.3)

4.2.2 Model linearization

In order to reduce the mathematical complexity of the nonlinear process model, we

make the linearization around the system equilibrium point or spatially nonuniform

steady-state by setting the time derivative terms to be zero. The steady-states are

solved numerically using the finite difference method. As a result, the corresponding

steady-states profiles are illustrated in Figure 4.5. Additionally, we assume that Lco

and Lws are the same, which denote as L for notation simplicity, and introduce the

following notations to define the local dynamics from the states of the cook zone to
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the states of the wash zone:

x(C)(z, t) = [ρCs (z, t); ρ
C
e (z, t); ρ

C
f (z, t); TCc (z, t); TCf (z, t)]

x(W)(z, t) = [ρWs (z, t); ρ
W
e (z, t); ρ

W
f (z, t); TWc (z, t); TWf (z, t)]

(4.4)
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Figure 4.5: Steady-state profiles of the digester (The solid lines denote the steady-
states of the components in cook zone; the dash lines denote the steady-states of the
corresponding components in wash zone.)

The above nonlinear model Equation (4.1) can be linearized applying the Taylor

series expansion. The linearized model is then obtained as:

Ûx(C)(z, t) = A1x(C)(z, t) + B1u(t)

Ûx(W)(z, t) = A2x(W)(z, t)

yc(t) = C2x(W)(z, t)

ym(t) =
[
Cm1x(C)(z, t)
Cm2x(W)(z, t)

] (4.5)

where z1 ∈ [0, L] and z2 ∈ [0, L]. The operator A1(·) = (V1
∂
∂z + ψ1(z))(·) and A2(·)

= (V2
∂
∂z + ψ2(z))(·), where

V1 = diag{−vc,−vc,−v f ,−vc,−v f },V2 = diag{−vc,−vc, v f ,−vc, v f }
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and

ψ1(z)=


J11(z) J12(z) 0 J14(z) 0
J21(z) J22(z) J23(z) J24(z) 0
J31(z) J32(z) J33(z) J34(z) 0
J41(z) J42(z) 0 J44(z) J45(z)

0 0 J53(z) J54(z) J55(z)


,ψ2(z)=


J̄11(z) J̄12(z) 0 J̄14(z) 0
J̄21(z) J̄22(z) J̄23(z) J̄24(z) 0
J̄31(z) J̄32(z) J̄33(z) J̄34(z) 0
J̄41(z) J̄42(z) 0 J̄44(z) J̄45(z)

0 0 J̄53(z) J̄54(z) J̄55(z)


where the Ji,j(z) and J̄i,j(z)(i, j = 1,2, ...,5) are the nonlinear term evaluated at steady-

state by ignoring the 2nd order and higher order terms, such as J1,1 = −A1ρe,sse−
E1

Tc,ss ,

J1,2 = A1(ρ
0
s1 − ρs1,ss)e

−
E1

Tc,ss . The input operator B1 is defined as a bounded oper-

ator B1 =[ 0; 0; 0; 0; b(z)] and b(z) = 1
2z̄L

1[zL−z̄L,zL+z̄L](z). The controlled output

operator C2 is determined as C2(·) = diag{
∫ L
0
δ(z − L)(·)dη,0,0,0,0}, and the measured

output operators are defined as Cm1=diag{
∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z −

L)(·)dη,
∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z − L)(·)dη} and Cm2 = diag{

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z −

L)(·)dη,
∫ L
0
δ(z)(·)dη,

∫ L
0
δ(z − L)(·)dη,

∫ L
0
δ(z)(·)dη}, respectively.

In this form, the domains of operator A1 and A2 are D(A1)= {[φ1(z); φ2(z); φ3(z);

φ4(z); φ5(z)] ∈ L2(0, L)5 |φi(z) are abs. cont., and φi(0)= 0, i = 1,2, ...,5}, and D(A2)=

{[φ6(z); φ7(z); φ8(z); φ9(z); φ10(z)] ∈ L2(0, L)5 |φ j(z) are abs. cont., j = 6,7, ...,10 and

φ j(L) = 0, j = 8,10}, respectively.

Mathematically, the dynamics of the above cascade system (cook zone and wash

zone) can be described by the following extended system:

Ûx(z, t) = Ax(z, t) + Bu(t)

yc(t) = Cc x(z, t)

ym(t) = Cmx(z, t)

(4.6)

with boundary conditions given below:

x1(0, t) = 0, x2(0, t) = 0, x3(0, t) = 0, x4(0, t) = 0, x5(0, t) = 0

x6(0, t) = x1(L, t), x7(0, t) = x2(L, t), x8(L, t) = 0, x9(0, t) = x4(L, t), x10(L, t) = 0
(4.7)

where the extended state x(z, t) = [x(C)(z, t); x(W)(z, t)] and the corresponding extended

operators are given as follows:

A(·) = V
∂

∂z
(·) + ψ(z)(·),V = bdiag{V1,V2},ψ(z) = bdiag{ψ1,ψ2}

B = [B1;0],Cc = [0,C2],Cm = bdiag{Cm1,Cm2}

(4.8)

The state x(z, t) ∈ X, with X = L2((0, L),R10) being defined as a real separable

Hilbert space with inner product 〈·, ·〉. The input u(t) ∈ L2
loc([0,∞),U) and output

85



y(t) ∈ L2
loc([0,∞),Y), where U and Y are real separable Hilbert spaces. Based on

the coupling conditions Equation (4.3), we have the domain of A, which is D(A) =

D(A1)
⊕
D(A2) = {[φ1; φ2; ...; φ5] ∈ L2(0, L)5, [φ6; φ7; ...; φ10] ∈ L2(0, L)5 |[φ1; φ2; ...;

φ5] ∈ D(A1), [φ6; φ7; ...; φ10] ∈ D(A2), and φ1(L) = φ6(0), φ2(L) = φ7(0), φ4(L) =

φ9(0)} [32]. The adjoint operator A∗ is easily found using the inner product formula,

〈Aϕi, φi〉 = 〈ϕi,A
∗φi〉, i = 1,2, ...,10, and is:

A∗(·) = −V
∂(·)

∂z
+ ψ∗(z)(·) (4.9)

with its domain defined as D(A∗) = {[φ1; φ2; ...; φ5] ∈ L2(0, L)5, [φ6; φ7; ...; φ10] ∈

L2(0, L)5, φi(z) is absolutely continuous, dφi
dz ∈ L2(0, L), with i = 1,2, ...,10, and φ j(L)=

0, j = 3,5,6,7,9, φm(0)=0,m =8,10, φ1(L)=
v6
v1
φ6(0), φ2(L) =

v7
v2
φ7(0), φ4(L) =

v9
v4
φ9(0)}.

4.3 Model Discretization

In this section, the Cayley-Tustin discretization framework is considered and applied

to the linearized digester system without any spatial approximation induced. By the

use of Cayley–Tustin transformation, a discrete-time state-space model for describing

the extended digester system is established and realized by determining the resolvent

operator, which is amenable to the discrete observer and controller designs. Mean-

while, the essential properties of the continuous-time system stay invariant under

this transformation, such as conservative (energy preserving) [157], stability [158],

observability [52, 100], controllability.

4.3.1 Cayley-Tustin time discretization framework

The above linear system in Equation (4.6) is considered. For a given time discretiza-

tion h > 0, and for j ≥ 1 the Cayley-Tustin discretization is given by:

x( jh) − x(( j − 1)h)
h

≈ A
x( jh) + x(( j − 1)h)

2
+ Bu( jh)

yc( jh) ≈ Cc
x( jh) + x(( j − 1)h)

2

ym( jh) ≈ Cm
x( jh) + x(( j − 1)h)

2

(4.10)

with x(0) = x0, where the spatial dependence of x is omitted for brevity. Then, let
u(h)j
√

h
be an approximation of u( jh) by the mean value within a given sampling time,
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u(h)j
√

h
= 1

h

∫ jh
( j−1)h u(t)dt. It has been shown in [14] that

u(h)j
√

h
converges to u( jh) as h→ 0 in

several different ways, similar for Y ( jh). Further, rewriting Equation (4.10) gives the

discrete time dynamics Equation (4.11). It is frequently called Tustin discretization

in the engineering literature, which is proposed in 1940s by Tustin and referred as

Tustin transform in digital and sample-data control literature [19].

x j − x j−1

h
≈ A

x j + x j−1

2
+ B

u j
√

h
yc j
√

h
≈ Cc

x j + x j−1

2
ymj
√

h
≈ Cm

x j + x j−1

2

(4.11)

Through some basic computations, the following infinite-dimensional discrete-time

state space model is obtained:

x j = Ad x j−1 + Bdu j

yc j = Ccd x j−1 +Dcdu j

ymj = Cmd x j−1 +Dmdu j

(4.12)

where Ad, Bd, Cd, Dd, Ccd and Cmd are the discrete-time spatial operators and we

denote:

©«
Ad Bd
Ccd Dcd
Cmd Dmd

ª®¬=
©«
−I + 2δR(z, δ)

√
2δR(z, δ)B

√
2δCcR(z, δ) Gc(δ)√
2δCmR(z, δ) Gm(δ)

ª®®¬ (4.13)

where δ = 2/h and the resolvent is R(z, δ) = (δ − A)−1. Clearly, one must satisfy

δ ∈ ρ(A) so that the resolvent operator is well-defined. In particular, Gc(δ) denotes

the transfer function from input to controlled output Gc(δ) = Cc(δ − A)
−1B, and

Gm(δ) denotes the transfer function from input to measured outputs Gm(δ) = Cm(δ −

A)−1B. The unbounded operators A of the continuous-time system are mapped into

bounded operators Ad in the discrete-time counterpart through Cayley transform,

which describe by the resolvent operator with Ad(·) = [δ − A]
−1[δ +A](·) = −I(·) +

2δ[δ − A]−1(·) = −I(·) + 2δR(δ,A)(·). In addition, it has been demonstrated that the

controllability and stability are invariant under this transformation [14].
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4.3.2 Resolvent operator

The resolvent operator can be obtained by utilizing the Laplace transform. Under

the zero input condition, we can have the following expression,

∂x(z, s)
∂z

= V−1(sI − ψ)x(z, s) − V−1x(z,0) (4.14)

where ψ is taken as the average of ψ(z). By solving the above ODE, one obtains:

x(z, s) = e{V
−1(sI−ψ)z}x(0, s) −

∫ z

0
e{V

−1(sI−ψ)(z−η)}V−1x(η,0)dη (4.15)

Since ψ is the block diagonal matrix and V is already in diagonal form, the matrix F

is finally a block diagonal matrix, denoted as follows:

F = V−1(sI − ψ) =
[
[F1]5×5 05×5

05×5 [F2]5×5

]
(4.16)

Then eFz = diag(eF1z, eF2z) and we denote [Mi j(z, s)]10×10 = eFz for simplicity.

In order to obtain the unknown boundary conditions, one needs to evaluate the

boundary conditions in Equation (4.7) as follows:

(1) At z = 0, one can plug x1(0, t) = 0, x2(0, t) = 0, x3(0, t) = 0, x4(0, t) = 0, x5(0, t) = 0

into Equation (4.15) which leads to Mi j(0, s) = 0, i = 1,2, ...5, j = 6,7, ...10.

(2) At z = L, one can firstly substitute x6(0, s) = x1(L, t), x7(0, s) = x2(L, t), x9(0, s) =

x4(L, t) into Equation (4.15) which yields

x6(0, s) = −
10∑

k=1

∫ L

0
M1k(L − η, s)Vvkk xk(η,0)dη

x7(0, s) = −
10∑

k=1

∫ L

0
M2k(L − η, s)Vvkk xk(η,0)dη

x9(0, s) = −
10∑

k=1

∫ L

0
M4k(L − η, s)Vvkk xk(η,0)dη

(4.17)

where Vv denotes V−1. Then, substituting the boundary conditions x8(L, s) = 0,
x10(L, s) = 0, one can have[

M88 M810

M108 M1010

] [
x8(0, s)
x10(0, s)

]
=

[ ∑10
k=1

∫ L

0
M8k(L − η, s)Vvkk xk(η,0)dη − M86x6(0, s) − M87x7(0, s) − M89x9(0, s)∑10

k=1

∫ L

0
M10k(L − η, s)Vvkk xk(η,0)dη − M106x6(0, s) − M107x7(0, s) − M109x9(0, s)

]
(4.18)
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By substituting x6(0, s), x7(0, s), x9(0, s) and solving the above equations, we can

obtain the expressions of x8(0, s) and x10(0, s) as follows,

x8(0, s) =G11(

10∑
k=1

∫ L

0
M8k(L − η, s)Vvkk xk(η,0)dη)

+ G12(

10∑
k=1

∫ L

0
M10k(L − η, s)Vvkk xk(η,0)dη)

+ (G11M86 + G12M106)

10∑
k=1

∫ L

0
M1k(L − η, s)Vvkk xk(η,0)dη

+ (G11M87 + G12M107)

10∑
k=1

∫ L

0
M2k(L − η, s)Vvkk xk(η,0)dη

+ (G11M89 + G12M109)

10∑
k=1

∫ L

0
M4k(L − η, s)Vvkk xk(η,0)dη (4.19)

x10(0, s) =G21(

10∑
k=1

∫ L

0
M8k(L − η, s)Vvkk xk(η,0)dη)

+ G22(

10∑
k=1

∫ L

0
M10k(L − η, s)Vvkk xk(η,0)dη)

+ (G21M86 + G22M106)

10∑
k=1

∫ L

0
M1k(L − η, s)Vvkk xk(η,0)dη

+ (G21M87 + G22M107)

10∑
k=1

∫ L

0
M2k(L − η, s)Vvkk xk(η,0)dη

+ (G21M89 + G22M109)

10∑
k=1

∫ L

0
M4k(L − η, s)Vvkk xk(η,0)dη (4.20)

where

G =
[

M88 M810

M108 M1010

]−1

(4.21)

Therefore, the resolvent operator is determined as following form by substituting

the boundary conditions (Equation (4.7)):

x(z, s) = [Ri j(z, s)]10×10x(η,0) (4.22)

where

Ri j =

{
Rci j, i ∈ [1,5], j ∈ [1,10]
Rwi j, i ∈ [6,10], j ∈ [1,10]

(4.23)
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where

Rci j = −

∫ z

0
Mi j(z − η, s)Vv j j(·)dη, i ∈ [1,5], j ∈ [1,10] (4.24)

Rwi j = (Mi8(z, s)G11 + Mi10(z, s)G21)

∫ L

0
M8j(L − η, s)Vv j j(·)dη

+ (Mi8(z, s)G12 + Mi10(z, s)G22)

∫ L

0
M10j(L − η, s)Vv j j(·)dη

+ (Mi8(z, s)G11M86(L, s) + Mi8(z, s)G12M106(L, s) + Mi10(z, s)G21M86(L, s)

+ Mi10(z, s)G22M106(L, s) − Mi6(z, s))
∫ L

0
M1j(L − η, s)Vv j j(·)dη

+ (Mi8(z, s)G11M87(L, s)+Mi8(z, s)G12M107(L, s)+Mi10(z, s)G21M87(L, s)

+Mi10(z, s)G22M107(L, s)

− Mi7(z, s))
∫ L

0
M2j(L − η, s)Vv j j(·)dη + (Mi8(z, s)G11M89(L, s) + Mi8(z, s)G12M109(L, s)

+ Mi10(z, s)G21M89(L, s) + Mi10(z, s)G22M109(L, s) − Mi9(z, s))
∫ L

0
M4j(L − η, s)Vv j j(·)dη

−

∫ z

0
Mi j(z − η, s)Vv j j(·)dη, i ∈ [6,10], j ∈ [1,10]

The discrete-time operators in Equation (4.13) can be solved by straightforwardly

substituting the above resolvent operators. Afterwards, the discrete-time linear model

is obtained:

x(z, k) = Ad x(z, k − 1) + Bdu(k)

yc(k) = Ccd x(z, k − 1) +Dcdu(k)

ym(k) = Cmd x(z, k − 1) +Dmdu(k)

(4.25)

with the boundary conditions (Equation (4.7)).

4.4 Observer-Based MPC Design

An observer-based model predictive controller is designed for the discrete-time pulp

digester system. In particular, a discrete Luenberger observer is designed first to

reconstruct the states based on the available real-time measurements. The Luen-

berger observer is one of the practical and easy-to-realize observer, which is further

considered in a discrete setting controller realization. The constrained optimal con-

troller design for the finite-dimensional system theory is extended and deployed for
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the infinite-dimensional digester system. The overall closed-loop operation of the

digester process is schematically presented in Figure 4.6.

Figure 4.6: The proposed closed-loop operation framework

4.4.1 Discrete Luenberger observer design

Firstly, let us recall the linearized discrete-time model:

x(z, k) = Ad x(z, k − 1) + Bdu(k)

ym(k) = Cmd x(z, k − 1) +Dmdu(k)
(4.26)

The discrete Luenberger observer is presented by the following standard form:

x̂(ζ, k) = Ad x̂(ζ, k − 1) + Bdu(k) + Ld(ym(k) − ŷm(k))

ŷm(k) = Cmd x̂(ζ, k − 1) +Dmdu(k)
(4.27)

where the reconstructed state x̂(ζ, k) is defined as a copy of the system dynamics and

Ld is the discrete observer gain to be designed. Stability of the observer implies that

the state estimation error, ek = x(ζ, k) − x̂(ζ, k), converges to zero within a certain

time. The error dynamic equation is shown as follows:

ek = (Ad − LdCd)ek−1 = Ãdek−1 (4.28)

To guarantee the operator Ãd in the state estimation error dynamics given by Equa-

tion (4.28) is stable, the design objective is to determine the appropriate spatially

varying gain Ld. By Curtain and Zwart [52], it can be shown that the operator Ãd is

power stable if and only if there exists a non-negative self-adjoint operator Qd such

that

ÃdQdÃ
∗
d −Qd = −Md,on X (4.29)
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where Md is a positive definite design parameter.

Then, let us assume that the pair (A,C) is exponential detectable, then if there

exists a nonnegative self-adjoint operator Qd which is the solution of the following

operator Riccati equation [53, 159]:

AdQdA
∗
d −Qd − Ld(P + 2I)L∗d + Md = 0,on X (4.30)

where

Ld = T(P + I)−1,T = AdQdC
∗
d,P = CdQdC

∗
d

The observer gain Ld = AdQdC
∗
d (CdQC∗d + I)−1 is a strongly stabilizing gain which

guarantees the power stability of Ãd = Ad − LdCd. To solve the algebraic Riccati

Equation (4.30), one can utilize the numerical iteration methods, such as Newton-

Kleinman iteration method [160], and the detailed procedures were provided [159].

4.4.2 MPC design for target tracking

The ultimate objective of a pulp and paper mill is to ensure the specified quality

of the end products while meeting the production targets and minimizing the oper-

ational costs. As a result, frequent grade transition is required for pulp digesters,

accounting for the blow-line pulp variation subject to various demands on certain

paper products. In other words, the desired product quality needs to change in the

middle of the operation, i.e., the shift operations. To realize it, the MPC is devel-

oped for the infinite-dimensional setting, emerging from the finite-dimensional linear

time-invariant systems, see Rawlings et al. [18].

In this case, we consider that the system output is required to track a nonzero

target vector, yt , then state and input vectors, xt and ut , are required which bring

the system to yt at steady-state [104, 161, 162]. The state and input target can be

computed by solving the following quadratic program.

min
xt,ut
(ut − ū)T Rt(ut − ū)

s.t.

[
I − Ad −Bd

Cd Dd

] [
xt
ut

]
=

[
0
yt

]
umin ≤ ut ≤ umax

ymin ≤ yt ≤ ymax

(4.31)
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In this quadratic program, ū is the set point for the manipulated variables and Rt ,

is symmetric positive definite. Notice that, often, the input set point is not specified

and it can be assumed zero in order to use [163]. The equality constraints guarantee

a steady-state solution and offset free tracking of the target vector [104]. umin, umax,

ymin, ymax are the input and output constraints, respectively.

Then, the the following quadratic objective function is used for the regulator to

track a nonzero target vector.

min
uN

N−1∑
j=0

〈(yk+ j |k − yt),Q(yk+ j |k − yt)〉 + 〈(uk+ j |k − ut),R(uk+ j |k − ut)〉

+ 〈(xk+N−1|k − xt), Q̄(xk+N−1|k − xt)〉

s.t. Lunberger observer, Equation (4.27)

umin ≤ uk+ j |k ≤ umax

ymin ≤ yk+ j |k ≤ ymax

(4.32)

where N is the prediction horizon, and Q, R are symmetric positive semidefinite and

symmetric positive definite spatial operator, respectively. Q̄ is the spatial operator

to penalize the terminal state which depends on the stability of the given model.

The target vector xt , and ut are computed from the quadratic program in Equation

(4.31). yk+ j |k and uk+ j |k represent the output and input variables at future time k + j

predicted at current time k, and the term ∆uk+ j |k denotes the change of an input

vector at time k + j as ∆uk+ j |k = uk+ j |k − uk+ j−1|k . The vector uN includes the control

sequence {uk |k,uk+1|k,uk+2|k, ...,uk+N−1|k} and the first element uk |k will be injected to

the plant as the future control action.

As discussed by H. Kwakernaak and R. Sivan [161], using the targets computed

from Equation (4.31), we define a shifted input ũk = uk−ut , a shifted state x̃k = x̂k−xt ,

and a shifted output ỹk = ŷk − yt to reduce the problem to the standard form. The

corresponding constraints can be translated to constraints on ũ and ỹ.
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Thus the regulator optimization problem Equation (4.32) becomes:

min
uN

N−1∑
j=0

〈ỹk+ j |k,Q ỹk+ j |k〉 + 〈ũk+ j |k,Rũk+ j |k〉 + 〈x̃k+ j |k, Q̄x̃k+ j |k〉

s.t. x̃k+ j |k = Ad x̃k+ j−1|k + Bd ũk+ j |k

ỹk+ j |k = Cd x̃k+ j−1|k +Dd ũk+ j |k

umin − ut |k ≤ ũk+ j |k ≤ umax − ut |k

ymin − yt |k ≤ ỹk+ j |k ≤ ymax − yt |k

(4.33)

According to the nature of transport reaction systems, the operator Q̄ can be deter-

mined from the positive self-adjoint solution of the following discrete-time Lyapunov

equation:

A∗dQ̄Ad − Q̄ = −C∗dQCd (4.34)

or equivalently the continuous-time Lyapunov equation [100]:

A∗Q̄ + Q̄A = −C∗QC (4.35)

In addition, the operator Q̄ is the unique positive self-adjoint solution of the Lyapunov

equations (Equation (4.34) and (4.35)) [38, 105].

Before further manipulate the objective function (Equation (4.33)), we introduce

the following notations: Yk = {yk+n}
N
n=1 ∈ Y

N and Uk = {uk+n}
N
n=1 ∈ U

N . As a result,

the straightforward algebraic manipulation of the objective function presented in

Equation (4.33) leads to the following quadratic programming optimization problem:

min
Uk

〈Uk,HUk〉 + 2〈Uk,Fx̃k〉 + 〈x̃k, Q̄x̃k〉

s.t. Umin ≤ Uk ≤ Umax

Ymin ≤ GUk + Sx̃k ≤ Ymax

(4.36)

where H ∈ L(UN ) is positive and self-adjoint, which is given by:

hi,j =


D∗dQDd + B

∗
dQ̄Bd + R for i = j

D∗dQCdA
i− j−1
d Bd + B

∗
dQ̄Ai− j

d Bd for i > j
h∗j,i for i < j

(4.37)

and F is given by F = {D∗dQCdA
k−1
d +B∗dQ̄Ak

d}
N−1
k=1 . The mateix G is a lower triangular

given by

gi,j =


Dd for i = j

CdA
i− j−1
d Bd for i > j
0 for i < j
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and S = {CdA
k−1
d }Nk=1.

The inner products in the objective function given in Equation (4.36) are vector

products as U is the finite-dimensional input space, and therefore we have a finite

dimensional quadratic optimization problem:

min
Uk

UT
k HUk + 2UT

k Fx̃k

s.t.


I
−I
G
−G

 Uk ≤


Umax

−Umin

Ymax − Sx̃k
−Ymin + Sx̃k


(4.38)

Here we neglect the term 〈x̃k, Q̄x̃k〉 as x̃k is the initial condition for step k + 1 and

cannot be affected by the control input. Thus, the optimal input trajectory (Uk) can

be obtained as the solution of the feasible quadratic optimization problem (Equation

(4.38)) converges to zero.

4.5 Numerical Simulations

In this section, the closed-loop performance of the proposed MPC framework is

demonstrated. The temperature of free liquor flowing into the cook zone is selected

as the manipulated input variable and the concentration of lignin is selected as the

controlled output variable. In this case, we consider the target tracking of the out-

put by using the proposed MPC. The resulting constrained optimization problem

is quadratic programming problem which is solved using the MATLAB subroutine

QuadProg. Both the control and prediction horizons are chosen to be 50 sampling

periods. The sampling time is set to be 10 min and the internal spatial discretization

is taken as 0.05 m.

The type of wood entering the digester was assumed to be softwood and the

parameters that characterize this type of wood are shown in Table 4.1. A similar study

for hardwood species can be realized based on the listed parameters in Table 4.1. For

the initial conditions of the dynamic system, we consider x1(z,0) = 0.067z, x2(z,0) =

0.1646z, x3(z,0) = 0.2377z, x4(z,0) = 1.7073z, x5(z,0) = 0.8661z, x6(z,0) = 0.0336 +

2.87 × 10−4z, x7(z,0) = 0.8232 + 0.0095z, x8(z,0) = 0.0012z, x9(z,0) = 8.5363 + 0.1767z,

and x10(z,0) = −0.086z. It is worth noting that the initial conditions of the states

in the linearized model need to be taken sufficiently small, such that the designed
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control law for the linearized model can be applied to the original nonlinear PDE

model around the steady states of interest. In addition, ε = 0.05 is chosen for the

input operator. The selected parameter values for MPC implementation are listed in

Table 4.2 .

Table 4.1: Notations and values of parameters

Process parameters and notations Values of hardwood Values of softwood Ref.
Entering wood-chip flow rate ÛVc 1.3964 m3/min 1.3964 m3/min [128]
Entering white-liquor flow rate ÛVf 2.3497 m3/min 2.3497 m3/min [128]
Digester cross sectional area A 21 m2 21 m2 [159]
Non-reactive lignin in wood ρ0

s 0 0 [128]
Preexponential factor of

lignin reactions A1 0.3954 m3/kg ·min 0.2809 m3/kg ·min [128]
Activation energy for lignin E1 38 k J/mol · K 38 k J/mol · K [159]
Stoichiometric coefficient for

lignin reactions b1 0.21 0.166 [128]
Stoichiometric coefficient for
carbohydrates reactions b2 0.49 0.395 [128]

Heat capacities of the wood Cps 1.47 k J/kg · K 1.47 k J/kg · K [159]
Heat capacities of the liquor Cpl 4.19 k J/kg · K 4.19 k J/kg · K [159]

Heat of reaction ∆HR -581 k J/kg -581 k J/kg [159]
Water density ρw 1000 kg/m3 1000 kg/m3 [159]

Table 4.2: Parameters for the MPC design

Descriptions Notations Values
Sampling time h 10 min

Prediction horizon N 50
Input weight R 0.5
Output weight Q 0.5

Input constraints [umin,umax] [400K,445K]
Controlled output constraints [ymin, ymax] [4%,17%]

As illustrated in Figure 4.7, the open-loop states converge to their corresponding

steady-states rapidly which indicates the original plant is intrinsically stable. The

figures in the left column represent the evolution of the states in the cook zone, and the

right column denotes the evolution of the states in the wash zone. Figures 4.7(a) and

4.7(f) show how the concentration of lignin decreases smoothly down toward the end

of the cooking zone where the reactions are stopped (or quenched) by displacement
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of the hot liquor with dilute wash liquor from below. Hence, no significant decrease

occurs in the wash zone. The concentration of alkali of entrapped liquor phase in the

feed flow to the cook zone is about 23 g/l (as shown in Figure 4.7(b)) and then is

consumed giving a decreasing profile down toward the extraction. At the bottom of

the wash zone, the concentration of alkali of entrapped liquor phase is about 8 g/l (as

shown in Figure 4.7(g)). A similar trend occurs for the alkali of the free liquor phase,

as shown in Figures 4.7(c) and 4.7(h). Figures 4.7(d) and 4.7(e) show the temperature

profiles for the two phases (wood chip phase and free liquor phase) at cook zone,

and the temperature profiles of them at wash zone are shown in Figures 4.7(i) and

4.7(j). The temperature of wood chips rises due to the exothermic reactions and is

also affected by the high temperature of the circulation liquor. Below the extraction

screens, in the wash zone, the chips are rapidly cooled down by the wash water which

has a temperature of 360K at the inlet in the bottom.
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Figure 4.7: The open-loop state profiles of the digester

By implementing the proposed MPC frameworks, we aim to steer the system to

the desired targets without violating the physical constraints of actuators and sensors.

In this case, we consider the shifted output targets, which are chosen as yt1 = 0.15 and

yt2 = 0.05, respectively. First of all, the steady-state target xt and input vector ut are

computed from the quadratic program Equation (4.31). Then, based on the operator

Riccati Equation (4.30), we determine Qd in the discrete-time observer design. The

estimate state x̂ from the Luenberger observer is then utilized for the MPC design.

Finally, the optimal input trajectory is computed by solving the above optimization

problem outlined in Equation (4.38) with a receding horizon prediction formulation.
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The state evolutions of the closed-loop system under the MPC law are obtained and

shown in Figure 4.8. Comparing with the open-loop state profiles, the closed-loop

system is able to track the target steady-states when the grade shift happens (t = 370

min). In addition, three pairs of states in cook zone and wash zone are successfully

connected through the extend system (Equation (4.6)), such as, ρCs (z, t) and ρWs (z, t);

ρCe (z, t) and ρWe (z, t); TCc (z, t) and TWc (z, t).

Figure 4.8: The state profiles of the digester under closed-loop operation

The open-loop output profile and the close-loop profile under the observer-based

MPC law are shown in Figure 4.9 (a). Without implementing the controller, the con-

99



centration of lignin converges to its steady-state, while violating the given constraints

of the system. In the closed-loop system, the concentration of lignin is able to track

the targets or desired values and satisfies the requirements of the constraint simultane-

ously. As the targets are switched, the output can also achieve target tracking across

the original steady-state. Specifically, the target tracking above the steady-state is re-

alized in the first period, t ∈ [0,370], where yt1 = 0.15 is considered. Similarly, the tar-

get tracking below the steady-state is realized in the second period (i.t.,t ∈ (370,740])

when yt2 = 0.05 is taken into account. Typically, this results in higher yield, thus

lowering the operating cost significantly [134]. The free-liquor temperature profile,

computed by the proposed model-based MPC system at each sampling time, is pre-

sented in Figure 4.9 (b). The input trajectory corresponds to the output variables,

that is, in the first 370 minutes, the optimal input variables fluctuate between 410-415

and converge to 413K when the output goes to track target 1. In the last 370 minutes,

the corresponding input rises and stabilizes at 441K when target 1 switches to target

2. In these two stages of tracking, the input variables are constrained within the given

bounds of actuators. There are some over-shooting phenomena while tracking the set-

points, which might be caused by the instantaneous jump in the set-points. Avoiding

such overshoot can be achieved in different ways, including tuning the controller to

be less aggressive, utilizing relatively small initial conditions, or reformulating the

problem into the form of a time-dependent, sufficiently smooth trajectory [164].
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Figure 4.9: (a) The concentration profile of lignin (b) The optimal manipulated input
trajectory under closed-loop operation
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In order to further investigate the performance of the proposed MPC design, a

truly unknown disturbance is considered, which potentially causes the temperature

of free liquor needed for degradation reaction drops (rises) below (above) the temper-

ature needed for degradation reaction. In addition, it is assumed that the addition

of disturbance does not affect the feasibility of input and output constraints. Specif-

ically, we consider the input disturbance d(t) = 20 sin(0.6t) is injected to the system,

causing the sinusoidal trend on the open-loop state profiles. As shown in Figure 4.10

(a), it is apparent that the open-loop output responses oscillate due to input distur-

bance injection. In this case, the proposed MPC controller is able to simultaneously

realize disturbance rejection and target tracking in a short time, and satisfies the

given constraints. The corresponding manipulated input is shown in Figure 4.10 (b).

It can be clearly seen that the proposed MPC achieves a good control performance

under the consideration of input disturbance.
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Figure 4.10: (a) The concentration profile of lignin considering the disturbance (b)
The optimal manipulated input trajectory considering the disturbance under closed-
loop operation

Figure 4.11 shows the open-loop spatio-temporal profile of the Kappa number

in the cook zone and wash zone. A significant decrease in Kappa number can be

observed in the cook zone (0 ≤ z ≤ 5) as the temperature of free liquor increases.

After the chips enter the counter-current wash zone (5 ≤ z ≤ 10), the Kappa number

drops unobvious since the temperature of wash liquor cools down in this area. Blow-

line Kappa number transients during the two grade transitions are depicted in Figure
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4.12. The proposed controller is able to further regulate the blow-line Kappa number

with no disturbance and under disturbance by manipulating the temperature of free

liquor entering the cook zone. The simulation studies demonstrate that the extended

system is able to describe the dynamics of the original cascade system which contains

a co-current zone and a counter-current zone. Furthermore, it is possible to realize

the optimal control of the output in the wash zone through the operation of the input

in the cook zone. The effectiveness can be demonstrated from the proposed MPC

design.

Figure 4.11: The open-loop spatio-temporal profile of the Kappa number
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Figure 4.12: Blow-line Kappa number transients for grade change transitions
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4.6 Conclusions

In this chapter, dynamic modelling and model predictive control design of a contin-

uous pulp digester described by ten linearized first-order coupled hyperbolic equa-

tions was developed. The connected cook zone and wash zone of the digester were

modelled as a cascade PDE system. By using Cayley–Tustin transformation, the lin-

earized continuous-time infinite-dimensional model was transformed into a discrete-

time infinite-dimensional model without spatial discretization and model reduction

which preserves the input-output stability of the system. A Luenberger observer was

designed to realize the state estimation of the system and the discrete-time Riccati

equation was used to calculate the observer gain. The model predictive controller was

formulated on that basis to realize target tracking and account for input and output

constraints when it comes to the shift operations of the digester. The closed-loop

simulation results have demonstrated that the controlled variables were able to reach

to the target values and satisfy the actuators’ constraints simultaneously.
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Chapter 5

Sensor Location Selection for
Continuous Pulp Digesters with
Delayed Measurements

5.1 Introduction

The continuous pulp digester has been predominantly utilized to convert the wood

chips into pulp in industrial applications when it comes to the pulping process oper-

ation [4]. The typical continuous pulp digester is a complex heterogeneous reactor,

consisting of several zones in which the white liquor reacts with wood chips to remove

lignin and subsequently free wood fibers [134]. As illustrated in Figure 5.1, the wood

chips and white liquor are added to the impregnation zone where wood chips are

soaked by the cooking liquor via penetration and diffusion mechanism. After that,

the temperature of the chip mixture is rapidly increased through the external heat

exchangers, and the mixture then enters the cooking zone where the most deligni-

fication reactions occur at an elevated temperature. The spent liquor is withdrawn

from the digester at extraction screens. At the same time, the cooked pulp moves

downwards to the wash zone where the chips are washed and cooled down by the

counter-current flow of wash liquor. Finally, the delignification reaction is stopped

and the cooked pulp is removed from the bottom of the digester. For the entire

pulping process, the temperature of operation plays a key role as the temperature of

wood chips and free liquor will have a significant influence on the pulp quality. More

specifically, the concentration of lignin in the wood chip phase, the concentration of

effective alkali (EA) alkali, and hydrosulfide (HS) in entrapped and free liquor phase
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will be affected through the coupled relationship of temperature including the rate

of the consumption of mass and mass diffusion rate with temperature. In particular,

the cooking zone temperature is the most important, because it has a large influence

upon the pulp quality for cooking degree (viz., kappa number) and pulp viscosity.

Figure 5.1: Simplified scheme of a continuous pulp digester [4]

Due to the industrial importance the considerable effort has been made in the past

few decades to model the delignification process of continuous pulp digesters based

on the reaction and diffusion dynamics, and chip-bed compaction. Three widely used

dynamic models are known as the Purdue model [139], Gustafson model [140], and

Andersson model [141], which have been the bases for the further development of

digester models [3, 142, 143, 165, 166, 150, 167, 151]. When it comes to the controller

design for the continuous pulp digester, one of the main objectives is to produce

pulps that achieve specific quality according to different wood species while respecting

distinctive operating conditions. To this end, great efforts have been made to meet

various objectives based on the various control methods, such as model predictive
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control (MPC), adaptive control, dynamic matrix control (DMC), reduced dimension

control (RDC), and genetic algorithms (GA) et.al [152, 147, 144, 153, 168, 7, 149].

The state information or the process knowledge is essential for such controllers

and/or regulators design. However, the full state information is not often available

due to the special features of the continuous digester, physical constraints of sen-

sor installation, and/or the prohibitive expense of implementing spatially-distributed

sensors. In addition, some important process variables are sampled infrequently and

there are long time delays associated with their measurement. Due to this, the state

estimation for the pulp digester attracts a lot of attention in both academia and in-

dustry. Along this line, the extended Kalman filter was proposed to construct the

true states of a batch pulp digester using online measurements of various liquor char-

acteristics, which shows a good convergence property, even when the state errors and

disturbances are undermodeled [147]. The optimal state estimation was realized utiliz-

ing the subspace identification techniques and Kalman filter for a continuous digester

[169]. The partial least squares methodology was utilized to generate the dynamic

model based on input-output data collected from an industrial continuous digester

[170]. A multi-rate extended Kalman filter was applied to obtain state estimates

that converge to the true plant states in presence of parametric mismatches, unmea-

sured disturbances and large errors in the initial state estimates [171]. However, even

though the aforementioned works have made valuable contributions toward the esti-

mator design for the pulp digester, there are still some aspects which did not receive

much attention and consideration. On the one hand, the spatial discretization of par-

tial differential equation (PDE) in the estimator design stage dramatically increases

the complexity of the calculations in estimator design and might induce numerical

instability and/or alter the fundamental control theoretical properties (controllabil-

ity, observability, stability). On the other hand, the delayed measurement need to be

considered because of the possible low sampling rate of the continuous pulp digester.

The accuracy of the estimation depends not only on the type of estimator but also

on the location of the sensors, especially for distributed parameter systems (DPS).

The sensor placement problem has been considered by many researchers in the area

of chemical process control, and a number of different performance criteria for sensor

placement have been taken into account. One of the earliest approaches is to maxi-
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mize the observability through a choice of the sensor locations to improve the degree

of complete observability for the deterministic state reconstruction problem [61, 62].

For the system with stochastic disturbances, unmeasured states can be estimated

with the Kalman filter, and the optimal selection of measurements can be determined

by minimizing the average variance of the state estimates [63] or the steady-state

error variance [64]. There are also some other criteria to evaluate the performance

of sensor locations including detection of load disturbances and location for optimal

control [61]. These approaches have mature applications on the lumped parameter

systems which are described by ordinary differential equations (ODEs), and have

been gradually extended and applied to the DPS in recent years. For example, the

modal observability and controllability measures was utilized to determine optimal

sensor and actuator locations of parabolic PDEs [65]. The optimal area for sensing

or actuation in advective PDEs was determined by maximizing the support of the

observability or controllability Gramian, respectively [66]. It was demonstrated that

the nuclear norm of the solution to the operator Riccati equation is the steady-state

minimum error variance of an estimate for DPS [67]. The placement of a single sensor

and/or a single actuator in advection-diffusion equations with proportional feedback

control was addressed [68]. Most of the previous contributions of the sensor selection

for DPS mainly consider the spectral systems described by parabolic PDEs, which

can be addressed by means of model reduction techniques also known in estimation

and control theory as the early lumping approach. However, for non-spectral systems

(e.g., first order hyperbolic PDEs), where the slow-fast dynamic separation does not

hold there are less contributions in the literature. Hence, in this chapter, the sen-

sor placement for the typical transport-reaction system described by the hyperbolic

PDE systems are investigated to motivate and emphasize the issues associated with

transport-reaction system setting.

Motivated by the aforementioned issues, this chapter considers the discrete-time

state estimation and sensor placement for stochastic model of continuous pulp di-

gester with delayed boundary/point-wise measurements. The temperature dynamics

of a continuous pulp digester is studied, and it is described by coupled PDE-ODE

with measurement delay. The Cayley-Tustin time discretization approach is utilized

to obtain the discrete-time model with analytical expression that is easier to im-
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plement in practical applications. The delayed measurements are expressed by an

additional hyperbolic PDE, and treated as the new states of the extended model.

The unbounded boundary/ point-wise measurement is considered and can be trans-

formed to a bounded one using Cayley-Tustin approach. The discrete-time Kalman

filter is designed with the stochastic discrete-time digester system to realize the state

estimation, and the sensor location selection for the temperature measurements is

investigated by minimizing the steady-state error variance of the estimated states.

This chapter is organized as follows: In Section 5.2, a dynamic model that de-

scribes the temperature system of the cook zone of continuous digester is introduced.

The model is discretized in time by utilizing Cayley-Tustin approach. Based on the

discrete-time model, the discrete Kalman Filter is designed and the optimal loca-

tion for the temperature sensors is investigated in Section 5.3. In Section 5.4, the

performance of the estimator is examined on a number of examples. In Section 5.5,

concluding remarks are made.

5.2 Model Formulation for Pulp Digester

In this section, we introduce the simplified temperature model formulation of a con-

tinuous pulp digester. In order to formulate the state-space model, the original model

with measurement delay is equivalently transformed to a standard state-space model

by introducing the transport PDE. Based on this model, the discrete-time infinite-

dimensional model is obtained utilizing the Cayley-Tustin transform framework. A

schematic diagram of the model formulation is illustrated in Figure 5.2.

Original model Eq (1) Extended model Eq (3)

Cayley-Tustin
time-discretization

Add two transport PDEs

Continuous infinite-dimensional model Eq (5)Discrete-time model Eq (21)

Figure 5.2: Block diagram of the model formulation
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5.2.1 Model formulation

Considering that the most of delignification reaction occurs in the cooking zone of

a digester [143], we focus on analysis of this zone which can be seen as a vertical

tubular reactor of co-current flow in two phases. In addition, the existence of delay in

the measurements or sensors is considered, which may be due to slow sampling rate,

missing measurement issues, the indirect laboratory analytical test of these measure-

ments, etc. A specified process schematic is shown in Figure 5.3. The top position of

this process is denoted as z = 0, and the liquor extraction at the bottom position is

denoted as z = L. The pre-prenetrated wood chips and free liquor are introduced at

the top of the cook zone and the liquor is heated to reaction temperatures achieved

by liquor circulation through the cook heater. Therefore, the temperature of heated

liquor at the top of the cook zone is selected as the manipulated variable which can

be adjusted using the external heater.

Figure 5.3: The scheme of cook zone in a pulp digester

The following assumptions are considered. The dynamic variations of chip poros-

ity, the mass variations of solid and liquor, and the variation in external volume flow

rate are neglected. The heat released by the exothermic reactions and energy transfer

due to diffusion of components between the entrapped liquor phase and free liquor

phase can be ignored. Considering the most important components in the chemical

reactions taken place in the digester, only lignin in solid phase and effective alkali in
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liquor phase are taken into account in the reaction rate equations. A further sim-

plification is made by considering only temperature behaviour as neglecting the heat

due the reaction makes the temperature variables independent of the concentration

variables. A temperature model is derived from the conservation laws to describe the

co-current flow in two phases, the liquid phase and the solid phase in the digester,

which has been successfully applied to a continuous paper pulp digester at the M-real

pulp mill in Husum, Sweden [172].

In the ensuing model, the temperature variables are functions of both vertical

position z and time t. T f (z, t) denotes the temperature of free liquor phase, and Tc(z, t)

denotes the temperature of chip phase. Ts(t) denotes the free liquor temperature in

the steam zone. Based on the aforementioned description, the mathematical model

of the temperature behaviour in the cook zone of digester can be modelled by the

following set of equations:

∂Tc

∂t
= −

Vc

Aεc

∂Tc

∂z
+U(T f − Tc)/Cpe (5.1a)

∂T f

∂t
= −

Vf

Aε f

∂T f

∂z
−U(T f − Tc)/Cp f (5.1b)

dTs

dt
= [−

v f ,s

hs − hl
−

klz − klw

Cp f ρ f
]Ts + [

v f ,s

hs − hl
+

klz

Cp f ρ f
]u +

klwTa

Cp f ρ f
(5.1c)

ym(t) =
[
Tc(lm1, t − τ1)
T f (lm2, t − τ2)

]
(5.1d)

The boundary conditions are given by:

Tc(0, t) = Tc0; T f (0, t) = Ts(t). (5.2)

where Vc and Vf denote the volume of chip and free liquor respectively, and A is the

digester cross sectional area. εc is the chip compaction, which increases from the entry

through the cook zone, reaching a maximum at the main extraction, εc(z) = ε10+ε11z,

and ε f (z) = 1 − εc(z). U denotes the heat-transfer coefficient and relates the rate of

energy transfer due to conduction between the wood chips and the free liquor per

degree temperature difference per volume of chip [142]. The mixing rules based on

weighted averages are utilized to determine heat capacities of the entrapped and

free liquor phases, namely, Cpe and Cp f , which can be further obtained from the

heat capacities of the wood Cps and the liquor Cpl [173]. v f ,s denotes the steam

110



velocity, and hs and hl are the height of steam and liquor level, respectively The

sensible heat transfer can be written equivalently as klz(Ts − u), and the heat transfer

through the digester shell is klw(Ts − Ta) where Ta is the ambient temperature. The

system input u(t) denotes the steam temperature or the inlet temperature of free

liquor at the top of cook zone. The measured output ym(t) contains the temperature

measurement of wood chip and free liquor. Particularly, the time delays (τ1, τ2)

denote the measurement delays or sensor delays at the bottom of the cook zone. The

parameters lm1 and lm2 represent the sensor locations to measure the temperature of

wood chip and free liquor, respectively.

5.2.2 State-space model formulation

In order to formulate the state-space model, the time delay can be firstly “removed”

at a cost of adding a transport PDE into the plant. Replacing the terms Tc(lm1, t − τ1)

and T f (lm2, t − τ2) by two transport equations with velocity µ1 := lm1
τ1

and µ2 := lm2
τ2

(e.g.[174, 175]), the original system (Equation (5.1)) is equivalently expressed as:

∂Tc

∂t
= −

Vc

Aεc

∂Tc

∂z
+U(T f − Tc)/Cpe (5.3a)

∂T f

∂t
= −

Vf

Aε f

∂T f

∂z
−U(T f − Tc)/Cp f (5.3b)

∂Tw

∂t
= −µ1

∂Tw

∂z
(5.3c)

∂Tv
∂t
= −µ2

∂Tv
∂z

(5.3d)

dTs

dt
= [−

v f ,s

hs − hl
−

klz − klw

Cp f ρ f
]Ts + [

v f ,s

hs − hl
+

klz

Cp f ρ f
]u +

klwTa

Cp f ρ f
(5.3e)

ym(t) =
[
Tw(lm1, t)
Tv(lm2, t)

]
(5.3f)

The corresponding boundary conditions for this configuration are:

Tc(0, t) = Tc0; T f (0, t) = Ts(t).

Tw(0, t) = Tc(lm1, t); Tv(0, t) = T f (lm2, t)
(5.4)

Then, the original state is extended with these new state, resulting in x(z, t) =

[Tc(z, t),T f (z, t),Tw(z, t),Tv(z, t),Ts(t)]T =: [x1(z, t), x2(z, t), x3(z, t), x4(z, t), x5(t)]T ∈ X
⊕
R

is considered, where X is a real Hilbert spaces L2(0, l)4 with the inner product

〈·, ·〉, and R denotes a real space. The input u(t) ∈ L2
loc([0,∞),U) and output

111



y(t) ∈ L2
loc([0,∞),Y), where U and Y are real separable Hilbert spaces. The extended

infinite-dimensional continuous-time state-space model can be further formulated as:

Ûx(z, t) = Ax(z, t) + Bu(t) (5.5a)

y(t) = Cx(z, t) (5.5b)

In this form, one can define the system operator A(·) = V ∂(·)
∂z + ψ(z)(·) on its domain

A(·) =



−vc
∂(·)
∂z + J11(·) J12(·) 0 0 0

J21(·) −v f
∂(·)
∂z + J22(·) 0 0 0

0 0 −µ1
∂(·)
∂z 0 0

0 0 0 −µ2
∂(·)
∂z 0

0 0 0 0 m1


(5.6)

D(A) =


φi(z) ∈ L2(0, l)4, x5 ∈ R :

φi(z) is abs. cont., dφi

dz ∈ L2(0, l), with i = 1,2,3,4,

φ1(0) = 0, φ2(0) = x5, φ3(0) = φ1(lm1), φ4(0) = φ2(lm2)

 (5.7)

where vc =
Vc

Aεc
, v f =

Vf

Aε f
, J11 = −U/Cpe, J12 = U/Cpe, J21 = U/Cp f , J22 = −U/Cp f ,

m1 = [−
v f ,s

hs−hl
−

klz−klw
Cp f ρ f

], m3 =
klwTa

Cp f ρ f
. The input operator B is defined as a bounded

operator B =[0; 0; 0; 0; m2], and m2 = [
v f ,s

hs−hl
+

klz
Cp f ρ f

]. The operator C is determined

as C(·) = diag[0,0,
∫ l
0
δ(z − lm1)(·)dη,

∫ l
0
δ(z − lm2)(·)dη,0] because the sensors used for

measurement are located in lm1 and lm2, respectively.

In this infinite-dimensional state-space model, there is the uncertainty of operator

C because the sensor locations lm1 and lm2 need to be determined. Likewise, this

also leads to the unknowns of µ1 and µ2, which in turn leads to the uncertainty of

operator A.

5.2.3 Model time-discretization

Based on the continuous-time infinite-dimensional system, we introduce the Cayley-

Tustin discretization framework to transform the continuous system to the discrete-

time one. Let us consider the above linear system in Equation (5.5) and a given a

time discretization h > 0, and for j ≥ 1 the Cayley-Tustin discretization is given by

x( jh) − x(( j − 1)h)
h

≈ A
x( jh) + x(( j − 1)h)

2
+ Bu( jh) (5.8a)

y( jh) ≈ C
x( jh) + x(( j − 1)h)

2
(5.8b)
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with x(0) = x0, where we omit the spatial dependence of x for brevity. Then let
u(h)j
√

h
be an approximation of u( jh) by the mean value within a given sampling time,

u(h)j
√

h
= 1

h

∫ jh
( j−1)h u(t)dt. It has been shown in [14] that

u(h)j
√

h
converges to u( jh) as h→ 0 in

several different ways, similar for Y ( jh). Further, rewriting Equation (5.8) gives the

discrete time dynamics Equation (5.9). It is frequently called Tustin discretization

in the engineering literature, which is discovered in 1940s by Tustin and referred as

Tustin transform in digital and sample-data control literature [19].

x(h)j − x(h)j−1

h
≈ A

x(h)j + x(h)j−1

2
+ B

u(h)j
√

h
, x(h)0 = X0 (5.9a)

y
(h)
j
√

h
≈ C

x(h)j + x(h)j−1

2
(5.9b)

Through some basic computations, the following infinite-dimensional discrete-time

state space model is obtained:

x(h)j = Ad x(h)j−1 + Bdu(h)j (5.10a)

y
(h)
j = Cd x(h)j−1 +Ddu(h)j (5.10b)

where Ad, Bd, Cd, Dd are the discrete-time spatial operators and we denote:(
Ad Bd
Cd Dd

)
=

(
[δ − A]−1[δ − A]

√
2δ[δ − A]−1B

√
2δC[δ − A]−1 C[δ − A]−1B

)
(5.11)

where δ = 2/h and the resolvent is R(δ,A) = (δI−A)−1. Clearly, one must satisfy δ ∈

ρ(A) so that the resolvent operator is well-defined. In particular, C(δ−A)−1B denotes

the transfer function of the continuous model (5.5). The unbounded operators A of

the continuous-time system are mapped into bounded operators Ad in the discrete-

time counterpart through Cayley transform. In addition, it has been demonstrated

that the controllability and stability are invariant under this transformation. The

continuous state evolutional operatorA is discretized in time andAd can be described

by the resolvent operator as follows:

Ad(·) = [δI − A]−1[δI +A](·)

= −I(·) + 2δ[δI − A]−1(·)

= −I(·) + 2δR(δ,A)(·) (5.12)

where I is an identity operator.
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5.2.4 Resolvent operator

From the previous section, one can find the resolvent operator R(δ,A) = (δI−A)−1 of

the system operatorA, and then the discrete operators (Ad, Bd, Cd, Dd) can be easily

realized. Recalling the continuous-time system model (5.5), the resolvent operator

can be obtained by taking Laplace transform. Under the zero input condition, we

can have the following expression:

∂x1(z, s)
∂z

=
s + J11

vc
x1(z, s) +

J12

vc
x2(z, s) +

1

vc
x1(z,0) (5.13a)

∂x2(z, s)
∂z

=
s + J22

v f
x2(z, s) +

J21

v f
x1(z, s) +

1

v f
x2(z,0) (5.13b)

∂x3(z, s)
∂z

= −
s
µ1

x3(z, s) +
1

µ1
x3(z,0) (5.13c)

∂x4(z, s)
∂z

= −
s
µ2

x4(z, s) +
1

µ2
x4(z,0) (5.13d)

xb(s) =
1

s − m1
xb(0) (5.13e)

By solving the above ODE, a frequency-domain solution of the distributed digester

system is finally obtained as follows:[
x1(z, s)
x2(z, s)

]
= eMz

[
x1(0, s)
x2(0, s)

]
−

∫ z

0
eM(z−η)V−1

0

[
x1(η,0)
x2(η,0)

]
dη (5.14a)

x3(z, s) = e−
s
µ1

z x3(0, s) +
∫ z

0
e−

s
µ1
(z−η) 1

µ1
x3(η,0)dη (5.14b)

x4(z, s) = e−
s
µ2

z x4(0, s) +
∫ z

0
e−

s
µ2
(z−η) 1

µ2
x4(η,0)dη (5.14c)

where

V0 =

[
−vc 0
0 −v f

]
,B0 =

[
s − J11 −J12

−J21 s − J22

]
,M = V−1

0 B0 (5.15)

For simplicity, one can introduce the following notations in order to determine the

resolvent operator:

eMz =

[
M11(z, s) M12(z, s)
M21(z, s) M22(z, s)

]
(5.16)
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After further manipulations, the closed-form analytical solutions of the state evolution

matrix can be arranged as follows:

M11(z, s) = e
Gz

2vcvf

[
K
F sinh( Fz

2vcv f
) + cosh( Fz

2vcv f
)

]
M12(z, s) =

2J12v f
F e

Gz
2vcvf sinh( Fz

2vcv f
)

M21(z, s) =
2J21vc

F e
Gz

2vcvf sinh( Fz
2vcv f
)

M22(z, s) = e
Gz

2vcvf

[
−K

F sinh( Fz
2vcv f
) + cosh( Fz

2vcv f
)

] (5.17)

where F,G,K are denoted as:

F =
√
(J11 − s)2v2

f + 2vcv f (2J12J21 + (J11 − s)(s − J22)) + (J22 − s)2v2
c

G = J11v f + J22vc − s(vc + v f )

K = J11v f − J22vc + s(v f − vc)

Therefore, with the boundary conditions given by x3(0, s) = x1(lm1, s) and x4(0, s) =

x4(lm2, s), x3(z, s) and x4(z, s) can be obtained. The resolvent operator can be expressed

as follows:

x(z, s) = R(s,A)x(η,0) (5.18)

where

R(s,A) =


R11 R12 0 0 R15

R21 R22 0 0 R25

R31 R32 R33 0 R35

R41 R42 0 R44 R45

0 0 0 0 R55


(5.19)

where 

Ri1(·) =
∫ z
0

1
vc

Mi1(z − η, s)(·)dη, i = 1,2

Ri2(·) =
∫ z
0

1
v f

Mi2(z − η, s)(·)dη, i = 1,2

Ri5(·) =
Mi2(z,s)

s−m1
(·), i = 1,2

R31(·) = e−
s
µ1

z ∫ lm1

0
1
vc

M11(lm1 − η, s)(·)dη

R32(·) = e−
s
µ1

z ∫ lm1

0
1
v f

M12(lm1 − η, s)(·)dη

R33(·) =
∫ z
0

e−
s
µ1
(z−η) 1

µ1
(·)dη

R35(·) = e−
s
µ1

z M12(lm1,s)
s−m1

(·)

R41(·) = e−
s
µ2

z ∫ lm2

0
1
vc

M21(lm2 − η, s)(·)dη

R42(·) = e−
s
µ2

z ∫ lm2

0
1
v f

M22(lm2 − η, s)(·)dη

R44(·) =
∫ z
0

e−
s
µ2
(z−η) 1

µ2
(·)dη

R45(·) = e−
s
µ2

z M22(lm2,s)
s−m1

(·)

R55(·) =
1

s−m1
(·)

(5.20)
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Now, the discrete-time operators in Equation (5.11) can be solved by straight-

forwardly substituting the above resolvent operators. Afterwards, the discrete-time

linear model is obtained:

x(z, k) = Ad x(z, k − 1) + Bdu(k) (5.21a)

y(k) = Cd x(z, k − 1) +Ddu(k) (5.21b)

with the boundary conditions Equation (5.4). It is worth noting that the uncertainty

of the sensor location lm1 and lm2 will lead to the uncertainty of the resolvent operator

and then further effects on the operators Ad, Bd, Cd and Dd.

5.3 State Estimation and Sensor Placement for the
Stochastic System

5.3.1 Discrete stochastic model formulation

In order to account for the process and measurement noise of the digester, the Kalman

filter is developed as an one-step ahead predictor. In this case, one can introduce the

bounded operators Gw accounting for spatial influence of state noise ωk at each time

instance. By assuming that there is no prior knowledge of the noise source, the

discrete-time digester system with addictive disturbances/noises is considered in the

following form:

xk = Ad xk−1 + Bduk + Gwωk (5.22a)

yk = Cd xk−1 +Dduk + vk (5.22b)

where ωk denotes process noise, which is the zero mean multivariate normal distri-

bution with covariance Qk given as ωk ∼ N(0,Qk), E[ωkω
T
j ] = Qkδk,j , and δk,j is the

Dirac delta function, i.e., δk,j = 1 if k = j and δk,j = 0 otherwise, while vk represents

measurement noise at time step k of having zero mean Gaussian white noise with

covariance Rk denoted as vk ∼ N(0,Rk), E[vkv
T
j ] = Rkδk,j , and E[vkω

T
j ] = 0. Fur-

thermore, we consider independent process noise and measurement noise. In order

to guarantee the consistency in the time instants of the discrete digester system and

the standard discrete Kalman filter structure in finite-dimensional setting, one can
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express yk by the state xk instead of xk−1 in Equation (5.21) and Equation (5.22),

which yields the following:

xk = Ad xk−1 + Bduk + Gwωk (5.23a)

yk = C̄d xk + D̄duk + vk (5.23b)

where the associated discrete-time spatial operators are denoted as follows [53]:(
Ad Bd Gw

C̄d D̄d −

)
=

(
−I + 2δR(z, δ)

√
2δR(z, δ)B

√
2δR(z, δ)G

−
√

2δCR(z,−δ) G(−δ) −

)
(5.24)

5.3.2 Discrete kalman filter design

In this section, a classical discrete-time Kalman filter is designed for the well-defined

stochastic discrete-time digester system (5.22). Kalman filter is often realized in

two steps, including a prediction step and an updating step, also referred as a priori

estimation step and a posteriori estimation step [176]. Firstly, the following notations

are introduced.
x̂−k = E[xk | y1, y2, ..., yk−1] = a priori estimate

x̂+k = E[xk | y1, y2, ..., yk] = a posteriori estimate
(5.25)

In addition, we use the term Pk to denote the covariance of the estimation error. P−k
denotes the covariance of the estimation error of x̂−k , P−k = E[(xk − x̂−k )(xk − x̂−k )

∗], and

P+k denotes the covariance of the estimation error of x̂+k , P+k = E[(xk − x̂+k )(xk − x̂+k )
∗].

We begin the estimation process with the guess of initial conditions which are

described as below: {
x̂+0 = E(x0) = x̂0

P+0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
∗] = Q0

(5.26)

Then, one has the following prior estimation or prediction step, with measurement

up to time k − 1:{
P−k = AdP+k−1A

∗
d + GwQk−1G∗w = Ad(AdP+k−1)

∗ + GwQk−1G∗w
x̂−k = Ad x̂+k−1 + Bduk

(5.27)

The posterior estimation or update step is given as follows, by using additional output

measurement yk at time instance k:
Kk = P−k C̄

∗
d (C̄dP−k C̄

∗
d + Rk)

−1 = (C̄dP−k )
∗[C̄d(C̄dP−k )

∗ + Rk]
−1

P+k = (I − Kk C̄d)P−k (I − Kk C̄d)
∗ + Kk Rk K∗k

= IP−k I∗ − Kk C̄dP−k I∗ − IP−k C̄
∗
d K∗k + Kk C̄dP−k C̄

∗
d K∗k + Kk Rk K∗k

= IP−k I∗ − Kk C̄dP−k I∗ − I(C̄dP−k )
∗K∗k + Kk C̄d(C̄dP−k )

∗K∗k + Kk Rk K∗k
x̂+k = x̂−k + Kk(yk − C̄d x̂−k − D̄duk)

(5.28)
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The basic configuration extends the design algorithm of a standard discrete-time

finite-dimensional Kalman filter [176]. Compared to the general matrix forms of

state space representation in finite-dimensional systems, the discrete spatial operators

(Ad,Bd, C̄d, D̄d ,Gw) need to be treated carefully as they are induced by Cayley-Tustin

time discretization. In addition, the covariances P−k and P+k are two-dimensional and

self-adjoint with spatial characteristics.

5.3.3 Optimal sensor location

The basic idea of optimal sensor selection is to select the sensor locations among a

given finite location set, which provides information about the dynamic system. To

realize this goal, the optimal sensor selection can be formulated as an optimization

problem, aiming to minimize a given objective function related to the dynamic char-

acteristics of the system. As we mentioned earlier, most of the previous contributions

in terms of the sensor selection for DPS mainly consider the spectral systems, with

less attention on the non-spectral systems. Thus, the optimal sensor selection is in-

vestigated for the continuous pulp digester described by the first-order hyperbolic

PDEs to determine the appropriate sensor location from a set of candidate locations

of the temperature sensors. Meanwhile, in order to compare the selection results of

sensor location based on different criteria, a general model of plug flow reactor which

is described as first order hyperbolic PDE system is investigated in this chapter.

A simple model of the plug flow reactor with constant transport velocity v and

spatial function ψ associated with linearized kinetics of the chemical reaction along

the reactor can be described by the following equations:

xt(z, t) = −v
∂x(z, t)
∂z

+ ψ(z)x(z, t) + b(z)u(t) (5.29a)

y(t) = Cx(z, t) (5.29b)

x(0, t) = 0, x(z,0) = x0 (5.29c)

where x(·, t) ∈ L2((0,1),R) is the system state. The actuation distribution function

b(z) is assumed spatially uniform, which accounts for the uniform cooling with the

jacket fluid flow. The point measurement is specified with the operator C, which

depends on the sensor location lm, and it can be denoted as C( f (z)) =
∫ l
0
δ(z −

lm) f (z)dη. One can further define the spatial linear operator A(·) = −v ∂(·)∂z + ψ(z)(·)
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with a domain D(A) = {φ(z) ∈ L2(0,1)|φ(z) is abs. cont.,
dφ
dz ∈ L2(0,1), φ(0) = 0},

where abs.cont. denotes that φ is absolutely continuous.

Considering the system without state and measurement disturbances, and the

observability gramian can be evaluated in sensor’s potential position by solving the

Lyapunov equation. In this case, the observability gramian is well-defined as Lcψ =

lim
τ→∞

∫ τ

0
T(t)∗C∗CT(t)ψdt, where A generates a C0 semigroup T(t). Then, if T(t) is

strongly stable, Lc is the unique solution of the continuous-time observation Lyapunov

equation A∗Lcϕ + LcAϕ = −C
∗Cϕ, ϕ ∈ D(A), where ϕ is a spatial function [100].

In order to obtain Lc, the adjoint operator A∗ needs to be found using the inner

product formula, 〈Aϕ, φ〉 = 〈ϕ,A∗φ〉, and is A∗(·) = −v ∂(·)∂ζ + ψ
∗(z)(·) with a domain

D(A∗) = {φ(z) ∈ L2(0,1)|φ(z) is abs. cont.,
dφ
dz ∈ L2(0,1), φ(1) = 0}. The observability

gramian can be obtained further by substituting operators A and A∗ into the above

Lyapunov equation and rearrange as:

∂Lc

∂z
= −

2ψ

v
Lc −

1

v
C∗C, Lc ∈ D(A

∗) (5.30)

Then, the trace norm (nuclear norm) of the observability is utilized to quantify

observability for different sensor location, which has been found to be one of the

most meaningful measures of observability because it takes the observability of entire

system into account [177]. However, when the system is corrupted by disturbances,

if the point of maximum observability still the best locations from the viewpoint of

estimation error. We introduce the following algorithm to handle such situation.

The objective is to minimize the steady-state error variance of the estimated states,

which is in the nuclear norm [67]. The value of steady-state error variance is dependent

on the measurement operator C, and hence on the number of sensors, as well as on

the sensor noise covariance Rk . Thus, minimizing the steady-state error variance is

a reasonable design goal when it comes to the sensor location selection. The sensor

locations are defined as the discrete optimization variables and the constraints are

typically the given sensor number.

min
ϑ∈Ωn

‖Pss(ϑ)‖1 (5.31a)

s.t. g(ϑ) = n, (5.31b)

ϑlb ≤ ϑ ≤ ϑub, (5.31c)
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ϑ ∈ Z+. (5.31d)

where ϑ = {θ1, θ2, ..., θn} represents the sensor locations defined by a set of integers,

‖Pss(ϑ)‖1 is the nuclear norm of steady-state error variance, g(ϑ) denotes the total

number of sensor locations, n is the given sensor number, ϑlb and ϑub are the lower

and upper bounds of ϑ, respectively, and Z+ denotes the set of positive integers.

The minimum solution of Equation (5.31) is then the optimal sensor configuration as

follows:

ϑ∗ = arg min
ϑ∈Ωn

‖Pss(ϑ)‖1 (5.32a)

s.t. g(ϑ) = n, (5.32b)

ϑlb ≤ ϑ ≤ ϑub, (5.32c)

ϑ ∈ Z+. (5.32d)

Problem (5.32) can be solved by the following procedure.

1) determine the feasible sensor location set Ωn

2) For every sensor configuration ϑ ∈ Ωn, solve the problem (5.32).

3) The optimal sensor location of the considered system is obtained as ϑ∗.

For the considered pulp digester, the possible sensor locations are assumed dis-

tributed in the range [0,5] and shown in Table 5.1. In the simulation section, the

optimal locations of measurement sensors will be discussed further based on the pro-

posed selection procedure.

Table 5.1: Locations considered for each sensor

Temperature locations of wood chips/lm1 Temperature locations of free liquor/lm2

0.2, 1, 2, 3, 4, 5 0.2, 1, 2, 3, 4, 5

5.4 Simulation Results

In this section, we provide numerical examples associated with the discrete-time

Kalman filter design and sensor location selection. First, the developed infinite-

dimensional discrete-time Kalman filter for the digester system is simulated and the

corresponding results are discussed in detail. Two cases are further considered, includ-

ing the spatially distributed process noise and the spatially centered process noise.
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Then, the general case of first-order hyperbolic PDE discussed in Section 5.3.3 is

revisited to demonstrate the performance of the proposed filter and compare the re-

sults of sensor location by using different criteria, including maximum observability

and minimum variance estimation. The numerical simulation is further investigated

to determine the optimal sensor placement, which might provide guidance for sensor

location selection and efficient monitoring of digester systems in practice.

5.4.1 Performance of state estimation for pulp digester

The values of all system parameters and for simulations are listed in Table 5.2. For the

initial conditions of the dynamic system, we consider x1(z,0) = 0.18sin(0.4πz), x2(z,0) =

0.87sin(0.4πz). As for the Cayley-Tustin time discretization, we choose h = 2s at the

time discretization interval. The spatial discretization interval is taken as ∆z = 0.05.

The time delays (τ1, τ2) are considered as (30,30), which has been demonstrated with

a full-scale digester [172]. Firstly, the open-loop temperature perturbations of cook

zone are simulated in Figure 5.4 with the activated control action u(t) = 4sin(0.05t).

It is apparent that the behavior of the state evolution profile follows the periodic wave

trend induced by the given input.

Table 5.2: Notation and values of parameters [2]

Process parameters Notations Numerical Values
Volumetric flow rate of chip Vc 0.0267 m3/min

Volumetric flow rate of
free liquor Vf 0.09 m3/min

Digester cross sectional area A 21 m2

Interphase heat-transfer coefficient U 827 k J/min · K · m3

Heat capacities of the wood Cps 1.47 k J/kg · K
Heat capacities of the liquor Cpl 4.19 k J/kg · K
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Figure 5.4: Perturbations of open-loop state profiles

Performance of Discrete Kalman Filter

The developed discrete-time Kalman filter configuration is applied to the stochastic

linear infinite-dimensional discrete-time digester system (5.23), and the performance

is analyzed. In addition, the sensor location is first considered at the bottom of

cook zone, that means lm1 = lm2 = l. Based on that, two different disturbances are

considered: spatially distributed and centered disturbance. In both cases, the plant

and measurement noises, we take ωk ∼ N(0,Qk), E[ωkω
T
j ] = Qkδk,j , vk ∼ N(0,Rk),

E[vkv
T
j ] = Rkδk,j , E[vkω

T
j ] = 0 with Qk = 0.005 and Rk = diag(1,2). The estimated

initial conditions are x̂1(z,0) = 0.16sin(0.4πz) and x̂2(z,0) = 0.8sin(0.4πz).

Case 1: Spatially distributed process noise

In this case, the spatially distributed noise is considered first for the description

of the noise on the state distribution in the spatial domain, which is defined as

g(z) = 1 + 30sech(100(z − 0.1)). The operator is defined as G(z) = [1,1,1,1,1]T ,

which means the process noise exists the whole process.

Profiles of the state with noise and the estimated state are presented in Figure 5.5

and Figure 5.6. Compared with Figure 5.4, it can be seen that there are some noisy

oscillations in the two states induced by the process noise and measurement noise,

and the developed Kalman filter is capable of reconstructing the entire spatiotemporal

state profile and reducing noises present in the process and measurement simultane-

ously. Moreover, in Figure 5.7, the filtering performance of outputs is presented,

including the temperature of wood chips and free liquor, respectively. The filtered
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output of interest matches perfectly with the one in the noise-free system, largely

eliminating the noises involved in the stochastic digester system. The measurement

error and the estimation error are utilized to evaluate the estimation accuracy of the

designed Kalman filter, as shown in Figure 5.8. It is clear that the designed filter

can reduce the estimation error to an acceptable range despite the large measurement

error.

Figure 5.5: Profile of the states with noise

Figure 5.6: Profile of the estimated states
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Figure 5.7: Filtering performance of outputs
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Figure 5.8: The measurement error and estimation error for case 1

Case 2: Spatially centered process noise

In this case, the spatially centered process noise is considered and we assume

the noise only appears in the temperature of wood chips. The centered disturbance

illustrated as function g(z) = 20sech(100(z − 0.2)), and the operator is defined as
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G(z) = [g(z),0,g(z),0,0]T . Different from case 1, we assume that the process noise

appears when measuring the temperature of the wood chips.

Figure 5.9 shows the state profiles with noise and the estimated state using the

designed Kalman filter. It is apparent that the temperature profile of wood chips is

quite noisy in Figure 5.9 (a), while after applying the developed discrete-time Kalman

filter, one can directly see that the noise has been filtered out, and the original

state evolution is revealed as shown in Figure 5.9 (b). Although the temperature of

wood chips and free liquor is coupled, in this case, the temperature of free liquor is

relatively less affected by noise, therefore the profile of the estimated state for x2 is

not provided. By comparing the filtered state evolution with the original one (Figure

5.4), the effectiveness of the proposed discrete Kalman filter can be verified. From

the comparison of outputs in Figure 5.10, one can notice that the measured output

profiles in the two figures are quite noisy, as shown in the black dashed lines, and the

proposed Kalman filter can smooth out the noises in outputs and make the filtered

output converge to real output profiles, as shown in green dashed lines and red solid

lines, respectively.

To quantity the estimation performance of the proposed Kalman filter, the mea-

surement error and the estimation error are calculated based on the actual outputs, as

shown in Figure 5.11. The measurement error is defined as the difference between the

measurement and the actual output, and the estimation error denotes the difference

between the filtered output using the Kalman filter and the actual output. The mea-

surement errors of both outputs are relatively random and large. After applying the

Kalman filter, the estimated temperature of wood chips is close to the real one as the

estimation error is smooth and relatively small. Although the measurement error is

largest when the time lag is around 55s, the Kalman filter can also achieve relatively

better estimation. As for the temperature of free liquor, the estimation performance

is much better since the estimation error converges to zero within 60s which might

be caused by the spatially localized noise only appearing in the temperature of wood

chips or x1.
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Figure 5.9: Profiles of the state with noise and the estimated states
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Figure 5.10: Filtering performance of outputs
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Figure 5.11: The measurement error and estimation error for case 2

5.4.2 Determination of optimal sensor placement

Sensor location selection for the first order hyperbolic PDE

In this section, the proposed Kalman filter design and sensor selection are applied

to the scalar hyperbolic system presented in Section 5.3.3. The discrete-time linear

hyperbolic PDE system corresponding to Equation (5.29) is obtained by applying

Cayley-Tustin transformation and is given in the following form:

x(z, k) = Ad x(z, k − 1) + Bdu(k) + ω(k), x(z,0) = x0 (5.33a)

y(k) = Cd x(z, k) +Ddu(k) + v(k) (5.33b)
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where 

Ad(·) = [δI − A]−1[δI +A](·)

= −I(·) + 2δ
[∫ z

0
1
v (·)e

− 1
v (ψ−δ)ηdη

]
e
1
v (ψ−δ)z

Bd =
√

2δ[δI − A]−1B(z)

=
√

2δ
[∫ z

0
1
vB(η)e

− 1
v (ψ−δ)ηdη

]
e
1
v (ψ−δ)z

Cd(·) = −
√

2δC[−δI − A]−1(·)

= −
√

2δ
[∫ lm

0
1
v (·)e

− 1
v (ψ+δ)ηdη

]
e
1
v (ψ+δ)lm

Dd = C[−δI − A]−1B +D

=
[∫ lm

0
1
vB(η)e

− 1
v (ψ+δ)ηdη

]
e
1
v (ψ+δ)lm

(5.34)

The simulation result of the Kalman filter design given Equations (5.26)-(5.28) for

the discrete scalar hyperbolic PDE system is shown in Figure 5.12. In this case, the

spatial parameter in the operator A is chosen to be ψ = 0.5, while the input operator

B(0 < z < 1) = 1 represents spatially uniform realized heat transfer across the reactor

shell. The time varying input is considered as u(k) = 3sin(2πk), the potential position

of the sensor location lm is considered as [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1].

The initial conditions are taken as x0 = 5sin(2πz) and x̂0 = 3sin(4πz). The process

noise and measurement noise are considered as ωk ∼ N(0,Qk) with Qk = 0.05, and

vk ∼ N(0,Rk) with Rk = 0.1.

Figure 5.12: Profiles of the state with noise and the estimated state

Figure 5.13 illustrates the relationship between the trace norm of the observability

and the single sensor’s location along with the spatial position. The steady-state of

the trace norm of estimation error covariance subject to the location of the sensor is

also shown in Figure 5.13. As it is expected, the trace norm of observability gramian
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increases as the sensor moves towards the end of the reactor and reaches a maximum

at the last point in space. This confirms the application-based and practical reasoning

that sensor placement at the end of the tubular reactor is the best choice. However,

the trace norm of estimation covariance shows roughly a quadratic relationship with

the sensor location and reaches the minimum point at 0.7. The results indicate that for

the scalar hyperbolic PDE, maximizing observability does not generally guarantee the

minimum variance estimation. In the other words, it also implies that the maximum

observability is not the best criteria for the sensor location from minimizing estimation

error viewpoint.
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Figure 5.13: Comparison of the trace of steady-state estimation error covariance and
trace of observability versus the spatial location of the sensor

Sensor location selection for the pulp digester

We performed several simulation runs to evaluate the performance of the proposed

method for computing optimal locations of measurement sensors. Each sensor has 6

possible locations distributed in the range [0,5] as already shown in Table 5.1.

Based on the algorithm shown in Section 5.3, we compute the optimal sensor

locations by minimizing the proposed cost function. By solving Equation (5.32), the

optimal sensor locations can be determined. In this case, the optimal sensor locations

were found at ϑ∗ = [1,3], where the minimum cost was 181.5726. Figure 5.14 shows

the distribution of the ‖Pss‖1, and it can be seen that ‖Pss‖1 is relatively large when

the temperature sensor of free liquor is located close to the upper boundary (i.e., lm2
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is small and close to 0). When the sensor is located far from the upper boundary,

the value of trace becomes smaller and not much different from each other. The

minimum value appears when the temperature sensor of free liquor is located at 3m.

Even though the variation of trace norm of different temperature sensor locations

is not changed much, the H-factor value will change sensitively because the cooking

temperature has an exponential relationship with it. The H-factor is an important

pulping variable that combines cooking temperature and time into a single variable

that indicates the extent of reaction [178].

Figure 5.14: The trace norm values of different sensor locations under the considera-
tion of given sensors location

This framework offers a planning and implementation view of distributed sensor

locations in which a possible number of sensors and placement. First, the sensor

location selection for the tubular reactor or pulp digester is not straightforward, which

indicates that it is not recommended to select the sensor position at the very end

based on intuition, especially in the presence of process noise. This result has been

demonstrated through two examples in this work, which is consistent with the results

proposed in the reference [67, 179]. Secondly, the locations corresponding to maximum

observability are not always the best from the viewpoint of estimation error, especially

when the system is noisy in most practical applications. Thirdly, the optimal sensor

locations are recommended at 3m for the temperature sensors of free liquor and wood
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chips based on the considered model, parameters, noise information, and candidate

sensor locations. When it comes to the industrial application, engineers can apply

this framework to determine the appropriate sensor location from a set of candidate

locations of the temperature sensors based on the information of the sensor type and

the noise source conditions. As a result, based on the selected sensor location, the

control module can be integrated to control the cooking zone temperature to stabilize

pulp quality and/or maximize the production rate with more accuracy. However,

when the feasible sensor location set has relatively large candidates, the computational

cost will also increase by using the proposed method. The computation issue will be

addressed in future work.

5.5 Conclusions

In this chapter, the state estimation and sensor placement for the stochastic contin-

uous pulp digester with measurement delay were investigated from the monitoring

point of view. The temperature system of a continuous pulp digester was modeled

by two coupled hyperbolic partial differential equations and an ordinary differential

equation, and there exists the measurement delay at the considered outputs. In order

to realize discrete implementation, the Cayley-Tustin transform was utilized to map

the continuous-time system to the discrete-time model representation without spatial

discretization and model reduction which preserves the input-output stability of the

plant. The discrete-time infinite-dimensional Kalman filter was applied to estimate

the system states using the process measurements. The selection of sensor location

was then addressed based on the estimator design and investigated by minimizing the

variance of estimate error. The effectiveness and feasibility of the proposed Kalman

filter were verified by a set of simulations, and this framework offers a planning and

implementation view of distributed sensor locations in which a possible number of

sensors and placement.
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Chapter 6

A Robust Model Predictive Control
Strategy for Multi-Model
Infinite-Dimensional
Transport-Reaction Systems

6.1 Introduction

MPC is one of the techniques of optimal control, and also known as the open-loop

optimal feedback control as the open-loop optimal control computation is repeated

with the feedback update [180]. Over the past decades, MPC has become one of the

dominant methods of chemical process control in terms of successful industrial appli-

cations. However, the above conventional MPC may lead to the predicted behavior is

not identical to actual behavior in the presence of uncertainty. The uncertainty can

arise in many different ways, such as the model of the system is inaccurate, the sys-

tem may exist unknown disturbance, or the state of the system may not be perfectly

known. A typical consideration is a linear time-invariant system with uncertainties

in the feedback loop [162]. A multi-plant description also be introduced when model

uncertainty in parameterized by a finite list of possible plants[181]. The polytopic

uncertainty was further defined when the real system within the convex hull defined

by the list of possible plants [162]. Also, the uncertainty was considered when the

unknown disturbance occurs which is bounded in some norm.

Therefore, the robust control strategies need to be considered which concern that

the systems are uncertain in some sense. A robust controller indicates that it is able
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to guarantee the closed-loop stability for different operating conditions of the pro-

cess. Previous studies, including a survey by Qin and Badgwell [17], have highlighted

the significance of robust stability in industrial MPC applications, with current ap-

proaches relying on extensive closed-loop simulations prior to implementation and de-

tuning during commissioning. Researchers such as Zafiriou and Marchal have explored

the contraction properties of MPC to establish necessary and sufficient conditions for

robust stability, particularly with input and output constraints [182, 183]. Badgwell

has developed robust stability conditions specifically for single-input, single-output

finite impulse response plants [181]. Broadly, the existing literature on robustness in

MPC can be grouped into the following general categories.

The first category is to realize robust stability by solving a min-max optimization

problem that is minimize a control objective function with the worst possible scenario.

Different min-max control algorithms were proposed for open-loop stable systems

with time-invariant and time-varying parameter uncertainties [180]. A robust MPC

algorithm was presented for stable linear systems with continuous uncertainty by

adding cost contracting constraints that prevent the sequence of optimal controller

costs from increasing for the true plant [184]. A min-max robust MPC was proposed

to handle the output tracking case where the plant steady state is unknown [185].

However, one of the drawbacks of the min-max approaches is the obtained control

performance is very conservative due to the condition of stability guarantee. Other

drawback is the computational intensity since the resulted optimization problems are

very expensive to solve on-line. Therefore, from the process industry application point

of view, this control method might become infeasible when it comes to the practical

implementation.

The second category is the state-contracting based method. Khotare et al. [162].

Zheng [186] and Michalska and Mayne [187] have described ways of including the

state constraints that impart robustness to MPC algorithms. A robust MPC strategy

was proposed for the polytopic uncertain models based on an infinite-horizon linear

quadratic regulator (LQR), and further extended to the constrained case by involving

the linear matrix inequality (LMI) constraints [162]. Zheng [186] imposes a state

contraction constraint that requires the largest possible terminal state to be smaller

than the initial state at the end of some user specified horizon. Mayne and Michalska
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[187] were able to robustly stabilize nonlinear processes by using a terminal state

constraint that ensures the process eventually enters a region in input space that is

equivalent to the unconstrained problem. Although the stability can be guaranteed

for stable, unstable systems with some classes of model uncertainty, it results a quite

conservative control law since the control actions are obtained from a fixed state-

feedback gain through the infinite prediction horizon. Additionally, it may cause

infeasibility due to the hard state contraction constraints.

The third category is the one based on the cost-contraction formulation, proposed

in the seminal work of Badgwell [181]. This method has been specifically developed

for regulating the operation of open-loop stable systems with multi-plant uncertainty.

Its stability is achieved through the incorporation of constraints into the control

optimization problem, which prevents the controller cost functions from increasing at

consecutive sampling steps [188]. In the case of systems with unmeasured disturbances

and the same type of model uncertainty, Odloak extended the aforementioned method

to address output tracking [185, 48]. The resulting MPC controller is offset-free, as

it utilizes a state-space model based on the incremental form of the system inputs,

eliminating the need for an intermediate layer in the control structure to compute a

feasible steady state, as proposed in Kassmann, Badgwell, and Hawkins [189].

Compared to the aforementioned contributions on RMPC for finite-dimensional

systems, relevant studies on the RMPC design for infinite-dimensional systems have

attracted less attention. Nevertheless, the underlying fact is that the majority of

transport-reaction processes described by PDE models exhibit uncertainty, i.e., un-

known or partially known time-varying process parameters like reaction rate. Pres-

ence of uncertain variables and unmodeled dynamics, if not taken into account in the

controller design, may lead to poor performance of the controller or even to closed-

loop instability. Considering that, a robust nonlinear MPC for nonlinear convection-

diffusion-reaction systems was proposed, utilizing a set of reduced order approxima-

tions of the plant reconstructed on-line through projection methods on proper orthog-

onal decomposition (POD) basis functions [49]. A robust model predictive control

methodology was designed to a chemical fixed-bed reactor described by a polytopic

family of linearized hyperbolic partial differential equations (PDEs), which was ini-

tially transformed into the set of ODEs by the method of characteristics [190]. A
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tube-based model predictive control scheme for an active vibration damping control

of stacker cranes was proposed [191]. However, most of these contributions are based

on continuous-time infinite-dimensional models or continuous-time finite-dimensional

models after applying some forms of model reductions. Hence, the design of RMPC

schemes with the guarantee of stability remains an open field for DPS, mostly when

the infinite-dimensional model shall be considered in the problem formulation.

Motivated by these considerations, it is intended in this chapter the development

of a robustly stabilizing MPC strategy for distributed parameter transport-reaction

systems, which properly accommodates the plant uncertainty. Specifically, we con-

sider the model uncertainty arises when some parameters of system are not exactly

known, but lied in a set which can be characterized in some quantitative way. The

main objective of is to develop a robust MPC synthesis that allows explicit incorpo-

ration of the model uncertainty description into the problem formulation.

The major features of the proposed algorithm are summarized as follows:

1) The model uncertainty under the DPS setting incorporated into the controller

formulation is one based upon the multi-model infinite-dimensional setting.

2) The stabilizing MPC algorithm developed by [38] for infinite-dimensional mod-

els is extended to the robust case concerning the multi-plant model uncertainty.

3) The robustness is guaranteed by restricting the future behavior of the controller

cost function for each plant in the uncertainty description.

4) Properties of systems under the proposed RMPC are discussed, including al-

gorithm feasibility, and closed-loop convergence of the infinite-dimensional system.

The rest of this chapter is organized into 6 sections: Section 6.2 formulates the

multi-model infinite-dimensional model. Section 6.3 presents the proposed RMPC

synthesis. Section 6.4 analyzes closed-loop properties and finally, typical hyper-

bolic/parabolic PDE examples are provided in Section 6.5.

6.2 Multi-Model Description

Transport-reaction processes represent the core of relevant first principle based models

in chemical engineering practice. The prominent feature of transport-reaction systems

is that their models belong to the class of distributed parameter systems (DPS), which
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are given by partial differential and/or delay equations.

6.2.1 Continuous-time infinite-dimensional model

The uncertainty in the dynamics of the system is assumed to be of the multi-plant type

where the true dynamics is unknown but belongs to a finite set of possible dynamics.

In this case, one can consider a finite set of p models θ = (Aθ,Bθ,Cθ) defined as

Ω := {θ1, · · · , θp} and denote each individual plant in the set as θi = (Ai,Bi,Ci).

Typical linear infinite-dimensional continuous-time transport-reaction systems can

be extended to a multi-model formulation and described by the following general form

as:

Ûx(ζ, t) = Aθ x(ζ, t) + Bθu(t), x(ζ,0) = x0 (6.1)

y(t) = Cθ x(ζ, t)

where spatial state is x(ζ, t) ∈ L2((0, l),X), where X is being defined as separable

Hilbert space. The input is u(t) ∈ Lloc
2 ([0,∞),U) and the U is real Hilbert space,

y(t) ∈ Lloc
2 ([0,∞),Y ) and Y is real Hilbert space. Aθ : D(Aθ) ⊂ X 7→ X is an

infinitesimal generator of a C0-semigroup TAθ (t) on X. The operators Bθ ∈ L(U,X),

and Cθ ∈ L(X,Y ) are assumed to be bounded operators.

Let us assume that we have selected a model from the set Ω that most likely

represent the plant in its actual operation point, referred to as the nominal model

θn ∈ Ω. We also assume that the true plant model is θt such that θt ∈ Ω, although

we do not know which model of set Ω is the true one.

Assumption 1. Each plant θi is stable or exponentially stabilizable. Moreover,

it is assumed that the state of the real plant is prefect measurable.

6.2.2 Discrete-time infinite-dimensional model

Based on the continuous-time infinite-dimensional model Eq. (6.1), we introduce the

Cayley-Tustin discretization framework to transform the continuous system to the

discrete one. For a given time discretization interval h > 0 on t ∈ ((k − 1)h, kh), and
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for k ≥ 1 the Cayley-Tustin discretization is given by:

x(kh) − x((k − 1)h)
h

≈ Aθ
x(kh) + x((k − 1)h)

2
+ Bθu(kh)

y(kh) ≈ Cθ
x(kh) + x((k − 1)h)

2

(6.2)

This discretization framework follows an implicit mid-point integration rule, and is

a symmetric and symplectic integration scheme leading to a structure- and energy-

preserving time discretization. The discrete input is given by the mean value sampling

as u(kh)
√

h
= 1

h

∫ kh
(k−1)h u(t)dt [117] . It has been shown in [14] that u(kh)

√
h

converges to u(t)

as h→ 0, and similar expressions hold for yk . Through some basic computations, the

following infinite-dimensional discrete-time multi-model for system (6.1) is obtained:

xk = Ad(θ)xk−1 + Bd(θ)uk

yk = Cd(θ)xk−1 +Dd(θ)uk

(6.3)

where one denotes Ad(θ), Bd(θ), Cd(θ), Dd(θ) are the discrete-time spatial operators

with the expressions as follows:[
Ad(θ) Bd(θ)
Cd(θ) Dd(θ)

]
=

[
−I(·) + 2σR(σ, θ)

√
2σR(σ, θ)Bθ√

2σCθR(σ, θ) Gθ(σ)

]
(6.4)

where σ = 2/h and R(σ, θ) represents the resolvent operator R(σ, θ) = (σI − Aθ)
−1

with s evaluated at σ. Gθ(σ) denotes the transfer function from the input u(t) to

the controlled output y(t) evaluated at σ. In Eqs. (6.3) and (6.4), we ease the h for

notational simplicity.

An important concept is that most physically realizable dynamical systems do not

typically include a feedthrough operator, which represents the instantaneous trans-

fer of a signal from the input to the output. The mapping between continuous and

discrete infinite-dimensional systems is referred as the Cayley-Tustin discretization

method. Another significant property of this discretization method is that it does

not alter the nature of the transformed system. Specifically, the conventional ap-

plication of forward in time Euler discretization may potentially convert a stable

continuous system into an unstable discrete system, whereas backward in time Euler

discretization may transform an unstable system into a discrete, stable one.
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6.3 RMPC Design

As presented in [38], at a given sampling time k, the cost function of a conventional

MPC controller (which require the θ to be completely deterministic) for the infinite-

dimensional system is given by:

J(uN ) =

∞∑
j=0

〈yk+ j |k,Qyk+ j |k〉 + 〈uk+ j |k,Ruk+ j |k〉 (6.5)

where Q and R are positive self-adjoint weights on the outputs yk+ j |k and inputs uk+ j |k ,

respectively. Here it is assumed for simplicity that U and Y are (finite-dimensional)

real-valued spaces.

The infinite-horizon objective function can be cast into a finite-horizon objective

function under certain assumptions on the inputs beyond the control horizon. Fur-

thermore, a penalty term needs to be added to the objective function to account for

the inputs and outputs beyond the horizon.

J(uN ) =

N−1∑
j=0

〈yk+ j |k,Qyk+ j |k〉 + 〈uk+ j |k,Ruk+ j |k〉 + 〈xk+N−1|k, Q̄xk+N−1|k〉 (6.6)

In the following, the conventional MPC is extended to the robust case where

the multi-plant infinite-dimensional representation Eq.(6.3) is adopted. In this way,

the robust MPC finds the optimal input uN that minimize the nominal model cost

function with given Q and R:

J(uN, θn) = min
uN

N−1∑
j=0

〈yθn,k+ j |k,Qyθn,k+ j |k〉+〈uk+ j |k,Ruk+ j |k〉+〈xθn,k+N−1|k, Q̄(θn)xθn,k+N−1|k〉

(6.7a)
s.t. xθi,k+ j = Ad(θi)xθi,k+ j−1 + Bd(θi)uk+ j, θi ∈ Ω (6.7b)

yθi,k+ j = Cd(θi)xθi,k+ j−1 +Dd(θi)uk+ j, θi ∈ Ω (6.7c)

J(uN, θi) ≤ J(ûN, θi), θi ∈ Ω (6.7d)

umin ≤ uk+ j ≤ umax (6.7e)

ymin ≤ yθi,k+ j ≤ ymax, θi ∈ Ω (6.7f)

xθi,−1 = xθt , θi ∈ Ω (6.7g)

where uN = {uk+0|k uk+1|k · · · uk+N−1|k}, which is denoted as Uk . In Eq. (6.7d), ûN

is referred to as the shifted control sequence at time k, which is obtained based on
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a solution to the same problem at time k − 1, also denoted as Ûk . It is a sequence

made by shifting one step ahead the optimal sequence U∗k−1 and adding in the tail

the admissible equilibrium input at time k − 1. In this case, Ûk is given by:

Ûk = PU∗k−1

P =



0 I · · · 0 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 I
0 · · · · · · 0 0


(6.8)

In the robust MPC formulation, Eqs. (6.7b) and (6.7c) are the state-space models

in the set Ω with the initial condition Eq. (6.7g). Eqs. (6.7e) and (6.7f) denote the

input and output constraints, respectively. Eq. (6.7d) is the robustness constraint for

i = 1, · · · , p, which ensures that the optimal plant cost does not exceed the feasible

plant cost at each time step k. Alternatively, it requires the cost function values for

each plant in the set Ω do not exceed the cost values computed using the current

measured state and the shifted input sequence. Although the objective function of

the controller is based on the nominal model, the robustness constraints are imposed

on all the elements models of Ω thus assuring the robustness of the controller. In the

ensuring section, we will demonstrate the feasibility of the shifted control sequence

Ûk at each time step k.

Remark: In the robustness constraint, Q̄(θi) is considered to account for all

the possible plants in the set, which can be obtained from the positive self-adjoint

solution of the discrete-time Lyapunov equation:

A∗d(θi)Q̄(θi)Ad(θi) − Q̄(θi) = −C
∗
d (θi)QCd(θi), i = 1, · · · , p (6.9)

or equivalently the continuous-time Lyapunov equation:

A∗(θi)Q̄(θi) + Q̄(θi)A(θi) = −C
∗(θi)QC(θi), i = 1, · · · , p (6.10)

on the dual space of X−1.

Remark: At each sampling time k, the feasible plant cost (right hand side of Eq.

6.7d) is constant, and the optimal plant cost (left hand side of Eq. 6.7d) is a strictly

convex function of the input Uk . The objective function in Eq. 6.7 is also convex,
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which means that the RMPC algorithm is a convex program and there exist a unique

optimal input U∗k .

Remark: In the proposed RMPC framework, the current state is assumed to be

known. When it comes to the real application, a state observer can be adopted in

the controller, such as Luenberger observer, Kalman filter.

The given objective function and robustness constraint in Eq. 6.7 are quadratic

and the remaining constraints are linear, therefore the proposed RMPC consists of a

convex quadratically constrained quadratic program (QCQP), which can be written

as:

min
Uk

UT
k HθnUk + 2UT

k Fθn xθn,k

s.t. UT
k HθiUk + 2UT

k Fθi xθi,k ≤ ÛT
k HθiÛk + 2ÛT

k Fθi xθi,k, i = 1, · · · p
I
−I
G
−G

 Uk ≤


Umax

−Umin

Ymax − Sxk
−Ymin + Sxk


(6.11)

where Hθi ∈ L(U
N ) is positive and self-adjoint, which is given by:

hm,n =


D∗d(θi)QDd(θi) + B

∗
d(θi)Q̄Bd(θi) + R for m = n

D∗d(θi)QCd(θi)A
m−n−1
d (θi)Bd(θi) + B

∗
d(θi)Q̄Am−n

d (θi)Bd(θi) for m > n
h∗n,m for m < n

(6.12)

and Fθi is given by

Fθi = {Dd(θi)
∗QCd(θi)A

k−1
d (θi) + B

∗
d(θi)Q̄Ak

d(θi)}
N−1
k=1 (6.13)

The matrix Hθn and Fθn in the cost function can be obtained by substituting the

discrete operators (Ad(θn),Bd(θn),Cd(θn),Dd(θn)) of the nominal model into the ex-

pression of Eqs. 6.12 and 6.13.

The input and output constraints can be written in the form of linear inequality

in Eq. 6.11. The matrix G is a lower triangular given by

gm,n =


Dd(θi) for m = n

Cd(θi)A
m−n−1
d (θi)Bd(θi) for m > n

0 for m < n

and S = {Cd(θi)A
k−1
d (θi)}

N
k=1.

For the implementation, the obtained QCQP can be solved via nonlinear pro-

gramming, or be further cast as the following second-order cone program (SOCP),
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which, in turn, can be expressed as a semi-definite program (SDP) by writing con-

straints as a linear matrix inequality (LMI), which can be solved via SOCP or SDP

solver. In this work, the interior point method [192] via fmincon function is utilized

for implementation, which is one of the powerful general purpose solver.

min
Uk,T

2UT
k Fθn xθn,k + T

s.t.


[
2H

1
2
θn

Uk

T − 1

]
2

6 T + 1
[

2H
1
2
θi

Uk

ÛT
k HθiÛk + 2ÛT

k Fθi xθi,k − 2UT
k Fθi xθi,k − 1

]
2

6 ÛT
k HθiÛk + 2ÛT

k Fθi xθi,k

− 2UT
k Fθi xθi,k + 1, i = 1, · · · p

I
−I
G
−G

 Uk ≤


Umax

−Umin

Ymax − Sxk
−Ymin + Sxk



(6.14)

6.4 Properties of Systems Under RMPC

In this section, properties of systems under RMPC are discussed. Convergence to the

equilibrium is proven by the monotonically decreasing of the optimal cost function.

Proposition 1. If the proposed RMPC is feasible at time step k, the shifted

control sequence Ûk+1 is the feasible solution at sampling time k + 1.

Proof. The optimal solution at time step k is U∗k = {u
∗
k+0|k u∗k+1|k · · · u

∗
k+N−1|k}, and the

corresponding optimal state trajectory is denoted as X∗k = {x
∗
k+0|k x∗k+1|k · · · x

∗
k+N−1|k},

and the corresponding optimal output trajectory is Y ∗k = {y
∗
k+0|k y∗k+1|k · · · y

∗
k+N−1|k}.

The shifted control sequence at time step k+1 used in the robustness constraint Eq.

(6.7d) is Ûk+1 = {u∗k+1|k · · · u
∗
k+N−1|k 0}. Since (u∗k+n|k)

N−1
n=1 ∈ U, the input constraints is

satisfied for Ûk+1. Similarly, the output constraints is satisfied for the corresponding

shifted output trajectory (y∗k+n|k)
N−1
n=1 ∈ Y. As no model perturbation is considered, by

substituting the shifted control sequence into the discrete-time true plant model θt =

[Adt Bdt Cdt Ddt ], the corresponding shifted state trajectory can be written as X̂k+1 =

{x∗k+1|k · · · x
∗
k+N−1|k Ad x∗k+N−1|k}, and the corresponding shifted output trajectory is

Ŷ ∗k+1 = {y
∗
k+1|k · · · y

∗
k+N−1|k Cd x∗k+N−1|k} ∈ Y. Hence, the input and output constraints

satisfaction is guaranteed.
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We check the feasibility of the robustness constraint. If J(Uk+1, θi)−J(Ûk+1, θi) ≤ 0,

then Ûk+1 is a feasible solution. By using Lyapunov equation,

J(Ûk+1, θi)

=

N−2∑
j=0

〈y∗k+ j+1|k,Qy∗k+ j+1|k〉 + 〈u
∗
k+ j+1|k,Ru∗k+ j+1|k〉 + 〈Cd x∗k+N−1|k,QCd x∗k+N−1|k〉

+ 〈Ad x∗k+N−1|k, Q̄Ad x∗k+N−1|k〉

=

N−1∑
j=0

〈y∗k+ j |k,Qy∗k+ j |k〉 + 〈u
∗
k+ j |k,Ru∗k+ j |k〉 + 〈x

∗
k+N−1|k, Q̄x∗k+N−1|k〉 − 〈yk |k,Qyk |k〉

− 〈uk |k,Ruk |k〉

=J(U∗k, θi) − 〈yk |k,Qyk |k〉 − 〈uk |k,Ruk |k〉

As a result of Q and R are positive definite, we have J(Uk+1, θi) − J(Ûk+1, θi) ≤ 0.

Finally, it can be concluded that Ûk+1 is a feasible solution at time k + 1. �

The following theorem shows that the control algorithm produced by the solution

of Eq. 6.7 provides convergence of the true plant/system output to the origin.

Theorem 1. The optimal plant cost J̄k is monotonically decreasing along the

predicted trajectory, and J̄∗k+1− J̄∗k ≤ −〈yk |k,Qyk |k〉−〈uk |k,Ruk |k〉, and as a consequence,

will converge to zero.

Proof. Let us assume that we have found the optimal solution at the initial time

step k = 0, denoted as U∗0 = {u
∗
0|0

u∗
1|0
· · · u∗N−1|0

}. The corresponding optimal state

trajectory and optimal output trajectory are denoted as X∗0 = {x
∗
0|0

x∗
1|0
· · · x∗N−1|0

}

and Y ∗0 = {y
∗
0|0

y∗
1|0
· · · y∗N−1|0k}, respectively.

At time step k = 0, the optimal plant cost is given by

J̄∗0 =
N−1∑
j=0

〈y∗j |0,Qy∗j |0〉 + 〈u
∗
j |0,Ru∗j |0〉 + 〈x

∗
N−1|0, Q̄x∗N−1|0〉 (6.15)

Assume that the first optimal input u∗
0|0

is injected into the plant. The feasible in-

put is taken as Û1 = {u∗1|0 · · · u
∗
N−1|0

0}, and the shifted state trajectory and output tra-

jectory are written as X̂1 = {x∗1|0 · · · x
∗
N−1|0

Ad x∗N−1|0
}, Ŷ0 = {y

∗
1|0
· · · y∗N−1|0k Cd x∗N−1|0

},
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respectively. The feasible plant cost at time step k = 1 can be written as

ˆ̄J1 =

N−1∑
j=1

〈y∗j |0,Qy∗j |0〉 + 〈u
∗
j |0,Ru∗j |0〉 + 〈Cd x∗N−1|0,QCd x∗N−1|0〉 + 〈Ad x∗N−1|0, Q̄Ad x∗N−1|0〉

=

N−1∑
j=0

〈y∗j |0,Qy∗j |0〉 + 〈u
∗
j |0,Ru∗j |0〉 + 〈Cd x∗N−1|0,QCd x∗N−1|0〉 + 〈Ad x∗N−1|0, Q̄Ad x∗N−1|0〉

− 〈y0|0,Qy0|0〉 − 〈u0|0,Ru0|0〉

(6.16)

Because for arbitrary x ∈ D(A), it satisfy Lyapunov equation. Subtract 6.15 from

6.16 to obtain

ˆ̄J1 − J̄∗0 = 〈Cd x∗N−1|0,QCd x∗N−1|0〉 + 〈Ad x∗N−1|0, Q̄Ad x∗N−1|0〉 − 〈x
∗
N−1|0, Q̄x∗N−1|0〉

− 〈y0|0,Qy0|0〉 − 〈u0|0,Ru0|0〉

= −〈y0|0,Qy0|0〉 − 〈u0|0,Ru0|0〉

(6.17)

Then we assume that the optimal solution is found at time k = 1. We know that

the plant lies in the family Ω, so the robustness constraint must be satisfied for the

actual plant at time k = 1. This implies that the optimal plant cost cannot exceed

the feasible plant cost:

J̄∗1 −
ˆ̄J1 ≤ 0 (6.18)

Combine Eq. 6.17 with Eq. 6.18 to obtain

J̄∗1 − J̄∗0 ≤ −〈y0|0,Qy0|0〉 − 〈u0|0,Ru0|0〉 (6.19)

The same argument can be repeated for all the time steps to show that

J̄∗k+1 − J̄∗k ≤ −〈yk |k,Qyk |k〉 − 〈uk |k,Ruk |k〉 (6.20)

As a result of Q and R are positive definite, the right hand side of Eq. 6.20 approaches

zero and we have J̄∗k+1 ≤ J̄∗k . This shows that the optimal plant cost is monotonically

decreasing along the predicted trajectory. Since the plant cost have zero lower bound,

the left hand side of Eq. 6.20 converges to zero as k →∞. The input and output will

converge to the origin as k →∞. �
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6.5 Simulation Results

The purpose of this section is to apply the proposed control schemes and to evaluate

their performances through simulation of a hyperbolic system and parabolic system

respectively. The nominally stabilizing MPC [38], is implemented for performance

comparison with the proposed RMPC. The parameter values in the simulation are

adopted from the publication [106].

6.5.1 RMPC for hyperbolic system

In this section, we are interested in the construction of a discrete model for the

convection dominated system, i.e., plug flow reactor. The Cayley-Tustin approach

is applied to convert the first order hyperbolic PDE from a continuous to a discrete

state space setting.

Considering the continuous model given by Eq. 6.1, which is the linear infinite-

dimensional system model on the Hilbert space L2(0,1), the spatial operators are

defined as follows:

Aθ(·) = −vθ
∂(·)

∂ζ
+ ψθ(ζ)(·),B = b(ζ),C(·) =

∫ l

0
δ(ζ − l)(·)η,D = 0 (6.21)

The spatial linear operator Aθ(·) with a domain D(Aθ) = {φθ(ζ) ∈ L2(0,1)|φθ(ζ)

is abs. cont., dφθ
dζ ∈ L2(0,1), φθ(0) = 0}, where abs.cont. denotes that φθ is absolutely

continuous. The output is taken as the state at the exit of the reactor, and one

assume that the continuous model does not contain a feedthrough term. The discrete-

time model can be obtained by applying Cayley-Tustin transformation presented in

Section 6.2.2. The resolvent operator is obtained for the scalar hyperbolic system can

be calculated through Laplace transform and expressed as follows:

R(z, δ)(·) = (δ − Aθ)
−1(·)

=

[∫ ζ

0

1

vθ
(·)e−

1
vθ

∫ η
0
(ψθ (φ)−δ)dφdη

]
e

1
vθ

∫ ζ
0
(ψθ (φ)−δ)dφ (6.22)

Substituting the resolvent operator into the expression of discrete time operators Eq.
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6.4, one can obtain the discrete time model of Eq. 6.3.

Ad(θ)(·) = [δI − Aθ]
−1[δI +Aθ](·)

= −I(·) + 2δ

[∫ ζ

0

1

vθ
(·)e−

1
vθ

∫ η
0
(ψθ−δ)dφdη

]
e

1
vθ

∫ ζ
0
(ψθ−δ)dφ

Bd(θ) =
√

2δ[δI − Aθ]
−1B(ζ)

=
√

2δ

[∫ ζ

0

1

vθ
B(η)e−

1
vθ

∫ η
0
(ψθ−δ)dφdη

]
e

1
vθ

∫ ζ
0
(ψθ−δ)dφ

Cd(θ)(·) =
√

2δC[δI − Aθ]
−1(·)

=
√

2δ

[∫ l

0

1

vθ
(·)e−

1
vθ

∫ η
0
(ψθ−δ)dφdη

]
e

1
vθ

∫ l

0
(ψθ−δ)dφ

Dd(θ) = C[δI − Aθ]
−1B +D

=

[∫ l

0

1

vθ
B(η)e−

1
vθ

∫ η
0
(ψθ−δ)dφdη

]
e

1
vθ

∫ l

0
(ψθ−δ)dφ

(6.23)

To demonstrate successful application of the robust model predictive controller,

the discretization time h = 0.05 is chosen, which implies that the δ = 40, and dζ = 0.01

is chosen for numerical integration. A uniform state weight function in the Lyapunov

function is chosen as Q(ζ) = 5, and constant spatial function B = 2 and R = 10. The

initial condition is x0 = 1 − cos(2πζ) and MPC horizon is 15. The constraints for the

input and output are given as −0.3 ≤ y ≤ 0.65 and −0.35 ≤ u ≤ 0.05.

Before proceeding with the analysis of the properties of the proposed robust MPC,

its use will be justified for this specific system through a performance comparison with

the corresponding nominally stabilizing MPC when there is a model uncertainty. To

this end, four linear models will comprise the set, including v = 1, φ = 0.5 (model

1), v = 5, φ = 2 (model 2), v = 1.5, φ = 0.5 (model 3), v = 0.8, φ = 0.5 (model 4).

Here, the nominal model used in both MPC controllers is represented by model 2 and

model 1 is assumed to represent the true process.

The resulting output and input responses are shown in Figs. 6.1. In this case,

there is a clear superiority of the robust MPC over the nominal MPC, showing that

the latter cannot satisfy the given output constraints when the controller considers

model 2 to forecast the dynamic behavior of the controlled outputs. The state with

RMPC is shown in Figure 6.2. Then, one can conclude that, although the nominal

MPC provides nominal stability, there is no guarantee that stability will be preserved

in the presence of a realistic model uncertainty.
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Figure 6.1: Comparison between the profile of a closed-loop system under the imple-
mentation of the nominal MPC and RMPC.

Figure 6.2: State profile evolution under the proposed RMPC.

6.5.2 RMPC for parabolic system

In this section, the diffusion dominated model of an axial dispersion reactor is con-

sidered, which is described by the parabolic PDE with Dirichlet boundary condition.

Similarly, it leads to the linear infinite-dimensional system model on the Hilbert
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space L2(0,1), the spatial operators are defined as follows:

Aθ(·) = vθ
∂2(·)

∂ζ2
+ ψθ(ζ)(·),B = b(ζ),C(·) =

∫ l

0
δ(ζ − ζ0)(·)η,D = 0 (6.24)

The spatial linear operator Aθ(·) with a domain D(Aθ) = {φθ(ζ) ∈ L2(0,1)|φθ(ζ)

is abs. cont., dφθ
dζ ∈ L2(0,1),

d2φθ
dζ2 ∈ L2(0,1), φθ(0) = 0 = φθ(1)}. The output is the

state of the PDE at a point within the domain, i.e., at ζ = ζ0. The operator A has

eigenvalues λn = −vθn2π2 +ψθ which determine stability of the system and associated

eigenvectors φn(ζ) =
√

2sin(nπζ),n ≥ 1. In the case when ψθ ≤ vθ(nπ)2, which implies

that the λ ≤ 0, the parabolic system with the Dirichlet boundary condition is always

stable.

By performing Cayley-Tustin approach, one can obtain the resolvent operator,

which is:
R(z, δ)(·) = (δ − Aθ)

−1(·)

=
1

√
s − ψθ

sinh(
√

s − ψθζ)
sinh(

√
s − ψθ)

∫ 1

0
(·)sinh[

√
s − ψθ(1 − η)]dη

−

∫ ζ

0

1
√

s − ψθ
(·)sinh[

√
s − ψθ(ζ − η)]dη

(6.25)

With the described system resolvent operator, one can directly obtain the discrete

time operators as follows:

Ad(θ)(·) = [δI − Aθ]
−1[δI +Aθ](·)

= −I(·) + 2δ[
1

√
s − ψθ

sinh(
√

s − ψθζ)
sinh(

√
s − ψθ)

∫ 1

0
(·)sinh[

√
s − ψθ(1 − η)]dη

−

∫ ζ

0

1
√

s − ψθ
(·)sinh[

√
s − ψθ(ζ − η)]dη]

Bd(θ) =
√

2δ[δI − Aθ]
−1B(ζ)

=
√

2δ[
1

√
s − ψθ

sinh(
√

s − ψθζ)
sinh(

√
s − ψθ)

∫ 1

0
Bsinh[

√
s − ψθ(1 − η)]dη

−

∫ ζ

0

1
√

s − ψθ
Bsinh[

√
s − ψθ(ζ − η)]dη]

(6.26)
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Cd(θ)(·) =
√

2δC[δI − Aθ]
−1(·)

=
√

2δ[
1

√
s − ψθ

sinh(
√

s − ψθζ)
sinh(

√
s − ψθ)

∫ 1

0
(·)sinh[

√
s − ψθ(1 − η)]dη

−

∫ ζ0

0

1
√

s − ψθ
(·)sinh[

√
s − ψθ(ζ0 − η)]dη]

Dd(θ) = C[δI − Aθ]
−1B +D

=
1

√
s − ψθ

sinh(
√

s − ψθζ)
sinh(

√
s − ψθ)

∫ 1

0
Bsinh[

√
s − ψθ(1 − η)]dη

−

∫ ζ0

0

1
√

s − ψθ
Bsinh[

√
s − ψθ(ζ0 − η)]dη

(6.27)

In simulation, the actuation distribution function is given as B = 1, Q = 5 and

R = 0.01. Initial condition is assumed as x0 = −(ζ − 0.5)2 + 0.52, and h = 0.05 with

MPC horizon 5. The value of the terminal penalty is calculated by accounting for

5 eigenmodes, which is n = m = 5. The constraints on the input and the output

are given as 0 ≤ y ≤ 0.3 and −0.16 ≤ u ≤ 0. Four linear models comprise the set,

including v = 0.1,ψ = 8 (model 1), v = 1,ψ = 0.8 (model 2), v = 3,ψ = 3 (model 3),

v = 0.5,ψ = 1 (model 4). Here, the nominal model used in both MPC controllers is

represented by model 2 and model 1 is assumed to represent the true process.

Figure 6.3 displays the dynamic behavior of the controlled outputs and manipu-

lated inputs under the implementation of the nominal MPC and RMPC, respectively.

It is apparent that the nominal MPC fails to stabilize the output at the origin, and

over time, the closed-loop trajectory exhibits a slight divergence. In contrast, the

RMPC is capable to steer the output to the origin with a fast converge rate even

under uncertainty. The evolution of state profile of the closed-loop parabolic PDE

system with the Dirichlet boundary condition is shown in Figure 6.4.
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Figure 6.3: Comparison between the profile of a closed-loop system under the imple-
mentation of the nominal MPC and RMPC.

Figure 6.4: State profile evolution under the proposed RMPC.

6.6 Conclusions

In this chapter, a robust model predictive control synthesis was proposed, for con-

strained multi-model transport-reaction systems described by hyperbolic PDEs and

parabolic PDEs. The optimization and control were carried out in the infinite spatial

setting derived from accurate Cayley-Tustin transformation. The proposed algorithm
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was based on restricting the future behavior of the controller cost function for each

plant in the uncertainty description, and the properties of systems under the pro-

posed RMPC were further discussed. The effectiveness was demonstrated through

numerical simulation. The performance of the proposed method will be tested on

large-scale DPS in future work, for example, to guarantee stabilization when there

are some switching operations, such as the feedstock grade transition from hardwood

to softwood.

150



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis investigates model predictive control and monitoring for large-scale dis-

tributed parameter chemical and petrochemical processes, taking into account phys-

ical constraints, varying operating demands, measurement noises/disturbances, and

multi-plant uncertainty.

In Chapter 2, this thesis developed a MPC algorithms for a jacket tubular reac-

tor as the distributed parameter system, considering the input and state constraints.

The plant was described by a set of nonlinear coupled hyperbolic PDEs considering

a simple reversible exothermic reaction taking place in the reactor. In particular, a

spatially varying jacket temperature was considered instead of a constant one. After

applying linearization around a given equilibrium operating point of interest, a lin-

earized PDE model was obtained for modeling tubular reactor dynamics. For model

time-discretization, the Cayley-Tustin transform was utilized to map the continuous-

time system to the discrete-time model representation without spatial discretization

and model reduction, which preserves the input-output stability of the plant. Model

predictive controllers were formulated on that basis to realize model stabilization and

account for the input and output constraints. For state estimation, an observer-based

MPC realization was proposed and realized by solving the corresponding operator Ric-

cati equation, which was utilized in the construction of Luenberger observer gains.

Finally, two numerical examples were provided to demonstrate the feasibility of the

proposed MPC design.

In Chapter 3, this thesis proposed a receding horizon control and estimation frame-
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work and implemented for distributed parameter pipeline systems. The branched

pipeline network was modelled by six linearized first-order coupled hyperbolic PDEs

with boundary actuation. The Cayley-Tustin time discretization approach was ap-

plied to obtain the discrete-time infinite-dimensional model. To meet flow regulation

within pipeline systems and handle physical constraints on inputs and outputs, a novel

tracking MPC was designed. Furthermore, the MHE was applied in simultaneously

estimating the spatial-temporal states and unknown parameters. Finally, the appli-

cability and robustness of the proposed MPC and MHE designs were demonstrated

via numerical examples.

In Chapter 4, this thesis developed the dynamic modeling and MPC design of

a continuous pulp digester described by 10 linearized first-order coupled hyperbolic

equations. The connected cook zone and wash zone of the digester were modeled as

a cascade PDE system. Similarly, the Cayley–Tustin method was applied to obtain

the discrete-time infinite-dimensional model. A Luenberger observer was designed

to realize the state estimation of the system. The model predictive controller was

formulated on that basis to realize target-tracking and account for input and output

constraints during shift operations of the digester. The closed-loop simulation results

demonstrated that the controlled variables were able to reach to the target values and

satisfy the actuators’ constraints simultaneously.

Chapter 5 investigated the state estimation and sensor placement for the stochastic

continuous pulp digester with measurement delay were investigated from the monitor-

ing point of view. In this case, we focused on the analysis of the temperature system

of a continuous pulp digester which was modeled by two coupled hyperbolic partial

differential equations and an ODE, and there exists the measurement delay at the

considered outputs. In order to realize discrete implementation, the Cayley–Tustin

transform was utilized. The discrete-time infinite-dimensional Kalman filter was ap-

plied to estimate the system states using the process measurements. The selection

of sensor location was then addressed based on the estimator design and investigated

by minimizing the variance of estimate error. The effectiveness and feasibility of the

proposed Kalman filter were verified by a set of simulations, and this framework of-

fers a planning and implementation view of distributed sensor locations in which a

possible number of sensors and placement.
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When it comes to industrial applications, the conventional MPC may lead to the

predicted behavior is not identical to actual behavior in the presence of uncertainty.

Motivated by this consideration, Chapter 6 explored the robust MPC strategy for

distributed parameter transport-reaction systems, which properly accommodates the

plant uncertainty. The model uncertainty under the DPS setting incorporated into

the controller formulation was one based upon the multi-model infinite-dimensional

setting. The proposed algorithm was based on restricting the future behavior of the

controller cost function for each plant in the uncertainty description, and the proper-

ties of systems under the proposed RMPC were further discussed. The effectiveness

was demonstrated in hyperbolic PDEs and parabolic PDEs through numerical simu-

lation.

7.2 Future work

This thesis developed advanced and robust model predictive control and monitoring

realizations for large-scale distributed parameter systems which are modelled from

chemical and petrochemical processes. Nevertheless, there are still some open ques-

tions regarding this subject, and a number of them are briefly mentioned here.

Firstly, investigating the recirculation operation through external heat exchange

in modeling the continuous pulp digester can provide a more precise understanding of

the dynamics of each component during the cooking process. Additionally, studying

pipeline systems that incorporate pumps or valves, monitoring multiple batches, and

detecting and locating leaks would be meaningful for practical applications.

Secondly, exploring the development of robust MPC for linear parameter-varying

infinite-dimensional systems, as well as systems with delays are definitely within the

scope of future research. In addition, the implementation of robust MPC for complex

systems is generally limited by the optimization problem, which is time-consuming

and computationally expensive. The development of a novel efficient method to solve

the RMPC optimization problem can be explored.

Thirdly, the exploration of sensor placement for DPS is still ongoing, and there

is a need for a computationally efficient and reliable algorithm that can effectively

select sensor locations from a wide range of candidate positions and determine the

optimal number of sensors.
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Appendix

A.1 The derivations of A∗ and C∗

In system linearization, we need to determine the A∗ and C∗ beforehand based

on the linearized continuous-time model in order to construct the model predictive

controller. In this section, the derivations of A∗ and C∗are provided as following.

Let us recall the operator A(·) = V ∂(·)
∂ζ + A(ζ)(·) which on its domain

D(A) ={ψi(ζ) ∈ L2(0,1)|ψi(ζ) is absolutely continuous,
dψi

dζ
∈ L2(0,1), with i = 1,2,

3,4, and ψ1(0) = 0,ψ2(0) = 0,ψ3(0) = 0,ψ4(1) = 0} (7.1)

It is easy to find the adjoint operator A∗ using the inner product formula, 〈Aϕi, φi〉

= 〈ϕi,A
∗φi〉, as follows:

〈Aϕi, φi〉

= 〈(V
∂(·)

∂ζ
+ A(ζ)(·))ϕi, φi〉

=

∫ L

0
(V
∂ϕi
∂ζ
+ A(ζ)ϕi)φ∗i dζ

= V
∫ L

0

∂ϕi
∂ζ

φ∗i dζ +
∫ L

0
A(ζ)ϕiφ∗i dζ

= V((φ∗i ϕi)|
L
0 −

∫ L

0
ϕi
∂φ∗i
∂ζ

dζ) + 〈A(ζ)ϕi, φi〉

= V(φ∗1(L)ϕ1(L) + φ
∗
2(L)ϕ2(L) + φ

∗
3(L)ϕ3(L) − φ

∗
4(0)ϕ4(0)) + 〈ϕi, (−V

∂(·)

∂ζ
φi)〉 + 〈ϕi, A∗(ζ)φi〉

= V(φ∗1(L)ϕ1(L) + φ
∗
2(L)ϕ2(L) + φ

∗
3(L)ϕ3(L) − φ

∗
4(0)ϕ4(0)) + 〈ϕi, (−V

∂(·)

∂ζ
φi + A∗(ζ))φi〉

Therefore, one can obtain the follows

A∗(·) = −V
∂(·)

∂ζ
+ A∗(ζ)(·) (7.2)

which is defined by its domain

D(A∗) ={φi(ζ) ∈ L2(0,1), φi(ζ) is absolutely continuous,
dφi

dζ
∈ L2(0,1), with i = 1,2,
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3,4, and φ1(1) = 0, φ2(1) = 0, φ3(1) = 0, φ4(0) = 0} (7.3)

Similarly, one can obtain the expression of the adjoint operator C∗ of C, where

C(·) = diag{
∫ L

0
(·)δ(ζ − L)dζ,

∫ L

0
(·)δ(ζ − L)dζ,

∫ L

0
(·)δ(ζ − L)dζ,

∫ L

0
(·)δ(ζ)dζ }

The derivations of C∗ is given as follows:
〈Cϕi, φi〉

= 〈



∫ L
0
ϕ1δ(ζ − L)dζ 0 0 0

0
∫ L
0
ϕ2δ(ζ − L)dζ 0 0

0 0
∫ L
0
ϕ3δ(ζ − L)dζ 0

0 0 0
∫ L
0
ϕ4δ(ζ − L)dζ


,


φ1

φ2

φ3

φ4

〉

=


∫ L
0
[
∫ L
0
ϕ1(ζ)δ(ζ − L)]dζ]φ∗1(η)dη 0

0
∫ L
0
[
∫ L
0
ϕ2(ζ)δ(ζ − L)]dζ]φ∗2(η)dη

0 0
0 0

0 0
0 0∫ L

0
[
∫ L
0
ϕ3(ζ)δ(ζ − L)]dζ]φ∗3(η)dη 0

0
∫ L
0
[
∫ L
0
ϕ4(ζ)δ(ζ)]dζ]φ∗4(η)dη


=


∫ L
0
ϕ1(ζ)[δ(ζ − L)][

∫ L
0
φ∗1(η)dη]dζ 0

0
∫ L
0
ϕ2(ζ)[δ(ζ − L)][

∫ L
0
φ∗2(η)dη]dζ

0 0
0 0

0 0
0 0∫ L

0
ϕ3(ζ)[δ(ζ − L)][

∫ L
0
φ∗3(η)dη]dζ 0

0
∫ L
0
ϕ4(ζ)[δ(ζ)][

∫ L
0
φ∗4(η)dη]dζ


= 〈ϕi,C

∗φi〉

Thus,

C∗(·) = diag{δ(ζ − L)
∫ L

0
(·)dη, δ(ζ − L)

∫ L

0
(·)dη, δ(ζ − L)

∫ L

0
(·)dη, δ(ζ)

∫ L

0
(·)dη}

(7.4)

A.2 Link between discrete Lyapunov equation and continuous Lyapunov

equation under the Cayley-Tustin time discretization frame

In the Section of Observer-based MPC in Chapter 2, it proposed that the solution

Qd can be find by solving the Discrete Lyapunov equation. However, the solution is
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not straightforward in calculation, and therefore we need to solve the corresponding

continuous Lyapunov equation in oder to get a stabilizing observer gain. Hence,

we provide the demonstration of the link between discrete Lyapunov equation and

continuous Lyapunov equation under the Cayley-Tustin time discretization frame.

〈X, [Ã∗dQdÃd −Qd]X〉 = −〈X, [C̃∗d N C̃d]X〉 (7.5)

where Ãd = −I(·) + 2δ[δI − Ac]
−1, C̃d =

√
2δC[δ − Ac]

−1.

Let us substitute Ãd and C̃d, we have

Ã∗dQdÃd −Qd = −C
∗
d NCd

{−[δI − Ac]
∗ + 2δI}Qd{−[δI − Ac] + 2δI} − [δI − Ac]

∗Qd[δI − Ac] = −2δC∗NC

[δI +A∗c]Qd[δI +Ac] − [δI − Ac]
∗Qd[δI − Ac] = −2δC∗NC

2δQdAc + 2δAc
∗Qd = −2δC∗NC

Ac
∗Qd +QdAc = −C

∗NC

where clearly becomes operator Lyapunov equation.

A.3 Resolvent operator in Eq. (3.21)

The resolvent operator in Eq.(3.21) is shown as below:

R(s,Ae) = [Ri j(s,Ae)]6×6 (7.6)

where
Ri1(s,Ae)(·) = ε

(1)
i1 (ζ, s)(·) + Mi1%1, i = 1,2

Ri2(s,Ae)(·) = ε
(1)
i2 (ζ, s)(·) + Mi1%2, i = 1,2

Ri3(s,Ae)(·) = M (1)i1 (ζ, s)(−ce f2
ε
(2)
21 (l2, s)

M (2)22 (l2, s)
)(·), i = 1,2

Ri4(s,Ae)(·) = M (1)i1 (ζ, s)(−ce f2
ε
(2)
22 (l2, s)

M (2)22 (l2, s)
)(·), i = 1,2

Ri5(s,Ae)(·) = M (1)i1 (ζ, s)(−ce f2
ε
(3)
21 (l3, s)

M (2)22 (l2, s)
)(·), i = 1,2

Ri6(s,Ae)(·) = M (1)i1 (ζ, s)(−ce f2
ε
(3)
22 (l3, s)

M (2)22 (l2, s)
)(·), i = 1,2
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Ri1(s,Ae)(·) =
©«M (2)j1 (ζ, s)−

M (2)j2 (ζ, s)M
(2)
21 (l2, s)

M (2)22 (l2, s)

ª®¬ ε(1)11 (l1, s)(·), i = 3,4, j = 1,2

Ri2(s,Ae)(·) =
©«M (2)j1 (ζ, s)−

M (2)j2 (ζ, s)M
(2)
21 (l2, s)

M (2)22 (l2, s)

ª®¬ ε(1)12 (l1, s)(·), i = 3,4, j = 1,2

Ri3(s,Ae)(·) = −
M (2)j2 (ζ, s)

M (2)22 (l2, s)
ε
(2)
21 (l2, s)(·) + ε

(2)
j1 (ζ, s)(·), i = 3,4, j = 1,2

Ri4(s,Ae)(·) = −
M (2)j2 (ζ, s)

M (2)22 (l2, s)
ε
(2)
22 (l2, s)(·) + ε

(2)
j2 (ζ, s)(·), i = 3,4, j = 1,2

Ri5(s,Ae)(·) =
©«M (2)j1 (ζ, s) −

M (2)j2 (ζ, s)M
(2)
21 (l2, s)

M (2)22 (l2, s)

ª®¬
M (1)11 (l1, s)ce f2

ε
(3)
21 (l3, s)

M (3)22 (l3, s)
(·), i = 3,4, j = 1,2

Ri6(s,Ae)(·) =
©«M (2)j1 (ζ, s) −

M (2)j2 (ζ, s)M
(2)
21 (l2, s)

M (2)22 (l2, s)

ª®¬
M (1)11 (l1, s)ce f2

ε
(2)
22 (l3, s)

M (3)22 (l3, s)
(·), i = 3,4, j = 1,2

Ri1(s,Ae)(·) =
©«M (3)j1 (ζ, s) +

M (3)j2 (ζ, s)M
(2)
21 (l2, s)

M (2)22 (l2, s)

ª®¬
ε
(1)
11 (l1, s)(·) + M (3)j2 (ζ, s)ε

(1)
21 (l1, s)(·), i = 5,6, j = 1,2

Ri2(s,Ae)(·) =
©«M (3)j1 (ζ, s) +

M (3)j2 (ζ, s)M
(2)
21 (l2, s)

M (2)22 (l2, s)

ª®¬
ε
(1)
12 (l1, s)(·) + M (3)j2 (ζ, s)ε

(1)
22 (l1, s)(·), i = 5,6, j = 1,2

Ri3(s,Ae)(·) =
M (3)j2 (ζ, s)

M (2)22 (l2, s)
ε
(2)
21 (l2, s)(·), i = 5,6, j = 1,2

Ri4(s,Ae)(·) =
M (2)j2 (ζ, s)

M (2)22 (l2, s)
ε
(2)
22 (l2, s)(·), i = 5,6, j = 1,2

Ri5(s,Ae)(·) = ε
(3)
j1 (ζ, s)(·), i = 5,6, j = 1,2

Ri6(s,Ae)(·) = ε
(3)
j2 (ζ, s)(·), i = 5,6, j = 1,2
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and

ε
(k)
i1 (ζ, s)(·) =

∫ ζ

0
M (k)i2 (ζ − η, s)H21(·)dη

ε
(k)
i2 (ζ, s)(·) =

∫ ζ

0
M (k)i1 (ζ − η, s)H12(·)dη, i = 1,2, k = 1,2,3

ce f1 = (M
(2)
21 (l2, s)/M

(2)
22 (l2, s) − M (3)21 (l3, s)/M

(3)
22 (l3, s))/(M

(1)
21 (l1, s)

+ M (1)11 (l1, s)(M
(2)
21 (l2, s)/M

(2)
22 (l2, s) + M (3)21 (l3, s)/M

(3)
22 (l3, s)))

ce f2 = 1/(M (1)21 (l1, s) + M (1)11 (l1, s)(M
(2)
21 (l2, s)/M

(2)
22 (l2, s) + M (3)21 (l3, s)/M

(3)
22 (l3, s)))

%1 = ce f1ε
(1)
11 (ζ, s) + ce f2ε

(1)
21 (ζ, s)

%2 = ce f1ε
(1)
12 (ζ, s) + ce f2ε

(1)
22 (ζ, s)
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