JCANADIA!\\{ THESES ON.MICROFICHE

' . 4

- THESES CANADIENNES SUR MICROFICHE

© microfilming. Every effort has been made to ensure

l * National Libragy of Canada
Collections Development Branch

Canadian Theses on

Microfiche Service Jur micrpfiche

Ottawa, Canada -
K1A ON4

NOTICE

The quality. of this mlcroflche is - heavnly dependent ¢

upon the quality of the original thesis submltted for

the hlghest quallty of reproductlon possnble

£

‘erned by the Canadian Copyright Act, R.S.C.

If pages are missing, contact the university whlch
- granted the degree. ~ - '

i

Some pages may have indistinct print especially

if -the original-pages were typed with a poor typewriter -

ribbon or if the university sent us a poor photocopy

“Previously copynghted materials (Journal artlcleS‘

publlshed tests, etc.) are not fllmed

H
Reproduction in full or in part of this film is gov-

c. C-30. Please read ‘the authorlzatuon forms Wthh
accompany this thesis.

THIS DISSERTATION ~
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

¥

NL-339,(r. 82/08) .

e

1970, \

By

4 | |

Bnbhothéque nationale du Canada
Direction du développement des collections

Service des'théses canadiennes. * o

. AVIS A

La qualité de cette microfiche depend~grandement de
la-qualité .de la thésg soumise au mlcrofllmage Nous
avons tout fait pour assurer une quallte supérieure
de reproductnon

S’il manque des pages, veuullez commumquer- '
avec I'université qui a confere le grade : 4

La qualité dlmpressson de certaines pages peut
laisser a désirer, surtout si les pages ongmaies ont été

-dactylographlees a Ialde d’un ruban usé ou si l‘univer-

sité nous a fait parvemr une photocople de mauvaise
quallte e B

Les documents qui font déja Iobjet dun droit

d’auteur (articles de revue, examens pubhes etc.) ne’

sont pas ‘microfilmeés.

La reproductlon méme partielle, de ce microfilm
est soumise a la Loi canadienne sur le droit d’ auteur,
SRC 1970, c. C-30. Veuillez prendre connaissance- des

“formules d’ autonsatlon qui accompagnent cette thése.

. LA THESE A ETE |
-~ MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE -

| Can dm

»4‘ » ,)J\ N \ . . ;
‘ .* National Library Bnbllothéque natnonale ~ // (
- of Canada du Canada L /
. , . T ‘ /
¢ canadian Theses Division Division des théses canadiennes . . J/
- Ottawa, Canada) PR ,/
K1A ON4 63822 . / ¥
L] ‘ A ‘ »
PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER . ..
. Plaase print or type — Ecrire en lettres moulées ou dactylographier " , e ' /
“ S : ' /- .

Full Name of Author — Nom {:omplet de l'auteur
\ o

N O'GERT w/LLIAM 7;/0"’\"*5'

G/Q/?/?A w,tz 7’

Date of Birth — Date de naissance

Country of Blrth — Lleu de ‘naissance °

WNov. Mt 1738 CAnvAvA
’ Permanent Address = Resudence fixe
23 - Bareor ST ..

GukLPH) ON’/‘. . ~.¢
. . ~.
. ' Tl N
Title of Thesis — Titre de Ia, thése !
M(CRO compnrTER 5;q5£0 Compw‘ga /q:.myré‘g
L£,an//NG_ CQS/LE S

J)/;?‘EM.

University — Université

Univers, 7y of ALKGKTA

Degree for whnch thesis. was presented — Grade pour quuel cette these fut presentee

>Year thls degree conferred — Année d’ obtentron de ce grade " | Name of Supervisor — Nom du dlredeur de these
1543 ' Dg. S Hungs |

Permission:is hereby granted to the NATIONAL LIBRARY OF
CANADA to microfilm this thesis and to lend or gell coples of
the fitm, ; . .

The author reserves other publucatron rights, and neither the
thesis nor extenswe extracts from it may be printed or other-
w1se regroduced without the author’s written permission.

i L autonsatron est, par Ia presente accord@ ala BIBLIOTHE
‘QUE NATIONALE DU CANADA de microfiimer cette these et de
préter ou de vendre des. exemplaires du film.

L'auteur se réserve les autres droits de publication; ni la thiése
ni_de longs extraits de celle-ci ne doivent étre imprimés ou
autrement reproduits sans |'autorisation écrite de I'auteur.

Date) ‘ ’ . i

 Opid 25, (993

g signat'%D

NL-91 (4/77)

‘ (3 T ' s | | : ! o /

THE UNIVERSITY OF ALBERTA. -
.\\; '? . '))
Microcomputer Based Computer-AssisjedQLearning System:

CASTLE - - .
by "

(:@:) Robert William Thomgs»Garraway/

.

-

./7,
" A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT .OF THE REQUIREMENTS FOR THE DEGREE

— : : / OF'Masfer,o%JEducafion,'

N

~ .

i P A
‘Department of Educational Psychology

= e
R | ~ EDMONTON, ALBERTA
g | SPRING 1983

|

~!

Date

THE UNIVERSITY DF'ALBERTA SRR
FACULTY OF GRADUATE STUDIES AND RESEARCH

The unders1gned cert1fy that they have read and -

recommend to the Faculty of Graduate Stud1es and Research

for acceptance. a thes1s entitled M1crocomputer Based "

'”ComputerjAss1sted Learn1ng*System. CASTLE subm1tted byus,

Robert William Thomas Garraway in partial fulfilment of the .

*

requiremeWts for thefdegree of Master. of Educatjon;

v
e .
i i
N
S
B
il
k '
t ..
4
4 "
. .
v
9
E

T AR A e e e s e L

3 2 e T T \“ S s

|) | o sk
R : e : . : . - ,‘ *
| X .

\ L . . B 4 .
- hd L] @ .5,_;;" (.
. THE UNIVERSITY OF ALBERTA R
o RELEISE FORM A T

iNAME OF AUTHOR Rébert William Thomas*-Garraway

et ¥

’TITLE DF THESIS ;; M1crocomputen BaSed Computer Assisted

Z« Learn1ng System CASTLE : ';?

- DEGREE FOR WHICH THESLSsWAS PRESENTED Master of Educatlon
- YEAR THIS QEGREE GRANTED _SPRING 1983 ‘

K

Pfgm1sS1on 1s hereby granted to~THE UNIVERSITY OF +*
ALBERTA LIBRARY to repraduce s1ng1e cop1es of th1s \.jif;TQ;{;

'thes1s and to lend or: sell such cop1es for pr1vate.

BV fscholarly or scient1fwc research-purppses only Daff:f,

The author reserves other publ1cat1on rlghts,vahd

Ay

-ne1ther the thes1s nor’ extens1ve ext;gcts from 1t may

: be prlnted or otberw1se reproduced w1thout the author 5

:? K . < . el

written perm1ss1on ?‘1 . e
o ‘.a;t':_{ (SIGNED) /ﬁ1~12%ff;.ﬁ.,;; L

PERMANENT ADDRESS o

DATED ... &4

]

I

- L '.' f ‘ bedicatioﬂu

! To’my wifé,L Bahiya; and my children, Na{san and Yasmifr.

co AR

.
3 -
,
» -
2’ .
. ' -
¥
-
A
Al -
A
t
(
E .
&
. .
. .
14 - a ?
.
' ‘
‘»v -y
.
3
L3
]
- L . {
Y - < v
4
Y .
LR 1
[3
R . 5
R
.
.
.
)
.
7
i .
1
oy
' KN ' '
¥ v
2y ~
- b
A ,
iy - '
- ’ lad
.
¥
“
.
B 3
y iv
\ /

Rt

Y TV ¢ A AT Y s T e
a3

e e Sape o R TG SRR 17

‘nat1onal author1ng languago 'wﬁk$t;;f;
*M o - P

C

Abstract e ’, . - o

The purpose of this study was to 1nvestigate the extent to
3

‘%thch a sophisticated CAI/CAL system could be 1mplemented on

a typical microcomputer system currently ‘found in the

‘schools A method for comparing .CAL languages was devised

and used to rank five common’ CALJTL.T |
,i, nave the/ﬁ1ghest
rank and so was used as thé. w']tiafg'“
m1croc;mputer based CAL system4 ’

The new system, named CASTLE (Computer Ass1sted Student
Tutor1a1 Learning Env1ronment), was pr1mar11y des1gned for
trained CAL authors andmresearchers, but ‘has features that
could assist the beginning author in ereating CAL lessons
and courses. The des1gn spec1f1cat1ons for the CASTLE
Language and the CASTLE Support System were def1ned

A subset of the CASTLE Language and Support System was
Heve]oped on . a Commogore CBM 8096 mtcrocomputer system The_
CASTLE system software was written in COMAL-80. Techniques

of incremental compilation in an interactive and

interrogative envtronment"weﬁe used. The completed system ,

was evaluated and recommendations made for'fyrthen research

~

~and development.

N

‘ o
. ’ . Acknow ledgements <
I would particularly.like t0'thahk my supervisor, Dr. Steve
_ Hunka, for his’guidance, patience, and encouragement
R : ,
throughout the duration of the research. Iialsdxbreatly

appreciate the comments and assistance given by my;committee

me ehs Alan Davis, pf the Division of Educational Researcb -

i’

Servxces. was’ espec1a1]y helpfu] 1n increasing my

27 understand1ng of computer software systems design.

The flnan01al assistance.and faci]ities of the Division
. of Educat1ona1 Research Serv1ces made this progect poss1ble

F1na11y, I wish . to thank-my children=for th‘t'f

and my wife for the 1ong hours of entering this thes1s text

into the computer. o AN

@&

Vi

== 71able of Contents’

P L.

_ Chapter | | | Page
I.. Introduction I e e e .
A. The Development of a Microcomputer Based CAI

. System RN A e '.7.1‘

5. The Evolution FOCAL Lo 2

“ Two Courseware Philosophies AR 2‘
‘ihe Early Years e e e SRR 4

Tne:Active Seventies U L..6

The Effectiveness of CAI @ .8

- C. The Microcomputer Revolution IR ': 9
D. The Wide Spread Use of Computere in Education ..11

E. Issues Biocking CAI in Schools .u.f...‘ 16

f. The Development of Computer Languages 19

G. CAI as a Solution to Educational Problems 21

H. The Characteristics of CAl {...,\ 23
I1. A Review of CAI Languages and Support Systems_..hi.2é
A. Definition of Terms e ia e .26

B. A Method ' for Comparing CAl Languages 29

C. CAl Languaoe FeatUresviurinnannonnnsans 31

D. A Comparison of Five CAl Languages:....34

E. CAl Support Systems ; e 36

I1I. ReqUirements‘for a Microcomputer Baeed CAI System .52
A. Requirements for Courseware Devélopment52

B. NATAL-74: Canada’s NATional Authoring lLanguage ;55

C. éeiection of a System Development'Language 59

D. The CASTLE Instructional Environment 61

IV. Design Specifications for the CASTLE Language-}.l..64

vii

.

\ .
A. Overview ..x.\ P ‘:.....ﬁ.f..:...f64
B. System Data Ceee e e '...,g...f.i,.; 69
" system Files S AR 69
System Registers e S 70
System Variables S L7
C. The Procedure Lénguége' '..................f;d
Datg.Types‘:...f e e 7é
RoUtines B T .74
CONtrol’ StrUCLUrES .. .vvsirssereeenn, 78
, | COMAL Statements e e T 80
_ " CASTLE Statements S e ...85
‘D.uSystém Variabies e e P 92
| System Sw1tch Var1ab1es \....92
System Numerlo Var1ables f;.f 92
System Str1ng Variables e, 93
E. System FUNCtions ... 0.overo.o... L;:....:...94m
" COMAL Genera Functions REEEREREE 94
CASTLE General Functions P 96
System Comparison Functions IR 93
System Edit Functions TR 102
System Graphic Functibéé e 105
F. Instructidna] Uni\ Language e e e e 107
G. D1sp1ay Sub-Language ...:.........;....‘ L0113
V. Design Spec1f1cat1ons for the CASTLE Support
System S 118
A. The CASTLE Registration Subsystem PR 118
© Course Registration e,118

viii

o
«

Class Reqistration e) e 120

System Library Registration ‘ 122

B. The CASTLE Courseware Development Subays em .;.i22

‘ _Lesson Module Development ..;:123
. Instructidnal,unit Developmenf ...{...’...f;127'

N Display and Window File Development ';134

" C. The CASTLE CoyrsewarevPresehtation Subsyst Y;J134

D. The CASTLE Performance'Anaiysis Subsystem .\.. ., 138

VI. Implementation of the CASTLE System|... 139

A, Hardware Selection R P 139

?; ! B. The CASTLE Test Implementat1on R sl 141
? C. The UNIT Tables and Codes T .. 144
) D.'The Implementation Parameters: {....u,; *145

VII. Conclusion ,1.,..t..i;gﬁ...[g:,l.é.....;u 148

A. Evaluation ;;...;....f,. 148

?B Recommendat ions ..' e ‘1;1’ o 152

i References 0., S 55
i Append1x - G]ossary B I 158

oA

A e T R RS B e T S

Ll.t"?f Tables
Table '

1 CAI Language Features: Raw Scores..... e

2 Frequency of Obtaining Higher Fea;uré Score...... e 35

1
List of nq;;mu
Figure S S | Page
1 Profilgs of 18 CAl LIﬁﬁptqe Féitur#! }l)........}...‘.31
2 Profiles ofﬁia CAI" Language Futun‘u (b)38
3 Profiles 6f 18 CAl Langusge Features (c)........... g0+ 397
4 Profiles of 18 CAl tanguaq; Features (d)........... ...40
5 Profiles of 18 CAl Language Features (e)............ 41
6§ Profiles of Five CAIHLanquages 4....§.42 '
7 Courseware Deve lopment Competoncioa. e53
8 Unf:‘ Procedure, and Function Relationships @7
A Course Hierarchy.......... e i e 58
10 Hierarchical Control of a CASTLE" Course............... 65
i1 I1lustrative Example of Lesson Selection ‘
. Within a Chapter........... ..o i “:..66
12 Procedures and Units in a Lesson................... ;..68
*

DAL v e b

I. Introduction

In 1981 the debate over whether or not
m1crocomputers will substantia 1y impact education
has all but vanished. Tens of thousands of micros
have made their way into the schools, and
-‘discussions have at 1aFt turned to the plann1ng
needs ... the preparation of software and courseware:
(software which teaches) for use with
microcomputers. (Roblyer, 1981, p. 47)

With this influx o%'mitrocomputers into the scho&ls there

has been a resurgence of interest among teachers and school

administrators in comphter-assisted-inStpUctjon‘UCAI). Most

have been scanning the market place for good courseware for

use with their students. Many have expressed an interest ink‘

~writing their'own CAl programs. Unfortunate]y good

courseware for microcomputens is rare and spec1a]1zed CAl

~ software systems almost non- ex1stent or of limited

‘soph1st1cathn.

A. The Deve;opmeht of a Microcomputer Based CAI System
‘-‘Khe only CAI Tanguage widely supported on todays
micrgéomputers is PILOT. It is re]ativeiy easy to learn and:
use, but does notlsupport modern structured progfamming:
techniques, built?ih per formance recording or‘student
restart points, and has onJy one'typé Sf answer énafysig.
Various édukseware deVe]opment systems'designed for use by
1nexper1enced authors have appeared on the market. Many of
these are useful for 1mp1ement1ng simplistic CAI but they
lack many of the features condeered standar¢"on
main;frame CAI«systemsi Even the expénsive/PASS systém

developed by Bell & Howell, though having many fine

- features, lacks expansibility, locking the experienced

. author into set instructional strategies.

The purpose of this thesis is to inveétigate'the'extent
to which a_sophistiCated‘CAi system can be implemenfed on a
typicaf microcomputer system'currently found in the schools.
This system should have features useful to researchers in

CAI. These m1ght include flex1ble spec1f1cat1on by the

author of the information to be 1nc1uded in performance

records; and author developed response comparison funct1ons,.

inputxedit functions, and general functions.

CAI -has been around for more than twenty years. Thisk
experience proviQes a large body of Knowledge and reseérch
upon which to build CAI systems and courSeware not’onlyffor

the microcomputers presently in the field, but,for'the more

mpowerfui»ones now “being developed.
| 1 N -

B. The Evolution of CAI

Two Courseware Philosophies

Roblyer (1981)'suggests that two courseware
philosophies have evo1Yed during the last two decades of CAI
development. One is called the "PLATO model” after_fhe PLATO
CAI project at therUniversity ofllﬁlinois,’and the ofher,
the "Stanford/CCC model" after ine work of Suppeé‘whicn

began af Stanford University:and*Was later marketed by the

" Computer Curriculum Corporation (CCC). The "PLATO model” is

A,

y

dﬁimari]y,USed er main]ine instruction where the computer
j . ‘ ; ‘
’ sunplies “highly-interactive ’eonversational“ tutorials

which simulate the presentation of an ‘excellent classroom

teacher." (Roblyer, 1981, p. 48) On the other hand, the

"Stanford/CCC model” presents drjﬁls in basic sKills in

brief daily sequences'“intended to supplement and reinforce

what has been previously'taught in_the classroom." (p. 48)
Roblyer.outlines three areas where the two models
differ: |

1. Learner control. Instructional activities in
most PLATO materials usually emphasize student
ability to ‘'structure his or her own lesson path
by using a menu (index), on-line glossary or
other "Help" resource, remed1a1 feedback and
loops, and control of frame movement, both
forward and back. Many materials based on the
Stanford/CCC model, on the other hand, consist
of highly-machine- contro]led drill exercises,
with most other 1earn1ng act1v1t1es off- 11ne

2. Feedback Many 1ntr1cate answer - Judg1ng features
and capabilities were built into the PLATO
author-language, to allow feedback tailored to
several different kinds of student answers.
Positive reinforcement for correct answers is

“usually given, either in the form of verbal
feedback ("Good work, Morley"), or an animated
creature of some K1nd If the answer 1is wrong,
explanation is supplied matched to the type of
response (e.g., misspelling, concept error, or
unexpected. response) Many Stanford/CCC
materials have no response at all to the student
if the answer is correct, and often only a "No,
try aga1n if the-anSwer is wrong the first
time. : :

3. Graphics and animation. Again, the emphasis
placed on these features may be seen'-in the
number of tools and commands in the PLATO author
language for developing graphic displays. Most
PLATO lessons contain animated creatures or
diagrams of some Kind. However, few graph1cs
appear in the CCC materia]s.‘(p. 48)

PLATO autnors could wrjte cdurseWare that‘conformed to the

Lt L .

w , - Stanford/CCC model, but they rarely do,atending instead tq i
utilize the richneés‘of(the facilttiesioffered by the PLATO
environment . Rob]yer'concludes from examination of research
with these two modele that both are very effective. The

genesis of these models goes back more than two decades.

The Ear]y Years

Burns and Bozeman (F1981) have outlined some of'the '
events of the ear]y years of CAl deve]opment

The dawn of CAI was in the late. f1ft1es when the
computer industry began exp]or1ng 1ts use for tra1n1ng the1r

own personnel. I1BM took the 1ead w1th DEC CDC and

HeW]ett—ﬁacKard soon follow1ng The ear]y s1xt1es saW‘many
un1vers1t1es begln1ng research and deve]opment prOJects in
CAl. Educational CAI, st1mu1ated by U. S federal funds, was
a natura] combination of the emergﬂng computer-technology |
and the programmed 1nstruct1on movement .’ ‘ o o
One of the ear11est unlvers1ty prOJects‘was the
Stanford project at the Institute for Mathemat1ca] Studies
in the Social Scienceer It waE'led by‘Patrﬁek‘Soppes, Among
the first to venture into the pUb]ic schoole with'CKIJ'by
1963 they had developed a.small.tutorjal system in
elementary mathematics and 1angoage artsthhetr second
systém concentrated on theAdritl andepractiCe»mode'of C@y‘
Dur1ng 1967/68 they were prov1d1ng 3000.students with daxly :

lessons in- 1n1t1a1 readmgr mathemat1cs, and spe]llng

7 ’

In 1967 the Stanford group founded the Computer
Curriculum Corporat1on (CCC) as a commerc1a] outlet for._'
- their research Their courseware was 1mp1emented on a Data
General m1n1~computer in machtne Iahguage and presented on
up to 86 swmple CRT terminals. (Ha]]worth and Brebner 1980'
" p. 45) Dr1lls in mathemattcs, read1ng, and 1anguage arts
1ntended for basic skill development and ma1ntenance were
provided for 1evels K to adult. They-were part1cu1ar]y ‘
successful with Ihe"cu]turatty and:academtcatly
disadvantaged. | ._: |

" . The PLATO (Programmed Log1c for Automat1c Teaching
0perat1ons) prOJect began in. 1960 1n the CQord1nated Sc1ence
‘Laboratory at the Un1yers1ty of Il]1no1s After a seven year
developmental phase, during whlch;over 300 programs=Were
written, the University foUnded.the Computer Based
'Educattonal Research Laboratory Here the PLATD III and in
the seventies, the PLATO v systems were developed

in 1967, the Waterford M1chtgan Schoo] D1str1ctv -
commenced their INDICDM progect that saw the deve]opment of
teacher authored CAI courseware in e]even content’ areas for
grades K to 12. "A system approach fo: curr1cu1um creat1oni\
-accommodated behav1oral obJecttves spec1f1catnons
1nstruct1ona1 sequencing, and procedures for eva]uating.“
model. effectiveness." (Burns & BOzeman 1981, p. 33)
The National- Science Foundatwon funded research

projects in the late s1xt1es to 1nvest1gate what, bes1des

S drill and practice, could best take advantage of the

N

computer in the educat1ona1 env1ronment Two of these

prOJects the Hunttngton PrOJect at the State University of .

ELNew YorK and PPOJeCt SOLO at the Un1ver51ty of P1ttsburgh

exam1ned the simulation, games. ‘and prob]em solv1ng modes of.;

:CAI (Fre1berger, 1981)

The Act1ve Sevent1es _ . _
‘The h1story of - CAI in the sevent1es has been d1scussed i

in some deta11 by Ha]]worth and Brebner (1980) '

| One of the mos t act1ve CAI systems dur1ng the sevent1es';

was the IBM 1500 system At One time .it was in use by. -

twenty f1ve centers The system along with the Coursewr1ter

1 CAI language was deve]oped by IBM in the mid- s1xt1es

‘wWwith the asststance of Suppes’ group at Stanford'Unwvers1ty;

It SUpported up to thirty-two multi-media.terminalsv The -

1500 System Users Group shared courseware and user deve]opedx

‘system enhancements such as powerful answer ana]ys1s

functions and graphics construct1on sub-systems. .
Typ1ca1 of the 1500 users of that period was the Cal

group of the-D1v1s10n of Educatlonal Résearch Serv1ces at “

the University of Alberta They operated a 1500 system from \,f]

1968 until 1ts w1thdrawa] from service by IBM in Apr1l 1980.
Full tutorial courses 1n such areas as med1c1ne stat1st1cs,
and CAI authoring were deve]oped during this per1od as well

as support programs for course documentat1on and student

“performance analysts

During the last five years of operatiog of this
_ computer system approximately 26,000 student-hours

~f,of 1nstructlon per year ‘were. offered ma1n1y through
courses which formed 'the primary source of
instruction- for the student. Some courses averaged
70- 80 hours to complete hy the average- student

- 0f course, “the 1BM 1500 syste had a number of
hardware disadvantages as well as cost d1sadvantages
: [It] had no.adequate remote capability and all
term1nals had tc be within about- 1000 feet of the
central” facility. The response time to 22 terminals
could be degraded by poor programming practices, and
mainframe.and disk memory was limited. Nevertheless,

. the software system as it was designed and enhanced
by the Division:for the support of instruction, for
its time .was Superb, and.can: only be currently
matched by the far more expensive PLATO system.
(Hunka,.1981) ‘

N l
&

Also during the seventies. the PLATO IV system
cont1nued to evolve and expand It was commerctally marketed
by Control Data Corporat1on (CDC) PLATO IV can support
several hundred terminals at remote locations. Some may be
- mu]tJ-med1a«term1nals. Its re]at1ve1y facile author1ng;_,'
1anguage. TUTOR; has been used to produce a very large base
of CAl lessons. The University of Illinois system now
services over 4000 students per semester. . (Burns & Bozeman,
1981) ' |
Among the general conclus1ons which can be drawn |
from observing the PLATO project in operation, both
in schools and at the central site, the one which
stands out is that this is a very act1ve project,
strong in research and‘with many creative CAI
.authors who are producing excellent courseware in
. many subject areas at all levels. (Hallworth &
Brebner, 1980, p. 28)
Other systems of note during thevseQenties'was that:
produced at the‘Ontario.InStitute for‘StUdies in Education
(OISE) and the TICCIT (Time-shared,. Interaot1ve Computer

Controlled Information Televtston) system created by the

MITRE Corporation. OISE developed the1r own authortng

N

language, CAN} and produced courseware in remedial
mathemaics that is used by many community colleges. TICCIT
- was one of the first systehs tq"exploﬁe the.use ofacolour

graphics in CAI.

:iThe'Effectiveness of CAI _
Forman (}981).‘after doing an extensive survey of the
]iterature, draws the following genebal{zed ccnclueions |
: 'hegarding the~effectiveness of CAI in tHe learning process:

S I The use of CAl either improved learn1ng or
, showed no 'difference when compared to
traditional classroom approaches.

2. The effect on achievement occurred regardless of

‘ the type of CAIl used, the type of computer
system, the age range of the students, or the
type of instrument used to make the
measurements :

_ 3. When CAI and traditiona1 instruction are
- compared, equal or better achievement using CAl
is obtained in less time.

. 4., Students have a positive attitude towards CAI,
"~ frequently accompanied by increased mot1vat1on
attention span, and attendance in courses.
(p. 46) : :

—

— As‘Haliworth-and Brebner (1980,‘5; 102) bo%nt out,
'these establ{shed‘CAI projects made use of. a techno]ogy:that
waS‘oFfen more than -ten yean o]d. Schools,. for the most
part, ha?e Been re]ucﬁant fQ establish CAI projects because
of the high initial eost of the‘hardware’redu{red. However

the new micro teehnolqu has redUced costs trehendodsly.

 C. The Microcomputer Revolution

Mankind has w1tnessed the extrordinary growth and
deve lopment of the computer 1ndu$try since the Second World
War. The ENIAC computer of 1946 tooK up 15000' sq. ft. of- °
space, contained 18,000 Vacuum tubes, cost. several m1]l1on
dollars, and kept a horde of techn1c1ans busy Just to
maintain its use for ten m1nutes a day Todays m1crocomputer
takes about two square feet of space, costs about a thousand i
dollars 'requ1res 11tt1e ma1ntenance, and has far more
computational power. tdohnson; 1981)

These changes\were the result of various stages of
development within the e]ectron1c 1ndustry The first
generat1on of computers was based on the techno]ogy of the
vacuum tube. Succeed1ng generatlons were based on the
transistor the 1ntegrated c1rcu1t and now the large‘scate
- integrated (LSI) circuit -or s111con ch1p Each‘oeneration»

brought computers that were faster, had'greatertcapacity and
pbwer, were more re11able and were]ess:expensive dohnson
(1981) c1tes a recent computer company’s advertisement wh1ch” g
states.that if the auto industry had‘progressed at the same
rate as the computer industry over the last thirty years, a

Rolls Royce would cost $2.50 and wou 1d get 2,000,000 miles

~ per gallon.

‘A computer has, of course, many components: fast access

memory, slower access large scale memory, input/output

! dohnson actually states 1500 sq. Ft., but this is
obv1ously too small. Rice (1976) gives 15000 sq. . ft., which
is more likely. '

10

controls, input/output devices, and a central process1ng
unit (CPU). The CPU 1tself has many complex components.
INTEL in 1969 was the f1rst to put a CPU on a single silicon
chip. This wés the birth of the micréprocessor. This first
microprocésSor wasvSIow and-had only a four’bit word Iéngth.
It was soon sL;cCeede% by the INTEL 8080 eight-bit |
microprocessor wHich was mgéh faster and more réliable.
‘Other chip manufacturers;quickly had tHeir.an '
microprocessors on the market,'sﬁppobted by new memory and
fnput/output control chips.

Hallworth and Brebner (1980) described the next stages

of the revolution:

The availability of silicon chips is a
necessary but not sufficient condition for the
development of a microcomputer. ~... The appropriate
chips must be assembled, generally on boards, and
interfaced to supply a]] the necessary hardware
functions of the microcomputer; and a power supply
must be added. The whole must then be provided with
a software system, for which it is also necessary to
provide. terminal handlers, and preferably at least
one high'level 1anguagé '

The development time requﬁred to produce such a-
m1crocomputer meant that the first did not appear
~until January 1975. This was the Altair 8800, which
was produced in kit form. During 13975 and 1976 most
~ . microcomputers were sold in this form, as hobby
- computers, intended for people having some prior

knowledge of engineering and computing. Such
“microcomputers were obviously not.appropriate for
.most educators. .

: " However, in April 1977 Commodore announced the

“.PET 2001 microcomputer, a fully operational turnkey
upackage designed not,6 for the hobbyist but for the
‘general consumer. This represented a dramatic
change: it was the first microcomputer that had
immediate appeal to the educator. Within a, year,

. PET's had been purchased by a lange number of
schools in the U.S. (pp. 111-112)

B

' Eacﬁ year more models have appeared on the market with
an ever expanding ligt of support peripheral devices: such
as floppy dfsk‘unjts. printers, light pens, graphics
tablets, and speech syn}hesizers. And each year thousands of
more microcomputers have fohnd their way into the schools of

the industrialized world:

' D. The Wide Spread Use of Computers in Education
Forman (1981}, éiting the 1980 survey by Chambers and

Bork of a selected sahple of 874 U.S. school districs,
' . ‘ o

foundf

Approximately 90% of all school districts responding
are now using the computer 'in support of the - -
instructional process. Most-computers are leased or
owned by districts and large computers are more .in
evidence than are micros and minis which the study
found to be equal in popularity. It was also found
that the most popular applications in order of usage
are the teaching of computer 1anguages,‘computer
assisted learning, data processing applications,
using the computer as an instructional aid, and
?sing ;t.for<guidance and counselling applications:
p. 64)

v

From this same report there was noticed a dramatic increase
in'the,percentage of districts maKing use of computers
jdirectly in Tnstructfon: 13% in 1970 td-74% in 1980 with 54% .
as CAI/CAL5 949 of the reporting districts expect to be o i
using computers by 1985 with 87% in direct instruction and
74% as CAI/CAL. '

Klassen énd\Soiid (1981) reported on a March 1951
survey by the U.S, Department of Education, National Centéﬂ_

for Educational Satistics entitled Student Use of Computers

in Schools. It found that in about half of the school

/,,,;~’f’f’#*;7“’”;

e

B

e st e AR b e

S R e AT

127

Es

districts of the U.S. students had .access to microcomputers
or computer terminals. There were over 31 000 microcomputers
in the schools and almost 21,000 terminals. .

The most widely used CAl systems have been those based
on PLATO and those of the, Computer Curriculum Corporation
(CCC). Hal]worth:and Brebner (1§80t‘report that in ‘1980 |
there were nine PLATO systems'in éxistence; all but the one

'at the Un1vers1ty of I1linois built by Control Data
Corporat1on (CDC). There are systems at the Un1vers1t1es of
F]orida, Delsware, Alberta, ang Quebec; as well as two in
CDC’s main officss,in Minneapolis‘and one each in Europe and

South Africa.‘Ovsr 100 colleges, universities, medical

facilities and schoo]s,;publié{schools, government agencies,

and businesses in both Canada and the U.S. access the more
than 6000 hours of student:tested ihstructton thndver 40d
subjects on the PLATO 1V systems. (Menashian, 1981) |

"CCC has prov1ded the maJor port1on of all CAI wh1ch
has been used in schoo]s on a regular bas1s ! (Hallworth &
Brebngp 1980, P 46) One- third of the 1nsta11at1ons are in
Texas with other systems in Cal1forn1a, Seattle,

M1ss1ssqpp1, New ¥ork, 1111no1s, New Mex1co, Pennsy1Van1a;‘

and _ Ar1zona

- .0

In 1973 the Minnesota Educat1ona] Computer Consort1um

(MECC) was formed by the Un1vers1ty of M1nnesota, thé States

Un1vers1ty System, the Commun1ty Collége System and the
State Departments of ‘Education and.Admlnlstrat1on. Hallworth

and Brebner (1980, p. 76) report that MECC's division of

.rj;\

13

Instructional Services manages and operates’a‘state-wide
time-sharing computer network that supports approximately
2000 mostly simple Teletype terminals.
Applicatibns on the network range from simple drill
programs for skill improvement to comp lex -
simulations of historical events and guidance :
systems. In all, over 950 instructional programs _
have been implemented or developed and are available .
to all users of the network to supplement curricula
at elementary, secondary and college levels. (p. 77)
As more and more microcomputefs came on the market, MECC
sponsored a project whiéﬁ evaluated fifteen of the then
current models. The result was a volume purchase agreemeﬁt
with Apple Computers that has seen more| than 1OOOVApple I1
) microdomputers énter thé schools thgheﬂ The educational
programs developed for thg Applie II by MECC have been
.’purchased and used by scthlsﬁacross Nor th Americé.

The Mihiétry of Education of the Province of British
Cq]umbia hés been‘operaf;né a pilot project on the use of
microcomputers in the schools. It is based on the MECC
mode 1, initia]ﬂy F;fty of thg proviHCes seventy-fivg&schoo]
“districts Sme?ﬁted proposalé to the‘project. Of thégé,

- twelve were selectéd and 100 Apple Ii microbomputer§.were
'disfributed to the schools during the summer of 1980.
Teathers on the pro}ect were given their initial training .on
thes?/computers ét special summer course/ at.the
Universities of Victoria and British Columbia.

I

The mid-project formative evaluation indicated that

“-"the single most critical issue in the use of microcomputers

|
|

in the schools of B.C. was the acquisigion, devélopment, arid

i

sharing of quality CAl materials relevant to the B. C

curriculum " (Forman, 1981, p. 16). The subjective findﬁngs

- of the final report showed tha} "all of the [12]

coordinators and the majority of the teachers ranked CAl as
the most important use of the‘microcomputer. with courseware
development ranking second." tp. 29)

Lindsay, Marini, and Laocaster (1980) repor}ed that The

Department of Special Education of The Ontario lostitute for

‘Studies in Education carried out a survey of the School

Boards of that province in May of 1980 to determine the

frequency and the natureiof their microcomputer

applications. Ninety-five of the 182 boards surveyed

.
"h

responded to the questionnaire sent. They represented 84.5%
of \the total schoo) population.

: - Over 50% of the responding boards, indicated
that they currently had at least one microcomputer
in use. For these boards, the average number of
microcompyters was 13.6, the median 7, thé range 1
to. 79. In total, 652 micros were reported to be in
use in Ontario schools, 624 of these were designated
exclusively for instruction. These 624 computers
were distributed acrosssa total of 157 different
applications. (p. 27)~ '

65.8% of these micros were Commodore PET’s, 16.8% were.

TRS-80's, and 5.8% were Apple Il's. 91% of the épplications

had been in use for only one year or less. Almost 61% of a]l
micros were used in grades 10 to 1§ and 51% were being used
for teach1ng computer programm1ng The following types of
programs were reported. in use:

}ntroduct1on of New Material ... 38:3%

Drill and Practicg 31.8%

e e S . . o g - e e ey ey R e g b 103 1A

15
Simulétion 13.6%
Games 5.9%
Other T 10.4%
(p. 284

Petruk (1987) reported the findings of a survey,
conducted for Alberta Education in the fall of.1980:

The results showed that nearly 12% of Alberta

schools now have one or more microcomputer. The

- majority of the units are Commodore PET (45%), Apple
I1' (31%) and Radio Shack TRS 80 (19%). They appear
to be uniformly distributed across all grade levels.
The most frequently reported uses of the ;
microcomputer involved the teaching of computer.
literacy and computer assisted instruction.

- While a reiatively small number of schools
reported that they had no interest in introducing
~microcomputers into their school, the ma jority of

schools that do not now have a microcomputer are
anticipating getting one or more in the future.

(p. 18) -
The use of micrOéomputers for computer assisted
instchtion,‘as mentioned in the above quotation, may need
Dqlarificatjon. It usué]}y implies theyuse of courseware
written in‘BASIC,MsucH as drills, games, or simulations of
 an'educationa1 néture; but does not imply a suppofting CAI
system of student records or the recording and analysis of
student performance. Many writers are now reférring to this~
| form of CAI és "simplistic CAI" and contrast it tovadvanced
CAl systems such as.PLATO.
In October 1981 the Minister of Education for the
Province of.Alberta announced the bulk pQrchase by his

department for resgle to the schools of 1000'0f the Bell &

Howell version ofithe Apple II wjth disk drives, printer,

<

16

and colour monitogx‘ﬁe understood that there were about 1000
microcomputers in the:schools of Alberta and hoped that this
number wéu]d triple over the following eighteen months.

(King, 1981)

Wise (1981) reported that market research firms project:
that the annual sales of microcomputers to educational
institutions in North America will be greater than 250,000

S by 1985.

g

E. Issues Biocking‘CAi in Séhoo]s

Forman (1981)3 after reviewing the literature, lists
the fo]iowing as "factors which researchers have identified
as bejng impediments to the exploration of the full

potential of the computer in education:"

-‘
PR

_%
ey

1. Insufficient funding from the appropriate
sources to support the original purchase of
hardware, software, courseware, and to establish
the necessary support services for the
successful integration of the technology into
the education system. (Chambers & Bork, 1980;
Kearsley, 1976; Luehrmann, 1980; Moursund, 1979:
Splittgerber, 1979)) :

2. The primitive state of the art in which there is
- a confusing diversity of languages and hardware
sySt?ms. (Chambers & Sprecher, 1980; Kearsley,
1976) ‘ - .

3. CAIl materials that are poorly constructed,
largely undocumented, and able to run on only
the equipment. for which they were written.

) (Chambers & Sprecher, 1980; Kearsley, -1976)

4. Lack of knowledge among educators as to how to
effectively use CAI materials and the computer
in the learning situation, particularly at the

. moment when limited financial resources restrict
the number of systems available per classroom.
(Chambers & Sprecher, 1980; Kearsley, 1976;
Moursund, 1979) : ‘

s

17

5. .The attitude among teachersy fam111ar with and
., ‘comfortable using tried and tested methods, that

the computer is not a tool but an intelligent
machine destined to replace them as teachers.
(Chambers & Sprecher, 1980; Ciement, 1981;
Kearsley, 1976; Sp11ttgerber 1979; Travers,
1981.) . :
tp. 60)

Also, preducing-good'courseware is‘a difficult and

lengthy task. Gleason (1981) cited by Forman (1981) states:
It‘invoives careful“specification of objectives,
selection of programming strategies, detailed
analysis of content structure and sequence,
development® of pretests and posttests, preliminary
drafts, revisians, trials, validation, and .
documentation. This is a very time-consuming and
expensive process, well beyond the capacity and .
resources of 1nd1v1dua1s and even small groups of
teachers. (p. 69)

Even with the extensive author tools provided by the PLATO

v system 1nexper1enced authors require an average of 237

. hours to produce each hour of student mater1a1 while the

rate falls to an average of 26.4 hours for those with

,exper1ence (Ha1lworth & Brebner, 1981, p. 18)

Hardware costs of ma1n frame CAI ‘computer systema have
often been cited as a factor retarding the introduction of
CAl into the schools. Fbr examp]e the net monthly fee
charged by IBM to the Division of Educat]ona] Research
Serv1ces at the University of Alberta in 1979/80 to rent and
maintain an IBM 1500 CAI system with seventeen multi-media
- terminals was $14,176.23. That would be $833.90 per station
per month. '

During the period 1980 to 1982 the University of-
Alberta installed a CDC-PLATO IV system with eibhty

terminals. The totallhardware cost for this system was

18

$2,420,720. 1f amortized over a five.yeérvterm the per
v-ferminal cost Wou]d be $504.32 per monfhf This does not_;
include maintenance costs or the sa]aries‘of support
personel. Multi-media‘termina]s would cost an additional
$5605’per~terminali;Again, when'anortized’this would add
another $93 per term1nal per month.: |

The unit cost of m1crocomputers is cons1derab1y 1ower
As an example, the Alberta Department of Education is
selling to the schoo!s the Bell &.Hoé%li version of the
Apple Il with 48K of memory, dual disk drives, a Panasonic
colour monitor, an integer_cerd, and a clock for $4255;28.
Amor tized over five years,‘the monthly rate would be $70.92.

As a further example of reduced unit cost, fhe~ -
Commodore m1crocomputers can be 1inked together to‘form a -
small system that shares 1nput/output devices. Commodore
also offers a spec1a1 purchase deal to educat1onal
1nst1tut1ons. purchase two m1crocomputers and get the third

one free. An example nine stat1on system-would be priced'as'

follows:) .
9 - CBM 8032 micros (3 for 2) ﬂ;.;.h}}$13,948.20
{ - 8050 iMbyte duel disk unit .:...:.. 2;46}f65
1 - 4022 tractor feed printer':j,...ﬁ.,}1,290.21
f - 8 channel MUPET system ;.¢;;.L.;... 2,245.00
1 - MUPET spooled printer channe] u:!...: 700.00

The total cost would be $20,648. 06 or $2294.23 per station.
Again, 1f‘amor{1zed over five’ years theﬂmonth]y cost per

station would be $38.24. It shoqu be noted, however, that

19

these mtcrocomputers do not have the sophtst1cated CAL
systems sof tware or courseware that cones with the

main- franie computers But w1th such low per unit costs it
is understandable why so many microcomputers are now

: - a I
entertng schools. B . L e

F. The Deve-lopment of Computer'Languages

The earltest conputers were very difficult to program.
Instructions were entered in. the b1nary code: of the .machine
by means of pane]s of sw1tches and -the use of | "patch cords.-
Later, each of the computer s 1nstructtons were gtven
mnhemonic three character names and a computer program was
‘deve]oped for each machtne that could assemble these
instructions into the binary machine code. This was
assembler]anguage:programming. EachICOmputer‘had a
difterent:assembty lahguage. ‘However , in 1956 a new breed of
programmtng Ianéuages appeared. These were called high 1evel

1anguages because they were not usually 1imited to use on

- one type of mach1ne and they used natural 1anguage Key ,

'words Some of these early htgh level languages and- their.
year of 1ntroduct1on are: FORTRAN (1956) COBOL (1960)
ALGOLGO (1960), and LISP (1960) S1nce then many other
general purpose and spec1altzed h1gh 1eve1 1anguages have
‘been deve]oped Among the spec1a]1zed languages have been .
those ded1cated to computer- a551sted 1nstructton suchvas;

Coursewriter, TUTOR., CAN ~and NATAL

20

|

As computers and their languages progressed a class of
computer software known collectlvely as operating systems
was also evolving. The operating system software was
designed to take care of the general housekKeeping chores of
the computer SyStem. It helped the.programmer toAuse all of
the resources supoorted at a particular installation.

This same evolution of computer'software and 1anguages

has been repeat{h for microcomputers over"their brief

h1story. The first micros were programmed in machine
language using panel switches, then came assenblers for the
var ious microbrocessors, followed by the high level language .
BASIC. FORTRAN, COBOL, Pascal, FORTH, APL, and other _
1anguages‘heVe’now'been.imp1emented on many. of the micros,
but not, aS'yet, any .of the more sophisttceted CAI
langoages | o

Comment1ng on: the use of m1crocomputers by teachers for
the deve]opment of_courseware, Hunka (1981) states

For the most part, the software available on
microcomputers requires far greater understand1ng of
the structure of computers than that which is
required for- effective use of a large-scale
computer. The user of the ‘micro must be able to take

~‘care of a far greater number of housekeeping tasks

duripg the deve]opment and execution of program
code. . . :

The implementation of instruction based upon
those factors which we already know enhance
classroom instruction, cannot always be easily done
in BASIC. BASIC was never designed to provide the
vehicle for the development of instructional
courseware., Many researchers in education and
computing science are striving to develop the kind

. of programming languages which are required, and at
least a dozen can be easily identified, -including
the NATAL and CAN 1anguages developed in Canada.
There are other programming languages which are

21

available on some microcomputers, these include
FORTRAN, Pascal, ‘FORTH, and -APL. But again, although
these languages have certain marked advantages over
. BASIC, they were nof‘designed to be used for the
wide range of procedures required in executing an
instructional program. (p. 9) - . .

57

G. CAI as a Solution to Educational Problems

In an exawination of thg présent‘state of;the quality
of education, Hallworth and Brebner (1980) made the - |
_‘followjng‘aésessmentz o

‘ The industrialized societies of Western Europe
and North America have organized their educational
systems upon allegedly homogeneous classes.of »
“students under the charge of one teacher. The system
.. depends on the use of printed texts. Moreover,
it has fulfilled its purpose, in ensuring universal
education to a level needed by industrialized
societies.) ‘

However, these very societies are now in the
process of entering a technological era and are
discovering the need for higher levels of education
in their citizens. One consequence is pressure upon
schools, and.upon teachers, to insure. higher levels -

_ of achievement in their students. A solution is to
provide opportunities. for individualized learning.
Most professionials in the field of education would -
now subscribe to the need for individualization, for
open classrooms and a well structured curriculum.

; It is questionable, however, whether such
objectives can be adequately achieved without the
introduction of a new dimension into the
organization of learning and instruction. Studies

have suggested that, with the present
arrangements, a teacher is unable to devote more
than one or two minutes per day of individual
attention to each student. ... The problem with the
present system is not that the teacher is not
teaching; it is that, for lack of individual
attention, students are rnot learning.

It is suggested that a new dimension can now be
introduced by making use of the information storage,
processing, and distributing capabilities of
computers. ... Appropriately used, CAl can help
ensure that students will receive a greater degree

ldevote more time to the personal, human cdnsiderations of

s
of individual attention than tney receive at
present, that they will learn more quickly and
effectively, and that they will have a positive
attitude towards future learning. (pp. 183-185)

Hunka and Romaniuk (1974) and Forman (1981) have
suggested a number of ways in which CAIl can assist in
solving sdme,of the problems foundxinﬁtodays classrodms. By
allowing students to progress at different rates and use
different methods, by providing students with remed1at1on 'on
enrichment, and by g1v1ng ‘students . 1mmed1ate feedback and
systematic re1n£orcement, CAl is able to: 1nd1v1dUal1ze

instruction. The use of CAI facilitates flex1b1e scheduling

by allowing many students»to take different courses‘at the

~ same time, or to take courses outside regular hours. Courses

are somet1mes not offered for lacK of gqualified 1nstructors
CAI could help overcome this by offering courses. developed.
by qualified outside agenc1es.,1t can free teacherS'from |

many mundane and time-consuming»tasks;'and,allow them to

the1r students Good CAl can7prov1de systemat1ca11y
sequenced and carefully prepared, tested, and revised -
instruction. Finally, as has Seen mentioned'on page 7, CAl
has been shown to be able to motivate students of all levels
of interest andvabi]ity, and to actively invo]ve them in

their 1eafning.

E

23

H. The Characteristics of CAl

In the traditional classroom a teacher presenting a
course must consider what content to present in each lesson,
what teaching strategies to use, and how to moni tor each
student’s progress in achieving the course objectives. These
characteristics must also be present‘in a good CAI system.

Hunka and Romaniuk (1974) have out1ine some of the
characteristics of the better main-frame CAIl systems:

1. Curriculum material is stored in one of the
. memory . systems of the computer. Curriculum
material -may. include textual material (with
differing character sets ...), graphic material
., visual material such as static pictures
., and aud1o messages.

2. The 1esson material is presented to a student
via a computer terminal [usually on a)
television screen ... with an associated
keyboard, light pen [or a touch panel], a

. . photographic projection device, and an audio
play/record unit.

3. 'The .curriculum material is presented to the
student following a precise instructional logic
* .defined by the author of the course .. The
_1nstruct1ona1 logic is also stored in one of the
computer’s memory systems and is executed by the
céntral process1ng unit.

4. The computer presents a lesson individually to
each student allowing him to proceed at his own
speed and governed'by the instructional logic
-designed by the course -author. The course
itself, in terms of logic and curriculum
material exists only in one place in the)
computer, although from the student’s point of
view, it appears as if his lesson is unique to
him. In other words, the one course must contain

~all the necessary curriculum and instructional
logic to handle all students taking the course.
The number of courses available at any one time:
is a function of the size of the memory systems
associated with the computer.

5. It is necessary to have a ."time-sharing"
computer. tach student is servieed individually,

IR 2 O

R e P

24

but the computer attempts to do this with
sufficient speed so that each student appears to
have sole access to the computer. The speed with
which the computer can reply to each individual
student (response time) is a function of the
number of terminals connected to the computer at
the same time, the speed of the compufer
processing units, and the speed with which the
computer can acCess the curriculum and
instructional logic stored in its memory units

A computing system being operated as a CAI
system must be capable of recording all actions

"by the students as they interact with the

course. These records are analyzed and form the
basis ofvimproving\the course content ‘and logic.

The follow1ng software is requ1red to operate a
computer in a CAI mode:

a. Author'Software. a language in which the

course author can create his instructional
‘logic and have it present the appropriate
curriculum material.

b. Author Support Software: this software is
required in order to make it easy for an
author to create his course, e.g., to design
different character sets, magn1fy character
sets as m1ght be required for young
children, 'to easily correct and edit textua]
material for screen display, to trace
.errors, to collect and analyze performance

. records,. and to obtain documentation.

.C. 'Operat1ng System: A time-sharing operating

» system is required. Within this system must
be embedded subsystems which make the.

- operating environment of the system an
instructional environment. For example, it
15 necessary to store responses of students
as they are made in real-time, have the
system sense whether the,correct audio and
visual materials are available, and to sense
a defective terminal which may be located
remotely. Subsystems must also be available
to allow. human intervention in the case of
serious programming errors, e.g. to restart
a student, back him up, or move him to .a
help sequence.

d. A Command Language: Eequired in order that a
programmer or author be able to enter and

%

k-8

correct his course material and computer
code.

Numerical Calculating: the operating system
must allow a student access to calculations
even from a tutorial lesson; it must be
available directly for purposes of
calculating. (pp. 13-15)

25

~ - 1I. A'Review of CAl Languages and Supoort Systems

A. Definition of ferms

It is assumed that the reader is familiar with most
common terms related to computer-assisted instruction. Many
of these terms are defined within the textt However, some
terms are used in this theeis in a distinct way and are,

therefore, defined below.

1. Bu11d1ng B1ocks of CAL: Godfrey and Sterl1ng (1982)
suggest that the basic building blocks of CAL are rules,
examples, and questions. Each objective of a CAL lesson

is comprised of one or more rules.
< .
A rule is any single, testable element of the
objective.... [and may be] a rule, a def1n1t1on,
- a statement or a practice procedure . An
example is a single expression of any ru]e It
may include within it expressions of other rules
in addition to the rule for which it is
designated....A question may be defined as any
single query or test dituation posed by the
§ : computer- to ‘'the learndr, which depends on the
: _ learner’s mastery of a rule or a set of rules in
order to provide a correct answer. (pp. 21#22)

T B TS e S T S

2. CAI: Computer-Assisted Instruction or Computer Aided
tnstruct1on - the term used most widely in the Un1ted
1 . States when referring to instruction administered by a
computer.‘Varjous modes of instruction are included
under CAI: drill‘and practice, tutorial, simu]ation, and
gaming. In the United Kingdom the preferred term is -
Computer—Assieted Learning or Comp ter-Aided Learning

(CAL). CAI and CAL are used\interchangeably in Canada.

26

TS » .
I e v ‘ 27

CAL: Computer-Assisted Learning or Computer-Aided

Learning (soe er)

CAI System User Types:

a.

Instruetors: -those in charge of providing

~instruction in specific subject matter areas,

this may or may not include the actual developer
(author) of the instruction.

Proctors: - on site staff responsible for

overseeing the interaction between student and
machine. They support-instructional activities,
but are not themselves subject matter experts.

. . Computer Operators: - those individuals who are
" responsible for the operation of the hardware

and software of the CAL system (this might also
involve system programmers/analysts/managers)-

Programmers: - those individuals concerned with
the instructional programm1ng and probably. .
responsible for making courses from other
institutions operational.

Authors: - those individuals who specify the
“instructional content, logic or strategies of a
course. j

Students: - those 1nd1v1duals who are the target

of the instruction.

A number of important points should be
mentioned regarding these different types of
users. The distinctions between the first five
categories of users will depend upon the size
and nature of the CAL system. In a large scale
system (e.g., PLATO), it is likely that the
instructor (who authors a course) will be
different from the person who programs the

course and also different from the proctor who

is present when the course is used by students.
On the other hand, in the case of a school using
drill and practice programs (either via a local
minicomputer or remotely located large
computer), teachers are likely to design, write,
and use the programs themselves. Furthermore, in

. the case of a stand-alone mini- or

microcomputer, one person may not only be the
instructor, proctor and programmer but also the
computer operator too. None-the-less, these five,
categories of users are distinctive and

{

necessary componehts of a CAL delivery system
~whether they are fulfilled by a single ar
different individuals.

(Hunka et al., 1978, p. 9)
5. Drill:

A drill teachiﬁg strategy consists of any
‘combpination of rule, example and question. The
response -to the question is identified as either
right or wrong, and some attempt is made to
. indicate the probable source of error and remedy
‘the misconception. There is no complicated
interactive diagnosis of the source of the
1earn?r s error. (Godfrey & Sterling, 1982,
p. 34

6. Inquiry:

Inquiry-based CAL is close to the border of
information retrieval. The learner indicates
which rules he or she wants to see, and is shown
ronly those requested. Inquiry may include
examples, but does not include qQuestions based
on the rules. Because the basis of this strategy
is to allow the learner to select data as he or
she wishes, the objective must define the rules
which:can be accessed by the learner. In many
cases,. this will be the entire database.

(Godfrey & Sterling, 1982, p. 42)

7. S1mu1at1on . . y

The main feature of a s1mulat1on strategy is a
scenario which is displayed on the screen. The
scenario is constructed according to a set of
rules -and examples and is usually designed to
represent "real life". The rule and example are
combined in ways that force the learner to
guess, make assumptions or thinkK in intuitive
ways in order to respond to the question. The
learner’'s responses alter the scenario. A
simylation may also invite the learner to take
control and create the scenario by feeding in
the key features (parameters). The scenario.
which is created will be built according to the
‘-rules defined for the objective. (Godfrey &
Sterling, 1982 p. 45)

8. . Teaching Strateg1es. Godfrey and Ster11ng (1982) l1st
five basic CAL teaching strateg1es: Dr111, Test,

Inquiry, Simulation, and Tutorial (See individual

b

entries). Some wrifers include Games as another teaching
strategy but Godfréy and Sterling suggest that "each of
the ive s€ratégies'can; with‘greéter or $§§ser success,
become & game." (p. 53)

9. EFSt: |

| The question is the only building block used by

2/ ~ a test strategy, although responses are
evaluated according to a rule or rules. The.
results may or may not be recorded.... No

attempt is made to give assistance or emphasis
. to areas of weakness. The test may contain
questions based on rules that-are taught in
different objectives in the course. (Godfrey &
Sterling, 1982, p. 38) -

10. Tutoria?:\

Tutorial CAL is the most difficult teaching
strategy to-define because its most important -
aspect is that it be highly adaptive. It
combines all three building blocKks, rules,
examples and questions, in any way needed to get
the job done. Tutorial. CAL differs from the
other strategies in that in the evenglof
continued learner error the learner £pés into an
interactive diagnostic sequence desigped to _
determine the source of error. Tutorial CAL may.
also allow the learner to ask the computer
questions about the material presented. Allowing
such questions results in a tutorial structure.
that is highly adaptive and -consequently very
difficult to construct. (Godfrey & Sterling,
1982, p. 48) :

B. A Method for Compéring CAl Languagés

To select CAl Systems for review is a difficult task.
There are many to chése‘fﬁom though most are available on
" only a few‘computerdsystems. Voyce (1979),-during his
research to develop a multilingual CAI system, performed an
in-depth anaTysfs of five Tanguaées - BASIC, CAN-7,
COURSEWRITER II1, NATAL and TUTOR. A11 but BASIC are

-specialized CAI languages.

Voyce gave the following reasons for selecting

languages:

30

these

1. BASIC is an exampTe of a general-purpose
programming language which has had moderate .

usage in the CAl environment.

2. .CAN-7 is the CAl language which is almost

exclusively used at 0ISE [Ontario Insti

tute for

Studies in Education] and therefore has topical

- ~interest.)

3. COURSEWRITER is an example of a véry popular
programming language which was specifically

designed for CAl applications. Version
COURSEWRITER was selected for this proj

II1 of
ject.

4. NATAL is the proposéd Canadian standard CAI
Janguage which contains many features common to

other CAI languages.

5. TUTOR is one of the most frequently used CAI

languages.

5

(p. 386)

The results of his analysis were categorized into a taxonomy

of funct1onal propert1es of CAI 1anguages (p. 6
that although a cons1derab1e number of propert

COmmon to all five languages, some properties a

6) He found
ies are

re either

shared by'a subset of the languages or'are'unique to a

. single 1anguage " (p. 41) His purpose was not t

1anguages but to describe their functions.

It is the intent in this chapter to maKe u
taxonomy to develop a system for comparing CAl
The taxonomy of functional properties was divid
eighteen domains termed CAl language features.

domain the functional properties are considered

o compare

se of Voyce S
languages}
ed into

Within each

31

compensatory. That is,‘a weakness in one functional property
'may be compensated for by a strength'inAanother. To compare |
a set of 1ahguages a value is given to éach property in a
\domain that differentiates the.languageé. The value is in
the range of one to fhree‘which represents that property’s
compensatory weight within the doméin. When ‘assessing a
particular property in one of the selected languages, a
value of zero is assjgned if tﬁé pboperty is not present; or
an integer value, up to the maximum set for that property,
is~assigned which debends on the extent to which that |
property is imp]emented in the language.

Once the values for each of the functional properties
for all of the JangUages'have been assessed, they are summed
for each lahguage within each CAI language feature-domain.
Thus .each language has eighteéh~scdhesv one for each_fgatuwe
domain. These scores are used to obtain a profile index ih
the range zero to ten. This profiie index is Galléd a
relajive\prominence index. It hs&itained for each feature
by dividing a language’s score>on that feature by the score
of the languége having the highest score on that.feature and

multiplying the result by ten.

C. CAI Language Features

Voyce divided the functional properties into Six major
categories. (p. 39) These maJor c%h?gor1es are retained for
the description of the CAIL’ language feature domains. Four of

these categories are further sub-divjded to obtain a total

32

of eighteen feature domains. Each is on]ined below. In

éafentheées.after the name of eachvdomaih“is listed the

categories and sub-categofieé of Voyce’% taxonomy (p: 67.)

contained within the‘domaih._(Note - In'Voyée’s taxonomy,

categdry 1 is anvintroductionL The actua]’taxohomy uses

categories 2 to 7. The feature domain categories are

renumbered 1 to' 6.)

1. Data

a.

a.

_"Variables (2.1 - 2.2, 2.11) - predefined and user

variables, scope of variables, typeless variables

Types and'Operationé (2.3 - 2.9) - numeric data

types and operatiphs,,bqo]ean daté'typesvaﬁd o

operations, string data types and operations

Pattern Matchirg (2.10) - elementary patterns,

building up subpaiterns, continued matching, range

.of search, run-time parsing of étrings, indexing of

?subpatferns, substring operations

Student’s Name, Date, Time (2.12) - wal
information available to user haid

Data Structures

Organization and Operations (3.1 - 3.4)- random L
0rgahization, stacks, sets, higher order_siructures
External Storage (3.5) - sequential fiies;
random-ordinal files, random-keyword files, '

séquential-random files, operations on files

Data Conversion (4.0) - numeric conversion, boolean

conversion, string conversion, formatted conversion

4. LProgram Control
a. Labels (5.1) - scope-of labels, referencing program -)
components v o . ‘ s | |
b.. Transfer of Control (5.2) -~uncondit}on31 trahsfer,
conditional transfer, Tndexédytfansfer; »
c. Block Instructions (5.3 - looping struéfukes,
‘decision structures | |
d. Subprograms (5.4) - functions, sﬁbfoqtinés QE‘
procedures,:invocaﬁion of subpfogramé,.nesting;
.recursion, parameter passing |
e. Stoping and Starting Student Sessions (5.5) -
checkpoints, session restarts | |
f. Implicit Activity (5.6) - imp1icft transfers,
trapping, asynchFonouS‘activity-
5. Output to Student . '
a. Student Output Devices (B.f) audio”aévices, slide or

microfiche, bell

4
o~

b. Terminal Display (6.2:1»— 6.2.3) - dots, vectors,
"strings, character size, highlighting, fonts,
Qisp1éy of variables; display sub-language

¢.. The Display Area (6.2.4) - scréen size, windows, on
other ferminals, bounds, text alignment} formatting
operations « |

d. Additional Display Functions (6.2.5 - 6.2.10) -
input display, overprint, displace, display erasing,
sﬁecié1 di§p1ay functions, externa} storage of

display i;}ormationd

34

6. -Student Reeponse {7.0) - input devices, time‘limit,e
’screen area, 1im{t'to number of eharacters, character
set, spec1a1 funct1on Keys, responce]atency, response

pos1t1on

D. AvCompariéon of #ive CAI,Languages ‘

| Using the above scheme, it was deefded,to-edmpare five
CAl Languages: CAN-7, COURSEWRITER III; NATAL, iUTOR ahd
1PILDf 'The first four were se]ected for much the-same
reasons that Voyce gave and because data on the1r funct1ona1
propert1es was readily ava1]ab1e from Voyce s study As a
fxfth_]anguage Voyce had selected BASIC. Since BASIC,1s not
a specianZed cal languege it was,decidedfto rep]aee it w{th~
_PILOT, the only CAI language widely suppor ted on todays
microéomputere | - -

An ana]ys1s of the functional: propert1es of Apple PILOT
(Apple Computer Inc., 1980) using Voyce $ taxonomy was
- carried out. A review of Voyce's analysis of/NATAL and- TUTOR
was also done using the:most recent manqé]si{HoneyweJ]
Information Systems, 1981b; Control Data, 1978).

Applying tHe method for combaring CAI;languages
outlined in Section‘B above, scores for each o% the eighteen
1anguage feature domains for all five languages were "
obfeihed. These are shown in Table 1. This table also
. contains a key to the abbreviations used fqrithe}names of
the CAI‘languages. From these scores the reletive prominence

indices were derived.

Table 1 CAl Language Features:

Raw Scores

35

CO <\
Y

Variables -

Types and Operations
Pattern Matching .
Student’s Name, Date, Time
Structures

Organization and Operations
External Storage. '
Conversion

ogram Control _ ,
.1 'Labels .

.2 Transfer of Controil

.3 Block Instructions '

.4 Subprograms

.5 Stop/Start Student Sessions.
.6 Implicit Activity ,
utput to Student

5.1 Student Output Dev1ces

5.2 Terminal Display

5.3 The Display Area

5.4 Additional Display Functions

o) e . .
AR B WN -+

Q

.

a
r

Dbbbbbb"ﬂowl\)o—*—t—t—o

6. Student Response

O
(@]
=

i
o
NN —
PONW -

[y

N
| —t

ONRNOD TINaUINW Dw —

—_ e N — -
OO DWO~JWd w-—-u
—L—-‘-‘

ONB=~~N PLWOO—® WK NLOD

BB NUIN MNOOWO OO Gk

o

—“oCoO0OoOs N OCOOD

o

OONW~3—

*Abbreviations: N - NATAL, T - TUTOR, C - CAN-7

CW - COURSEWRITER III, P

- PILOT

Table 2‘Frequency-of Obtaining Higher Feature Score .

.Cw

of/over - N T, - C
- NATAL - 16 - 16 14
» . TUTOR 0 - 13 14
- . CAN-7 1 -4 ’ g
CWIIL 1 4 5
PILOT 0 3 7 6

36

\

Figures 1 to 5 show brofiles of relative prominence for
each CAl languagé feature over the five languages. NATAL had
the highesf scqré.bn all features but one. Table g lists the
number of times each language obtained a higher feature
score over’each of the,other languages. Though each feature
f$ ndt of equal importanpe in a CAl]anguage,vthe‘tablexaoes
{ndicate?a.ranking'of'tﬁe languages compared. NATAL has the
highest- rank followed by TUTOR, CAN-7, COURSEWRITER Il and
PILOT, in that order .-

F{Hally, Figure 6 provides a profile of relative

prominence indices for each langage over the eighteen CAI

‘language features. They are displayed on three graphs for

clarity.

.E.,CAI SupportASystems'

Although a CAL language provides the basis for the
definition of instructional strategies, content, and
the sequencing of the interaction of these ‘ :
components with a learner, these components alone
are insufficient to provide an effective CAL
environment which would stand a chance of competihg
with, and improving upon traditional modes of
instruction. (Hunka et al., 1978, p. 8) = -

: A CAL system consists of a set of interacting
~subsystems or components based upon a particular
author “language .and. operating system which exists to ,
support ‘the activities of the.various users of the
system. (p. 11) . _ Lo

CAl sdpport“subsysﬁems are requ{red to assist in the
creation and modification of courseWare, the control and
moniforing'of courseware presentétioh to studenfs, and the '

assessment and ana]ysiS‘éfAthe results of student

interaction with that courseware. Hunka et al. (1978)

Figure 1 Profiles of 18 CAl Language Features (a)

37

e . T N T L Y o~ AP T ST

Relative

4
1
T c oW P N T < oW P
3.0 Daka Conversion A1 Labele

Figure 2 Profiles of 18 CAl Language Features (b)

38

K 3

N T c W RN cw P
44 Subprograme 4.5 Slop/Siort Shudent Seesion

«Jd
x

Figure 3 Profiles of 18 CAl Language Features (c)

39

Figure 4 Profiles of 18 CAI

T

T

c
53 The Dieplay Area

ow

Language Features (d)

4

40

&

. Relative

2 24

]

g
o)
-
.
-
2.
.

N T c
5.4 Additional Diepiay Functions _ 8.0 Student Response

Figure 5 Profiles of 18 CAI'Language Features (e)

10

42

G IRC I T:?f"y.‘_ﬁv‘_"".,?”?."r.‘r -

CAl Langunge Featuree

Legend

10 —

CAl Lteangueage Features

Legend

& PlILOT
~ . .

G I PG SRR G IR R e

CAl Language Foatures

Figure 6 Profiles of Five CAI Lan'guages‘

43
Cow
defined ten subsystems to support CAI. Some parts of these.

subéysfems are necessary to provide miniwa] supbbrt for an

effectjvé CAI‘environment.‘Dthers would be enhancements

fbeyond the minimum rgquirements.

1; yRegisfPation Subsistem: This subsystem 1s‘neéded to
‘establish the identifiéation‘of all users within the CAI
system. Information such as User'name, paséWond, codrse

" access ﬁrivileges and subsystem acéess privileges ﬁust
be maintaiﬁed.'A method for creating, modifying; |
diép]aying, and de]etihg'registration'information is
-part of this subsystem, as are the syste&’s sign-on and
éign-offbprocédures[w

Course registration might be part of this sys:em.
Some courées may be available for browsihg. In such
cases, sign-on registration is not required and a

- general "demo” user id may be used. At the other exfreme
some %puﬁses may be locked and avajlable to onTy one
programmer. (p. 11)

2. Communication Subsystem: This subsystem establishes
modes of communicatidns between users. A étudent cbmmeht
facility will al1ow‘stUdents'to 1nterrupt'thefr norma 1
proghess in a course to type a comment to thefr
instructor. Duringvthe deve lopment of a coufse,‘these

o »commenﬁs méy be quite useful to an author when making
coursé revisions.

On mdﬁti-usef sys tems one terminal i; usually
deditated to‘the broctor. If any Qnusué] situation

. Q;*\,"Iii
/ . L

e

o , 44

sidy
rn? I

kariSes at one of the student terminals, the systgm“couid

send a message to the proctor’s termihal ihdicating the
{

problem and the terminal location. Such situations a;
tgrminal ma]fbnctions and programming errqfs may be
handled this way. Or an aythor may include a proctor
message in the course céazto indjéate that a student is
having unusual difficulty with a~part1¢U]ar problem..

‘An instructor may want to leave aAme§sage for his
whole class or for a selected sfudent. This can be done .
with a mailbox facility. When a student signs on, all
the'messages in his mailbox are-displayed before he

stqrts”the daY’s session. Iﬁﬂlargé CAl systems there may

‘also be a facilty that permits real timé éommunications“

between users. (p. 17)

Documentation Subsystem: This subsystem provides
documentation of courseware and associated subsystems

Foﬁ eaéh user type. For example an instructor needs to

: knowffhe,éducationaf objectives and the asSQciated
_pfgfehtry sKjl]s, the subject'matter content, and the

ffhstrubtibna1-strategies for each major part of a

cbuhséth phOCtQP‘haS to have access to all possible

‘ proétor meSSag@s and related interventions, lists of ‘all’
“q0estjons'and answers, and locations of “all exams in a
}churse. An Qpebhtor needs mahuals‘detai]ing the

operation of the hardware and operating system. A

programmer must have source code 1istings‘to refer to.

Finally, a étudent'requires a course outline and

45

1nstructiens on the usevof the terminal and system
features, i.e. making comments, using the glossary or
calculator, getting hints, or ehtéring learner control
mode. | \
Various types of documentation may be defined.

On-line documentation\might be part of the course code.

f The system could interrogate the programmer for this

type of documentation during course code programming.
Off-l1ne documentat1on systems usxng the course code,
could generate 11st1ngs of screen displays, identifier

cross references, listings of all questions and

.anticipated_answers and replies by type;vand course

logic maps. Manuals and guides for all user types are

required as is documentation for media use, and font and

. picture graphics. (p. 19)

Graphics Subsystem: This subsystem provides facilities
for the interactive generation of character' fonts not

normally supplied on a terminal such as Greek letters or:

.special mathematical symbols, and of graphic drawings

for use on either full-graphic or font-graphic

~terminals. It might also provide for the graphical

display of the results of mathematical functions where
parameters are supp11ed by the user . {p. 28).

ExamlnatIOn Subsystem This subsystem is concerned with

. the select1on presentat1on and scoring of test 1tems in

gemputer a@mzn1stered exam1nat1ons, and the evaluation

and measurement of . student performance and 1nstruct1onali

)

46

effectiveness. Various exam formats can be suppor ted by
CAl Sysfems. The‘conventionél mu]tiple choice style
could be augmented by ranking énd'céhfiaencé weighting
>techn1ques. Usiﬁg the Kéywdrd answer,ana]ysié‘features
of CAI languages, the shoft answer formatl could be
employed. With the use of a specialized scoriﬁg system,
simulations could be used for examinaffon purposes.
Because CAI allows for the indiv{dUalizatioﬁ of
fnstruction, students will often reach:particu1ar- '
‘examinations gt'difﬁﬁﬁgﬁﬂ times. This presents a
security problemxgérﬁiﬁagé“examinations. The systém pén
assist here By presenting the test items in a randomized
order or by selecting test 1tems\from a sfratified.pool
of items. Tailored tesfing, where the next question
given a student is_contingent upon the response to a
_previon question,wcould be supportgd;;as'ébuld the
generation.of random numbers,;within intervals §pecified
by the author, to be used as probTem parameters. in math
tegt items. |
Different preséntatidn and feedback strategies méy‘
be available to the 1ﬁstructbr'0r presented as optidns
to the students. For example, the student might be
éllowed to preyiew ai] duestions before answering,
seﬁect the order of answering;-of}change answers to
_prévious questions. The amoynt and timing of feedbéck on
'responsés could bé a]tered. Fina]ly,\the systém must

route examination results to the appropriate people.

47
(p. 32) | |
J __ : '
Student Record Subsystem: This subsystem collects and
ana]yzes student per formance records for the purpose of
monitoring the progress of a@ single student or a group
of students, optimizing a CAl course, and identifying

"bugs” in a CAI course.’Performance records must contain

enough information for various analyses to be carried,

out. The system wil) define a basic set of variables to

be saved for each type of performance record, but an

author may also define additional variables to be saVed'.

for specialized analysis. A performance.reCOrd,shou]d be

sayed each time a question is’ asked, an examination . is
completed and scored, an error conditionris'enoountered‘
- or a student s1gns on or off passes a restart po1nt or
performs some predefined "spec1a1“ act1on A set of
‘analys1s rout1nes should prov1de cumulat1ve results of a
- group of students on a part1cular quest1on and thel
cumulative performance of all. students within a sect1on

\
of a course or of one student for all sections of a ?

o
o

course. A more advanced feature would be ‘the capability.

to retrace thedexact path of a student through\a.secti n
of a course. (p. 39)

Exception Hand11ng Subsystem When an error cond1t1on

N

‘arises durlng the execut1on of a course, this subsystem

should route an error message to the- 1nd1v1dual who can
correct it: operator proctor,,1nstructor, programmer,

author or student If sent to the student the error

*

g T e et e v L SN T

48

‘message must be meaningful and specify corrective

: 3 N ' .
action. If an error condition causes execution to halt,

a meaningful display should be presented to the student
until the problem.is fixed or thehstudent;iS'rerouted.
To ensure that proper correcttve action is taken all-

error conditions should be recorded in an appropr1ate

system f11e as well: as sent to a printer. (p.A45)

System-Monttortng Subsystem. This subsystem provides -
routines for the generaJ monitoring 6f‘system functions
and records-'The'following are some-of“the faeilities

that th1s subsystem could prov1de

,af -br1ef on-l1ne reports 1nd1cat1ng where each’ student

'1s relative to the cdurse;code and each other, and

.his'CUmmuiatiye signon”timeiand‘Jast.signon date

- b, ‘interective queries for selected. information in’

students ‘restart and status records

e.“ﬁdent1f1cat1on of current execut1on location for
debugg1ng purposes

d. dn}]ine dtagnostic procedures'tO'ftag_terminal
matfuncttons_

e, acCess:to operatienat status of eachvversion of

.every module in a course

- f. access to current user status

g. accounting information on' system use.

e o | . (p. 46)

Execution Subsystem: During execution of a course, an

instructor may allow a student to make use of a review -

49

mode. In this mode a student may suspend the'nqnmal f low
of the course to back up one or.more "fhames", to back
up to some logical point and then retrace his path with
,the sy§tem supplying his previous responses, or to,
branch to another section of the coUrseﬂ Various ‘
facilifie; could also be allowed for the student. He may
have access to a course glossary; heip;dh hint messages,
d calculator mode, or a plotting prbcedUre.,If audio
messages or pictures are presented; the system Shbu]d
allow the student the ability to request that‘thé last
one presented be repea£ed.AA course map could be made
avaf]able to the student that would show him where he is
_in the course and which sectjons of the course Have been
| compléted. It migﬁt also be péssibie for a student to
have access to certaih 1nforhqtion in"his personal
record area or summaries in the group record area.
Certain execution time facilities can also be made
avai]able’to proctors. There may'be a need for a proctor
to intervene in the normal operation of the system to
rediréct a student to a different section of the course:
.or to suspend course execution. The proctér should also
be able to change variables in.the student record area, .
‘set the system latency défault,.and moni tor a-particular ~t
-student’s progress in paral]eli}eﬁmina1>mode;(.
| When an author or instructor isAreviewing a course,
he should be able, to use pseQdo answers like "c" or "w"

for correct or wrong answers z:+' = shown the expected

»

10.

50

response ;nd assoc{ated reprise display.’(pi 52) .
Course Entry, Modification and Testing Subsystem: This’
is one of the most importanf subsystems because it is
the first encountered by bégihning'programmers and is
used bQ‘personnel with the widest range of experience.

Course entry may be made “on-line" or "off-line."
On some of the larger CA]l systems a course author may
pass the course design to a programner for encod1ng
However, in mos t Systems the author programs his own.
oourse code and -is usually not a professional_

programmer The “system shouldbprovide the author

/programner with aids to assist with course entry: and

mod1f1cat1on. Input specification forms are often

proQided as off-line support. These may include

. conventional coding .forms, screen display forms and

“fill-in-the-blank” instructional model forms. These can
be used by data;entry operators to enter course contehf
directly. Dhce'a orogrammer has corrected a]l syntactic-
errors, the author,shoold be provided with screen by »
screen }istings and a course map listing to assist in
checking course logic.

During on-1ine code ehtryieach~statement should be

checked when it is entered for syhtactic correctness,

and errors marked for 1mmed+ate correct1on Code

mod1f1catlon could be performed by a powerful but simple
text editor w1th both lTine and screen editing modes. The
author should be able to set up screen djsplays_using a

Iy

Pd

51

full screen editor andnéave these displays by logical
ndmes for recall by the éourse code .

Pre-defined instructional models may be available.
They can greatly assist beg1nn1ng authors by allowing
-them experience with well def1ned mode]s They do,
‘however, 1imit the options available to the author.

Procedures for testing and debugging programming
and instructional']ogic should be provided. This. might
1nclude a driver program that simulates a student taking

a part1cu1ar course module (p. 59)

e s et R e P WS T b

I111. Requirements for a Microcomputer Based CAI System

A. Requirements for Courseware Developlent

The dgveldpment of CAl courseware not only requires
Knowledge of subject content, but a150‘knowledge of
instructional design and skill jn computer programming.
Taking a,réther broad view of instfuctional design, it might
include the appropriate recognition of any of the follbwing

féctors:

.~ .curriculum design and subject matter sequencing

- graphic design

- recOgnitionbof a student’s level of deve lopment

- visual perception

- motivation

- diagnosing and remediation

- .testing

- learning style.

Figure 7‘i1lustrates the intersection of the three major
area competencies. The range of knowledge or skill shown is

from adequate (minimum for good courseware development) to

" superior. It is unlikely that a person with superior subject

content knowledge would also be superior Ln the other two

areas (vertex A). To successfully develop super1or CAl

- courseware, a team of specialists in subject content,

instructional design, and computer programming is required.

It would not be,unusual;‘however, to expect that individuals

52

53

suparior

Instructional
Design
Knowledge

COURSENARE

e] -.ann'ing 'super‘ior
Bkill

superior
Content '
Know] edge

ate

Figure 7 Courseware Development Competencies

54

could gain af least adequate Knowledge and skill in all
three area§ (vertex B) and produce adequate courseware if
given adequate toois.

There will be others having the requisite subject
content anWlédge and the desire to develop courseware,
while having less than adequate Knowledge and skill in the

other two areas. If a CAIl system can separate instructional

_strategy“from sub ject conteqt, a team of programmers and E

instbuctional design specialists (vertex C) could develop
sets of CAi strategies that contentvspecialists could
utilize in preparing courseware. In the drill and practicé
mode of CAI, thjs might take the form of providing

parameters to math drills or spelling word lists for use in

a 'Hangman’ dame. In the tutorial mode, the subject

specialist; if providéd‘with the proper prog: «« ing tools,

might deve1op,e1aborate instructional interactiions that

could include animated displays and complex answer analysis.’

The CAI system must attempt to supply the needs of the
courseware designer who is attempting to produce the most
effective instruction possible over a wide range of content
and instructional strategies. Some of these needs are:

- easy control of branching and betUrn,'e.g.fgoing to a
glossary or help sequence at.the student’§ request

-- score keeping and internal monitoring

- monitoring of student progress

- access to numerical Calcuiating power

- flexible input) y

~

- good answer analysis

- easy creation of graphics and animation

- easy procedures to review and test courseware

- tailoring courseware to individual student needs, e.g,
use of external parameters to ad just pathwaykthrough a

course. .
T

With reference. to com%uter languages‘and support
systems, the term "user friendly" has come into vogue. This
usually means that the languages and systems are designed to
- be supportive to both the beg1nn1ng and exper ienced
programmer. This is espec1a11y 1mportant in CAl since many
courseware designers may not have had a great amount of
'programmjng experience. A CAI language and system should be
easy to learn and use. Courseware entry, editing, and
testing should be straight forward with good error checkrng
and, perhaps 1nterrogat1ve coding in which the system
quer1es the programmer for each program element, accept1ng
only legitimate input. The language should provide a rich
variety of intrinsic functions and operations,‘and, for-thg,
experienced designer or researcher, 'should allow %or easikg

extension for specialized needs.

B. NATAL-74: Canada S NAT1ona1 Authoring Language PRy
Romaniuk (1970) developed the CAI 1anguage VAULT wh1ch G
provided for the separation of 1nstruct1ona1 des1gn w&d ‘

subject content. The instructional des1gn spec1alav%'*

programmed in the VAULT logic division while the céhtént

(AT RO
g
N,

56

specialist programmed in the simpler data division. The

VAULT compiler combined the two divisions to produce

- executable Cdursewriter 11 code.

A more recent development of‘a CAl language that
provfdeé‘fbr this separation o? strategy and content is
NATAL-74. As‘was‘shown in‘Section D of Chapter 1I, NATAL
also had the highest score on all CAl language features but
one when compared with four other prominent CAI languages
For these reasons NATAL was selected as the model upon which
to base the des1gn of a microcomputer based CAI system.

"NATAL-74 was comm1551oned by the National Research
Counc1l in 1972 and designed by the IBM Canad% Lab to meet
spech1cat1ons produced by a panel of CAI users from across

Canada." (Westrom, 1976, p. 1) It is really three 1anguages

.in onei a procedure and function language an. 1nstruct1onal

‘unit language, and a dlsplay sub language. The\)atter is a
‘sub-language of the instructional unit language. Figures 8
and 9 f}lustrate the relationships among procedures, ’ .
functions, and units. g ' Y Y ~
The in%tructional\strategyyg% a course is written ina
procedure language which bears a resemblance to PL\1 or |
ALGOL . Support routines are aPso wr1tten in this language.
These include ‘General Function which serve the same
pUrposenas,functioné.in any coZ!gfer'language;'Edif
Functions, used to edit atudent responses before answer
analysis processing; Graphic Functions, to provide -author

L

defined graphic displayg; and Font Blocks, -for ‘the

e

T

User

N
Procedure {..
™~
i Salacts and
A T A
i { i - -
{ Y
Sports it o Trgiae
L
— ‘Supports ———
:=. f'i:"/ §
) f P’f.'.)’ 3 g ; H -
General |’ Edit Graphic Font
Function ‘

Fi

et

_Block

8 Unit, Procedure, and Function Re]ationships

57

58

T U

™ Procedure pr——— Each - o Unit

Figure 9 A Course Hierarchy

[

3
L3

59

specification of additionéT qharactef fonts. The language
also providés a set of'intrihsié'generél,‘eéit, and graphic.
fphctions. S } i_wm‘ |

| Confent presenﬁétjon anéfihstgucffbna1:ihteraction with
the student are,proyidedfthroughlg'spécia?iroutine called
the Iﬁstructional‘Qﬁit, orfjgst Unit. It has its own
language and intrinsic bréﬁching meqhanjsm. The third
language is cé]]ed theiDiSplay Sub-1énguage which controls’
the display offchénacters'and graphicslon the stbdenf’55
output device in a manﬁer similar td73’Word_pb6¢essor. It
allows for the formatting of the samé materiaTﬁon devices
with differing characteristics. The Display Sub-language ig
only used within the Unit. A commercia]‘QersioQ of-NATAg-74,
termed NATAL-II, has recently been develOped bylHdneywe11 C
Information Systems Canada. This will be the version |

referenced—throughout the remainderfof this thesis. (see

Honeywell, 1981a, 1981b, 1981c)

C. Selection of a System Development Language
'NATAL-II:is too large and coﬁ%lex a language to be

easily implemented onwphe microcomputerfég;st often found in

schools today. However, the design bhi]égobhy of NATAL, 7
sedaféting strategy and‘content, could be incorporated into‘
an extended vérsion_gf a 1anguagé already availabléxon these
samé microéomﬁuters; That is the approaéh to be taken in
this thesis qLoject. The name selected for this CAI

deve lopment éystem is CASTLE, an acronym for

_[

|

e e e, I S T e

60

o

Compdter-Assisted Student Tutorial Learnind Environment.
Wh1ch language should be selected as theibase Tanguage

on which.'to bu11d this CAI system° Slnce as a minimum, it

must serve the same function as the progedure;languaée of

NATAL-II, it should be a structured language. For this

reason BASIC, the most common language on micrdcomputersl'

must be rejected. BASIC has 1jmited etrUCthed dontro]
statements, does not have named procedures’ and funebidns.

does not permit_parameter passing’or local variables, and -

'. variable nemes’are signifieant_on]y'to’the‘first two

characters. The main advantage of BASIC is that;jt is easy

io prdgram and debug because of its interactive:interpreier.
Pascal might be a likely candidate. It is a structured’
language with all the characteristics.that BASIC lacKs: But

it has poor string hand]1ng capab1]1t1es needed in any CAI =

4 environment, and programs are more d1ff1cu1t to create and

debug since it is a complled langyage (UCSD Pascal does
have excellent string handling capabilities, but‘is_encased
in e complex environment. The Apple Il version requjres'two

manuals of over 500 Eégeé just to explainbﬁow the systeﬁ

works and how this version of Pasca]ydiffers'frOM~fhe

standard) | |

The 1anguage ‘selected as the base language for the w
CASTLE CAl development system is COMAL 80 Deve loped /
originally in Europe as a structured. rep]acement for BASIC
it has attracted cons1derable atienthon on this side of the

Atlantic after_Commodore Internéf1onal placed 1n the‘publjc

®

B

domain in May 1981 a COMAL-80 1nteract1ve edi tor and
1nterpreter COMAL (CDMmon A]gor1thm1c Language) has Seen
referred to- as the language that comb1nes the best of BASIC
with the best of Pascal. It conta1ns -all ‘the structured

contrel statements of Pasca] ‘permits long name identifiers
| for 1abels. var1ab1es, and procedUre and function names;
a]]ows parameter passing as call by value or call by v
_ re?erence, and supports local and global var1ab]es In
add1t1on it has excellent f1le hand11ng character1st1cs
support1ng read,; wr1te and append to sequential files. as
well as random access f11es. The 1nteract1ve visual editor
prdvides«for modular prdéram development,'automat1c syntax
vchecKing,on 1nputy and automatici’pretty prtnt’ listings to
the scneen“orxthe printer. One of the main reasons for the .
selection df'COMAL—BO‘is its string handling capabilities,
superior to both BASIC’and_Pascal. These include selection
and assignment of substrings ‘and a string tnclusiOn
funct1on that returns the index of a substr1ng in a str1ng

" The' CASTLE system to some extent, will be developed as

a NATAL Took-alike. The purpose of this approach is to

fac111tate programmer portab1l1ty between the two systems,

and, perhapg, courseware transferability.

* D. The CASTLE Instructional Environment
| Any computer language may be used to implement CAI. CAI
lessons have been written in BASIC and delivered to the

student via teletype terminals. The facilities of the"

g e

o g SRR T

e 2

- B2

language and‘associated hardware may help or hinder the

réalization of any particular CAI teachjng‘strategy. The

extent to which a‘teachtng strategy‘may be erfected-depends
on the_instructional envfronment'supporteduby thetsoftware
and hardware utilized. \

In'this_cohtext'an instructional envirOnment may.be .
classed}as'verbat, numeric> spacial, aud1tory, and/or

Kinesthetic/motor A verbal env1ronment requ1res that the

‘system can present the full range of alphanumer1c and

punctuat1on characters in whatever font 1s requ1red for a

givenbleSSOn The student should be able to respond in the
same character set and to alter his: response before pass1ng
it to the computer for analys1s *The CAI 1anguage should
support statements for. ed1t1ng the student S, 1nput and have
the capab111ty to do comp]ex analys1s of the student s
response, Jncludjng checks fdr misspelled wordsgvby
searching for the presence or absence of key‘uords or -
phrases 1n or out of a prescr1bed order The CASTLE design
fu]]y supports the verbal env1ronment The‘ability to match
phonet1c targets is not 1mplemented at th1s ttme nor is the
ability to des1gn‘and change,character fonts.

A numeric environment requires that the system can

_present the full\range’or mathematical symbols and

structures. The student shoutd.he ahle to respond with this
same set d? mathemat1ca1 symbols and should be ab]e to
access the calculat1ng power of the computer. The CAl

1anguage'shou1d be able to scan input for acceptable

63 g
mathematical symbdls or numerals, to analyze input for

numeric equality within a specified tolerance, and to

.compare algebraic input for equivalence to an algebraic

target. The.language'should éupport both scalar and matrix

a]gebra.'The‘CASTLE design partially suppofié the numeric

envjronmenf;&?ﬁce‘only'sca]ar algebra is included. Just the
' i ' ' : :

mathematical symbols contained in: the standard ASCII-

character set .are implemented, and the algebraic comparison

- function is not implemented.

A sﬁacjalienvirohment fequires»that the system can
presenf hfgh resolution colouf graphics representative of'
bdth 2-D ahd»34D figures. Input devices for this-énvironméni
mightfbeva light pen or touch screen, a graphics tablet, or
a “mouse".VOther visual presentation sysfems, such as a
slide projéctor, Micbofiche or a v%deo disK under the
control of’fhe CAl software; might be considered part of
this envifonmeht. The CASTLE design does not support the
spacial‘gnvironmeht but could be éasi]y extended to include
this environment. ‘ |

An auditory:environment_féquires fhat-the system be
able to'generate‘véice‘information, musiciand éthbr sound
effects, and to present pre-recordeéd sound.“AudiTory input'
andfvdice recognition are still mdétly experimeng?lx A |
Kinesthetic/motor environment Has.been assoqiéted with
complex flight simulators uéed by commercial air]ines‘and . \'
the military. ‘The CASTLE design does not support either the

auditory or the Kinesthetgc/motor environment-.

e

IV. Design Specifications for the CASTLE Language

A. Overview

A CASTLE course is composed of one or more chépters. A
chapter, in turn, is composed of one or more‘lessons (see
Figure 10)!1A Chaptef,shoufdbbe considered as a major
division of a course that can sfand on its own, and mUst
have a‘unique name within‘a.course. An author may define a
default order for the chapters in a course but it is the

responsibility of each instructon.to select and arrange the
order of thé chaptérs. Tﬁis may be done for a class and can
be alteréd for individual students. An instructor has the
obtion of se1ecting‘!561tibqa1 chapters from an external
source such as another course or a system library.‘

The order of lessons in a chapter is, however,
primari]y,iUnder the control of the author. The author
defines a default order for les%ons within a chapter, buf
from Qithin any lesson, there may be any number of exits to
other lessons. Thus the author may indiVidualize'each
studen?'s pathway through a chapter (see Figure 11).°

THe lesson is the basic control module in a CASTLE
course. It must have a unique hame within a chapter. Lessons
are written in the CASTLE'procedure language. Each lesébn E
begins”with a lesson entry procedure named ' lesson’ . A
procedure is a computer routine, or sub-program, that

controls the actions of the computer. In CASTLE, procedures

64

Chapter

Chapfcrj

o= .
~ "-.,._."-
\." e,
. .-‘-“-
N‘..
...

65

3 Lesson A

quonB

Lesson D

66

Figure 11 Illustrative Example of Lesson Selection Within a

Chapter

67

are used to select instructional units, gather data on
computer intefactions with the student, and make decisions
on choosing tée student’s pathway through a course.

The author may divide a lesson into parts. A part might
be associated with a single objective or sub-objective of a
lesson. Upon re-entering a course the student is
automatically routed to the beginning of that part of the
lesson ;hich waé being exééuted just prior to sign 6ff. Each
part of a leséon has a unique number and name within the
lesson, and begins with a part entry procedure having the
part’s name. Parts would normally be executed in .numerical
order but the author has complete freedom to call parts in
ény order. For example, a student hav1ng d1ff1culty in part
4 may be re-directed by the author to part 2.

Within lessons, procedures may be defined by the guthor
for the genera] control of the lessoh A'procedure may be
called by another procedure and is then subord1nate to the
cal]1ng procedure (see Figure 12).

Instructional transactions are carried out by unit
routines. A1I' interaction with the studeét is-handled by’
_thesé units. The unit.is used to present information to the
studént, to poSe questions and to analyze the student’s
response. System variables ére used to pass information
about the traﬁsaction back to the cal]ingvrputine. Units are
called from procedures in the lesson modules. Units. may have -

names that are known to any course in the CASTLE system or

their names may be local to a course, a chapter or a lesson.

Vi
Lasson Entry Procedure Unit |
%
'-—D' Unit L3 Part Entry Procedure Unit
Unit Part Entry Procedure : 5 Unit
Part Entry Procedure : Procedure
il unit ')I Procedure
Unit » : Procedure |

Figure 12 Procedures and Units in a Lesson

orE

68

d\]
N ‘J.‘

".7#,; *}

.- 69

]
. TS

o iw‘m@w -

_.-;‘-c-c +

,"”

The presentation of information is handled by askbed%a1,3ﬁﬁfﬁ:¢}

' :

d1sp1ay sub-language that formats text and graphics, on thﬁ

student’'s display devices in a manner similar to a word‘ﬂ~

1Y

processor.

Y

Routines that support both instruqtional transactions -
and control procedures are called functions. These arei
cfassed as general functions, edit functions, comparison
anctions, and graphics. functions. The CASTLE system
provides'a number of functions in all foyr classes but the
author may define unique function’s in each class using the
CASTLE procedure language.

The CASTLE Language is composed of three separate
language systems that share system data. The system data are
of three classes: system files, system registers, and system
variables. The language systems are .the procedure language,
the insfructiona] unit language, and the display '

sub-language. : ™~

B. System Data

System Files

There are five types of system files: lesson modee
files, unit parse table files, unit stning table files,
display files, and window files. The lesson module file type
contains CASTLE‘system routines and author defined

procedbres and functions. The two unit file types contain

e : : | 70

L '*) ‘)‘q&ptrol and display data for the unit language.interpreter.

fk > ! "~ The remaining two file types are referendbd ‘& the display

”ﬁgj; sub- language 1nterpreter Display files contain data ta be
i "%@”ﬁ ~»formatted by the d1spléy sub- languaﬂb interpreter. w1ndow

fi]es are preformatted data to be displayed in an. B

author -defined window on the student’s display screen. These
files are referenced by file tdentjfiers which may have up
to twelve alphanumeric and/or symbol characters except'thev‘
quotation mark, semicolon, asterisk, question merk and
codmma, but may include the space character. The first

4 character must be alphanumeric. A }ile identifier m;y be

Known to the entire CASTLE system or may be 1ocel to a

particular course, chapter, or lesson. When refeftenced from
. W

w1th1n a course, a CASTLE system file identifier is prefixed

.;}
current chapter file 1dent1f1er w&th a ‘% # and a current

\with an &’* a current course file identifiiyfﬂulir a'#,; a
lesson f1]e 1dent1f1er with no prefix.
~<Chapter and course names must have the same type of
ey
_twelyve character identifier,. Unit and lesson 1dent1f1ers may

alsowhavegnumer1c 1nd1ces. They appear after the 1dent1f1er,

4

Whtcﬁ‘ﬁs‘then restricted to ten characters, and range from

o 00/ " tO luggl .

v

System Reglsters

e e Oy T S o AW AT o

“For each student there 1s a set of local and global
\ 2
reg1sters;,1n each set there are 100 numer1c\reg1sters

| | numbéred 0 to 99, and 21 string buffer registers numbered 0

-

! -

to 20. The numeric registers may hold integer or real
fc'numbere The str1ng buffer registers may contain strings of
}up to 80, characters The]ocel register set is local to each
lesson modu]e. They are referenced as system variables c(0)
“ to‘c(99) and b$(0)hto b$(20). The global register set is
_ é]obal to the entire ceurse. They are referenced as system
~variables ¢’ (0) t0~c’(99)‘and'b’$(0):tolb’$(20). . M
System Variables
A]l system var1ab1es are 1oce1 to each 1esson module
They are known only to the procedures and functions in that
. lesson modu]e and.to any units called from these.procedunes.
They will be discussed in the section on eystem.v;riébles

below. - SR | | ®

C. The Procedure Languege
’ The CASTLE procedure language is an extended version of
CBM COMAL-80 rev1swon 01 02, Reference,w111 be made to
tver19ushelements and featur,s of COMAL in the following
descripticns. Theee'Will noj néceséarilyvbe cpmplete.tFor'a‘
complete description ct COMAL see Lindsay (1983).
: COMAL routines are written as a ser1es of statements
dﬁach statement 1s preceded by a. 11ne number in the range 0
to 9999 Genera]ly there is only one statement per line. The}
line numbers are on]y used,by the COMAL~ed1tor and are not
part pfdthe,routinewstatement. COMAL hae_three types of
routines:. pchrame,'pr?cedures; andnfunctions.TCASTLE .

L

e P N T < e

LY AT

G

72

autBors will only write procedures and funttons. The CASTLE

. N : /
sysyem routines are written as COMAL programs, procedures,

g

”rand func 1ons '\

When\descr1b1ng the syntax of CASTLE statements the

' folleWing &onvent1ons W111 be used

T Items /n UPPER CASE are keywords and must be typed as

, unshifted. o .K

Items in lower case and enclosed in angle brackets <
are supplied by the user. The angle bracketS'are not
typed. | “ .
3. Items enclosed in square brackets [] are opt1oe$1)f.

9

used the: square brackets are not typed. If the itemt"
, enclosed in square brackets is folfowed by an e111ps1s
(...), it may be repeated as-often as needed
4, Al] other punctuat1on should be typed as shown
1nc1ud1ng parentheses ().
Anv<1dent1f1er> is a name of up to 78 characters, each one

significant. These characters may be unshifted a]phahet1c.

numer ic, aapostﬁsphe (’)% backslash squarefbrackets (| or™¥

L

o
BECEY -

w5 _»,W‘_, .

1), and left arrowr The first character mus t be alphabetic.

An <identifier> may be used as afvagigble name, line labet,

function name, procedure name, Or array name. ¢
_ ‘ N .
.)

Data Types7 1 »
CASTLE supports integer}*real, and stﬁing data types,

Integer literals are whole humbers in the range -32768 to

14327§7t Real fjtera]s may‘be expreSSed as integers, as

!

oy 73

decimals; or in E-notation. The E-notation exponent must be

in the rlange -38 to +37. Up to 9 significant digits can be-
e O

represented. A string literal is 0 or more characters -

denc]os'\ in quotation marks. W1th1n a string, a quotation

|
!

‘mark is represented by two consecut1ve quotat1on marKs . .
" Real and integer varwables do not have to be expl1citly
dﬂeclared A real Vartable is represented by <1dent1f1er> An
‘ integer var1able is represented by <1dent1f1er># A string
‘variable i's rgpresented by <1dent1f1er>$ String variables
must be declared by a COMAL DIM statement as having a
w max1mum 1ength of from 1 to 32767 characters (L1ndsay, 1983,
p. 34). Arrays of all three types may- be declared{by a DIM
«Statement and may be\mult1-d1mensmonal (pp 35-38
R Funct1ons that return 1nteger or real results may be
:def1ned The funct1on name has the same ﬁorm as a real or .
integer var1ab1e String functions canno{/be defined but can
be simulated by a procedure with a ca]l by reference str1ng
lparameter.. | |
Switcn or bootean is not.a separate type but is
r&éﬁesented by the numer1c type. A va]ue of zero represents
FALSE and any other va lue represents TRUE. The switch
11terals-TRUE and FALSE are-supported. S1nce filesnames are
str1ng/4/f1le variables are s1nply str1ng varlables
String, numeric and boolean expressions -are supported
by CASTLE The operators are: () | = / DIV MOD + - = <> < >
“(- >= IN NOT AND OR. See Lindsay (1983, ppi xxi and 288) for

deta1ls \ . S : : R

ez

T 1 T R A e TR

%

‘»1:.7

74

Rout ines
A'course‘author may define five types of routines: the
procedure, the general fOnCtion, the comdérison‘function,

the edit function, and the graph1c function. Each routine

1
"

has a header statement, a routine body, and an end .

statement
The form of the procedure and general funct1on is

similar (L1ndsay, 1983, pp. 231-235) and given below:
' ¢

PROC <procedure name>[(<formal parameter list>)] [CLDSED]
[IMPORT <identifier list>].
(statements>

ENDPROC <procedure name>

FUNC <function name>[(<formal parameter*11st>)] [CLOSED]

" [IMPORT <identifier list>]. »
{(statements> :

ENDFUNC <function na§§>q

LA

A procedure is ca]led/by:simply usﬂng'it’sjname, fqr

)

example, 7 S
mp 5 Vs - - :
Sl -
. | , , ' b
{procedure name>|[(<actual parameter list>)] ¢
) £ ’ . . .

-

The same is frue for a general. function except that it's

name must be lused in an expression, as for example,

<variable> := <function name>[(<actual parameter list>)]
Formal parameters may be either cal]ed by value or

called. by reference. A reference parameter name is preceded -

routine. Yy function must be exited through a RETURN

~“M . : ‘ ‘ | 75 .‘

by the keyword REF. A value actual parameter is an

expression of the same type 'as the corresponding’ formal

parameter. A reference actual pa#ameter is _a variable of the
same type as the corresponding formal parameter. Array names
may also be passed to REF parameters. The formal parameter.
then becomes a nickname for the actual parameter.'Thus
values may be passed in and/or out;of procedures and
functions through barameters. Pafémeters in a list are
separated by commas. Parameter names are local' to their
routine. |

The use of the CLOSED Key word makes all identifiers
within the routine local and locks ouﬁﬁ%l] global
i_' 1f1ers Global identifiers may be imported into a

dm routlne by use of the IMPORT statement.

A RETURN statementmmay be used anywhere within a @f;
procedure and when execdtedﬂcauses an 1mmed1ate return to ¢
the calling roq§1ne. I there is nmo REfURN statement then a
retqrn to the calling rout1ne occuré when "the ENDE@DC
statement is reached. | o v

~ The form of the RETURN statement in a general flynction
is as follows: g
RETURN <non-string expressionS .

When executed the expression is‘eva]uated and its value

returned as the function’s value in the calling epressionf

... Execution of the function immediately terminates.

There may be.any number of RETURN statements in a

o <o "M
o
. ..,

76

statement

Rout1nes may be def1ned within rout1nes and may be
called recursively. The unit interpreter cannot be called
from within a closed procedure | v

Comparison functions are boolean.functions used to
compare a_target'response to a student’s response in the

system variable redited$ or the system vector nedited.

NATAL-11 defines six system supplied comparison functions:

~ca - compare algebraic, cc - compare character, cg - compare»

graphic, ck - compare Keyletter cn - compaqe nqa’rlc and

cp - compare phonetic (Honeywe]]
supplies three gf these: cc, ck,

ih the se&tion "Qystem Fung

An author may def1ne up’ to ten comparison functions in
one lesson, having the names ucf0 to ucf9. ucf is a mnemonic
name for ’‘user comparison functhmfgﬁﬂpe syntax for the ucf

header statement is:

e

FUNC UCFn(<string variable>, REF <numeric vector name> ())

A target str1ng m1gm; be passed to the first parameter The

“second parameter iﬁ;:eyector with indices 0 to 10. Index

zero contains a cou

%
referencing ua;ple data.
: e

of the number of rema1n1ng indices

&

77

@
Edit functions are actuallyupEOOedures used to edit a
student’ s response in the system variable redited$ or the
system vector nedited. NATAL-II defines eight system
- supplied edit functions (Honeywell 1981b, pp. 93-94).
CASTLE provides all of these. They are descr1bed 1n the
section ' System Functions’ below. Edit funct1on names may be

assigned as a list to the system variabte,sedit$, separated
by commas and enclosed in quotat;on marks. The edit
functtons’assigned to sedit$ are executed in order after a
student response is received n the execution of a un1t
Edit functions may a]so appear in un1t edit statements.

An author may,def1ne up to ten edit functions in_ one

lesson, having the names uef0 to uef9 Uef is a mnemon1c

, o k!

name for 'user edit function’. The syntax for the uef header

‘7g?ement is: _ ‘ ¥

B
Y

PROC UEFn o

\ Fe ’ o

Gfaphic tunctions in NATAL-II, both system provided and
user defined are called by the '&G’ command in the display
sub- language to create graphic displays on the stude%& s
display screen. This feature is not fully implemented+in
CASTLE. User defined graphic function when‘called by the
' &G’ command in CASTLE allow the éuchr to take over.the
- control of the student’'s. d1sp1ay from the d1sp]ay ,
sub- language The statements in the graph1c function may

incorporate any oﬁ\CDMAL’s d1sp1ay control features. The few =

78

system supplied graphtc functions in CASTLE are described in

K3

the section” System Functions’ below. These may not be
" a

called by the '&G' command but may be used in a user defined

graph1c function. ﬂ

An author may def1ne up to ten graphic funct1ons in one
lesson hav1ng names ugf0 to ugf9. ugf“?sta’mnemon1c name
for 'user graph1p function’ . The syntax for the ugf header

statement is:

" PROC UGFn | .

Control Structures

k3

The power of structured languéges lies in their modular

: iy
structures and their contro? structures. The modular

strugtures of CASTLEAWere discussed in the previous section.
///Ihé(Zontrol structures of CASTLE are those .of COMAL

(Lindsay, 1983, pp. 224- 231)
There are two types of coritrol structures decision
structures and looping structures. The decision structures

are the IF structure and the CASE structure. The looping

Y

“Strugtures are the FOR structure, the WHILE structure, the

REPEAT structure, and the LOOP structure
. The syntax. of each structure is descr1bed below:
1. The dec1s1on Structures. |

a. The IF Structure | C . v

s

; ,Tha;

REPEAT v

79

IF <cond1tlon>v
(statements> ™
[ELIF <condition)
(statements>].
[ELSE
(statements)]
ENDIF

A one 1ine'IF statemeht is also allowed:
IF <condition> THEN <statement>

The CASE Structure

‘CASE <expres§ion> OF

WHEN <expression list>
Lstatements>

[WHEN <expre551on list>
{statements>].

[OTHERWISE
<statements>]

ENDCASE

3

ﬂoopxng St*uctures

ThqﬂfDR Structure

Y

FOR¢ £ For range> [<step>] DO

{statements>
NEXT+[or ENDFOR] <control variab]e}

A‘one Tine FOR statement is also allowed:
FOR <for range> [<stgp>] DO <statement>
Note:

1).'<forffange> means
{control variable> "
<1n1t1a1 value) T0 <f1nal value>

3

2) <step> means
| STEP <step va]ue)

1
LY

The'EEPEAT Structure

{statements> ‘ .\ B
UNTIL Xcondition> "
The WHILE Structure N

WHILE <condition> DO
{statements> ’ '

~ »

¢

80

ENDWHILE
A one line WHILE statement is also allowed:
WHILE <condition> DO:<statement>
d. The LOOP Structure o .

LOOP
<Statements> :
IF <condition> THEN EXIT
{(statements>
[IF <condition> THEN EXIT
ma , ‘<statements>].
- ENDLOQOP

3

In the above descriptions:

- {condition> is a numeric expression that is considered

FALSE if it evaluates to zero, otherwise it is

f‘.‘) | considered TRUE. 3 R

L - <statement> is a single line statement. \\\\~

‘ - <statements> is one or more single line statements
'énd/or multi-line control structures.

COMAL Statements .

The CASTLE author may use any of the COMAL single line
statéments. They are grouped into the following classes:
)3 assignment, data, scréen 1/0, filelI/O andAmiscellanebus.
<:ii;1he syntax of each stateﬁent is g1ven below w1th a page

" number reference to L1ndsay (1983):

1. Assignment Statements (p. 104):

a. MNumeric assignment " | ks
\ .

81

<numeric variable> := <numeric expression>
{numeric array name>(<index>) := <numeric
expression>

\
b. String assignment

{string variable> := <stfing expression> v
{string array name>(<index>) :s= <string expression>
A string specificer on either side of the assignment
symbol (:=) may have a substring specification addqd
to it as follows:
(<start poéition)[:(end position>])
c. Incremental and decremental assignment L
<numerdic specifier> :+ <numeric eXpression>
:, <string specifier> :+ ¢string.expression>
<numeric spec1f1er> i~ <numeric expressiony

Data Statements:

’ These statements are used to specify a internally
stored data. .

a. 'DATA (1ist of string ;ndA5$ numer ic constants>
(p. 28) | : N '

'b. READ <1list of variable names> (p. 149)

c. EOD - System.endiof-data function - It returns TRUE
after the last data item has been read (p. 63).

d. RESTORE [<label>] - Resets the data pointer to the
first data item in the prograp or, optlonally,‘the
f1rst data item after the specified label statement
(p. 163).

e. Labgl statement (p. 101)

{(label>: : *

, | - 82

8. Screen 1/0 Statements: |
Normally, output to the screen and input from the e
v .

keyboard are handled within the UNIT routines. The

1 , author may, howeyer, take over these functions from
- within a lesson control module or in a graphic funcfion
by using any of the fo!]owing statements:‘
a. CURSOR <row>,<column> (p. 26
- s .b. PRINT [<at part>][<pr1nt part>][<continue mark)]
(p. 138) |
<at part> is AT <row>,<column>:
{print part> isA
USING <image expression>:<numeric expression listS
or <print list>
{print list> can 1nclude one.or more of the
following, separated by a <continue mark>: i
é’ - TAB(<pos;tion>) (p. 192) ‘ \
3 <string expression5 "\
<{numeric expression>
<continue mark> is \ .
a comma (tab to next print zone)
or a sehicolon (tab one space). ¥
R S ‘ZONE <nume;ic eXpression> (p. 221) -
i Sets width of priht zone ZONE 0 is the defauwlt
» value. ‘When used as a funct1on ZONE returns the
current pr1nt zdne sett1ng 7
: d.y INPUT [<prompt s&r1ng> X <var1ab1e 11st> (p. 95) rrrrrrr

“e. KEY$ returns the value of the last- ‘Key typed If thg il
’~"/ . - ST ik

Ly keyboard buffer is empty it returns CHR$(0)‘
S (p. 100).
f. GET$(0.nf waits for n Key presses and returns their
value as a string of 1éngth n. It does not echo the
Key presses to4the screen the way INPUI doeg. INPUT ﬁ§- :
is terminated by the RETURN Kkey, GET$ is not
(p. 82). o
4. File 1/0 Statements:

A CASILE author may usé‘external files. These may be
shared files‘that are available to all studenfs in the .
same course, or private files thaf are gnique/fa/each
sfudent. File names may have‘up to ten characters of the
same type as unit, lesson, chapter and course names. In
the OPEN statement the <file id> for a shared file is
SHAREQ§§<file name> and for a private file is
PRIVATES+<file name>. The following statements are used
in file 1/0: .~ o -

a. OPEN FILE <file number>, <file-id>, <file type>

<file type} is READ, WRILTE, APPEND or RANDOM
<record length> (p. 123).

b. WRITE FILE <(file number>[<record>] <expression
list> (pp 215-218)

~

<record> is <record number>[<offset>]
c. READQ}ILE <file number>[<record>] <variable list>
(pp. 151- 154) _
d. GET$(<file number>,n) returns a string of lengfh n
conta1n1ng the next n bytes from the des1gnated f1]e

(p. 82). '%ff' \

84

e. EOF(<file number>) - System end-of—ftle‘fUnetton -

It returns a value of TRUE after the laet item ina

%
sequential file has been read, otherwtse 1t returns
FALSE (p. 65). % \ s

f. CLOSE FILE .<file number>' {p. 19)
Note CASTLE authors must not use the abbq;yiated
CLOSE statement since this wil] close all files
including CASTLE system files .
g. DELETE <file id> (p. 32)
h. PASS {disk -operating system commend> (p. t33)
i. STATUS returns the value of the disk system error
| channel (p. 184) .
Miscelleheous Statements: \
a. NUtL.4 does nothing (p. 11§)
b. SELECT QUTPUT <type> (p. 171)

f
|

<type> is , ~ ; ‘ .
"LP" - I1ne prlnterL or - t- T
\ : ! 3 . : T
"DS" - data screen.

/

c. SToP [<message>] w1ll 1nterrupt the C\SWLE systeM

mode . Execut1on may be conttnued from the STO? {’{

statement by 1ssu1ng a CON (contyhue) command
. f

Note: CASTLE authors should not us@ the END j\‘

‘gstatement nor. leave any STOP statements in a routine\‘

{

.« lines are permitted to enhance readability.
. . . P 2 .) B N .

that will be/executed by ‘students. - -
d. // <comment> is ysed to make comments for internal
,documentat1on A comment may be on a line of: 1ts own
or may YeJlow'any‘CASTLE statement (p. 156) . BBanK'

':A)
¢

R

& CASTLE Statements

To extend CDMAL to f1t the ro]e of the CASTLE procedure
_language, a number of add1tlgpa1 statements have been
defined. These extension statements are referred fo as
CASTLE statements Below is a samp]e lesson entry procedurel
to 1llustrate the uses of- a]l these CASTLE statements and o
the normal , form of th1s type of procedure. The line numbers
would he typical of those used~at the beginntng’of a CASTLE
lesson module. They wtll serve as‘referenCe pointers in the

discussion that follows. :

—

2000 castle

2010 .

2020 // Course: grammar

2030 // Chapter: review

2040 // Lesson: endings0Of1

2050 :

2060 // Created: 1983 01 15 10:15

2070 // Revised: 1983 03 24 14; 25

2080#

2090 // Author: R.W: T Garraway

2100 // Institution: Division of Educational Research
2110 // Services, The University of Alberta
2120

- 2130 proc lesson

2140 get’'time(b$(0))
2150 get’'date(b$(1))
2160 b$(1):+" "+b$(0) -
2170 b$%$(0):="1lesson endings01"
2180 unit’ ("&welcome")
2190 loop

(86

2200 -~ case part of

2210 when o / &

2220 intro . : , U

2230 . when 2 B ro , » ‘
2240 verb’end1ngs : Lo
2250 whem 3 « o -
2260 -noun’ endings 2

2270 when 4 ‘

2280 “conc lusion :

2290 otherwise . B

2300 exit ‘ : ;

2310, endcase ki

2320 delta’ t1me(t1me1$ b$ 2}$ ‘ '

2330 put’ scores(sid$,student b$

2340 reset counters

2350 reset’ respond’ chars

2360~ checkpoint

2370 end loop

2380 lesson'’ completed
2390 lesson’ x("endings” 2)
2400 endproc lesson

2410 o >\\\\\\

The line numbers below 2000-are reserved for the CASTLE

N
o 4 . P

system routiﬁes.«Aftet a lesson module has been 1oaded,‘1ine

2000 ie exeeﬁted which invokes the CASTLE eystem In part;

‘this . initializes the ﬁollow1ng system var1ab1es B

1. PART - is set to the value of part- ih-the student S
restart record. This will be 1\Qf this is the first
entry to the 1esson, otherwise it will be.thevnumber of
the part thé student was in at sign off. |

2. NE{T'PART’— is set to RART + 1. This may be reset to any
part number by the author during the executﬁdn,of a
part. I :

3. .SID$ - is set to the student’s 1D number.

4. SNAMES - is set to the student/s nicknaﬁe)

5., _STUDENT$ - is set to.the student’s full name.

. ‘

RESPOND’CHARS$ - is set to the complete set of Keyboard

AT

A e U R e S

10.

1.
12.

13.

2130.

87 ..

Achéracters. This variable defines which keys will be

recognized»when receiving a studeny’'s response. It may
be reset by the author to any subset of the available
Keys. . S |)
NEXT'LESSONS - is set to the name of the next available.
lessqﬁ. If the current lesson is thg last in the chapter
it is set to null.-This‘variable may U8 reset to another
iésson,name by the author.) S

NRESP, NOTIME, NRIGHT, NWRONG, NUNREC, and NF(OJ lo
NF(9) - are set to zero. These variables are
collect{velyrknown as the syéf;m counters. |

TIMEOS - 15 set to the date/time that the student -

started the course. The form is YYYY MM DD HH:MM:SS.

. . . //’
TIME1$ - is set to the t1me the student started thws

session. The form is HH:MM:SS..)

SPROMPT$ - is set to the standard system input prompt
DA ¢ may be reset by the author to any prompt str1ng
of up to 50 characters ’ _
SEDIT$ 7;1s‘set null indicating no defau]t e@iting of a
studenst response. The authortméy assign a 1ist>of edit

functions to this system variable.

STIME - is set to 3600 seconds (1 hou%). the system

default time 1imit for a student resb‘nse. The author

may reset this system variable.

{*\After initialization, the procedure 'lesson’ is called, line

The .comment lines, 2020 to 2110, are the minimal

internal documentation.

T

88

A line by line explanation of the &xecution of the -

procedure ' lesson’ follows: - ‘ f@
) y w

1. 2130 - This is the header statemént of a lesson entry
B ‘ :)

procedure.

i

’ " N wr N | " ') - ¢ -
2. 2140 - GET'TIME is a CASTLE statement that returns the

‘current time in the form HH:MM:SS in the string \

parameter. Buffer 0, B$(0), is set to the‘current-time.

3. 2150 - GET'DATE is a CASTLE statement that returms the |

current date in the form YYYY MM DD in the string
parameter. Buffer 1 is set to the current date.
4. 2160 - A blank and the current time, buffeh 0, are

appended to the current date in buffer 1.

5. 2170 - Buffer 0 is reset éo the string "Tlesson

|
endings01".

6. 2180 - This itlustrates a call to a unit. The Gnit name
is ‘welcome’ and the ‘&' prefix indicates that it is a
‘system library unit. It might, for example, disp;Ey’Ebme
~ﬁessagé to the student utilizing the contents of‘buffers
Olanda1 as parameters. The exact n#ture and requi}ed
parameters for all system]ibrary‘units wou.ld be
maintained in system library unit documentation. The
same type of documentation would be maintained by\
authors for their courée, chapter, and lesson units.

(see also Section F - Instructional Unit Language)

7. 2190 to 2370 - This'is a LOOP structure that is repeated

until all parts of the 1esson are completed or the

student requests that the_session be terminated (sign

e e B
|

S

1! >‘ﬁ:‘§‘ 7
V“v;

of f). | S /

a.

statement. This example lesson has four parts:

in the second parametér the difference of time

2200 to 2310 - This is a CASE structure used to . -

select the next lesson part to be executed. The

- value of part is initially set by the CASTLE system

immediately after the lesson module i§ loaded and -
C |

executed, It is reset by. the CASTLE CHECKPOINT

*

intro, verb’endings, npun’'endings, and conclusion.

Each of these parts begins with a part entry .

procedure. For example,’ the header statement for

¢

.baft 2 wbuld be:

proc verb’ endings

This procedure would be executed if part is set to 2
and Qéuld,be'used to control that part of the lesson
including the\ca]]ing 9f other contraol procedﬁres
and instructional units. Contro] decisions can be
based on the values set in the various system
variables. If part attains a value outside the~range
of bgrt numbers in a 1é§§on, 1 tb 4 in this case,
then the EXIT statement in line 2700 is executed

causing'an‘exit from the LOOP structure to line

2380.

N

2320 - DELTA’TIME is a CASTLE statement that returng

&

between the current time and the time given by the

¢

8

il

8.

[N

90

first parémeter; Both parameters are‘%tfings of the

iform HH?MM:SS. [f the first parameter is nét of this

form then the string *ERROR* is réturnéd in the

secondkparaméﬁer.\The first paramefer is unchanged

by this statement. In‘this example tHé‘difference

between the current time and the time the student

startédxthis session is plaééd in'BLffer é.

2330 - This is An.g;anple of a call to an author

defined procedure. In thisfexample,:it would!be

exécuted after the completion of each part.

2340 - RESET'COUNTERS is a CASTLE statement thét A

sefs to 0 a11_§ystem cOuntérs.

2350I- RESET’RESPOND'CHARS is a CASTLE statement

that'réseté the syslem‘variable RESPOND’ CHARSS to

the complete set of Keyboard characters.:

2360 - CHECKPOINT is a CASTLE statement that

performs the folléwing'important actions:

{) PART is set to the value in NEXT'PART.

2) NEXT'PART is incremented by one.

3) The new value of PART 1is stored in the student’s
restaﬁt‘necord. [f the student elects to sign |
off during the execution of this part, this

value of PART will be recovered at the

commencement of the student’s next session.
.)}

2380 - LESSON’COMPLETED is a CASTLE statement.that
records in the student’s record area that, the current

" lesson has been satisfactorily eompleted. If all lessons

FantN

/

| _
/ - :

10 .

CASTLE sta;mn‘f’x.;a

91

t
:

- .) (
in a chapter have been thus marked completed&then the

chapter is*marked completed. System lessons could be

made available that would display the names of chapters

in a course or lessons in a chapter, mark1ng those names

of completed sections with an asterisk, say.

;2390 - This statement would be executed 4t the)

completion of all pa i in thef lesson. LESSON X is a
(f1s an indeXed lesson. In this‘
case lesson "t i k@ould be cal]ed The first
parameter is a striné literal or expression and the

second parameter is a numeric literal or expregssion in

the range 0 to 99. To call a non-indexed lesson the

author would use the CASTLE LESSON’ statement. It has
one pabameter, a string literal or expression, which is
the lesson name, e.g.]esson’(“final exam"). To cé]l the
next lesson of the default lesson order use:
lesson' {next’ lesson$). If the name of a called lesson
does'not exist then the next chapter is called. A forced
call to the’next chapter could be| produced by the
execut1on of lesson’ (""). If theré is no next chapter
then the course is cons?dered completed and the student

N
is signed off. Both LESSON’.and LESSON’ X cause . the

' student’ s' restart record to be updated with the names of

the new chapter and\or lesson.

2400 - This statement marks the end of the lesson entry

procedure.

R]

92

D. Syste; Variablbs \\\\

" : ‘ <
System Switch variables

The system switch variables arg"set‘by the UNITﬂ

interpreter. When a responce is reques}ed, UNREC is set TRUE-
and all the other system switch variables are sgt FALSE. If
the response is \jhed out, OTIME is set TRUEf If any of the
categories RIGHT, WRONG, or F(0) to F(9) occurs in a UNIT
then the system switch var{able of the same name is set TRUE

and UNREC is set FALSE.

sl

‘ R A P
. . N : {V‘Pfd h ‘ ('%,.i‘
System Numeric Variables o ”\#w'

1. LATENCY - is set to 'the response latency after each
response is accepted. |

0. NEDITED - is a vector with indices 0 to 10. It ié
referenced by the system comparison function CN and the
system edit function NUMBR. i

3. NEXT'PART - is used to hold the numbe; of the next
v]essoh part to be executéd.

4. NF(0) to NF(39) - are system counters. NF(n) is
incremented each time the category F(n) occurs in a
UNIT.

5. NOTIME - is é'System counter. It is incremented each
time the category OTIME.occurs in.a UNIT.

6. NRESP - is a system counter. It is incremented each time

a response is hequested'in a UNIT.

]

93

7. NRIGHT - is a system counter. It is incremented each
time the category RiGHT occurs in a UNIT.
8. NUNREC - is a system counter. It is incremented if the
category UNREC remains TRUE at eqch résponse request or
when ¢a jﬁIT is exitedf . | |
9. NWRONG 7 is a system counter. It is incremented each
time the category WRONG occurs ippa UNIT.

10. PART - is set to the current lesson part number.

11. STIME - is used to hold the default response time.
v

System String Variables . (.

[
4

¥
1., LAST’UNITS$ - contains the .name of the ‘last unit called

Jdn a lesson.

2. LOWER'CASE$ - contains all the lower .case letters. It

may be assigned to RESPOND’ CHARSS.
3. NEXT'LESSON$ - contains the name of the next availabke
lesson. | ‘ ») | -
4. NUMERALS$ - contains the ten digits, O'to 9. It may be
assigned to RESPOND’ CHARSS.
5. PRIVATES - cgntains the file name prefix to be used with
files that are pr{véte to each student.
6. REDITED$ - contains the studént’s edited response.
7. 'RESPOND’'CHARSS$ - is set to the list of characters that

will be accepted in a response request.

8. RESPONSE$ - contains the student’s unedited résbonSe.

g, SEDITS - may be assigned a list of edit funtions,

separated by commas, and enclosed in quotation marks.

94

They are executed in turn after each response is
accepted. ‘

10. SHAREDS$ - COnta1ns the file naqi prefix to be used with
files that are shared by/all students in a course.

11. SID$ - contains the student’s computer id number.

12. SNAME$ - contains the student’s nickname. '

13. SPROMPT$ - can be assigned a prompt message of up to 50
characters. I} is displayed as a prompt each time a
respahse is requested.

14. STUDENTS - contains the student’s full name.

15. SYMBOLSS - éontains all the non-alphanumeric keyboard

‘characters available. It may be assigned to
RESPOND’ CHARSS.

16. TIMEO$ - contains the date and time that the student
started the course, in the form YYYY MM DD HH:MM: SS.

17. TIME1$ - contains the time that the student started the.
current session, in the form HH:MM: SS.

f8. UPPER'CASE$ - contains all the upper case letters. It
may be assigned to RESPOND’ CHARSS.

4

E. System Functions ’

COMAL General Functions
The following COMAL functions are available to the
CASTLE author. Refer to Lindsay (1983) for detailed

descriptions: o

.*.ﬂ—f-‘wwu‘-‘

e e, gz e e

O O N O O b

10.
11.

12.
13.

14.
15.
16.
17.

18.
19.
20.

95

ABS - absolute value (p. 1)
ATN - arc tangent (p. 8)

| |
CHR$ - character represented by a given byte value

(p. 17)

COS - cosine (p. 25)

EXP - e raised to a specified power (p. 72)

INT - integer value (p. 97)

‘LEN - current length of a gpecified string (p. 103)

LOG - natural logarithm (p. 110)
ORD - ordinal byte value of specified character (p. 129)

PEEK - byte value at specified memory address (p. 134)

POKE - place a specified byte value in a specified
memory location (p. 136)

RND - random number generator (p. 167)

SGN - arithmetic sign of a number as -1, 0, or 1

(p. 177) | » : | :b

SIN - sine (p. 178) \

SPC$ - string of épecified number of spaces (p. 180)
SQR - square root- (p. 182) S

STR$ - speciéied numeric convérted to string form

(p. 190)

TAN -'tangeﬁt (p. 194) . ' ' <:—\\'
. :
TIME - system clock in sixtieths of a second.)(p. 197)

VAL - numeral in string form converted to a numeric

(p. 208))

96

A

CASTLE General Funct fons

Four additional general functions have been defined for
the CASTLE procedure language: CNUM, EVAL, PMATCH, and
ROUND. These are s;milar to funct}ons of the same name in
NATAL-1I. ROUND is called RND in NATAL-1I which conflics
" with COMAL’ s general function RND, random number (Honeywe !l .
1981b, pp. 89-92). CNUM and EVAL allow the CASTLE author to
extract numer ic information from string data, PMATCH
compares two strings, and ROUND rounds a number to the
nearest fnteger.

The following are detailed descriptions of ‘each

function: ;

1. CASTLE General Function CNUM:

The function cnum may be used by a CASTLE author to convert
a numeric string to a numeral.

Prototype: s return:=cnum(str$,p)

Parameters:
-IN

str$ - a string containing a numeric of the fo]low1ng

syntax:
[+\-}{digits][.[digits]]{e\E{+\-][digits]]

p - - a pointer into the string from where to scan to
' find a legal numeric
-ouT

p - if a legal numeric is found, points to the position

just after that numeric
otherwise pdints to the position after the end of
- the string -

-Returmn value: o

I[f no numeric is detected, 0 is returned.

If the numeric would cause an overflow, 1 is returned
Otherwise the converted number is returned

Error messages:

If the numeric would cause an overflow, the following is
d1sp1ayed

[

87
»
castle error - cnum overflow | °

2. CASTLE General Function EVAL:

The function eval may be used by a CASTLE author to convert
a8 numeric expression in string form to a single number.

Prototype: return:zeval(str$)

oy

Parameters:
-IN : a
str$ - a string containing the numeric expression to be
evaluated

Return value: '
The string is processed by procedure c' numbr then passed
to procedure c' expression for evaluation. The return.
value from ¢’ expression is returned.

Error messages: ‘ '
castle error - division by zero changed to division by one
castle error - numeral overflow
castle error - numeral missing
castle error - missing ')’

Calls procedure c’'numbr and function c’' expression

Procedure C’' NUMBR called by function EVAL:

This procedure changes all non-numeric expressioh string
charactérs to spaces. ‘

Prototype: c’'numbr(str$)

Parameters:
-IN

str$ - a string of any characters
-0uT

str$ - a string containing only characters acceptable for
evaluation as a numeric expression by function
c’' expression,

Function C'EXPRESSION is called by function EVAL:

This function is used to evaluate a'numeric expression in
string form,. converting it to a single number.

o

Prototype: return:=c’expression(str$,p,error)

Parameters:
-IN

| &R

et v ey I W BTN Y e

98

str$ - a string containing a numeric express1on in
. standard form but ending with a non-numeric,
- spaces between operators and numerals are
< permitted,
- the five basic operations (+-*/|) and parentheses
. are allowed N
.p * - a pointer to thF first character of the. .expression
-QUT
P - points to the non- numerlc following the expression
-error - if division by zero would occur, error is set to 1
if a numeral would cause an overflow, error is set
to 2 ‘ ’
if a numeral is missing, error is set to 3
if a c]os1ng‘parenthes1s is missing, error is set
to 4 .
otherwise error is not changed,

Return value: '
‘If no expression is detected, 0 is returned.
Otherwise the converted express1on is returned with the
following conditions:
’ - if division by zero wou]d occur, division by 1 is
executed _
- if a numeral would cause an overflow, it-is
replaced by 1
- if a numeral is missing, 1t is replaced by 0
- if a- cTos1ng parenthes1s is m1ss1ng, it is
"assumed

Except1on 7 -
If thewevaluated express1on causes an overflow, a system

over flow error occurs and control passes to the COMAL
‘system. ,

3. .CASTLE General Function PMATCH:

The function pmatch compares str1$ to str2$ and returns the
percentage of character positions which contain the same
characters in both strings.

Prototype: return:=pmatch(str1$,str2$f

Parameters:
-IN '
str1$ and str2$ - the strings to be compared

Return value:

The percentage of character pos1twons containing the same
character.

4. CASTLE General Function ROUND:

99

)

The funct1on round returns a number rounded to: the nearest
integer.

o 9
Prototype: returnc=round(number) ‘
Parameters:
<IN o '
number - the number to be rounded

Return value: : ‘ '
number rounded ‘to the nearest integer.

System'Cemparison Functions
These functions are used in UNIT categorization |
stafements to compare a specified target with the_student’S'
response. They may also be used in creatjng user defined
comparison functions. The fo1lowing three functions are

currently included in the CASTLE design:

1. . CASTLE Comparison Function CC - compare character:

Function cc is the compare character function of NATAL-I1.
It may be used in much the same way as im NATAL, with the
following exception; a]l'parameters must be. specified.

Prototype: return:=cc(target$,word,spec$)
Parameters: |

-IN
target$

this is a string literal or expression which is
to be compared with the edited student response
in redited$

- "™ will match any single character

- "&" will match any str1ng including the null

str1ng
- "," is used to separate alternate responses
- "(" and ")" are used to group alterhate

responses, but nesting these will return
unpred1ctab1e results

- examples: "a,b" is equivalent to "(a,b)"
&a" will match anything up to the
first "a"

i " " "

"aa,&a" will match ...aa" or "...a

100

"&a,&aa“ will match "...a" but not
II..-aall ’ N
: "a,{b,c’" will return unpredictable
results; use "a,b,c" which is
equivalent
"&(a,b)" will match anything; use.

"&a &b"
"(&a, &b)c(e f)&" will match:
.ace..."
"...acf..."
.bce..."
bef. . ."

“"&*abcd" will match anything; use
"*&abcd", at -least one character
will precede "abcd"

‘In the above examples the letters may

be replaced by any suitable substrings

which could include "*" or "&" if they
are not adjacent to each other or the
substring boundary.
this is a numeric literal or expression which
indicates at which word in redited$ the
comparison is to begin
- if less than 1, the comparison begins at word 1
spec$ - is a string l1tera1 or expression which may be
S used to alter the characters used for "=*&(,)" in
target$ \
- if null, no substitutions are made; otherwise up
to the first five characters of spec$ are used
as substitutes for "*&(,)" in that order

word

Return value: ,
TRUE is returned if a match succeeds, otherwise FALSE is
returned.

Refers to system variable redited$

2, CASTLE Comparison Function CK - compare keyletter:

Funct1on cKk is the compare Keyletter function of NATAL - II
It may be used in exactly the same way as in NATAL except
all parameters must be spec1f1ed ‘

'Prototype. return.=ck(target$,cr1terien)

Parameters: , /
-IN ’ ~
target$ - this is a string literal or expression
’ containing - one or more words
. - each word represents a word skeleton to be
matched, in the same word order, witha word in
the edited student response in redited$
X - example: word skeleton "rcv" would match "rcv",

101

~ "recieve", "receive", "recover"', or
Mxxxrxxxcxxxvxxx"; but not "rvc", "review", or
"cavort” o . '

criterion - this is a numeric literal or expression
indicating the minimum number of words in
target$ that must be matched
- if 0, all words in target$ must be matched

Return value:
Return TRUE if the criterion is met, otherwise return
FALSE.

Refers to system variable redited$

3. CASTLE Compar ison %unction CN - compare numeric:

Function cn is.the compare numeric function of NATAL-II. It
may be used in the same way as in NATAL, except all
parameters must be specified.

Prototype: ;return:zcn(target,fd]erance,word)

Parameters:
=IN . :
target . ‘is a numeric literal or expression which
evaluates to the number that is to be matched
tolerance - is a numeric literal or expression . which
evaluates to the allowable absolute difference
between the target and the response
- for matching integer targets and responses
exactly, it may be set to 0
! - for matching real targets or responses, it
- should be set to a value that allows for
computer inaccuracies in the ninth least
significant digit, e.g. for target=4523.34,
set tolerance=0.00001 to match resposes
~ 4523.33999 to 4523.34001 inc.
word - is a numeric literal or expression that
indicates which position in the system vector
nedited contains the response to be compared
- if word is less than 1, it is set to 1; if it

is greater than 10, it is set to 10 /
- if the system edit function numbr has not :jgé

called since the last execution of the
response statement, it is invoked by the cr
function ' /
. /
Return value: ‘ ‘ 2
Return .TRUE if nedited(word)=target within the tolerance,

otherwise return FALSFE".

Calls procedure numbr
Refers to system variables nedited and redited$

102

System Edit Functions

These functions may be used as genepéﬂ functionsyin the
CASTLE proéédure 1anguége, e.g. in the cbeétibn of a.usér
defined edit function. They are also used,; without
parameters, with the SEDIT$ system variable and in the UNIT
EDIT statemenf.“When uéed in this way the parameter S+R$
refers to the»REDlTED$ system variable and the parameter
VECTOR refers ﬁd the NEDIfED system(vector.‘The function
CHANGE may not abpear in a UNIT EDIT sfatement or be
aséigned to the S$EDIT$ system variable. See the definition
of a Character Swap String in the EDIT statement définitioﬁ
in Seéfion F, Instructional Unit Language. The following
EDIT functions are defined: - o

1. "CASTLE Edit Function ALPHA: .
Procedure alpha changes all string 1iteralanumeric§\fwhjéh
may contain a decimal point, a sign, or be in "E" notation)
to spaces in a given string and then executes the procedure
mulsp on the string. ’ ’ '

Prototype: alpha(str$)

Parametersﬂ
- IN. ' o

str$ - the string to be operated on
-0uUT : 4 .

str$ - the changed string

Calls procedure mulsp

- - 103

2. CASTLE Edit Function CHANGE:

- Procedure change replaces one substring with another
substring 'in a given string. This replacement may be for
‘all occurances of the rep1acement substrin? or for a given
max imum number of occurances in the original string.

- Prototype: -change{count,a$,b$ str$)

Parameters:
-IN .
count - if less tha? 1, all occurances of a$ in str$ are
: ~replaced wi th b$;
otherwise, a maximum of ’count' occurances of a$
. are replaced
a$ - substring to be rep]aced

- if nul, no replacement is .made
- b$ - replacement substring
- if nul, a$ is deleted from str$
str$ - string in which specified. occurances of a$ are to‘

be replaced by b$

- a$ and b$ may be of different lengths
-0uUT
str$

1

the changed str$

3[_ CASTLE Edit Function MULSP:

Procedure mulsp removes all leading and tra111ng ‘spaces and
changes all multiple spaces to single spaces in a g1ven
string. _

Prototype: mulsp(str$)

Parameters:
-IN

str$ - the str1ng to be operated on
-0uT

str$ - the chandged string

4. CASTLE Edit Function NUMBR:

Procedure numbr extracts string numera ls embedded in a
string, converts them to numerics, and places them in a

. humeric vector.

Prototype: numbr(dimension,vector,str$)
' N

Parameters:
-IN
~dimension - gives the maximum length of vector
str$ - the string containing the list of numerals

104

- each numeral must be separated from each

adJacent numeral by at least one non- ~-numeric
-0uUT

vector

1

references a user crea ed numeric vector of

dimensions (0:dimension)

- vectoréO) returns the number of numerics found
in str$

- if str$ contains no num rics, vector(0) will
be set to 0

- if a numeric 0 is detected as the
’dimension’th numeric in'str$, vector(0) will
equal 'dimension’ -1 '

- if str$ is null, vector(0) will be set to 0

- if the number of numerals .in str$ is greater
‘than dimension, vector(0) will be set to
dimension and only the first 'dimension’
numerals will be converted

£
"Calls function cnum . ‘ |

5. CASTLE Edit Function PUNC:

Procedure punc changes the follow1n? punctuat1on characters
to spaces in a given string: ' .70

Prototype: punc(str$)

Parameters:
-IN

str$ - the string to be operated on
-0uUT

str$ - the changed string

6. CASTLE Edit Functions SHDN and SHUP: .

Procedure shdn may be used by a CASTLE author to shift all ~
upper case characters in a string to lower case. Procedure
shup does the reverse.

Prototypes: shdn(str$)

shup(str$)
Parameters:
-IN ,
str$ - the string to be shifted
-0UT

str$ - the shifted string

7. CASTLE Edit Function SYMB:

Procedure symb changes'every:characten that is not an

ot AL

105

alphabetic character to a space in a given string and then
executes the procedure mulsp on the string.

Prototype: symb(str$)

Parameters:
-IN ‘

str$ - the string to be operated on
-0uT

str$ - the changed string | i

Calls procedure mulsp

,System Graphic Functions

A full set of graphic functions has not been defined
for CASTLE. the following Qraphic functions may be used in

creating user defined graphic functions:

1. CASTLE Graphic Function BOX:
Prdcedure box draws a box on the display screen.
Prototype: box(top,bottom,left,right)

The parameters define the ’top” and 'bottom’ rows, and
the ' left’ and "right’ columns of the box. '

2. CASTLE Graphic Function BOX'HLINE:

Procedure box’'hline draws a horizontal line between two
vertical lines. .

Prototype: box' hiine(row,left,right)
The]ine is dfawn in row ‘row’ from cblumn "left’ to

~column ‘right’. It is assumed that vertical lines exist
in columns ' left’ and 'right’.

3. CASTLE Graphic Function BOX’' VLINE:

Procedure box’vline draws a vert1cal Tine between two
horizontal lines. :

Prototype: box’vline(column, top,bottom)

106

The line is drawn in column 'column’ from row ‘top’ down
to row 'bottom’. It is assumed that horizontal lines
exist in rows 'top’ and ’'bottom’.

CASTLE Graphic Function BOX'WINDOW:

Procedure box'window draws a box on the display screen
and creates a display window inside the box.

Prototype: box’window(top.béttom,left.right)

This procedure calls the following two procedures:
box(top,bottom, left,right)
set'window(top+1,bottom-1,1left+1,right-1)

CASTLE Graphic Function CROSSBAR:

Procedure crossbar draws a crossbar at a character

position where a vertical and a horizontal line
intersect.

Prototype: crossbar (row,column)

A crossbar is drawn at row ‘row’ and column 'column’ of
the display screen. It is assumed that a horizontal and
a vertical -1ine pass throught the specified character
position.

CASTLE Graphic Function HLINE:

5

Procedure h]inemdraws a horizontal’line.

Prototype: hline(row,left, right)

1

- ,
The line is drawn in row ‘row’ from column ’'left’ to-

column ‘right’ .

CA§TLE Graphic,Function PAGE:

Procedure page clears the currently defined window and
places the cursor at the top left corner of the window. "

If no window is defined the whole screen is considered

the currently defined window.

Prototype: page

CASTLE Graphic Function SET’'WINDOW:

Procedure Set/wihdow defiﬁes a aisplay window.
Prototype: set’window(top,bottom,left,right)

The parameters define the ' top’ and 'bottom’ rows, and
"left’ and 'right’ columns of the window.

107

CASTLE Graphic Function VLINE:
Procedure vline draws a vertical line.
Prototype: vline(column, top,bottom)

The line is drawn in column 'column’ from row ' top’ down
to row 'bottom’. :

F. Instrygtional Unit Language

The CASTLE UNIT is a faithful implementation of the

NATAL-II UNIT with a few excéptions that are exp]aihed in

the statement descriptions affected. For a complete

description of the NATAL UNIT see Honeywell (1981b,

pp. 27-30 & 61-66). A UNIT may have one DISPLAY statement

~ followed by one RESPONSE statement which in turn may be

followed byﬂthe UNIT body. A description of each UNIT

language statement follows:

1.

CASTLE UNIT DISPLAY Statement:

’

Prototype: DISPLAY:ON <device> <(text>

The DISPLAY statement 'passes <text> to the disp]ay‘

sub- language interpreter for formatting and display on
<(device>. Currently two devicés_are supported; PRINTER ¢
and SCREEN. There méy be only one DISPLAY statement pgy:*ﬁ*

UNIT and it must be the first statement. It is optional.

CASTLE UNIT RESPONSE Statement: -

108

]

Prototype: RESPONSE [ON, <device>] [<qualifier-list>]

!

The RESPONSE statement requests a response on <device>

under the conditions of the {qualifier-list>. Currently

only one device is supported, KEYBOARD. The following

qualifiefs are suppdrted./

a.

acceptance in terminated. The default value for TINME

APPEND - Each response} when accepted, is appended

to the previous response, separated by a space,lin

the system variable RESPONSE$. The default is not to
append. ;

NCHAR=n - The response is limited tg n characters.
If more than n characters are typed, response
acceptance in tefminated. The permissible values for
n are from 1 to 100. The default value for NCHAR is

100.

. TIME=n - The response is limited to n seconds. If

the. response time exceeds n seconds, response

is the value of the system variable STIME,
RESPONSE WINDOW (TOP,BOTTOM,LEFT,RIGHT) - This

defines the display window, within which the

‘response when typed} will appear. It is alWays

cleared first and SPROMPTS displayed in the top left
corner of the window. The default parameter values
are (10,11,1,80). 7

REPRISE WINDOW (TOP,BOTTOM,LEFT,RIGHT) - This

defines the initial display window setting for any

\ 109

REPRISE statement executed in the UNIT body. It is
set and cleared immediately after a response is
accepted. The default parameter,ﬁgﬂues are

(15,23,1,80).

The NATAL qualifiers FONT and TYPE have not been_defined
in CASTLE, The NATAL qualifier POSN has been replaced by
RESPONSE WINDOW. After execution of a RESPONSE statement

the following system variables are affected: F(0) to

\F(Q), RIGHT, and WRONG are set FALSE; UNREC is set TRUE;
)'f the response was not in time OTIME is set TRUE and

/;/NOTIME is incemented, otherwise OTIME is set FALSE;

LATENCY is set to the response time in seconds; NRESP is
incremented; and the response is placed in REDITED$ and

RESPONSES$. If there are any edit funtions assigned to

SEDITS, they are executed in order before the unit body

is executed. There may be oniy one°RESPONSE statement

e e N T ST R e i S i o sl T e R b e

; per UNIT and it must follow the DISPLAY statement if

there is one. The RESPONSE statement is optional.

3. CASTLE UNIT Body: o '

A}
Ul

LIt s comprisgg of any number OSf COMMENT, EDIT,

Categorization, and Reprise statements in any order.

°

o g e TGS

a. CASTLE UNIT EDIT Statement:

P N

Prototype: EDIT <edit-list>

110

The <edit-1list> is made up of two types of edit
items: Edit Function references and Character Swap
Strings. An Edit Function reference consists of the
name of an Edit Function. A Character Swap String
cons{sts of two strings: "stringt” and "string2".
When on EDIT statement is encountered each edit item
is executed in turn. For a character Swap String the
following occurs. If "stringl1” is null then
"string2" is inserted at the beginning of REDITEDS, |
otherwise the’function CHANGE ié called with
"stringt”, "string2", and REDITED$ as parameteré.

A1l occurances of "stringt" in\REDLTED$ are replaced

.

-

with "string2”..
CASTLE UNIT Categorization Statement:
Prototype <category> <target>

{category> may be one of F(0) to F(9], RIQﬁT, or
WRONG. <target> is a boolean expression containing
any number of comparison functions as operands
separated by one of the boolean operators AND or Oﬁ.
An operand may é;f;;¢fixed with NOT and/or replaced
by a pérenthesized <target5 bodfeaﬁ expression. This
is a slight differencé from NAfAL which;pe?%its the
‘oberand td be rép]aced by any boolean expression.

Whgn a Categorization‘statement is encountered

FPURUN

(target> is evaluated as TRUE or FALSE and
(category> is assigned that value. |f evaluated TRUE
then the counter for <{(category> is incremented and

UNREC is set FALSE.

CASTLE UNIT Reprise Statement:

. ‘"\\

Prototype: <action> <category> <text>

{action> may be either REINForce or RETRY,
<category> may be one of F{0) to F(9), RIGHT, WRONG,
UNREC. OTIME, or RENTRY. The NATAL category RTYPE is
not supported. RENTRY is set TRUE if the unit was
called by a REPEAT statehent for the second or
subsequgnt time in a lesson. If <category> is TRUE

and this statement is either the last reprise

-statemént for this category in the unit or has not

been previously executed in this lesson, then <{text>
is passed to the“disbiay sub-language interpreter
for formatting and display on the display screen. On
return from the display sub-languagé interpreter, if
<action> is RETRY then control is passed to the
UNIT"s RESPONSE statement, otherwise <action> is

REINForce and control is passed back to the routine

that called the unit.

112

The UNIT Body may only be entered from a RESPONSE
-\W€tatement or through a RENTRY reprise statement.

, InvoRing the.CASTLE UNIT Interpreter:

The following procedures are usedvby an author to invoke the
CASTLE UNIT jnterpreter. The fwo "unit" procedures are

.‘cal1ed when the named unit ig'to be executed from the
beginning of the-unit. The two "repeat” pﬁocedures are
called when the'named unit is to be entered at the next
RENTRY reprise statement. If the naméd unit is not one_of
ihe mdst recent ten units called in the current lesson or

(rthere is no RENTRY reprise statement in the unit, the unit
is executed from thevbeginning of the unit. The two

u u

'propedures with the "x" suffix are used to call units with
1ndexed names. Indicies may Pange from 0 to 99. An index

outside this range will cause an error message to be pr1nted

1

and will pass control bacK to the COMAL system.

Prototypes: unit’ (name$)
unit’ x(name$, index)
repeat’ (name$) |
repeat’ x (name$, index)
Parameters:

- IN

113

name$ - the name of the unit to be called ﬂ
- if an indexed call, the base name of the unit to

which the index number, converted to two

characters, is appended

index a numeric expression which should evaluate to an
integer in ihe range 0 to 99

- the unit index

G. Display Sub-Lénguage |

The display sublanguage is used to format text and
graphics on the student’s dispjay screen. It may also be
used to format text on a printer. Input to the d{splay
sub-language interpreter is lines of text to be formatted
and command lines containing formatting comménds. These
lines méy be mixed in any order that will produce the
desifed results.

A comﬁand line begins with the control command
*character. The default control command character is the
ampersand, ‘& . One or more commands may follow separated by
commas . Some,commanas must be the last command on a command
line. Tﬁis wil]Ibe pointed ou{ in the following command
descriptions:

1. &A - As-is: The following lines of text are displayéd
as-is. Command lines are thus not considered command‘
jines and are disp]ayed as-is with the exception that &Z

is recognized as the terminator of As-is mode. The &A

-+

10.

11

114

command must be the last ohe on a line.

’&B(top,bottom,1eft,right) - Box: This command calls the

CASTLE Graphic Function SET’WINDOW with the given

parameters.

\&C(row,co]umn) - Cursor Positioning: This command

executes the COMAL statement CURSOR row, column.

&E(top,bottom,1eft,right) - Erase Window: This command

calls the CASTLE Graphic Functions SET'WINDOW, with the
given parameters, and PAGE.

&Fn - Font Selection: Select font number n. The meaning

.of each font number is implementation dependent. Font' 0

is the defau]t fontvéontaining upper and lower case
alphabetics; nﬁmerics'and punctuation symbols.

&Gn - Graphics Display: Call user graphic function n,
UGFn . |
&H<text> - Highlight Texf:_(text> is displayed in
reverse video, éeparated from surrounding text by a
blank. This must be the last cohmand on a line.

&In - Indent Text: The fo]]éwing text wif] be indented n
spaces from the left gdge of the display window. It
remains in effect until eithef an &10 or &R command is
issued. |

&Kn - Keep Lines: If less than h lines remain on the
current page, issue an &N command .

&Ln - SKkip Lines: Issue n+1 carriage return / line

feeds. &L0 or &L starts a new line.

&M<text> - Mfdpoint Text Display: A carriage return /

12.
13.

14.

15.

16.

17.
18.

9.

115

line feed is'iésued énd {text> is displayed ¢entred
betweenfphe 1éft and right edées of the current display
window.‘<text> js_truncated on the left and righf to fit
if heeded. This must be the last command on a line.
§MH<text>, for highlighting text, and &MU<text>, for.
under]ining.text,‘méy be used.

&N;- New Page: An.&WO0 command is issued and thé PAGE
fuhcti@n is cailéd. | ' -

&P - Paragraph: A carriage return / line feed is issued

 and the following text is prefixed by five spaces.

&Qc - The control command charactef is changed to

character c. c may be one‘of‘the fo]iowjng: PU# S % -
or &._ |

&R - Resetf Ccmﬁmnds B, F, I, and § afg reset to® their
defau1t'settihgs;" o

&Sn - Line Spacing: n carriage return / lineAfeeds are

issued ‘after each line of formatted text is disb]ayed.

The default setting is &S1. &S0 is not recognized.

<

&Tn - Tab: The COMAL function TAB(n) is called.

&U<{text>.- Underline Text: <text> is displayed with each

charactef and inc]uded-épéce underlined, separated from

‘surrounding text by a b]ank; This must be the last

~command on a line. On some devices underlining may be

erased if underlined tekt is not followed by a blank
line on the display.- |

Vn - Display Sfring Value: The contents of buffer n,

'B$(n), are formatted for display.

20.

21,

22.

23.

24,

116
&/ (<image string>,<numeric expression>) - Display

Numeric Value: The following COMAL statement is

executed: ’ _ .

PRINT USING "<image string>": <numeric @xp£g§§ion>,

i

If the value is,tq,be separated from surrounding text by
blanks, these must be in the <image string>.

&Wn - Wait: The display pauses for n seconds. &WO
displays the message 'Press RETURN to continue’ on the -
bbttom line of ;he display screen and waits for the
RETURN key to be pressed.

&YC(text> - Comment: <(text> is a comment and s not

displayed. This must be the last command on a line.

‘&YD({display. file name>) - Display Exterﬁal Text:

<display filé'name> is the name of a file containing
sourcé text and cohmands for the display sUb-language.
It is accessed and fnterpreted before proceedfng fq the
neXt”1fqe. |
&YW(row;column,<window file name>) - Preformat ted
Window: <window file name> is the néme of a file
containing barémeters‘and text of a phefoématfed window.

1

row

I

‘and ‘column’ indicate the position of the top left

corner of the display window. The file contains two

parameters: ‘number of rows’ and 'number of columns’ .
The SET’ WINDOW function is called with the following

Rarameters: ("row’, ‘row’ +' number of rows’-1, ‘column’,

T

"\\ 1 1 7

i\ ‘
“column’ +’' number of columns’ -1). The window is cleared

and the preformatted text in the file is displayed in

the window. |
25. &2 - This command terminates As-is mode. It must be the

first command on a line.
In the above'commands,'a page is considered the current
disp]ay window. The initial d%splay window for a DISPLAY
statement is the entire screen less the bettom line which is
resiérved for system messages. For}a Reprise statement the
initial display window is the REPRISE WINDOW set in the
RESPONSE statement. When a display window has been filled
with formatted text, ép &N command i's autometically issued
before nbrebtext is displayed. |

The numeric parameters in the above commands may be
numeric express1ons that may . reference the system numeric
registers, c(0) to C(99) as operands.

The CASTLE D1sp]ay Sub-Language c]ose]y fol]ows the

'des1gn of the NATAL Display Sub-lLanguage but there .are

substantial differences (see Honeywel 1, 1981b, PP . 69-81).
These differences have been introduced to simplify the
command§ and'to.incfease=the efficiency of«the Display

Sub-Language interpreter. ;

V. Design Specifications for the CASTLE Support System
The CASTLE system is 1mplementgd by four support
sub-systems: the courseware development sub:;ystem. the ,
courseware presentation sub*syéfém, the regisfration
sub-system, and the performance analysis subsystem.

4

A. The CASTLE Registration Subsystem

The registration subsystem is needed to identify and
Keep records on the uéeﬁs of the CASTLE system and the v
coUrsewaré that they will use. There are three parfs to this
subsystem: course regisfration,vclaés fegistra{jon, and
sysfem']ibrary registration. System prbgrams arg u%ed to
maintain these recérds. These programs allow fog the
addition, deletion, reviewing and updat{ngéof,records. For
the protection of these systém records, access to thé

various levels of the registration'subsys?em is restricted

by passwdrds.

Course Registration L
Each course to be developéd or accessed by students

must be registered. For each registered course the following
must be maintained: ' |
1. An entry of the course name and its internal reférence

‘code.in the system’s course names file.
2. A course header file. In this file.is maintained:

a. A password. This must be used by the aufhor to gain

access to course record maintainence routines and to

118

 \ - 118
L
the courseware development system to develop lesson
modules and instructional units for the course.
The access‘status. A course may be locked,

\
indicating that it is under development and may not

be used by a class of students. An unlocked course

may also be permitted for browsing. That is, a

non-registered student can have access to the course
using the courseware presentation browse mode .
The default chapter order. This is a list of
internal chapter codes indicating the author's
preferred chapter order.

The .course internal documentation. This should
include but not be limited by:

1) The course creation date.

2) -The course'’s fong descriptive title.

3) The course author(s).

4) The institution of origin.

5) The ekistancé of external AOCumentation.

A course chapter names record.

For each chapter of a course the fbllowing must be

maintained:

1.

2.

©

An entry of the chapter name and its 1hternal'reférence
code in the course chapter names record of the course
header file.

A chapter header file. In this file is maintained:

The default lesson order. This is a list Al

chapter codes indicating the author’s pre!

120

lesson order for the chapter.
A chapter lesson names record. The name of each
lesson in the chapter and its internal reference

code is maintained in this record.

Class Registration

'An instructor who wishes to use a CASTLE course with a

group of students must register the class and the students

with the CASTLE system. The class name is the course name

with a two digit class number appended. For each class the

following must be maintained:

1.

~An entry of the class name and its internal reference

code in the system’'s class names file,

A class header file. In this file is maintained: _,

a.

A password. This must be used by (the instructor to

gain access to class record maintenance routines and

'-performénce analysis routines for the class.
A Liét of the computer ID numbers of all students in

~the class.

The ciass chapter order. This is a list of internal
chapter codes’indicating thé default chapief order
for students in .the c¢lass. fhis could be a direct
copy of the course author’s préfeﬁred,chapter order
ffom the éourse Header file. The instructor may ,
hoWever, rearrange thisvéhapter order. or insert
chapters fhom other courées‘or from the system

library. 1f chapters from other courses are to be

3.

Q\\\ | 121

used, these courses must be registered with the

system and a list of pointers to these externa]

chapters maintained in the class header file.
The class internal documentétion. This should
include but not be limited by:

1) The class creation date.

2) The class instructor.

3) The institution to which the class belongs.

A student registration file for each student. The

following records are maintained in each student

registration file:

a.

A password. This must be used by the student during
the sign-on procedﬁre at the beginning of each
computer session.

A review mode permit flag. This flag'is set on if

- the student may use the review courseware

presentation mode .
A current mode flag. This flag is set on if the
/-

student is currently in the review mode and set off

if under direct courseware control {(controlled

/
Ve
b

mode) At registration this flag is set off.

The chapfer order. This is a list of internal

‘chapter codes indicating the chapter order for this

student. It could be a direct copy of the class
chapter order or the order may be modified by the
instructor and could include external chapters

linked to this class

122

e. A lesson completion map. This is a boolean two
dimensional matrix. Each row represents a chapter in
the order of the studth's chapter order record.
Each columnlrepresents’a lesson in the order of the
chapter author’s default lesson order in the chapter
header file. |

f. A controlled mode restart record. The contents of
this and the following record are described under
the courseware presentation subsystem.

g. A review mode restart record. V

System Library Registration

The system library may contain'chapters, lessons,
units, displays and windows as identifiable elements. A
system néme file is maintained for each type. These systém
~elements are developed and tested by course authors. When
ready .for entry to thé system]ibrqry, the 1nternaf
documentQtion for the element is updated to indicate that it
is now in the system 1ibréry5 and the system library
registration routine is called to rename the element and to
plaée its na@e‘and interﬁal reference codé:in the

appropriéte system name file.

B. The CASTLE Courseware Development Subsystem
An ‘author creates a course by»deve]opihg lesson modules -
in the CASTLE procedure 1angﬁage‘and instructional units in

the unit Tanguage and display sub-language.

123

Lesson Module Development

When a lesson name is registered, the sytem creates é
lesson module which contains the CASTLE run-time routines,
internal documéntation statements,“and the skéléton of the
lesson entry procedure. A lesson modulg is stored on disk as
a COMAL program file, The courseware development subsystem,
at fhe request of an author, will load any desired lesson
‘module into the active workspace for editing. A1l COMAL
system commands are available to the author while editing'a
lesson module. | |

Below is ‘the skeleton lesson module prbvided by the

registration subsystem.

2000 castle

2010

2020 // Course:

2030 // Chapter:

2040 // Lesson:)
2050 .
2060 // Created:

2070 // Revised: N

2080 ~ ’

2090 // Author: .

2100 // Institution:

2110 | o

2200 proc lesson ‘ "~

2300 lToop

2400 case part of

2500 when 1 |

3000 otherwise -~
3100 - exit

3200 endcase

3300 checKkpoint

3400 endloop
3500 lesson’ ("") |
3600 endproc lesson \

*

,as‘

124

he onTy pro;ram statement in a CASTLE lesson‘module is line
2000 which calls the 'castle’ initialization'procedure which
in turncalls the ' lesson’ entry procedure. To test a lesson
module the éuthor simply issues the COMAL RUN co%mand. In
testing a module, care must be taken not to execute a lesson
call statement as in 1ine 3500, since this would load in
another lesson module and the current one would be erased.
Placing an exclamation mark (!) just after the line number
will make the statement a éomment which will not execute.

The comment symbols may be erased before the module is saved

on disk.
The COMAL language is implemented as a three-pass
semi-compiler. The first pass is in the COMAL editor which
checks each statement as it is entered for correct syntax,

The second pass occurs when the RUN command is issued. A

’complete scan of the program is made‘to ensure that all
procedures, functions, and control structures are properly
closed. The third pass executes any program lines. If there
are no program,lineé,,just procedures and functions, then

the third pass does nothing. Since line 2000 is the only

program line in a CASTLE lesson module, it can be made a
\te.the

comment so that the RUN command will simply execu

second pasé checks.
To save'a lesson module to disk an author performs the

1

following steps:
Make line 2000 a comment.

1.
Issue the RUN Comhand.

2.

125

Type save’ lesson and press RETURN,

save’ lesson is a CASTLE routine that:

a. Restores line 2000 as a non-comment line.

b. Updates line 2070 with the current date and time.

C. Replacés'the old copy of the lesson module on disk
with the current updated copy.

d. Loads énd runs the courseware development command

routine.

The COMAL SAVE command should not be used.

1.

-~

The following COMAL commands may be used by the CASTLE

. author in editing a lesson module (Lindsay, 1983):

AUTO [<starting line number>] [,<line increment>] (p. 9
This command creates program line numbers automatically
beginning with <starting line number>. Each successive

o

line number is incremented by <line increment>. The
defaﬂ%t'<starting line number> is the highest line
number currently used plus 16. The default <line
increméht) is 10. Null lines may be entered to increase

the readability of listings. To exit the AUTO line

\y ' .
' nuﬁbering mode press the STOP Key. Line numbers may also

be entered manually.

DEL <line number range> (p. 30)

~This command deletes from the workspace those lines

included in’ <1line ‘number rahge>. <line number range> may
be:
a. a’single ling number, ‘ \ } ,

b. <line number> ?X which is the range from <line

126

number> to the last line number,

c. - <line number>, which is the range line 1 to <line

i o

b

numbér>, _
d. '(beginning line number> - <ending Tine number>.
‘The DEL command is the only way to delete lines.
EDIT [<1{ne number range>] or ‘
'EDiT {procedure or function name> (p. 43)

This commahd lists the entire workspace, the <line
humber range>, or the named pchedure or function to the
screen without ’'pretty pbint' indentation of structures.
LIST'{(ﬁine number range>] or

LIST <procedure or f&nctfon name> (p. 107)

This command is the same as the EDIT command exéept that
lines are indented to show the pfogram structure. To
Tist a.CASTLE~1esson modu]e,vbut nbt the CASTLE run-time
‘routines, to the printér use: | |
a. select [output] "1p"

bf' list 2000 -

. When the listing is completed the system will
automatically issue a select output "ds".

RENUM [[<old beginn%ng 1ine%number>;] <{new. beginning
liné number>]} [,<1ine increment>] (p. 160)

This command will renumber the lines from the <old
beginning line number> to the end of the program
starting with the <new beéinning line ‘number> and

incremented by <line increment>. Thé default for <old

beginning line number> is 1, for <new~beginnind\line/

127

number> is 10, and for <line increment> is 10. Since the
‘castle’ statement should always be on line 2000 and the.
revised date/time on line 2070, the standard RENUM
command for CASTLE authors would be RENUM 2000;2000, For
renumbering lines greater thaf 2070 an example égmmand
might be RENUM'22;0;3000,100. A1l lines from 2210 to the
end of the workspace would be renumbered 3000, 3100,
3200, etc. |

6. SIZE (p. 179) A
This command displays the size in bytes each of the
program and the data, as well as the number of by es
still available in the workspace . B

The following COMAL commands should not be used'by the

CASTLE author because their functions have been replaced by

CASTLE rbutinés: BASIC, CAT; CHAIN, DELETE, LOAD, NEW; PASS,

" SAVE, VERIFY.

Instructional Unit Development

The instructional unit development sytem has thneg
major parts: the UNIT file manager, the UNIT editor, and the
UNIT tester. The CASTLE author enters the unit deve]opmenta
system from the courseware deve]opmenf command routine byI
selecting the UNIT file manager.

Each instructional unit is stbred as two disk files.
One file is a table of integeirs called the péfsé table. Each
entry represents eithe} an internal .reference value, an

operation code (opcode), an immediate integer value, a

128
> A

mpojnter to another part of the parse table, or' a pointer to
Q? record in the othef file. The second file, called the
I §tring table, ié a random access file of string records,w%th
g a maximum length of 78 characters. Each Eecord holds text

’

data or commands for the display sub-language intgrpfeter,
or numeric expregéions in stfing form thai are evaluated at
‘run-time. The uni& is executed by the CASTLE UNIT
interpreter. It carries out the actions Specified by the
‘obcbdes in the parse taBle. |
1. The UNIT File Manager :
On entering the UNIT File Manager the author selects a
unit directory for the course global units, a particular
chapter’'s units, or a particular lesson’s units. A list
. of the current units of the selected d%hectory is
‘displayed. -The following menu items may then be
seleqted: ' °
a. cppy_a unit - A unit from an exterpal'éouhce may be
copied to t@ current unit directory.
b. delete a unit - A unit may‘bé deleted from the
current unit directory and its disk files erased.
c.‘ edit a unit -_Thé UNIT Editor is called for4§
selected unit.
d. get a new unit diréctoryl- The aufhor may select a
different unit directory. . \ | ‘
e. history of a unit - The date/time of unit créatioh,
the date/tingof the last unit update, and the unit

header comment are displayed for a selected unit.

-

129

f. list unit names - The list of unit names in the
‘current djrectory is displayed.

g. .duit - Control is,réturned to the courseware
_development ccommand routine. . - !

h. rename a unit - The -name of a unit may be changed

i.‘ start a new unit - The author registers the name of
a new unit for this d1rectory, 1ts‘d1sK files are
initialized, and a permanent header comment by the
a&thor is placed 1ﬁ the unit header record.

j. test a unit - The UNIT Tester iis catled for a
Selécted unit.

The UNIT Editor:

The UNIT Editor utilizes the pr1nc1p1eskof 1ncremental

comp11at1qn. That .is, a unit . only exists as a set of

internal codes in the parse table. At run—tjme these

codes ége decoded by the UNIT Iﬁtgrpreter which carries

out the specified actibns as an {nstructional_

interaction with a student.

‘The UNIT Editor is used by

the CASTLE author to create J;amine, and modify these
internal codes. HQWéver, the author is_never aware of
the actual codes but oély‘of their meaning as given in
the UNIT Language speci;ication.

The use of incremental compilation has two
advantages. At run-time an interpreter caﬁrexécute the
parse codes in the parse table much faster’than if it

had to parse out fheymeaning'from UNIT language source

text. Secondly, the special editor. helps .the author

- (&’\ A

130

create and modify a unit by presenting option as
selections from a menu and interrogating fbr specific
parametefs, At each step of the process.the editor
builds error-free code in the parse table. =

The UNIT Editor commardi level presents the author
with some currept statistics on the unit ahd a menu of
options. The statisticsrare the amount of free 'space in
the'parse table and the number of records still

available in the stqing table. The menu options are as

follows:

- a. display statement editor - This selects a sub-editor

~ for the DISPLAY statement. A1l sub-editors either
interrogate the author for statement parameters or
present options via menu selection. The <{text>
portion of the DISPLAY statéﬁent is edited by the
CASTLE System Text Editor. This editorbdisplays a
window of up tq 20 lines of the <text> and offers
the fo]lowing‘menu.selected optiohs:
1) back - Move thebdisplay window back 15 lines.
2) copy - Copy a range of lines and insert them
before a specified line.
3) delete - Delete a range of lines.
4) edit - Enter the screen edit mode. This mode
a]iows the free movement of the cursor im the
current display window and the changing,

deletion, and insertion of characters on the

\ disg]ay.'The changes to a particular line are
o ;

7)
8)

10)
11)

T 131

recorded when the RETURN key is pressed while

the cursor is anywhere on that line. To exit the

screen edit mode the STOP key is pressed before

pressing the RETURN Key.'The window is
Eedisp]ayed to confirm the changes.

first - Display the first 20 lines of <text>.

insert - Insert lines of text before a spécified

line. Any number of lines may be inserted. To

exit the insert mode enter a line€ containing

‘only a period (.) in-the first character

A

position.
last - Display the last 20 lines of <text>
move - Move a range of lines and insert them

before‘a specified line.

- next - Move the display window forward 15 lines.

quit - Exit the text editor.
search - A search is initialized for a sbecified
string within the <text>. If the search is

successful a window is displayed having as its

.. first line the line containing the found string.

The,editor then enters the screen edit mode

placing the cursbr on the found string. On
leaving.screen edit mode the author may select

to continue searching for- the same string or

exit to the text editor menu.

1t should be‘noted that all of <text> resides in

records in the unit string table on disk. These

132

records are read, created, and updated directly on
the disk by the text editor. Because of limited ;ain
memory on most microcomputers, keeping the string
table oh disk allows it to grow much larger than it
could otherwise. ThHs is especially important in CAI
when text®is used extensively.

exit to unit file manager .- Return control té theb
UNIT File Manager.

list unit to gcreen - The parse table and string
tab]é are scanned by the editor to generate and
display the unit’'s statements in human'readable
formi‘ |

print unit on printer - fhis per forms the same
functfon as the previous item except that the
listing is sent to the printer. | <
quit - Control js returhed fo thé courseware
. ‘ggveiopment command’fouting.

response statement editor - This selects a
~sub-editor for the RESPONSE statement.

'test!thds unit - The UNIT Tester.is called for th%s
unit. |

unit body editor - This selects a sub-editor for the
statements'in the unit body.'The author is able to
step forward and backward through the Statements in
the unit body. Only the statement type (EDIT,
Categorization, Réprise, COMMENT, END OF UNIT) is

disp]ayed. At any step the‘author_may select any of

133

théqfollowing options:

1)
2)

3)

4)
5)

6)
-7)

8)
9)

back - Move back one statement.
delete - Delete the current statement. .

‘)
end - Go to the END OF UNIT statement.

first - Go to the first statement.

insert - Insert a‘stétement before the current

statement;

Tist - List the current statement in full.
"modify - This al]owg the author to make

- modifications to the current statement.

next - Move forward one statement.

quit - Exit the unit body editor.

The <text> portion of any Reprise or COMMENT

statements is created and modified by a call to the

CASTLE System Text Editor.

The UNIT Tester:

This is a special CASTLE lesson module that allows an

author to execute a single unit. Before and after each

test run of a‘Unit the author may examine or change the

contents of system variables, counters, and registers.

After each test run the following options are presented

to the author:

a. call unit file manager - Return control to the UNIT

File Manager.

b. edit this unit - The UNIT Editor is called for this

unit.

c. quit - Control is returned to the courseware

134

develoﬁment‘command routine.
d. rerun this unit - Execute the unit again.
Display and Window File Development
A séparate file manager is available for both Display

and Window files. The options in these routines are
principally the same as those in the UNIT File Manager. The
editor ca]]ed from the Display File Manager is the CASTLE
System Text Editor. The Window File Editor allows the éuthor
fo create a preformatted\&jndow, mark its boundaries, and

“record it; along with its parameters, to a window file.

C. The CASTLE Courseware ﬁnesentafion Subsystem

Courseware is presented under two modes: controllied and
review. Under controlled mode the étudent follows a path
through the course controlled completely by the decision
algorithms defined by the author in the courseware. If
review mode fs‘perm{tted, the student may intebrupt the
normal actions of the system and request a transfer to a
different place in the course. When the student leaves
review mode a'returnris maJe to the beginning of the part o%
the lesson last in underbcbntrolled mode.

‘The users of a course are either registered or
non?registered students. Registered students are members of
a élassrwho utilize a special versijon of a course for’that
.class. Restart records are Kept for these studentsvand -

‘performance records may also be made. If a course is

135

permitted for browsing then a non-registered student may
sign on to that course. Review mode is automatically
pérmitted to non-registered students, but since no restart
records are Kept, the student {s returned to the beginning
Qf a course if an exit i§ made from review mode. Performance
records are not made for hon-registered students.

Restart records for registered students are kept under
both controlled and review mode. If a student signs off a
session while in }eview mode, this is_noteg in the student’s
record area. At the next sign on the review restart record
is used to restart the course and the student remains in‘
review mode.e | |

A restart record contains the current values of the
following items: |
1. the internal chapter code
2. the internal lesson code
3. a table of the names of the last ten units called from

the lesson |
4. an index to this table indicating the last unit loaded
5. a matrix of yalues associated with the execution

environment of these ten units.

6. the systeh local registers
7.‘.the sytem counters
8. the system variables NEXT'PART, PART, STIME, LAST" UNITS,
| RESPOND’ CHARS$, SEDITS$, and SPROMPT$

The sign on routine interrogates the student for the

name of a course (for browsing) or the name of a class. If a

136

course name is given and that course exists and is permitted
for browsing, the non-registered student is sent to the
beginning of the course.

If a class name 15 gjven‘the student is interrogated
foﬁ a sign on ID. If thisle exists then the password 15-
requested. Up to three tries are permitted to type a correct
ID and password. If not successful the student must restart
the sign on‘procedure. After a successful sign on the
student is pﬂaced at the beginning of the lesson part that
was being exécuted at the iast sign off, or gt the beginning
of the course 1f'this is the first sign on.

‘ The student may interrupt course execution by bressing
the STOP key. The interrupt request is serviced at the next
response request or the next time the words "Préss RETURN to
continue” are displayed at the bottom of the screen. A list
of prompt words, with their first letters.in reverse video,
is displayed at the bottom of the screen. The student may
select an action by pressing the key for one of the
highlighted letters. To cancel the interrupt the student
presses the RETURN key. The following is an explanafion of
the use of the possible prompts:

1. 7?help - An explanation of how to use selected prompts is
given.

2. calculator - This prompt is permitted at the author’s
discretion. The student may use the computer-as a
calculator by typing in algebraic expressions for

~evaluation. If the STOP key was pressed during a

)

~J

o0

137

.

response request, the student may have a calculated
result refurned as an answer to the response request.
exit'review - This prompt is displayed only if the
'sfudent is in review mode. If selected the student
leaves review mode and is sent to the beginning of the®
lesson part that was being executed when feview mode was
entered.

g]dssary - If permitted by the author, a course glossary
look up routine is entered.

hint - This may appear only when the interrupt is
serviced at a response request. The author may create a
"hint’ unit, to be associated with any regular unit, to
provide additional instruction to the student.

message - The studenfvhay send a message'to the
instructor. |
postbox - This prompt is displayed only if é message
exists for theﬁstuden{-from the instructor,tOnce'read:
the message is'grésed from the student’s record area.

quit - The student wishes to sign off. -~

review - This prompt is displayed only if review mode is

permitted. The student may request a transfer to a
different part of the current lesson, a different lesson

of the current chapter, or a different chapter.

, 138

D. The CASTLE Performance Analysis Subsystem

An ins;urctor may request that perf?rmance records be
Kept for the students. For each student 5 per formance file
is created. At the execution of a UNIT Reprise statement or
an END OF UNIT statement a performance record is appended to
~the student’s performance file. The fo]]owing.items are
included in a performance record:
1. thg system switch variables
2. the system counters |
 3. the following sysfem variables: LATENCY, PART,
LAST'UNIT$, and RESPONSES

4. the internal chapter code

5. the ﬁnternal lesson code
No routines to access or analyze these performance records
have been defined. Some possible routines may be seen in

Honeywell (1881c).

B .. s]

W s

TR TR e T TR A,

s g

g

e S

e e

VI. ;mplempn;ation of the CASTLE System
Factors that are generally considered critical in the
implementation of a gomplex system on a microcomputer are
internal (RAM) and external (disk) memory limitations and
the execution time of system activities. To investigate the
suitability of the CASTLE design for use on a microcomputer

system, a test implementation of a subset of the CASTLE

language and Support System was carried out. The subset

represents those aspects of the CASTLE Language and

Courseware Qevélopment and Presentation Subsystems necessary

to demonstrate the creation and delivery of individual

. lessons., Using this implementation, measurements of memory

utilization and execution speeds were madeﬁf?rom these
measurements, memory and speed parameters for a full

imp]ementétiﬁﬁ&of the CASTLE System were estimated.
§ kY |

S
A. Hardware'§y

i

The decision to use COMAL-80 as the system development

language for the CASTLE system, necessitéted the selection
&

'of hardware that supborts this language. In North America,

COMAL is only aVailable on microcomputers produced by

Commodore Business Machines. CBM COMAL-80 Revision 0.12,

qperates on the PET 4032 and the CBM 8032 microcomputérs.'lt

only leaves 5590 Bytes of memory free for programs and data.
However, the CBM 8096 microcomputer runs the full .extended

version, CBM COMAL-80 Revision 01.02, providing a workspace
of 38692 byte#. Thus, this version of COMAL and tﬁe CBM 8096

139

140
formed the basis of the development sydtem. |
The CBM 80896 is controlled by a 6502A microbrocessor

and contains 98304 (96K) bytes of read/write (RAM) memory

and 18432 (18K) bytes of read only (ROM) memory. 14K of this
ukaM is éccupied by Commodore BASIC 4.0. The Eemaining 4K is
‘the operating system which sUppbﬁts I/0 to'a CRT screen, a
keyboard, two tape drives, an IEEE-488 parallel
communications bus, and é épecial user port. The opérating
sysfem also has a built in machine lanéuage monitor.

‘The CRT (display) streen and the Keyboard are part of
the main unit. Twenty-five lines of eighty characters ?5 two
predefined foﬁts cén be displayed on the 3r=en phosphor CRT.
Each character is defjned in a rectangle of 8 by 8'pixe}s
giQing a screen resolution of 640 by 200 rpixels. The screen
1ines‘may’be displayed in an open‘format,_the default, whigh"
provides two blank pixei rows between each Tire or closed
format, with no inter-line spacing. The default font
- containts upper and lower case letteés, numerics, 28°
symbols, and 38 graphics characters. The alternate font
rep]acés the lower case letters with 26 further graphics
characters.'A full businéss,type Keyboard with a seharate
numeric Keypad-.is provided. It has special function Keys
that provide for cursor movement, screen editfng,'program
ihterruption, and the reverse video displayrof selected
characters. ‘ ¥

Tpe.IEEE-488 bus is used to connect jntg]ligent,

peripheré]s to the main unit. An intelligent peripheral hass“n

=

o el

S e S RT 4

¥
:
E]
o
K
%

N R SR e T A

141

A,

s
[N

its own CPU, operating system, 'and memory, and can function

jndependently of the 8096. Two such peripherals_are needed
to round out the CASTLE hardware needs: a disk unit and a
printer. A Cdmmodore 4040 diskwuntf was uSed. It has two
disk drives with a storage capacity of 174848 bytes
(organized into 683 blocks of 256 bytes) per drive. There
may be_144 directory entries per'diskette. The 4040
‘operating syetem ZDdS 2.0) supports direct (random) access
files which are required for the UNIT string files. Access
to records in these random files is very fast. A quimum of
two disk reads are required to retrieve any record.

A commodore 4022 printer was used as the printing
device. It can print up to 80 characters per line with
variable lines per page at different line spacing. All
characters that can be displayed on the CRT can be pr1nted ’
1nc1ud1ng reverse video (white characters on a black
background). The printer can be set in page mode so that
after 60 lines are printed an automattc form feed is
performed before the next line is printed. With the printer,
hard cepy 1ietings of lesson modules and instructional units

are eas11y obtained as are reports generated from student

sess#ons.

B. The CASTLE Test Implementation
- Since the‘Regtetration Subsystem is not part of the
teSt implementation the COMAL disk catalogue system is used

to register 1esson modules. A1l lesson and unit names .are

AR

'ﬁi\%_a‘ .

142

global and the use of the identifier prefixes ‘&', "#', '%'
is nof sUpported. Oisplay and window files and global
registefs are not implemented.
A11 CASTLE statements, variables and functions are
implemented with the'exception‘of the following:
1. 'statements - CHECKPOINT, DELTA'TIME, LESSON, LESSON'X,
LESSON’ COMPLETED L f N
Néte: To call another'lesson fnoﬁ within a CASTLE lesson
module, CHAIN "<lesson name>" should be used.
2. variables - NEXT'LESSON$, PRIVATE$, SHAREDS, SID$;
%TUDENT$, TIMEOS '
3. functions - the graphic functions, including UGFn
The unit intérpreter is completely implemented. Curfent]y
"only AS-1S mode is suppbrted by‘the‘display éUb-lagguage
interpreter.
| The following system programs were deYeloped as part éf
the CASTLE test implementation: |
1... BOOT COMAL - This is tHe first fiTé on the CASTLE system
disk. The system disk always resides in drivé 0 of the
disk unit while a data disk cqntaining all lesson and
unit fiies is in driVe 1. Byfb%essing and re]éasing the
RUN Key while ho]ding down a SHIFT Key, the BOOT COMAL
prograﬁﬁis loaded and executed. It sets the printer to
upper and fower case printfngiand turns on page moae. It
then loads the COMAL system from the disk in drive 0 and
7 initializes it.

Vi

2, CASTLE - This is the CASTLE system initialization

143

program. it is-loaded and executed by the operator
issuing the command CHAIN "CASTLE". The operator is
- queried for the current time end date, then presented
with the following options: |
; - a. exit to COMAL - to develop or execute a lesson. A
student may execute a lesson by typing.%he.command
CHAIN "<lesson neme>“ '
b. call CASTLE unit development system - The UNIT File
Manager is loaded and executed. | '

3. LESSON - To start a new .lesson, an author LOADs this

run- t1me‘rout1nes, internal dpcumentation statements,
and the skeleton of the lesson. entry procedure The
CASTLE command SAVE’LESSON is not implemented. An author
must use the COMAL command SAVE "@1:<1essoh name>" to

'save or resave-a lesson module. To retrive a preyiously

thpr

SAVEd lesson module for further development the

%‘ _ ‘would use LOAD "<]essoﬁ name>"
i 4. CAL - This is the»UNIT Fi]e Manager. It is called by

CASTLE, or an author may 1nvoke it by 1ssu1ng the COMAL

i_ command CHAIN "CAL". The onty UNIT d1rectory supported

%) is for globa] units. :

% ‘ : 5. UNIT EDITOR - This jis the incremental comp11at1on ed1tor'
; for the UNIT ‘Language. It;a]so‘conta1nskthe CASTLE '

% System Text. Editor. | | ‘

é " . 6. UNIT TESTER - This is a spec1a1 CASTLE lesson for

@ testing a single spec1f1ed unit. The unit name is

R T,

" 144

_selected in and the UNIT TESTER called from either the
UNIT File Manager (CAL) or the UNIT EDITOR.
The last three files ere 1mplemenfed as described in Chapter
V, Section B. However, the QUIT option in all three programs

causes an exit to the COMAL command level.

C. The UNIT Tables and Codes

As was described in Chapter v, Sectien B the CASTLE
UNIT exists oh]y as internal integer codes in the unit parse
table. with tgxt, display subllanguage commands, and numeric
expressions Kee% in the unit string table.

The string Iable always resides on disk as a.randomv
access file. It is modified directly on the disk by the UNiT
Editor and the CASTLE System Text Editor. Its records are
dfrect]y accessed by the UNIT Interpreter and the Display
Sub-language Interpfeter. In this implementation the maximum
number of strihg table records is 3000. During editing a
forward pointer, a backward po1nter and a parse tab]e |
reference pointer are kept in memory for each string tab]e
record. The s1ze of this p01nber table . is held to 3000
records because of internal memory 11m1tat1ons. When records3
kére added, inserted or deleted, these pointers are updated.
At the conclusion of an editing session, the string tablj\ie
Ee-assembled on disk from the information in the internal \
pointer table. The first record always contains the’unit’s
creation date/time, its last rev{sion date/time, and a

permanent 30 character header comment.

R R TR A

P . - TR

145

The parse fable is stored on disk and kept in RAM
memory as an integer vector with a maximum,lengthlof 1000.
The length of 1000- was arbitrarily chosen in an attempt to
provide adequate storage for the code of even a fairly large
unit while still conserving as much memory as possible. Both

the editing and execution of the parse table is carried out

~in main memory. COMAL provides for the transfer of entire

arrays, which includes vectors, between internal RAM and
disk which is very fast and straight forward.

The parse table is divided into a fixed part of 34
integers and a varjable part of one or more integers. The
fixed part contains cquntgrs'ok‘the number of integers in
the parse table and the number of records in the string
table, offsets to the code in the parse table of the first
Réprise RENTRY statemen: and the last Reprise statément in
each category, and the pahameter§ for the DIS?LAY and
RESPONSE stétementé. The variable part contéins the code for

all the statements in the unit body. ’

D. The Implementation Parameters
Listed below are the CASTLE system programs~developéd
for this implementation. After.each, the following is given:

the disk storage space'the program uses in blocks, the

~amount of memory the'program requires (in Pytes) for its own

storage and for its data strqétures, the amount of memory

'storage rehaining, and the time in seconds taken to load the

program from disk.

146 -

BOOT COMAL -'1 block, the remaining parameters are not

‘applicable

COMAL-INTERPRETER - 217 blocks, 54528 program byfes.
5084 data bytes, 38692 bytes free, 33.0 seconds . \
CASTLE - 5 blocks, 1008 program bytes, 148 data bytes

' 37536 bytes free, 3.2 seconds.

LESSON - 66 blocks, i4156 program bytes, 9176 data
bytes, 15360 bytes free, 14.0 seconds. _

CAL - 23 blocks, 4947 program bytes, 5004 dafa‘bytes,
28741‘bytes free, 10.3 seconds; ;

UNIT EDITOR - 77 blbcks, 17381 program bytes, 17113 data
bytes, 4198 bytes free, 21.2 seconds.

UNIT TESTER - 70 blocks, 15210 program bytes, 9278 data
bytes, 14204 bytes free, 15.9 secondé.

The time to load LESSON is the minimum load time for any

lesson module. SinCe an author is free to add many other

pfoceduhes and functions to the basic LESSON, . lesson modules

will vary in length and additional load time} The time to

load each additional 1024 bytes is 1.0 seconds.

-

During student execution of a CASTLE lesson the

following timings are also critical:

1.

the initialization of‘the lesson - 1.1 seconds -on
average

the initialization of a unit from the moment it is
called until the first DISPLAY <text>_abpears on the
screen - 2.5 seconds on average |

the answer analysis response time from the moment the

R

b

147

student énters an answer by pressing the RETURN key
until the Reprise <text> appears on the,sereen - from
2.1 seconds for simple response analyses to 7.7'seconds
for the more complex response analyses.
In a full implementation of the CASTLE system theré
would, of course, be édditiongl system programs for the
Registration and Performance Analysis Subsystems. The CAL

(UNIT File Manager) program would be expanded so that it

‘could reference other UNIT directories. There should be no

memory limitations for these:systemkexténsions.

Further run-time routines would be added to the LESSON
program fbf accessing student, class and course records, and
to complete the Display Sub-languagé Interpreter.
Approximately 2000 bytes of addifiona] program code would be
neededl This would reduce the memory available to authors
for lesson module prdcedures and functions. Accessing
registration records at lesson. initialization would probably
add 3.0 séconds to this operation. Other timings:should not

be critically affected.

\I’

VI1. Conclusion

A. Evaluation

| In Chapter 111, Section A same requirements for a CAI
system and courseware development were specified. One
criterion was to provide for fhe separation of instructional
strategy from subject content. The CASTLE system makes this
provision.

The general iﬁstructional strategy is controlled by the
CASTLE prdcedure language in the lesson modules. Specific
control of an instructional interaction is through the.order
6f statements in the UNIT Body. Subjecthontent is presented
via £hé UNIT DISPLAY and Reprise statements and Display and
Window Files. Other content data, such as target parameters
for comparison_functions and variables for the Display
Sub-tanguage could be assembled in sharéd data files and
read into buffers at run-time.

A second'criterion was to provide for the needs of the
cour seware designer, Listed below are the needslfhét were
mentionéd in Chapter 111 and how'they are met by phe CASTLE

system:
>

1. easy confr&i of branching and return, e.g. going to a
glossary or a help sequence at the student’s request. If
permitted by thé author the student can 1nterru§;4the
lesson by pressing the STOP key and select to view a

course glossary or a special 'hint’ sequence. The screen

148

149

content is automatically saved before branching and

restored on return and the student continues - from the

point at which the STOP key interrupt was serviced.

score keeping and inter;él monitoring. The CASTLE

language provides system counters and switches for the

CASTLE categories F(O) to F(9), RIGHT, WRONG, OTIME and

UNREC, and variables which return the number of

responses made, the response LATENCY, the unedited and

_edited response and the sign-on time. The author has

laccess to the current lesson part number and may

dynamiéal]y set the next part number and the next lesson

name .

monitorihg of student progress. THe following

information in each student’s record area would assist

with this monitoring:

a. the current presentation mode, controlled or review

b.’ the lesson completion map

c. the chrent chapter for each mode

d. the current lesson for each mode

e. the current part for each mode

f. the date/time the course was started

g. other accounti;g information, i.e. number of
sessioné, sign-on date/time of last sessioh, fota]
time of last session, total accumulated session
time, could be added.

A fully developed Performance Analysis Subsystem would

add a great deal to the monitoring of student progress.

150

accass to numerical calculating power. By using the STOP
key interrupt and selecting calculator mode, the student
may perform arithmetic calculations and return an answer
to the system. An extended calculator cou}d give access
to system functions and variables.

;1exib1e input. The author may define which keyboard
characters will be recognized during a student”s
résponse. A default response tihe-limit may be set as
well as a specific time limit for each respdﬁse. The
number of response characters may also be limited. While
typing in a response the student may insert or delete
characters from the response before submitting it for
anaTysis. &
good answer'analysis. Three of the six NATAL comparison
functions are provided: compare character (CC), compare
keyletter (CK), and compare numeric (CN). Thesé, plus up
to 10 user defined compabison-functions, may be combined
in a boolean expféssion of any complexity as part of the
UNIT Categorization statement.

easy creation of graphics and animation. -This criterion
is not met in the current CASTLE design.

easy procedures to review and test courseware. Listings
of individual lesson modules and instructional units are
easily-obtained from the system and may be used to |
review a course, Listings‘df the deféult chapter order

or the default lesson order may be retrjeved’from the

Registration Subsystem. Lesson modules are created in an

151

interactive environment and may be tested without

entering'a course as a student. A special UNIT Tester is

available for testing individual units.

9. tailoring courseware to individual student needs, e.g.
use of external parameters to adjust pathway through a
course. Each instructor may specify the chapter order
for each class and may even specify it separately f@i
each student. Within a lesson the author may dynamically
set the number of the next bart as well as dynamically
select the next lesson.

'The\last criterion is that the system should be "user
friendly” and expandable. Lesson modules are developed Qnder
the COMAL command interactive environment. This providés for
autbmatic line number generation, full screen editing,
"syntax checking on input, verbose meaningful error messages,
the listing of_procedures and fur ns by name, mﬁfti-line
deletion, and immediate executior. Units are éeveloped by

oY
o ted

TR
via menu selection and interrogation for individual

incremental compilation techniques with options pr

ey

parameters. The system text editor provides a simple set of
powerful commands via menu selection and full screen ed{ting
of text. The technique of presenting options via menu
selection and interrogating for parameters is carried
through all system support routines.

A rich variety of intrinsic\functions is providéd:
twenty COMAL and fouf CASTLE general functions, three

comparison functions, eight edit functions, and nine graphic

/s

152

functions. The experienced designer or researcher may extend
the language\with user defined general, comparison, edit,
and graphic ﬂunctions. ‘

The use Ef COMAL as a system development language
proved most successful.»Sysfem programs, procedures and
*functions were easily developed and debugged using standard
top-down design with step-wise refinqment. Though the system
lacks a trace feature, this did not retard develbpment work
since each procedure and function developed was relatively
small and could be\tesjed as soon as it was coded. The COMAL
feature of storing sub—program‘modules on disk to be later
appended to other programs .in memory independent of original
line numbering proved most useful. L

The COMAL editor lacked two features that wbu]d have
been helpful: the ability to list just the header statemehts
of all procedures and functions in the workspace and the
ability to scan the workspace for a specified string with
the option of changing it to anbther specified string.

The dévelopment of the CASTLE system in the COMAL
environment seemed much easiéi%fhan the augﬁprfs experience

of writing a compiler in Pascal:

B. Recommendat ions

The test implementation has demonstrated the vmab1]1ty
of the CASTLE design for use on m1cnocomputer systems degfygﬁj'

poss1b1e research and development patw;§ to run 1n paral]el

'm1ght be defined. The first would ex,”

A

.me the use_of the

T T T e T

N

LT T LT Y

153

system by both experienced and inexperienced authors. The
results would be used to define modifications for the
enhancement of the system. This research path would also
examine the use of the system by instructors and students.
The second bafh might define further extensions and

developments for tHe system. The following outlines a
’ -

proposed program:

1. The test implementation would be extended to include all
of the current design.

2. The design of the’CASTLE Performance Analysis Subsystem
would be completed and implemented.

3. The remaining NATAL comparison functions, compare
algebraic (CA), compare phonetic (CP), and compare |
graphic (CG) would be implemented. |

4. The system could be eXtended to a multi-user

. environment, through a local network and shared 1/0

devices.

The new Commodore 64 is an’ inexpensive and popular

microcomputer that is likely to be found in an increasing i B

=

~ number of schools;,lt supports 16 colour text and graphics,

d

'

a three voice muéiéwéghthesizer, user defined character
fonts, joysticks, paddles, and a light pen. A cartridgé
containing CBM COMAL-80 Revision 2.0 will soon be available
for this microcomputeﬁ. This version of COMAL wil] include
commands that emufiI;pLOGO gréphics. Packages, which allow

for the grouping of procedures, functions, and data

structures into épecial disk}fi]es which can be dynamically

ke

o
AL

o
vf U";

154

inQoKed from running programs or other packages, are also
supported! This would be an ideal environtent for the future

ieve lopment of the CASTLE System.

e

PIE 3

. References

Apple Computer Inc. 4dpple PILOT: Language reference manual .
Cupertino, California: Apple Computer Inc., 1980.

Burns, P.K. & Bozeman, W.C. Computer-assisted instruction
and mathematics achieve:‘&#h,ls there a relatiohship?
Educat ional Technol ogy. 81 . 21(10), 32-39.

Chambers, J.A. & Bork, A.°Cputer assisted learning in U.S.
secondary/elementary schools (Research Report No.
80-03). Fresno: California State University, Centre for
‘Information Processing, 1980._ ;

Chambers, J.A. & Sprecher, J.M. Computer assisted
instruction: Current trends and critical issues.
Communications of the ACM, 1980, 23(6), 243-332.

Clement, F.J. Effective considerations in computer-based
education. Educational Technology, 1981, 21(4), 28-32.

Control Data. PLATO author language reference manual. St.
~Paul: Control Data Corporation, 1978.

Forman, D. Instnuctiodal use of microcomputers: A report on '
B.C.’s pilot project (Discussion Paper 03/81). Ministry
of Education, Province of British Columbia, 1981.

Freiberger, P. The cémputer jnstructor. Infolorid, November
' 23, 1981, pp. 11-13. .

Gleason, G.T. Micboéomputers in. education: The state of the .°
art. Educational Technology, 1981, 21(3); 7-18. g

Godfrey, D. & Sterling, S. The Elements of CAL. Victoria:
Press Porcepic/Ltd.’ 1982. ‘

Hallworth, H.J. & Brebner, A. Computer assisted instruction
in schools: Achievements, present developments and
project ions for the future. Edmonton: Alberta Education,
Planning and Research, -1980. _

!

Honeywell Information Systems. NATAL-II beginner’s guide.
Toronto Software Development Centre, 1981. (a)

Honeywell Information Systems. NATAL-II language

specification manual. Toronto Software Development
Centre, 1981. (b) ' '

y © . 185

156

Honeywell Information Systems. NATAL-II utilities manual.
Toronto Software Development Centre, 1981. (c)

" Hunka, S. Micropomputersd$& the classroom. Alberta Printout,
1981, 2(3}, 8-10.

e .
Hunka, S. & Romaniuk, E.W. Aresearch and development
- proposal for the establishment of a computer-assisted
instruction facility. University of Alberta, Division of
Educational Reseach Services, 1974. '

Hunka, S., et al. Pbelimihany specifications of an
~ instruct ional suppott system for NATAL-74. Ottawa:
National Research Council of Canada, 1978. .
Johnson, J.W. Education and the new technology: A force of
history. Educational-Technology, 1981, 27(10), 15-23.

Kearsley, G.P. Some 'facts’ about ¢ai: Trends 1970-1976.
Journal of Educational Data Processing, 1976, 13(3),
1-11.

King, D. Keynote address --Second annual conference of the
Alberta Society for Computers’ in Education. Alberta
- Printout, 1981, 2(4), 11-14,

Klassen, D. & Solid, M. Toward an appropriate technology for
education. Educational Technology, 1981, 21(10), 28-31.

Lindsay,. L." COMAL handbook. Reston, VA: Reston Publishing
Company, Inc., 1983.

Lindsay, P., Marini, A., & Lancaster, M. Survey outlines
» microcomputer use. Educational Computing Organization of
Ontario Newsletter, 1980, 1(4), 27-31.

Luehrmann, A. Computgk literacy - what should it be? .
(Publication unkriown - cited by Forman, 13881), August,

Menashian, L.S. Continuing education resources for
electronics-based, high-technology R & D professionals:
Part one: Overview. ‘Educational Technology, 1981,
21(11), 11-20. N

Moursund, D. Microétomputers will not solve the

‘computers-in-education probliem. Association for

Educat/ional Data Systems Journal, 1879, 13(1), 31-39.

Petruk, M[Microcomputérs in Alberta schools. Edmonton:
A]berﬁa Education, Planning and Research, 1981.

f

157

L 4

Rice, J. My friend - the computer Teaching guide and
activity book. Minneapolis: T.S. Denison & Company,
: Inc., 1976. ~
Roblyer, M.D. When is it-'good courseware’ ? Problems in
" developing standards for microcomputer courseware.
Educat ional Technology, 1981, 21(10), 47-54.

Romaniuk, E.W. A versatile authoring language for teachers.
Unpublished doctoral dissertation, University of .
Alberta, 1970. .

Splittgerber, F.L. Computer-based instruction: A revolution
in the making. Educational Technology, 1979 ~» 19(1),
20-26. _ :

Travers, J.G. Development of a microcomputer imblementation
model: An in-situ, adaptive research paradigm.
Unpublished master’s thesis, University of Alberta,
1981. ' : , .

Voyce, S. A multilingual-interpreter system for languages

used in computer assisted instruction. Toronto: The
Ontario Institute for Studies in Education, 1979.

Westrom, M. Summary and current status of NATAL-74.
University of British Columbia, Faculty of Education,
1976. ‘

Wise, D. How manufacturers are selling micros to schools.
Infolorld, November 23, 1981, pp. 18-19.

he

Appendix - Glossary

The following items were selected from ghe glossary in
Godfrey and Ster11ng (1982, pp 271-279).

access: The ab1l1ty to obtain information from, or place
information into storage.

a1gorithm: An orderly procedure (akin to a recipe) for
obtaining ;a particular result or solving a problem.
Algorithms are often expressed in mathematical terms.

alphanumeric: Alphabetic and numeric characters.

BASIC (Beginner’s All-purpose Symbolic Instruction Code): A
compiler or interpreter language that is easy to learn.
Used with most time-sharing and minicomputer systems.
Oriented toward beginners rather than exper ienced
programmers. Numerous incompatible versions exist, often
called dialects: \CBASIC,MBASIC,XYBASIC. :

bootstrap: A short loader program that loads a more
sophisticated loader into memory. That loader, in turn,

;ffﬁ loads the desired program. The term bootstrap arises

from the idea that the computer is picking itself up by .
its bootstraps. In other words, it progresses from the
bootstrap to the loader to the main program itself.

buffer Memory area in a computer or peripheral used for
temporary storage of information thdt has just been -
received. The information is held in the buffer until
the computer or device is ready to process it. Hence, a
computer or device with memory designated as a buffer
area can process one set of data while more sets are
arriving. - e -

bug: A programm1ng error. Also refers to the cause of any
hardware or software malfunction.

byte In data processing, a sequence of adJacent binary W
digits (usually eight) operated on as a word, but -
usually shorter than a word. The value of the bits can
be varied to form as many as 2(8) or 256 permutations.

So, one byte of memory can represent an integér from 0
to 255 or from -127 to plus 128.

character set: The repertoire of characters that an output
device can display or print.

command: A request to the computer that is executed as soon
as it has been received. Sometimes this word is used

158

é:’

159

inter -changeably with the terms "instruction" and
"statement”. Those terms properly refer to portions of
programs and not to commands, which are carried out
immediately. ,

CPU (Central Processing Unit): The primary component of all
computer systems. It is responsible for controlling
system operation as directed by the program it is.
executing. -

CRT (Cathode Ray Tube) terminal: A type of communications
terminal that displays its output on a television-like
~screen. Synonym of a video terminal. %

cursor: A symbol on the display of a video terminal that
indicates where the next character is to be located.

disc: A circular piece of material which has a magnetic

.~ coating similar to that found on ordinary recording
tape. Digital information can be stored magnetically on
a disc much as musical information is stored on a
magnetic tape. This term is often (and confusingly) used
also to refer to a disc drive.

disc drive: A peripheral which can store information on and
retrieve information from a disc. A floppy disc drive
can store information from a floppy disc and can
retrieve that information.

diskette: A small f]oppy disc in a square plastic envelope
commonly either about 13 or 20 cm on a side. See Floppy
disc. ' '

disc storage: A type of mass memory in which information is
stored on a magnetically sensitive rotating disc. Disc
drives are generally both faster and more expensive than
paper tape.or magnetic tape devices. :

editor: A program that facilitates the editing of textual
material or computer software.,

execute: To perform a computer instruction or run a program.

file: A group of related information records that are:
treated as a unit. The records may consist of data or
program instructions. .

firmware: Software stored in read-only memory. Also a
synonym for microcode. :

flag: A bit whose state signifies whether a certain
condition has occurred.

F loppy disc: A slow-speed inexpensive type-éﬁf%emory stdrage ,

'160
%’»
that uses flexible, or "floppy," discs (or diskettes),
made of a material similar to magnetic tape, as opposed
to "hard" discs made from rigid materials. It is a
convenient method for the "bulk storage" of data, but

slower than main computer memory (by 10,000 t1mes) since
data is stored in serial form.

~hard copy: Information printed on paper or other durable
surface. This term is used to distinguish printed
information from the temporary image presented on the
computer’s CRT screen.

«hawd disc: Disc storage that uses rigid discs rather than
" flexible discs as the storage medium. Hard-disc devices
can generally store more information and access it
faster. Cost considerations, however, currently restrict
their usage to medium and large-scale applications.
Smaller, cheaper units are now coming to market.

hardware: A popular expression used to distinguish the
physical parts making up any electronic equipment from
the software.

high-level language: Computer language that allows the
programmer to write programs using verbs, symbols and
commands rather than machine code. Some common
high-level languages are: ALGOL, APL, BASIC, COBOL,
FORTRAN, NATAL, PL/1, PL/M and SNOBOL.

initialize: To set up the starting conditions necessary for
the execution of the remainder of a program. For ‘
example, in a program that draws a circle, the
initialization might include specifying the radius of
the circle. To prepare a diskette so that the computer
can later store data on it. .

interactive: Said of a computer system which responds to the
,user quickly - usually less than a second for a typical
action. All personal computer systems dare interactive.

1/0 (input and/or output): A keyboard, a floppy disc and a
printer are all 1/0 devices. ')

3

keyword or key word: A word thaf has meéning in a computer
language. See Reserved word.

label: A name comprised of letters, numbers or ,symbols used
to identify a statement or instruction or segment in a

program.

language: A set of convent1ons specifying how to tell a \
¢ « computer what to do. ,

Toop: A progggm segment that is executed several times in a

¢ 5
R rh

161

row.
menu: A list of options from which to choose.
microcomputer: A computer based on a microprocessor.

microprocessor:"‘one-chip Central Processing Unit developed
oy in 1971. An integrated circuit that performs the task of
executing instructions.

0S (Operating System): A collection of programs to aid a
person in controlling a computer. This term is usually
used in reference to large computers. A small computer
operating system is often called a monitor.

program: A sequence of instructions that permit a computer
to perform a task. A program must be in a language that
the computer can understand.

programmable memory: Content changeable memory, as opposed
to read-only memory (the contents of which are fixed
during manufacture). Programmable memory can be both
read from and written into by the processor, and is
.where most program and data are stored. Sometimes called
RAM, but this is a sltight misnomer.

prompt: A symbol that appears on your computer’s display to
1 g dguiyou know that it is ready to pay attention to your
commands . :

RAM (Random-Access Memory): The main memory of any computer.
Information and programs are stored in RAM, and they may
be retrieved or changed by a program. For some
computers, the information in RAM is lost whenever the
power is turned off. '

reserved word: A wWord that you cannot use as a variable

name, since it has been pre-empted for use in the
computer’s language. You also may be restricted from
using reserved words in other ways as well. Key words
are often reserved words. See key word.

response time: The amount of time required for a computer to
respond to an input from one of its terminals.

ROM (Read-Only Memory): Memory in which the information is
stored once, usually by the manufacturer, and cannot be
changed. Programs such as BASIC interpreter (used by
most owners of personal computers) are often stored in .
ROM.

run time: The time at which the program is executed. Also,
the amount of time required to execute the program.

162

save: To store a program anywhere other than in the
computer’'s memory, for example on a diskette or cassette
tape. :

software: A general term for all programs and routines used
to implement and extend the capabilities of the
computer: e.g. assemblers, compilers and subroutines.
"Software" sometimes means data as well as programs.

structured programming: An attempt has been made to
formalize the elements of good programming. These
practices have influenced the development of structured
languages like Pascal which stress modu1ar1ty, clear
pathways and simplicity.

system program: A program that does not perform actual -
problem solving but rather is-used to control system
operat1ons or act as a programming aid.

terminal: A device for communication with a computer. A
typical terminal consists of a Key-board and a printer
or video display.

utility: A frequently used program or subroutine. Utility
routines are most often associated with systems programs
rather than applicatjons programs.

window: A portion of the computer’s display that is
dedicated to some special purpose.

