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ABSTRACT 

 

Land use and land cover change represents one of the main driving forces on biodiversity world-

wide.  Although the international community currently recognises its impacts over biodiversity, 

hydrology and biochemical cycles, the impact at the landscape level of these extraction forces is 

less understood when the concept of land use intensification is taken into consideration.  In many 

cases, the interpretation of changes on landscape structure processes relies on the use of common 

landscape fragmentation metrics.  In this research project, a new class division index and 

percolation model has been developed to study Land Use and Land Cover Change impacts on 

forested and agricultural landscapes.  This model is proving to be fundamental to understanding 

the cumulative effects of oil and gas exploration at the landscape level. Key findings of this project 

indicate that common landscape metrics and image classification techniques may be failing in 

terms of quantifying the impact of linear features. 



 ii 
 

ACKNOWLEDGEMENT 

 

This research note has grown out of a long-term research agenda on land use, land cover change 

and carbon sequestration as put forth by the Earth Observation Systems Laboratory (EOS) at the 

Department of Earth and Atmospheric Sciences, University of Alberta.  We would like to thank 

the National Network of Centers of Excellence – Sustainable Forest Management, the Canadian 

Foundation for Innovation (Grant No. 2041 to Sanchez-Azofeifa), Alberta Environment’s 

Resources Data Division and Spatial Geolink for their generous support.  We are especially 

grateful to Dr. Susan Hannon for her support and ideas during this project. 



 1 
 

INTRODUCTION 

The scientific community recognizes that the impacts of land-use and land-cover change 

(LUCC) on global environmental change are reaching proportions similar to those from global 

warming.  One of the major ongoing LUCC processes is deforestation, and the paramount impact 

thereof is biodiversity loss.  The relationship between land use intensity and the maintenance of 

biodiversity is not well characterised, but has important implications not only for the future of life 

on the planet, but also for the delivery of ecosystem service benefits to society.  The 

intensification of land use is expected to continue with pressures to double global food production 

over the period 1990 - 2020, with seven-fold increases needed in some regions.  The overall goal 

of this project is to contribute to a better understanding of the relationship between land use 

intensification/land cover change and biodiversity losses in Canada.  Our research project 

recognises that these losses take place at multiple levels (landscape, ecosystem, species, and 

genes), spatial scales (local to regional), and dimensions (biophysical drivers, proximal causes and 

social/human drivers).   

 The main objective of this research project was to develop methodologies and tools, using 

remote sensing and Geographic Information systems, that permit the integration of LUCC 

processes and environmental changes into decision making and strategies in the context of 

conservation biology and sustainable forest management at the regional/sub-regional level.  The 

project is organised around the following questions: 

 

i. What is the relationship between the levels of agricultural intensification, forestry, oil/gas 

extraction, and biodiversity in countryside landscapes? 

ii. What is the impact on linear features at the landscape level? 

iii. How can GIS and remote sensing help to design practical measures in the area of 

ecosystem restoration, enhancing the capacity of countryside habitats to sustain 

biodiversity and ecosystems services while under increasing pressure from human 

activities? 

 

These questions will be addressed through a transect analysis in Alberta (Figure 1 and 2, 

Appendix A).  A Northeast-Southwest transect was selected to incorporate existing projects 
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where biodiversity data sets are available.  We will use 8 sites: three NCE sites, three sites from 

TROLS, a site at Calling Lake, and a final site in the agricultural area at the Meanook 

Biological Station.  These sites differ in land use intensity and type, and we will relate patterns of 

avian diversity and species richness to landscape disturbance, intensity, land use/cover change and 

overall forest cover.   
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SUMMARY OF DATA ANALYSIS 

 

Materials 

 

  A total of 4 Landsat Thematic Mapper 5 satellite scenes (28.5 m resolution and 7 spectral 

bands) were used in this project.  These images were provided by Alberta Environment. 

Additional information on the images used in this study can be found at 

(http://eosl.eas.ualberta.ca).  All images were orthorectified to UTM zone 11, and the average 

mean square error (MSE) was 0.2 pixels. 

 

Satellite Image Processing 

 

The classification of the sites in this project was performed using an “Hierarchical 

Method” (Figure 2), in which groups of spectrally similar classes were removed from the image 

one at a time based on their distinguishing characteristics with respect to less distinct classes.  One 

of the problems with automated classification arises when certain classes are spectrally 

indistinguishable.  In this case the analyst must either accept substantial error in the form of 

mistaken classes, or spend a substantial amount of time modifying the computer’s results after a 

rigorous quality control session.  The Hierarchical Method requires constant attention from the 

analyst throughout the classification process, using personal experience to separate classes at the 

end of each step in the hierarchy. 

The first step in the Hierarchical Method is to prepare the imagery.  For this study, band 6 

was removed from the images since it is low resolution and would not add any extra information 

to the process.  The image is then ready to begin classification.  Since the first step is to remove 

the most distinct features (roads, settlements, burns, water bodies, rivers and streams, and any 

clouds and their shadows), a 45 class isodata unsupervised classification was run with a class 

convergence of 0.98.  Once complete, the analyst can easily isolate clouds, shadows, and 

hydrographic features.  Urban features, burns, and smaller creeks and streams were identified with 

a rasterized version of digitized base features received from the provincial government. 
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The second most distinguishable set of features includes forest cut blocks and agricultural 

cropland and pasture.  Since these features (especially cut blocks) are difficult to discern 

spectrally from urban features on occasion, the first group of classes is used to mask the image.  

The masked image is used for the second step while the classes in the first step (that is, the mask) 

are held back for reassembly at the final step (see Process 1 in diagram).  The masked image is 

classified using the same unsupervised method as in the first step.  This time the analyst uses the 

classification to identify the cut blocks and agricultural land, setting out to delineate them as 

precisely as possible on-screen and lumping them into their own classes.  In the process of this 

study it was found that any more than about forty-five classes simply added too much confusion 

to the signature set from classification, while less did not separate the features enough to help 

identify them prior to delineation. 

Again, the product of the second step (cut blocks and agricultural features) is used to 

mask the image from which it was extracted.  This leaves the analyst with an image containing no 

more anthropogenic features, hydrography or burns.  Of the remaining classes the next most 

distinguishable feature is deciduous forests.  These forests stand out well in a 432 band 

combination as a bright red feature, and are thus easily detected in another forty-five class 

unsupervised classification.  Once the signature sets are collected and labeled as deciduous, 

another mask is performed leaving only the most difficult classes to be grouped.  Note that the 

analyst does not make the call on whether these deciduous forests are open or closed.  Ancillary 

data collected in the field will be used to make that distinction later in the process. 

For the final classification it was originally intended to run a supervised classification using 

the signatures from points collected during the ground-truthing stage of the project.  

Unfortunately this still did not lend a significant enough difference between some of the major 

classes, primarily certain wetland features and conifer stands, but also many mixed woods and 

conifer forests.  As a result the method was altered to perform a final unsupervised classification, 

this time with sixty-five classes.  Using a tactic similar to that in the third step, the analyst can then 

tag each of the classes with a label most closely approximating what experience dictates the class 

to be. 

After these labels have been applied, the analyst uses the ground-truthed points to cross-

reference with the chosen classes and assign a true value to each of the sixty-five categories.  
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Classes with no intersecting field data are assigned a value based on the analyst’s initial 

expectations as well as through comparison to surrounding classes.  The same method is used on 

the deciduous mask to apply labels to the varying deciduous classes. 

Once all classes have been assigned a label, the four masks are ready to be reassembled into a 

final classified image.  Pixel values are standardized so that a simple raster addition may be 

applied without adding classes together.  The final image is colour coded and printed at a large 

scale on transparent paper for overlay on a print of the original image.  A second analyst uses 

these prints to quality control the classification, denoting regions that need further cleaning, and 

returns it to the primary analyst for re-examination.  This last step of quality control is done every 

time a change is made and continues until both analysts are satisfied with the product.  Accuracy 

assessment follows after the classification has been completed, so as not to influence the analysts 

during their task. 

 

Geographic Information Systems (GIS)  

 

This phase, the integration of spatial and non-spatial information, was critical to achieving the 

project's goals.  Since the conservation potential of many species may rest on preserving or 

enhancing aspects of countryside landscapes, GIS and remote sensing will play a key role in the 

definition and delineation of such areas.  Classified satellite images weere processed at two levels: 

a) considering linear features produced by oil and gas exploration and b) without considering 

these linear features. 

The following landscape metrics were calculated using FRAGSTATS (McGarigal and 

Marks 1995.): mean patch area, mean patch standard deviation, number of patches, total edge, 

mean patch edge, mean fractal dimension, and mean shape index.  In addition the following 

landscape fragmentation statistics were implemented (De-Camino-Beck and Sanchez-Azofeifa 

2001). 

The spatial block entropy Hb, a metric useful in determining the organization or 

randomness of a landscape, is calculated as follows: 

i
i

b pp
b

H
i

log
1 ∑=            1 
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where pi is the probability of configuration i in the landscape, and b is the block size.  Higher 

values of Hb mean a higher degree of randomness in the landscape (all the possible configurations 

of blocks b on the landscape have the same occurring probability).  This type of metric is widely 

used in the description of CA configurations (Wolfram1983, 1984). 

Landscape division (Jaeger 2000) is the probability of the animal placed in the landscape  

not belonging to the same patch.  It is calculated as: 

∑ 





−=

n

i

i

A

a
D

2

1      2 

where ai is the area of patch i, and A is the total landscape area. When D approaches 1 the 

landscape is highly divided.   

Class division (De-Camino-Beck & Sanchez 2001) is similar, but A is the class area 

instead of the total landscape area. As class division approaches 1, the class is highly divided.  

That is, the total mass of the class is segmented into a high number of patches. As class division 

approaches 0, the class is distributed in a single large patch. 

Percolation was measured by simulating flow throughout each landscape using the 

following CA rule:  Let Ζ2 be the landscape. In the percolation rule, a site a can be in any of 3 

states: 0 (empty), 1 (occupied) or 2 (percolated). If a = 1, and there is at least one site in the 

neighborhood in state 2, then a changes to 2.  In any other case, the site stays the same.  The 

percolation simulation was applied to each of the artificial landscapes, starting with all sites at the 

top of the landscape in state 2, and it was iterated until an equilibrium condition was reached, 

where the density of sites in state 2, stayed the same from one generation to the other. We applied 

the percolation simulation using the 4N and 8N neighborhoods (figure 2) to estimate the pc (
4
cp  

and 8
cp  respectively) under both neighboring rules. The probability of percolating cluster ps is then 

calculated: 

  
1

2

ρ
ρ

≈sp                        3 

where 2ρ  and 1ρ  are the density of sites in state 2 and 1, respectively 

Based on Hutt & Neff (2001) measures of CA homogeneity, we applied these measures in the 

classified satellite imagery.  CA homogeneity is a special case of a two-dimensional correlation, 
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that focuses in neighborhood interaction.   Let I be a 2-dimensional n x m (n,m ε Ν)  image. The 

analysis CA rule for every site (or pixel) a ε I is: 

 

∑
∈

Θ→
ijNb

ij

ij

ij ba
N

a ),(
1

 4 

 

In this mapping, |Nij| is the number of sites in the neighborhood N of site i,j.  The function Τ is 

defined depending on the state space.  If the state space S is a set of qualitative information, i.e. 

S={forest, non-forest} in classified images, then Τ is defined: 

 


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The overall CA homogeneity  H[I] of an image is then defined: 

 

H[I] = ∑∑
∈

Θ
ijNb

ij
ij ij

ba
Nnm

),(
11

 5 

 

Where m and n are the dimensions of the image. 

 

RESULTS 

A complete description of the results can be found in De-Camino-Beck & Sanchez-Azofeifa 

(2001). The following are key highlights of our research project: 

 

• Our comparison between landscapes using percolation and class division indexes indicate that 

most forestry modified landscapes still hold percolation values above the theoretical 

percolation value of 0.59. 
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• When linear features are considered across all landscapes a significant increase in 

fragmentation metrics is observed. In many cases, key indicators such as the number of 

islands, increases more than 50% (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Increase in forest islands as a result of integrating linear features into the landscape 

structure analysis for the following sites: Calling Lake (High Forestry, CL-Hf), Lac La Biche 

(High Forestry, LLB-Hf), Owl River (Moderate Forestry, OR-Mf), South Pelican Hills (Moderate 

Forestry, SPH-Mf), Reference (No impact, R-L), South Calling Lake (Low Forestry, SCL, Lf), 

Owl Meanook (Moderate Agriculture, Ma) and Ministik (High Agriculture, Mi-Ha). 

 

• The Ministick region shows one of the highest class division (0.97), a low  probability of 

percolation (0.536), and therefore a low forest density.  This landscape, representative of 

highly intensified agricultural regions, suggests that most agricultural landscapes are highly 

fragmented with little possibility of restoration. The homogeneity value for this region is also 

the lowest, as compared to the other sites. This low value is related to the high fragmentation 

of forest.  It is also interesting that the entropy value is the lowest (the highest organization 

level), the reason for this is due to the effect of linear features.  
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• The South Pelican Hills show the lowest class division.  This site has a high percolation 

probability, although this site has only 52% of forest cover. We consider that the effect of 

linear features and logging has not affected key landscape metrics such as percolation and 

class division. 

• The highest homogeneity value occurs in the South Calling Lake site.  The high homogeneity 

indicates that the forest consists of large continuous patches.  This result is confirmed with the 

high percolation probability.  The class division is low, but not the lowest;. a consequence of 

the natural segmentation of wetlands and rivers.  

• Owl river, also shows a low class division.  It is not the lowest, because there is a main road 

that divides the landscape in two sections. 

• The reference site has the highest forest density, but a medium class division.  This division is 

explained mainly by the segmentation of the landscape by three main roads. However, the 

percolation probability is high, hence the site has a high connectivity. 

   

RECOMMENDATIONS FOR MANAGEMENT 

 

 Figure 4 shows a theoretical model developed to characterise the impact of fragmentation 

and the expansion of linear features at the landscape level.  The percolation/class division model 

can be used as a tool for fast landscape characterisation, as well as new approach to evaluate the 

potential level of energy that a landscape may need in order to achieve a level of organisation that 

can allow for connectivity across the landscape.  Additionally, the percolation/class division model 

can be considered a new approach to accounting for the cumulative impacts of oil and gas 

exploration on the boreal landscape. Additionally, the model is a potential tool for linking to 

current biodiversity data bases, and looking at the relationship between biodiversity richness and 

landscape structure. 

  Figure 4 shows the application of this concept to the study sites in Alberta.  Our analysis 

indicates that if linear features are not considered in the landscape structure analysis, most 

landscapes, with the exception of highly fragmented agricultural areas, are in regions that may not 

be considered fragmented.  When linear features are considered in the analysis, the impact on 

fragmentation is evident.  This model has the potential to supply key information to biologists and 
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land managers interested in evaluating not only the impact of land use changes such as logging, 

but also to start looking at the impacts of oil and gas exploration on the boreal landscape.   
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Figure 4. Conceptual model to establish fragmentation based on percolation 
threshold (pc) and landscape division (D(p)).Changes in occupation density (p) and 
D over time could mean:  b)decrease in p due to fragmentation process, c) 
decrease in p with frontal deforestation (After De-Camino-Beck and Sanchez-
Azofeifa 2001) 
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Figure 5.  Landscape characterization as a function of landscape division and percolation 

probability for the selected study areas. Dots represent areas considering linear features and 

crosses represent sites without considering linear features.  Sites such as Ministick (MI-Ha), 

South Pelican Hill (SPH-Mf), South Calling Lake (SCL-Lf), and Calling Lake (CL-Hf) present a 

high level of division and percolation once linear features are considered in the analysis. 

 

 

 

 

 

 

 


