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ABSTRACT

PART I

Two aspects of the behaviour of the electron gas
in the neighbourhood of an impurity 1n a metal are con-
sidered. In Chapter I 1t 1is shown that the fact that
a negative impurity 1s screened less effectively than
'a.positive impurity may be understood in terms of a
simple Thomas Fermi model. 1In Chapter II the collective
modes of ospillation of an electron gas in the neighbour-
hood of an impurity are investigated. A hydrodynamlc
model is used in which the electrons are treated as a
charged Fermi fluid. It is shown that localized modes
of excitation exist near a positive impurity. Such a

local excitation can be detected in characteristic losses

of fast electrons.

PART II

Using the approach of Yamashlta and Nakamura(25)
we conslider the effect of lnduced phonons on the current
arising from an applied A.C. field in a plezoelectric
semiconductor. We restrict the calculation to the region
where the amplitude of the drift veloclity of the electrons
is less than the velocity of sound. We find that for CdS
at 30°K there 1is a critical frequency of the applied field

wg 108 sec™!, such that the amplitude of the drift
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current 1s constant for w << w, and drops to another
constant value for w >> Wy, We find that the current
“lags behind the applied fileld with a phase which has

a maximum in the neighbourhood of W,
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PART I



INTRODUCTION

In part I of this thesis we conslder some aspecté
of the behaviour of electrons in the presence of a fixed
point impurlty in a metal. In particular in chapter I
we treat the screening of an impurity by electrons, and
in Chapter II, the collective modes of oscillation of
the electrons near an impurity. We use a semi-classical
model for the electrons, that is, we take account of the
fact that they'obey quantum statistics, but neglect all
other quantum effects. We also neglect short range
electron correlations and treat the lattice of the metal
as if it formed a smeared out distribution of fixed posi-
tive charge. Thus we are using a conceptually simple
model to describe the very complicated system of electrons
in a metal. Indeed so many features of the real system
are neglected that 1t might be expected that the model
is totally inadequate. Yet this is not the case and for
many purposes the model can be expected to give a good
gqualitative, even semi-quantitative description. To see
why this 1s so we review the concepts that have been
developed for treatlng interacting electrons 1n a metal.

The study of the free electron gas (1.e. electrons
in a neutralizing fixed background of positive charge)

began with Sommerfeld(l) in 1928. He treated the



electrons at zero degrees and neglected the Coulomb
interactions. Since interactlons were neglected each
electron state could be label;ed with a wave vector
E, which is related to the energy of the state

€ = n2k2/2m, where m is the electron mass, Sommerfeld
applied Fermi Dilrac statistics to the electrons which
led to the introduction of the important concept of the
Fermi surface. This 1is a spherical surface of constant
energy in wave vector space which separates occupied
electron states from unoccupled states when the electron
gas is in 1ts ground state. An excited state of the
system is created by transferring an electron from some
state El’ below the Fermi surface to an unoccupled state
52, above the Fermi surface. The energy of the excited

2

state 1is then'ﬁ2k2/2m - ﬁ2k1/2m. Such an energy spec-

trum is called a spectrum of the Ferml type.

Since that time many powerful techniques have been
developed to take into account the effects of particle
interactions.(z) One of the first ﬁheories to describe
interactlons bétween fermions 1s due to Landau.(3) He
considered & system of fermions interacting via short
range forces (i.e. less than the order of an inter-
barticle spacing) as a model for liquiad He3. Because
of interactions the concept of a one particle state no

longer has a well defined meaning. In an intuitive manner he



introduced the concept of a quasiparticle. This is a
fermion moving in the self-consistent short range field
of all the other fermions of the system. Thus the
energy of the quasl-particle depends on the distribu-
tion of other particles in the system. However he
postulated that each of the quasi-particle states could
be labelled with a wave vector E and that they obey
Fermi Dirac statistics. The energy of a quasi-particle
state, however, is not related to the wave vector in a
simple fashion, since 1ts energy depends on the distri-
bution of all the other particles. However, since the
quasi-particles obey Ferml Dirac statistics, there 1is

a Fermi surface and exclitations completely analagous to
those of the Sommerfeld model. The quasi-particles of
the Landau theory are weakly interacting, with the
result that they have an appreciable lifetime only in
the neighbourhood of the Fermi surface and there 1is a
Fermi type spectrum only fpr weakly excited states.

It is often possible within solid state physics
to take account of interactions by defining an appro-
priate effective mass. This is only possible to a
1imited extent within the Landau theory. Those expres-
sions which depend only on the density of states at
the Fermi surface, like the specific heat, can be taken

over from the Sommerfeld theory with the electron mass



replaced by an effective mass. However for example the
expression for the pressure within the Landau theory
differs from the non-interacting electron form by a
term proportlional to the density. 1In Chapter II we

use the non-linteracting electron gas value for the
pressure. A more exact treatment would take into
account the correction due to‘electron-electron inter-
actlon.

So far we have only discussed the case of a Fermi
gas 1interacting via short range forces. Silin(“)
extended ,the theory of Landau to the electron gas,
which 1s characterized by long range Coulomb forces.

He found that it 1s possible to split the Coulomb force
into a long range part and a short range part. He
proceeded by consldering a macroscopic disturbance in
the density of the electron system. Since the electrons
are charged the macroscoplc disturbance of the electron
density from equilibrium gives rise to a macroscopic
electric field through Poissons equation. Silin showed
that that part of the Coulomb interaction whose effects
are not included in the'macroscopic electric field are
contailned in short range screened Coulomb interactions
between the electrons. Since the disturbance from
equilibrium is on a macroscopic scale the system is
assumed to remain uniform over a sufficlently large

macroscopic region so that it 1s possible toc define a



local distribution of electrons. Within the local
distribution, the electrons are interacting via short
range forces and it 1s possible to apply the Landau
theory to them. The work of Landau and Silih Qas given
a firm theoretical foundation by Galitski and Migdal.(S)
The macroscopic electric field introduced by
Siiin has another important effect besides belng res-
ponsible for screening the interaction between electrons.
It is also responsible for organizing the motion of the
macroscoplic disturbance of charge into well defi.ed
oscillations. That this effect should occur had been
predicted four years earlier by Bohm and Pines(s) in
1952. They approached the problem of the Ferml gas
interacting via Coulomb forces, by analogy with the
c¢lassical plasma. A classical plasma 1s a high tempera-
ture overall neutral system containing charged particles,
usually electrons and ions. It had been knoWn for a
long time that well defined density oscillations could
be sustained in such a plasma,(zo) and that'the Coulomb
field of a particle 1s screened by other particles.(Zl)
Bohm and Pines looked for, and found similar behavlour
in the interacting electron Fermi gas. They introduced
a method for quantizing the.density fluctuations and
called the resulting quanta plasmons. These have a

spectrum of the Bose type and have a dispersion
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2 . 4,2 43,22, A% 4 -
wk-wo+5ka +4m2k + ... (1)
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where W Mnne2/m; n is the electron number density

and e 1is thelr charge. E 1s the wave vector labelling
one component of the Fourler decomposition of the
oscillating electron density, Vg is the Ferml velocity.

The equation (1) holds only for small values of
E. This 1s easy to understand since the plasmon corres-—-
ponds to fluctuations in the electron density and a
fluctuation must contain at least one particle.

Roughly we must have k < % where a is the interparticle
spacing. Since % vs is the average square of the velo-
city, we note that in equation (1) terms containing h
do not occur until order ku. This suggests that the
first two terms in equation (1) may be obtained using

a model which neglects quantum effects, except for the
statistics. Powell(1®) has found that the peak in the
energy loss spectrum of k.e.v electrons is predicted
qQulte well by the free electron value of W,

The picture that emerges of the free electron gas
from the work of the above authors and many others(z)
has much in common with the picture of the non-
interacting gas of Sommerfeld. There exists a spheri-
cal Fermi surface and there are weak excitations of the

single particle Ferml type, though these particles are

no longer bare electrons. In addition the interacting



electron gas has a collective behaviour, not shared
with the non-interacting system, which 1s connected
with the long range part of the Coulomb interaction.
These collective excitations have a spectrum of the
Boase -type. The remaining short range part of the
Coulomb interaction gives rise to short range electron
correlations. These two types of behaviour are not
independent and are weakly coupled together in a com-
plicated manner.

Much of the impetus for the work on the free
.electron gas came from the desire to understand the
behaviour of electrons in a real metal. The investi-
gation of the behaviour of electrons in a real metal
has to take into account the effects of the interaction
of the electrons with the crystal lattice. Electron
states in a periodic lattice can be labelled with a
wave vector g, in much the same way that free electron
states can be. However this wave vector 1s not related
- to the momentum, and the energy of a state may be a
complicated function of the wave number even if the
Coulomb interaction between electrons 1s neglected.

The periodic lattice gives rise to bands of states,
which the electrons can occupy, separated by energy
gaps where there are no states available for occupancy.

In a metal at zero temperature the highest band 1n



energy, the conduction band 1s partially occupied by
electrons, and all other bands of lower energy are
full. Thus in wave vector space all avallable electron
states are occupied up to a surface of constant energy.
This surface is the Ferml surface for the electrons in
a metal. It need not be spherical 1n shape, as is the
‘case for the free electron gas.

In 1957 Pippard(7) measured and plotted the Fermi
surface of copper. Soon studies of the geometry of the
Permi surface of other metals were done and showed that
for a large number of metals the Ferml surfaces were
remarkably close to the spherical surface of a free
electron gas. Thus 1t was realized that the periodic
potential of the lattice had a relatively small effect
on the electrons in a metal, outside of creating energy
gaps; The free electron nature of the Ferml surfaces
suggests that the electron states 1n metals might be
obtainable through perturbation theory from the free
.electron states. ‘These considerations led to the deve-
lopment of the pseudo-potential method(s) for applica-
“tion to electrons in metals. However because of the
complexity of the calculations, and the "non-physical®
nature of the pseudo-potentials, the free electron
model still remains a valuable source of understanding

of the behaviour of the electrons in a metal. It may



be expected to glive a good qualitative description of
electronic propertles of those metals in which the
Ferml surface 1s almost spherical.

We consider two problems concerning the behaviour
. of the electron gas in thelneighﬁourhéod of a fixed
point impurity. In Chapter I we consider the screening
of the impurity by the electrons and in Chapter II we
look for collective modes of oscillation of the electrons
localized near the impurlty. As we have mentioned
screening and collectlive behaviour are brought about
by the long range part of the Coulomb interaction. In
ChaptersI and II we consider only the long range part
of the Coulomb interactlon and neglect the short range
correlations between electrons. In fact we do not
consider the particle nature of the electrons at all.
For if one neglects the short range correlations, but
takes into account the random motion of the electrons,
one finds that this exhilbits itself in damping of the
(18)

collective modes. At metallic denslitles effects of

short range correlations, and random motion are expected
t6 be of importance.(l7) We have neglected both these
effects and cannot éxpect to achieve quantitative agree-
ment. However our results should be applicable in a
qualitative manner to several metals.

First we discuss a time independent steady state

problem of the screening of an impurity by the electron
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gas. It 1s well known from pseudo-potential calcula-

(9)

tions that a positive lmpurity in a metal is
screened more effectively than a negative 1lmpurity
. we show that this gffect may be qualitatively under-
stood by an elementary argument based on the Thomas
Fermi methcd.

We‘next treat the problem of_the collective
excltations of the electron gas in thé presence of
an impurity. Single particle excitations of the
' electron gas in the presence of an impurity have been

investigated by Layzer.(lo)

He has shown that in the
vicinity of a positive impurity localized single par-
ticle excitations exist. The collective modes of

osclllation of an electron gas in the presence of an

impurity have been studled by Sziklas(ll) (12).

and Sham
These authors have used a quantum mechanical many-body
approach, and have found that plasmon type excitations
locallized in the vicinity of a negative impurity exists
with frequency ~mo//§. Wy is the plasma frequency of

a homogeneous medium. Sziklas(ll) has concluded that
no localized excitation exists in the nelghbourhood of
a positive impurlty. These authors have also used
crude hydrodynamic models to provide a qualitative
check of the results of thelr microscoplc theories.

One of the problems with the many body approach 1s that

while the mathematical nature of the assumptions 1is
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clear enough, the physical nature of these assumptions
is not. For instance Sham in his investigation, ex-
pands the dielectric function for the non-uniform
eleétron gas in powers of a certain parameter, and in
a mathematically consistent manner neglects higher
order terms in the expansion. However hidden among
these higher order terms, are terms of physical impor-
tance. 1In a systematié hydrodynamic'model, these extra
terms occur in a stralghtforward manner.

In Chapter 1II, we present a hydrodynamic model
of the electron gas in the neighbourhood of a positive
impurity {n.a metal. We find that localized collective

modes. exist with frequency w~/3 Wy



CHAPTER 1

SCREENING OF A NEGATIVE IMPURITY IN METALS

12

We conslder the screening of a fixed point impurity

by the free electron gas. We denote by V(g).the poten—
tial at point r due to the impurity and the non-uniform
induced charge density. We conslder a volume at the
point r which is macroscopically small, but microscopi-
cally large so that 1t contains a large number of
particles. If we neglect the Coulomb interaction
‘between these electrons}the electron states in the
small volume at point r can be labelled with a wave

vector k. This procedure is legitimate only if the

potential V(r) varies slowly over distances of the order

of an interparticle spacing. Close to the impurity this

is not the case. However we use this picture only to
obtaln the potential at distances far from the impurity.
Close to the impurity the potential 1s obtained by
different methods. The two potentials are then matched
in a plausible fashion.

. In the ground state at T = 0 the electron states
in the small volume at r, are occupied to a maximum
value of k, kF(g) which is a function of r. We could
take into account the effect of interactions by using
the quasi-particle picture here. They have the same

Fermi surface as the non-interacting electron gas.



However as mentioned in the introduction the most
important factor determining screening is the long
range part of the Coulomb interaction which is given
by V(£)° The electrons at the point r in addition to
thelr kinetic energy h2k2/2m have a potential energy
—eV(g). In the ground state of the total system in
equilibrium we then have

, hzkg(r)
_QTH—_—_ - EV(I') = | (1.1)

where u 1s the chemical potential of the total system.
:

Under the assumption that V(g) + 0 as r+® we have

2 2,2/3
U= Ep = h (3gm) n§/3 (1.2)

where n, is the electron number density at very large
distances from the impurity. Equation (1.1) is the
condition for equilibrium in the ground state. For if
hzkg(r)/Zm > u +eV(r) then an electron with such a
kinetlic energy could escape to infinity where it would

be above the Fermi surface there.

The number of electrons per unit volume in the

small volume at r 1is

2 |
(2m)3 | (2m)

n(r) = 5 3”' . (1.3)

13
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Substituting (1.3) into (1.1) we obtain the
well known Thomas-Fermi expression for the number

density in terms of the potential

2

ae) = 132 (e s VNP L (1.4)
- 37 H ~

Poisson's equation 1s

%VQ)=‘M&KE) .

Using Poisson's equation together with (1.4) we can
solve for V(r). We assume that V(r) is spherically

symmetric. Then at large distances from the impurity

such that |9%i£l < 1 the physically acceptable
solution is given by(13)
c, e~9r
V(r) = — (1.6)
S A B
where Cl is a constant and
2 3n_ 1/3
q? = AmeT (o) . (1.7)

h

The constant C1 is to be determined by requiring that
equation (1.6) matches with the potential at small

distances from the impurity. Close to the impurity

eV(r)
EF

impurities separately.

where ‘ ‘ > 1 we treat the positive and negatlve
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Positive Impurity

At very close distances to the impurity the po-
tential goes as Ze/r where 7 is positive. The solution
(1.6) has the required form of a Coulomb potential for

qr << 1l. Therefore

V(r) = 28 omar (1.8)

is a good approximation to the actual form of the po-

tential for all values of r.

Negative Impurity

A positive impurity attracts electrons to 1tselrf
which screen its charge. On the other hand a negative
impurity repels electrons. Since the potential V(r)

in this case is negative at some point r==r° s

ep + eV(r)) = 0 . (1.9)

In this case where r<r, the Thomas~Fermi equation (1.4)
1§ not eéveén approximately valid since it gives imaginary
values fof'the electron charge density. Hence we assume
that for r <ro s n(r) = 0. Then by solving Poisson's

equation within this region, r« r, s we obtain

V(r) = - %nenor - £ 40, (1.10)
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where 02 is a constant and Z 1s positive. For r>r
equation (1.6) may still be regarded as approximately
valid except that the constant Cl 1s as yet unknown.
We determine C1 and 02 by requiring that the potential

and 1ts gradient be continuous at r=r,. One then

obtains

3) e‘Q(r‘ﬂa)

_ (Z-n
and |
2
. _ Zg..l e rl 3 2 ;gan
V(1<r°) 2 3 na [2 (1+ 1+qna 1+qan]
/ (1.12)
where n = r_/a 3 madn_ =1
n o’% * 3 o )

Within the framework of our model n may be found

by substituting (1.11) or (1.12) into (1.9). We obtain

n3 + aqan2 + an - 2

0 - (1.13)

where a = eF/(ez/a). At an electron density of 1023
electrons/c.c. a ~2ao where a, is the Bohr radius;
hence e2/a ~ 13 eV. In many metals €p ~ 5 eV, thus

@ ~ 0.5. In metals q ~ é%- and therefore gqa ~ 2. Hence

o

for Z = 1 equation (1.13) has a solution, n ~ 0.7,
"Thus a negative impurity with 2 = 1 creates a hole of
radius of the order of an inter-electron spacing around

itself in a metal. The radius of this hole is
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larger than the range of the field of a positive
impurity. The electrons in a metal therefore see
a larger cross section due to a negative impurity
~ than that due to a positive impurity. This difference -
should exhibit itself in the residual resistance.

We may also consider the impurity as if it 1is
an electron itself. Equations (1.11) and (1.12)
then give the field of a slowly moving electron in
an electron gas. In the limit of high electron density
(1.e. much higher than metallic densities) equation
(1.13) has the solution n ~0. In this limit equations
(1.11) and (1.12) reduce to the well known form of the

screened Coulomb interaction

e~ qr
= , n-+0 . (1.14)

V(ir) = - e

However at metallic densities (1.11) and (1.12) should
be a better form of the short range Coulomb interaction
between electrons.

As an example we calculate the residual resis-
tances in copper due to negative and positive impu-
rities. The Fermi surface in copper 1s not even
topologically equivalent to a sphere since the surface
intersects the zone boundaries. However the area in
contact with the zone boundary is small compared to

the area of the total Ferml surface. Neglectlng the



effects of the contact of the Fermi surface and the
zone boundary, a spherical Fermi surface should be a
qualitatively good approximation to the actual Fermi
surface in copper. For small impurity .concentrations
the residual resistance per impurity atom, p, 1s glven

by the well known expression(l3)

T
p =B I (1 -cosg)sine I(e)de (1.15)
0

where I(8) 1is the differential scattering cross section
of the impurity. Since the impurity potential is
spherically symmetric I does not depeﬁd on the

asmuthal angle. B is a constant. In the Born appro-
ximation, the differential cross section for scattering
from an incident state E to a final state 5' is propor-
tional to

M =

k! ~S ) e~ ~ade| . (1.16)

-ik.r 1k'.r 2
[Jo
For the positive impurity the matrix element for
scattering in the Born approximation 1is well known(l3)

and given by

+ -ikor 1k'.I‘ 3
Mk,k' = eJe T T V.(r)e ™ T ad'r
2
= bnZe _
|k-k'|° + q

18



where V+(r) is given by (1.8). 1In the case of a nega-

tive impurity the matrix element for scattering 1in the

Born approximation 1s

_ %o -15 r ik'.r 5
ME k! l V_ (r<r ) e ° a’r
®  _ik.r ' 1K'.r o |
~-e I e ~° V_(r>r°) e~ "~ d’r . - (1.18)
rO

Using (1.11) and (1.12) we obtain:.

Mo (r<r ) = ——53&93 [l+ (30 + n + -nda
5,5' o |k‘E'| a2|5'5'|2 1l+nqa l+nqa
-1)cosnalk-k'| + (;Ti:;TTll - 5%5] - ;§TE%ETT§
e ? T sinnalls—ls'l] (1.19)
Mg (por ) = |;i;?72 ginqa {|k~k"| cosna|k-k'|

-1
+ q sinnalk-k' |} |k-k'|? + ¢®} . (1.20)

Recalling that the differential cross sectlon is

proportional to (1.16) we can substitute for I(6) in

19



(1.15) from (1.17), (1.19) and (1.20), and obtain the
residual rqsistances per impurity atom. The ratio of
the residuél resistances per impurity atom, for posi-
tive and negative impurities of the same concentration

with Z = 1 1s

: 1 1l
p+/p_ = [J dx x.3(x2+b§)"2] X [J dx x3 [-}2- (1 .
0

0 X
+ C 3 + n3 + =92 _ 1] cos bynx
b2'2 l+nga 1+nqga 1
1%
2 3 b
r gl (- ) - o33 - ey o1 P
1% blx
3 x cos b nx + b, sin b,nx 2 -1
l=n"Xx 1 2 1
+ x (1+nqa 2 2 1
x- + b2
(1.21)
on 1/3
where b, = 2() » by, = a/2kgp .
In deriving (1.21) we have assumed elastic
scattering so that |k-k'| = 2ky sin 8/2 where 6 is

the angle between k and k'. We have made the substi-
tution x = sin 6/2.
We obtain n = 0.8 from equation (1.13) for a

single negative impurity in copper, where we have used

20
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the mass of the free electron and assumed one free
electron per copper atom. Substituting n = 0.8 1in
equation (1.21) we find (p+/p_) = 0.25. We may note
that as expected from the above treatment p+/p_ is
less than unity for other sets of impurities 1n copper
(see reference (9(b)) page 341). The resistivity
measurements in Ag, Pd and Pt with impurities of neigh-
bouring elements in the periodic table exhibits similar

behaviour(lu).

However the case of N1 and Zn as hosts
are an exception.(lS)

The results given here demonstrate how a very
simple model can give reasonable qualitative agreement
with experimental data on complicated systems, Ag, Cu,
Pd and Pt are not simple metals in the sense that the
alkalis are, however experimental data on the alkalis

is not avallable, presumably because bf‘the difficulty
of inserting impurities.

Comment

After the material contained in Chapter I had
been accepted for publication it came to my attention
that the same problem had been treated 1n a very

similar fashion by Alfred and March in 1956.(22)
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CHAPTER II

COLLECTIVE MODES OF OSCILLATION OF AN ELECTRON
GAS IN THE VICINITY OF AN IMPURITY IN METALS
In this chapter we investigate the behaviour of
the collective modes of vibration of the electron gas
in the neighbourhood of an impurity at zero degrees.
We regard the electrons as a charged Fermi fluid, and
determine the motion of the density fluctuations due
to electric and pressure forces through Euler's equation
and the equation of continuity.
The electrons and a fixed point impurity of charge
Ze are enclosed in a box of volume . The total system
is electrically neutral due to the presence of a smeared
out fixed uniform background of positive charge. 1In
equilibrium the electron number density p(g) will assume
some statlionary space dependent form, which we expand
in a Fourier series:
ik.r
p(r) =} P e " . (2.1)

~

IR

Assuming periodic boundary conditions the values

of k in the summation in (2.1) are given by

.21
E L (nx1 + nyl + nzg)
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y? and n, are integers and L3 = Q. Hence

it follows that

where ng, n

1 1(k-q).z 4
a J © 7 %,q (2.2)
Q R -~
and from (2.1) and (2.2) -
—11(.1‘
P = % I p(r) e =~ ~ a3p (2.3)

Assoclated with the equilibrium charge density 1s an

electric field E -grad ¢ where ¢ is given by Polsson's

equation

<l
&
[
&
=]
"

~ime{p(r) - 28(x) = o'} (2.4)

where e is the magnitude of the electron charge, Ze 1s
the charge on the impurity and pf is the uniform posi-
tive charge number density. Expanding the potential
as
ik.r
o(r) = § ¢ e~ " (2.5)
~ k <
and substituting (2.1) and (2.5) into (2.4) we obtain,
ik.r ik.r ik.r
2 ~~_- ~~- l ~~_+
E k¢, e = =lqe{ & pge / é 5 e p )}
(2.6)

where the Fourler component of the § function is 1/Q,
which follows from (2.3). The fact that the total

system 1s electrically neutral means
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- e J p(g)d3r = -ero = -{Ze + p+Qe} . (2.7)
. Q
Hence using (2.7) (2.6) can be written

% k2¢5 i 5;0 ' ﬂig {% ) 05} eig.?:. _ (2:9)
Thus
¢y u%g {%-pk} k#0
~ - (2.9)
b = 0 k=0 .

If the electron density is displaced slightly
from equilibrium and then left free to move under the
influences of the forces in the system, a small fluc-
tuating charge density - eap(g,t) is thereby induced
in the system. We expand the fluctuating charge number
density in a Fourler seriles

15.2

sp(r,t) = I o, (t) e . (2.10)
- k#0 -

We are interested in finding the normal modes of
vibration of the density fluctuations. 1In a uniform
eleétron gas, to a good approximation for small values
of 5, each Fourier component of the density fluctuation
oscillates independently with a frequency w(g). Because

the system we are considering is spatially non-uniform
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in equilibrium, it is to be expected that each normal
mode will have a spatial structure which will be
especially pronounced for the localized modes. If
the normal modes of the density fluctuation have a
spatial structure many Fourier components are required
to bulld this structure. Hence we look for density
fluctuatlions of the system that have the form

ig.g

sp(r,t) = e § o (w)e : (2.10¢)
- kA0 &

~

The time dependent charge fluctuation (2.10a)
produces a potential w(g,t) ,

1w‘t; ilf.r
¥(r,t) = e L oy (w)e ™~ (2.11)
- k#0 -
where from Polsson's equation
. lre
Ve = -2 % - (2.12)

¢(r) and y(r,t) together determine the electric field in
the system.

We now consider the pressure forces. We know that
in the presence of the impurity the electrons assume a
spatially non-uniform distribution. .This non-uniform
distribution gives rise to an electric field and hence

~to electric forces which act on the electrons. We can



use the fact that in equilibrium the electric force on
a local element of charge density must be balanced by

other forces to define a pressure gradient. The tdtal
electric force on the electrons in a small volume V at

a point r 1s

I ep(g)grad¢(£)d3r
v

where from equation (1.1)

ed(r) = eplr) - u . o (2.13)

From equation (1.3)

ep(r) = Flp(r)1?/3 (2.14)
where .
| 2/3

F = (82/2m)(312) - (2.15)

Using (2.13) and (2.14) the electric force is

F J p(r)egrad 92/3(g)d3r .
v

The force on the electrons due to the pressure

po(r) is

- I P,(r) n,as
S

26



where S is the surface bounding V and n, is the outward
unit normal to S. In equilibrium the electric and

pressure forces balance so that

F i p(r)grad 92/3(§)d3r J p,(r)n, ds
5

i grad p (r)a’r  (2.16)

Choosing V small enough so that p(r) and p(r) do not

vary much over V we obtain from (2.16)

grad po(g) = % F grad p5/3(£) . | (2.1?)
Thus

p (r) = % F 02/ 3(2) ' (2.18)

since the constant of integration has no physical sig-
nificance and can be chosen as zero.

Equation (2.18) gives the pressure as a function
of the density for the electrons in equilibrium.. Under
non-equilibrium conditions the resultant of the elec-
tric and pressure forces 1is not zero and it produces
local accelerations and hence vibrations of the fluid.
At low frequencies of vibration one expects that equa-
tion (2.18) would be a good expression for the pressure

if the time dependent density was substituted for p(r).

27
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However at high frequencies characteristic of plasma
oscillations the expression for the pressure should be
modified from that at equilibrium.(12’16) We assume

that in the high frequency case the pressure p(r,t)

1s given by

p(g,t) = %% F n5/3(£,t) , (2.19)

where n(r,t) 1is the time dependent electron number

density

n(r,t) = p(r,t) + solr,t) . | (2.20)

The justification for (2.19) is that this form of
the pressure leads to a dispersion relation for the
plasma oscillations of a uniform system that agrees
with the one obtained by a microscopilc treat-
ment.

The equation of motion for a small element of
volume V of the electron fiuild acted upon by the

electric and pressure forces is

-é—lg m j, n(g,t)~(§,t)d3r = - Ip(g,t)gods
S

‘e I n(g,t)gradw(g)+¢(g,t)d3r (2.21)
v



where m is the electron mass. The element of volume V
moves with velocity Y(f’t) such that the total mass
included 1is cohstant._ Thus mn(g,t)d3r = dm is indepen-
dent of time. Equation (2.21) can therefore be written,

on letting the volume V approach zero, as

mn %% = -grad p(t) + en grad(o + yp) . (2.22)

Equation (2.22) is the Euler form of the equation of

motion for an electron fluid.

The equation of continuity is

%% +div(nv) = 0 . (2.23)
In equilibrium vV = 0, 86p=0and y = 0. We treat these

as first order small quantities. Combining equations

(2.22) and (2.23) and'keeping terms linear in V and n

we obtaln

82n

m ~— =divlgrad p(t) - en grad(o + ¢)1 . (2.24)
3t
Substituting for p(t) and n in equation (2.24)
from (2.19) and (2.20) and keeping terms linear in

ép(r,t) and w(g,t) we have

2 : sp(r,t)
-9 = 5/3 18 5 ~?
m o2 Gp(fst) div grad{Flp(r)] 25[l+-§ __Erjj_]

-ed&v{p(g)grad(é-rw) +8p(r,t)grad ¢} . (2.25)

29
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The time independent part of (2.25) is not to be
considered as the condition for equilibrium in view of

the meaning given to p(r,t). The time dependent part
of (2.25) gives

32 9 2/3
m — Sp(r,t) =div grad{g Flp(r)] Sp(r,t)}

ot - - ~

- ediv {p(r) grad y + ép(r,t) grad ¢} .  (2.26)

We expand [ 9(5)12/3 as

P ik.r
(p()1%/3 = p23 1+ § Ke ="~y (2.27)
~ k#0 Po
Substituting (2.27) into (2.26) and taking the Fourier

transform of (2.26) we obtain

2 2 q-k'
w_ =32 a g-k' % ~
w 2 k < k'#q k o] ~
o o ~ 73
q.(g-k") Pg-k'
+ 1 s (%5 Q) Ok
2 Pq-k!
+22 1 L (=)o, o, (2.28)
k #g ko o p
where
w2 = Uwp ea/m
o
5 lnrpoe2
Ko = 272273 °
3 “Po



In obtaining (2.28) we have substituted for p(g),
¢(r), ép(r,t), y(r,t) from equations (2.1), (2.5),
(2.10a) and (2.11), and made use of equations (2.9)
and (2.12) to eliminate ¢, and Y.

In the absencg of a; impurity pq(g#o) = 0, In
this case equation (2.28) reduces to Ehe dispersion

relation for a uniform electron gas

2
By =02 1+2 %] . O (2.29)

?\‘l.ﬂ
o N

2 with the dispersion

Equation (2.29) agrees to order q
relation for a uniform electron gas obtalned from a

microscopic theory.(l7)

We can compare our expression (2.28) with the

corresponding equation obtalned by Sziklas(ll) and

(12)

Sham using a microscopic theory. In our notation

their result can be written as

. 2.30
k'#q K2 Po ol.‘.' (2.30)

If we neglect the last two terms on the right hand
side of equation (2.28) we obtaln an equation which woul

be identical with equation (30) if the term % (q2/k§) °q
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was replaced by

2
w

9
g (—%)

w

Og .

oo [

The factor wg/w2 does not account for the effect of the
last two terms in equation (2.28), since this factor
would be present in the case of a uniform electron gas,
. wﬁile the last two terms in equation (2.28) describe
effects connected with the presence of the impurity.

In equation (2.30) the only term describing the effect
of the impurity on the density fluctuations (i.e. the
third term on the R.H.S.) arises through the Coulomb

. interaction of the non-uniform (equilibrium) charge
density with the potential due to the fluctuations.
This can be seen by observing that the identical term
in equation (2.28) arises from the second term on the
right hand slde of equation (2.26). The origin of the
two extra terms in equation (2.28) is as follows: The
first of these arises through the Coulomb interaction
of the fluctuations with the potential produced by the
non-uniform (equilibrium) electron charge Qensity and
by the fixed impurity. The second of these comes from

the change in pressure due to fluctuations superimposed

32

‘upon the non-uniform charge density. This 1ﬁterpretation

follows from tracing the terms in equation (2.28) back
to their origin in equation (2.26).



To solve equation (2.28) knowledge of p; 1s

required. In the linearized Thomas-Ferml approximation

o = — X2~ . (2.31)
~ 1l +k /ko :

Substituting (2.31) into equation(2.28) we obtain

2 - 1 q.k'[kg/k'2+l]+ % Q2
Ez-1-5.2% 8% bl TR a2 ) %
o o) ~ o} ] ~
(2.32)

We expand oq in spherical harmonics, thus

~

g
1 m
Since we have assumed that the impurity is spherically
symmetric oq(z,m) does not depend on m. Thus we can
write
_ L m '
g Y % Yo (045 ¢q) . (2.34)

2 m

In terms of spherical harmonics equation (2.32) becomes

2
@ -1-29) 7 of e, o) = ——g -
wg > kg Em Q"% a” "a (21r)3 Po

qk’ [kg/k'2+1]4-% G

kgi-q2+ k'2— 2qk'u

ka'adk'sinek,de,d¢k,

m
x Em Tyt & Yz(ek,,_¢k.) (2.35)

33

m : i
) 04 (%,m) Ye(0ys ¢q) . (2.33)
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where

k'.q
H = I = COS ek coseq + sind

18inoé

~

K q008(¢k.-¢q)-

Changing the varlables of integration from ek., Pyt

to uw and w, where w is the azimuthal angle in the plane

perpendicular to q we obtain

e

1
2 2

L-1-29)7 o Y™e ,¢ ) = —2 2T jk'2dk' Idu
wg 5 kg im ¢ 2779 q (21r)3 Py -1

ak'uiki/k' P41+ %)
L ok BolnYg(0g,00)

k2+q%+ k12 - 2qutuftm
(2.36)
where we have used the relation
2n .
m _ o m A
[ vBces00a0 = 2n 25 e 00 - (2.37)
0

Making use of the orthogonallity relations for the sphe-

rical harmonics equation (2.36) becomes

w? 9 2. % Z2 k) 1 2
(—5 -1- £ X ) o7 (x) = 2° I dx!' B"(x,x')dx' (2.38)
Yo v bn Po 0

where x = q/k, , x' = k‘/ko , and



Bz(x,x')

1 2 1
xx' I (1 + x' )uPz(u)*-g xx'P,(u)
-1

= du
1 + x2+ x'2— 2xx!
2 2 2 2
+ ] ] ]
= (Qexr?)e () + B o (B |, ee0

2

2xx! 2XX

5

(2.39)

Equation (2.38) can be solved numerically and the
frequency spectrum obtained. We have rectricted the
range of integration in equation (2.38). This requires
some comment. In the hydrodynamlic model the integration
should be over values of k from 0 to », However the
collective description of the electron gas breaks down
for large values of E.(ls) We have chosen the cut-off

(12)

at k=k°. Thls 1s of the order of the maximum value

of k for which collective modes are well deflned in a

uniform system.(lz)

Also one needs k's of the order of
ko to "bulld" the distribution of charge in the neighw
bourhood of the impurity.

The argument of the Legendre functions of the
second kind, Qz, which occur in equation (2.38), 1is

always greater than or equal to 3/2, since
|x-x'1% > 0

implies

35
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2 2
1 + x° + x! > 1 + 1

2xx ! = 2xx!

and x and x' have a maximum value of unity.

Now Qz(y)for y > 1 is a rapldly decreasing function
of %, so that only the first few values of & are lmportant
in equation (2.38). We have solved equation (2.38) nume=~
rically for 2 = 0 and £ = 1. The results are gilven in
figure (2.1). The result obtained by Sziklas is the same

as (2.38) with Bz(x,x') replaced by

2
_ 1+x+x' -
By (x,x') = Q) (55357 ) 2=0
2 2 2
_ XS4x'T+1 1+x+x!
= (—§§§T———)Q2(——§;;r—) 2#0

Thus to the & = 0 mode we have a correction -

2 xx'
x4 + 5 %

and for the 2 >0 mode a correction

24x1%4+1

12¢X
(x"( 2xx"'

xx'!
) + 25 q,.

The localized modes exist above the continuum of
"pree” modes in the case of a positive impurity. The
v ,lﬁ
continuum of free modes extends from Wy to 5 wo
(1:e. q=k, 1in (2.29)). From figure (2.1) we see that

the localized mode has a frequency w~v3 Wy
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Characteristic energy losses of k.e.v. electrons
scattered from thin films have been attributed to
plasma excitatilon. Comparison of results of experiments
performed with pure materials and the same materials
containing positive impurities should reveal the local
frequencies predicted here. Even though the local fre-
quencies lie close to the continuum they can be detected
because they will absorb energy more readily since the

impurity can take up momentum.
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2.0 3.0 4.0 5.0

&———— Metallic Densities

——

Figure II.1. Plot of w’/w2 -1 vs r_ for Z = +1 and

2 = 0; +1, obtained numerically from eq,(2.38). Here r

s
is defined by Po™ %

n(rsa°)3, where a  1s the Bohr radius.
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INTRODUCTION

There exists a class of materials, called pilezo-
electric, 1n which mechanical and electrical effects
are strongly interdependent. For instance 1f a plezo-
electric material 1s subject to a mechanical strain,

a. macroscoplic electric fiéld éppears in the crystal.
Conversely 1f the plezoelectric crystal is placed 1in
an electric field it becomes distorted.

Plezoelectric materials are insulators at room
temperature. However a plezoelectric crystal such as
CdS can be made semlconducting simply by shining 1light
on it. The electrons excited into the conduction band
in thils manner will respond to an external electric field
and also to the macroscopic electric fleld associlated
with the elastic vibrations of the crystal. The converse
effect will also occur, namely the electric field of the
conduction electrons will produce stralns and hence vi-
brations in the crystal. Thus in a piezoelectric material
there 1is strong coupling between the electrons and the
lattice.

Besides the piezoelectric coupling the electrons
will interact with the optical polar modes (since piezo-
electric materials are ioniec). In addition theré will
be short range interactions between the eléctrons and

the lattice, 1.e. deformation coupling. These
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interactions may play an important role in determining
the transport properties of pilezoelectric semiconductors,
but it is almost certain that i1t 1s the piezoelectric
coupling which is responsible for the most spectacular
experimentally observed effects.

Hutson et al.(23) studied the propagation of
'~ atoustic waves in semiconducting CdS in the presence
of an applied D.C. field. They found that acoustic
waves of ~20 Mc are strongly amplified when the drift
velocity of the electrons exceeds the velocity of sound,
for waves travelling in the direction of the drift
veloclty. Shortly after in 1962, Smith(zu) observed
the phenomenon of current saturation in CdSs. Upon
.application of a high D.C. field the electric current
was observed to ﬁaintain a constant value for 10”7 sec
and then decay to a different constant value. The drift
velocity of the electrons at saturation was found to be
slightly greater than the longitudinal acoustic wave
velocity. Smith concluded that the saturation was a
direct consequence of the amplification of acoustic
waves. He postulated that energy and momentum were
transferred from the drifting electrons to travelling
acoustic waves,

In 1965 Yamashita and Nakamura(25) investigated
theoretically the phenomena of phonon amplification and

current saturation in piezoelectric semiconductors.
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They used a quantum mechanical model in which the acoustic
waves were quantized (phonons) and looked at three possi-
ble types of electron-phonon interaction, pilezoelectric,
optical and deformation.  In the case of pilezoelectric
interactlon they found that phonons of small wave number
q<5 ><105 cm—1 are strongly amplified in a narrow cone
around the direction of propagation of the drift current
when the drift veloclty exceeds a certailn critical velo-
city, above the velocity of sound. They further found
that as the number of phonons increases the current
decreases to saturation in a time of approximately 10-6
sec. The calculations were done for CdS at room tempera-
ture with an electron number density 1015 cm—3.

For the case of deformation and optical coupling
they found that phonon amplification could not reasonably
be expected to occur within their theory, at least at
room temperature. This conclusion is in agreement with
available experimental evidence.(26)

The theory developed by Yamashita and Nakamura can
" pe applied fof any value of the applied fleld. However
there 1s a difficulty when it is applied to the reglon

whose drift velocity exceeds the critical velocity which
does not arise when the drift velocity is less than this
critical value. Since in the former case the number of

phonons 1s beilng increased enormously by the action of
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the current, non-linear phonon-phonon interactions are
an extremely important process for establishing the
excited number of phonons 1n steady state., Indeed
without the non-linear phonon-phonon processes no steady
-state 1s possible within thelr theory when the drift
vélocity exceeds the veloclty of sound. The inclusion
of non-llnear processes in an exact fashion is a
formidable problem. Therefore Yamashita and Nakamura
introduced a cut-off in the phonon excitation number.
It was found that the tlme for saturation of the current
was not very sensitive to a cholce of the value of the
cut-off, but that the saturation value of the drift
current was quite sensitive with regard to this wvalue.
In Part II of thils thesls we apply the theory of
Yamashita and Nakamura to the region where the drift
veloclty 1is less than the critical velocity. In this
case the non-linear phonon-phonon processes play an un-
important role. However in this region exclited phonons
may exist and influence the drift velocity. Their in-
fluence 1s quite different then in the case when the
drift veloclty exceeds the critical velocity. In the
latter case the excess phonons reduce the current to
saturation value. When the drift velocity 1s less than
the critical velocity the effect of the induced phonons
1s to increase the current above the value it would have
if the current were determined by the equilibrium dis-

tribution of phonon alone.
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In Chapter I we develop the theory from a
different point of view than that of Yamashita and
Nakamura. We investigate the conditions for the
establishment of steady state of the electron-phonon
system in the presence of a D.C. field. In Chapter II
we apply the theory to the case of an A.C, electric
field applied to a piezoelectric semiconductor. In
Chapter III we discuss the results. We find that in
an A.C. field, below a critical value of the frequency
of the applied field, the magnitude of the drift
velocity of the electrons 1s increased over the value
it would have if it were determined by the equilibrium
distribution of phonons alone. This is due to the
effect of the induced phonons. Above this critical
frequency the non-equilibrium phonon distrlbutlion does
not have time to become established and the magnitude
of the drift velocity i1s reduced to a value determined

by the equilibrium distribution of phonons alone.



Ly

CHAPTER I

THEORY AND CONDITIONS FOR EXISTENCE
OF A STEADY STATE

I.1 Theory

We begin by considering the kinetic equation for

the electron distribution function fk ’

of 8fk] afk]
—— = ——— + e (l.l)
3t 3% Jep 3¢ )py

where the suffixes e-p and Fi denote the terms arising
through the interaction of electrons with phonons and
the external field respectively. The kinetlic equation

for the phonon‘distribution function Nq is

~

aNc~1 BNS] , aug] o2
T T : )
) 3% Jop ) p=p

where the suffixes e-p and p-p denote terms arising
through electron-phonon and phonon-phonon processes
reépectively.

The relaxation time of an electron interacting
.with lattice vibrations is of the order of 10"12 sec
at room temperature. This is approximately the time

required for the electrons to establish a steady state
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with the lattice. On the other hand the phonon-phonon
relaxation time 1s of the order of 10—6 sec. Thus in
the presence of an applied electric field the phonon
distribution function willl be a very slowly varying
function of time compared to the electron distribution
functlion. As long as the frequency of the applied field
is much less than 10+l2 sec, the electrons can be
assumed to be in instantaneous steady state with the
values of the external field and the number of phonons
at any moment of time. Thus the left hand side of
equation f1.1) is negligible for the frequency range

of interest and we can write

afk] 8fk] -
~ + _.__.~ = 0 . ’ 1.3
O ep 3t Jpy

We wish to solve the coupled equations (1.2) and
(1.3) in the presence of an electric field applied in
the -z-direction. Ideally one would like to solve (1.2)

“and (1.3) for fk and Nq 3 1in practice hoﬁever this

~ o~

proves to be a hopelessly complicated task. We therefore
use a method of partial'solution_developed by Fr8hlich
and Paranjape(27). The ldea is to guess a form ofAthe
solution for f, which contalns a number of unknown
parameters, ana then use (1.2) and (1.3) to determine

these parameters and Nq. It has been found(27) that 1if

~



the electron density is sufficlently high, then to a
good approximation the electron distribution function

fk is well represented by a displaced Maxwell Boltzmann

distribution
3 52 -ﬁzlk-lfo °
fk = (27) ne(mB—T-) e /2mkT , (1.4)

wﬁere n, is the electron number density, m the electron
mass, kB Boltzmann constant. Mathematically, ko and T
are two unknown parameters which are to be determined.
Physically, T 1s interpreted as the electron temperature,
not necessarily equal to the lattice temperature To and
fik /m as the electron drift velocity vy. The two para-
meters ko and T are determined by requiring that the

rate of transfer of energy and momentum by the field

to the electrons is equal to that transferred from the

b6

electrons to the lattice. Mathematically this corresponds

to taking the first two moments of equation (1.3), which
illustrates the approximation nature of the solution.

We follow Yamashita and Nakamura in assuming that T=To.
Thus we only use one of the above mentioned conditions,
namely that the rate of transfer of momentum from the
field to the electrons is equal to that transferred from
the electrons to the lattice.

The rate of transfer of momentum from the field

to the electrons is
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Lok

£y
k 5= =eFN |, (1.5)
Fi

]
=
Q

where e is the magnitude of the cnarge on the electron,
N is the total number of electrons and F i1s the applied
field in the -z direction. Equation (1.5) is just
Newton second 1aw. The rate of transfer of momentum

from the electrons to the lattice is (neglecting U~

processes)

afy 3N,
mea—”- =Z‘hq§-—: =eFN . (1.6)
k e-p q ” e-p -

We will mainly be concerned with the effects of
an A.C. electric field on a material in which .the
electron-phonon interaction is exclusively plezoelectric.
For the moment however we will include the effects of
polar interactions, so that we can compare our resulting
equations with those obtained by Yamashita and Nakamura.
Polar interactions are important in many piezoelectric
semiconductors at room temperature. In fact in CdS at
room temperature the interaction of the electrons with
the polar modes is mainly responsible for determining
the low field mobility.(zs) However the polar interactions
do not give rise to an appreciable number of non-equili-
brium phonons (because of large energy required to excite

them) and we assume that their effect may be adequately



described by the introduction of a relaxation time

To® Hence we write

ark] afk] afk]
hk — = & Ak —— + hk -
% ~ 3t e-p K ~ 3 polar k ~ v p.e.
o
fE-fk aNq
= - ¥ hk( ~) + ) hq ST (1.7)
k o a -~ p.e.
where
o
afk} fE—fk
s ae— = - >
ot polar To

fﬁ is the equilibrium distribution, and p.e.stands
for pilezoelectric. Thus from (1.7), (1.6) and (1.2)

we have the following two coupled equations

(o)
£ T 3Ny
- ] ik == + ] g 3= =eFN (1.8a)
k ~ o q ~ p.e.
aNg aNg] , aNg] | .
) 3% )p.e. 3% Jpop

Making use of (1.4), equations (1.8) are to be
solved for the electron drift velocity V4 and Nq.

~

The term

Ng]
p.e.

@ Q@

48
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which appears in equations (1.8a) and (1.8b) can be
evaluated using Fermi's Golden Rule. The probabllity
per unit time for an electron in a plane wave state

k+q to make a transition to a state k with emission of

a phonon ¢ is

2 2 r, rq(g*D) 8(Epeq = Bk - fug)
Cg is the square of the matrix element of the plezo-
el

ectric interaction labelled by k+g and E;'ﬁwg is the
energy of the emitted phononj; €, ='ﬁ2k2/2m.

Simlilarly the rate of tra;sition of an electron
from a plane wave state k to a state §+g wlth the

absorption of a phonon of wave vector q 1s

21 A2 ;
2% Cqfig S(eiug = o T M)
Therefore
oN
2 =¥ 2T c2(f (N +1) - £ N }6(e fiwq)
9 Jo.e. k £° ®q 5 Qa 4d k'q k+q~ “k ~

(1.9)

We expand the displaced Maxwell Boltzmann distri-
pbution, equation (1.4),as follows:

af, '
£, = fo(e ) - Tivgkx 53— . (1.10)

s e R M ST
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Similarly

of
- - o]
fk+q— fo(ek+q) ﬁvd(kx+qx) Y . (1.11)

The collision of the electron with the lattice
is nearly elastic owing to the relatively small mass

of the electron. Hence we expand fo(8k+q) as follows:
. afo

Using the approximations (1.10), (1.11) and (1.12)
equation (1.9) can be evaluated using standard methods.(ze)
We glve the final result

9E 2
q vC 2
— = 4 (0 -
3% )p.e. 2 (ﬁ-?) fo(eg)(vdcose s) Eg
2 :
Ve 2 "
-1 (L o
t (ﬁz) fo(eg) v4c0s8 ng (1.13)

where V is the volume of the sample;

8 1s the angle between q and the applied field;

~

Eq = Ny~ ng , where ng is the Planck distribution;
wq = 8q, where s 1s the veloclty of sound;
5*= o, 1
and ng ng t5 .

For a piezoelectric'1nteraction(29):

q =7 ¢ 2WN_s (72, 2| a ° (1.14)

2 _ 1 ,4mge2 =X q® 12 1
C ( ) 3
o a“+qg



where B = piezoelectric constant;
€. = dielectric constant;
N_ = no. of atoms/cm3;
q, = (Hnng/eokT) is the inverse Debye screening
length;

M = mass of an atom.

In equation (1.13) we make the substitutions

X - _ha _ , y = cos 8 (1.15)

¢2kaT

and rewrite (1.13) as

3E(x,y)

Y ]p.e. = gé—xl {(vgy-8)E(x,y) + vgyng} , (1.16)

where

72 3/2 2

3 %
8(x) =@M ng (g ) = (?ilf) o™

2

1. 1 (4mgey 1 12
booem g T omn sh® /2mkT

Substituting (1.16) into (1.8a) we obtain

mv, n 2

d e 2mkT 1 1 3

eF 2 m——— +41(__) = ——— de b'e g(x)
ne To £ 2 an

'Idy{(vdyz- sy)&(x,y) + vdyzn:} . (1.17)
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Solving (1.17) for vy we obtain

%gi-Bs fh(x)dx[y E(x,y) dy
Vg =T . . , (1.18)
= 4 + BJh(x)dxjy dy &£(x,y)
o p.e.
where
2K, T
= 1 _ B~
B = ) 2 -
2 2 2
. +X
and °
* .
1 .g Ih(x) dxjyz dy ny . (1.18a)
Tp.e.

At room temperature the low fleld mobility in CdS

is determined mainly by the polar interactions, in which

case = >> 1l __ . If we neglect 1l/7 compared
T, Toue. p.e.

with l/r0 in (1.18) we obtain an equation which is

i1dentical with that obtailned by Yamashita and Nakamura.
However we are interested in the case where 1/1o + 0
i.e. pure piezoelectric coupling and we write equation
(1.18) as

My e, F +Brp.e.[n(x)dx[y£(x,y)dy,

1+ Brp.e.Jh(x)deyza(x,y)dy

vg ; (1.19)
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The effect of non-equilibrium phonons on the
drift velocity is contained in g(x,y) in equation
(1.19). If the effect of the non-equilibrium phonons
is small then

vy ® up.e.F . (1.20)

An expression for g(x,y) 1is obtained from equatlion

(1.8b). To solve this equation we need information on

p-p
the velocity of sound we follow Yamashita and Nakamura

BNq/at] . As long as the drift velocity 1s less than

in assuming that the phonon-phonon interaction 1is

adequately described by a phonon relaxation time, 1.e.

0

8Ng Ng ng E% 1.21)

3¢ B == .
p-P Tq ‘g

We can then write equation (1.8b), using equations (1.16)
and (1.21) as

_ELELXL__ E___ {vgy- s*}g(x,y,t)+-5£—l A7}/ ng (1.22)
where
g% =8 + —2—— (1.23)
T(x)g(x) |

The two coupled equations (1.18) and (1.22) can
be solved and a time dependent solution for the drift

velocity due to a time dependent electric fleld obtained.
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It is of interest however to obtain the steady state

solution of (1.18) and (1.22) when vq < s¥*,

I.2 Steady State

We first note that equation (1.22) has no steady
state solution for vdy>»s*. In this case it 1s necessary
to include non-linear phonon-phonon interactions in order
to ensure the existence of a steady state. However when
V3 < s* equation (1.22) has the physically acceptable

steady state solutlion

*
Va¥ ng(x)

s*(x) - V4

E(x,y) =

(1.24)

We substitute equation (1.24) into equation (1.18)., The

integrations over y are stralghtforward and are glven

by
+1
2 l+v _/s*
I y&(x,y)dy = - g%1 + §%— 1n ‘ 2 *I (1.25)
-1 o Vs 1-v, /s
and
+1
2 * l+v /st
y2E(x,y)dy = - % - g§%—-- §§3 1n|———9———| (1.26)
- vy vy 1-v /s*

where Vo is the steady state value of the drift velocity.
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Substituting (1.25) and (1.26) into (1.18) we obtain

2s¥(x), s* (x) 14+vo/s*(x)
v = Hp,e.Fo+Bs p.e.[h(x)dx{ Vo v 1n l1 vo/s I]
o 2
li-BTp.e.Jh(x)dx[- < 2% (%) _ s*(x) 1n 1-3 45 x| ]
v v3
o o
(1.27)

Multiplying both sides of equation (1.27) by the de-
nominator on the left hand side, expanding the logarithms

(vo/s* < 1) and collecting powers of v, we obtain

vo[1-BT .e.l% n;h(x) dx é}] + BTJ%'h(x)dx n:(l—-ff)

p

5 9
[30 ;‘Lg_,,;_l’e_,, ]zt?_” .
5 Tl P35 T ) 7T Teeeto

(1.28)

The sum in the curly bracket extends to infinlty.
Remembering the definition of Tp e.? and expressing
the power series 1n v, as a logarithm, equation (1.28)

can be written as

BTp.e.I% h(x)n®(x)(1-s/s%(x)) ___ézl

3 1+v°/s* 3vo
* 12 ln‘l-v /s*| - mup e Fo o (1:29)
(o]

Equation (1.29) is exact and is an expression for

the steady state drift veloclty v, in terms of the



applied D.C. fileld Fo. If we consider the case when
vo/s*(x) << 1, then expanding equation (1.29) in powers

of vo/s* and keeping terms linear 1n vo/s* we obtain

VBT, . I% n(x)n®(1 - s/s*(x))ax = uy o Fo o (1.30)

From equation (1.30) the low field D.C. mobility u is

i
u o= p;e° . (1.31)
BTp.e. J% h(x) no(l - s/s¥*(x))dx

If an experiment 1s performed to measure the low fileld
mobility, one presumably measures (1.31). If we look
at the definition of s*(x), i.e. equation (1.23) we
see that if T(x) is very small then s/s¥(x) ~ 0. In
this case 1t foilows from equation (1.31) thét

TR "p.e.' However we will find that in a reasonable
model of a physical material CdS, T(x) 1is sufficlently
long so that u 1s appreciably different from “p.e.'

It follows from equation (1.30) and also from
the exact equation (1.29) that if s/s* is sufficlently
‘close to unity then no steady state solution exists for
Vo <8, The fact that no steady state solution exists

when s/s* ~ 1 is not apparent from the equation for the

non-equilibrium phonons. In fact replacing s*(x) by s

56

in equations (1.22) or (1.24) seems to make no difference

as far as the formal existence of a steady state is
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concerned. But the existence of a steady state §(x,y).
depends on the exlistence of a steady state drift velo-
city for which it 1s necessary that s # s#,

From equation (1.24) we see that the effect of -
the current 1s to increase the number of phonons
moving in the direction of the current (y >0) and
decrease the number moving in the opposite direction
(y< 0). The result of this is to increase the electron
mobility, u, above the value it would have if determined
by the equilibrium distribution of phonon alone, i.e.
"p.e.' To discover whether thils effect is important
one must have some method of measuring u . One way

p.e.

of measuring u would be to apply an electric field

p.e.
for a very short time, since the non-equilibrium distri-

bution of phonons requires a finite time to establish
itself. 1If the applied "pulse" was of short enough.
duration, the mobility of the electrons would be deter-
mined excluslvely by the equilibrium distribution of
phonons. What would seem to be a more practical method
would be to apply an A.C. fileld of high enough frequency.
In this case the current would never be in one direction

long enough to excite phonons.
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CHAPTER II1

APPLICATION TO A.C. FIELD

We consider a pure A.C. field of the form
F(t) = F sin wt . (2.1)

This field gives rise to a time dependent drift current,
which in turn glves rise to a time dependent phonon
distribution. If the frequency W is small enough, then
at'a given.instant the electrons and phonons are almost
in steady state, and the phonon distribution is to a
good approximation given by equation (1.24). However
above some frequency of the applied field the phonons
will never reach steady state, and equation (1.24) 1is
no longer applicable. At even higher frequencles we
expect on the basis of the intuitilve argument glven at
the end of Chapter 1 that non—equilibrium phonons are
not present in appreciable numbers at all. The time
required for the electron phonon system to reach steady
state for a constant drift velocity can pe obtained
from equation (1.22), and 1s of the order

2 4973 1
Ly (2.2)

in CdS at T = 30°K , ng = 1015 em™3. At low drift ve-

jocity this time 18 of the order of 10"8 sec.
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We first considered the general form of the
phonon distribution function. If the current is moving
in the +z direction it emits phonons in that direction.
When the direction of the current is reversed it beglns
to emit phonons in the -z direction. Since the phonons
have a finite lifetime T the phonons emitted in the +z
direction will not have vanished when the current is
reversed. Hence at sufficiently high frequencies but
not too high there are always some induced phonons
present. The phonon distribution function therefore
does not oscillate in time around its equilibrium value,
but about some value in excess of this. We express this

fact by writing

E(x,¥,t) = E°(x,y) + EX(x,¥,t) (2.3)

where g° is time independent. Provided the material has
the same properties in the +z and -2z directions, go(x,y)

must be an even function of y. Thus

E%(x,y) = £°%(x,-y) . (2.4)

Substituting (2.3) into (1.22), and equating the time

independent parts we obtaln
£EC(x,y)s*= Time independent part of (g(x)vd(t)gl(x,y,t)y).

Since Eo(x,y) is an even function of y, provided s* 1s
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independent of y, which we assume is the case, gl(x,y)

is an odd function of y and hence

1 1l
1 yECdy = 1 vty = 0 . (2.5)

Substituting (2.1) and (2.3) into (1.19) and

making use of (2.5) we have

1
Vd(t)= up.e}F(t) + Bsrp.e.[h(x)dx[g (x,¥,t)ydy

1+ Brp.e.Ih(x)dxlyzio(x,y)dy

. (2.6)

Only the numerator of the right hand side of (2.6) 1is
time dependent. If vd(t) and El(x,y,t) are expanded

in a Fourler series in time then the lowest harmonic

of vd(t) (1.e. the one that oscillates with frequency )
will be out of phase with both the applied field and the
lowest harmonic of El(x,y,t). All higher harmonics of
the current will be in phase with the corresponding

harmonics of El(x,y,t). In other words, all harmonics

‘of the current higher than the first are produced exclu-

sively by the action of the non-equilibrium phonons.
We neglect this effect and concentrate on the first
harmonic of the current which is produced by both the

action of the field and the non-equilibrium phonons.



61

We look for a response to the applied field which

has the form

yd(t) = vlsin(wt + 61) . (2.7)

E(x,y,8) = £2(x,y) + EX(x,y)sin(ut + A;(x)) . (2.8)

Eﬁuations (2.7) and (2.8) contain 5 unknowns,'vl, 845
£%(x,y), gl(x,y) and Al(x). Substituting (2.7) and
(2.8) into (1.22) and equating the linearly independent
terms (i.e. the coefficients of 1, sin wt and cos wt)

we obtain the following three relations.

£%(x,y) = -n¥ + _— "o >
v,y 2 -1
1-—— (B0 (u2y (aler ),
(2.9)
gl (x,y) = Ty £ i
’ 2
/o ¢ (BOIEEO0Z ) D)7 g 2 2, mstay
(2.10)
and
61 = tan'l E-(YSL‘S’_%-G?Y + Al(X) . (2.11)

Equations (2.9) and (2.10) give £° and 51 as functions
of one unknown vy and equation (2.11) relates 61 and
Al(x). Substituting (2.1), (2.7) and (2.9) into (2.6)

and equating linearly independent terms we obtain
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up e .F+sB p.(,_,.[}'1(x)clx [ygl(x, y){y (x)s*cos 61+%-2- slnsl}dy

v c08 ==
1+ Brp.e.Ih(x)deyzdyEO(x,y)
(2.12)
1 wly(x)
vysin = SBTp.e.[h(x)deyE (x’y)dy{Y(X)S*Sinsl-—_éTESCOSGl}
1 + Bt Ih(x)dx[yzdyﬁo(x,y)
p.e.
(2.13)
where
y(x) = —B&I/2 - (2.14)
02 +[5(xis*]

Equations (2.12) and (2.13) can be solyed for v; and &
when E° and £} are substituted from (2.9) and (2.10).

We have assumed that s¥ 1s not a function of y. In
this case the integrations over y in (2.12) and (2.13)

can be performed in a straightforward manner. The

results are

v Y
+1 ' _ 1 + -/—_—'
. 2.0 o] 2,1 2/2 2
1 vyeE (x,y)dy =ng|- 3-+;§—§{-M + VY log vy ]
- 1Y —_—
1-y2
(2.15)
and
V.Y
L . 1+ 7%-
yal(x y)dy=?-9-— -4 + -2—',—2.- log ————2————- (2.16)
’ V.Y v.Y V.Y * *
- 1 1 1 - =1
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We substitute (2.15) and (2,16) into (2.12) and
(2.13) and multiply both sides of these equations by
the denominators occurring on the right hand sides of
(2.12) and (2.13). Collecting the coefficients of
0036l and sinGl we note that they contain terms involv-
ing
1+ v,//2
1l - vl//f

1ln

These coefficients can be regrouped in a neat form if

one expands the logarithms ((yvy/v/2) <1), and collects

powers of V. This power series can be again expressed

in terms of a logarithm. This procedure 1s analogous
to the method by which equation (1.29) was obtained

from equation (1.27). We then obtain the following two

equations : v,y
l + —
_/5_

Y
1 - Y

V2

3

cosd, [B Ih(x)n {1-v ss*}z' {1n
p.e. Y
1

2vly
'3

: *
} dax = "p.e.F + siné1 {BTp.e.I[h(x)no

wl s82/2

g(x) vfy

{in

}de] (2.17)



t B -
anG1

V.Y
Ih(x) *wgs 1 L2
ey b || - X
v,Y dx
I S V2
V2
v
1Y
J (x) ny(1 -v ss¥®) 3§ llnl V2 2vy Y
v - dx
Y 1 - ¥ vz
V2
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CHAPTER IIIX

DISCUSSION .

III.1 The phonon distribution function

We glve some arguments to Justify the form of the
equations obtained in Chapter II. The decomposition
of E(x,y,t) (2.8) was arrived at on the basis that at
high enough frequencies there are always some non-
equllibrium phonons present and therefore Nq does not
oscillate around its equilibrium value but ;t some
value in excess of this. One might therefore expect
that go(x,y) should tend to zero at low frequencies.
However that this 1is not the case can be seen by the
following arguments. When the current is moving in a
certain direction it depletes below their equllibrium
value the number of phonons travelling in the opposite
direction. However, it cannot deplete this number by
any move than the number present in equilibrium, i.e.
ng. There 1is no such restriction on the number of
pﬂonons the current can create in the forward direction.
In steady state the number of phonons created in the
forward direction is from equation (1.24)

V4y nh(x)
S -de ¢



The depletion in the backward direction is

vdyno
T s¥ ¥ vy

Hence the average number of non-equilibrium phonons in

the two modes (x,y), (x,-y) is

*

- vy 2 n . '
Eay(Xs¥5-¥) = (5§5) s - (3.1)
d
1l - (—gw)

In the A.C. case the two modes (x,y) and (x,~-y) are
treated together, as can be seen if we recall that the
angle y is always measured from the direction of the
current, and that the current changes direction over a
cycle of the applied field. Thus when the current is
moving in the +z direction 1t is increasing the number
of phonons in the mode (x,y) where y is measured from
+2z direction. When the current changes direction the
mode formerly (x,y) becomes (x,-y) measured from the

;z direction. Thus at low frequency we expect E(x,y,t)
to oscillate above its average value given by (3.1).
Dﬁring a cycle vg varies between 0 and vi where vy is
the maximum value.of the drift veloclty. Replacing vg
by its average value over a cycle, i.e. v§/2, we obtain

from (3.1)

66
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vy 2 n*
1im £°(x,y) = (=) ° : (3.2)
m+g =Xy V2 s* 1 - (vly )2
/2 st

Taking the 1imit of equation (2.9) as w-+0 glves equa-
tion (3.2).

Let us subtract out from the steady state, equation

(1.24) the average value (3.1)

*
—g, = e %o (3.3)
& Eav s VY 2 * *
1l - (g;r—)

Thus at low frequencies § should oscillate about its

average value Eo with an amplitude given by (3.3).
Thus

v,y n* . .
1m g1 (x,y) = %= (3.4)
w0 1 - (_l_)
/2 s*

where vy has been substituted for V4 in the numerator
since the maximum value of the drift velocity determines
the maximum value of El. Taking the limit of equation
(2.10) as w+0 gives (3.4).

Having given a meaning to the expression

E(x,¥,t) = §, + & sin ut . (3.5)

At low frequencies, it is necessary to point out that

equation (3.5) does not constitute a good physical
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description at low frequencies, i.e. w << 1/7.
Equation (3.5) implies that as the current goes to
zero during a cycle, il.e. at times t = 2m/w , the
non-equilibrium phonon represented by EO will be
present. Since 50 is the time averaged value of the
number of phonons in a mode, this will only be the
case when  >>1/T. In CdS at 40°K, 1/T~ 10° sec™t

III.2 Effect of the phonon distribution on the current

To obtain a rough idea of how the solutions of
(2.17) and (2.18) are expected to behave, we assume
that s*(x), y(x) and g(x) may be taken out from under
the integral sign, and replaced by their values at the
maximum value of the integrand, which we denote by s¥,

Y and g. Then from (2.18) we obtailn

g& s
-1
tan§, = - — g s¥ > . (3.6)
g sk sk

From (2.17) we obtaln, to terms linear in v,

2 2 X
w L
"p.e.F{-—z-s-*z + 1} .
©T L (1 - s/3%)2)E
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In (3.7) as w becomes very large v, approaches up.e'F.
At smaller values of w the effect of the phonons is to
increase the value of vy above “p.e.F' The high fre-
quency 1limit is exact and follows from (2.17) and
(2.18).

Equations (2.17) and (2.18) were solved numeri-
cally for CdS at T = 30°K and n, = 1015. At temperatures
below 50°K the coupling between the lattice and the
elecﬁrons is piezoelectric.(3o) Above this temperature
polar coupling becomes important. An expression for T(x)
at the temperature we are interested in has been given

by Hollana¢31)

L - p13s?° | (3.8)
Tq

where D = 2.74 x 10™22 sec/T3. ‘However this value of D
gives the phonons a mean free path many times larger

than the average size of experimental sample. We have

therefore chosen

1
T(x)

= 10% x| (3.9)

which means that a phonon with x = 1 has a mean free
path of the order of centimeters (i.e. dimensions of
the sample). Figures III.1l and III.2 show plots of v4

and 61 versus w respectively for different values of
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the applied A.C. field. We see from the figure that
much below the frequency w, ~ 108 sec"1 the amplitude
of the drift veloclty 1is nearly independent of w while

much above this frequency the drift current decreases

to the value up.e.F. “p.e.

evaluated numerically from eq. (1.18a). The phase

25000 em/volt.sec.

lag between the applied field and the current has a

maximum in the viecinity of W, .
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V| 0.5s

os 1 [} 1 |
10° 108 107 108 107 w

Figure III.1 displays vV, versus uw for two values
of the amplitude of the applied field, (a) 12 volts
and (b) 8 volts.



or

-tan 8; 05

0
109 106 107 108 10° w

Figure III.2 displays 61 versus w for the

same applied filelds.
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