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ABSTRACT 

Sphingosine 1–phosphate (S1P), a bioactive lipid, has both endothelial barrier enhancing 

and disrupting effects, but also regulates vascular tone. The concepts of endothelial permeability 

and vascular tone have traditionally been studied separately. In this thesis, I demonstrate novel 

findings that these concepts are interconnected. Using a novel methodology I found that infusion 

of physiological concentrations of S1P (<1µmol/L) maintained endothelial barrier and had no 

significant effects on vascular tone in mouse uterine arteries. At a high physiological 

concentration, 1µmol/L, S1P-induced permeability permitted leakage of a co-infused 

vasoconstrictor (5 nmol/L U46619, a thromboxane A2 mimetic analog) to the vascular smooth 

muscle cells (VSMCs) increasing vascular tone. Such endothelial permeability stimulated by 

S1P, was induced in an S1P3 receptor–dependent manner. These findings reveal a new paradigm 

of vascular tone control by S1P, in which S1P maintains endothelial barrier that prevents leakage 

of circulating vasoactive agents to the VSMCs, but also high-end physiological concentrations of 

S1P (1 µmol/L) induces endothelial permeability that permits leakage of such vasoactive agents 

to the VSMCs maintaining normal vascular tone. These are important findings as the role of S1P 

in the control of endothelial barrier has only been previously investigated in cultured endothelial 

cells and venules. On the other hand, the S1P-induced endothelial permeability at 

pathophysiological concentrations (10 µmol/L), permitted its own leakage and/or that of co-

infused U46619, strongly increasing vascular tone. Equally, endothelial permeability stimulated 

by thrombin, lipopolysaccharide (LPS) and cytomegalovirus glycoprotein B also facilitated 

leakage of U46619 to the VSMCs. These findings suggest that excessive increase in endothelial 

permeability can promote increased vascular tone in uterine arteries. Under pathological 

conditions, such increased vascular tone could have detrimental effects in reproduction and 
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pregnancy by limiting blood and nutrient supply to important organs for reproduction (ovaries, 

cervix etc) or to the fetus during pregnancy (leading to pregnancy disorders like intrauterine 

growth restriction that affect fetal growth). I also found that S1P (3 µmol/L) plays a potentiating 

role in U46619 (20 nmol/L)-induced vascular tone in mesenteric arteries from female mice. 

These arteries are however, less reactive to S1P or U46619 than uterine arteries. Such reduced 

reactivity implies that leakage of vasoconstrictors through the endothelium of systemic arteries is 

more tightly controlled, meaning that, leakage will likely occur only at pathological 

concentrations of S1P. Interestingly, I found that mesenteric arteries from male mice were 

remarkably different. First, their reactivity was similar to that of uterine arteries; secondly, 

infusion of U46619 (5 nmol/L) or S1P (1 µmol/L) alone, increased vascular tone, each of which 

was however, significantly lower compared to that induced when the two drugs were co-infused. 

This means that mesenteric arteries from male mice are likely leakier than those from female 

mice. This dichotomy of vascular responses found in males and females is not surprising as there 

are many examples of sex-based differences in vascular responses. Unexpectedly, U46619-

induced vascular tone in the bath in mesenteric arteries from S1P3 KO male mice was 

dramatically decreased compared to the wildtype control, suggesting that in these arteries, 

U46619-induced responses could be occurring partly through the S1P pathway. Consistent with 

these assumptions, I provided the first evidence that thromboxane A2 (TXA2) (using U46619), at 

pathophysiological concentrations (20 nmol/L) could increase endothelial permeability that was 

accompanied with increased vascular tone in a mechanism that depended on S1P signaling. 

While these results indicate that TXA2 stimulates downstream S1P signaling, I also demonstrated 

novel data indicating that cytomegalovirus (CMV) infection enhances the vascular tone induced 

by TXA2, but also decreases the dependence of TXA2 on the S1P for downstream signaling. 
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CMV infection also opened up an alternative mechanism through which TXA2 increased 

vascular tone in uterine arteries that was independent of the S1P pathway. Additional studies will 

be needed to uncover the details of the mechanisms through which CMV infection modulates the 

vascular tone induced by TXA2.These results indicate that CMV infection can contribute to the 

pathogenesis of vascular-related complications such as hypertension or pregnancy-related 

disorders like intrauterine growth restriction Collectively, there is therapeutic promise in 

targeting the S1P pathway for treatment of vascular disorders caused by TXA2-mediated actions, 

but also that of CMV infection.  
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CHAPTER 1: INTRODUCTION 

1.1 Summary and significance of study 

In this thesis I present novel mechanisms through which sphingosine 1-phosphate (S1P)-

mediated control of endothelial permeability and nitric oxide (NO) production regulates vascular 

tone in arteries. The findings from this study will extend our understanding of endothelial 

permeability from a physiological context, in that, finely regulated endothelial permeability 

could be part of the mechanisms through which normal vascular tone is controlled. This 

mechanism involves S1P maintaining endothelial barrier preventing the access of circulating 

vasoconstrictors to the underlying vascular smooth muscle cells (VSMCs), but also theS1P-

induced endothelial permeability that can be tolerated physiologically, allows such 

vasoconstrictors to leak and access the VSMCs increasing vascular tone that is regulated by 

bioavailable NO. The study also establishes clinically-relevant information that provides ways to 

prevent hyperpermeability from contributing to an increase in vascular tone as mediated by S1P 

or other permeability-inducing agents like thrombin in arteries. Recently, the pharmaceutical 

agent, FTY720 (an S1P analog when phosphorylated) and its newly generated analogs approved 

for the treatment of multiple sclerosis, were shown to enhance pulmonary endothelial barrier and 

prevent vascular leakage [1-4]. This means that my findings will be important particularly in 

disease conditions associated with endothelial permeability such as acute lung injury (ALI), 

sepsis or anaphylaxis, but also in disorders associated with increased vascular tone such as 

hypertension. In these situations utilizing the endothelial barrier-enhancing properties of S1P or 

antagonizing its signaling capabilities will be helpful. Other novel findings indicate that 

thromboxane A2 (TXA2) predominantly signals through the S1P pathway to increase endothelial 

permeability and vascular tone in intact pressurized arteries. The findings from this study provide 

novel avenues for therapeutic targeting of the S1P pathway for treatment of disease conditions 

caused or contributed to by TXA2 such as vascular leakage, atherosclerosis, hypertension or 

rheumatoid arthritis [5-8]. I also show that cytomegalovirus (CMV) infection enhances the 

vascular tone induced by S1P or TXA2, indicating that CMV infection can exacerbate vascular-

related complications like hypertension or intrauterine growth restriction. In fact, CMV infection 

has been shown to increase blood pressure in a rodent model, but also contribute to the 

pathogenesis of hypertension in humans. I now show that these complications could be 

potentiated by endogenous mediators of vascular tone like TXA2 or S1P during CMV infection. 
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This means that targeting the S1P pathway may be an attractive alternative for treatment of 

vascular disorders associated with CMV infection, as demonstrated with FTY720 that reduces 

CMV disease in transplant patients [9]. I also show that the dependence of TXA2-induced 

vascular tone on the S1P pathway is dampened in arteries isolated from mice infected with 

CMV, in which the virus opens up an alternative pathway for induction of vascular tone. 

Understanding fully the exact mechanism through which CMV infection contributes to the 

development of disease through increased vascular tone, could be important in finding 

therapeutic solutions against many vascular complications. 

 

1.2 Blood vessel structure and function: overview on vascular tone control 

Blood vessels consist of three main layers including the tunica intima, the media and 

adventitia. The tunica intima is the innermost layer containing the endothelium, which is a thin 

layer of cells that line the interior of blood vessels forming an interface between the circulating 

blood and the underlying VMSCs. The intima also contains the internal elastic lamina, also 

known as the internal elastic lamella, consisting of elastic tissues that forms the outermost part of 

the tunica intima that borders the tunica media [10]. The tunica media has thick layers of elastin, 

collagen and VSMCs. The tunica adventitia is the outermost layer composed of connective 

tissues, collagen and elastic fibers that provides arterial support [11,12]. 

Conduit arteries maintain a dilated phenotype in their steady-state conditions because of 

shear stress [13]. Compared to arteries, veins are thin-walled vessels with large and irregular 

lumens. Since they are low-pressure vessels, larger veins are commonly equipped with valves 

that promote unidirectional blood flow to the heart and prevent backflow. However, resistance 

arteries in a resting state exhibit partial constriction. This type of constriction generated from the 

vascular smooth muscle of unstimulated arteries is called basal vasomotor or vascular tone 

[14,15]. The increase or decrease in arterial diameter from the baseline value is referred to as a 

change in vasomotor or vascular tone, which constitutes the balance between vasodilation and 

vasoconstriction (Figure 1.1). Vascular tone is influenced by activation of specific receptors, 

opening and closing of membrane channels, or through mechanical stimuli. These factors can be 

broadly divided into three groups, namely the factors that cause only vasodilation, 

vasoconstriction or both. Factors that cause vasodilation include endothelial-derived factors (like 

NO, carbon monoxide) or blood flow, while those that stimulate vasoconstriction include  
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1.2.1.2 Endothelial-derived vasodilators  

1.2.1.2.1 PGI2 and NO  

The vasodilator, PGI2 is a prostanoid derived from arachidonic acid (AA) metabolism 

[25]. In its synthesis, endothelial cyclooxygenase-1, 2 (COX-1, 2) converts AA to prostaglandin 

H2 (PGH2). PGI2 synthase converts PGH2 to PGI2 [26]. PGI2 binds to endothelial G protein-

coupled PGI2 receptor (IP1) activating adenylate cyclase, which converts ATP to cAMP. As a 

second messenger, cyclic AMP promotes vasodilation through the following mechanisms: (1) 

inhibiting an increase in intracellular Ca2+ concentration [Ca2+]i and (2) promoting protein kinase 

A (PKA)-dependent activation of phosphodiesterases which dephosphorylate and inactivate 

myosin light chain (MLC) kinase (MLCK). These events result in decreased MLC 

phosphorylation and increased vascular smooth muscle relaxation [27]. 

NO is produced from the amino acid, L-arginine, and molecular oxygen that requires the 

enzymatic activities of NO synthase (NOS) isoforms (Figure 1.2) including: endothelial NOS 

(eNOS), inducible NOS (iNOS) and neuronal NOS (nNOS) [28]. The NO formed has a very 

short half-life of only a few seconds, but it can also be quickly scavenged by reactive oxygen 

species (ROS) like superoxide anion thus reducing its bioavailability. NO also avidly binds to 

the heme moiety of hemoglobin and the heme moiety of GC in the VSMCs. Therefore, when 

NO is formed by the vascular endothelium, it rapidly diffuses to the VSMCs where it binds and 

activates GC [29]. This enzyme catalyzes the dephosphorylation and cyclization of GTP 

to cGMP. In the VSMCs, cGMP induces vasodilation by different mechanisms including: (1) 

inhibiting [Ca2+]i entry, but also decreasing the levels of Ca2+ inside the cells, (2) stimulation of 

cGMP-dependent protein kinase G which activates MLC phosphatase, the enzyme that 

dephosphorylates MLC leading to vasodilation, and (3) activation of K+ channels resulting in 

VSMCs hyperpolarization and vasodilation [30]. 

NO is a highly versatile molecule that is induced by a wide range of factors or 

mechanisms to induce vasodilation. Some of these factors include adenosine, acetylcholine, 

norepinephrine and S1P which signal through their specific receptors: adenosine A2, muscarinic, 

β2-adrenergic, and S1P1 and S1P3 receptors, respectively [31-34]. The inflammatory molecules 

bradykinin, calcitonin gene-related peptide, and substance P also induce vasodilation in an 

eNOS/NO-dependent manner. In addition, the mechanical forces exerted on the endothelium by 

the flowing blood activate eNOS, in what is termed as flow- or shear-mediated vasodilation [35]. 
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TRPC6. The Ca2+ entry promotes the activation of calcium-activated K+ channel subtypes SKCa 

and IKCa (S=small, I=intermediate, respectively). This activation will cause an efflux of K+ ions 

into the subendothelial space thereby hyperpolarizing the endothelial cell membrane. The leaked 

K+ ions stimulate the Na+/K+-ATPase or the inwardly rectifying K+ (Kir) channels causing 

membrane hyperpolarization, and inhibition of Ca2+ influx in the VSMCs. Kir are also activated 

by S1P leading to decreased rat myocyte contractility [46]. These events promote vasodilation. 

The myoendothelial gap junctions provide a pathway for electrical coupling for endothelial 

hyperpolarization to be transmitted to the VSMCs [21,22,38,39,45]. 

 

1.2.1.2.3 Carbon monoxide (CO) and hydrogen sulfide (H2S)  

CO, H2S and NO belong to a family of endogenously generated gaseous signaling 

molecules loosely termed “gasotransmitters” with potent vasodilatory capabilities [47]. CO and 

H2S are gaseous signaling molecules with vasodilatory properties that are formed in the 

endothelium and VSMCs [48,49]. CO is formed physiologically by the action of heme 

oxygenase-1 and 2, enzymes involved in heme metabolism [48-50]. Like NO, CO induces 

vasodilation through the cGMP/protein kinase G-dependent mechanism. Endogenous H2S is 

produced during the normal metabolic processes particularly of amino acids. H2S is synthesized 

by three enzymes: 3-mercaptopyruvate sulfurtransferase, cystathionine β-synthase and 

cystathionine γ-lyase [51]. By working collaboratively with cysteine aminotransferase, which 

metabolizes cysteine in the presence of alpha-ketoglutarate to glutamate and 3-

mercaptopyruvate, 3-mercaptopyruvate sulfurtransferase converts the latter to H2S and pyruvate 

[52]. H2S can also be generated from a reaction involving homocysteine and serine catalyzed by 

cystathionine β-synthase to cystathionine and H2S. Cystathionine γ-lyase then breaks down 

cystathionine to cysteine, ammonia and 2-ketobutyrate. H2S can also be formed from a 

cystathionine γ-lyase-mediated activity resulting to β-elimination of cysteine to pyruvate, H2S 

and NH4
+, or γ-elimination of homocysteine to 2-ketobutyrate, H2S and NH4

+. Cystathionine γ-

lyase is believed to be the primary source of H2S in the vascular tissues [51,53-55]. To induce 

vasodilation, H2S relaxes the vascular smooth muscle by stimulating the ATP-activated 

potassium (KATP) and BKCa channels. Furthermore, H2S-induced activation of IKCa and 

SKCa channels cause vascular smooth muscle hyperpolarization and vasodilation (Figure 1.3) 

[55,56]. 
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smooth muscle interconnections by a mechanism that is independent of shear stress, also known 

-59]. The responses are mainly generated by small arterioles and 
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through specific pannexins (connexin-related proteins), KCa channels, inositol (1, 4, 5) 

receptors, and plasminogen activator inhibitor-1 [60-65]. Myoendothelial junctions 
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Myoendothelial junctions have also been proposed to provide a pathway for 

communication of signals from the abluminal vessel surface to the endothelium. These 

arguments are supported by the findings that pannexin-1 associated with α1-adrenoreceptors 

regulate vasoconstriction induced by norepinephrine [66]. Most of the studies that have 

attempted to understand conducted vasodilation have utilized acetylcholine applied locally on the 

arteriolar wall and then observing responses upstream of the vascular tree from the point of 

application [67-70]. In these experiments, acetylcholine-induced vasodilation results from the 

trigger of a KCa channel-dependent wave of hyperpolarization that is communicated between 

adjacent endothelial cells and between the endothelium and the underlying VSMCs [71-73]. This 

communication involves different connexins and vasodilation is not prevented by NOS inhibitors 

[74], but by gap junction inhibitors between the locus of acetylcholine application and the distant 

upstream observation site of arteriole. Studies conducted in mice deficient in connexins support 

this conclusion [24]. These communications have important implications in our understanding of 

blood flow regulation in resistance arteries [24,70] . 

 

1.2.2 Vasoconstriction  

1.2.2.1 Mechanism for induction of vasoconstriction  

In resistance arteries, the vascular smooth muscle contraction is mediated through two 

independent, but not mutually exclusive pathways; the Ca2+-dependent and the Ca2+-independent 

pathways. The constriction mediated by the Ca2+-dependent pathway occurs through the rise in 

[Ca2+]i in response to a stimulus such as an agonist [75-77]. Increasing [Ca2+]i is mainly 

contributed by voltage-gated Ca2+ channels, store-operated Ca2+ channels (intracellular stores) 

such as from the sarcoplasmic reticulum or by the influx from the extracellular compartment [78-

80]. The [Ca2+]i in turn complexes with calmodulin (CaM), and such a complex activates the 

enzyme MLCK. The activated MLCK phosphorylates MLC, which promotes cycling of cross-

bridges between actin and myosin that produce a contractile force and therefore vasoconstriction 

[75-77]. The Ca2+-independent pathway is mediated through a small G protein Rho. Rho proteins 

cycle between an inactive (GDP-binding) and an active (GTP-binding) state [81]. Guanine 

nucleotide exchange factors facilitate the exchange of GDP for GTP on Rho to generate the 

activated form, Rho-GTPase (RhoA) [82]. RhoA is activated via agonist signaling through 

specific receptors. RhoA in turn activates Rho-kinase, which inhibits the MLC phosphatase 
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Figure 1.5: Ascending vasodilation and control of blood flow. 
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1.2.2.2 Factors that stimulate vasoconstriction 

1.2.2.2.1 Myogenic tone  

The constriction developed by resistance arteries in re

referred to as myogenic tone. Transmural pressure is the difference between intraluminal (inside 

of a blood vessel) and extraluminal (outside) pressures experienced by the arteries. Increased 

activity by phosphorylating it at the myosin-binding subunit and thus augmenting 

vascular smooth muscle cell contraction [83]. Therefore, the main role of Rho-kinase is to keep 

phosphorylated and thus inactivated [83]. This significantly increases MLC 

phosphorylation and vasoconstriction (Figure 1.5). Vascular smooth muscle relaxation occurs 

MLC is dephosphorylated by MLCP [83]. In summary, vascular tone depends on the 
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the capillary network (cap), which feeds into the veins (A).Vasodilation originating 
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downstream arterioles (arrows) into FA promoting an overall increase in blood flow 
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The constriction developed by resistance arteries in response to transmural pressure is 

referred to as myogenic tone. Transmural pressure is the difference between intraluminal (inside 

of a blood vessel) and extraluminal (outside) pressures experienced by the arteries. Increased 

 

10 

and thus augmenting 

kinase is to keep 

. This significantly increases MLC 

Vascular smooth muscle relaxation occurs 

ular tone depends on the 

in the vascular smooth muscle which influences MLCK activity and the extent of 

MLC phosphorylation which is controlled by the relative activities of MLCK and MLCP [75-

 

a conduit artery 

which is collected back by the vein (V). The 

order (3), terminal arterioles (TA) and 

Vasodilation originating 

order arterioles ascends into the proximal regions shown by the arrow (2nd 

Vasodilation can also ascend from the 

downstream arterioles (arrows) into FA promoting an overall increase in blood flow (C). 

sponse to transmural pressure is 

referred to as myogenic tone. Transmural pressure is the difference between intraluminal (inside 

of a blood vessel) and extraluminal (outside) pressures experienced by the arteries. Increased 
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myogenic tone reduces the luminal diameter increasing the resistance to blood flow [14,84]. The 

change in vascular tone in response to intraluminal pressure changes is inherent in the vascular 

smooth muscle and is referred to as myogenic response. The importance of myogenic tone is to 

maintain an intermediate level of constriction in resistance arteries for optimal blood flow 

[14,85]. Evidence also supports the prominent role played by S1P [86-90] or TRP channels in the 

myogenic response, with TRPM4 and TRPC6 functioning as mechanosensitive ion channels 

mediating pressure-induced contraction of vascular smooth muscle. TRPP1 and TRPP2 regulate 

stretch-activated channels in the VSMCs membrane. It is suggested that a mechanosensitive Gq-

coupled receptor may initiate downstream signaling that involves activation of TRPC and 

TRPM4 channels by a PLC-dependent mechanism [91-94].  

 

1.2.2.2.2 Local and circulating factors  

VSMCs can be influenced by factors produced by the endothelium and by circulating 

factors that affect what the endothelium produces as well as circulating factors that access the 

VSMCs through the endothelium. Endothelial cells communicate with the underlying VSMCs 

through myoendothelial gap junctions. These junctions allow molecular exchange such as ions or 

small molecules like cyclic nucleotides [95]. Endothelial cells produce different vasoactive 

agents that control vascular tone including vasodilators (described above) and vasoconstrictors 

like S1P, TXA2 (both described later in more detail), endothelins, uridine adenosine 

tetraphosphate, isoprostanes, 20-hydoxyeicosatetraenoic acid, and angiotensin II [10]. Uridine 

adenosine tetraphosphate, is a novel endothelium-derived vasoconstrictor, which activates 

cyclooxygenases (COXs) that produces TXA2 which ultimately stimulates vasoconstriction 

[96,97]. Uridine adenosine tetraphosphate induces its activities via purinergic receptors. These 

are receptors traditionally activated by purine nucleosides like adenosine (P1-type receptors) or 

purine nucleotides such as ATP, ADP, UTP or UDP (P2-type receptors) [98-100]. 20-

hydoxyeicosatetraenoic acid is an endogenous vasoconstrictor produced following the 

metabolism of AA by cytochrome P450. 20-hydoxyeicosatetraenoic acid depolarizes the 

VSMCs, inhibits K+ channel activity, and increases intracellular [Ca2+]i in VSMCs stimulating 

vasoconstriction [101,102]. Circulating factors like S1P, serotonin, acetylcholine  and 

catecholamines (epinephrine, norepinephrine) increase vasoconstriction [34,102-106].  



 

 

Figure 1.6: The intracellular signaling

contraction. Contraction is induced 

smooth muscle cells. Agonist-mediated activation of 

Ca2+-dependent phosphorylation of MLC and

dephosphorylation. Signaling via 

and rise in [Ca2+]i through inositol (1, 4, 5) triphosphate

Then Ca2+ binds to CaM forming a 

activation of MLCK. The second product of PLC, diacylglycerol, a

(PKC), which, through its substrate CPI

dephosphorylation. On the other hand, 

exchange factor (Rho-GEF) that activates RhoA protein through GDP exchange to GTP. GTP

bound Rho activates Rho-kinase,

inhibiting MLC dephosphorylation and promot

signaling pathways underlying vascular smooth muscle 

Contraction is induced following increased phosphorylation of MLC in the vascular 

mediated activation of G protein-coupled receptors triggers 

dependent phosphorylation of MLC and/or Rho kinase-dependent inhibition of MLC

Signaling via Gq-11 protein leads to the activation of phospholipase C (PLC) 

inositol (1, 4, 5) triphosphate-sensitive endoplasmic reticulum stores. 

forming a complex (Ca2+/CaM) that promotes phosphorylati

MLCK. The second product of PLC, diacylglycerol, activates protein kinase C 

, which, through its substrate CPI-17, inhibits MLCP, and thus prevents MLC 

On the other hand, stimulation of Gα12-13 activates Rho-guanine nucleotides 

GEF) that activates RhoA protein through GDP exchange to GTP. GTP

, which phosphorylates and inactivates MLCP, thereby 

dephosphorylation and promoting vascular smooth muscle contraction. 
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It has been proposed that circulating S1P can be transcytosed to the VSMCs to induce 

vasoconstriction [107], but also the VSMCs can endogenously produce S1P [89].Serotonin is one 

of the most extensively studied vasoconstrictors. Serotonin being a protonated molecule cannot 

diffuse across a hydrophobic lipid bilayer under physiological conditions; instead it is 

transported to the underlying VSMCs through specialized transporters called SERT. SERT is 

expressed in platelets which contribute to the circulating pool of serotonin, but also SERT is 

found on the luminal and abluminal sides of the vessels, including the arterial VSMCs [104,108-

112]. Serotonin invokes vasoconstriction in different vascular beds (coronary, femoral, cerebral, 

mesentery, rat tail artery etc), but also exhibits synergistic effects on vasoconstriction with other 

vasoconstrictors like phenylephrine (an alpha-adrenergic receptor agonist), angiotensin-II, S1P, 

ATP, insulin, prostaglandin E1 and E2, TXA2 and endothelin [113-120]. 

 

1.2.3 Factors with dual effects on vascular tone control  

1.2.3.1 S1P  

S1P is a signaling sphingolipid, also known as a lysosphingolipid with both vasodilating 

and vasoconstricting properties. Endothelial cells or VSMCs express each of the S1P receptor 

subtypes S1P1, S1P2, and S1P3. Activation of endothelial S1P1 or S1P3 receptors stimulates 

vasodilation. Endothelial S1P2 receptor which is only present in some vasculature has not been 

associated with vasodilation. Stimulation of S1P2 or S1P3 receptors on the VSMCs promote 

vasoconstriction [34,121,122]. The biology of S1P is explained in greater detail later. 

 

1.2.3.2 Endothelins  

Endothelins are peptides produced by the endothelium, but also from VSMCs [123,124], 

and they exhibit vasoconstricting or vasodilating properties depending on the receptors engaged. 

There are three isoforms of these peptides including endothelin-1 (ET-1), ET-2, and ET-3. Their 

activities are mediated through two G protein-coupled receptors, ETA and ETB [125]. Once 

produced by the endothelium, majority of ET-1 is released abluminally to the underlying VSMCs 

suggesting that ET-1 acts in an autocrine and paracrine manner. It does so through the ET 

receptors which are expressed on the endothelium and VSMCs in arteries and veins [126,127]. 

Since VSMCs cells also produce ET-1, the autocrine signaling can also occur in these cells, but it 

is unknown whether the ET-1 produced in the VSMCs impacts endothelial cell responses. In the 
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VSMCs ET-1 binds to Gq-coupled ETA or ETB, stimulating vasoconstriction. However, when 

ET-1 binds to ETB receptors on the endothelium, it produces NO and PGI2, which diffuse to the 

underlying VSMCs stimulating vasodilation. These findings confirm that ET-1 has a dual role in 

the regulation of vascular tone, by inducing vasodilation and vasoconstriction [126,128-131]. 

ET-1 also induces contraction of the myometrial strips through the S1P/S1P2 receptor-dependent 

mechanisms [132]. 

Although ET-2 differs from ET-1 by two amino acid substitutions (Trp and Leu in ET-1, 

substituted for Leu and Met in ET-2), it has similar affinities for ETA and ETB as ET-1 [133]. 

The plasma levels of mature ET-2 peptide is ∼0.5 pg/ml [134-136]. While ET-2 is a potent 

vasoconstrictor like ET-1 [137], the physiology and pathophysiology of ET-2 is not well 

understood. In addition to its vascular function, ET-2 is involved in ovarian physiology by 

stimulating contraction during ovulation, immunological responses as a chemokine and in cancer 

pathogenesis [134].  

On the other hand, ET-3 has similar affinity for ETB as ET-1 and ET-2, but has much 

lower affinity for ETA compared to ET-1 or ET-2. The normal human plasma concentration of 

ET-3 is approximately 1.6 pg/ml [136]. ET-3 is mainly secreted by brain neurons, renal tubular 

epithelial cells, intestinal epithelial cells [138], and is the most poorly studied isoform. 

 

1.2.3.3 Membrane channels  

Membrane channels like K+ channels are proteins that allow rapid and selective flow of 

K+ ions in and out of the cell, and thus help generate electrical signals. Many K+ channels are 

expressed on the endothelium and VSMCs and have been shown to control vascular tone. These 

channels include the calcium-activated (KCa), voltage-dependent (Kv), and KATP channels [139-

142]. When these channels open, K+ ions are transported extracellularly, producing a more 

negative membrane potential. This hyperpolarization in turn acts to close voltage-dependent Ca2+ 

channels, leading to decreased Ca2+ influx and vasodilation. Closing of K+ channels leads to 

vasoconstriction [143-147]. 
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1.2.3.4 Effect of blood flow on vascular tone 

1.2.3.4.1 Blood flow–induced shear stress and vasodilation 

Flow-induced vasodilation is a local or intrinsic mechanism for blood flow control that 

operates by mechanisms inherent to the blood vessel wall. Changes in blood flow induce 

alterations in vascular tone that are independent of transmural pressure, neural or humoral 

influences. This phenomenon has also been replicated in isolated perfused ex-vivo arteries [148-

152]. Flow-induced vasodilation occurs in conduit vessels and resistance arteries, and serves as a 

mechanism to augment flow delivery to arterioles. Increase in flow-induced dilation at the 

arterioles also serves to balance blood flow and arterial pressure from the upstream conduit and 

resistance arteries supplying them. The increase in flow through these upstream vessels produces 

a shear stress that is sensed in the vessel wall and elicits vasodilation [153-156].  

Removal or destruction of the endothelium abolishes flow-mediated vasodilation. Different 

molecules are believed to be involved in shear stress-induced vasodilation including NO since 

NOS inhibitors decrease flow-mediated dilation [157-160]. There is also evidence that increased 

shear stress elevates endothelial Ca2+ concentrations, which complexes with CaM to activate 

eNOS [149,161]. 

Further studies have proposed the role of endothelial-derived H2O2, and EDHF in flow-

mediated vasodilation [20,23]. However, the identification of the flow/shear stress sensors in the 

endothelium remains challenging. A significant amount of evidence however, points to the 

importance of caveolae, endothelial cell cytoskeleton, focal adhesion complexes, the glycocalyx, 

endothelial junctional proteins, G protein-coupled receptors, primary cilia, and membrane ion 

channels which likely work together to induce vasodilation [23,161]. 

 

1.2.3.4.2 Blood flow–induced mechanotransduction and vasoconstriction 

Shear stress arises from the frictional forces exerted directly on the endothelium from the 

blood flow, which is determined by the velocity, blood viscosity and vessel diameter. Shear 

stress can cause vasodilation as described above [153-156]. However, the pulsatile nature of 

blood flow can cause tensile stress (resulting from mechanical stretch), which mainly impacts the 

medial layers of the vasculature resulting in vasoconstriction [12,162]. Mechanical stretch can be 

detected and transduced by specific mechanoreceptors such as the stretch activated (SA) channel. 

SA channel is located on the plasma membrane and has been shown to promote Ca2+ influx in 
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response to mechanical stretch that later initiates phosphoinositide 3–kinase (PI3K) activation, 

Rho and Rho-associated kinase and vasoconstriction [42,163-165]. Studies on the role of SA 

channel on signal transduction have shown that TRP channels (such as TRPV4, TRPC1, and 

TRPP2) are responsible for the Ca2+ influx [42,163,166,167]. These reports collectively indicate 

that blood flow is part of the mechanism through which vascular tone can be controlled. 

 

1.2.3.5 The autonomic nervous system 

Vascular tone is also influenced by the autonomic nervous system through the 

parasympathetic and sympathetic systems that regulate cardiac output and vascular resistance 

[168]. The neurons of the parasympathetic system mainly regulate the heart rate, while those of 

the sympathetic system regulate the heart rate, cardiac contraction, vascular resistance, and 

venous compliance [168]. The changes in vascular tone induced by the sympathetic branch of the 

autonomic nervous system are mediated by catecholamines like norepinephrine and epinephrine 

[169]. The adrenal medulla produces the catecholamines which are transported to the VSMCs via 

the bloodstream. Norepinephrine is released in the perivascular space after activation of 

sympathetic nerve fibers in the medial layer of the blood vessel wall [170,171]. These 

catecholamines regulate vascular tone by exerting their effects on the endothelium or vascular 

smooth muscle by interacting with the α- or β-adrenergic receptors. Endothelial α2-adrenergic 

receptors promote vasodilation [171,172], whereas activation of α1or α2-adrenergic receptors on 

the VSMCs induce vasoconstriction [169,171,172]. In contrast, stimulation of the β1or β2-

adrenergic receptors on the VSMCs causes vasodilation [173]. 

Moreover, stimulation of sympathetic nerves supplying the kidney activates the renin–

angiotensin system, which results in the production of angiotensin II, a powerful vasoconstrictor 

[174]. This occurs following the release of renin, an enzyme that cleaves a ten-amino acid, 

inactive substrate angiotensinogen to angiotensin I. The angiotensin-converting enzyme cleaves 

two amino acids from angiotensin I to generate an active octapeptide angiotensin II [174,175]. 

Angiotensin II can then regulate vascular tone by amplifying the effects of norepinephrine on 

vasoconstriction, but also boost the release of S1P, or norepinephrine from the sympathetic nerve 

terminals [176-179]. Recently, the angiotensin II-induced hypertension was shown to be reduced 

following inhibition of sphingosine kinase -1 (SK-1), suggesting that S1P contributes to the 

pathogenesis of hypertension [179]. Angiotensin II can also induce superoxide formation which 
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can cause quenching of NO and/or eNOS uncoupling, thereby limiting flow-mediated 

vasodilation [180]. 

Collectively, evidence suggests that circulating or vasoactive factors released directly to 

the VSMCs from the endothelium or produced in the VSMCs modulate vascular tone. However, 

it is unknown how changes in endothelial permeability impacts vascular tone. One way 

permeability can affect vascular tone is by promoting leakage of substances to the VSMCs. 

 

1.3 Molecular passage across the endothelium 

Under normal physiological conditions, the endothelial barrier controls the exchange of 

substances between the blood and the sub-endothelial space. Substances like blood fluid, solutes, 

and even circulating cells can cross the endothelium, mainly through two different pathways, the 

transcellular and paracellular processes [10].  

 

1.3.1 The transcellular pathway and molecular transport across endothelium 

This pathway is also known as transcytosis and involves the transport of macromolecules 

through the endothelium [181-185]. During this process, the luminal endothelial membrane 

undergoes invagination to form vesicles that internalize plasma contents including fluid and 

solutes. The vesicle-mediated endocytosis is initiated when circulating albumin binds to the 

albumin-binding glycoprotein-60 receptors on the luminal side of the endothelium [186-188]. 

This is followed by transcytosis or shuttling of these vesicles across the endothelium from the 

apical to the basolateral membrane. Transcytosis is mediated by individual vesicles, or by a 

cluster of interconnected vesicles termed vesiculo-vacuolar organelles, which form channel-like 

structures that span endothelial cells. The vesicular content is delivered to the basolateral 

membrane by exocytosis [189,190]. Indeed, the processes of endocytosis and exocytosis have 

been visualized by electron microscopy in capillaries and in venules using gold conjugated to 

albumin [191], ferritin or horseradish peroxidase as molecular tracers [189]. In these 

micrographs, the authors showed albumin in various phases of transcytosis in endothelial cells, 

with open and closed vesicles on the luminal and abluminal side of the endothelium. In addition 

to albumin, blood immune cells such as leukocytes enveloped in endocytic vesicles can be 

moved by transcytosis across the endothelial cell interior. This argument has been supported by 
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the evidence showing fluorescently-labeled leukocytes in membrane invaginations or being 

enveloped [192,193]. 

 

1.3.1.1 Mechanisms of caveolae-mediated transcytosis 

Endocytosis is mediated by the lipid raft microdomains known as caveolae, which form 

cave-like invaginations in the endothelial plasma membrane (Figure 1.6) [185,194,195]. 

Caveolae contain the protein caveolin (cav), which in mammalian cells consist of three homologs 

termed Cav-1, Cav-2 and Cav-3 [196]. These proteins are synthesized as monomers and 

transported to the Golgi complex from where they are externalized through the secretory 

pathway [196,197]. The caveolins then associate with lipid rafts, but also form oligomers of 

approximately 14 to 16 molecules. It is these oligomerized caveolins that form the caveolae. 

Caveolae also contain cholesterol and sphingolipids, as well as scaffolding and signaling 

molecules that modify caveolin function and initiate vesicle formation and trafficking 

[181,195,198]. 

During endocytosis cav-1 is recruited to the membrane forming an oligomer leading to a 

local change in morphology that give caveolae its characteristic shape and structure [185,199].  

The formation of the vesicles is initiated when a family member of Src kinases phosphorylate 

cav-1 on the luminal side of endothelial cells. Cav-1 subunits aggregate in lipid rafts and 

oligomerize to form caveolae [200-203]. This is followed by recruitment of dynamin, a GTPase, 

and its binding partner intersectin-2 to form the elongated neck of caveolae invaginations [204]. 

The binding of Ras (belongs to a family of small GTPase proteins) to the dynamin-intersectin-2 

complex triggers the pinching off of the caveolae invaginations forming enclosed vesicles [203]. 

These vesicles dock to the inner side of the apical membrane through attachment receptors called 

v-SNARE that bind to the membrane-bound ligand known as t-SNARE (Figure 1.6) 

[198,205,206]. Once the docked vesicles are disengaged, they may recycle back to the apical 

membrane or move across the cell interior to the basolateral side aided by cytoskeletal 

microtubules [183,207]. Upon arrival at the basolateral membrane, the vesicular v-SNARE bind 

to t-SNARE, fuse with the basolateral membrane and deliver the vesicular contents by exocytosis 

to the subendothelial space [185]. However, the specific substances deposited by these vesicles 

remain to be defined, and also the extent by which these solutes contribute to the basal or 

stimulated endothelial barrier control is unknown [189,208]. On the other hand, newly formed 
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transcytosis may not be necessary for permeability responses to occur. This argument is in part 

supported by findings showing that although albumin transcytosis occurs in the lungs, this 

transcellular albumin flux does not contribute to fluid passage to the subendothelial space [188]. 

Thus, the contribution of endothelial transcytosis to fluid homeostasis under physiological 

conditions or plasma leakage under pathophysiological conditions remains to be demonstrated. 

However, some studies have reported that transcellular water flux contributes a considerable 

amount of hydraulic conductivity (a measure of permeability) in some endothelial systems [212]. 

A possible explanation for these conclusions could be the contributions of the transmembrane 

water channels called aquaporins [213]. These channels are found on endothelial cells and they 

serve to permit movement of water across the cell membrane. Even so, the contribution of 

aquaporins in vascular fluid homeostasis is believed to be very minimal [214-217]. 

 

1.3.2 Paracellular or intercellular pathway in molecular transport between cells 

Paracellular pathway accounts for most of the transport of substances through the 

intercellular junctions. In pathophysiological conditions, this pathway promotes endothelial 

leakage of blood fluids and protein molecules [182,186,196]. The control of transport of these 

substances through the paracellular pathway mainly depends on the structural integrity of 

intercellular junctions. However, there are exceptions where the cell-cell junctions do not play a 

role in regulating molecular transport via the paracellular process. In specialized tissues like 

kidneys, the liver, choroid plexus and the spleen, endothelial cell junctions exhibit discontinuities 

or fenestrations allowing large molecules and proteins to pass easily through these junctions 

[183,184]. These types of junctions are physiologically important in absorption of nutrients, 

detoxification and elimination of toxic waste products.  

However, in most tissues and organs intercellular junctions in endothelial cells are tightly 

complexed allowing selective passage of molecules through these junctions [184,218]. There are 

mainly two types of intercellular junctions; the adherens junctions (AJ) and the tight junctions 

(TJ) [182,183]. AJ are widely expressed in most endothelial cells, and when closed, large 

molecules like albumin of molecular weight 69 kDa and molecular radius of 3.6 nm cannot pass 

between the cells. AJ, are therefore a major determinant of endothelial barrier in many organs 

and tissues [182,219]. TJ are less ubiquitous in the peripheral microvasculature compared to AJ. 

TJ are mainly found in specialized tissues like the blood-retinal or the blood-brain barriers [220]. 
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TJ supply an additional seal to the endothelial barrier function, contributing to tighter restriction 

to molecular passage. This includes molecules less than 1 kDa and inorganic ions [217].  

The tightness of the endothelial barrier is subject to disruption by different stimuli 

causing disassembly, internalization and/or degradation of junctional proteins (AJ, TJ), 

cytoskeletal reorganization or interference with extracellular matrix-mediated stabilization of the 

sealing efficiency of intercellular junctions. These changes cause increased endothelial 

permeability, and promote excessive leakage of plasma components [183,219,221]. The 

regulation of transport of substances through the paracellular pathway is very complex and 

multicomponent-mediated.  

 

1.3.2.1 The role of AJ in regulating endothelial barrier 

Endothelial cells are connected to each other by AJ, TJ and GJ, and to the VSMCs via the 

myoendothelial gap junctions. Extracellularly, the AJ and TJ form the cell-cell zipper-like 

adhesion complexes [182]. The AJ have been identified in nearly all types of vascular beds, 

especially in the peripheral microvasculature. Examples of AJ components include junctional 

adhesion molecules (JAMs), E–cadherin, the platelet-endothelial cell adhesion molecule-1 

(PECAM-1) and vascular endothelial cadherin (VE–cadherin) (Figure 1.7). VE–cadherin is a 

transmembrane receptor and the major structural protein of AJ which has been studied 

extensively [222]. VE-cadherin binds directly to another VE–cadherin molecule expressed in the 

membrane of an adjacent endothelial cell. This way VE–cadherin forms a homotypic bond that 

glues neighboring cells together. The formation of this type of homotypic bond requires the 

availability of extracellular Ca2+ (Figure 1.7), which binds to negatively charged amino acid 

residues on the extracellular domain of VE–cadherin. This binding promotes a change in VE–

cadherin protein conformation enabling the formation of a homotypic bond [223].  

Intracellularly, VE–cadherin is linked to the cytoskeletal structures through a family of 

proteins called catenins. Evidence suggests that VE–cadherin binds directly to β–catenin and γ–

catenin, which in turn bind to α–catenin, an actin binding protein. This way the α–catenin links 

the AJ (VE–cadherin) to the actin cytoskeleton [183,223]. Further stabilization of VE–cadherin 

to the cytoskeleton is enabled by the binding of α–catenin to additional proteins including the α–

actinin, vinculin and formin. VE–cadherin is also stabilized downstream by another protein, 

p120-catenin, but its role in directly connecting AJ to the actin–cytoskeleton has not been shown. 
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However, p120-catenin serves an important role as a scaffold protein that brings other signaling 

molecules into close proximity to interact with VE–cadherin (Figure 1.7) [224]. Therefore this 

network of interaction between VE–cadherin, catenin and the cytoskeleton is essential not only 

for cell–cell communications, but also for the maintenance of endothelial barrier function [225-

227]. Evidence shows that when the binding of VE–cadherin to β–catenin is disrupted, proper 

assembly of AJ is impaired decreasing the endothelial barrier function [222]. The functional role 

of VE–cadherin in promoting endothelial integrity has been demonstrated in vivo, in which mice 

injected with anti-VE–cadherin antibodies showed increased pulmonary vascular leakage [222].  

 

1.3.2.2 The TJ as linkers of the cell-cell junctions 

Endothelial TJ molecules include junctional adhesion molecule–A (JAM–A), claudin–3, 

5 and occludin. JAM–A, is a member of the immunoglobulin superfamily of proteins; however, 

the role of JAM–A as a TJ molecule is not properly understood. Occludin and claudins are 

integral membrane proteins, each with four transmembrane domains and two extracellular loop 

domains. The extracellular loop domains bind homotypically to adjacent molecules in 

neighbouring cells. JAM–A, claudin–5 and occludin are further ligated intracellularly to zonula-

occludens-1, 2 (ZO–1, 2) which is connected to α–catenin an important linker to actin-

cytoskeletal system (Figure 1.8) [183,220,228]. Tight junctions are also present between adjacent 

endothelial cells and they not only restrict the movement of circulating molecules between 

endothelial cells to the sub-endothelial space, but they also prevent diffusion of plasma 

membrane proteins between the apical and basolateral compartments [182]. The binding of 

occludins, claudins, and JAMs with ZO proteins connects the TJ with the actin cytoskeleton, 

again promoting barrier integrity (Figure 1.8) [229].Whilst the AJ and TJ form intercellular 

bonds independently of each other on the extracellular domains, these junctional molecules 

interact intracellularly through their downstream components. For instance the endothelial TJ 

bind intracellularly to ZO-1, 2), which is a linker protein to α–catenin that connects VE–cadherin 

to the actin and the cytoskeleton. However, it is unknown, how such AJ-TJ interplay could 

regulate the endothelial barrier. 
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pregnancies such as preeclampsia, is currently under investigation [230]. Indeed, Krupp et al 

have recently shown in umbilical vein endothelium isolated from pregnancies complicated by 

preeclampsia that reduced NO was accompanied by a failure of sustained Ca2+ bursting [233].  

 

1.3.2.4 Myoendothelial gap junctions in endothelial-smooth muscle communication 

In addition to the GJ between endothelial cells, myoendothelial gap junctions connect the 

endothelial cells to the underlying VSMCs [230]. The formation of myoendothelial gap junctions 

is inversely correlated with arterial diameter and the number of VSMCs [234]. These junctions 

could, therefore, play important physiological roles in smaller resistance vessels in the control of 

vascular tone [230,235]. 

 

1.4 Extracellular anchors and their roles in the control of the endothelial barrier  

1.4.1 Focal adhesions as points of attachment for cellular stability  

Endothelial cells are linked to the basolateral membrane and the surrounding extracellular 

matrix (ECM) of the vascular wall by focal adhesion molecules [236]. The major structural 

components of focal adhesions are transmembrane proteins called the integrins, which are a 

family of glycoproteins composed of α and β–subunits. Different subtypes of integrins are 

expressed on endothelial cells. The intracellular domains of integrins interact directly or 

indirectly with the cytoskeleton through linker proteins like α–actinin, paxillin, vinculin, and 

talin. Extracellular domains of integrins bind to ECM proteins, like fibrinogen, fibronectin, 

collagen,  vitronectin and laminin [237-239].  

The evidence that the integrin–ECM binding is essential for the stabilization of 

endothelial barriers [240], comes from studies showing that interference with the integrin–ECM 

binding can disengage focal adhesions, ultimately detaching the cells from ECM [237,241,242]. 

Recently, the S1P-induced activation of β4 integrins was shown to enhance lung endothelial 

barrier [243]. Investigators have also shown that certain members of the integrin family can be 

located at endothelial cell junctions where they promote formation of lateral junctions. This 

means that interfering with the integrins function could alter the junctional connection, and the 

normal cytoskeletal tension leading to increased endothelial permeability. This has in part been 

shown using permeability-inducing agents like histamine, which increase the strength of 

integrin–ECM bonding (on either side of adjacent cells) leading to enhanced cytoskeletal 
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contractile forces and disruption of the cell-cell junctions. Angiopoietin-2 was also shown to 

destabilize endothelial cell through activation of β1 integrins [244]. The ECM also maintains the 

endothelial barrier function by preventing extravasation of circulating cells into the extravascular 

tissues [245,246]. When antibodies are directed against the β1 subunit of integrins, 

transendothelial flux of water and large solutes is dramatically increased. Direct evidence that 

integrin–matrix interactions is physiologically important has been shown in a study in which 

synthetic peptides that inhibit integrin binding to fibronectin or vitronectin were used which 

showed a dose–dependent increase in albumin permeability [247-250]. This response was time–

dependent and reversible upon clearance of the peptides [248], consistent with the idea that 

endothelial cell–matrix adhesion is a dynamic process. 

The β5 subunit of integrins has been identified as a key molecule involved in the 

recruitment of kinases to focal adhesions in endothelial cells upon stimulation by permeability 

enhancing agents like VEGF [251]. Mice deficient in integrin β5 expression display reduced 

vascular permeability in response to VEGF treatment [252]. Moreover, studies from in vivo 

experiments have demonstrated that plasma leakage across microvessels due to fibrinogen 

degradation is greatly attenuated in integrin β1 KO (KO) mice [253], further supporting the role 

of integrins in regulating endothelial permeability. In pathophysiological conditions, such as 

inflammation or metastatic cancer, activated leukocytes [254] or invasive tumor cells secrete 

proteases and other enzymes capable of digesting ECM proteins and disengaging focal adhesions 

[255] leading to enhanced endothelial permeability. Collectively, these findings highlight the 

relevance of focal adhesions in the control of the endothelial barrier [256].  

 

1.5 Endothelial cytoskeleton as a player in the control of the endothelial barrier  

Apart from the extracellular components such as the endothelial junctions that regulate 

barrier function, endothelial cytoskeleton plays a central role in the regulation of cell 

morphology, adhesion and intercellular barrier [257]. Structurally, the endothelial cytoskeleton 

mainly consists of the actin filaments, microtubules and intermediate filaments [257,258]. 

Although, the structural support provided by all cytoskeletal components is important for 

maintenance of the barrier integrity, the actin cytoskeleton plays a significant role in control of 

endothelial barrier through linkage to AJ and TJ [259]. 
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1.5.1 The role of actin filaments  

The actin filaments are linear polymers of filamentous (F)–actin [257]. F–actin is formed 

from globular actin (G–actin) [258]. G–actin is found within the cell as small globules that 

polymerize to form and stabilize actin filaments. When the cell is in a resting state, the actin 

filaments are randomly distributed throughout the cell and at the cell periphery, which are also 

known as cortical actin [258]. When endothelial cells are stimulated by barrier disrupting agents 

such as thrombin or histamine via specific receptors and their downstream effectors like 

RhoA/Rho–kinase [260,261], the actin filaments reassemble into linear, parallel bundles across 

the cell interior forming what is known as stress fibers. The stress fibers cause the cells to 

assume a contractile morphology increasing tension between endothelial cells. This increasing 

tension results in the formation of gaps between adjacent endothelial cells (paracellular 

permeability) [10,236,257]. In contrast, when these cells are re–engaged with endothelial 

barrier–enhancing agents such as S1P, at physiological concentrations ≤ 1 µmol/L, the actin 

filaments rearrange and re–localize to the cell periphery strengthening the cell–cell junctions 

[262].  

Different proteins are known to regulate actin polymerization through promotion of actin 

disassembly including heat shock proteins, actin depolymerizing factor (ADF), also known as 

cofilin, particularly non–muscle type cofilin–1 and gelsolin [257,263]. Molecules that activate 

the Rho family of small GTPases such as Rac1 and Cdc42 promote the formation of cortical 

actin [264], while those that activate RhoA lead to the formation of actin stress fibers [258]. 

Cytoskeletal rearrangement and stress fiber formation cause endothelial permeability, but the 

precise mechanisms and specific contribution of this process to permeability are not well 

established.  

 

1.5.2 The role of actomyosin contractile machinery in the control of the endothelial barrier  

The contraction mediated by actomyosin [265,266] and increased cytoskeletal tension 

[257,258] is a central mechanism for disruption of the endothelial barrier. Since endothelial cell 

junctions are connected to focal adhesions through the actin cytoskeleton, changes in 

cytoskeletal tension directly affect the barrier structure and function [236]. In endothelial cells, 

as in muscle cells, myosin is bound to actin, and cytoskeletal tension is increased following 

actomyosin contraction [265,266]. This contraction is initiated by phosphorylation of myosin 
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regulatory light chain (MLC) which causes an ATP–dependent change in the myosin protein 

folding and a shift in position relative to actin [263,267]. This shift produces actomyosin 

contractile force, increasing tension on the actin cytoskeleton. Because the actin cytoskeleton is 

connected both to cell junction proteins and to focal adhesions, the focal adhesions connection 

acts as a fulcrum [239], allowing cytoskeletal tension to physically pull apart the cell–cell 

junctions increasing endothelial paracellular permeability. Conversely, dephosphorylation of 

myosin light chain-2 (MLC–2) decreases actomyosin contractility, relaxing the actin 

cytoskeleton, and decreasing endothelial permeability [263,267]. 

MLC–2 is phosphorylated by MLCK [265,266] and is dephosphorylated by MLCP [268]. 

The normal endothelial barrier is regulated by the steady-state phosphorylation and 

dephosphorylation actions mediated by MLCK and MLCP, respectively [257,263]. Any stimulus 

that impacts any of these enzymes will affect endothelial barrier. Inflammatory agents and 

diseases associated with increased endothelial permeability have also been linked with the 

activation of MLC-2 [265,269]. 

 

1.5.3 The role of microtubules in endothelial barrier control 

Microtubules are important for cell mitosis, morphology, and intracellular protein 

trafficking. Microtubules are tubular structures formed from α– and β–tubulin subunits [258]. 

One tubular structure is formed from 13 parallel polymeric filaments arranged in a ring. The 

stability of microtubules is determined by polymerization and depolymerization of component 

units. Microtubules can be further stabilized by capping or by other posttranslational 

modifications events. In endothelial cells, microtubules are cross–linked with actin filaments and 

can affect endothelial barrier through effects on actin filaments. Active rearrangements of 

microtubules affect the organization of other cytoskeletal components, and stabilization of 

microtubules protects the endothelium against actin stress fiber formation and barrier disruption 

[270]. Depolymerization of microtubules activates guanine nucleotide exchange factors, and 

signaling through Rho family GTPases, leading to actin stress fiber formation and endothelial 

barrier disruption [271]. The role of microtubules in the control of the endothelial barrier has 

been shown in experiments where microtubules were destabilized by treatment of endothelial 

cells with thrombin [272] or the inflammatory cytokine TNF–α [270,273], leading to barrier 
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dysfunction. Stabilization of microtubules in endothelial cells by agents such as cAMP [273], or 

activation of PKA enhances the endothelial barrier [274]. 

 

1.5.4 The role of intermediate filaments in the control of the endothelial barrier 

The intermediate filaments are formed from heterogeneous proteins [275]. The major 

intermediate filament protein in most cells is vimentin. The intermediate filaments are important 

for cell structure, and are expressed mostly in cells exposed to shear stress, like endothelial cells. 

Intermediate filaments are connected to proteins at the cell–cell junctions (e.g. p120), and also 

connected to the focal adhesions at the basement membrane. Intermediate filaments transmit 

mechanical tension between cells joined by intercellular junctions [275]. The role of intermediate 

filaments in the control of endothelial barrier function is not fully understood. However, in 

endothelial cells, the intermediate filaments are believed to provide redundant structural support 

and stabilization of the actin filaments [275]. There are no vascular defects in vimentin gene 

knock-out mice [276], suggesting that vimentin filaments may not be necessary for the 

physiological functions of the endothelium. However, there is evidence that the connections of 

vimentin filaments to endothelial VE–cadherin are disrupted when endothelial cells are treated 

with histamine [277]. These data suggest the likelihood of an indirect involvement of the 

intermediate filaments in the control of the endothelial barrier. They may also serve as a scaffold 

for other proteins. 

 

1.6 Factors that generally decrease or increase endothelial permeability 

The barrier integrity is regulated by both circulating and endothelial–derived factors. The 

effectiveness of the barrier differs depending on the vascular bed; for example, it is greater in 

cerebral compared to the renal vasculature. One of the most studied signaling systems that 

maintains endothelial barrier integrity is angiopoietin–1, but also S1P (described later). 

Angiopoietin-1 enhances the barrier by signaling through its receptor, Tie2 regulating stress fiber 

formation [278], however, angiopoietin-2 disrupts the barrier by activating β1-integrins [244]. 

The disruption of endothelial barrier function is common in vascular disorders like 

atherosclerosis [279], hypertension and cardiovascular disease [218]. Thrombin is an example of 

a relatively well known endothelial-barrier disrupting agents, which mediates its functions via 

the protease activated receptors (PARs). In addition to being a permeability factor, thrombin is 
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involved in the blood coagulation process in which it converts fibrinogen to fibrin, in a complex 

process involving the activation of transglutaminase (factor XIIIa) that catalyzes the formation of 

covalent bonds between lysine and glutamine residues in fibrin. These covalent bonds increase 

the stability of fibrin and blood clotting. Thrombin also promotes platelet activation and 

aggregation by activating PARs on the cell membrane of platelets as part of the clot formation 

process. 

Other endothelial barrier-disrupting agents include TNF–α, IL–6 [280,281], C–reactive 

protein (CRP) [282], S1P, TXA2 and VEGF [222,229]. The mechanisms through which these 

molecules cause endothelial permeability include promoting endocytosis of junctional molecules 

like VE–cadherin [227], PKC activation leading to phosphorylation of occludens and disruption 

of TJ [182,186,268], caveolae–mediated transcytosis [210] and activation of the eNOS pathway. 

While these mechanisms highlight the pathways through which inflammatory mediators cause 

endothelial permeability, it unknown whether and how endothelial permeability impacts vascular 

tone.  S1P, a bioactive lipid that is part of the focus of this thesis controls endothelial barrier, but 

also vascular tone. However, the role of S1P in regulating endothelial permeability and vascular 

tone in arteries remains to be demonstrated.  

 

1.7 S1P  

1.7.1 Sphingolipid metabolism  

Sphingolipids are structural components of the cell membrane; however, the sphingolipid 

metabolites including sphingomyelin, ceramide, ceramide 1–phosphate, sphingosine, and S1P 

exhibit cell signaling properties [283]. De novo synthesis of sphingolipids begins in the 

endoplasmic reticulum (ER), in which the amino acid serine and palmitoyl–CoA combine in the 

presence of serine palmitoyltransferase to form 3–ketodihydrosphingosine [284,285]. 3–

ketodihydrosphingosine is then reduced through the actions of 3–ketodihydrosphingosine 

reductase to dihydrosphingosine. Dihydrosphingosine is rapidly N–acylated by a family of six 

dihydroceramide synthases (CerS1–6) to generate a precursor for ceramide, called 

dihydroceramide (Figure 1.9) [286]. Dihydroceramide undergoes desaturation (a double bond is 

introduced at C4 and C5) catalyzed by dihydroceramide desaturase, in which dihydroceramide 

becomes ceramide [287-289]. Ceramide is considered central to sphingolipid metabolism, and 

has several fates (Figure1.9): (1) ceramide can be converted to glycolipids such as 
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glucosylceramide or galactosylceramide which have glucose and galactose moieties, 

respectively. The transfer of these sugar units to ceramide is catalyzed by glucosylceramide or 

galactosylceramide synthase respectively. These glycolipids can be converted back to ceramide 

by cerebrosidase [285,290]. (2) Ceramide can also be phosphorylated by ceramide kinase to 

ceramide 1–phosphate or dephosphorylated by ceramide 1–phosphate phosphatase back to 

ceramide [285]. (3) The newly synthesized ceramide is transported from the ER to the Golgi 

complex aided by ceramide transfer protein or through specific vesicles [291]. In the Golgi 

complex, ceramide is converted by sphingomyelin synthase to sphingomyelin. Once formed, 

sphingomyelin is transported via Golgi complex–derived vesicles to the cell membrane. In the 

cell membrane, sphingomyelinase degrades sphingomyelin by cleaving the phosphocholine head 

group from phosphatidylcholine forming ceramide and diacylglycerol. Sphingomyelin hydrolysis 

also occurs in the Golgi complex and the lysosome [292]. (4) Ceramide can also be deacylated 

by ceramidase to form sphingosine, which can be recycled back to ceramide by the action of 

ceramide synthase [291]. Sphingosine is rapidly phosphorylated by SK-1 and SK-2 to form S1P 

[283,293]. S1P can itself be dephosphorylated by S1P phosphatases (S1PP)–1, 2 (S1PP1 and 

S1PP2) or lipid phosphate phosphatases (LPPs) in a reversible manner forming sphingosine 

[294]. S1P can also be irreversibly degraded by S1P lyase (SPL) to form ethanolamine 1–

phosphate and hexadecenal [295,296]. 

 

1.7.1.1 S1P metabolizing enzymes  

1.7.1.1.1 Sphingosine kinases: similarities and differences  

SK-1 and SK-2 are structurally homologous, except that SK-2 has an extended N-terminal tail 

[297-299]. SK-1 is predominantly found in the cytoplasm, but also found in the plasma 

membrane portions of the cell, while SK-2 is located in the nucleus, ER or mitochondria 

[300,301]. SK-1 and SK-2 show different tissue distribution with SK-1 highly expressed in the 

lungs and spleen, and SK-2 in the liver and the heart. SK-1 and SK-2 are phosphorylated by 

ERK [302-305], and both show substrate specificity towards D-sphingosine and D-

dihydrosphingosine [306,307]. However, SK-2 has broader substrate specificity, including 

phytosphingosine and the sphingosine analog FTY720. Pharmacologically inhibiting SK-1 or 

using SK-1 knock-out mice decreased plasma S1P to about 50% suggesting that both SK-1 and 

SK-2 are equally important in the production of circulating S1P [308,309]. However, as shown 
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in section 1.7.1.4, these experiments do not tell the entire story about the source of circulating 

S1P, and additional studies to provide further insights could be helpful. Interestingly, SK-1 and 

SK-2 also exhibit opposing functions, for example SK-1 has been shown to promote cell growth, 

while SK-2 inhibits it [290,293,303,310]. 

 

1.7.1.1.1.1 SK-1 

SK-1 was initially cloned from yeast (in 1998) [311] and in the same year two splice 

variants were identified in mice (SK-1a, SK-1b) [306]. Eight years later three splice variants in 

human (SK-1a, SK-1b, and SK-1c) were identified [312]. There is high sequence homology 

between the human SK-1 and that from other organisms. SK-1 is highly regulated at all stages of 

expression including transcriptional and post–translational processes [313]. SK-1 is activated by 

direct phosphorylation of its serine residue 225 [314]. The cellular localization of SK-1 is 

important for its activity, where it needs to translocate to the cell membrane to interact with its 

substrate sphingosine [315]. SK-1 phosphorylation leads to conformational and/or electrostatic 

changes that enables SK-1 to translocate and localize at the cell membrane [316]. Such SK-1 

translocation to the cell membrane is aided by CaM, PKC, calcium–and–integrin–binding protein 

1 [315] and Ras [317]. SK-1 can also be deactivated by dephosphorylation by protein 

phosphatase 2A [318] or degraded permanently through the ubiquitin–proteasome complex–

mediated pathway [319]. TNF-α also promotes downregulation of SK-1 through a cathepsin B–

mediated process [320,321]. SK-1 is exported from endothelial cells [312,322], or monocytes 

[323] through ATP–binding cassette (ABC)–type transporters, indicating the possibility of a role 

played by extracellular SK-1 to generate S1P. Nevertheless, the S1P generated by SK-1 is 

important in different biological functions such as cell migration, angiogenesis, or lymphocyte 

trafficking [293,324,325]. 

 

1.7.1.1.1.2 SK-2 and functional characterization  

SK-2 is poorly characterized compared to SK-1. Unlike SK-1 where plasma S1P is 

halved upon genetic deletion or pharmacological inhibition [326], subjecting SK-2 to the same 

treatment results in a dramatic increase in plasma S1P [308]. These results suggest that the 

control of plasma S1P levels is likely more complex than theoretically anticipated. It is possible 

to argue however, that such an exaggerated accumulation of plasma S1P results from 
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various biological functions including uterine deciduation [328], regulation of histone acetylation 

[329], macrophage polarization [330], regulation of cytokine expression [331], and protection 

from ischemia–induced renal and cerebral tissue injury [332]. Experiments from SK-2–generated 

S1P provided the first evidence for the existence of an intracellular S1P target, in which S1P 

directly deterred histone deacetylation. In these experiments, SK-2–generated nuclear S1P 

prevented the removal of acetyl groups from histone tails by directly interacting with and 

inhibiting histone deacetylases 1 and 2 [329]. In another study, hypoxia preconditioning–induced 

cerebral ischemia was associated with increased expression and activity of SK-2 in the cerebral 

microvasculature. In hypoxia preconditioning-induced cerebral ischemia, SK-1 was unchanged. 

Inhibiting SK-2 by N, N–dimethylsphingosine during hypoxia preconditioning blocked the 

infarct volume (a measure of brain injury) and hypoxia preconditioning–induced edema. These 

findings indicate that hypoxia preconditioning–induced ischemic tolerance is mediated by an 

increase in microvascular SK-2 activity. Even so, the use of the nonspecific inhibitor N, N–

dimethylsphingosine leading to the abrogation of hypoxia preconditioning–induced tolerance 

may not preclude the participation of SK-1 [332]. 

In contrast, SK-2 also mediates biological events independently of the production of S1P. 

SK-2 appears to contribute to the regulation of CD4+ T cell responses to interleukin 2 in an S1P–

independent manner [333]. Further, SK-2 causes apoptosis independent of S1P activity that was 

linked to a 9–amino acid motif similar to that found in the BH3–only proteins (that is also 

present in SK-2), a pro–apoptotic subgroup of the B–cell lymphoma–2 (Bcl–2) family. Co–

immunoprecipitation experiments revealed that indeed SK-2 directly ligates to Bcl–xL, and the 

SK-2–induced apoptosis was also associated with the release of cytochrome c and activation of 

caspase–3 [310]. Further evidence from site–directed mutagenesis targeting Leu–219 of SK-2, 

the conserved leucine amino acid present in all BH3 domains, showed that SK-2–induced 

apoptosis was linked to its BH3 domain [303,310].  

 

1.7.1.1.2 Phosphatases: SPPs and LPPs 

SPP1 and SPP2 belong to a family of phosphatases including the LPPs [295,334,335]. 

SPP1 and SPP2 are located in the ER, and they specifically dephosphorylate S1P to sphingosine 

[294,334,336]. SPP1 is also exported extracellularly by ABC transporters where it can access 

and dephosphorylate extracellular S1P [89]. The proinflammatory factors TNF–α and 
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lipopolysaccharide (LPS) increase the expression and activity of SPP2 in endothelial cells and 

neutrophils. Elevated levels of SPP1 and SPP2 have been implicated in the pathogenesis of 

inflammation-related diseases such as psoriasis and cancer [337,338]. 

Moreover, three broad–specificity LPPs (LPP1, LPP2, and LPP3) are normally found in 

the inner leaflet of the cell membrane, but also all three can function as ecto enzymes with their 

active site on the outer leaflet. These enzymes catalyze the dephosphorylation of S1P, ceramide 

1–phosphate and FTY720–phosphate (FTY720–P), and lysophosphatidate (LPA) [335,338,339]. 

Interestingly, Ecto–LPP1 promotes the intracellular formation of S1P from internalized 

sphingosine in human lung endothelial cells [340]. This sphingosine is derived from LPP1-

degraded S1P. Indeed overexpression, or siRNA–mediated knockdown of LPP1 results in 

increased, or decreased accumulation of intracellular S1P, respectively [340]. This means that 

LPP1 can contribute to intracellular S1P signaling. Since sphingosine or high levels of S1P can 

cause cell death, the fate of a cell depends on how the activities of SK-1 and SK-2 that control 

phosphorylation, and those of SPPs, SPL (see below) and LPPs that control dephosphorylation or 

degradation are balanced [341,342]. Furthermore, intracellular LPP2, but not LPP3, is 

functionally linked to phospholipase D1, which promotes recruitment of SK-1 to the perinuclear 

compartment (space between the inner and outer nuclear membranes) to catalyze formation of 

S1P [343]. Effectively, LPPs play a dual role that significantly regulates the levels of S1P. 

 

1.7.1.1.3 SPL 

SPL, an intracellular enzyme, degrades S1P irreversibly to hexadecenal and ethanolamine 1–

phosphate [291]. The SPL activity was first described in 1969 [344], but it is in 1997 that the 

first SPL gene was cloned [344]. This discovery was followed by the cloning of Sgpl1 genes 

encoding the murine and human SPL proteins [345]. The murine SPL is highly expressed in the 

intestine, the thymus and the olfactory (sensory system) mucosa. SPL is activated by the 

platelet–derived growth factor [346,347]. The SPL KO mice fail to survive beyond weaning and 

the mice suffer from myeloid cell hyperplasia, anemia, and exhibit pathological lesions in the 

lung, heart, urinary tract and bone [348]. These findings suggest that SPL is involved in 

development, likely by controlling the levels of S1P.  
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1.7.1.2 Circulating S1P and its carriers 

S1P is an 18-carbon amino alcohol initially disregarded simply as an intermediate of 

sphingolipid metabolism [349]. Later, S1P was found to possess cell signaling capabilities, in 

particular [Ca2+]i release [350]. The discovery of the first S1P receptor previously termed 

endothelial differentiation gene (EDG)–1 [351] and later other EDG–related receptors [352] 

ushered in a new era of understanding the biology of S1P. Now, S1P is regarded as a 

multifaceted, bioactive signaling lipid [353]. S1P is a component of plasma [354], and is 

transported via high-density lipoproteins (HDL) (50–60%) bound to apolipoprotein M (apoM) in 

the HDL molecule [355]; [356], albumin (30–40%), low density lipoproteins (LDL) (~8%), and 

very low density lipoproteins (VLDL) (2–3%) [357-359]. The physiological concentration of 

S1P is ~ 0.1 to 1.1 µM [360], and the Kd values for the S1P receptors are ~2–30 nM [358]. This 

means that the circulating S1P in the plasma could induce a maximal response were it to interact 

with its receptors; however, evidence suggests that the amount of bioactive S1P in the plasma is 

only ~10 nmol/L [361]. This is in part because the metabolism and biological activity of plasma 

S1P depends on its carrier. For instance, the protection against myocardial ischemia/reperfusion 

injury is mediated by HDL or albumin–bound S1P, but not LDL–bound S1P [362]. Further, 

while HDL or albumin–bound S1P enhances the endothelial barrier, the duration of the barrier 

protection is much longer with HDL–bound S1P compared to albumin–bound S1P. This has 

been associated with the capacity of HDL to protect S1P against degradation by ecto–LPPs, 

particularly LPP1 [363]. The half–life of HDL–bound S1P when added to human umbilical vein 

endothelial cells (HUVECs) is four–fold longer compared to albumin–bound S1P [364]. The 

half–life of an albumin–bound 17–carbon analog of S1P (called C17–S1P) injected intravenously 

to mice is approximately 15 minutes [364]. S1P is more stable in isolated plasma, compared to 

whole blood or when added to HUVECs [365] or human pulmonary artery endothelial cells 

[340]. 

 

1.7.1.3 Intracellular S1P signaling 

S1P has been regarded as an intracellular second messenger, but the intracellular targets 

have not been fully defined. Indeed, the lack of S1P receptors in lower order organisms like 

Saccharomyces cerevisiae [311] is a demonstration that S1P likely signals via intracellular 

targets. S1P also promotes growth and survival of mouse embryonic fibroblasts lacking S1P 
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receptors [366], and mobilizes [Ca2+]i [367]. More compelling evidence came from studies 

showing that SK-2–produced S1P binds directly to histone deacetylases inhibiting their function 

[329]. A variety of studies performed in organisms lacking S1P receptors show that disrupting 

S1P metabolism can result in marked changes in cell migration, Ca2+ mobilization, stress 

responses, endocytosis, tissue homeostasis, and reproduction [291]. These effects could be 

explained by the direct interaction of S1P with intracellular targets.  

 

1.7.1.4 S1P transport out of cells 

SK-2 is located in the ER, nucleus or mitochondria and most of the S1P is likely 

degraded before it reaches the cytoplasm by SPP1 and SPP2 [294,334,336]. The S1P generated 

by SK-1 is secreted, and can activate S1P receptors (S1P1–5) [293,324,325]. The ABC 

transporters including ABCC1 in breast cancer and mast cells [368,369], ABCA1 in astrocytes 

[370], and ABCG2 [369] in breast cancer cells are involved in S1P transport out of the cells. In 

addition, the two of hearts protein (TOH) also termed spinster homolog 2 (Spns2) previously 

identified as an S1P transporter in zebra fish [371], also exports S1P out of endothelial cells 

(Figure 1.10) [295,298]. Spns2 also externalizes phosphorylated FTY720, an S1P mimic that is 

used to control lymphocyte egress in multiple sclerosis [372].  

 

1.7.1.4 Extracellular and “inside-out” S1P signaling 

There are five S1P receptors (S1P1–5), which are closely related. These receptors were 

originally named Edg for Endothelial differentiation gene (S1P1/Edg–1, S1P2/Edg–5, S1P3/Edg–

3, S1P4/Edg–6 and S1P5/Edg–8). These S1P receptors are coupled to heterotrimeric G–proteins.  

S1P1 is associated with Gi, (particularly subtypes Giα1 and Giα3); S1P2 with Gi, G12/13 and Gq;S1P3 

with Gi, Gq or G12/13 subunits [341]. Various cell types express different combinations of these 

receptors. Endothelial cells primarily express S1P1 and S1P3 receptors, whereas S1P1, S1P2 and 

S1P3 receptors are expressed on VSMCs. S1P4 and S1P5 receptors are normally expressed in the 

brain, lung and lymphoid tissues, but they are not normally detectable in the vascular system 

[373]. There have also been a number of putative S1P receptors described in the literature 

including Gpr3, Gpr6 and Gpr12. These three receptors are coupled to Gαs and Gαi type of G 

proteins and are expressed in HUVECs and VSMCs [374-378]. The S1P signaling through the G 
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protein-coupled receptors results in downstream activation of different effector molecules like 

Rac, ERK, PI3K, PLC, Rho, and JNK, inducing different biological responses [293,325].  

Intracellular S1P can be exported from inside to the outside of the cell through different 

transporters as noted above. This way S1P can access the cell surface receptors on the cell from 

which it was produced or on neighboring cells. The entire process leading to S1P export and 

activation of extracellular S1P receptors is loosely termed “inside-out” signaling 

[291,293,325,342,379,380]. Ligand–mediated activation of SK-1 is an example of an event that 

promotes inside–out S1P signaling. However, the subcellular compartment where S1P is 

produced is important for inside–out signaling. Most ligands that activate SK-1 promote its 

translocation to the plasma membrane bringing it into close proximity with its membrane–

localized substrate, sphingosine [307,381]. S1P formed at the inner leaflet of the plasma 

membrane can then be immediately exported from the cell to act as a ligand for its own receptors 

[382]. In contrast, the S1P produced by the ER–resident SK-2 is subject to degradation by SPL 

and S1PP, both found in the ER [285]. This means that the chances of S1P to be exported from 

the ER to the cytoplasm, and then extracellularly to act as a ligand for S1P receptors are very 

minimal [307,381]. 

The major sources of circulating S1P include erythrocytes, platelets, leukocytes and the 

endothelium, but S1P is produced by virtually every cell [361,364,383]. At the cellular level, 

S1P activates its receptors to modulate different events including cell survival, proliferation, 

cytoskeletal structure and epigenetic regulation [293,352,384]. Physiologically, S1P contributes 

to vascular development, cardiovascular function, angiogenesis, heart rate, uterine implantation, 

lymphocyte recirculation, wound healing, vascular tone and endothelial integrity 

[32,293,352,373,385,386] among others. S1P also contributes to different pathologies including 

atherosclerosis, cancer and metastasis, multiple sclerosis [384,387,388], osteoporosis, 

inflammation and increased vascular leakage [389].  Part of this work focused on the role of 

S1P-induced endothelial permeability on vascular tone. 

 

1.7.2 S1P and endothelial permeability: effects on cell-cell junctions  

1.7.2.1 S1P effects on AJ: S1P-induced regulation of endothelial permeability depends on its 

concentration, the S1P receptors expressed and the vascular bed. Many studies demonstrate that 

signaling through S1P1 enhances endothelial barrier function and blocking S1P1 results in  



 

 

Figure 1.11: Export of S1P out of a cell.
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membrane or ligand swapping between S1P1 and other receptors might be possible. However, 

the effects of such S1P–S1P1 interaction within the plasma membrane on endothelial barrier are 

not known. In contrast, the S1P signaling via S1P2 and S1P3 weakens the endothelial barrier 

by disrupting AJs and increasing paracellular permeability through Rho–A and phosphatase and 

tensin homolog  (PTEN) activated pathways [390]. The disruption of cellular junctions through 

S1P2 or S1P3, occur by Gq activation of PLC and increased [Ca2+]i which is followed by 

induction of a cascade of events that ultimately disassemble the junctions. Activation of G12/13 

stimulates Rho–A and promotes actin cytoskeleton destabilization inducing disruption of cellular 

junctions [393].  

 

1.7.2.2 S1P effects on TJ: In addition to increasing the tightening of AJ, S1P through S1P1 

receptor enhances the assembly of endothelial tight TJ. The TJ are positioned in between the 

outer leaflets of the lateral membranes (the membrane bordering neighboring cells) of adjacent 

cells. The TJ are connected to the actin cytoskeleton by the interaction and binding of the 

occludins, claudins or junctional adhesion molecules to zona occludens proteins (ZO–1, ZO–2, 

or ZO–3) [395]. Following stimulation of cells by S1P, ZO–1 is translocated to the lamellipodia 

and the cell–cell junctions through the S1P1/Gi/Rac/Akt pathway. The S1P–induced endothelial 

barrier stabilization is significantly attenuated by siRNA–mediated downregulation of ZO–1 

expression [392]. Thus, like the AJ, the TJ also play an important role in S1P-mediated 

endothelial barrier control.  

 

1.7.2.3 S1P effects on GJ: S1P impacts GJ in a cell–specific manner. S1P increases connexin 43 

expression through p38–MAPK in skeletal muscle, stimulating differentiation [396]. S1P also 

inhibits GJ communication in astrocytes through dephosphorylation of connexin 43 [397]. S1P–

induced phosphorylation of connexin 43 is PKC–dependent, and in cardiomyocytes was found to 

protect against ischemia reperfusion injury by decreasing GJ function [398]. The role of GJ in 

S1P–induced regulation of endothelial barrier function is unknown.  
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1.7.3 S1P-mediated effects on endothelial cytoskeletal function and the impact on 

endothelial permeability  

1.7.3.1 S1P effects on actin microfilaments: The actin filaments are part of a network of 

cytoskeletal elements (described above) that regulate cell morphology and transduce signals 

within and between neighboring cells to maintain endothelial barrier [399]. S1P enhances 

polymerization of F–actin and MLC phosphorylation, increasing endothelial barrier function. 

The S1P–mediated effects on actin that lead to increased barrier function are disrupted by 

treatment of endothelial cells with an actin depolymerizing agent cytochalasin B, or an inhibitor 

of actin polymerization latrunculin B [400]. S1P also increases endothelial barrier via actin–

associated cytoskeletal proteins like cortactin (name derived from cortical actin binding protein), 

a monomeric protein found in the cytoplasm involved in actin polymerization and cortical actin 

(actin found in the cell periphery) rearrangement [401,402]. S1P also enhances the barrier via 

MLCK which increases phosphorylation of MLC enabling actin–myosin interaction, stress fiber 

formation and cell contraction [403]. S1P–mediated stimulation of endothelial cells mobilizes 

cortactin translocation from the cytoplasm to the periphery, causing cortical actin redistribution. 

The role of S1P–induced cortactin activation and maintenance of endothelial barrier has been 

supported by cortactin depletion experiments using antisense oligonucleotides, which 

significantly attenuated S1P–mediated stabilization of endothelial barrier [404]. While exposure 

of endothelial cells to physiological levels of S1P stimulates activation of MLCK and 

phosphorylation of MLC, MLCK works cooperatively with cortactin to promote barrier–

stabilization by S1P. This is supported by reports showing that MLCK directly binds to cortactin 

Src homology 3 domains, but also cortactin blocking peptides inhibit the S1P–induced MLC 

phosphorylation and barrier function [392,404]. 

The effect of S1P on the actin–dependent processes described above is mediated through 

a Rho family of small GTPases. The S1P signaling via S1P1 results in the activation of Rac 

GTPases needed for S1P–induced cytoskeletal rearrangement [405,406]. This is followed by 

peripheral actin polymerization, formation of lamellipodia, cell ruffling, spreading of endothelial 

cells and increased barrier integrity [400,404]. Indeed inhibition of Rac GTPases increases 

endothelial permeability [407,408], but also microinjection of a dominative negative mutant of 

Rac into endothelial cells greatly decreases S1P–induced assembly of VE–cadherin and β–

catenin at endothelial cell–cell junctions [406,409]. The S1P–induced cytoskeletal rearrangement 
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and barrier protection is dependent on the S1P concentration and the S1P receptors engaged. S1P 

at physiological concentrations (0.01–1 μmol/L) induces an S1P1/Rac–dependent enhancement 

of barrier function, but at higher concentrations S1P stimulates S1P2 or S1P3/RhoA–dependent 

disruption of the barrier which overcomes the signals generated via S1P1/Rac-pathway [410-

413].The role of microtubule or intermediate filaments on the S1P–mediated endothelial barrier 

function is yet to be demonstrated. 

In cultured endothelial cells S1P was shown to significantly decrease thrombin–induced 

permeability [414]. In tissues, such as intact perfused rat mesenteric venules, S1P or SEW2871 

(S1P1 agonist), were shown to inhibit endothelial permeability evoked by bradykinin or platelet 

activating factor [415,416], S1P exhibited barrier–enhancing properties in perfused rat 

mesenteric venules, but also erythrocyte–derived S1P tightens the barrier against basal 

permeability in rat mesenteric microvessels [415-417].  

 

1.7.4 S1P and endothelial permeability in in vivo models 

The role of S1P in protecting endothelial barrier function is becoming increasingly 

attractive for therapeutic application in endothelial–related pathologies. Vascular disorders are 

associated with increased permeability and they include inflammation, ALI, atherosclerosis, 

anaphylaxis and ischemia-reperfusion injury [418]. S1P enhances the endothelial barrier and one 

of the most compelling evidence is the demonstration that mice deliberately engineered to lack 

plasma S1P suffer from vascular leakage and restoration of S1P through erythrocyte transfusion 

dramatically decreased vascular leakage and improved mice survival [419].  

 

1.7.4.1 S1P and ALI: ALI is an inflammatory lung disease associated with increased in vascular 

permeability [420]. Under laboratory conditions, to mimic the clinical presentation of ALI, 

researchers use LPS delivered intratracheally in experimental animal models. S1P decreases the 

inflammatory effects associated with ALI. In an ALI murine lung model, intravenous 

administration of S1P significantly reduced LPS–induced lung injury, but also lowered 

neutrophil infiltration in the lung parenchyma. The use of FTY720 (which is phosphorylated in 

vivo), a sphingosine analog delivered intraperitoneally, inhibited LPS-induced pulmonary 

vascular leakage [421,422]. Further, using a canine (beagle, i.e. dog) model of ALI, McVerry et 

al., showed that intravenous administration of S1P markedly attenuated alveolar and vascular 
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leakage [422]. Four years later Szczepaniak et al using the same animal model, demonstrated that 

S1P could decrease the LPS–induced pulmonary shunt (occurs when alveoli are filled with fluid, 

interfering with ventilation of the lungs), and accumulation of protein and neutrophils in the 

bronchoalveolar lavage fluid compared to vehicle–treated controls [423]. Moreover, the 

inhibition of SPL, which was associated with increased S1P levels in lung tissues and 

bronchoalveolar lavage fluids, was decreased in an ALI model [424].  

As described above, S1P at physiological concentrations is barrier protective via the S1P1 

receptor and in an ALI murine model SEW2871 (S1P1 receptor agonist) decreased the presence 

of protein in bronchoalveolar lavage, but also lowered leukocyte infiltration. In contrast, 

activation of S1P2 or S1P3 receptors, increases endothelial barrier disruption and alveolar leakage 

both of which were significantly decreased following targeted deletion of S1P2 or silencing 

of the S1P3 receptor in murine models of ALI. In these experiments, S1P2 KO mice were used to 

evaluate the role of S1P2 receptor, but S1P3 receptors were silenced using nanocarriers injected 

into jugular veins of mice to deliver S1P3 siRNA to the lung vessels. After 5 days, murine lung 

tissue homogenates were assessed for silencing of the S1P3 receptors by immunoblot. Lung 

injury induced by LPS was significantly attenuated in S1P2 KO mice, but also in mice whose 

S1P3 receptors were selectively silenced by S1P3 siRNA [421,422,425,426]. Collectively, these 

findings emphasize the role played by S1P in endothelial barrier regulation in in vivo models of 

lung permeability. 

 

1.7.4.2 S1P and anaphylaxis: Anaphylaxis is a systemic often life–threatening allergic reaction 

[427,428]. Anaphylaxis is associated with exaggerated vasodilation and bronchoconstriction, 

severe laryngeal (voice box) edema, hypothermia and decreased cardiac pressure. Experimental 

models are normally generated in two different ways via: (1) passive anaphylaxis in 

nonimmunized animals, in which animals are injected with antibodies, or (2) active anaphylaxis 

in which animals are immunized with antigen(s). IgE–induced passive anaphylaxis is elicited by 

injecting mice with IgE antibodies 24–48 hours before an intravenous challenge with a specific 

antigen. The anaphylactic shock develops within minutes and can be assessed by monitoring the 

decline in body temperature. IgE–induced anaphylaxis can be abrogated in mice deficient in 

FcεRI, a high–affinity IgE receptor [429,430] or using histamine receptor antagonists [431,432]. 

This means that anaphylaxis can also be induced by intravenous injection of histamine [260], and 
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this method is widely used as a means of establishing anaphylactic reaction in experimental 

animals. Active systemic anaphylaxis is generated by an intravenous injection of antigen, into 

mice immunized with that antigen. Symptoms similar in kinetics to passive anaphylaxis develop 

post-immunization [433,434]. 

Anaphylaxis impairs the function of various organs, increases endothelial permeability 

and fluid extravasation [427]. S1P or histamine plasma concentrations are increased following 

anaphylaxis [435]. In experiments where SK-1–deficient mice were used, plasma S1P and mice 

survival sharply dropped. However, in SK–2 deficient mice which are usually associated with an 

increase in plasma S1P levels, better recovery and survival were reported after anaphylactic 

shock [435]. Also pS1Pless mice (mice lacking circulating S1P) exhibited increased vascular 

leakage, and poor survival following anaphylactic or histamine challenge. Vascular leakage and 

mice survival were improved upon restoration of S1P following wildtype erythrocytes 

transfusion (a rich source of plasma S1P) or intravenous delivery of S1P1 receptor agonist 

(SEW2871) [419]. These findings highlight the role of plasma S1P and endothelial S1P1 receptor 

interaction in maintaining endothelial barrier function.  

Pharmacological blockade or genetic deletion of S1P2 decreased histamine–induced 

vascular leakage or hypothermia in a mouse model of anaphylaxis [436,437]. However, evidence 

recently showed that S1P2 prevents endothelial barrier disruption by suppressing eNOS activity 

in an anaphylaxis model [426]. While the S1P–endothelial S1P1 signaling robustly ameliorates 

the symptoms of anaphylaxis, the in vivo role of S1P2 in vascular–related complications arising 

from increased endothelial permeability such as in sepsis or anaphylaxis is yet to be fully 

understood. The role of S1P3 in anaphylaxis has not been demonstrated. 

 

1.7.4.3 S1P and Ischemia–Reperfusion (I/R) Injury: Multiple disease–related conditions are 

associated with I/R injury including cardiopulmonary bypass, transplantation, aneurysm repair, 

stroke and hemorrhage. Ischemia is associated with decreased blood supply to the tissues, thus 

limiting oxygen and nutrient supply needed for cellular metabolism. So resupplying these 

“starved tissue” areas with blood (reperfusion) is associated with induction of oxidative stress, 

generation of ROS, increased endothelial permeability of arterioles and capillaries, which 

collectively can contribute to microvascular injury. In a rat model of orthotopic left lung 

transplantation (native lung replaced with a donor’s), treatment of lung recipient rats with S1P 
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before graft reperfusion improved lung function. This was attributed to S1P–mediated reduction 

in tissue injury, endothelial permeability, cell infiltration, and endothelial cell apoptosis [438]. In 

a rat lung I/R injury model, rats were injected intravenously with S1P prior to pulmonary artery 

ligation and reperfusion. The rats that received S1P treatment displayed lower bronchoalveolar 

lavage albumin content, neutrophil infiltration and inflammatory cells compared to the controls 

[439]. In another study of mouse hepatic I/R injury which is known to complicate acute kidney 

injury, mice pretreated with S1P exhibit less systemic inflammation, permeability and 

endothelial injury (apoptosis) compared to mice that never received S1P treatment [402,440]. All 

these studies indicate the potential usefulness of S1P as therapeutic agent for I/R injury. Apart 

from the role of S1P on endothelial barrier, S1P also controls vascular tone by regulating 

vasodilation and vasoconstriction. 

 

1.7.5 S1P and vasodilation 

S1P–induced vasodilation is predominantly mediated via eNOS activation 

[33,34,121,122,441,442]. The pathway through which S1P activates the S1P receptors in 

endothelial cells leading to eNOS activation is relatively well defined. There are two major 

inter–related mechanisms through which eNOS activity is regulated by S1P: (a) phosphorylation 

of eNOS, which involves multi–enzyme steps leading to the phosphorylation of serine 1177 

residue in human cells (but ser1176 in a mouse). eNOS phosphorylation that occurs within the C 

terminus region leads to eNOS activation in the presence of [Ca2+]i [443]. S1P–induced eNOS 

activation via pertussis toxin–sensitive G protein (Gαi)–coupled S1P receptors/Rac1, results in 

downstream activation of PI3K, and ultimately protein kinase B (also known as Akt) which 

phosphorylates eNOS at the serine 1177 residue [33,442,444,445]. While S1P1–3 receptors 

express Gαi–protein and have the potential to mediate eNOS activation, only S1P1 and S1P3 

receptors promote eNOS activation [33]. In contrast, activation of S1P2 receptors suppresses 

eNOS activation [426], suggesting that the induction of vasodilation by S1P depends on receptor 

subtype and/or the balance of the signals generated through S1P receptors. (b) The eNOS–

caveolin regulatory cycle, in which eNOS is targeted to the invaginated domains of the cell 

membrane called caveolae (described above) where its activity is regulated by binding to 

caveolin [446-451]. In the caveolae, eNOS interacts with cav-1 in endothelial cells or cav3 as 

shown in cardiac myocytes [441,448-451]. This direct interaction between eNOS and caveolin 
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leads to inhibition of eNOS activity, in a process involving the binding of caveolin to eNOS 

which prevents interaction of eNOS with its co-factor tetrahydrobiopterin [452,453]. However, 

when endothelial cells are stimulated to increase [Ca2+]i, CaM stimulates activation of eNOS 

promoting NO production. The S1P1 receptors are also targeted to caveolae, establishing an 

important physical proximity for S1P–induced eNOS activation. S1P–mediated activation of 

eNOS is associated with an increase in [Ca2+]i in cultured endothelial cells [454-456] and 

chelation of [Ca2+]i  abrogates S1P–induced NO generation [33,457]. Overexpression of caveolin 

in cells co-expressing eNOS and S1P1 receptors significantly decreased S1P–induced eNOS 

activation [441]. Taken together, the regulatory processes involving a caveolin/CaM switch or 

the S1P/S1P receptor–Rac1/PI3K/Akt signaling pathway play key roles in determining the eNOS 

activity.  

S1P induces eNOS–dependent vasodilation of epinephrine–preconstricted mesenteric 

arterioles isolated from mice or rats [34,458,459]. Antagonizing the S1P1 receptor promotes 

S1P–induced vasoconstriction in rodent cerebral arteries [460]. HDL (a carrier that is rich in 

S1P) stimulates vasodilation via the S1P3 receptor and eNOS activation of phenylephrine–

preconstricted thoracic aorta segments isolated from mice or rats [461]. Also FTY720 mediates 

eNOS–dependent vasodilation of phenylephrine–preconstricted mouse thoracic aorta 

preparations via the S1P3 receptor [462,463].These studies, underscore the mechanisms through 

which S1P induces vasodilation, principally via eNOS activation and NO production. The 

mechanism through which NO stimulates vasodilation was described earlier. Although S1P [464] 

or HDL [465] have independently been linked to the increased release of PGI2 in VSMCs, these 

events have not been linked with vasodilation. 

 

1.7.6 S1P and vasoconstriction 

S1P increases vasoconstriction via Rho kinase and Ca2+-dependent mechanisms as 

previously described [466,467]. S1P mobilizes Ca2+ from intracellular stores in rat cerebral 

arteries, but also in cultured VSMCs derived from rat aorta [468-470]. The contraction induced 

by S1P via S1P receptors in the VSMCs occurs in part in a RhoA/Rho kinase–dependent manner. 

Using pharmacological agents C3 botulinum toxin, an inhibitor of RhoA, or Y–27632, a ROK 

inhibitor, the contraction elicited by S1P in cultured human coronary artery smooth muscle cells 

was significantly attenuated. S1P–induced vascular tone also occurs in human placental arteries 
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via Rho kinase [471-473]. Further, the dependence of RhoA by S1P in the induction of 

contraction has been shown in cultured VSMCs derived from rat cerebral arteries [469]. Y–

27632 counteracts S1P–induced vasoconstriction in canine basilar arteries [474], and in hamster 

gracilis muscle small resistance arteries [475]. The role of PKC in S1P–induced contraction has 

also been demonstrated [476-479]. The S1P-induced Ca2+–dependent mechanism for induction 

of vasoconstriction is mediated through the L–type voltage operated Ca2+ channels [476,480]. 

This means that both the Ca2+–dependent and independent mechanisms are involved in S1P–

induced vasoconstriction [476,480]. Even so, the induction of these downstream mechanisms 

depends on the S1P receptors activated.  

S1P loses its vasoconstricting activity in basilar arteries from mice lacking the 

S1P3 receptor, but vasoconstriction in arteries from S1P2 receptor deficient mice was unchanged. 

The authors also showed that in rat basilar arteries pretreated with VPC23019 (an S1P1/S1P3 

receptor antagonist), S1P–induced constriction was significantly decreased, suggesting that the 

S1P3 receptor is important in the induction of vasoconstriction by S1P in these arteries 

[460,468]. The S1P3 receptor is also involved in the induction of myogenic tone and 

vasoconstriction of rat or canine cerebral arteries, respectively [87,481]. On the other hand, the 

S1P2 receptor KO mice display markedly decreased mesenteric and renal vascular resistance 

compared to their littermate controls, suggesting that the S1P2 receptor is important in 

maintaining basal tone in these arteries [482]. Genetic inactivation of S1P2 receptors with 

antisense oligonucleotides in isolated hamster gracilis muscle resistance arteries showed 

significantly decreased myogenic tone induced by S1P [472]. Another group demonstrated that 

S1P binding to S1P2 receptors stimulates vasoconstriction in the pulmonary vasculature [472]. 

While S1P–mediated stimulation of S1P2 or S1P3 receptors have been attributed to 

vasoconstriction, emerging evidence suggests that the S1P1 receptor, which is traditionally 

known to induce vasodilation when engaged on the endothelial cells, induces vasoconstriction 

when engaged on smooth muscle cells. Recently, SEW2871 was independently shown to 

constrict renal afferent arterioles via L–type voltage–dependent Ca2+ channels [480]. Also 

SEW2871 was shown by another group to potentiate the vasoconstriction induced by 

phenylephrine or serotonin in rat mesenteric and coronary arteries [118]. Further, pressure or 

S1P–induced myogenic tone was shown to be inhibited when rabbit posterior cerebral arteries 

were pretreated with an S1P1 receptor antagonist (W146) [87]. Thus, S1P may differentially 
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evoke vasoconstriction depending on the S1P receptors expressed in different organs, and also 

the animal species being studied. 

 

1.7.7 Vascular tone control by S1P  

As described earlier, vascular tone is the balance between vasodilation and 

vasoconstriction, and S1P stimulates both. The S1P–mediated regulation of vascular tone 

depends on the balance of receptors activated on the endothelium compared to the VSMCs [34]. 

Simply put, the induction of an overriding response by S1P leading to vasodilation or 

vasoconstriction, depends on how strongly or weakly the S1P receptors that evoke either of these 

responses are stimulated. As described, S1P induces vasodilation primarily via S1P1
 
or S1P3

 

receptors on the endothelium through eNOS activation leading to NO production, but also 

induces vasoconstriction through S1P2, S1P3 and perhaps S1P1 receptors on the VSMCs (Figure 

1.11) [34,386]. S1P has been shown to constrict renal, mesenteric, cerebral and basilar arteries 

from mammals and human placental arteries. Large conduit arteries, like aortas, exhibit 

vasodilator effects to S1P after preconstruction [386]. Although signals through both S1P2 and 

S1P3 induce vasoconstriction, their importance differs depending on the vascular bed. While 

activation of S1P3 induces constriction in cerebral arteries, S1P2 activation has no effect [460].  

Generally, higher S1P concentrations are needed to stimulate vasoconstriction (≥ 0.1 

µmol/L) compared to S1P–induced vasodilation, which typically shows an EC50 in the low 

nanomolar range [33,460,483-485].Taken all together, the regulation of vascular tone by S1P 

depends on different experimental variables: the S1P concentrations used, the S1P receptors 

expressed and stimulated, the vascular bed and animal species under investigation. The access of 

circulating S1P to the VSMCs to stimulate vascular tone will need to be transcytosed or pass in 

between endothelial junctions, however, the role of these mechanisms and their contribution to 

vascular tone remain to be demonstrated. 

Like S1P, TXA2, another bioactive lipid, controls vascular tone. TXA2 has been shown to 

increase the release of S1P from cultured human platelets [486] but this relationship has not been 

developed any further. TXA2 is generated from AA through a series of enzymatic actions. 
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and glycerides [491-493] [494]; (2) microsome–bound nicotinamide adenine dinucleotide 

phosphate (NADP+)–dependent dehydrogenase producing 5–oxo–6E,8Z,11Z,14Z–

eicosatetraenoate [495]; (3) a C–20 hydroxylase forming 5, 20–dihydroxy–eicosatetraenoate 

[493]; (4) Arachidonate 15–lipoxygenase–1, 15–lipoxygenase–2, or 12–lipoxygenase to 5,15–

dydroxy–eicosatetraenoate [490,496]; (5) 12–lipoxygenase to 5,12-dihydroxy-eicosatetraenoic 

acid [497]; and f) COX–2 to 5,15– dihydroxy-eicosatetraenoic acid and 5,11– dihydroxy-

eicosatetraenoic acid [498]. 

Alternatively, 5–hydroperoxyicosatetraenoic acid can further be converted by 5–

lipoxygenase to leukotriene intermediates (Figure 1.12) like leukotriene A4 (LTA4), which 

ultimately has two fates. First, LTA4 hydrolase cleaves the ether bond in LTA4 forming 

leukotriene B4. Second, glutathione–S–transferase catalyzes the conjugation of LTA4 with a 

tripeptide molecule, glutathione, forming leukotriene C4. Cleavage of the gamma–glutamyl 

moiety in leukotriene C4, by gamma–glutamyl transpeptidase generates leukotriene D4. 

Leukotriene D4 is degraded by a dipeptidase to Leukotriene E4 and a cysteinyl fatty acid 

backbone. Leukotrienes are powerful vasoconstricting and permeability enhancing agents [499]. 

AA can also be metabolized to different prostaglandin and thromboxane products by 

COXs as described below [500,501]. 

 

1.8.1 Regulation of the functions of COX-1 and COX-2  

COX–1 and COX–2, also known as prostaglandin-endoperoxide synthase–1, 2, 

respectively, are highly homologous structurally, but their activity and expression are regulated 

differently, and these enzymes can function independently within the same cell type [502]. The 

activity of these enzymes depends on the presence of lipid peroxides; for example, the activation 

of COX–2 requires ten–fold lower concentrations of hydrogen peroxide compared to COX–1, 

suggesting that COX–2 can function in the presence of COX–1, while the activity of COX-1 

remaining minimal [503,504]. AA is the preferred substrate for COX–1, while COX–2 can 

metabolize both AA and 2–arachidonyl glycerol. This means that COX–2 can generate products 

that COX–1 cannot synthesize [501]. Expression: COX–1 and COX–2 are both expressed in the 

endothelium and VSMCs of healthy blood vessels, with COX–1 being the dominant isoform 

[505,506]. COX–1 splice variant (enzymatically active), termed COX–3, is expressed in the 

heart and cerebral cortex, but it is not functional in humans [507]. COX–1 is constitutively 
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expressed in most tissues but it is overexpressed under conditions of shear stress [508]. COX–2 

is normally induced during inflammation, but it is also constitutively expressed in some cells like 

endothelial cells [509]. The expression of COX–2 is also increased by viral infections such as 

CMV [510,511]. 

 

1.8.1.1 TXA2 biosynthesis and related pathways  

AA is sequentially broken down to TXA2, a potent vasoconstrictor, initially described as 

a rabbit aorta–contracting substance [512]. In the synthesis of TXA2, AA is metabolized by 

COX–1 and COX–2, to PGH2. PGH2 has several fates: (1) PGH2 can be converted to 

prostaglandin (PG) D2 (PGD2) by PGD synthase [513,514]. (2) Prostaglandin E synthase also 

converts PGH2 to prostaglandin E2, which is rapidly converted to prostaglandin F by PGE 9–

ketoreductase. Alternatively, prostaglandin F can be synthesized through two additional 

pathways from PGD2, or directly from PGH2 by PGD 11–ketoreductase, or PGH 9–,11–

endoperoxide reductase, respectively [515]. (3) Prostacylin synthase (also known as PGI2 

synthase) can also metabolize PGH2 to PGI2, which is further non–enzymatically converted to 6-

keto PGF1α. 6–keto PGF1α serves a marker of PGI2 biosynthesis in vivo [516,517]. (4) Finally, 

PGH2 can also be converted to TXA2 by thromboxane synthase [518]. Like PGI2, TXA2 is non–

enzymatically converted to TXB2 which is used a marker for in vivo biosynthesis of TXA2. The 

conversion of PGH2 to TXA2 is accompanied with the production of other metabolic 

intermediates such as 12–hydroxy–5, 8, 10–heptadecatrienoic acid and malondialdehyde (Figure 

1.12) [519,520]. However, it is unknown whether these intermediates have vascular–related 

effects. Thromboxane synthase has a molecular weight of 60 kDa and is found in platelets [518], 

the stomach, duodenum, colon, kidney and the spleen [521]. Other substrates for thromboxane 

synthase include AA, which is converted to TXA2, but also 5, 8, 11, 14, 17–eicosapentaenoic 

acid which is converted to TXA3. TXA3 is less potent in platelet aggregation than TXA2 and its 

vascular effects are not known [522]. Different cells produce TXA2 including endothelial cells 

and smooth muscle cells [487,520]. 

 

1.8.1.2 The biological functions of TXA2 

TXA2 is quite a labile molecule with a chemical half–life of approximately 30 seconds, 

and thus, TXA2 acts locally as an autacoid in an autocrine or paracrine manner. TXA2 exerts its 
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actions through two thromboxane/prostanoid (TP) receptors. The first human TP receptor was 

cloned from the placenta [523,524], and the second one from human endothelial cells [525].The 

TP receptor originally identified in the placenta is now called TPα, and the one from endothelial 

cells is called TPβ. The two receptors are structurally similar but they differ at the C–terminus 

with TPβ having an elongated cytoplasmic tail. Both of these receptors are coupled downstream 

to different G proteins including Gq [526] and G12/13 [527], through which TXA2 promotes 

different biological events. In humans, both TPα and TPβ receptors are expressed, but in rodents 

only TPα receptors are expressed [528]. While TXA2 is the preferential ligand for TP receptors, 

PGH2, isoprostanes and HETEs can also activate TP receptors [529]. In contrast, EETs function 

as endogenous antagonists of TP receptors [530,531]. 

TXA2 causes platelet activation with changes in morphology and aggregation. These 

events promote thrombus formation and blood clotting, the most important known function of 

TXA2 that prevents excessive bleeding [532]. However, thrombus formation and 

vasoconstriction mediated by TXA2 have also been linked to fatal acute myocardial infarction 

and cerebral infarction [533]. As a negative feedback mechanism, TXA2 produces PGI2 which 

will reduce platelet aggregation [534]. TXA2 is also associated with cardiovascular–related 

complications such as hypertension, atherosclerosis, and endothelial dysfunction [535].  

In endothelial cells, TXA2 increases endothelial permeability and surface expression of adhesion 

molecules associated with inflammation including intracellular adhesion molecule–1, vascular 

cell adhesion molecule–1 and endothelial leukocyte adhesion molecule–1 [536,537]. However, 

TXA2 decreases the expression of leukocyte adhesion molecule [538]. TXA2 also causes 

endothelial cell migration and angiogenesis [539]. In the smooth muscle, TXA2 potently 

constricts various smooth muscles including the aorta [512], bronchial [540], intestinal [541], 

uterine [542] or urinary bladder [543]. TXA2-induced constriction has been associated with 

hypertension [544], including pregnancy-induced hypertension [545], and asthma [546].The 

clinical relevance of TXA2 has been shown, with the availability of thromboxane synthase 

inhibitors and TP antagonists which have the potential for treatment of several disorders like 

asthma and thrombosis [547-549]. 
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1.8.1.3 TXA2 and vascular tone control  

The endothelium regulates arterial tone by producing vasorelaxing and contracting 

factors. TXA2 is a contracting factor produced in the endothelium from AA which in turn is 

released to the VSMC where it stimulates TP receptors inducing vasoconstriction [550,551]. 

Stimulation of TP receptors on the VSMCs leads to Ca2+- or Rho kinase-dependent induction of 

vasoconstriction as already described [552,553]. Apart from directly inducing vasoconstriction, 

another mechanism through which TXA2 controls vascular tone is by directly reducing 

vasorelaxation mediated by many vasodilators including NO, PGI2, and EDHF [554]. Indeed, in 

piglet pulmonary arteries, relaxations to acetylcholine and the NO donor sodium nitroprusside 

(SNP) are reduced in U46619 (TXA2 mimetic)-contracted arteries compared with those 

contracted with either noradrenaline or endothelin–1 [555]. Elevated levels of TXA2 in human 

neutrophils is associated with increased hydrogen peroxide and superoxide generation [556], but 

also activation of TP receptors in bovine aortic endothelial cells increases peroxynitrite ROS 

generation [557]. ROS causes oxidation and reduces the bioavailability of the eNOS cofactor 

tetrahydrobiopterin [557], causing eNOS uncoupling [558], but they have also been shown to 

maintain the stability of TP receptors at the plasma membrane [559]. Collectively, these findings 

indicate a positive feedback loop through which TXA2–induced ROS formation ultimately favors 

a contractile phenotype. 

 

1.9 Infections, inflammation and vascular function  

Infections such as those resulting from an obligate intracellular bacterium Chlamydia 

pneumonia contribute to the pathogenesis of atherosclerosis in healthy individuals [560] and in 

end–stage renal disease patients [279]. C. pneumonia infections have been linked to endothelial 

dysfunction in apolipoprotein E–KO mice [561]. Viral infections such as adenovirus trigger 

inflammatory responses that cause endothelial injury [562]. HIV infection causes endothelial 

injury rendering it dysfunctional, facilitating inflammation and development of cardiovascular 

disease [563]. Persistent infections have been associated with endothelial dysfunction in humans, 

in which prior infection with C. pneumonia, Helicobacter pylori, hepatitis A virus, herpes 

simplex virus type 1 and CMV are risk factors for the development of coronary endothelial 

dysfunction [564]. 

A number of studies have indicated that there is a link between infection–mediated 
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induction of inflammation and the risk for development of cardiovascular disease [565]. One of 

the ways infection can contribute to increased inflammation is by promoting increased 

production of pro-inflammatory cytokines. The exposure of endothelial cells to these type of 

cytokines increases the expression of cell–surface adhesion molecules associated with 

inflammation [566], and this has been associated with impaired endothelium–dependent 

vasodilation [567]. Increased CRP is associated with decreased forearm blood flow in response 

to acetylcholine in patients with coronary artery disease [282]. Other studies have also indicated 

that CRP can independently affect endothelium–dependent vascular function in healthy subjects 

[568] and in coronary heart disease patients [569]. These data show that chronic low‐grade 

inflammation decreases basal endothelial NO synthesis. Studies by Hingorani et al demonstrated 

a link between inflammation and endothelial dysfunction in humans. In this study, 12 healthy 

subjects were vaccinated against Salmonella typhi and the mild inflammatory reaction that 

developed from vaccination caused a transient but profound dysfunction of the arterial 

endothelium (decreased vasodilation) [570]. Indirect evidence of a link between inflammation 

and endothelial dysfunction has also been shown in type–1 diabetic patients who show increased 

CRP and endothelium‐derived proteins, such as von Willebrand factor and adhesion molecules 

(ICAM–1) [571]. Increased levels of ICAM–1 are also used as a marker of endothelial function,  

and has been shown to correlate with CRP in predialysis patients [281]. 

Collectively, these findings suggest that the inflammation induced by infections can 

contribute to endothelial dysfunction and ultimately impaired vascular function. Hemmings’ Lab 

previously showed vascular dysfunction in arteries isolated from CMV–infected mice compared 

to uninfected controls (described later) [572-574].  

 

1.9.1 CMV infection 

The seroprevalence of CMV in the human population ranges between 30% and 90% in 

developed countries, and the seroprevalence increases with age [575,576]. CMV can be 

transmitted through saliva, placental transfer, sexual contact, breastfeeding, blood transfusion, or 

cell transplantation [577]. Primary CMV infection in immunocompetent hosts is normally 

asymptomatic except occasional cases of mononucleosis, after which the virus establishes 

lifelong infection within the host and is periodically reactivated [578]. The mechanism by which 

CMV establishes and maintains latency and is reactivated is still not fully understood, 
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particularly in humans. CMV viral latency is established in the haematopoietic progenitors in the 

bone marrow, while the cells of myeloid lineage (particularly monocytes) serve as a 

reservoir/carriers of the viral genome. However, reactivation occurs in the terminally 

differentiated myeloid macrophages and dendritic cells. Interestingly, the CMV viral genome is 

not carried in the lymphocyte population nor is there evidence for the establishment of viral 

latency in endothelial cells. Experimental data suggest that endothelial and neuronal progenitor 

cells may be sites of latency, but these findings remain unsupported by lack of data from natural 

latency in humans. Nevertheless, it is important to recognize that other sites of latency may still 

exist [578-580]. The virus is known to re–enter the lytic stage of the viral life cycle in the 

presence of certain environmental cues like weakened immunity or stress, which favours the 

production of viral progeny, causing an acute infection. In individuals who are 

immunocompromised or whose immune system is not fully developed CMV infection can cause 

morbidity and mortality [580-582]. 

 

1.9.1.1 CMV infection: Clinical manifestations  

The clinical manifestations of CMV infections in those with weakened immunity (such as 

transplant patients who undergo bone marrow transplants) include increased fever, malaise, 

leucopenia, encephalitis, pneumonitis, hepatitis, uveitis (inflammation of the pigmented layer of 

the eye), retinitis, gastrointestinal disease and graft rejection [583,584]. If primary infection or 

reactivation of CMV occurs during pregnancy, this can be associated with serious fetal 

complications including microcephaly, mental retardation, anaemia, thrombocytopenia, deafness, 

and optic nerve atrophy which can cause blindness [583,585]. Although immunocompetent 

individuals are generally asymptomatic to CMV infection, CMV has been implicated in 

proliferative and inflammatory diseases [586] such as cancer (colon, breast, and prostate), 

atherosclerosis [586] and vascular dysfunction [572-574]. The proposed mechanism through 

which CMV contributes to atherosclerosis involves virus–induced vascular inflammation, 

smooth cell proliferation, uptake of low–density lipoproteins and narrowing of the vessel lumen 

[587,588].  

 

1.9.1.2 CMV infection: Treatments 

Currently there are no approved vaccines available against CMV infection [589,590]. 
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One of the most characterized vaccine candidates is the attenuated Towne CMV strain, which 

has been shown to reduce CMV disease in healthy volunteers (who were challenged with viral 

infection) and transplant recipients, but it failed to prevent CMV infection [590-594]. Low–risk 

poxviral vectors have been used as vaccine carriers of recombinant gB and pp65 [590,595] and 

DNA vaccines have also been evaluated with the aim of eliciting both humoral and cell mediated 

immunity. However, limited success has been achieved [589,590,596]. Therefore, creating a 

successful vaccine against CMV remains a priority. 

Anti–CMV drugs are available which can reduce/eliminate viremia or control CMV 

disease. These drugs include ganciclovir, valganciclovir, foscarnet, and cidofovir [597-600]. 

Ganciclovir is a nucleoside analog of 2’-deoxyguanosine that is activated by phosphorylation in 

CMV–infected cells and works by inhibiting viral DNA polymerase, and thus interfering with 

DNA replication. This prevents virus–specific polypeptide formation, interrupts cell–to–cell 

spread and virus–induced cytopathic effects [600,601]. Foscarnet also interferes with viral 

replication by binding to CMV DNA polymerase [599,602]. Cidofovir is an acyclic phosphonate 

analog of cytosine which inhibits CMV DNA synthesis by chain termination following 

incorporation of two consecutive cidofovir molecules at the 3'–end of the DNA chain [603]. 

Unfortunately, the use of these drugs has a number of drawbacks that limit their effectiveness. 

Many patients suffer from poor oral bioavailability, low potency, drug–resistant virus strains and 

various toxicities associated with these drugs including nephrotoxicity, neutropenia and bone 

marrow suppression [599,600,604,605]. This means that the search for better therapeutic agents 

is also needed.  

Currently a panel of drugs are under investigation for treatment of CMV infection 

including: maribavir, an oral drug with specific activity as an inhibitor of CMV viral protein, 

UL97 protein kinase [605-607]. Letermovir is an inhibitor of CMV terminase enzyme [608,609] 

and is given orally or intravenously. Letermovir has been shown to be highly effective against 

wildtype and drug–resistant CMV in vitro, and is currently undergoing a phase III clinical trial 

[605,606,610]. Brincidofovir is a lipid-conjugated nucleotide, which is an analogue of cidofovir. 

Brincidofovir has been credited for its high oral bioavailability and long half–life, and broad 

spectrum antiviral activity against herpesviruses, polyomaviruses, adenoviruses, 

papillomaviruses, and variola virus [605,607]. The potential of brincidofovir as an anti–CMV 

therapy is currently being evaluated in phase III clinical trials [606]. Finally, artesunate, an 
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antimalarial drug exhibits antiviral activity in vitro against herpesviruses [611], hepatitis viruses, 

and HIV and is currently being investigated for its effectiveness as a therapeutic agent against 

CMV infection [605].  

 

1.9.1.3 The CMV virion structure and overview on cell entry 

CMV is a member of the Herpesviridae family [612,613]. The virion has an icosahedral 

(20 sides) protein nucleocapsid [614] that contains double–stranded DNA located in the central 

core of the virion [615,616]. The nucleocapsid is surrounded by a protein–rich tegument region, 

which is enclosed in a glycoprotein–rich lipid bilayer envelope [617]. CMV has a broad tropism 

and can infect different cell types including neutrophils, monocyte/macrophages/dendritic cells, 

VSMCs, endothelial cells, epithelial cells, hepatocytes, fibroblasts and neuronal cells 

[613,618,619]. CMV virions gain entry into host cells through a membrane fusion event, 

involving the interaction between the glycoproteins on the CMV envelope and the specific 

receptors on the outer membrane of the host cell [620]. This initial interaction promotes 

intracellular signaling, membrane fusion, and ultimately, the release of the viral genomic DNA 

and tegument into the host cell. The tegument proteins mediate the delivery of the DNA–

containing nucleocapsid to the nuclear pore complex and the release of the viral DNA into the 

nucleus [621]. This initiates the lytic stage of the viral life cycle [620]. The viral gene expression 

occurs in the order (Immediate-Early, Early, Early–Late, and Late) during the viral life cycle. 

The tegument proteins also play additional roles including viral replication, gene expression, 

immune evasion, viral reassembly and egress of new infectious virions [621]. 

 

1.9.1.3.1 Proposed entry mechanisms: role of CMV glycoproteins and cell receptors  

CMV can bind, enter and establish a productive infection in virtually all vertebrate 

cells [622]. This means that CMV likely utilizes multiple receptors to enter and infect different 

cell types. Various cellular molecules have been proposed as cell entry receptors (or as 

mediators) for CMV including: heparan sulfate proteoglycans (HSPGs), epidermal growth factor 

receptor (EGFR), platelet–derived growth factor receptor–α (PDGFRα), BST2 also known as 

tetherin, and integrins [623-626]. 

HSPGs/ EGFR: Initially it was proposed that cell entry by CMV involved the binding of 

CMV envelope glycoproteins gM/gN and/or gB to cellular HSPGs, and that gB interacted with 
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EGFR to stably dock the virus on the cell (Figure 1.13). EGFR was reported to promote CMV 

entry in fibroblasts and breast cancer cells [625,627]. The evidence that gB interacted with 

EGFR came from co–immunoprecipitation experiments. While gB lacks a EGF–like domain, 

studies demonstrated that it displayed an epitope homologous to a distinct region of EGF 

[625,628]. However, EGFR was subsequently found not to be activated by CMV in fibroblasts, 

and neither did antagonizing EGFR prevent CMV cell entry. Further, there was no correlation 

between EGFR expression and CMV infection, and the use of neutralizing antibodies against 

EGFR failed to prevent CMV entry into fibroblasts, epithelial or endothelial cells [629]. 

However, two years later another group provided evidence that EGFR expressed in human 

peripheral blood monocytes promoted CMV entry into monocytes. The binding of CMV to 

EGFR induced signalling that caused monocyte motility and transendothelial migration, a feature 

that is important for viral dissemination. EGFR was not found to be expressed in other 

circulating leukocytes [630]. Thus far, since gB binds to EGFR, EGFR could be functioning as a 

docking site for CMV and also as a receptor for viral entry but this is dependent on the cell type.  

PDGFRα: CMV infection of fibroblasts was also shown to activate PDGFRα signalling 

[624] which promoted CMV entry, and early stages of CMV replication. Inhibiting PDGFRα 

activity via siRNA–mediated silencing, use of PDGFRα inhibitor (Gleevec) or a PDGFRα–

neutralizing monoclonal antibody all inhibited the production of CMV immediate early genes 

[624,627]. However, recent evidence thwarted the idea that PDGFRα may be a CMV entry 

receptor. In fact PDGFRα was demonstrated not to directly interact with CMV; instead the role 

of PDGFRα is simply “facilitative" by promoting a dynamin–dependent endocytosis of CMV 

[631].  

BST2/tetherin: Recently, a study showed that transduction of a human monocytic cell 

line (THP–1 cells) with an interferon–inducible protein (BST2/tetherin) enhanced CMV 

(AD169, lab strain) cell entry [623]. However, BST2 has been shown not to be necessary for 

CMV infection, as infection occurs in the absence of BST2. While the mechanism through which 

BST2 enhances viral entry remains unclear, the authors suggested that BST2 may be acting as 

co–factor, or co–receptor that facilitates cell entry [623].  

Integrins: Integrins play a prominent role in CMV cell entry by collaborating with innate 

immune responses (Figure 1.13) [632,633]. CMV gB protein contains a disintegrin domain that 

binds cellular integrin subunits α2β1, α6β1, and αVβ3 promoting intracellular signaling. CMV 
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entry is inhibited when gB disintegrin is targeted by binding peptides, or the cellular integrins 

targeted by specific antibodies [627,633]. gB interacts with β1 integrins facilitating CMV 

internalization. It is proposed that integrins serve as co-receptors (with other receptors) in the 

CMV entry process [627,634,635]. The binding of gB induces the release of type I interferons 

through interferon regulatory factor–3 [632]. The interaction between gB/gH and toll–like 

receptor–2, a host innate immune sensor that detect pathogen–associated molecular patterns 

displayed on CMV stimulates the activation of NF–κB/Sp1 and release of proinflammatory 

cytokines [632,636]. The intracellular signaling mechanisms promote CMV–cell fusion, 

internalization, and viral entry (Figure 1.13) [627,637].  

 

HCMV envelope glycoprotein Binding molecule on the cell Role in HCMV entry process 

1. gM/gN or gB HSPGs Tethering, signalling 

2. gB EGFR Fusion, docking and signalling 

3. gB Integrins Fusion, internalization and 

signalling 

4. gB TLR2 Innate immune response 

5. gH/gL/gO ? Fusion process 

 

Table 1.1: CMV glycoproteins and cellular molecules involved in CMV entry into cells 

 

1.9.1.3.2 Cytoplasmic–nuclear translocation of internalized CMV virion components 

The events that follow viral internalization in permissive host cells, is the release of the 

capsid and tegument proteins to the host cell. The capsid then travels along the microtubule 

networks to the nucleus where the viral genome is released in order for viral DNA replication to 

occur. Along with the viral capsid, also transported to the nucleus are tegument proteins (such as 

pUL84, UL69, pp71) necessary to support viral DNA replication in the nucleus [638,639]. 

However, the transport of these tegument proteins is different from that of the capsid. The host 

cell importin–α proteins interact with viral tegument protein cargoes (pUL84, UL69, pp71) at 

specific regions of amino acids called nuclear localization signals [640]. The importin–α links 

the cargo to the β–karyopherin importin–β forming a trimeric complex that is translocated 

through the nuclear pore complex. Once the cargo is delivered in the nucleus, importin–β binds 



to RanGTP (a GTP–binding, Ras

change that results in the release of the cargo.

the cytoplasm, whereas importin–

[640]. In the nucleus, the tegument proteins promote viral DNA replication.

Figure 1.14: Proposed mechanisms for CMV cell entry. 
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promote CMV cell entry. The binding of CMV gB to 

elicits downstream signaling mechanism

from Receptors and immune sensors: the complex entry path of human cytomegalovirus

Compton, 2004. Permission was sought and granted by the primary author and the journal as 

outlined in Appendix. 

1.9.1.3.3 Post nuclear import events: viral replication, reassembly and egress 

Once the viral DNA genome enters the nucleus of the host cell, the virus uses the host 

cell machinery to replicate its DNA 

herpesviruses, involves nuclear and cytoplasmic phases. The nuclear phase involves viral capsid 

assembly, viral DNA synthesis, encapsulation and initial tegumentation 

assembled from various viral proteins and the viral DNA is packaged inside it once replication is 

complete. Capsid reassembly begins outside the nucleus forming procapsid particles 

binding, Ras–related nuclear protein (Ran)), inducing a conformatio

change that results in the release of the cargo. Importin–β complexed with RanGTP is recycled to 

–α is exported complexed with β–karyopherin and RanGTP 

. In the nucleus, the tegument proteins promote viral DNA replication. 

mechanisms for CMV cell entry. HCMV tethers to cellular HSPGs, 

and then docks by binding to EGFR, which depending on the cell type (e.g. monocytes),

The binding of CMV gB to cellular integrins or interaction with 

mechanisms that promotes CMV internalization. Figure obtained 

Receptors and immune sensors: the complex entry path of human cytomegalovirus

Permission was sought and granted by the primary author and the journal as 

events: viral replication, reassembly and egress 

Once the viral DNA genome enters the nucleus of the host cell, the virus uses the host 

cell machinery to replicate its DNA [641]. The CMV replication cycle, like that of many

herpesviruses, involves nuclear and cytoplasmic phases. The nuclear phase involves viral capsid 

assembly, viral DNA synthesis, encapsulation and initial tegumentation [642]. The capsid is 

assembled from various viral proteins and the viral DNA is packaged inside it once replication is 

complete. Capsid reassembly begins outside the nucleus forming procapsid particles 
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events: viral replication, reassembly and egress 

Once the viral DNA genome enters the nucleus of the host cell, the virus uses the host 

The CMV replication cycle, like that of many 

herpesviruses, involves nuclear and cytoplasmic phases. The nuclear phase involves viral capsid 

The capsid is 

assembled from various viral proteins and the viral DNA is packaged inside it once replication is 

complete. Capsid reassembly begins outside the nucleus forming procapsid particles [643,644]. 



 
 

62 
 

These procapsids undergo nuclear import where they are assembled into correctly organized 

capsids (Figure 1.14). This is followed by capsid maturation which includes the elimination of 

scaffolding proteins and packaging of viral DNA into nucleocapsids [642,645]. After viral DNA 

encapsulation, the nucleocapsids begin to egress from the nucleus to the cytoplasm in a complex 

process that must overcome the barriers of the nuclear lamina. This process involves primary 

envelopment of nucleocapsids at the inner nuclear membrane, followed by de–envelopment at 

the outer nuclear membrane [642,646] before release into the cytoplasm. The secondary and final 

envelopment occurs in the cytoplasm in a specialized compartment termed the cytoplasmic virus 

assembly compartment. Here, the nucleocapsids acquire the remaining tegument proteins and 

viral envelope [647,648]. Mature virion particles are then transported to the cell surface via the 

Golgi–derived vesicles (Figure 1.14) and are released into the extracellular compartment by 

exocytosis ~ 72 hours post–infection [645,649-651]. 

 

1.9.1.4 CMV infection: Modulation of vascular function 

CMV infection is generally asymptomatic in immunocompetent hosts with no obvious 

clinical symptoms. However, there is increasing evidence that CMV infection in such individuals 

may contribute to cardiovascular–related disorders like hypertension and atherosclerosis [652-

656]. The prevailing hypothesis is that CMV infection contributes to these diseases by 

stimulating inflammation [657-660] which is important for viral dissemination [661] and so it is 

a viral survival strategy in the host. CMV infects key cell types that are involved in 

cardiovascular function such as VSMCs and endothelial cells [573,662], but also increases the 

expression of molecules associated with inflammation like ICAM–1 [663,664], VCAM–1 [664], 

platelet–endothelial cell adhesion molecule–1 expression [661], and E–selectin [661]. CMV 

infection also increases leukocyte [665-668] and platelet adhesion [669] and cytokine release 

[670,671] which are also associated with inflammation and cardiovascular diseases. The 

microvasculature represents one of the sites where CMV infection could have a great impact on 

vascular function since it is the site that is predisposed to tissue injury following infection. 

Exposure to inflammatory stimuli or infection such as bacterial or viral infection is associated 

with a compromise in endothelial barrier function as this provides an avenue for transmigration 

of immune cells to the site of infection or injury. Upregulation of cell adhesion molecules 

support the trafficking of leukocytes and platelets to areas of demand by passing through the 



 

 

post–capillary microvasculature [661,666

are believed to occur long before the disease manifests itself in large vessels or the appearance of 

clinical symptoms [667,668,672]

permeability by decreasing stress fibre formation and degrading endothelial junctional proteins 

[661]. 

Figure 1.15: CMV infection in a human cell: 

cell through direct fusion and endocytosis releasing nucleocapsids to the cytoplasm. These 

nucleocapsids are transported to the nucleus where viral DNA is delivered. This is fol

viral replication using host machinery, encapsulation of viral DNA, nuclear egress, maturation in 

the cytoplasm and exocytosis of mature virions.

Cytomegalovirus: from Bench to Bedside

and granted by the primary author and the journal as outlined in Appendix.

 

CMV infection also causes thickening of arterial walls 

arteriolar dysfunction [674]. Khoretonenko et al demonstrated that mice infected with

exhibited decreased arteriolar vasodilation to acetylcholine, significantly increased leukocyte 

adhesion and migration, and platelet adhesion in the arterioles and post

[661,666-668,672]. These events contribute to inflammation and 

before the disease manifests itself in large vessels or the appearance of 

[667,668,672]. Indeed human CMV infection increases endothelial 

permeability by decreasing stress fibre formation and degrading endothelial junctional proteins 

: CMV infection in a human cell: The life cycle begins with CMV entry into the 

cell through direct fusion and endocytosis releasing nucleocapsids to the cytoplasm. These 

nucleocapsids are transported to the nucleus where viral DNA is delivered. This is fol

viral replication using host machinery, encapsulation of viral DNA, nuclear egress, maturation in 

the cytoplasm and exocytosis of mature virions. Figure obtained from Immunobiology of Human 

Cytomegalovirus: from Bench to Bedside by Tania and Khanna, 2009. Permission was sought 

and granted by the primary author and the journal as outlined in Appendix. 

CMV infection also causes thickening of arterial walls [673], arteriopathy

Khoretonenko et al demonstrated that mice infected with

exhibited decreased arteriolar vasodilation to acetylcholine, significantly increased leukocyte 

adhesion and migration, and platelet adhesion in the arterioles and post–capillary venules 
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compared to uninfected controls [675]. Recently, the same group showed the role of platelets in 

enhancing CMV-mediated vascular dysfunction in mice. First they showed that platelet depletion 

(using anti-platelet antibodies) was associated with decreased vasodilation of arterioles from 

CMV–infected compared to uninfected mice. Using bone marrow chimeric mice lacking P–

selectin, vasodilation was normalized in arteries from CMV–infected mice compared to 

uninfected controls. These findings suggest that during CMV infection, P–selectin is involved in 

the suppression of vasodilation, although the exact mechanism remains to be defined [676].  

The Hemmings’ Lab has previously shown that mesenteric arteries isolated from young 

latently infected mice by CMV display decreased vasodilation to methacholine and increased 

vasoconstriction to phenylephrine. However, uterine arteries exhibited increased vasodilation 

and vasoconstriction compared to age-matched uninfected controls [677]. Hemmings’ Lab also 

showed that active CMV infection directly infects endothelial and VSMCs in uterine arteries 

isolated from pregnant mice, and these effects were associated with significantly increased 

vasoconstriction to phenylephrine and decreased vasodilation to methacholine [572,573]. 

Mesenteric arteries isolated from CMV–infected nonpregnant mice, stimulated with the 

endothelium–dependent vasodilator (methacholine) or an NO donor (SNP) displayed 

significantly increased vasodilation compared to arteries from uninfected nonpregnant mice. 

Vasodilation in mesenteric arteries from CMV–infected pregnant and uninfected pregnant mice 

was not different. Further, uterine arteries isolated from CMV–infected nonpregnant mice, 

showed increased vasodilation in response to methacholine compared to arteries from uninfected 

mice. However, during pregnancy uterine arteries from CMV–infected mice showed 

significantly decreased vasodilation to methacholine, and increased vasoconstriction to 

phenylephrine compared to arteries from uninfected pregnant mice. These findings highlight the 

potential impact of CMV infection on the systemic vasculature that regulates blood pressure, but 

also in reproductive arteries which may compromise pregnancy outcomes or contribute to 

pregnancy–related disorders like intrauterine growth restriction [572-574].  

These studies collectively highlight the negative impacts associated with CMV infection 

on the vasculature in immunocompetent hosts, and provide a rationale for continued 

investigation of the vascular effects of CMV infection in such hosts. The exact mechanisms 

through which CMV infection contributes to the aforementioned vascular disorders remains 

poorly understood. It also remains to be explained whether the CMV–induced changes in 
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molecular expression leading to increased vascular dysfunction is a direct or indirect effect. 

While a direct viral effect is a plausible explanation, it is likely that CMV infection greatly 

increases endogenous mediators such as lL–6, IL–8 and TNF–α [280], S1P (by increasing 

expression and activity of SK-1) [678,679] and TXA2 (by increasing the expression and activity 

of COX-2) [680] that contributes to vasculopathy. However, there is no direct evidence that 

CMV infection and generation of these molecules cause vascular dysfunction. 

 

1.10 Overall rationale 

There are three major concepts arising from the literature regarding S1P, TXA2 and CMV 

infection that this thesis focussed on. First, S1P has dual effects on the endothelial barrier, and in 

cultured endothelial cells, S1P at (≤ 1 µM) acts through the S1P1 receptors increasing the 

endothelial barrier, but S1P at (≥ 1 µM) signalling via the S1P2 or S1P3 receptors weakens the 

barrier by overcoming signals originating from the S1P1 receptor. S1P has been shown to 

decrease endothelial permeability in mesenteric microvenules at physiological concentrations, 

but this has not been reported in intact arteries. At physiological concentrations [0.1–1.1 µM], 

S1P induces vasodilation and vasoconstriction, the balance of which constitute vascular tone. 

Hemmings’ Lab previously showed that infusion of S1P [0.1 µM] to preconstricted uterine 

arteries, vasodilation was increased which was lost at S1P [1 µM]. These findings suggested that 

at [1 µM], S1P likely induced endothelial permeability that allowed access of S1P to the VSMCs 

increasing vasoconstriction that was likely counterbalanced by the S1P-induced vasodilation. 

However, how the S1P–mediated control of endothelial barrier and access of circulating S1P to 

the VSMCs impacts vascular tone in intact isolated arteries remains uninvestigated.  

The second important concept contributing to this thesis is that TXA2, another bioactive 

lipid, also increases both endothelial permeability and vascular tone. There is limited evidence 

that TXA2 and S1P may signal through similar pathways to effect vascular responses; however, 

the specific relationship between these two bioactive lipids remains to be explored. Part of this 

work focussed on understanding whether TXA2 utilizes the S1P pathway to increase endothelial 

permeability and vascular tone.  

Third, CMV infection appears to be linked with S1P or TXA2 pathways. CMV infection 

increases the expression and activity of SK-1 that leads to the generation of S1P, but also that of 

COX–2 that produces TXA2. CMV infection increases blood pressure in a rodent model or 
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hypertension in humans, both of which are associated with increased vascular tone. Whether the 

CMV–induced effects are mediated through the actions of S1P or TXA2 is unknown. This thesis 

therefore aimed at addressing the following questions (1) whether S1P–stimulated changes in 

endothelial permeability regulates vascular tone in resistance arteries through NO, (2) whether 

TXA2 signals via the S1P pathway to increase vascular tone  and (3) finally the impact of CMV 

infection on the vascular tone induced by TXA2 through the S1P-dependent responses in intact 

arteries. Unlike previous work which focussed on the role of S1P on the control of endothelial 

barrier in veins, studies in this thesis for the first time focussed on the arteries. Arteries used in 

this work were chosen as a model to study endothelial permeability and vascular tone, but also 

because they play key physiological functions. Uterine arteries are important in pregnancy, but 

these arteries also supply various reproductive organs including the ovaries (by the ovarian 

branch of uterine artery), cervix (vaginal branch of uterine artery), pelvis (internal 

iliac/hypogastric artery), and endometrium/uterus (spiral arteries) and are therefore crucial in 

reproduction. Mesenteric arteries branch from superior mesenteric arteries which are supplied by 

the abdominal aorta, and are therefore important in the regulation of blood pressure. 

 

1.11 Overall hypotheses 

Regulation of endothelial permeability in resistance arteries through S1P controls the 

access of S1P or of other circulating vasoconstrictors to the underlying vascular smooth muscle 

controlling vascular tone. This regulation occurs in part through endogenous and S1P-induced 

NO. TXA2 signalling through the TP receptors leads to activation of sphingosine kinase 

generating S1P. S1P when exported extracellularly stimulates S1P1, S1P2 and/or S1P3 receptors 

to increase vascular tone depending on the S1P receptors stimulated and the vascular bed. CMV 

infection enhances the vascular tone induced by S1P itself, and TXA2 through its effects on the 

S1P pathway. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 General materials and methods 

2.1.1 Mouse handling and tissue isolation 

Mice were housed and cared for in the Health Sciences Laboratory Animal Services 

(HSLAS) facilities at the University of Alberta. This study was approved by the University of 

Alberta’s Animal Care and Use Committee under the guidelines outlined by the Canadian 

Council of Animal Care. Female C57Bl/6J which were used for the majority of experiments, and 

B6.129P2-Nos3tm1Unc/J (eNOS KO) mice and wildtype (WT) littermate controls were obtained 

from Jackson Laboratories (Bar Harbor, ME, USA) and were used for experiments at 8–10 

weeks of age. Male C57Bl/6J strain S1P3 KO, female S1P2 KO and S1P3 KO mice and their WT 

littermates were provided by Dr. Jerold Chun (Scripps Research Institute) [681]. Male and 

female S1P3 KO mice and WT littermates on a 129/S1SVIMJ background were generated in–

house by multiple backcrossing and used at the age of 8–10 weeks. Mice were euthanized by 

cervical dislocation. Uterine horns or mesentery with associated vasculature were removed and 

placed in HEPES–buffered physiological saline solution (HPSS; 10 mM HEPES, 1.56 mM 

CaCl2, 142 mM NaCl, 4.7 mM KCl, 1.18 mM KH2PO4, 1.17 mM MgSO4, and 5.5 mM glucose 

at pH 7.5).  

 

2.1.2 Pressure myography: Justification for the use of the pressure myograph technique 

Pressure myography is a powerful tool in vascular biology, which offers opportunities to 

study vascular function and intrinsic properties (e.g. myogenic tone) of small resistance vessels 

in near physiological conditions [682]. Once the vessel is mounted on the pressure myograph and 

pressurized to an optimal luminal pressure, the vessel will maintain most of its in 

vivo characteristics. This is different from ring vessel segments, used for measuring vascular 

response, in conduit vessels in which ring segments are held on two hooks and connected to a 

force transducer allowing wall force to be measured. In isometric or wire myography, two wires 

are passed through the lumen of resistance vessels, and the wires are connected to a force 

transducer to measure tension in response to a stimulus (such as a drug) [683-686]. The use of 

pressure myography has several advantages over other existing techniques. These advantages 

include that: (1) can be used to study resistance arteries, unlike ring vessel segments, that is 

limited to large conduit arteries; (2) the risk of damaging the endothelium is minimized unlike in 



 

 

wire myography where wires are passed through the vessel lumen; (

vessel is better maintained; (4) the vessels can respond to pressure and vessel dimensions can be 

studied over a wide range of pressures (myogenic responses) and (

role of the endothelium or VSMC on vascul

myography where the drug can access both cell types simultaneously.

myograph is also limited in evaluating the structural changes of intact resistance arteries, and the 

contribution of the abluminal component to vascular function.

Figure 2.1: Depiction of part of a pressure myograph. 

where a vessel is mounted (arrows), tied to the glass cannulae (using nylon ties), pressurized and 

treated by either adding drugs to the bath (has HPSS solution) to interact with the VSMCs 

directly or drugs infused inside the vessel where they interact with the endothelium first. The 

vessel can then be projected on a screen (left component) from which changes in vas

function, can be observed visually and recorded.

 

2.1.2.1 Extraluminal experiments

Main uterine arteries and second order mesenteric arteries

both being approximately 130-200

model to study endothelial permeability and/or vascular tone, but also uterine arteries are 

important in pregnancy and mesenteric arteries in the regulation of blood pressure. The 

wire myography where wires are passed through the vessel lumen; (3) the natural shape of the 

) the vessels can respond to pressure and vessel dimensions can be 

studied over a wide range of pressures (myogenic responses) and (5) being a closed system, the 

role of the endothelium or VSMC on vascular function can be studied separately, unlike in wire 

myography where the drug can access both cell types simultaneously. However, the pressure 

myograph is also limited in evaluating the structural changes of intact resistance arteries, and the 

n of the abluminal component to vascular function. 

.1: Depiction of part of a pressure myograph. The right component is a vessel bath 

where a vessel is mounted (arrows), tied to the glass cannulae (using nylon ties), pressurized and 

ther adding drugs to the bath (has HPSS solution) to interact with the VSMCs 

directly or drugs infused inside the vessel where they interact with the endothelium first. The 

vessel can then be projected on a screen (left component) from which changes in vas

function, can be observed visually and recorded. This picture was generated by Dr. Jude Morton.

Extraluminal experiments 

Main uterine arteries and second order mesenteric arteries (with baseline diameters for 

200 nm) were used for experiments. These arteries were used as a 

model to study endothelial permeability and/or vascular tone, but also uterine arteries are 

important in pregnancy and mesenteric arteries in the regulation of blood pressure. The 
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) being a closed system, the 
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However, the pressure 

myograph is also limited in evaluating the structural changes of intact resistance arteries, and the 

 

The right component is a vessel bath 

where a vessel is mounted (arrows), tied to the glass cannulae (using nylon ties), pressurized and 

ther adding drugs to the bath (has HPSS solution) to interact with the VSMCs 

directly or drugs infused inside the vessel where they interact with the endothelium first. The 

vessel can then be projected on a screen (left component) from which changes in vascular 

This picture was generated by Dr. Jude Morton. 

(with baseline diameters for 

were used for experiments. These arteries were used as a 

model to study endothelial permeability and/or vascular tone, but also uterine arteries are 

important in pregnancy and mesenteric arteries in the regulation of blood pressure. The arteries 
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were dissected free of connective and fatty tissues in HPSS. After mounting and tying one end of 

the artery to a cannula on a single or double–bath pressure myograph (Living Systems 

Instrumentation, Burlington, VT), any residual luminal blood was flushed out by a low flow of < 

10 µl/min before mounting the artery to the second cannula. Each artery was then optimally 

stretched every 10 minutes after pressurizing at each pressure point including 20, 40 and 50 

mmHg (uterine) or 20, 40 and 60 mmHg for mesenteric arteries. These pressures are optimal for 

equilibration of these arteries in vitro [573,687-689]. Arteries not holding pressure were 

discarded and another one was mounted from the same animal. The arteries on the cannulae 

ligated to the tubing systems were connected to pressure transducers which measure intraluminal 

arterial pressure. This is maintained through a servo–enabled peristaltic pump. The arteries were 

maintained at 50 (uterine) or 60 mmHg (mesenteric arteries) pressures at 37oC in a 2.5 ml double 

HPSS bath or 6 ml single bath while experiments were being conducted. The pressure at which 

uterine arteries are held for experiments is physiological (45-55 mmHg) [690], and while the 60 

mmHg used for mesenteric arteries is slightly lower that physiological levels (75-110 mmHg) 

[691], the Hemmings’ Lab had previously shown that using pressures more than 60 mmHg in 

arteries used in this study caused a lot of myogenic tone, but not at 60 mmHg. 

In extraluminal experiments, one artery segment was used per ex vivo treatment and 

several segments were used per mouse for paired and related experiments. Drugs were added in 

vessel bath solutions (HPSS) where they could interact directly with the VSMCs. The drugs were 

added either as a single dose, a combination of doses between drugs or cumulatively. The 

changes in vascular responses after drug addition were measured every 4-5 min, and internal 

artery diameters were visualized using a video dimension analyzer (Living Systems 

Instrumentation, Burlington, VT) [687]. Addition of drugs to the bath was done in fatty acid-free 

0.1% bovine serum albumin (0.1%BSA) (Akron Biotech, Boca Raton, FL). 

 

2.1.2.2 Novel technique to simultaneously measure endothelial permeability and vascular 

tone in response to agonists infused into isolated intact arteries 

We developed a novel technique for intraluminal infusion to measure endothelial 

permeability and vascular tone using intact isolated arteries mounted on the pressure myograph 

system. Using pressure myography Moss et al [692] published a method in which they used 

Evans Blue dye (EBD) to determine the amount of dye embedded in the vascular wall (a measure 
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of permeability) after infusion of permeability factors into human arteries. While this technique 

is useful for measurement of endothelial permeability in ex vivo vessels, it works best in Biopta 

PM–1 type of pressure myograph in which the equilibrating solutions and drugs can be delivered 

to the vessel through different compartments (micrometer syringes). However, for classical 

pressure myograph systems (Living System) it is difficult to properly equilibrate the vessels in 

the physiological saline solution, before infusing experimental treatments, without the possibility 

of mixing. Further, because of the opaqueness of EBD it is difficult to accurately visualize the 

vessel walls in our pressure myograph system. Building on the concepts published by these 

authors, we established a system that overcomes these difficulties in a Living System-type of 

pressure myograph.  

In this technique, prior to mounting the artery on the first cannula, a “lead” solution 

(0.1% BSA in HPSS) was loaded into the tubing leading from the pump to the transducer and 

into the cannula. This was followed by 1.2 cm of air to prevent mixing of the lead solution from 

the experimental treatment (air does not reach the artery because this small volume is ultimately 

lost as it passes through the transducer). The use of the air also allowed us to properly equilibrate 

the arteries before infusion. The air was followed by loading a treatment of interest (such as a 

permeability factor) in the presence or absence of a 3 kDa dextran conjugated to rhodamine–

green fluorescent dye (Invitrogen, Eugene, OR). Once the lead solution, air and experimental 

treatment were loaded into the tubing, flow was started until the lead solution reached the end of 

the cannula but the air bubble was still visible before reaching the transducer. Thus, the treatment 

did not mix with the lead solution during vessel equilibration. The artery was then mounted, 

pressurized and equilibrated. One artery segment was used per treatment and several segments 

were used per mouse for experiments. After a 20–min infusion at a flow rate of <20 µl/min to 

allow the experimental treatment to reach the vessel, the flow was stopped for 10-20 min to 

allow vessel equilibration with the experimental treatment. The incubation time was optimized 

for development of endothelial permeability by the agents used in the experiments. The tubing 

and the vessel bath systems were covered with light–proof aluminum foil to prevent 

photobleaching. Upon completion of each experiment, the whole vessel bath was transferred to 

light-proof tubes and dextran leakage as a measure of endothelial permeability, was assessed by 

quantifying the fluorescence at 502/527 nm corrected by arterial length. Changes in vascular 

diameters measured every five minutes were recorded as described above. 
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Type Reagent Target 
Known effects on 

endothelial permeability 

Known effects 
on vascular 

tone 

Working 
Concentration 

Company 
A

go
n

is
ts

 

S1P 
S1P1  

S1P2 or S1P3 

Decreases via S1P1 
Increases via S1P2/3 

Decreases 
Increases 

0.1–10 µmol/L 
[473,481,693] 

Enzo Life 
Sciences 

U46619  TXA2 mimetic Increases Increases 
0.1–500 nmol/L 
[573,694,695] 

Sigma 

SEW2871 S1P1 agonist Decreases 
Decreases? 
Increases? 

0.1 µmol/L 
[460,696]  

Cedarlane 

Phenylephrine  
α1-adrenergic 

receptor agonist 
Unknown Increases 

0.1–10 µmol/L 
[573] 

Sigma 

 

A
n

ta
go

n
is

ts
 

VPC23019 
S1P1/S1P3 
receptor 

antagonist 
Unknown 

Enhances S1P-
induced 

constriction 

1 µmol/L 
[697,698] 

Avanti Polar 
Lipids 

W146 
S1P1 receptor 

antagonist 
Decreases 

Decreases 
myogenic tone 

1 µmol/L 
[87,699,700] 

Avanti Polar 
Lipids 

JTE013 
S1P2 receptor 

antagonist 
Decreases  Decreases 

10 µmol/L 
[481,697] 

Cedarlane 

SQ29548 
TP receptor 
antagonist 

Decreases Decreases 
10 µmol/L 

[97,534,546,695] 
Cayman 

 

In
h

ib
it

or
s 

SK-II SK-1 inhibitor Decreases Unknown 1 µmol/L [701] Cayman 

ABC294640 SK-2 inhibitor Unknown Unknown 10 µmol/L [702] 
MedKoo 

Biosciences 

MK571 ABCC1 Unknown Unknown 
10 µmol/L 
[368,703] 

Sigma 

FTC ABCG2 Unknown Unknown 1 µmol/L [704] 
Avanti Polar 

Lipids 

Y27632 
Rho kinase 
Inhibitor 

Decreases Decreases 10 µmol/L [473] Calbiochem 

L-NAME NOS inhibitor Decreases Increases 100 µmol/L [572] Sigma 

Papaverine 
Phosphodiestera

se inhibitor 
Unknown Decreases 100 µmol/L [572] Sigma 

 

O
th

er
 R

ea
g

en
ts

 

3 kDa 
fluorescent 

dextran 

Permeability 
Tracer 

None None 100 µg/ml [705] Invitrogen 

70 kDa 
fluorescent 

dextran 

Permeability 
Tracer 

None None 1 µg/ml [706] Invitrogen 

Thrombin 
(mouse) 

Permeability 
factor 

Increases 

Can decrease or 
increase 

depending on 
concentration 

1 U/ml [707] 
Haematologic 
Technologies 

LPS 
Permeability 

factor 
Increases None 

50 ng/ml 
[708,709] 

Sigma 

SNP NO donor 
Decreases, but also 

increases depending on 
concentration 

Decreases 
10–100 µmol/L 
[139,710,711] 

Sigma  

 

Table 2.1: List of reagents (drugs) 
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Measurement was done every 5 min to track the vascular responses for the entire 20 min of drug 

infusion. Drugs were infused in fatty acid-free 0.1% bovine serum albumin (0.1%BSA) (Akron 

Biotech). The drugs used for both extraluminal and intraluminal experiments are shown in table 

2.1, and the rationale for using specific working concentrations was derived from the references 

provided. 

 

2.1.3 Calculations and statistical analyses. The results are presented as means ± SEM and were 

analysed by Student’s t–test, one-way or two-way ANOVA followed by the Tukey post hoc test 

as appropriate and as described in the figure legends. Tukey’s test assumes that the responses 

being tested are independent within and among the groups, and the means obtained from the 

groups assumes a normal distribution. Percent decrease in diameter = (1– (d2/d1) × 100 whereby 

d1 is the initial arterial diameter after equilibration and d2 is the diameter after treatment. Change 

in lumen diameter from the baseline is reported as % decrease in diameter and reflects the 

outcome of both constrictor and dilator effects and so are generally referred to in the text as 

change in vascular tone. Percent vasodilation = (d2–d1/d1) × 100 whereby d1 is the 

preconstricted diameter value after equilibration and d2 is the arterial diameter after addition of 

vasodilator. Percent vasodilation was normalized to maximal arterial diameter obtained after the 

artery was incubated in the presence of Ca2+ free HPSS solution and 100 µmol/L papaverine for 

10 min. 

 

2.2 Materials and methods for Chapter 3 

2.2.1 Isolation of primary human umbilical vein endothelial cells (HUVECs) 

Human umbilical cords from normal term deliveries were obtained from the Royal 

Alexandra Hospital in Edmonton, Alberta, Canada. The study was approved by the Research 

Ethics Board at the University of Alberta and the Royal Alexandra Hospital and written consent 

was obtained from each donor. The cords were handled inside a sterile hood. HUVECs were 

isolated as previously described [712]. During cell isolation, the two ends of a cord were cut off 

using surgical blades. One end of the cord was clamped, and a butterfly needle (BD Biosciences, 

Bedford, MA) was inserted into the vein at the unclamped end and the vein was clamped. PBS 

was infused through the butterfly needle to flush out the blood by relieving the clamp on the end 

of the cord distal to the butterfly needle, which was again reclamped. To release the endothelial 
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cells, 0.1% collagenase (Worthington Biochemical Corporation, Lakewood, NJ) was infused into 

the vein through the butterfly needle and incubated by suspending the clamped cord in PBS for 

approximately 12 min at 37 C. Cells were then flushed out slowly into a centrifuge tube using an 

air–filled syringe. The cells were then centrifuged and resuspended in M199 medium 

supplemented with 10% fetal bovine serum (FBS), 2 mM L–glutamine and 1% penicillin–

streptomycin (Gibco, Burlington, ON, Canada; M199++ medium). The cells were incubated at 

37 C + 5% CO2 in M199++ medium supplemented with 1% endothelial cell growth supplement 

(ECGS; BD Biosciences, Bedford, MA). The medium was changed the following day to remove 

residual red blood cells, and every 3 days thereafter as needed [712]. 

 

2.2.1.1 Measurement of permeability using confluent endothelial cells  

Culture inserts (0.1 µm pores; BD Biosciences) were pre–coated with 0.1% gelatin 

(Sigma, St. Louis, MO) to facilitate HUVECs adherence and growth. HUVECs at less than three 

passages were seeded at 105 cells in 200 µl per insert and 800 µl of M199++ media was added to 

the wells holding the inserts. Confluence was confirmed by staining 1–2 inserts per experiment 

with haematoxylin/eosin dye (Sigma). To measure permeability, inserts were gently rinsed inside 

and outside to remove excess phenol–red M199++ medium. The inserts were then placed in new 

wells containing 400 µl of phenol–red free M199 medium supplemented with 1% FBS, 2mM L–

glutamine and 1% penicillin–streptomycin (Q–media). S1P (Enzo Life Sciences, Inc., 

Farmingdale, NY) at various concentrations (0.01 – 10 µmol/L) was added simultaneously to 

individual inserts with 70 kDa dextran conjugated to Oregon–green fluorescent dye (Invitrogen, 

Eugene, OR) (Figure 2.2). Inserts were moved every 30 min for a total of 3 h to wells with fresh 

medium. Endothelial permeability was quantified by measuring fluorescent dextran (496/524 

nm) flux to the bottom wells and calculating the cumulative flux over 3 h. 

 

2.2.2 Immunohistochemistry 

HUVECs were seeded onto 14 mm coverslips (Deutsch Deckgläser, Waldemar Knittel 

Glasbearbeitungs, GmbH, Germany) coated with 0.1% gelatin and grown to confluence 

overnight in M199++ medium supplemented with 1% ECGS. After changing to Q media, cells 

were pretreated with 1 µmol/L of the S1P1/3 receptor antagonist, VPC23019 (Avanti Polar Lipids, 

Alabaster, AL) for 20 min followed by treatment with 1 µmol/L S1P or 10 µmol/L S1P for 1 h in 



 

 

the continued presence of VPC23019. Untreated cells were maintained in Q medium for an 

equivalent time. Cells grown on coverslips were fixed

followed by blocking in 10% normal goat serum 

then incubated overnight with mouse anti

Canada) added at 5 µg/ml in 1% no

following day with PBS and further incubated for 2 h in the dark with 10 µg/ml Alexa Fluor 594 

goat anti–mouse antibody (Invitrogen)

To visualize actin, cells were fixed in 4% paraformaldehyde (Fisher Scientific, Ottawa, ON, 

Canada) in PBS for 10 min, washed three times in PBS and then permeabilized in 0.1% Triton 

Figure 2.2: Experimental set-up for measurement of endothelial permeability in

using gelatin-coated inserts. HUVECs were grown to confluence using 1 µm pore inserts 

sitting inside the wells of a 24-well plate. S1P was added in the presence of a 70 kDa fluorescent 

dextran and any leakage of the dextran was detected in the 

amount of the dextran at the bottom of the well was quantified as described in the methods to 

determine endothelial permeability.

the continued presence of VPC23019. Untreated cells were maintained in Q medium for an 

Cells grown on coverslips were fixed in ice-cold methanol for 20 min at 

followed by blocking in 10% normal goat serum (Gibco) in PBS for 30 min. The coverslips were 

then incubated overnight with mouse anti–VE–cadherin antibody (Abcam Inc. Toronto, ON, 

Canada) added at 5 µg/ml in 1% normal goat serum. Coverslips were washed three times on the 

following day with PBS and further incubated for 2 h in the dark with 10 µg/ml Alexa Fluor 594 

(Invitrogen). The coverslips were again washed with PBS three times. 

lize actin, cells were fixed in 4% paraformaldehyde (Fisher Scientific, Ottawa, ON, 

Canada) in PBS for 10 min, washed three times in PBS and then permeabilized in 0.1% Triton 

up for measurement of endothelial permeability in

HUVECs were grown to confluence using 1 µm pore inserts 

well plate. S1P was added in the presence of a 70 kDa fluorescent 

dextran and any leakage of the dextran was detected in the bottom chamber of the well. The 

amount of the dextran at the bottom of the well was quantified as described in the methods to 

determine endothelial permeability. 
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the continued presence of VPC23019. Untreated cells were maintained in Q medium for an 

cold methanol for 20 min at –20°C, 

in PBS for 30 min. The coverslips were 

cadherin antibody (Abcam Inc. Toronto, ON, 

rmal goat serum. Coverslips were washed three times on the 

following day with PBS and further incubated for 2 h in the dark with 10 µg/ml Alexa Fluor 594 

The coverslips were again washed with PBS three times. 

lize actin, cells were fixed in 4% paraformaldehyde (Fisher Scientific, Ottawa, ON, 

Canada) in PBS for 10 min, washed three times in PBS and then permeabilized in 0.1% Triton  

 

up for measurement of endothelial permeability in HUVECs 

HUVECs were grown to confluence using 1 µm pore inserts 

well plate. S1P was added in the presence of a 70 kDa fluorescent 

bottom chamber of the well. The 

amount of the dextran at the bottom of the well was quantified as described in the methods to 
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X–100 in PBS for 5 min. After washing three times in PBS, cells were blocked in 1% normal 

goat serum for 30 min before addition of 0.165 µmol/L of Alexa Fluor 488 phalloidin 

(Invitrogen) in PBS.  To visualize nuclei, cells were stained with a 10 µmol/L solution of 4', 6-

diamidino-2–phenylindole (DAPI; Invitrogen) in PBS. Coverslips were inverted and mounted 

onto microscope slides with a drop of Vectashield (Li–Cor Biosciences, Lincoln, NE) and sealed. 

Images were taken using a Zeiss LSM 700 confocal microscope. 

 

2.2.3 Western blot analysis 

Uterine and mesenteric arteries from 10 mice were dissected as previously described and 

pooled. Protein concentrations of these homogenates (prepared by homogenization in protein 

lysis buffer and follow by sonication) were determined in duplicate with Micro BCA Reagent 

(PIERCE Chemical Company, Rockford, IL) using a serum albumin standard. Sample protein to 

be loaded (20 μg) was solubilized in 5×sample buffer (Sigma) by boiling for 5 min and stored at 

20 °C until electrophoresis. SDS–PAGE was performed according to the procedure of Laemmli 

(1970) using 7.5% acrylamide (Mini-Protein II gel system, Bio–Rad Laboratories, Inc., Hercules, 

CA). Following electrophoresis, gels were equilibrated in transfer buffer (25 mM Tris, 190 mM 

glycine, and 20% methanol). Proteins were transferred onto nitrocellulose membranes (1 h, 100 

V), which were then incubated with a 25% of blocking solution (Licor, Odyssey, Lincoln, NE) in 

PBS–Tween 20 for a minimum of 1 h. The blots were then incubated overnight at 4 °C with 

diluted primary rabbit polyclonal antibodies for S1P1 (2.5 µg/ml), S1P3 (10 µg/ml; Cayman 

Chemical Company, Ann Arbor, MI), β–actin (1 µg/ml; Abcam) or mouse monoclonal GAPDH 

(2 µg/ml; Santa Cruz Biotechnology Inc., Santa Cruz, CA). After washing 3x with PBS–Tween 

20, the blots were incubated with Alexa Fluor 680 (red) or 750 (green) goat anti–mouse or Alexa 

Fluor 680 (red) or 750 (green) goat anti–rabbit (0.2 µg/ml; Invitrogen) secondary antibodies for 1 

h in dark at room temperature. They were then washed extensively and developed using an 

infrared fluorescence imager (Licor, Odyssey). Results were quantified using densitometry 

measurements and analyzed by Image Studio Lite, normalized to β–actin and presented as the 

mean ± SEM from two–three separate blots using the same homogenates.  

 

2.2.4 Experimental protocol for vascular analysis 

Extraluminal experiments: A thromboxane mimetic, U46619 (5, 20 nmol/L; Sigma, St. 
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Louis, MO) was added to the bath with or without S1P (0.01, 1, 3, 10 mol/L; Enzo Life 

Sciences Inc., Farmingdale, NY), thrombin (0.1 U/mL; Haematologic Technologies Inc. Essex, 

VT), LPS (50 ng/mL; Sigma) or gB, 0.5 g/mL; ViroStat Inc., Portland, ME). The following 

antagonists, inhibitors or receptor agonists were preincubated in the bath for 10–30 min before 

adding other treatments: VPC23019 (1 mol/L, Avanti Polar Lipids, Alabaster, AL), 

thromboxane receptor antagonist, SQ29548 (10 mol/L; Enzo Life Sciences Inc.), NOS 

inhibitor, L–NAME (100 mol/L; Sigma) or S1P1 receptor agonist, SEW2871 (0.1 µmol/L; 

Cedarlane, Burlington, ON, Canada) [713].  

Intraluminal experiments: Agonists that affect permeability including S1P, thrombin, LPS or gB 

were individually infused with or without U46619. Antagonists, inhibitors or receptor agonists as 

described above were co-infused with other treatments or added to the bath as outlined in the 

figure legends. Internal artery diameters were measured as described above. 

 

2.3 Materials and methods for Chapter 4 

2.3.1 Experimental protocol 

2.3.1.1 Experiments with S1P: 0.01–10 µmol/L S1P (Enzo Life Sciences) in the presence of 

3kDa fluorescent dextran (Invitrogen) was infused in single concentrations or added 

cumulatively to the bath containing untreated uterine arteries or those pretreated with 100 

µmol/L L–NG–Nitroarginine methyl ester (L-NAME) (Sigma, St. Louis, Missouri, USA) for 30 

min in the bath. 1 or 10µmol/L S1P was also infused into arteries from eNOS KO and WT mice 

followed by determination of endothelial permeability and vascular tone as described. Next 1 

µmol/L S1P, 5 nmol/L U46619 (Sigma, St. Louis, Missouri, USA) or a combination was infused 

into arteries from eNOS KO or WT mice. Infusion or addition of S1P, U46619 or a combination 

to the bath in arteries pretreated with or without L-NAME in the bath was repeated and vascular 

tone measured.   

 

2.3.1.2 Experiments with SNP: Single doses of (10, 20, 50, 100 µmol/L) SNP, or 20 µmol/L SNP 

with or without thrombin, LPS or gB were infused together with a 3kDa fluorescent dextran into 

arteries, followed by determination of endothelial permeability. 20 µmol/L SNP, 5 nmol/L 

U46619 or a combination was also infused or added to the bath followed by measurement of 
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permeability and vascular tone. 0.01–100 µmol/L SNP was added to the bath cumulatively to 

arteries preconstricted with (5–10 nmol/L) U46619 to measure vasodilation.  

 

2.3.1.3 Denudation of arteries and treatment with SNP: Arteries were denuded by passing an air 

bubble (3 inches) through arteries followed by HPSS solution (of 3 inches) and a second air 

bubble (3 inches) followed by HPSS solution. The successful removal of functional endothelium 

in arteries that had been used for SNP experiments was confirmed by testing for the lack of 

dilation in response to an endothelium–dependent vasodilator, methacholine added at 1 µmol/L. 

Methacholine was added to preconstricted denuded arteries. Denuded arteries were also infused 

with 1 or 20 µmol/L SNP into preconstricted arteries in the presence or absence of L-NAME to 

determine vasodilation. The internal diameters were measured as described above.  

Where L-NAME was used to block endogenous NOS activity, it was added (or infused, for SNP 

experiments only) to the bath for 30 minutes before adding S1P, SNP, U46619 or a combination 

of either S1P or SNP with U46619. 

 

2.4 Materials and methods for Chapter 5 

2.4 .1 Experimental protocol 

1, 5 or 20 nmol/L U46619 (Sigma, St. Louis, Missouri, USA) as single doses were 

infused inside pressurized arteries and endothelial permeability and vascular tone were 

determined as described. 20 nmol/L U46619 was co–infused with the following pharmaceutical 

agents:10 µmol/L SQ29548, a TPα/TPβ receptor antagonist (Cayman Chemical Company, Ann 

Arbor, Michigan, USA), 1 µmol/L SK–II (Cayman) a SK–1 inhibitor, 10 µmol/L MK571 

(Sigma), an ABCC1 transporter inhibitor, 1 µmol/L FTC (Sigma), an ABCG2 transporter 

inhibitor, 1 µmol/L VPC23019 (Avanti Polar Lipids, Alabaster; Alabama, USA), an S1P1/S1P3 

receptor antagonist, 0.1 µmol/L SEW2871 (Cedarlane, Burlington; Ontario, Canada), an S1P1 

receptor agonist. Each inhibitor or agonist was also preincubated in the arterial bath for 30 

minutes before infusing 20 nmol/L U46619 inside the artery followed by determination of 

endothelial permeability and vascular tone. In some cases, arteries were pretreated with SQ29548 

or MK571 in the bath before adding 20 nmol/L U46619 to the bath, followed by infusion of the 

dextran inside the artery from which permeability and vascular tone were measured. The arteries 

were also stimulated in the bath with 20 nmol/L U46619, before infusing SK–II inside the artery 
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followed by determination of vascular tone. 

In extraluminal experiments, 1, 5 or 20 nmol/L U46619 was added as single doses to 

uterine arteries, whereas in mesenteric arteries, 0.1–500 nmol/L U46619 was added cumulatively 

to the arterial bath. The internal diameters were measured as described.  

 

2.5 Materials and methods for Chapter 6 

2.5.1 Mouse CMV Propagation  

1. Mouse fibroblasts (NIH/3T3) were cultured in T75 culture flasks in DMEM (10% FBS) and 

grown to 90% confluence. The cultures were challenged with approximately 0.01 MOI of 

mouse CMV (RM427+) in 5 mL DMEM (2% FBS) overnight. An additional 5 mL of fresh 

DMEM (2% FBS) was added the next morning. The progression of infection was monitored 

every day.    

2. When 90% of all cells visually demonstrated infection, the cultures were harvested by 

scraping and pipetting into 50 ml conical tubes followed by centrifugation at 4000 rpm for 30 

min at 4oC.  

3. Supernatants were collected into new 50 ml tubes followed by centrifugation at 10000 x g for 

2 hrs at 4oC. 

4. The pellets from Step 2 were resuspended and combined in 1 ml of DMEM and transferred to 

15 ml conical tube. This solution was then frozen and thawed 3 times using an ethanol/dry 

ice bath and sonication in a water bath 3 times for 30 seconds with 15-second pauses. This 

solution was then centrifuged at 4000 rpm for 30 minutes at 4oC. 

5. The pellet from Step 3 was resuspended in the supernatant that was collected from Step 4 and 

kept on ice.  

6. The pellet from Step 4 was resuspended in 0.5 ml of DMEM and sonicated in a water bath 3 

times for 30 seconds with 15 second pauses. This solution was then centrifuged at 4000 rpm 

for 30 minutes at 4oC. 

7.  The supernatant from Step 6 was added to already resuspended pellet that had been kept on 

ice from Step 5. This resulting solution was sonicated again 3 times 30 seconds with 15 

second pauses. Finally, the solution was mixed well and aliquots of virus were stored at -

80oC.  
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2.5.1.1 Evaluating the mCMV viral titre 

1. Mouse fibroblasts (NIH/3T3) were cultured in DMEM (10% FBS) in 24-well plates coated 

with 0.1% gelatin and grown to 90% confluence. The cultures were changed to DMEM (2% 

FBS) and challenged with increasing dilutions of the viral preparation to assess the viral titre, 

three wells per concentration.  

2. After 24 hours in culture, the cells were fixed and a LacZ staining kit was used to assess β-

galactosidase expression. Titre (plaque forming units) was evaluated by counting the number 

of positive cells (blue) per well volume and dilution of virus preparation.  

 

2.5.2 Mouse infection and handling  

Mice were challenged intraperitoneally with 106 plaque forming units (pfu) of RM427+ mouse 

CMV which was provided as a gift by Dr. Edward Mocarski, Department of Microbiology and 

Immunology, Stanford University. The RM427+ virus has a LacZ gene insertion in the non–

essential immediate early gene 2 loci, for easy detection of the viral infection using β-

galactosidase activity. Uninfected young female mice were infected or left uninfected at the age 

of 8–10 weeks. Experiments were done with infected mice during an active infection, 5–14 days 

after viral challenge. Mice were euthanized by cervical dislocation and uterine horns with 

associated vasculature removed and placed in HPSS solution 

 

2.5.3 Experimental protocol for vascular analysis 

In these experiments, I evaluated the potential pathological–related effects mediated by 

TXA2, therefore, the concentrations were chosen based on normal compared to pathological 

concentrations [714-716]. I used U46619, a stable TXA2 mimetic added to arteries as a single 

dose at (20 nmol/L) or cumulatively at (0.1–20 nmol/L). Responses to phenylephrine (Sigma, St. 

Louis, Missouri, USA), an alpha-1 adrenergic receptor agonist at (0.01–10 µmol/L) and S1P at a 

single dose of (1 µmol/L) or in a dose response curve (0.01–10 µmol/L) were also assessed. In 

experiments where inhibitors were used, the arteries were pretreated for 30 min before adding 

U46619, phenylephrine or S1P. The inhibitors used include SK–II [1 µM] (Cayman Chemical), 

10 µmol/L ABC294640 (MedKoo Biosciences Inc); Fumitremorgin C, 1 µmol/L FTC (Sigma) 

[369,704]; 10 µmol/L MK571 (Sigma) [369,704]; 100 µmol/L L-NAME (Sigma); or 10 µmol/L 

Y27632, Rho kinase inhibitor, 1 µmol/L W146, S1P1 receptor antagonist and 1 µmol/L 
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VPC23019 (Avanti Polar Lipids), and 10 µmol/L JTE013 (Cedarlane, Burlington; Ontario, 

Canada) S1P2 receptor antagonist. Arteries from C57Bl/6 S1P2 or S1P3 KO mice and WT 

littermates were also used. In some cases, the inhibitors or antagonists were used in combination 

before adding the agonists. Changes in vascular diameters were analyzed as above.  
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CHAPTER 3 

A NOVEL MECHANISM FOR VASCULAR TONE REGULATION IN ARTERIES BY 

SPHINGOSINE 1-PHOSPHATE THROUGH ENDOTHELIAL BARRIER CONTROL 

 

Most of the results presented here were submitted to Nature Scientific Reports in November 

2015 (Manuscript ID: SREP-15-32363) in an article entitled “A novel mechanism for vascular 

tone regulation in arteries by sphingosine 1-phosphate through endothelial barrier control” by 

Daniel Kerage, Martina Mackova, Randi Gombos and Denise Hemmings is currently under 

revision. The majority of data were generated by myself. Martina Mackova produced Figure 

3.5C, and Randi Gombos was involved in establishing the intraluminal flow protocol and her 

unpublished preliminary results evaluating vasodilation after infusion of S1P contributed to the 

rationale for this chapter. Maggie Wang contributed to the data presented in Figure 3.1A and 

Meagan Brown was responsible for Figure 3.1B, C. 

 

3.1 Introduction 

The vascular endothelium plays an important role as a barrier between circulating factors 

and underlying tissues in addition to producing vasoconstrictors and vasodilators. The 

mechanisms through which circulating factors reach the underlying tissues are poorly 

understood. While endothelial permeability is largely viewed as pathophysiological, it is likely 

that endothelial permeability occurs within physiologically tolerable limits that permit circulating 

factors to access the VSMCs to maintain normal vascular tone. While increased endothelial 

permeability is often associated with vascular complications like diabetes mellitus [717], 

cardiovascular diseases [718] and pregnancy disorders [230,719,720], it is likely that this occurs 

when the physiologically regulated endothelial permeability is disrupted.  

S1P enhances, but also disrupts the endothelial barrier depending on its concentration and 

the balance of the S1P receptors expressed, making it an ideal regulator of endothelial 

permeability [3,390,425,721,722]. At physiological concentrations (0.1-1 mol/L), S1P signals 

through S1P1 receptors to increase endothelial barrier function [400,721], but at higher 

concentrations, S1P disrupts the barrier via S1P2 or S1P3 receptors [425,722]. In addition, when 

S1P binds to S1P1 or S1P3 receptors on the endothelium it induces vasodilation [386], but it 

stimulates vasoconstriction when it interacts with S1P2 or S1P3 receptors on the VSMCs [386]. 
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While the mechanisms by which S1P enhances endothelial barrier function are relatively well 

characterized using endothelial cell cultures, in vivo in animal models, and recently in isolated 

venules [416,417,723,724], no studies have examined the regulation of endothelial permeability 

by S1P in intact isolated arteries or the direct relationships between endothelial permeability and 

vascular tone.  

In this study, I therefore proposed that S1P regulates endothelial permeability and thus 

controls leakage of circulating vasoconstrictors to the underlying VSMCs in arteries impacting 

vascular tone. High S1P concentrations or permeability enhancing agents will disrupt the 

endothelial barrier and promote an increase in vascular tone that can be reversed by engaging 

S1P1 receptor. Building on the work of others [692,720,725], we established a novel technique to 

simultaneously measure endothelial permeability and vascular tone in intact arteries mounted on 

a pressure myograph system. Using this technique I studied this question in uterine arteries to 

assess the potential impact on reproduction and also in mesenteric arteries to evaluate the impact 

on systemic vascular function. In this Chapter, I therefore describe a novel link between S1P 

signaling, modulation of endothelial barrier function and the ensuing impact on vascular tone in 

resistance arteries. 

 

3.2 RESULTS 

3.2.1 S1P-mediated control of endothelial barrier in cultured endothelial cells  

Using primary human umbilical vein endothelial cells (HUVECs) to model vascular 

endothelial cells, we assessed the role of S1P on endothelial permeability. Visual confluence of 

cultured cells was confirmed by a significant reduction in 70 kDa fluorescent dextran flux 

through untreated cell cultures compared to flux through cell–free gelatin–coated inserts 

(experiment by Maggie Wang) (Figure 3.1A). As expected, [400] addition of 0. 1 µmol/L S1P 

significantly decreased dextran flux 3 h after treatment compared to untreated cells. Treatment 

with 1 µmol/L S1P had no significant effect on dextran flux or disruption of cellular actin; 

however, this concentration showed relatively greater (as shown by arrows) VE–cadherin 

disorganization compared to untreated cells (Figure 3.1A, B, C). In contrast, 10 µmol/L S1P 

significantly increased dextran flux from 1.5 to 3 h (Figure 3.1A) and completely disrupted 

cellular actin (Figure 3.1B) and VE–cadherin (Figure 3.1C) compared to untreated or 1 µmol/L 

S1P–treated cells. Pretreatment of cells with 1 µmol/L VPC23019, an S1P1/S1P3 antagonist, 
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reduced the S1P–mediated effects on actin and VE–cadherin. VPC23019 treatment alone had no 

effect (experiments by Meagan Brown) (Figure 3.1B, C). These experiments suggest that S1P at 

low concentrations decreased endothelial permeability but high concentrations S1P increases 

endothelial permeability.  I next investigated the role of S1P in the regulation of endothelial 

permeability, but also vascular tone in a more physiologically relevant model in mouse resistance 

arteries.  

 

3.2.2 Novel technique to simultaneously measure endothelial permeability and vascular 

tone in response to agonists infused inside isolated intact arteries 

To assess a dual role for S1P on endothelial permeability and vascular tone control, we 

developed a new method using the well-known and available Living Systems pressure 

myograph. A previously published method by Moss et al [692] used Evans Blue dye (EBD) to 

determine the amount of dye embedded in the vascular wall after infusion of human arteries with 

permeability factors. To ensure clear visualization and allow measurement of vascular tone of the 

arteries on the Living System myograph, we used leakage to the bath of a fluorescent-labeled 

low molecular weight (3kDa) dextran as a measure of permeability. As the Living Systems 

myograph does not have syringe pumps to inject solutions, we also established a new method to 

prevent mixing of solutions by incorporating a 1.2 cm air bubble between pre-loaded 

equilibration and experimental solutions in the distal tubing. This key component of our 

technique prevented mixing while the mounted artery equilibrated. Treatments were loaded in a 

total of 200 µl, and then infused for 20 min using a low flow rate to allow the experimental 

solution to reach the artery. The small air bubble was lost as it passed through the transducer 

prior to reaching the artery. The flow was then stopped for 10 or 20 min (I found some 

treatments like LPS or gB requires more time to increase endothelial permeability) to allow the 

treatments to equilibrate with the artery. After that, all the bath solution (6 ml) was harvested into 

light-proof tubes (I used aluminium foil to wrap the tube), and then distributed into 3 wells (2 ml 

each) of 24-well plate from which fluorescence was measured. The total fluorescence from the 3 

wells divided by the arterial length was used as a measure of permeability after subtracting the 

background. I used this technique to assess endothelial permeability in response to different 

concentrations of infused S1P or other permeability factors by measuring leakage of co-infused 

fluorescent dextran to the bath. This technique also enabled me to simultaneously measure 
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changes in vascular tone to permeability-inducing agents infused in the presence and absence of 

U46619, a vasoconstrictor.  

 

3.2.3 S1P-induced permeability in intact uterine arteries contributes to increased vascular 

tone through leakage of a co-infused vasoconstrictor (U46619) 

Using the above method, I determined whether infusion of different concentrations of 

S1P alone would impact vascular tone. Neither intraluminal infusion nor extraluminal addition to 

the bath of 0.01 µmol/L S1P alone affected vascular tone (Figure 3.2A, B). However, while 

extraluminal addition of 1 µmol/L S1P alone increased vascular tone, intraluminal infusion of 

this concentration had no effect (Figure 3.2A, B). In contrast, both infusion and extraluminal 

addition of 10 µmol/L S1P increased vascular tone compared to the control or lower S1P 

concentrations (Figure 3.2A, B).  

I then evaluated the effects of infusing different concentrations of S1P together with 

U46619 on vascular tone. Infusion of 5 nmol/L U46619 alone had no effect on vascular tone, but 

extraluminal addition of the same concentration effectively increased vascular tone (Figure 3.2 

B). When 5 nmol/L U46619 was co-infused with 0.01 µmol/L S1P there continued to be no 

effect on vascular tone; however, vascular tone was increased after co-infusion of U46619 with 1 

or 10 µmol/L S1P that was significantly greater than that induced by infused corresponding 

concentrations of S1P or U46619 alone (Figure 3.2A). The increased vascular tone after co-

infusion of U46619 with 10 µmol/L S1P was significantly greater than that generated by co-

infusion of U46619 with 1 µmol/L S1P (Figure 3.2A). Co-addition of S1P at any concentration 

with U46619 to the bath had no additive effect on vascular tone compared to that generated by 

U46619 alone. However, significant increases in vascular tone were found after co-addition of 

0.01 or 1 µmol/L S1P with U46619 compared to 0.01 or 1 µmol/L S1P alone, respectively 

(Figure 3.2B).  

Infusion of U46619 had no effect on dextran leakage (permeability) (Figure 3.2C). 

However, infusion of 1 or 10 µmol/L S1P alone significantly increased dextran leakage with a 

greater effect noted at 10 µmol/L S1P. The increased dextran leakage found with the combined 

S1P and U46619 infusion, did not differ from the individual S1P treatments (Figure 3.2C).  To 

further investigate the mechanisms involved in the increased vascular tone generated by co-

infusion of U46619 with S1P, I chose 1 µmol/L because this concentration is within the normal 
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physiological range, and 10 µmol/L S1P is pathophysiological. As well, the dual infusion (1 

µmol/L S1P and 5nmol/L U46619) generated a constriction response that was absent with either 

treatment alone.  

 

3.2.4 Role of thromboxane receptors in vascular tone induced by co-infused S1P and 

U46619 

To investigate the contribution of U46619 both inside and outside the artery to the 

increased vascular tone when it was co-infused with S1P, I repeated the experiments in the 

presence of 10 µmol/L SQ29548 to block thromboxane receptors, and thus could inhibit U46619 

activity. Co-infusion of SQ29548 with S1P and U46619 did not affect the vascular tone induced 

in its absence. However, the vascular tone induced following co-infusion of S1P and U46619, 

was completely blocked by pretreatment of arteries in the bath with SQ29548 (Figure 3.3A). 

Moreover, pretreatment with SQ29548 in the bath partially reduced vascular tone in response to 

simultaneous extraluminal addition of S1P and U46619 (Figure 3.3B), but completely blocked 

vascular tone induced by U46619 alone (Figure 3.3C).  

 

3.2.5 U46619-mediated induction of vascular tone after co-infusion with S1P depends on 

the S1P3 receptor 

To determine the role of S1P in promoting the U46619-induced vascular tone, the results 

show that inhibition of the S1P1 and S1P3 receptors by co-infusing 1 µmol/L VPC23019 

(S1P1/S1P3 receptor antagonist) with 1 µmol/L S1P and U46619 reduced vascular tone (Figure 

3.4A). However, co-addition of VPC23019 with these same agonists to the artery bath also 

reduced vascular tone but to a lesser amount than that induced by co-infused S1P and U46619 in 

the presence of VPC23019 (Figure 3.4A).  Infusion or extraluminal addition of 1 µmol/L 

VPC23019 alone had no effect on arterial diameter.   

Since VPC23019 blocks both S1P1 and S1P3 receptors, I confirmed the importance of 

S1P3 receptors by using uterine arteries from S1P3 KO mice, which were available on a 

129/S1SVIMJ background and their littermate WT controls. Unlike the previous infusion 

experiments in arteries from C57Bl/6J mice, infusion of 1 µmol/L S1P into arteries from WT 

control mice on the 129/S1SVIMJ background showed increased vascular tone similar to that 

found when added extraluminally to these arteries (Figure 3.4B, C) or extraluminally to arteries 
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from C57Bl/6J mice (Figure 3.2B). Importantly, no vascular tone was generated with infusion of 

U46619 alone or with either extraluminal addition of 1 µmol/L S1P alone to the bath or infusion 

inside uterine arteries from S1P3 KO mice. Co-infusion of U46619 with S1P into arteries from 

WT controls generated significantly greater vascular tone than S1P alone while no vascular tone 

occurred after co-infusion in arteries from S1P3 KO mice (Figure 3.4B). However, addition of 

U46619 or co-addition of U46619 with S1P to the bath significantly increased vascular tone 

similarly in arteries from both S1P3 KO mice and their littermate controls (Figure 3.4C). 

Notably, vascular tone was greater overall after intraluminal infusion or extraluminal addition in 

arteries from WT compared to S1P3 KO mice (Figure 3.4B, C).  

 

3.2.6 Higher concentrations of S1P and U46619 were required to elicit responses in 

mesenteric arteries from female mice  

I next determined whether infusion of S1P and U46619 could generate similar responses 

in mesenteric arteries from female C57Bl/6J mice. Intraluminal infusion or extraluminal addition 

of S1P or U46619 at the same concentrations used in uterine arteries, alone or in combination, 

showed minimal vascular effects in mesenteric arteries (Figure 3.5A). In contrast, co-infusion of 

3 µmol/L S1P with 20 nmol/L U46619 increased vascular tone compared to the untreated 

control, 3 µmol/L S1P or 20 nmol/L U46619 alone. Similar to the lower concentrations in uterine 

arteries, infusion of 20 nmol/L U46619 alone had no effect on vascular tone in mesenteric 

arteries while addition of this same concentration to the bath induced significant vascular tone 

(Figure 3.5B). The co-addition of 3 µmol/L S1P and 20 nmol/L U46619 to the bath induced 

vascular tone that was significantly greater than that induced by S1P alone. However, there was 

no additive effect compared to U46619 alone (Figure 3.5B). Overall, vascular tone was higher 

after extraluminal addition compared to that induced by intraluminal infusion. These responses 

in mesenteric arteries at higher concentrations of S1P and U46619 were similar to those found in 

uterine arteries at lower concentrations (Figure 3.2B, C compared to Figure 3.5B). We then 

assessed the S1P receptor expression to determine whether differences between tissues could 

explain these results. The expression of S1P1 was higher in uterine compared to mesenteric 

arteries, but the S1P3 receptor expression was not different between the two vascular beds. 

Interestingly, we also found that expression of the housekeeping genes, β-actin or GAPDH, was 

consistently higher in uterine compared to mesenteric arteries (Figure 3.5C). 
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3.2.7 Vascular tone induced in mesenteric arteries from male mice show dependence on the 

S1P3 receptor 

I next determined whether co-infusion of S1P with U46619 could induce vascular tone in 

mesenteric arteries from male WT and S1P3 KO mice. S1P, U46619 or a combination at the 

lower concentrations used in uterine arteries from female mice were infused into mesenteric 

arteries from WT male mice. Similar to the effects found in WT female mice on the 

129/S1SVIMJ background, S1P alone generated significant and similar vascular tone whether 

infused or added to the bath (Figure 3.6A, B). As well, S1P alone also did not induce vascular 

tone infused or added to the bath in mesenteric arteries from male S1P3 KO mice. Interestingly, 

infusion of U46619 alone induced a significant vascular tone unlike the lack of response found in 

arteries from females (Figure 3.6A). However, vascular tone induced by co-infusion of S1P and 

U46619 into arteries from WT mice was still significantly greater than that from individual 

treatments or that induced by co-infusion in arteries from S1P3 KO mice (Figure 3.6A). Overall, 

responses to infused treatments in arteries from S1P3 KO mice were significantly reduced 

compared to those from WT controls (Figure 3.6A). Extraluminal co-addition (Figure 3.6B) of 

S1P with U46619 induced vascular tone in arteries from WT male mice that was not 

significantly different from the individual treatments. The vascular tone induced after 

intraluminal infusion of S1P, U46619 or a combination in arteries from WT mice was not 

different from that induced when these treatments were added extraluminally (Figure 3.6A, B).  

Only the combined addition of S1P and U46619 to the bath of arteries from S1P3 KO mice 

showed minimal yet significant vascular tone compared to no treatment. The vascular tone 

induced by the addition of S1P, U46619 or a combination to the bath of arteries from S1P3 KO 

mice was significantly decreased overall compared to arteries from WT mice (Figure 3.6B).  

 

3.2.8 Co-infusion of U46619 with bacterial or viral components increased vascular tone 

I then asked whether co-infusion of U46619 with factors known to increase permeability 

under pathological conditions such as infections [661,726,727] could also increase vascular tone. 

I found that co-infusion of U46619 with either LPS (Figure 3.7A) or gB (Figure 3.8A) followed 

by incubation of the treatments for 10 min, vascular tone was increased compared to infusion of 

each component alone. By contrast, extraluminal co-addition of LPS did not affect U46619-

induced vasoconstriction (Figure 3.7B). There was, however, a significant decrease in U46619-
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induced vasoconstriction in the presence of gB which was reversed by L-NAME treatment 

(Figure 3.8B).  

 

3.2.9 S1P1 agonist (SEW2871) prevented increase in vascular tone induced by co-infusion 

of U46619 with thrombin into uterine arteries  

Infusion of thrombin increased permeability in uterine arteries with no additive effect 

when U46619 was co-infused. Infusion of SEW2871, a specific S1P1 receptor agonist, reduced 

thrombin-induced permeability in the presence or absence of U46619 (Figure 3.9A). U46619 co-

infused with thrombin also led to increased vascular tone compared to arteries infused with either 

thrombin or U46619 alone. The increased vascular tone was completely blocked by co-infused 

SEW2871. There was an overall increase in vascular tone under flow conditions compared to 

when flow was stopped (Figure 3.9B). Neither thrombin nor SEW2871 added to the bath 

affected vascular tone induced by extraluminal addition of U46619 (Figure 3.9C).  

 

  



 

 

Figure 3.1: S1P-regulated leakage of fluorescent dextran through confluent endothelial 

cells. Fluorescent dextran leakage through cell

cells treated with S1P was compared to leakage through untreated cells. The cumulati

SEM relative fluorescence units (RFU; n=3) were 

post hoc test. *=p<0.05, **=p<0.01, ***=p<0.001 

treated with 1 or 10 µmol/L S1P 

VE-cadherin (C) (experiments by Meagan Brown)

points of disruption) from one of three independent experiments are depicted.

 

regulated leakage of fluorescent dextran through confluent endothelial 

Fluorescent dextran leakage through cell-free inserts or those with confluent endothelial 

cells treated with S1P was compared to leakage through untreated cells. The cumulati

SEM relative fluorescence units (RFU; n=3) were analyzed by two-way ANOVA and the Tukey 

post hoc test. *=p<0.05, **=p<0.01, ***=p<0.001 (A) (experiment by Maggie Wang)

S1P +/- 1 µmol/L VPC23019 were stained for cellular actin 

(experiments by Meagan Brown). Representative images (the arrows indicate 

from one of three independent experiments are depicted. 
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regulated leakage of fluorescent dextran through confluent endothelial 

free inserts or those with confluent endothelial 

cells treated with S1P was compared to leakage through untreated cells. The cumulative mean ± 

way ANOVA and the Tukey 

(experiment by Maggie Wang). Cells 

cellular actin (B) or 

(the arrows indicate 
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Figure 3.2: Vascular tone and dextran leakage in uterine arteries after treatment with S1P 

and/or U46619. The percent change in uterine artery diameters was assessed from the baseline 

after intraluminal infusion (A) or extraluminal addition (B) with 0.01, 1 or 10 µmol/L S1P, 5 

nmol/L U46619 or U46619 combined with S1P (n = 3 to 16), where ‘n’ represents the number of 

arterial segments per mouse. The results are presented as mean ± SEM. Leakage of fluorescent 

dextran into the bath after co-infusion with the previous treatments was also measured and 

corrected by vessel length (C). Statistical analysis was performed by one way ANOVA followed 

by Tukey’s post hoc test. $ = compared to untreated control or lower S1P concentrations; * = 

compared to 1 µmol/L S1P; ψ = compared to 10 µmol/L S1P; ρ = compared to U46619; # = 

compared to 1 µmol/L S1P or U46619 in (A) or to 1 µmol/L S1P in (B); & = compared to 

combined 1 µmol/L S1P and U46619; @ = compared to 0.01 µmol/L S1P. For all figures, the 

number of symbols depicts increasing levels of significance: 1 = p<0.05, 2 = p<0.01, 3 = 

p<0.001 and 4 = p<0.0001. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Effect of thromboxane receptor antagonist on vascular tone induced by co

treatment of U46619 with S1P in uterine arteries.

diameters was assessed from the baseline after intraluminal co

addition (B) of 1 µmol/L S1P and 

added to the bath before co-infusing 

before co-addition of U46619 and S1P 

mean ± SEM and analyzed as described in Figure 

compared to the combined U46619 and S1P treatment.

 

Effect of thromboxane receptor antagonist on vascular tone induced by co

treatment of U46619 with S1P in uterine arteries. The percent change in uterine artery 

diameters was assessed from the baseline after intraluminal co-infusion (A) or extraluminal co

and 5 nmol/L U46619. 10 µmol/L SQ29548 was co

infusing U46619 and S1P (A) or SQ29548 was added to the bath 

addition of U46619 and S1P (B) or U46619 alone (C). The results are presented as 

mean ± SEM and analyzed as described in Figure 3.2 (n = 3 to 9). # = compared to SQ29548; $ = 

bined U46619 and S1P treatment.  
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Effect of thromboxane receptor antagonist on vascular tone induced by co-

The percent change in uterine artery 

or extraluminal co-

SQ29548 was co-infused or 

or SQ29548 was added to the bath 

. The results are presented as 

(n = 3 to 9). # = compared to SQ29548; $ = 



 

 

Figure 3.4: Vascular tone induced by co

S1P1/3 receptor antagonist or in uterine arteries from female S1P

percent change in uterine artery diameters was assessed from the baseline, after intraluminal co

infusion (A, B), extraluminal co-

presence of 1 µmol/L VPC23019

mice (B, C). The results are presented as mean ± SEM and were analyzed by two

followed Tukey’s post hoc test (n = 3 to 9). * = overall; $ = compared to combined S1P and 

U46619 (A) or S1P alone (B, C); # or 

respectively (B, C). 

 

Vascular tone induced by co-treatment of U46619 with S1P in the presence of 

receptor antagonist or in uterine arteries from female S1P3 KO and WT mice.

percent change in uterine artery diameters was assessed from the baseline, after intraluminal co

-addition (A, C) of 5 nmol/L U46619 and 1 µmol/L 

VPC23019 (A) or in uterine arteries from S1P3KO mice or littermate WT 

. The results are presented as mean ± SEM and were analyzed by two

followed Tukey’s post hoc test (n = 3 to 9). * = overall; $ = compared to combined S1P and 

; # or ρ = compared to untreated controls for WT or S1P
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treatment of U46619 with S1P in the presence of 

and WT mice. The 

percent change in uterine artery diameters was assessed from the baseline, after intraluminal co-

1 µmol/L S1P in the 

KO mice or littermate WT 

. The results are presented as mean ± SEM and were analyzed by two-way ANOVA 

followed Tukey’s post hoc test (n = 3 to 9). * = overall; $ = compared to combined S1P and 

d to untreated controls for WT or S1P3 KO, 



 

 

Figure 3.5: Vascular tone after treatment with U46619 and S1P in mesenteric arteries and 

comparison of receptor expression in uterine and mesenteric arteries. 

mesenteric artery diameters was assessed from the baseline after intraluminal infusion or 

extraluminal addition of 5 nmol/L 

U46619, 3 mol/L S1P, or the combination 

were analyzed as described in Figure 3 (n = 3 to 7). * = overall; # or ρ 

controls for intraluminal or extraluminal, respectively; $ = compared to S1P alone.

S1P3 receptor expression was assessed by Western blot from a tissue homogenate of arteries 

pooled from 10 mice. These results using these homogenates were repeated 2

normalized to the housekeeping gene β

 

Vascular tone after treatment with U46619 and S1P in mesenteric arteries and 

comparison of receptor expression in uterine and mesenteric arteries. The percent change in 

mesenteric artery diameters was assessed from the baseline after intraluminal infusion or 

5 nmol/L U46619, 1 mol/L S1P, or the combination (A)

S1P, or the combination (B). The results are presented as mean ± SEM and 

were analyzed as described in Figure 3 (n = 3 to 7). * = overall; # or ρ = compared to untreated 

controls for intraluminal or extraluminal, respectively; $ = compared to S1P alone.

receptor expression was assessed by Western blot from a tissue homogenate of arteries 

pooled from 10 mice. These results using these homogenates were repeated 2-3 times and were 

normalized to the housekeeping gene β-actin (experiment by Martina Mackova) 
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Vascular tone after treatment with U46619 and S1P in mesenteric arteries and 

The percent change in 

mesenteric artery diameters was assessed from the baseline after intraluminal infusion or 

(A) or 20 nmol/L 

mean ± SEM and 

compared to untreated 

controls for intraluminal or extraluminal, respectively; $ = compared to S1P alone. S1P1 and 

receptor expression was assessed by Western blot from a tissue homogenate of arteries 

3 times and were 

actin (experiment by Martina Mackova) (C). 



 

 

Figure 3.6: Vascular tone after treatment with U46619 and S1P in mesenteric arteries from 

S1P3 KO and WT male mice. The percent change in mesenteric artery diameters was assessed 

from the baseline following intraluminal infusion

U46619, 1 µmol/L S1P or their combination to arteries from S1P

WT mice. The results are presented as mean ± SEM and were analyzed as described in Figure 

3.4 (n = 3 to 9). * = overall; # or 

respectively; $ = compared to S1P or U46619 

 

Vascular tone after treatment with U46619 and S1P in mesenteric arteries from 

The percent change in mesenteric artery diameters was assessed 

from the baseline following intraluminal infusion (A) or extraluminal addition (B) 

S1P or their combination to arteries from S1P3 KO male mice or littermate 

WT mice. The results are presented as mean ± SEM and were analyzed as described in Figure 

 ρ = compared to untreated controls for WT or S1P

respectively; $ = compared to S1P or U46619 (A).  
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Vascular tone after treatment with U46619 and S1P in mesenteric arteries from 

The percent change in mesenteric artery diameters was assessed 

(B) of 5 nmol/L 

KO male mice or littermate 

WT mice. The results are presented as mean ± SEM and were analyzed as described in Figure 

o untreated controls for WT or S1P3 KO, 



 

 

Figure 3.7: Vascular tone induced by co

The percent change in uterine artery diameters was assessed from the base

intraluminal infusion (A) or extraluminal addition 

combination with 50 ng/mL LPS

as described in Figure 3.2 (n = 3 to 10). # = compared to LPS or U46619 treatment alone 

= compared to LPS alone (B).  

  

 

Vascular tone induced by co-infusion of U46619 with LPS into uterine arteries.

The percent change in uterine artery diameters was assessed from the baseline following 

or extraluminal addition (B) of 5 nmol/L U46619 alone 

LPS. The results are presented as mean ± SEM and were 

(n = 3 to 10). # = compared to LPS or U46619 treatment alone 
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infusion of U46619 with LPS into uterine arteries. 

line following 

U46619 alone or in 

. The results are presented as mean ± SEM and were analyzed 

(n = 3 to 10). # = compared to LPS or U46619 treatment alone (A); ρ 



 

 

Figure 3.8: Vascular tone induced by co

into uterine arteries. The percent change in uterine artery diameters was assessed from the 

baseline following intraluminal infusion 

alone or in combination with 0.5 µg/mL 

analysed as described in Figure 3.2

alone (A); ρ = compared to gB alone; & = compared to U46619 alone; $ = compared to co

treatment with U46619 and gB (B)

 

Vascular tone induced by co-infusion of U46619 with CMV glycoprotein B (gB) 

The percent change in uterine artery diameters was assessed from the 

baseline following intraluminal infusion (A) or extraluminal addition (B) of 5 nmol/L 

0.5 µg/mL gB. The results are presented as mean ± SEM and were 

3.2 (n = 3 to 10).  # = compared to U46619 or gB treatment 

= compared to gB alone; & = compared to U46619 alone; $ = compared to co

(B).   

 

97 

glycoprotein B (gB) 

The percent change in uterine artery diameters was assessed from the 

5 nmol/L U46619 

. The results are presented as mean ± SEM and were 

(n = 3 to 10).  # = compared to U46619 or gB treatment 

= compared to gB alone; & = compared to U46619 alone; $ = compared to co-



 

 

Figure 3.9: Vascular tone and dextran leakage in uterine arteries after treatment with 

U46619 and thrombin. 5 nmol/L 

co-infused with fluorescent dextran with or without the S1P

Dextran leakage was measured in the bath as described in 

uterine artery diameters was assessed from the baseline 

following intraluminal infusion (B) 

mean ± SEM and were analysed as described in 

or thrombin alone, @ = compared to U46619, + = compared to thrombin

combined U46619 and thrombin 

  

 

Vascular tone and dextran leakage in uterine arteries after treatment with 

5 nmol/L U44619 in the presence or absence of 1 U/mL 

infused with fluorescent dextran with or without the S1P1 agonist, 0.1 µmol/L 

Dextran leakage was measured in the bath as described in Figure 3.2 (A). The percent change in 

uterine artery diameters was assessed from the baseline under flow and no-flow conditions, 

(B) or extraluminal addition (C). The results are presented as 

mean ± SEM and were analysed as described in Figure 3.2 (n = 4 to 9).  # = compared to U46619 

, @ = compared to U46619, + = compared to thrombin (B); $ = compared to 

combined U46619 and thrombin treatment (B); ρ = compared to thrombin alone 
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Vascular tone and dextran leakage in uterine arteries after treatment with 

1 U/mL thrombin were 

.1 µmol/L SEW2871. 

percent change in 

flow conditions, 

. The results are presented as 

(n = 4 to 9).  # = compared to U46619 

; $ = compared to 

compared to thrombin alone (C). 
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3.2.10 Discussion of results in Chapter 3 

In this Chapter, I identified a new paradigm of vascular tone control in resistance arteries 

mediated by S1P through decreased or increased endothelial permeability. The role of S1P in 

maintaining endothelial barrier function has been shown in cultured endothelial cells 

[183,410,422,728], perfused venules [416,723,729] and models of lung permeability in vivo 

[3,425,722], but not in intact isolated arteries. Low S1P concentrations activate S1P1 promoting 

signaling through the Gi-Rac1-pathway to increase endothelial barrier function. At high 

concentrations S1P activates both Rac and RhoA. However, the activation of Rac decreases after 

5 to 10 minutes while the activation of RhoA remains sustained [410]. It is therefore likely that, 

at high S1P concentrations, S1P3-mediated activation of RhoA via signaling through Gαq and 

Gα12/13 predominates over Rac activation by S1P1 leading to increased endothelial permeability 

[410,693,730]. In this Chapter, I show that in intact uterine arteries infusion of S1P dose-

dependently regulates endothelial permeability. Infusion of physiological levels of 1 mol/L S1P 

modestly increased permeability but did not appear to impact vascular tone while infusion of 

pathological levels (10 µmol/L) increased endothelial permeability allowing its own leakage to 

VSMCs, increasing vascular tone. Together, these findings emphasize the importance of S1P 

concentrations and S1P receptors in regulation of endothelial permeability.  

A major finding of this study was that co-infusion of a high physiological concentration 

of 1 µmol/L S1P with 5 nmol/L U46619 increased vascular tone, even though infusion of each 

factor alone or co-infusion of U46619 with a lower concentration of 0.01 µmol/L S1P had no 

effect on vascular tone (Figure 3.10). The absence of vascular tone when U46619 was co-infused 

with 0.01 µmol/L S1P could be because S1P is maintaining the endothelial barrier preventing 

leakage of U46619 to the VSMCs. This argument is partly supported by the finding that S1P at a 

concentration that increases endothelial permeability permits leakage of U46619 to the VSMCs 

increasing vascular tone. The fact that 1 µmol/L S1P or 5 nmol/L U46619 at these concentrations 

each induce vascular tone when added extraluminally but not when infused, suggests that there is 

a barrier that prevents these molecules from accessing the VSMCs. This barrier is overcome 

when the two are co-infused. To further investigate why this might be occurring, I showed that 

the mechanism leading to increased vascular tone is leakage of U46619 through increased 

endothelial permeability induced by S1P. To support this argument, I demonstrated that co-

infusion of the TXA2 receptor antagonist, SQ29548 with S1P and U46619, did not reduce the 
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induced vascular tone. Since U46619 at the concentration used in this study had no effect on 

endothelial permeability, this rules out the possibility that U46619 could promote its own 

leakage. Interestingly, when I added SQ29548 to the bath followed by co-infusion of S1P and 

U46619 inside the artery, there was a complete blockade of vascular tone, suggesting that 

U46619 was reaching the VSMCs from the endothelium. Moreover, while the S1P-induced 

vascular tone when added extraluminally to arteries from the S1P3 KO female mice was 

completely inhibited, the U46619-induced vascular tone was unaffected. This verifies that the 

loss of constriction after co-infusion of S1P and U46619 in arteries from S1P3 KO mice was due 

to the loss of S1P-mediated permeability through S1P3 that prevented the leakage of U46619. 

These results provide further evidence that the increase in vascular tone after co-infusion is 

mediated by U46619 through permeability generated by S1P at 1 µmol/L. I however, did not see 

any effect on vascular tone by infused individual treatments. Since U46619 alone does not 

induce permeability, it is not expected to leak; however S1P alone increased permeability yet had 

no effect on vascular tone. It is likely that S1P leaks to the VSMC and stimulates 

vasoconstriction but this is counterbalanced by S1P-induced NO production at this concentration. 

S1P activity is well known to cause eNOS activation and NO production [33,121,386,731]. This 

means that the U46619 leakage in the presence of 1 µmol/L S1P when co-infused induces 

additional vasoconstriction that overcomes the NO-mediated deterrence of S1P-induced 

constriction. 

To support the role of S1P in facilitating access of infused U46619 to the underlying 

VSMC through increased endothelial leakage, I showed that when VPC23019 (S1P1/S1P3 

receptor antagonist) was co-infused with S1P and U46619, there was a complete block of the 

induced vascular tone. Furthermore, the 1 µmol/L S1P-induced permeability was not different 

from that induced by the combined S1P and U46619, but also S1P at this concentration caused 

disruption of the endothelial junctional molecule, VE-cadherin in HUVECs. These results 

support the argument for the role of S1P in promoting leakage of U46619 through increased 

permeability. S1P at 0.1 µmol/L has been shown to increase endothelial permeability in 

HUVECs in an S1P2 receptor-dependent manner [732]. Interestingly, the lack of vascular tone 

when U46619 was co-infused with the lower concentration of 0.01 µmol/L S1P indicates that 

S1P at this concentration likely contributes to the endogenous mechanisms for maintenance of 

the endothelial barrier thus preventing U46619 leakage to the VSMCs, but also that S1P does not 



 
 

101 
 

promote U46619-induced vascular tone except through increased endothelial permeability.  

Maintenance of endothelial integrity requires the continuous engagement of S1P1, and 

agents that induce permeability must overcome this protective signaling [419,436]. In contrast, 

signaling through S1P3 exacerbates inflammation in sepsis by increasing endothelial 

permeability [733] and likely contributes to the lack of protection by S1P or SEW2871 at high 

concentrations in an in vivo LPS-induced acute inflammatory lung injury model [425]. I now 

show using an S1P1/S1P3 receptor antagonist and arteries from S1P3 KO mice that ≥ 1 µmol/L 

S1P infused inside pressurized resistance arteries increases endothelial permeability largely 

through S1P3. The differences in vascular response to S1P in arteries isolated from mice on a 

129/S1SVIMJ compared to a C57Bl/6J background are likely associated with genetic differences 

such as S1P receptor expression. However, a potentiating effect of S1P on leakage of U46619 in 

uterine arteries was still observed in the WT littermates, which was absent in the S1P3 KO mice, 

supporting an important role for S1P3 in mediating the endothelial barrier disruption. Although I 

have not yet determined why there is an additive combined effect on vascular tone of co-infusing 

both S1P and U46619, I have demonstrated that the vascular tone is generated by leakage of 

U46619 and this leakage is mediated by S1P in an S1P3-dependent manner.  

I find that S1P also plays a role in potentiating U46619-induced vascular tone in 

mesenteric arteries from female mice. However, these arteries are less reactive to S1P or U46619 

than uterine arteries. We examined whether the level and type of S1P receptors expressed in 

these two vascular beds could explain this finding. Unexpectedly, we found that the level of 

expression of S1P3 is the same in uterine and mesenteric arteries. This suggests that differences 

in downstream signalling through S1P3 on the endothelium in these two vascular beds may be 

the explanation, as there exists different subtypes of G-proteins that couples to S1P receptors in 

different cell types [734]. Alternatively, the ratio of S1P1 to S1P3 receptors may be higher in the 

mesenteric arteries leading to greater vasodilation that counters the induced vasoconstriction.  

However, interpretation of data from S1P receptors expression should be taken with caution as 

they were measured from whole arteries that included both endothelium and VSMCs. The higher 

expression of S1P1, which is predominantly involved in vasodilation, in uterine compared to 

mesenteric arteries highlights its potential importance in reproduction. Increase in vasodilatory 

capacity is one of the major adaptations that occurs particularly in the uterine vasculature during 

pregnancy [735]. It is also possible that differential TP receptor expression on these arteries 
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could be an explanation. We also found that the expression of the housekeeping genes, β-actin 

and GAPDH, were lower in mesenteric compared to uterine arteries. This could be explained by 

the higher levels of non-cellular protein components not containing these housekeeping genes 

that have previously been reported in mesenteric arteries compared to other vessels [736]. 

Nevertheless, the reduced reactivity of mesenteric arteries from females implies that leakage of 

vasoconstrictors through the endothelium of systemic arteries is more tightly controlled in that it 

will only occur at pathological concentrations of S1P. An increase in circulating S1P 

concentrations as seen in coronary heart disease [737], could therefore negatively impact blood 

pressure.  

I however, found that mesenteric arteries from male mice remarkably different. Infusion 

of U46619 by itself generates vascular tone unlike the lack of response in arteries from female 

mice, although S1P-induced potentiation still occurs after co-infusion similar to that found in 

mesenteric arteries from female mice. Mesenteric arteries from male mice are likely leakier than 

those from female mice, and they also exhibit constriction responses similar to uterine arteries. 

This dichotomy of vascular responses found in males and females is not surprising since there 

are many examples of sex-based differences in vascular responses [738,739]. Interestingly, 

U46619-induced vascular tone in the bath in mesenteric arteries from male mice was 

dramatically decreased in S1P3 KO mice compared to the wildtype control, suggesting that in 

these arteries, U46619-induced responses could be occurring partly through the S1P pathway. 

I then asked whether infectious agents known to increase endothelial permeability could 

also increase access of circulating vasoconstrictors to the VSMCs. Bacterial infections like 

Escherichia coli [726] or viral infections such as hantavirus [740] and CMV [661] increase 

endothelial permeability. By using only surface components of infectious agents, such as LPS 

from K. pneumonia or CMV gB protein co-infused with U46619 vascular tone was increased, 

suggesting that attachment of bacterial or viral particles is sufficient to potentiate vascular-

related complications. Indeed, periodontal bacterial [741] and CMV [742] infections have been 

associated with hypertension. An interesting finding was that while co-infusion increased 

vascular tone, the addition of gB with U46619 to the bath decreased vascular tone. Restoration of 

the extraluminal U46619-induced vascular tone with L-NAME treatment indicates that gB 

induces NO production, consistent with our previously published findings showing increased 

vasodilation in response to infusion of gB [574].  
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Equally important was the finding that co-infusion of U46619 with thrombin, a well 

known permeability-inducing agent, promoted leakage of U46619 increasing vascular tone. The 

vascular tone generated by co-infusing thrombin with U46619 was greater under continuous flow 

conditions than when flow was stopped. This is typical of the rapid reversible nature of 

thrombin-induced permeability [743]. It has been proposed that this recovery is possibly 

mediated by cross-activation of SK-1 through the thrombin receptor leading to generation of S1P 

that signals through S1P1 to decrease endothelial permeability[743]. This argument is partly 

supported by my experiments in which the vascular tone induced by co-infused thrombin and 

U46619 was fully inhibited by targeting S1P1 with SEW2871, known to decrease endothelial 

permeability [414,744]. This provides further evidence that S1P1 receptors can be therapeutically 

targeted to ameliorate the negative effects of vascular leakage [419]. None of these infectious or 

inflammatory agents added directly to the bath induced vasoconstriction, which supports the 

argument that the vasoconstriction was induced by leakage of the co-infused thromboxane 

mimetic (U46619). 

In this Chapter, I demonstrate a novel mechanism where S1P controls vascular tone in 

resistance arteries by regulating endothelial permeability. Importantly, while signalling via the 

S1P1 receptors has been shown to reduce permeability in cultured endothelial cells and veins, I 

now show that S1P signaling via S1P1 decreases endothelial permeability and prevents leakage 

of circulating vasoconstrictors through the endothelium of resistance arteries regulating vascular 

tone (Figure 3:10). These findings have far reaching implications in understanding the impact of 

endothelial permeability generated under physiological, or abnormal conditions such as infection 

and inflammation. Using pharmacologic therapy, there is potential to utilize signaling through 

S1P1 to treat hypertensive diseases and pregnancy-related complications like preeclampsia and 

intrauterine growth restriction.  

 



 

 

Figure 3.10: Proposed mechanism for S1P

S1P acts on endothelial cells. At low concentrations of 

is produced by S1P1 activation and this enhances the endothelial barrier, which blocks leakage of 

potential vasoconstrictors (A). Activation of S1P

which induces dilation (B). At high concentrations 

counteracts the responses mediated through S1P1. This increases permeability (C) allowing 

leakage of vasoconstrictors (e.g. 

increases the constriction of VSMCs through TX

S1P3 receptors (D). The figure depicts the extreme responses to low and high concentratio

S1P. There is a dynamic range between approximately 0.1 and 1

regulates barrier function as a means of controlling vascular tone.

: Proposed mechanism for S1P-induced regulation of vascular tone.

S1P acts on endothelial cells. At low concentrations of ≤ 0.1 µmol/L S1P the prevailing response 

activation and this enhances the endothelial barrier, which blocks leakage of 

Activation of S1P1 or S1P3 on the endothelium also produces NO, 

. At high concentrations ≥1 µmol/L S1P acts through S1P3 and 

counteracts the responses mediated through S1P1. This increases permeability (C) allowing 

 TXA2 and S1P itself) to the sub-endothelial space, which 

on of VSMCs through TXA2/prostaglandin (TP) receptors and S1P2 and 

. The figure depicts the extreme responses to low and high concentratio

S1P. There is a dynamic range between approximately 0.1 and 1 µmol/L where S1P dynamically 

regulates barrier function as a means of controlling vascular tone.  
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CHAPTER 4 

SPHINGOSINE 1-PHOSPHATE-INDUCED NITRIC OXIDE PRODUCTION 

REGULATES ENDOTHELIAL PERMEABILITY AND VASCULAR TONE IN MOUSE 

UTERINE ARTERIES  

 

All results in this Chapter were generated by myself, and have not yet been submitted for 

publication. 

 

4.1 Introduction 

In Chapter 3 I showed that ≥1 µmol/L S1P-induced endothelial permeability mediated via 

the S1P3 receptor, promoted leakage of a co-infused vasoconstrictor (U46619) to the VSMCs 

increasing vascular tone. Such endothelial leakage and increase in vascular tone were prevented 

when U46619 was co-infused with a lower concentration of 0.01 µmol/L S1P that decreases 

permeability (Figure 3.2A). Further, an S1P1 receptor agonist (SEW2871) prevented leakage of 

U46619 by decreasing endothelial permeability stimulated by thrombin. These results 

collectively emphasize the role of S1P in regulating endothelial barrier in mouse uterine arteries. 

However, the exact mechanisms through which S1P regulates the endothelial barrier in these 

arteries remain to be demonstrated. In this Chapter, I provide further mechanistic insights into 

how S1P controls the endothelial barrier and vascular tone in uterine arteries. As described 

earlier, S1P stimulates NO production when it engages the S1P1 or S1P3 receptors and NO has 

opposing effects on endothelial permeability. However, it is unknown whether the S1P-mediated 

enhancement or disruption of endothelial barrier in mouse uterine arteries is effected by NO.  

Like S1P, NO has opposing effects on endothelial barrier function, whereby it increases 

or decreases the barrier, depending on the endothelial model system, the species, or vascular bed 

examined [745-750]. NO regulates endothelial barrier function depending on its concentration, in 

which low concentrations enhance the barrier and high concentrations disrupt the barrier 

[718,749-753]. NO exhibits barrier-protective effects in cultured endothelial cells and in vivo 

[752,753] by signaling through the GC/cGMP pathway [754]. NO has also been shown to 

increase endothelial permeability in cannulated coronary venules [755,756] and different 

microvascular beds in the rat kidney, stomach, intestine, pancreas, mouse paw and cat intestines 

[745-750]. Even so, the mechanisms through which NO increases endothelial permeability 



 
 

106 
 

remain poorly understood. Evidence suggests that eNOS-derived NO promotes activation of Rho 

GTPases/Rho kinase destabilizing the VE-cadherin complex and AJ [749]. The induction of 

eNOS activity by agonists like LPS or VEGF increases endothelial permeability [755,757].  

Endothelial S1P2 receptor plays a protective role against acute barrier disruption during 

anaphylaxis by suppressing eNOS activation and NO generation through inhibition of Akt in 

vivo [426]. Although this study sheds light on the potential relationship between S1P and NO in 

the control of endothelial barrier, the primary focus of the study was on lung permeability and it 

is likely that responses in this vascular bed are different from that of the uterine vasculature used 

in my study. While such in vivo experiments provide information that is physiologically relevant, 

examining ex vivo arteries canulated to a pressure myograph system provides an opportunity to 

investigate the effects of drugs on such arteries in a more controlled system devoid of other 

blood components. 

Considering the aforementioned background, I hypothesized that S1P regulates 

endothelial permeability and thus leakage of circulating vasoactive factors to the underlying 

VSMCs in uterine arteries through production of NO. Using a novel method established in our 

hands with the capability to simultaneously measure endothelial permeability, vascular tone and 

modulation by NO (using SNP or L-NAME), in this Chapter, I describe a novel link between 

S1P signaling, regulation of endothelial barrier function and the ensuing vascular tone in uterine 

arteries mediated by NO. I show that infusion of low concentrations of 0.1-1 µmol/L S1P could 

be generating NO that maintains the endothelial barrier which prevents leakage of S1P to the 

VSMCs. At 10 µmol/L, it is likely that the NO induced by S1P increased endothelial 

permeability facilitating leakage of S1P to the VSMCs increasing vascular tone, which again 

could be attenuated by the available NO. These findings suggest that, mechanistically S1P 

utilizes NO to control endothelial barrier and leakage of substances to VSMCs that affect 

vascular tone.  

 

4.2 RESULTS 

4.2.1 S1P-generated NO regulates endothelial permeability and vascular tone  

I examined the effect of NO on the S1P-induced endothelial permeability and vascular 

tone after intraluminal infusion of 0.01-10 µmol/L S1P. Permeability was not changed in intact 

uterine arteries infused with 0.01-1 µmol/L S1P compared to the untreated control (Figure 4.1A). 
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However, infusion of 10 µmol/L S1P increased permeability compared to other treatments. In the 

presence of L-NAME in the bath, permeability increased after infusion of 1 µmol/L S1P and was 

further increased after 10 µmol/L S1P compared to L-NAME alone or compared to these S1P 

concentrations in the absence of L-NAME. Permeability was also increased overall when S1P 

was infused into arteries in the presence of L-NAME compared to that induced when S1P was 

infused without L-NAME (Figure 4.1A).  

Simultaneous measurement of arterial diameters showed that infusion of 10 µmol/L S1P 

without L-NAME inside uterine arteries increased vascular tone compared to all lower S1P 

concentrations or the untreated control (Figure 4.1B). Vascular tone also increased in the 

presence of L-NAME after infusion of 0.1, 1 or 10 µmol/L S1P compared to L-NAME alone. 

Furthermore, infusion of 0.1, 1 or 10 µmol/L S1P with L-NAME induced significantly greater 

vascular tone compared to that induced by these concentrations in the absence of L-NAME. 

Overall, vascular tone in response to infused S1P was significantly greater with L-NAME 

(Figure 4.1B).  

Cumulative addition of S1P to the bath (extraluminal) increased vascular tone in a dose-

dependent manner; however, pretreatment with L-NAME had no effect (Figure 4.1C). It is 

important to note, however, that 1 µmol/L S1P added extraluminally increased vascular tone 

significantly while the same concentration infused intraluminally in the absence of L-NAME had 

no effect (p<0.001; Figure 4.1B, C). 

4.2.2 Vascular tone induced after co-infusion of U46619 and S1P is regulated by NO 

In Chapter 3 I showed the S1P-induced endothelial permeability promotes leakage of 

U46619 to VSMCs increasing vascular tone in uterine arteries [696]. In this Chapter I show that 

infusion of 5 nmol/L U46619, 1 µmol/L S1P or the two combined in the presence of L-NAME 

led to increased vascular tone compared to the corresponding treatments without L-NAME and 

compared to the L-NAME control. The dramatic increase in vascular tone after infusion of 

U46619 in the presence of L-NAME suggests that U46619 is producing NO in these arteries 

(Figure 4.2A). L-NAME treatment alone did not significantly increase vascular tone compared to 

the untreated control. Vascular tone was increased in response to extraluminal addition of S1P, 

U46619 or the two combined with or without L-NAME compared to their respective controls. L-

NAME treatment alone increased basal tone (Figure 4.2B). Overall, for intraluminal and 
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extraluminal treatments, vascular tone was increased in the presence of L-NAME.  

Similar to arteries from WT mice, arteries from eNOS KO mice showed no effect on 

permeability after infusion of 1 µmol/L S1P; however, 10 µmol/L S1P induced similar levels of 

endothelial permeability (Figure 4.3A). Infusion of 1 µmol/L S1P significantly increased 

vascular tone in arteries from eNOS KO compared to the untreated control or arteries from WT 

mice. In contrast, infused 10 µmol/L S1P significantly increased vascular tone similarly in 

arteries from eNOS KO and WT mice (Figure 4.3B). Infusion of 5 nmol/L U46619 or 1 µmol/L 

S1P into arteries from eNOS KO mice increased vascular tone compared to the control or 

arteries from WT mice. However, co-infusion of S1P and U46619 into arteries from eNOS KO 

mice increased vascular tone similarly to that of individual treatments or the co-infused treatment 

in arteries from WT mice. Overall, vascular tone was increased in arteries from eNOS KO mice 

compared to WT mice (Figure 4.3C).  

 

4.2.3 SNP regulates endothelial barrier in isolated pressurized mouse uterine arteries  

S1P-induced endothelial permeability was enhanced in uterine arteries pretreated with L-

NAME, suggesting an important barrier role for NO. I next directly examined the effects of NO 

on the control of endothelial barrier by infusing the NO donor SNP inside uterine arteries in the 

presence or absence of L-NAME. Infusion of SNP at 10 or 20 µmol/L had no effect on dextran 

leakage. However, infusion of 50 or 100 µmol/L SNP in the presence of L-NAME resulted in 

increased dextran leakage compared to the untreated control or lower concentrations. Such 

induced dextran leakage was completely absent in arteries from eNOS KO mice (Figure 4.4A, 

B). To assess the barrier-enhancing effects of SNP, I co-infused SNP with permeability-inducing 

agents (thrombin, LPS, gB). 1 U/ml thrombin or 0.5 µg/ml gB alone, but not 50 ng/ml LPS, 

increased permeability compared to the untreated control. 20 µmol/L SNP significantly 

decreased permeability compared to the untreated control and also decreased thrombin-induced 

permeability. SNP had no effect on LPS or gB-induced permeability (Figure 4.5A, B, C).  

 

4.2.4 SNP-induced vasodilation is enhanced in the presence of L-NAME in arteries from 

eNOS KO and WT mice 

So far, I have shown that endogenously and S1P-induced NO can enhance the endothelial 

barrier, but also NO disrupts the barrier at high concentrations. Such NO-induced permeability 
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could promote leakage of S1P or U46619 to the VSMCs increasing vascular tone that is 

attenuated with the same S1P-induced NO. Next, SNP was used to mimic the vasodilatory 

effects of NO. In arteries pretreated with L-NAME and preconstricted with U46619, cumulative 

addition of SNP to the bath, significantly increased vasodilation compared to arteries not treated 

with L-NAME (Figure 4.6A). The increased vasodilation was not affected by location of L-

NAME, in the bath or inside the artery. SNP-induced vasodilation in arteries from eNOS KO 

mice was not different from WT mice. Pretreatment of arteries from eNOS KO mice with L-

NAME significantly enhanced SNP-induced vasodilation similar to that found in arteries from 

WT mice (Figure 4.6B). When SNP at 1 µmol/L was added to the bath with preconstricted 

denuded arteries, vasodilation (41.2±6.4%) was significantly increased (p<0.01) compared to 

arteries with intact endothelium (14.8±7.0%) or denuded arteries treated with L-NAME 

(16.2±3.0%). Vasodilation to methacholine (1 µmol/L) in denuded arteries in the presence 

(8.4±6.9%) or absence of L-NAME (-2.2±1.0%) was greatly attenuated compared to intact 

arteries. Previous experiments from our lab using the same type of arteries showed that 

methacholine at (1 µmol/L) induced a vasodilation of ~ 70% [572]. In the above experiments, the 

dilation effect of SNP (NO donor) was assessed by addition to the bath, since NO induces 

vasodilation by signaling in the VSMCs. In contrast, infusion of SNP (1 or 20 µmol/L) into 

preconstricted arteries induced vasodilation that was not different in the presence or absence of 

L-NAME (Figure 4.6C). 

 

4.2.5 Co-infusion of SNP and U46619 increased endothelial permeability and vascular tone: 

permeability, but not vascular tone, was inhibited in arteries from eNOS KO mice 

Since S1P promotes leakage of U46619 to the VSMCs to stimulate vasoconstriction and 

S1P stimulates production of NO, the following experiments were conducted to determine 

whether NO itself promotes leakage of U46619 in a similar manner (Figure 4.2A, C). Co-

infusion of SNP with U46619 into arteries not treated with L-NAME significantly increased 

vascular tone compared to individual treatments. The U46619-induced vascular tone after 

infusion in the presence of L-NAME was significantly decreased when U46619 was co-infused 

with SNP (Figure 4.7A). On the other hand, co-addition of SNP with U46619 to the bath 

significantly reduced the vascular tone induced by U46619 alone and this was not affected by the 

presence of L-NAME (Figure 4.7B). In arteries from eNOS KO mice, infusion of U46619 
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increased vascular tone (Figure 4.8A) that was not different from that found in arteries from WT 

mice with L-NAME treatment (Figure 4.7A). The vascular tone induced by U46619 in arteries 

from eNOS KO mice was unaffected when U46619 was co-infused with SNP (Figure 4.8A) 

unlike the reduced vascular tone in co-infused L-NAME-treated arteries from WT mice (Figure 

4.7A). The vascular tone induced after co-infusion of SNP with U46619 was not different in 

arteries from eNOS KO and WT mice (Figure 4.8A). Co-addition of SNP and U46619 to the 

bath of arteries from eNOS KO mice increased vascular tone, but the vascular tone was 

significantly lower compared to U46619 alone (Figure 4.8B). Infusion or addition of SNP alone 

had no effect on vascular tone. Co-infusion of SNP with U46619 induced endothelial 

permeability compared to individual treatments, but this was completely absent in arteries from 

eNOS KO mice (Figure 4.8C).  

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

111 



 
 

112 
 

Figure 4.1: Leakage of fluorescent dextran and vasoconstriction induced by S1P in the 

presence or absence of L-NAME. S1P was infused intraluminally into uterine arteries in the 

presence of 3 kDa fluorescent dextran conjugated to rhodamine green with or without 100 

µmol/L L-NAME added to the bath. Leakage of dextran into the vessel bath was measured and 

normalized by artery length: RFU/mm = relative fluorescence units per millimetre of artery 

length (A). To measure vasoconstriction, changes in artery diameter from the baseline were 

measured after intraluminal infusion (B) or extraluminal addition (C) of S1P with or without L-

NAME added to the bath. Results were calculated as percent vasoconstriction of the initial 

arterial diameter at equilibration and presented as the mean ± SEM (n= 3 to 17).  The results 

were analysed with a two-way ANOVA followed by the Tukey post-hoc test. * depicts an overall 

significant difference. # compared to no L-NAME controls. Φ compared to L-NAME only. $ 

compared to other treatments in L-NAME-treated vessels. For all figures, the number of symbols 

depicts increasing levels of significance: 1 = p<0.05, 2 = p<0.01, 3 = p<0.001 and 4 = p<0.0001. 

 

 

 

 



 

 

Figure 4.2: Vascular tone induc

arteries. Uterine artery diameters from WT mice were measured after intraluminal infusion 

or extraluminal addition (B) of 1 µmol/L 

in the presence or absence of 100 µmol/L 

were calculated and analyzed as for Figure 

*overall, # compared to no L-NAME control, 

to U46619 or S1P; $ compared to the control. 

 

 

ced after co-infusion of S1P and U46619 into mouse uterine 

Uterine artery diameters from WT mice were measured after intraluminal infusion 

1 µmol/L S1P, 5 nmol/L U46619  or S1P combined with U46619 

100 µmol/L L-NAME added to the bath (n=3 to 16). The results 

were calculated and analyzed as for Figure 4.1. # compared to U46619 or S1P alone 

NAME control, Φ compared to L-NAME control (B)

compared to the control.  
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P and U46619 into mouse uterine 

Uterine artery diameters from WT mice were measured after intraluminal infusion (A) 

U46619  or S1P combined with U46619 

NAME added to the bath (n=3 to 16). The results 

1P alone (A). 

(B). # compared 



 

 

Figure 4.3: Dextran leakage and vascular tone 

vascular tone induced co-infusion

mice. 1 or 10 µmol/L S1P was infused in the presence of 3 kDa fluorescent dextran conjugated 

to rhodamine green, into uterine arteries isolated from eNOS KO

dextran leakage (A) and vascular tone were determined

a combination of these, were also infused into arteries from eNOS KO or WT mice followed by 

measurement of vascular tone (C)

percent vasoconstriction of the initial arterial diameter at equilibration and presented as the mean 

± SEM (n= 2 to 3). The results were analysed using one

post-hoc test. * Overall, # compared to U46619 or S1P alone, 

control. In A and B, some experiments have a

 

and vascular tone stimulated after infusion of S1P

infusion of S1P with U46619 into uterine arteries from eNOS KO 

was infused in the presence of 3 kDa fluorescent dextran conjugated 

to rhodamine green, into uterine arteries isolated from eNOS KO or WT mice from which 

cular tone were determined (B). 1 µmol/L S1P, 5 nmol/L

were also infused into arteries from eNOS KO or WT mice followed by 

(C) as described in Figure 4.1. The results were calculated as 

percent vasoconstriction of the initial arterial diameter at equilibration and presented as the mean 

The results were analysed using one-way ANOVA followed by the Tukey 

# compared to U46619 or S1P alone, Φ compared to no

, some experiments have an “n” of 2, that is why statistics are not included.
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after infusion of S1P alone, and 

from eNOS KO 

was infused in the presence of 3 kDa fluorescent dextran conjugated 

from which 

mol/L U46619 or 

were also infused into arteries from eNOS KO or WT mice followed by 

1. The results were calculated as 

percent vasoconstriction of the initial arterial diameter at equilibration and presented as the mean 

way ANOVA followed by the Tukey 

compared to no-treatment 

n “n” of 2, that is why statistics are not included. 



 

 

Figure 4.4: Effect of SNP on dextran leakage

different concentrations was infused in the presence of a 3kDa fluorescent dextran into uterine 

arteries pretreated with 100 µmol/L 

leakage as in Figure 4.1. The mean ± SEM 

and the Tukey post-hoc test. Φ compared to the control or lower S1P concentrations.  

 

 

 

dextran leakage in eNOS KO mice and WT mice

different concentrations was infused in the presence of a 3kDa fluorescent dextran into uterine 

100 µmol/L L-NAME in the bath, followed by determination of dextran 

The mean ± SEM dextran leakage was analyzed by one

compared to the control or lower S1P concentrations.  
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WT mice. SNP at 

different concentrations was infused in the presence of a 3kDa fluorescent dextran into uterine 

in the bath, followed by determination of dextran 

analyzed by one-way ANOVA 

compared to the control or lower S1P concentrations.   



 

 

Figure 4.5: Dextran leakage following co

µmol/L SNP was co-infused with 1 U/ml thrombin

the presence of 3 kDa fluorescent dextran conjugated to rhodamine green followed by 

measurement of dextran leakage as described in 

to 17). The results were analysed us

= compared to the control; $ = compared to SNP.

 

Figure 4.5: Dextran leakage following co-infusion of thrombin, LPS and gB with SNP. 

infused with 1 U/ml thrombin (A), 50 ng/ml LPS (B) or 0.5 µg/ml gB 

the presence of 3 kDa fluorescent dextran conjugated to rhodamine green followed by 

measurement of dextran leakage as described in Figure 4.1. Results are as the mean ± SEM (n= 3 

to 17). The results were analysed using one-way ANOVA followed by the Tukey post

= compared to the control; $ = compared to SNP. 
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infusion of thrombin, LPS and gB with SNP. 20 

or 0.5 µg/ml gB (C) in 

the presence of 3 kDa fluorescent dextran conjugated to rhodamine green followed by 

. Results are as the mean ± SEM (n= 3 

way ANOVA followed by the Tukey post-hoc test. # 
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Figure 4.6: Induction of vasodilation by SNP in uterine arteries from eNOS KO and WT 

mice. In all experiments, arteries were preconstricted with U46619 before adding or infusing 

SNP and % vasodilation was measured from the preconstricted value. The arteries from eNOS 

KO mice required relatively lower concentrations of 1 ~ 5 nmol/L U46619 for preconstriction to 

approximately 50% compared to WT mice (5 ~ 10 nmol/L) (A, B, C). Arteries pretreated with 

infused L-NAME or L-NAME added to the bath, were preconstricted and subjected to SNP 

added cumulatively to preconstricted arteries in the bath followed by determination of 

vasodilation (A). SNP was also added cumulatively to the bath of arteries from eNOS KO mice 

in the presence or absence of L-NAME. The SNP-induced vasodilation was compared to arteries 

from WT mice with no L-NAME pretreatment (B). 1 or 20 µmol/L SNP was infused into uterine 

arteries in the presence or absence of L-NAME followed by measurement of vasodilation (C). 

The responses were normalized to maximal diameter obtained from the same arteries treated 

with 100 µmol/L papaverine and Ca2+ free solution. Results are presented as the mean ± SEM. 

The results were analysed using two-way ANOVA followed by the Tukey post-hoc test. * 

compared to SNP or SNP+WT, # SNP+WT compared to SNP+ eNOS KO. In (C), SNP 0 

µmol/L (for L-NAME) has n = 2, and therefore statistics were not conducted on this figure. 



 

 

Figure 4.7: Vascular tone induced after co

arteries. 20 µmol/L SNP, 5 nmol/L 

bath (B) in arteries pretreated or not treated with 

vascular tone as in Figure 4.1. Results are presented as the mean ± SEM. The results were 

analysed using two-way ANOVA followed by the Tukey post

(L-NAME (-)), # = compared to SNP (

 

ascular tone induced after co-infusion of SNP and U46619 into uterine 

5 nmol/L U46619 or a combination were infused (A) or added to the 

in arteries pretreated or not treated with L-NAME, followed by measurement of 

1. Results are presented as the mean ± SEM. The results were 

way ANOVA followed by the Tukey post-hoc test. $ compared to U46619 

)), # = compared to SNP (L-NAME (+)), δ = compared to SNP (L-NAME
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into uterine 

or added to the 

, followed by measurement of 

1. Results are presented as the mean ± SEM. The results were 

hoc test. $ compared to U46619 

NAME (-)).  



Figure 4.8: Dextran leakage and/or vascular tone induced after co

U46619 into uterine arteries from eNOS KO and WT mice

were infused or added to the bath of arteries from eNOS KO or WT mice. Vascular tone 

and dextran leakage (C) were determined as in Figure 

SEM. The results were analysed using two

compared to U46619 (WT), # compared to SNP (eNOS KO)

: Dextran leakage and/or vascular tone induced after co-infusion of SNP and 

U46619 into uterine arteries from eNOS KO and WT mice. SNP, U46619 or a combination 

were infused or added to the bath of arteries from eNOS KO or WT mice. Vascular tone 

were determined as in Figure 4.1. Results are presented as the mean ± 

SEM. The results were analysed using two-way ANOVA followed by the Tukey post

compared to SNP (eNOS KO). 
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infusion of SNP and 

SNP, U46619 or a combination 

were infused or added to the bath of arteries from eNOS KO or WT mice. Vascular tone (A, B) 

1. Results are presented as the mean ± 

way ANOVA followed by the Tukey post-hoc test. $ 
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4.2.6 Discussion of results from Chapter 4 

In Chapter 3, I showed that S1P at physiological concentrations induces endothelial 

permeability that permits access of circulating vasoconstrictors to the underlying VSMCs 

increasing vascular tone. Since NO has been shown to independently regulate permeability and 

S1P acting through S1P1 or S1P3 receptors leads to eNOS activation and NO production, I asked 

whether S1P utilizes NO in arteries used in this study to control the endothelial barrier. In this 

Chapter, I provide further mechanistic insights into how S1P regulates permeability in mouse 

uterine arteries likely mediated by NO (Figure 4.9). I show that infusion of S1P inside 

pressurized arteries at normal physiological concentrations (≤1 µmol/L) maintained the barrier 

function that was lost at 10 µmol/L S1P or when NOS was inhibited. The fact that S1P-induced 

endothelial permeability was profoundly increased when NOS was inhibited, suggests that at 

physiological concentrations S1P stimulates NO production that maintains the barrier. To 

emphasize the role of NO in maintaining the endothelial barrier, I further show that exogenously 

delivered NO (via SNP in the absence of L-NAME) inhibited endothelial permeability induced 

by thrombin, but not from LPS or gB. 

The role of NO in promoting endothelial barrier function has been described in cell culture 

and in in vivo mouse models [752,753]. Predescu et al. showed that constitutively produced NO 

by eNOS is important in maintaining barrier integrity in venules. Using eNOS KO and L-

NAME-treated mice they showed excessive postcapillary, muscle, diaphragm and cremaster 

venular leakage compared to controls. The authors concluded that maintenance of endothelial 

barrier function in a given vascular bed depends on the physiological concentration of NO [752]. 

While the S1P-induced endothelial permeability in arteries from eNOS KO and WT mice was 

not different in our study, it is likely that other NOS isoforms (iNOS and nNOS) present in the 

endothelium [758-760] may be important in the control of endothelial barrier by S1P.  

In Chapter 3, I showed that S1P-induced permeability promotes leakage of co-infused 

U46619 to the VSMCs increasing vascular tone [696]. Here, I show that infusion or addition of 1 

µmol/L S1P, 5 nmol/L U46619 or a combination to the bath induced vascular tone that was 

enhanced when NOS activity was inhibited. While S1P likely stimulated NO production, a novel 

finding is that infused U46619 also appears to generate NO in these arteries. The reduction in 

U46619-induced vascular tone in the presence of an NO donor in L-NAME-treated arteries and 

the significantly enhanced vascular tone induced by infused U46619 or S1P in arteries from 
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eNOS KO mice, highlight the role of NO in attenuating the vascular tone induced by S1P or 

U46619. Infusion of S1P or U46619 into arteries from eNOS KO mice increased vascular tone 

which was absent in WT mice, because sufficient NO is not generated from eNOS KO mice to 

overcome the induced vascular tone. 

In the Chapter 3, I also showed that 10 µmol/L S1P increases endothelial permeability in 

cultured endothelial cells, and in intact pressurized uterine arteries [696]. In this Chapter, I now 

show that 10 µmol/L S1P-induced permeability in uterine arteries was enhanced following 

inhibition of NOS, suggesting that that the NO produced by 10 µmol/L S1P has opposing 

functions in the control of endothelial barrier. Given the increase in permeability induced by 10 

µmol/L S1P, it is likely that the NO generated increases permeability by overcoming its own 

barrier-enhancing signals. This idea is supported by the results in which 20 µmol/L SNP 

decreased thrombin-induced permeability, but also SNP at high concentrations (50 or 100 

µmol/L) increased endothelial permeability. The dual roles of NO in enhancing or weakening the 

endothelial barrier, has been described in cultured endothelial cells, veins and pulmonary arteries 

[745,749,750,752,753]. I found that SNP-induced permeability was eNOS-dependent, but these 

findings are not surprising as SNP (as low as 10 µmol/L) has been shown to activate eNOS 

[761]. This means that the mechanism through which high concentrations of SNP increases 

permeability involves both the NO produced by SNP and the endogenously generated NO. An 

additional reason why SNP-induced permeability was absent in arteries from eNOS KO mice 

could be because endothelial cells isolated from eNOS KO mice exhibit decreased active Rho, 

but increased active Rac [749]. These conditions can prevent endothelial barrier disruption 

including that mediated by SNP. In addition, phosphorylation of Ser1176 of eNOS determines its 

activity, and and a genetic mutation of this amino acid in knock-in mice, or a genetic deletion of 

eNOS significantly decreases VEGF or histamine-induced permeability, neutrophil recruitment 

and vascular function [749,762-765]. These findings support the argument that depending on the 

concentration, SNP increases endothelial permeability via eNOS activation, increasing the levels 

of NO available.  

The role of NO in regulating the S1P-induced vascular tone is associated with its 

vasodilatory properties [572,766]. SNP (NO donor) was used to mimic the vasodilatory effects 

of NO, and I show that infusion or extraluminal addition of 20 µmol/L SNP to the bath of 

U46619-preconstricted arteries induced vasodilation. Interestingly however, extraluminally 



 
 

123 
 

induced vasodilation by SNP was enhanced in L-NAME-pretreated arteries. The idea of using L-

NAME was to inhibit the endogenous NOS activity that could lead to NO production. However, 

L-NAME has been shown to increase the activity of NOS isoforms iNOS and eNOS in other 

systems like cultured astrocytes [767], bovine aortic endothelial cells [768], and in vivo in the 

heart, aorta and kidney of normal rats [769]. Further, LNA an active metabolite of L-NAME, 

also increases GC activity in mouse aortic homogenates [711]. SNP also independently activates 

GC and synergistically enhances GC activity in the presence of LNA, or YC-1, an allosteric 

activator (increases catalytic activity) of GC, leading to increased cGMP levels [711,770,771]. 

Collectively, these findings suggest that L-NAME pretreated arteries stimulated with SNP leads 

to increased production of NO through NOS, but also increased activation of downstream NO 

targets (GC) resulting in enhanced vasodilation. I also found that SNP-induced vasodilation was 

enhanced in L-NAME-pretreated arteries from eNOS KO mice compared to arteries from eNOS 

KO or WT mice treated with SNP only. It is possible that L-NAME activates iNOS as 

highlighted above [767], but studies by Brandes et al also showed increased GC activity in the 

aorta from eNOS KO compared WT mice, and SNP stimulation of aortic rings from eNOS KO 

mice increased cGMP levels compared to WT mice [711]. Thus far, my findings suggest that L-

NAME enhances SNP activity through NO production or GC activity. However, the S1P-

induced vascular tone in the presence of L-NAME is consistent with the inhibition of NOS, as 

vascular tone was dose-dependently increased. This means that the contribution of L-NAME in 

the activation of NOS in the arteries used in this study likely occurs in the presence of SNP, but 

not S1P. However, these differences between the way S1P and SNP induces vascular responses 

in the presence of L-NAME require further investigation.  

Interestingly, SNP-induced vasodilation was enhanced in denuded arteries, suggesting that 

the endothelium is a source of endogenously produced vasoconstrictors that maintain resting 

tone. Similar findings have been reported in which SNP dose-dependently increased vasodilation 

in norepinephrine or 5-hydroxytryptamine preconstricted denuded mesenteric arteries from 

normotensive or hypertensive Wistar-Kyoto rats [772]. However, the normalization of SNP-

induced vasodilation in denuded arteries in the presence of L-NAME suggests that the L-NAME-

mediated activation of NOS described above is specific to those isoforms expressed on the 

endothelium (eNOS, iNOS, or nNOS) [759,760,766-769], and could not be activating GC on the 

VSMCs.  
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Another interesting finding was that co-infusion of SNP with U46619 led to an increase in 

endothelial permeability and vascular tone similar to that found with co-infusion of 1 µmol/L 

S1P with U46619. Since U46619 likely produces NO, the increase in endothelial permeability 

after co-infusion could be associated with increased levels of NO contributed by both SNP and 

U46619. This idea is supported by the results in which endothelial permeability was completely 

blocked when SNP and U46619 were co-infused into arteries from eNOS KO mice. This reduced 

permeability in arteries from eNOS KO mice did not affect the vascular tone induced by infused 

U46619 alone or when co-infused with SNP. Vascular tone induced by co-infusion or co-

addition of SNP and U46619 to the bath was the same, but was significantly lower than U46619-

induced vascular tone in L-NAME-treated arteries or when treatments were added to the bath in 

arteries from eNOS KO mice. It is therefore likely that induced endothelial permeability allows 

co-leakage of SNP/NO and U46619 to the VSMCs, where NO negatively controls U46619-

induced vascular tone. It is noteworthy, that the SNP-mediated endothelial permeability was 

enhanced in the presence of U46619 and SNP, likely as a result of enhanced NO production. The 

fact that such induced permeability was completely absent in arteries from eNOS KO mice, 

suggests that signaling of both factors (SNP, U46619) through eNOS is the principal mechanism 

through which they increase permeability.  

Thus far, I have demonstrated that S1P could be stimulating NO generation in arteries used 

in this study, which at low concentrations maintains endothelial barrier, but at high S1P 

concentrations disrupts the barrier predominantly through eNOS activation (Figure 4.9). 

Enhancement of endothelial barrier by NO could be preventing endothelial leakage of S1P, but 

the induced permeability facilitates leakage of S1P into the VSMCs increasing vascular tone.  



 

 

Figure 4.9: Proposed mechanism for S1P

permeability and vascular tone via NO production in murine uterine arteries. 

concentrations (≤1 µmol/L) activate endothelial S1P

activation of eNOS that generates nitric oxide (NO

barrier. Increased endothelial cell barrier indirectly prevents an increase in vascular tone by 

restraining the leakage of S1P and/or other circulating vasoconstrictors such as throm

A2 (U46619) to the vascular smooth muscle cells (VSMCs). In contrast, S1P at high 

concentrations (≥5 µmol/L) can activate both S1P

increased levels of NO(high). NO promotes a positive feedback program that repleni

via eNOS activation, but also stimulates a Rho

decrease in cortical actin formation. These events cause increased endothelial permeability, 

permitting leakage of S1P and/or U46619 to VSMCs increasing vascu

regulated by the vasodilatory actions of NO. 

 

: Proposed mechanism for S1P-mediated regulation of endothelial 

permeability and vascular tone via NO production in murine uterine arteries. 

) activate endothelial S1P1 receptor promoting a Rac

that generates nitric oxide (NOlow), which enhances endothelial cell (EC) 

barrier. Increased endothelial cell barrier indirectly prevents an increase in vascular tone by 

restraining the leakage of S1P and/or other circulating vasoconstrictors such as throm

(U46619) to the vascular smooth muscle cells (VSMCs). In contrast, S1P at high 

) can activate both S1P1 and S1P3 receptors, which leads to 

. NO promotes a positive feedback program that repleni

via eNOS activation, but also stimulates a Rho-dependent disruption of VE-cadherin, and a 

decrease in cortical actin formation. These events cause increased endothelial permeability, 

permitting leakage of S1P and/or U46619 to VSMCs increasing vascular tone, which is also 

regulated by the vasodilatory actions of NO. However, the NO likely generated by 

 

125 

mediated regulation of endothelial 

permeability and vascular tone via NO production in murine uterine arteries. Low S1P 

receptor promoting a Rac-dependent 

which enhances endothelial cell (EC) 

barrier. Increased endothelial cell barrier indirectly prevents an increase in vascular tone by 

restraining the leakage of S1P and/or other circulating vasoconstrictors such as thromboxane 

(U46619) to the vascular smooth muscle cells (VSMCs). In contrast, S1P at high 

receptors, which leads to 

. NO promotes a positive feedback program that replenishes NO 

cadherin, and a 

decrease in cortical actin formation. These events cause increased endothelial permeability, 

lar tone, which is also 

NO likely generated by S1P also 
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negatively regulates the vascular tone induced by S1P or any other circulating 

vasoconstrictors (U46619) that leaks to the VSMCs stimulating vascular tone (Figure 4.9). 

These findings indicate that pathological levels of NO can cause endothelial permeability in 

uterine arteries leading to increased vascular tone. Also under conditions of endothelial 

dysfunction where the levels of NO are greatly diminished, decreased barrier protection by 

NO can lead to increased endothelial permeability and vascular tone. Supplementation of 

arginine or anti-oxidants can help alleviate the vascular-related disorders associated with NO 

deficiency or overabundance, respectively. 
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CHAPTER 5 

THROMBOXANE A2 INCREASES ENDOTHELIAL PERMEABILITY AND 

VASCULAR TONE THROUGH A NOVEL PATHWAY STIMULATED BY 

SPHINGOSINE 1-PHOSPHATE 

 

All results in this Chapter were generated by myself, and have not yet been submitted for 

publication. 

 

5.1 Introduction 

In Chapter 4, I showed that S1P utilizes NO to regulate endothelial barrier in uterine 

arteries, but I also showed that U46619, which likely generates NO, potentiates SNP-induced 

endothelial permeability in the same type of arteries. Both of these mechanisms signal through 

eNOS-dependent mechanisms to control endothelial barrier. These findings indicate that S1P and 

U46619 stimulate common downstream mechanisms. These results, together with those that I 

presented in Chapter 3, in figure 3-6B, which showed that U46619-induced vascular tone was 

completely blocked in mesenteric arteries from S1P3 KO male mice [696], strongly suggested 

that the TXA2 mimetic (U46619) could be signaling through the S1P/S1P3 receptor-dependent 

pathways to increase endothelial permeability and vascular tone. Therefore this Chapter focused 

on determining whether the U46619-induced increase in endothelial permeability and/or vascular 

tone is mediated through the S1P pathway. 

TXA2, a lipid mediator, exerts its activity through two TP receptors, TPα and TPβ [525]. 

Activation of TP receptors contribute to various biological events including cell migration, 

angiogenesis, proliferation, platelet aggregation and vascular tone [8,573,694,773-775]. 

However, high levels of TXA2 are implicated in the pathophysiology of different disease 

conditions like atherosclerosis, myocardial infarction, hypertension, vascular leakage and 

inflammatory lung disease [775,776]. Among other cells, VSMCs and endothelial cells express 

TP receptors [525,536,537,777,778], but the specific roles of these receptors in endothelial cells 

is poorly understood. There is a single reference in the literature that suggests a relationship 

exists between TXA2 and S1P, that is, that TXA2 activates SK-1 increasing the release of S1P 

from isolated and cultured human platelets [486]. However, this relationship has not been 

explored any further and has not been investigated in vascular cells  
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S1P controls the endothelial barrier as demonstrated in cell culture models, intact 

venules, in vivo [107,386,779] and in arteries as shown in my first two data Chapters [696]. Like 

S1P, TXA2 (U46619 at 1 or 100 µmol/L as used in separate publications) increases endothelial 

permeability in vitro in cultured endothelial cells by causing disruption of endothelial VE-

cadherin and PECAM-1, but also mice injected with 30 µmol/L U46619 showed leakage under 

the skin  [8,694,780]. However, these are the only reports in the literature regarding the role of 

TXA2 in the control of endothelial barrier. 

While there appears to exist a link between the TXA2 and S1P-mediated responses even 

in intact microvessels as shown in previous Chapters, it is unknown whether TXA2-induced 

effects are S1P-mediated. In this Chapter, I sought to determine whether TXA2-induced 

endothelial permeability and vascular tone are mediated through the S1P pathway. I 

hypothesized that TXA2 will activate SK-1 increasing intracellular S1P, that will be exported 

extracellularly to stimulate an increase in endothelial permeability and/or vascular tone via the 

S1P3 receptors. By targeting multiple steps within the S1P pathway, I demonstrate a novel 

mechanism through which TXA2 increases endothelial permeability and vascular tone in uterine 

arteries. This also occurs in mesenteric arteries from male and female mice.  

 

5.2 RESULTS 

5.2.1 TXA2 increases endothelial permeability and vascular tone when infused into uterine 

arteries  

I found that infusion of 20 nmol/L U46619 inside uterine arteries significantly increased 

dextran leakage (Figure 5.1A) and vascular tone (Figure 5.1B) compared to control or lower 

U46619 concentrations. U46619 also increased vascular tone dose-dependently when added to 

the arterial bath (Figure 5.1C). These results indicate that U46619 at high concentration 

increased endothelial permeability permitting leakage of U46619 to the underlying VSMCs 

increasing vascular tone. 

 

5.2.2 S1P1 receptor agonist inhibits TXA2-induced endothelial permeability and vascular 

tone in uterine arteries  

To test the above hypothesis that U46619-induced permeability promotes its own leakage 

increasing vascular tone, I determined whether inhibiting the increase in endothelial permeability 
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using an S1P1 agonist (known to decrease endothelial permeability) will prevent the vascular 

tone induced by infused U46619. When U46619 was co-infused with SEW2871, dextran leakage 

(Figure 5.2A) and vascular tone (Figure 5.2B) was significantly reduced. I next determined 

whether the reduction in vascular tone was because of vasodilatory effects mediated by co-

infused SEW2871 on the VSMCs. The vascular tone induced by infusion of U46619 in the 

presence of SEW2871 in the bath (directly affecting the VSMCs) was unaffected (Figure 5.2C). 

These results suggest that SEW2871 has no vasodilatory effects on the VSMCs, but the 

reduction of vascular tone when co-infused with U46619 is more likely because SEW2871 

enhanced the endothelial barrier. 

5.2.3 TXA2-induced vascular tone, but not TXA2-induced endothelial permeability, is 

mediated through the TP receptors 

I next sought to confirm whether the TXA2-induced permeability and vascular tone are 

TP-receptor mediated. Unexpectedly, infusion of 20 nmol/L U46619 with addition of SQ29548 

(a TP receptor antagonist) in the bath, or co-infusion with SQ29548 led to similar levels of 

dextran leakage that were dramatically greater compared to that observed with infusion or 

addition of SQ29548 or U46619 alone (Figure 5.3A). Considering that infused U46619 increased 

endothelial permeability, I determined whether the leakage of U46619 from the arterial lumen 

was reaching the underlying VSMCs by assessing the impact on vascular tone. When SQ29548 

was added to the arterial bath before infusing U46619 inside the artery, the vascular tone was 

completely blocked. In contrast, when I co-infused U46619 with SQ29548 vascular tone was 

partially reduced compared to infused U46619 alone. The vascular tone resulting from co-

infusion was still significantly greater compared to infused SQ29548 alone or the vascular tone 

induced by infused U46619 against SQ29548 in the bath (Figure 5.3B). These results suggest 

that U46619 increases endothelial permeability in arteries used in this study in a TP receptor-

independent manner [781], possibly the mechanism may be nonreceptor mediated such as 

interfering with cell membrane integrity (e.g. membrane permeability) disrupting cell-cell 

junctions. 
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5.2.4 SK-1 mediates TXA2-induced endothelial permeability and vascular tone in uterine 

arteries  

In Figure 3- 5B, I showed that the vascular tone generated by U46619 was inhibited in 

mesenteric arteries from S1P3 KO male mice, suggesting that this response involves activation of 

the S1P3 receptor [696,779]. I therefore investigated the connection between the TXA2 and S1P-

mediated pathways. Co-infusion of U46619 with SK-II (SK-1 inhibitor) inside arteries 

completely inhibited dextran leakage (Figure 5.4A) and vascular tone (Figure 5.4B). However, 

the vascular tone induced by infused U46619 in the presence of SK-II in the bath was unaffected 

(Figure 5.4C). These findings suggest that endothelial permeability and vascular tone induced by 

infused U46619 is generated via SK-1 activity. 

 

5.2.5 ABC-type transporters promote TXA2-mediated increase in endothelial permeability 

and vascular tone in uterine arteries  

Since TXA2 increases endothelial permeability and vascular tone through SK-1, it is 

likely that this leads to intracellular generation of S1P and export. I next determined the 

transporters that could be involved in exporting S1P out of cells in uterine arteries infused with 

U46619. The ABCC1 and ABCG2 transporters are involved in S1P export in cancer cells, and 

rat myometrial smooth muscle cells [369,703]. U46619-induced dextran leakage remained 

unchanged in the presence of co-infused MK571 (ABCC1 inhibitor), but was completely 

blocked in the presence of FTC (ABCG2 inhibitor) (Figure 5.5A). However, the U46619-

induced vascular tone was completely blocked in the presence of co-infused MK571 or FTC 

(Figure 5.5B). The vascular tone induced by infused U46619 against MK571 in the bath was 

significantly decreased, but not against FTC in the bath (Figure 5.5C). These results suggest that 

U46619-induced endothelial permeability involves the export of S1P through ABCG2 

transporters likely in the endothelial cells, but vascular tone is induced by export of S1P from 

ABCC1 in the VSMCs. 

 

5.2.6 S1P1/S1P3 receptors promote the TXA2-mediated increase in endothelial permeability 

and vascular tone in uterine arteries 

In Chapter 3, I showed that the S1P-induced endothelial permeability and vascular tone in 

uterine arteries occur via the S1P3 receptor (Figs 3-3A,B and 3-5A, B) [696,779], I therefore 
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evaluated the role of this receptor (these experiments also simultaneously assessed the role of 

S1P1 because VPC23019 is a dual antagonist) on the vascular tone induced by infused U46619. I 

show that the dextran leakage (Figure 5.6A) and vascular tone (Figure 5.6B) induced by infused 

U46619 in the presence of co-infused VPC23019 were significantly decreased. Further, vascular 

tone was also significantly decreased when U46619 was infused against VPC23019 in the bath 

(Figure 5.6C).  

 

5.2.7 Increased vascular tone increases endothelial permeability of intact isolated 

pressurized uterine arteries 

Since I demonstrated that 20 nmol/L U46619 increased endothelial permeability that 

promoted leakage of U46619 to the VSMCs increasing vascular tone, I next determined whether 

vasoconstriction could be part of the mechanism through which U46619 increased endothelial 

permeability. When U46619 was added to the bath of arteries pretreated extraluminally with 

SQ29548 there was complete reduction in dextran leakage and vascular tone. However, when 

arteries were pretreated intraluminally with SQ29548 before adding U46619, there were no 

significant differences in dextran leakage but there was complete reversal of vascular tone 

(Figure 5.7A, B). Given that vascular tone induced after infusion of U46619 inside arteries was 

completely blocked by co-infused SK-II, but not when SK-II was added to the bath against 

infused U46619 (Figure 5.4B, C), I used SK-II to block activation of sphingosine kinase on the 

endothelium before addition of U46619 to the bath. There was a trend in the reduction in 

permeability (not significantly different) and vascular tone was significantly reduced compared 

to U46619 alone (Figure 5.7C, D). Since, MK571 had no effect on U46619-induced endothelial 

permeability, but when added to the bath MK571 significantly decreased the vascular tone 

induced by infused U46619 (Figure 5.5C), I used MK571 to determine whether the S1P 

production in the VSMCs contributes to endothelial permeability induced by U46619 added to 

the bath. When U46619 was added to arteries pretreated with MK571 in the bath, dextran 

leakage and vascular tone were completely blocked (Figure 5.7E, F). These results suggest that 

U46619-induced vascular tone in the bath in part involves activation of endothelial SK-1, and 

S1P production in the VSMCs that stimulates an increase in endothelial permeability.  
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5.2.8 TXA2-induced vascular tone in mesenteric arteries from male or female mice 

stimulates the activation of SK-1 or ABC-type transporters  

In mesenteric arteries from male mice, the vascular tone induced by U46619 added 

cumulatively to the bath was completely blocked by SK-II or MK571, but partially by FTC 

(Figure 5.8A, B, C). In mesenteric arteries from female mice, U46619-induced vascular tone was 

completely blocked in the presence of SK-II, but partly in the presence of FTC or MK571. 

However, the U46619-induced vascular tone was completely blocked when FTC and MK571 

were added in combination to the bath of mesenteric arteries from female mice (Figure 5.8D, E, 

F).  

 

 

 

 

 

 

 

  



 

 

Figure 5.1: Infusion of U46619 at high concentration i

vascular tone in uterine arteries

presence of a 3kDa fluorescent dextran, followed by determination of dextran leakage 

vascular tone (B). U46619 concentrations were also added individually to 

bath (directly to VSMCs) followed by measurement of vascular tone 

bath corrected by arterial length was used as a measure of endothelial permeability, whereas 

vascular tone (% decrease in diameter

baseline diameter after equilibration of arteries. The mean ± SEM percent decrease in diameter 

(n=3 to 13) were analyzed by one

control; @ = compared to 1 nmol/L 

the number of symbols depicts increasing levels of significance: 1 = p<0.05, 2 = p<0.01, 3 = 

p<0.001 and 4 = p<0.0001. 

 

Infusion of U46619 at high concentration increased dextran leakage

in uterine arteries. 20 nmol/L U46619 was infused inside uterine arteries in the 

presence of a 3kDa fluorescent dextran, followed by determination of dextran leakage 

. U46619 concentrations were also added individually to different arteries in 

MCs) followed by measurement of vascular tone (C). Dextran leakage to the 

bath corrected by arterial length was used as a measure of endothelial permeability, whereas 

decrease in diameter) was determined as a change in vascular diameter fr

baseline diameter after equilibration of arteries. The mean ± SEM percent decrease in diameter 

(n=3 to 13) were analyzed by one-way ANOVA and the Tukey post-hoc test. $ = compared to 

1 nmol/L U46619; # = compared to 5 nmol/L U46619

the number of symbols depicts increasing levels of significance: 1 = p<0.05, 2 = p<0.01, 3 = 

 

133 

dextran leakage and 

was infused inside uterine arteries in the 

presence of a 3kDa fluorescent dextran, followed by determination of dextran leakage (A) and 

different arteries in the 

. Dextran leakage to the 

bath corrected by arterial length was used as a measure of endothelial permeability, whereas 

) was determined as a change in vascular diameter from the 

baseline diameter after equilibration of arteries. The mean ± SEM percent decrease in diameter 

hoc test. $ = compared to 

U46619. For all figures, 

the number of symbols depicts increasing levels of significance: 1 = p<0.05, 2 = p<0.01, 3 = 



 

 

Figure 5.2: S1P1 agonist prevented U46619

tone after infusion in uterine arteries.

SEW2871 (S1P1 agonist) (A, B), or SEW2871 was added to the bath against U46619 infused 

inside uterine arteries (C) followed by determination of dextran leakage 

(B, C) as described in Figure 5.1. The results are presented as mean ± SEM (n=3 to 5) and were 

analyzed by one-way ANOVA and the Tukey post

 

agonist prevented U46619-induced endothelial permeability and vascular 

n uterine arteries. 20 nmol/L U46619 was co-infused with 0.1 

, or SEW2871 was added to the bath against U46619 infused 

followed by determination of dextran leakage (A) and vascular tone 

1. The results are presented as mean ± SEM (n=3 to 5) and were 

way ANOVA and the Tukey post-hoc test.  
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induced endothelial permeability and vascular 

infused with 0.1 µmol/L 

, or SEW2871 was added to the bath against U46619 infused 

and vascular tone 

1. The results are presented as mean ± SEM (n=3 to 5) and were 



 

 

Figure 5.3: Enhanced dextran leakage and reduction in vascular tone

receptor antagonist following infusion of U46619 into uterine arteries

was infused inside uterine arteries against SQ29548 in the bath or in the presence of co

SQ29548 followed by determination of dextran leakage 

The results are presented as mean ± SEM (n=3 to 13) and were analyzed by one

and the Tukey post-hoc test. 

 

Enhanced dextran leakage and reduction in vascular tone in the presence of TP 

following infusion of U46619 into uterine arteries. 20 nmol/L 

was infused inside uterine arteries against SQ29548 in the bath or in the presence of co

SQ29548 followed by determination of dextran leakage (A) or vascular tone (B)

The results are presented as mean ± SEM (n=3 to 13) and were analyzed by one-
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in the presence of TP 

20 nmol/L U46619 

was infused inside uterine arteries against SQ29548 in the bath or in the presence of co-infused 

(B) as in Figure 5.1. 

-way ANOVA 



 

 

Figure 5.4: SK-1 mediated U46619

uterine arteries. 20 nmol/L U46619

the presence of SK-II in the bath 

vascular tone (B, C) as in Figure 

were analyzed by one-way ANOVA and the Tukey post

 

 

1 mediated U46619-induced endothelial permeability and vascular tone in 

U46619 was co-infused with 1 µmol/L SK-II  (A, B)

II in the bath (C), followed by determination of dextran leakage 

as in Figure 5.1. The results are presented as mean ± SEM (n=3 to 9) and 

way ANOVA and the Tukey post-hoc test. 
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induced endothelial permeability and vascular tone in 

(A, B) or infused in 

, followed by determination of dextran leakage (A) and 

1. The results are presented as mean ± SEM (n=3 to 9) and 



 

 

Figure 5.5: The ABC transporters 

vascular tone in uterine arteries.

or 1 µmol/L FTC (A, B), or infuse

by measurement of dextran leakage 

presented as mean ± SEM (n=4 to 6) and were analyzed by one

post-hoc test.  

 

The ABC transporters mediate U46619-induced endothelial permeability or 

vascular tone in uterine arteries. 20 nmol/L U46619 was co-infused with 10 µmol/L

, or infused while MK571 or FTC (C) were added to the bath, followed 

by measurement of dextran leakage (A) or vascular tone (B, C) as in Figure 5.1. The results are 

presented as mean ± SEM (n=4 to 6) and were analyzed by one-way ANOVA and the Tukey 
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induced endothelial permeability or 

µmol/L MK571 

were added to the bath, followed 

1. The results are 

way ANOVA and the Tukey 



 

 

Figure 5.6: S1P1/S1P3 receptors p

vascular tone in uterine arteries.

VPC23019, or infused while VPC23019 was added to the bath followed by determination of 

dextran leakage (A) and vascular tone 

± SEM (n=3 to 5) and were analyzed by one

 

 

receptors promote U46619-induced endothelial permeability and 

vascular tone in uterine arteries. 20 nmol/L U46619 was co-infused with 1 µmol/L 

, or infused while VPC23019 was added to the bath followed by determination of 

and vascular tone (B, C) as in Figure 5.1. The results are presented as mean 

± SEM (n=3 to 5) and were analyzed by one-way ANOVA and the Tukey post-ho
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induced endothelial permeability and 

1 µmol/L 

, or infused while VPC23019 was added to the bath followed by determination of 

1. The results are presented as mean 

hoc test.  



 

 

Figure 5.7: U46619-induced dextran leakage and/or vascular tone after e

stimulation of arteries is mediated via

were pretreated in the bath or infused

µmol/L SK-II (B, C) or 10 µmol/L MK571

to the bath followed by determination of dextran leakage 

in Figure 5.1. The results are presented as mean ± SEM (n=3

way ANOVA and the Tukey post

induced dextran leakage and/or vascular tone after extraluminal

arteries is mediated via TP receptors, ABCC1 and endothelial 

or infused with 10 µmol/L SQ29548 (A, B), inside arteries with 1 

10 µmol/L MK571 in the bath (E, F) before adding 20 nmol/L 

to the bath followed by determination of dextran leakage (A, C, E) and vascular tone 

are presented as mean ± SEM (n=3 to 6) and were analyzed by one

way ANOVA and the Tukey post-hoc test.  
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xtraluminal 

TP receptors, ABCC1 and endothelial SK-1. Arteries 

inside arteries with 1 

20 nmol/L U46619 

and vascular tone (B, D, F) as 

to 6) and were analyzed by one-



 

 

Figure 5.8: Vascular tone induced by 

transporters in mesenteric arteries from male and female mice.

was added cumulatively in the presence of 

(A, B, C) to the bath containing mesenteric arteries isolated from male 

E, F) mice followed by determination of vascular tone. 

from each of the curves induced by U46619 in the presence or absence of MK571, FTC or a 

combination (MK571+FTC) in arteries from female mice and the results presented as an average 

(F). All results are presented as mean ± SEM (n=4

ANOVA and the Tukey post-hoc test.

  

tone induced by U46619 is mediated by SK-1 or ABCC1 and ABCG2 

mesenteric arteries from male and female mice. U46619 (0.1

ively in the presence of 1 µmol/L SK-II, 10 µmol/L MK571 or

) to the bath containing mesenteric arteries isolated from male (A, B, C)

) mice followed by determination of vascular tone. The area under the curve was determined 

from each of the curves induced by U46619 in the presence or absence of MK571, FTC or a 

combination (MK571+FTC) in arteries from female mice and the results presented as an average 

mean ± SEM (n=4 to 6) and were analyzed by Two

hoc test. 
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or ABCC1 and ABCG2 

0.1-500 nmol/L) 

or 1 µmol/L FTC 

(A, B, C) or female (D, 

the curve was determined 

from each of the curves induced by U46619 in the presence or absence of MK571, FTC or a 

combination (MK571+FTC) in arteries from female mice and the results presented as an average 

were analyzed by Two-way 
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5.2.9 Discussion of results from Chapter 5  

In Chapter 4, I showed that the S1P-induced endothelial barrier control was mediated by 

NO, through activation of eNOS. Although 5 nmol/L U46619 or 20 µmol/L SNP did not 

individually increase permeability, endothelial permeability was strongly increased when they 

were co-infused which was mediated via eNOS. Such increase in endothelial permeability was 

likely contributed by NO generated by both U46619 and SNP. These findings together with the 

results from Chapter 3, whereby the U46619-induced vascular tone was completely inhibited in 

mesenteric arteries from male S1P3 KO mice, suggested that U46619 and S1P are closely related 

in their signaling mechanisms and that U46619 could be signaling through an S1P-mediated 

pathway. The normal human circulating levels of TXA2 (U46619) is ~ [2.4 - 4.9 pM] [714], but 

these levels rise in pathological conditions like severe atherosclerosis to ~ [1.4 nM] [714]. TXA2 

is also increased to ~ [1.6 nM] in mice infected with Trypanosoma cruzi [715], or to ~ [24 nM] 

in rabbits experiencing renal resistance [716]. In this Chapter, I show novel findings whereby 

pathological levels of TXA2 increases endothelial permeability and vascular tone in an S1P-

dependent manner. I also show that TXA2-induced permeability promoted endothelial leakage of 

TXA2/S1P to the VSMCs increasing vascular tone. 

S1P signals through the S1P1 receptor enhance the endothelial barrier [782] so one of the 

best ways to increase the barrier is through specific activation of the S1P1 receptor. The increase 

in U46619-induced permeability and vascular tone were prevented by co-infusion of an S1P1 

agonist (SEW2871). This experiment was done to show that TXA2 itself was indeed increasing 

permeability in these arteries, which could be blocked by increasing the endothelial barrier. The 

fact that the vascular tone induced by infused U46619 against SEW2871 added to the bath was 

unchanged, suggests that the reduced vascular tone from U46619 co-infused with SEW2871, was 

because SEW2871 inhibited permeability and not because of a direct vasodilatory effect of 

SEW2871 on the VSMCs. SEW2871 or S1P itself has also been used to reverse vascular leakage 

upon anaphylactic, platelet activating factor (PAF) or histamine challenge. They have also been 

shown to improve mice survival under conditions where mice were engineered to deliberately 

lack plasma S1P [782]. These reports and the results in this Chapter are consistent with those in 

Chapter 3 where I showed that SEW2871 also inhibited thrombin-induced permeability in 

arteries used this study. 
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Previous studies showed that antagonizing TP receptors with SQ29548 decreased 

U46619-induced endothelial permeability in cell culture [8,694]. However, in my studies, 

SQ29548 promoted a 3-fold increase in endothelial permeability after co-infusion of U46619. 

These differences could be because of the vascular bed differences, but also as pointed out by the 

authors in these studies, the cell-based model used [694] does not necessarily reflect the vascular 

dynamics of intact microvessels as used in my study. In addition, both TPα and TPβ receptors 

couple downstream to adenylate cyclase with opposing effects: TPα activates while TPβ inhibits 

its activity [528]. Even so, the only receptor in the mouse is TPα [778]. Endothelial barrier is 

potently enhanced by cAMP generation [783-786], which means that antagonizing the TPα 

receptors, should disrupt the endogenous adenylate cyclase/cyclic AMP axis important for 

endothelial barrier control. It is likely that blocking TP receptors could predispose the 

endothelium to TXA2-induced permeability through a yet to be identified mechanism. It is likely 

that the mechanism for mediating permeability after blocking TP receptors is non-receptor 

mediated, as previously proposed in pulmonary vessels in a study using a prostanoid-derivative. 

The lungs of patients with severe pulmonary hypertension were shown to have decreased 

expression of the prostacyclin receptor, but prostacyclin greatly improved the clinical outcome of 

patients with severe pulmonary hypertension. These effects of prostacyclin were mainly 

attributed to be non–receptor-mediated [781]; [787]TP receptor deficiency is also associated with 

exaggerated vasodilation [788] which may account in part for the increased permeability. 

Histamine-induced NO-dependent vasodilation has been shown to increase endothelial 

permeability [789]. 

In contrast, I show that the vascular tone induced after infusion of U46619 was 

completely blocked by antagonizing the TP receptors on the VSMCs in the bath, suggesting that 

U46619 was reaching VSMCs from the endothelium. In Chapter 3, I showed a similar type of 

leakage of 5 nmol/L U46619 mediated by S1P-induced permeability whereby the vascular tone 

generated following leakage of U46619 was completely blocked when SQ29548 was added to 

the bath against co-infused S1P and U46619. In Chapter 3, U46619 at the lower concentration 

used was unable to leak on its own, whereas in this Chapter, 20 nmol/L U46619-induced 

permeability promotes its own leakage. The partial reduction in vascular tone when SQ29548 

and U46619 were co-infused could be due to co-leakage of both factors to the VSMCs, where 

SQ29548 can inhibit U46619-induced vascular tone.  
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An important novel finding in this Chapter is the demonstration that TXA2 is signaling 

through an S1P-mediated pathway to generate endothelial permeability and vascular tone. I first 

show that TXA2–induced endothelial permeability is dependent on SK-1. TXA2 has been shown 

to stimulate the release of S1P from cultured human platelets in a TP-specific manner [486]. The 

authors isolated unactivated platelets from healthy volunteers, pretreated them with radiolabelled 

sphingosine, and then stimulated with U46619 for 10 minutes. The fact that radiolabelled S1P 

was released from radiolabelled sphingosine, suggests downstream activation of SK upon TP 

engagement [486]. Previous reports also show that thrombin or histamine induce endothelial 

permeability following SK-1 activation [790-792]. These findings collectively indicate that 

TXA2-mediated activation of SK-1 can increase permeability.  

The ATP binding cassette transporters, ABCG2 or ABCC1 are known to export S1P out 

of cells [369,486,793]. In this Chapter, I show that U46619-induced permeability is mediated via 

ABCG2 but not ABCC1 transporters. Although, both transporters promote induction of vascular 

tone by infused U46619, only ABCC1 has an additional direct role on the VSMCs to mediate 

U46619-induced tone. The fact that U46619-induced permeability was unaffected by blocking 

ABCC1, indicates that the reduction in vascular tone from co-infusion is likely due to co-leakage 

of the inhibitor, in which leaked MK571 inhibits U46619-induced vascular tone in the VSMCs. 

In contrast, inhibiting U46619-induced permeability by blocking ABCG2 decreased the vascular 

tone induced after infusion of U46619, suggesting that the enhanced endothelial barrier 

decreased the leakage of U46619/S1P to the VSMCs.  

Antagonizing S1P1/S1P3 decreased endothelial permeability induced by co-infused 20 

nmol/L U46619, which could limit endothelial leakage of infused U46619 to the VSMCs, and 

this could account for the decreased vascular tone. These results are supported by those from 

Chapter 3 where I showed that S1P-induced endothelial permeability and vascular tone occur 

through S1P3. Interestingly, the vascular tone induced after infusion of U46619 was decreased by 

antagonizing S1P1/S1P3 on the VSMCs. Like ABCC1, S1P1/S1P3 appears to have an additional 

role on the VSMCs where it mediates S1P-induced vascular tone following infusion of U46619.  

On the other hand, extraluminal stimulation of arteries by U46619 promoted VSMCs TP-

specific induction of not only vascular tone, but also endothelial permeability. These results 

suggest that TXA2 either evokes a stretch mechanism in the VSMCs or directly stimulates 

endothelial TP receptors to increase permeability. These ideas are supported by the finding that 



 
 

144 
 

U46619-induced vascular tone generated from the bath is partly mediated by ABCC1 on the 

VSMCs. Since ABCC1 had no effect on the endothelial permeability induced by infused 

U46619, these results suggest that U46619 in the bath stimulates S1P generation in the VSMCs 

likely through SK-2 that increases endothelial permeability. However, the exact mechanisms 

through which TXA2 increases endothelial permeability via S1P produced in the VSMCs needs 

to be explored further. In mesenteric arteries from male or female mice, the U46619–induced 

vascular tone by direct stimulation of VSMCs in the bath is dependent on SK-1, ABCC1 or 

ABCG2. Again, these results support the argument for the dependence of TXA2 on the S1P 

pathway to increase vascular tone. 

In summary, I have shown that infusion of TXA2 at pathological concentrations inside 

mouse uterine arteries increased endothelial permeability and vascular tone mediated through the 

S1P pathway. The increase in endothelial permeability and vascular tone were completely 

reversed by an S1P1 agonist. Part of the mechanism leading to increased endothelial permeability 

involves increased vascular tone. The dependence of TXA2 on the S1P pathway to increase 

vascular tone operates in the two vascular beds tested in this Chapter, including uterine and 

mesenteric arteries. These results provide novel insights into the potential mechanisms through 

which TXA2 controls normal vascular tone, or contributes to disease conditions like vascular 

leakage, atherosclerosis or hypertension. Targeting the S1P pathway, particularly the S1P1 or 

S1P3 receptors could be therapeutically useful in reducing endothelial permeability and vascular 

tone mediated by TXA2. 

  



 

 

Figure 5.9: Induction of endothelial permeability and vascular tone by U46619 via an S1P 

pathway. Infusion of U46619 lead

exported extracellularly leading to S1P

and vascular tone in mouse uterine arteries. Direct stimulation of the S1P

agonist SEW2871) prevented U46619

indicating that the increase in endothelial permeability promoted leakage of U46619

generated to the underlying vascular smooth muscle cells (VSMCs) increasing vascular tone. 

However, the U46619-induced permeability

presence of TP receptor antagonist, indicating

at the level of the endothelium occur

 

 

  

: Induction of endothelial permeability and vascular tone by U46619 via an S1P 

Infusion of U46619 leads to sphingosine kinase-dependent generation of S1P

exported extracellularly leading to S1P3 receptor-dependent increase in endothelial permeability 

and vascular tone in mouse uterine arteries. Direct stimulation of the S1P1 receptor (using 

agonist SEW2871) prevented U46619-induced endothelial permeability and vascular tone 

crease in endothelial permeability promoted leakage of U46619

to the underlying vascular smooth muscle cells (VSMCs) increasing vascular tone. 

permeability when infused inside the arteries was enhanced in t

presence of TP receptor antagonist, indicating that the activation of the S1P pathway by U46619 

at the level of the endothelium occurs through a yet to be identified mechanism 
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that the activation of the S1P pathway by U46619 
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CHAPTER 6 

CYTOMEGALOVIRUS INFECTION SUBVERTS THE DEPENDENCE OF 

THROMBOXANE A2 ON THE DOWNSTREAM SIGNALING BY SPHINGOSINE 1-

PHOSPHATE IN INDUCING VASCULAR TONE. 

 

All results in this Chapter were generated by myself, and have not yet been submitted for 

publication. 

 

6.1 Introduction 

In Chapter 5, I showed that TXA2 signals through the S1P pathway to increase 

endothelial permeability and the resulting vascular tone after infusion into uterine arteries. I also 

showed that direct stimulation of VSMCs by TXA2 increased vascular tone by S1P-dependent 

mechanisms in mesenteric arteries from male and female mice. As well, the Hemmings 

laboratory has previously shown that inhibiting COX-1 and COX-2 activity or TP receptors, 

promotes methacholine-induced vasodilation in mesenteric arteries isolated from CMV-infected 

female mice [574]. These findings imply a significant contribution of prostanoids to the vascular 

changes that occur during CMV infection. In this Chapter, I focused on studying the impact of 

CMV infection on the vascular tone induced by TXA2, one of the products of the COX pathway.  

CMV a double-stranded DNA virus establishes a life-long latent infection, with potential 

for reactivation [613,794,795]. Healthy individuals infected with CMV generally do not suffer 

from overt clinical disease except for those who occasionally experience symptoms of 

mononucleosis. However, CMV infection contributes to vascular dysfunction [572-574,677] 

(please also refer section 1.9.1.4), cardiovascular-related disorders like atherosclerosis [796], 

fatal myocarditis [797], rheumatoid arthritis, cancer [798], morbidity and mortality in the elderly 

[799]. CMV infection potentiates the pathogenesis of these conditions partly through increased 

levels of various cytokines [670] including the activation of the COX pathway [680]. COX-1 is 

constitutively expressed in nearly all tissues, but COX-2 is normally only induced by a 

pathologic stimulus. Studies in human fibroblasts and retinal pigment epithelial cells show a 

relationship between CMV replication and COX-2 expression. In these studies COX-2 and 

prostaglandin E were increased in CMV-infected cells, and the activation of these pathways were 

shown to be important for CMV replication [511,680]. 
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CMV infection also increases the expression and activity of SK-1 [679], one of the 

enzymes that generates S1P. Thus, CMV infection appears to impact the pathways that lead to 

TXA2 [511,680] and S1P production [679]. Evidence also shows that TXA2 increases the release 

of S1P from cultured human platelets through ABC transporters indicating the existence of a 

relationship between TXA2 and S1P [486]. In chapter 5 I also showed that TXA2 increases 

endothelial permeability and/or vascular tone via the S1P pathway. 

In this Chapter, I sought to determine the impact of an in vivo CMV infection on the 

vascular tone induced by TXA2 and the downstream S1P signaling pathway by directly 

stimulating the VSMCs of mouse uterine arteries. I hypothesized that CMV infection will 

increase SK-1 expression in VSMCs, and TXA2 will in turn activate SK-1 increasing 

intracellular S1P which will be exported extracellularly to bind to S1P2 or S1P3 receptors 

increasing vascular tone. While I show that CMV infection enhances the vascular tone induced 

independently by either S1P or TXA2 mediated partly through the Rho kinase pathway, CMV 

infection reduces the dependence of TXA2 on the downstream S1P signaling pathway opening 

up alternative pathway(s) for induction of vascular tone. 

 

6.2 RESULTS 

6.2.1 CMV infection enhances U46619 or S1P-induced vascular tone in part through Rho 

kinase  

I show that vascular tone is significantly increased in response to cumulative addition of 

U46619 (Fig 1A) or S1P (Fig 1B) to the bath containing arteries from CMV-infected mice 

compared to arteries from uninfected mice. Y27632 has no effect on U46619-induced vascular 

tone, but significantly decreased the vascular tone induced by S1P in arteries from uninfected 

mice. Y27632 also promoted a significant decrease in U46619 or S1P-induced vascular tone in 

arteries from CMV-infected mice (Fig 1C, D). These results suggest that S1P and U46619 share 

a common signaling pathway leading to Rho kinase activation in arteries isolated from CMV-

infected mice. Considering this information, and given that I showed in Chapter 5 that U46619 

increases endothelial permeability and vascular tone via the S1P pathway, I therefore 

investigated the relationship between these two bioactive lipids under conditions of CMV 

infection. In particular, the impact of CMV infection on the vascular tone induced by U46619 

through the S1P pathway. 
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6.2.2 CMV infection blunts the dependence of U46619-induced vascular tone on SK-1 

activation or ABC transporters 

In Chapter 5, I showed that when U46619 was infused inside uterine arteries or added 

extraluminally to mesenteric arteries from male and female mice, the increased vascular tone was 

dependent on SK-1 activity (Figures 5-4B, 5-7D, 5-8D). In this Chapter I investigated whether 

U46619 acts via the S1P pathway to increase vascular tone upon direct stimulation of the 

VSMCs on intact uterine arteries, and whether this is altered by an in vivo CMV infection. 

Unlike the increased vascular tone induced by cumulative addition of U46619 to the bath (Figure 

6.1A), addition of a single concentration of 20 nmol/L U46619 induced vascular tone that was 

not different in uterine arteries from CMV-infected compared to uninfected mice (Figure 6.2A). 

In arteries from uninfected mice, vascular tone induced by addition of 20 nmol/L U46619 to the 

bath was significantly decreased in the presence of a SK-1 inhibitor (SK-II), but this inhibition 

was completely absent in arteries from CMV-infected mice. Interestingly, the U46619-induced 

vascular tone was also completely blocked in the presence of ABC462940 (SK-2 inhibitor) in 

arteries from both uninfected and CMV infected mice (Figure 6.2B).  

Activation of SK will lead to increased production of intracellular S1P that can be 

exported out of the cell to engage its receptors (S1P can also engage intracellular targets that 

were not under consideration in this study). I therefore determined the transporters that could be 

involved in exporting S1P out of the VSMCs, and the potential impact of CMV infection. In 

Chapter 5 I showed that MK571 inhibited the vascular tone induced following infusion of 

U46619 inside uterine arteries, but FTC did not. In contrast, FTC, MK571 or their combination 

strongly inhibited the vascular tone induced by U46619 added to the bath containing mesenteric 

arteries from male and female mice. In this Chapter, FTC partly (Figure 6.3A), and MK571 fully 

(Figure 6.3B) inhibited the U46619-induced vascular tone when added to the bath containing 

uterine arteries from uninfected mice. Results using arteries from CMV-infected mice showed a 

partial blunting of vascular tone in the presence of FTC that did not differ from that shown in 

arteries from uninfected mice; however, the complete inhibition by MK571 in arteries from 

uninfected mice was blunted in those from CMV-infected mice (Figure 6.3A, B). Surprisingly, 

while the vascular tone induced by U46619 in the presence of the combined FTC and MK571 

treatment in uterine arteries from uninfected mice was halved, there was no effect on vascular 

tone by co-treatment of arteries from CMV-infected mice (Figure 6.3C). Further, the U46619-
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induced vascular tone in arteries from CMV-infected mice in the presence of SK-II, MK571 or 

MK571 + FTC but not FTC alone, was significantly greater compared to the U46619-induced 

responses in the presence of these inhibitors in arteries from uninfected mice (Figure 6.2, and 

6.3).  

 

6.2.3 U46619-induced vascular tone inhibited by VPC23019 or JTE013 is reversed by L-

NAME  

In Chapter 3 (Figures 3-3A, B, 3-5A, B) and in Chapter 5 (Figures 5-6A, B, C) I showed 

that infusion of S1P or U46619, respectively, inside uterine arteries increased endothelial 

permeability and vascular tone through the S1P3 or S1P1/S1P3 receptors, respectively. In this 

Chapter, I evaluated the S1P receptor dependence of U46619-induced vascular tone through 

direct effects on the VSMCs of intact arteries from CMV-infected and uninfected mice. U46619 

increased vascular tone that was significantly reduced similarly by pretreatment with VPC23019 

or JTE013 in arteries from uninfected mice (Figure 6.4A). Considering that VPC23019 has been 

shown to exhibit agonist activities [698] that could include the possibility of producing NO, and 

JTE013 is reported to inhibit constriction induced by several vasoconstrictors [800], I 

investigated whether these inhibitors could produce NO, a vasodilating factor, to promote their 

antagonistic activities on vascular tone. When I used VPC23019 or JTE013 in the presence of L-

NAME, there was partial restoration of U46619-induced vascular tone in arteries from 

uninfected mice. L-NAME in combination with either receptor inhibitor partially restored the 

U46619-induced vascular tone in arteries from uninfected mice (Figure 6.4A). While VPC23019 

or JTE013 also inhibited the vascular tone induced by U46619 in arteries from CMV-infected 

mice, the level of inhibition by VPC23019 was lower than that found in arteries from uninfected 

mice or that mediated by JTE013 (Figure 6.4B). Unexpectedly, the U46619-induced vascular 

tone in uterine arteries from CMV-infected mice was significantly decreased in the presence of 

L-NAME. L-NAME partly restored U46619-induced vascular tone in the presence of JTE013, 

but not VPC23019, in arteries from CMV-infected mice compared to those from uninfected mice 

(Figure 6.4B).  

Similar to the results from U46619, S1P-induced vascular tone in arteries from 

uninfected mice was completely blocked by both VPC23019 and JTE013. However, while 

JTE013 continued to completely block S1P-induced vascular tone in arteries from CMV-infected 
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mice, VPC23019 had no effect on this response in arteries from CMV-infected mice (Figure 

6.5A, B). 

 

6.2.4 U46619 increased vascular tone via the S1P3 receptor in arteries from uninfected 

mice, but through the S1P1 receptor in CMV-infected mice 

Since VPC23019 antagonizes both S1P1 and S1P3 receptors, JTE013 inhibits the S1P2 

receptors and both inhibitors appear to have additional effects on NO, I used S1P3-/- or S1P2-/- 

mice to further investigate the importance of these receptors in mediating U46619-induced 

vascular tone in arteries from CMV-infected mice. The U46619-induced vascular tone was 

significantly decreased in arteries from uninfected S1P3-/- (Figure 6.6A), but remained 

unaffected in arteries from uninfected S1P2-/- mice (Figure 6.6B) compared to arteries from their 

respective littermate WT controls. In contrast, U46619-induced vascular tone was unchanged in 

arteries from CMV-infected S1P3-/- mice compared to arteries from littermate WT controls 

(Figure 6.6C) while the results in arteries from infected S1P2-/- mice were similar to uninfected 

mice. In the presence of VPC23019, U46619-induced vascular tone was significantly decreased 

in arteries from CMV-infected S1P3-/- mice compared to CMV-infected S1P3+/+ or S1P3-/- mice 

in the absence of VPC23019 (Figure 6.6C). Pretreatment of arteries from CMV-infected S1P2-/- 

mice with W146 (S1P1 receptor antagonist) also led to a significant reduction in U46619-induced 

vascular tone compared to untreated arteries from CMV-infected S1P2+/+ or S1P2-/- mice 

(Figure 6.6D).  

 

6.2.5 S1P-induced vascular tone is dependent on the S1P1 and S1P3 receptors in arteries 

from CMV-infected mice 

In Chapter 3 as cited above, I showed that S1P-induced vascular tone in uterine arteries 

from uninfected mice is dependent on the S1P3 receptor [696], similar to the U46619-induced 

response in arteries from uninfected mice. Here I show that the S1P-induced vascular tone in 

arteries from CMV-infected S1P3-/- mice was completely blocked, but was partially restored in 

the presence of VPC23019 (Figure 6.7A). The vascular tone induced by S1P in arteries from 

CMV-infected S1P2+/+ or S1P2-/- mice was similar. However, vascular tone was significantly 

reduced by pretreatment with W146 of arteries from CMV-infected S1P2-/- mice compared to 

untreated arteries from CMV-infected S1P2+/+ or S1P2-/- mice (Figure 6.7B).  
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6.2.6 Phenylephrine-induced vascular tone inhibited by VPC23019 or JTE013 antagonism 

is relieved by pretreatment with L-NAME 

S1P or U46619 share certain downstream pathways with phenylephrine including the Gαq 

or Gα12/13 coupled to their receptors. I therefore asked whether phenylephrine-induced vascular 

tone could also occur via the S1P pathway and whether this was affected by CMV infection.  

VPC23019 or JTE013 significantly decreased or completely blocked, respectively, the vascular 

tone induced by phenylephrine in arteries from uninfected mice (Figure 6.8A, B) to a greater 

extent than in arteries from CMV-infected mice (Figure 6.8C, D). The phenylephrine-induced 

vascular tone in the combined presence of VPC23019 and L-NAME was unchanged, but was 

partially restored in the presence of JTE013 and L-NAME. Overall, L-NAME alone had no 

effect on phenylephrine-induced vascular tone (Figure 6.8C, D). Given that the phenylephrine-

induced vascular tone was partially or completely restored in the presence of JTE013 and L-

NAME or VPC23019 and L-NAME, respectively, plus the properties cited above (Figure 6.4) 

regarding JTE013 and VPC23019, I next evaluated whether VPC23019 or JTE013 on their own 

have vasodilation properties. When evaluated on preconstricted (by U46619) uterine arteries 

from uninfected mice, VCP23019 up to 50 µmol/L or JTE013 up to10 µmol/L had no dilatory 

effects. However at >10 µmol/L, JTE013 exhibited strong dilation responses which reached 80% 

at 100 µmol/L (Figure 6.8E). These results suggest that the concentrations used in my studies, 1 

µmol/L VPC23019 or 10 µmol/L JTE013 likely do not generate dilation responses on their own. 

 

6.2.7 The dependence of phenylephrine on the S1P3 receptor to induce vascular tone in 

uterine arteries is lost in arteries from CMV-infected S1P3 KO mice  

Phenylephrine-mediated induction of vascular tone was completely blocked in uterine 

arteries from uninfected S1P3-/- mice, but this inhibition was lost in arteries from CMV-infected 

S1P3-/- mice (Figure 6.9A, B). There was no change in phenylephrine-induced vascular tone in 

arteries from uninfected or CMV-infected S1P2-/- mice compared to arteries from their littermate 

WT controls (Figure 9C, D). 

  



Figure 6.1: Effect of CMV infection on U46619 or S1P

kinase pathway in uterine arteries

S1P (B) was added cumulatively to uterine arteries from uninfected or CMV

followed by measurement of changes in vascular diameter from the baseline diameter obtained 

after equilibration. Arteries from uninfected or CMV

nmol/L U46619 (C) or 1 µmol/L 

bath, followed by measurement of changes in vascular diameter. 

mean ± SEM percent decrease in diameter (n=4 to 6) and were analyzed by two

and the Tukey post-hoc test. For all

of significance: 1 = p<0.05, 2 = p<0.01, 3 = p<0.001 and 4 = p<0.0001.

Effect of CMV infection on U46619 or S1P-induced vascular tone

kinase pathway in uterine arteries in the bath. 1-20 nmol/L U46619 (A) or 0.01

) was added cumulatively to uterine arteries from uninfected or CMV-infected 

followed by measurement of changes in vascular diameter from the baseline diameter obtained 

Arteries from uninfected or CMV-infected mice were also treated with

1 µmol/L S1P (D) in the absence or presence of Y27632, all added to the

bath, followed by measurement of changes in vascular diameter. The results are presented as the

mean ± SEM percent decrease in diameter (n=4 to 6) and were analyzed by two-

For all the figures, the number of symbols depicts increasing levels 

of significance: 1 = p<0.05, 2 = p<0.01, 3 = p<0.001 and 4 = p<0.0001. 
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induced vascular tone via Rho 

0.01-10 µmol/L 

infected mice 

followed by measurement of changes in vascular diameter from the baseline diameter obtained 

treated with 20 

f Y27632, all added to the 

The results are presented as the 

-way ANOVA 

s, the number of symbols depicts increasing levels 



 

 

Figure 6.2: The impact of CMV infection on U46619

sphingosine kinases in uterine arteries in the 

of arteries from uninfected and CMV

(1 µmol/L SK-II) (A) or SK-2 inhibitor (

of changes in vascular diameter from the baseline. 

described in the legend for Figure 

 

he impact of CMV infection on U46619-induced vascular tone mediated via 

sphingosine kinases in uterine arteries in the bath. 20 nmol/L U46619 was added to the bath 

of arteries from uninfected and CMV-infected mice in the presence or absence of 

2 inhibitor (10 µmol/L ABC294640) (B) followed by measurement 

eter from the baseline. The results are presented and analyzed as 

described in the legend for Figure 6.1 (n=4 to 10). 
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induced vascular tone mediated via 

was added to the bath 

infected mice in the presence or absence of SK-1 inhibitor 

) followed by measurement 

The results are presented and analyzed as 



 

 

Figure 6.3: The effects of CMV infection on the

U46619-induced vascular tone 

to uterine arteries from uninfected and CMV

inhibitor (1 µmol/L FTC) (A), ABCC1 inhibitor (

followed by measurement of changes in vascular diameter from the baseline. 

presented and analyzed as described in the legend for Figure 

 

effects of CMV infection on the role of ABC transporters in

 in uterine arteries in the bath. 20 nmol/L U46619

to uterine arteries from uninfected and CMV-infected mice in the presence or ab

), ABCC1 inhibitor (10 µmol/L MK571) (B) or both inhibitors (

followed by measurement of changes in vascular diameter from the baseline. The results are 

presented and analyzed as described in the legend for Figure 6.1 (n=4 to 6). 
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role of ABC transporters in promoting 

U46619 was added 

infected mice in the presence or absence of ABCG2 

) or both inhibitors (C) 

The results are 



 

 

Figure 6.4: CMV infection and its effects on the

U46619-induced vascular tone 

to uterine arteries from uninfected and CMV

(1 µmol/L VPC23019) (A) or S1P

absence of NOS inhibitor 100 µmol/L 

described in the legend for Figure 

to VPC23019 or JTE013 alone.  

 

CMV infection and its effects on the role of S1P receptors in mediating 

 in uterine arteries in the bath. 20 nmol/L U46619

to uterine arteries from uninfected and CMV-infected mice pretreated with S1P1/S1P

) or S1P2 antagonist (10 µmol/L JTE013) (B) in the presence or 

100 µmol/L L-NAME. The results are presented and analyzed as 

described in the legend for Figure 6.1 (n=4 to 6). $ or & compared to U46619 alone;
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mediating the 

U46619 was added 

/S1P3 antagonist 

) in the presence or 

The results are presented and analyzed as 

compared to U46619 alone; # compared 



 

 

Figure 6.5: The effects of CMV infection on the S1P

S1P-induced vascular tone in uterine arteries in the bath

from uninfected and CMV-infected mice pretreated with 

JTE013 (B) followed by measurement of changes in vascular diameter from the baseline. 

results are presented and analyzed as described in the legend for Figure 

 

effects of CMV infection on the S1P3 or S1P2 receptors in mediating the 

in uterine arteries in the bath. 1 µmol/L S1P was added to arteries 

infected mice pretreated with 1 µmol/L VPC23019 (A

) followed by measurement of changes in vascular diameter from the baseline. 

results are presented and analyzed as described in the legend for Figure 6.1 (n=4 to 6).

 

156 

receptors in mediating the 

was added to arteries 

A) or 10 µmol/L 

) followed by measurement of changes in vascular diameter from the baseline. The 

1 (n=4 to 6). 



 

 

Figure 6.6: The dependence of U46619

arteries is impaired with CMV infection. 

uninfected S1P3 -/- (A), S1P2-/- (B)

and their corresponding wildtype (WT) littermate controls. 

diameter (n=3 to 7) were analyzed by two

compared to S1P3-/- + VPC23019

S1P3+/+ (C). 

 

The dependence of U46619-induced vascular tone on S1P3 receptor

is impaired with CMV infection. U46619 was added to arteries isolated from 

(B) or CMV-infected S1P3 -/- mice (C) and S1P

and their corresponding wildtype (WT) littermate controls. The mean ± SEM percent decrease in 

diameter (n=3 to 7) were analyzed by two-way ANOVA and the Tukey post-hoc test.

+ VPC23019 (C) or S1P2-/- compared to S1P2-/-+ W146 (D)
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Figure 6.7: The S1P-induced vascular tone in uterine arteries isolated from CMV infected 

mice is dependent on both S1P1

isolated from CMV-infected S1P

followed by measurement of changes in vascular diameter from the baseline. 

percent decrease in diameter (n=3 to 7) were analyzed by two

hoc test. # = S1P3-/- compared to S1P

W146 (B). * compared to S1P3+/+ or S1P

 

vascular tone in uterine arteries isolated from CMV infected 

1 and S1P3 receptors. 1 µmol/L S1P was also added to arteries 

infected S1P3-/- (A) or S1P2-/- (B) mice and their WT littermate controls, 

measurement of changes in vascular diameter from the baseline. The mean ± SEM 

percent decrease in diameter (n=3 to 7) were analyzed by two-way ANOVA and the Tukey post

compared to S1P3-/- + VPC23019 (A) or S1P2-/- compared to S1P

+/+ or S1P2-/-. 
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Figure 6.8: The dependence of 

in arteries from uninfected and CMV

added cumulatively to arteries from uninfected

with or without NOS inhibitor 100 µmol/L 

VPC23019 (A, C) or 10 µmol/L 

U46619 followed by cumulative addition of increasing doses of VPC23019 or JTE013, to 

evaluate the dilatory properties of these inhibitors

arterial diameter induced by 100 µmol/L 

measurement of changes in vascular diameter from the baseline. 

decrease or increase in diameter (n=3 to 7) were analyzed by two

post-hoc test.  

dependence of phenylephrine-induced vascular tone on the S1P receptors 

in arteries from uninfected and CMV-infected mice. 0.01-10 µmol/L phenylephrine

from uninfected (A, B) and CMV-infected (C, D) mice pretreated 

100 µmol/L L-NAME and/or with or without 1 µmol/L 

10 µmol/L JTE013 (B, D). Arteries were preconstricted with 

ulative addition of increasing doses of VPC23019 or JTE013, to 

evaluate the dilatory properties of these inhibitors. Vasodilation was normalized to maximal 

100 µmol/L papaverine and Ca2+ free solution (E, F) 

ment of changes in vascular diameter from the baseline. The mean ± SEM percent 

decrease or increase in diameter (n=3 to 7) were analyzed by two-way ANOVA and the Tukey 
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Figure 6.9: Phenylephrine-induced vascular
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6.2.8 Discussion of results from Chapter 6  

In this Chapter, as already noted, I investigated the impact of CMV-infection on the 

vascular tone induced by TXA2 via the S1P pathway. Indeed, I show that CMV infection 

enhances the vascular tone induced independently by TXA2 and S1P in uterine arteries, likely 

resulting from CMV-mediated alteration of the downstream pathways of TP or S1P receptors. 

CMV infection increases the expression of MLC kinase 6-fold in primary human foreskin 

fibroblasts [801]. Further, CMV encodes G protein-coupled receptors (GPCRs) including US28 

shown to promote PLC activation and inositol (1, 4, 5) triphosphate formation [802], which are 

key steps in TXA2 or S1P-induced vascular tone. These CMV encoded G protein coupled 

receptors have been proposed to promote agonist-induced responses [803] which may also 

explain the enhanced TXA2 or S1P-induced vascular tone in arteries from CMV-infected mice. 

Alternatively, since CMV infection has been associated with increased endothelial cell-cell gaps 

[661], and transmigration of immune cells like lymphocytes or monocytes [804], the presence of 

these cells in the subendothelial space could contribute to the enhanced vascular responses 

induced by TXA2 or S1P. Indeed, activated macrophages under conditions of no- infection, 

contribute to the contraction of isolated rat pulmonary arteries in a mechanism that involves the 

generation of ROS. The contraction is blocked in the presence of ROS scavenger 4-hydroxy-

TEMPO [805]. Since monocytes are known carriers of CMV [613,661,804], and CMV infection 

is associated with the release of ROS [806], when monocytes occupy the subendothelial space as 

macrophages, their activation following CMV infection could increase the basal levels of ROS. 

This means that the arteries stimulated by TXA2 or S1P could exhibit enhanced constriction 

because of the addition role of ROS already available in arteries from CMV-infected mice. 

The evidence that CMV increases the expression of MLC kinase [801], suggests that the 

TXA2 or S1P-induced vascular tone in arteries from CMV-infected mice occur through the Ca2+-

dependent pathway. In this Chapter, I show that TXA2-induced vascular tone occurs independent 

of the Rho kinase pathway under conditions of no infection, but via Rho-kinase/Ca2+-dependent 

pathways following CMV infection. In contrast, the S1P-induced vascular tone is mediated 

through the Rho-kinase pathway with or without CMV infection (Figure 6.10). Although there 

are similarities, the differences between TXA2 and S1P-induced responses could be due to the 

change in receptor dependence by S1P or alterations of the downstream signaling mechanisms 

during infection. CMV infection [679], and other viruses like influenza A virus [807,808] and 
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Epstein Barr virus [678,809] increase the expression and activity of SK-1. Moreover, CMV 

[806], TXA2 [810] or S1P [811] promote the generation of ROS. This may also explain the lack 

of differences at the single doses used in U46619 or S1P-induced vascular tone in arteries from 

CMV-infected and uninfected mice. It is therefore likely that 20 nmol/L U46619 at this high 

concentration, added only at once and the response measured after a short time there could be 

more effect of ROS. In contrast, addition of U46619 cumulatively from low doses could have 

minimal effects on ROS generation, and since the responses were measured over a period of 

time, this could favor ROS disintegration. Thus, ROS likely contributes to increased vascular 

tone by decreasing NO bioavailability in arteries from uninfected and CMV-infected mice with 

no net difference. Indeed, in Chapter 3 I showed that at lower doses of 5 nmol/L U46619, the 

vascular tone induced was significantly enhanced in arteries pretreated with L-NAME, but not 

when 20 nmol/L U46619 was used in the presence of L-NAME as seen in this Chapter. 

In Chapter 5, I showed that TXA2 increases endothelial permeability or vascular tone in 

an S1P-dependent manner. In this Chapter, I show that in arteries from CMV-infected mice 

TXA2-induced vascular tone occurs independently of SK-1, indicating a mechanistic shift in 

vascular tone control by TXA2 during CMV infection to mainly utilize SK-2 (Figure 6.10). 

Evidence shows that signaling of TXA2 through TP receptors activates SK-1 which 

phosphorylates radiolabelled sphingosine resulting in the release of S1P from cultured human 

platelets [486]. In Chapter 5, I reported a role for ABCG2 or ABCC1 transporters in the TXA2-

induced endothelial permeability and vascular tone, respectively. In this Chapter, the dependence 

by TXA2 on ABCG2 in inducing vascular tone during CMV infection did not change compared 

to arteries from uninfected mice, suggesting CMV infection does not affect the activity of this 

transporter. However, the role of ABCC1 in mediating TXA2-induced vascular tone was 

profoundly reduced following CMV-infection (Figure 6.10), suggesting that other transporters 

like spns2, not evaluated in this study, could be important during CMV infection [812]. 

Surprisingly, blocking the ABCC1 and ABCG2 simultaneously had no effect on TXA2-induced 

vascular tone in arteries from CMV-infected mice. While these findings warrant further 

investigation, the results provide clinically important information that cautions against the use of 

a combination of these drugs to target the S1P pathway for therapeutic purposes under conditions 

of CMV infection, given that MK571 (as montelukast sodium) has been used in the treatment of 

asthma [813,814]. 
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I have shown before that S1P (Chapter 3) and U46619 (Chapter 5) independently 

increases endothelial permeability or vascular tone in uterine arteries mediated through the S1P3 

receptor. In this Chapter, S1P3 did not play a role in U46619-induced vascular tone following 

CMV infection, but instead U46619-induced vascular tone was mediated partly through the S1P1 

receptor, while the rest of the vascular response stimulated through a yet to be defined pathway. 

Interestingly, the S1P-induced vascular tone was mediated through both S1P1 and S1P3 receptors 

following CMV infection (Figure 6.10). These findings indicate that CMV infection changes the 

vascular tone induced by TXA2 or S1P. While the role of S1P1 inducing vasoconstriction is not 

fully characterized, emerging evidence suggests that S1P1 could promote vasoconstriction via the 

Gi/PLC pathway that increases [Ca2+]i and MLCK activation [815]. S1P1 and S1P3 couples to 

Gi/o, and the S1P-induced vasoconstriction is significantly decreased in basilar arteries in the 

presence of Gi/o-specific inhibitor pertussis toxin [484]. S1P1 (used W146 antagonist), and S1P1 

and S1P3 (used VPC23019 dual inhibitor) have been shown to promote the S1P-induced 

contraction of excised tissue strips from porcine aortic valves, that was associated with an 

increase in [Ca2+]i [816]. In rabbit posterior cerebral arteries, the S1P1 receptors (used W146) do 

contribute to myogenic tone induced by exogenously added S1P [87]. More recently, SEW2871 

or FTY720 were shown to enhance phenylephrine or serotonin-induced vasoconstriction in rat 

mesenteric and coronary arteries [118], but also SEW2871 increased vasoconstriction in renal 

afferent arteries [480]. These findings suggest that S1P1 could be involved in the induction of 

vasoconstriction as also demonstrated in my study using U46619 or S1P. Crosstalk exits between 

different G-proteins including Gi/o and Gs, Gs and Gq/11, Gi/o and Gq/11 in agonist stimulated 

responses [817,818]. In fact, a CMV-encoded Gq/11 GPCR hypersensitizes VSMCs responses to 

lysophosphatidic acid (LPA) [802].These findings collectively, indicate that CMV infection 

could alter the downstream receptor signaling capabilities, and may explain the switch in 

dependence of U46619 on S1P3 in inducing vasoconstriction in arteries from uninfected mice to 

S1P1 in arteries from CMV infected mice. 

Although the vascular tone stimulated by U46619 or S1P is inhibited equally by JTE013 

in arteries from uninfected and CMV-infected mice, vascular tone in arteries from S1P2 KO mice 

was unaffected. JTE013 is reported to be nonselective [800], and VPC23019 exhibits agonist 

activities [698]. Considering these reports, and since I showed equal levels of inhibition of 

U46619 or S1P-induced vascular tone by JTE013 or VPC23019 in uninfected mice, I determined 



 
 

164 
 

whether these inhibitors produce vasodilatory factors which overcome TXA2-induced tone. 

Indeed, L-NAME relieved the inhibition mediated by JTE013 or VPC23019 promoting partial 

restoration of U46619-induced vascular tone in uninfected mice. These findings imply that, 

JTE013 or VPC23019 act to antagonize the S1P receptors [800], but also cause vasodilatory 

effects through NOS activation. In arteries from CMV-infected mice blocking NOS activity 

significantly reduced the vascular tone induced by U46619. These findings are not surprising as 

L-NAME has been shown to increase the activity of NOS (iNOS or eNOS), both in vitro for 

instance in astrocytes [767] and bovine aortic endothelial cells [768], and in vivo in the heart, 

aorta and kidney of normotensive rats [769]. In Chapter 4, I showed that arteries pretreated with 

L-NAME exhibited enhanced vasodilation that was dependent on the activation of the 

endothelial isoforms of NOS. These findings indicate that under certain conditions L-NAME can 

stimulate NO activity leading to NO production. 

Like U46619, phenylephrine also increased vascular tone through an S1P pathway. In the 

presence of L-NAME, VPC23019 lost its inhibitory potency, suggesting that VPC23019 

mediates its effects through NO generation. Unexpectedly, VPC23019 did not generate 

vasodilation in preconstricted arteries. I have however consistently shown that the use of 

VPC23019 or arteries from S1P3 null mice provides results consistent with the role of S1P3 in 

mediating the increase in vascular tone. Phenylephrine-induced vascular tone was partially 

inhibited by VPC23019 in arteries from CMV-infected mice. Like U46619, phenylephrine-

induced vascular tone was blocked in arteries from uninfected S1P3-/- mice, but not with CMV 

infection, suggesting that the vascular tone likely occurs via the S1P1 receptor. 

JTE013 completely blocked phenylephrine-induced vascular tone which was partly 

restored in the presence of L-NAME. These results indicate that JTE013 functions as an 

antagonist but also promotes production of NO as an additional mechanism for preventing 

phenylephrine-induced vascular tone. Like with U46619, VPC23019 or JTE013 inhibited 

phenylephrine-induced vascular tone, but their inhibitory functions decreased with CMV 

infection. The lack of phenylephrine-induced vascular tone in arteries from CMV-infected S1P2-

/- or S1P3-/- mice, suggests that the inhibition of phenylephrine-induced vascular tone by 

VPC23019 or JTE013 in CMV-infected mice is likely NO-mediated. 

In summary, I have demonstrated that CMV infection enhances the vascular tone induced 

by TXA2 or S1P which means that CMV infection can potentiate vascular complications leading  



 

 

Figure 6.10: Proposed model to account for the impact of CMV infection on the vascular 

tone induced by U46619 via an S1P pathway. 
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arteries from CMV-infected mice will be essential for therapeutic purposes. These findings are 

important as one of the analogs of sphingosine (FTY720) approved for treatment of multiple 

sclerosis has been shown to reduce severe CMV disease in renal transplant patients [9]. 
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CHAPTER 7: GENERAL DISCUSSION 

Endothelial permeability and vascular tone have often been studied separately, but I now 

demonstrate that these concepts are interconnected. I show that S1P regulates endothelial barrier 

which has an impact on vascular tone. At physiological concentrations, that is, less than 1 

µmol/L, S1P enhanced endothelial barrier limiting its own access to the VSMCs, and therefore 

had no effect on vascular tone although addition of 0.1-1 µmol/L S1P extraluminally increased 

vascular tone. The mechanisms through which S1P increases endothelial barrier are relatively 

well studied. In cultured endothelial cells, the S1P-mediated activation of the S1P1 receptor and 

downstream stimulation of Gαi/Rac/PI3K pathway results in decreased endothelial permeability. 

This mechanism involves the assembly of the VE–cadherin/β–catenin complex and redistribution 

of ZO–1 at the cellular junctions [390-392]. In isolated perfused rat mesenteric venules S1P was 

shown to enhance the endothelial barrier against barrier disrupting agents, platelet activating 

factor and bradykinin [415,416]. Further, mice engineered to deliberately lack circulating S1P 

were shown to suffer from vascular leakage and decreased survival, and resupplying S1P through 

transfusion of wildtype erythrocytes reversed vascular leakage and improved mice survival 

[419]. These findings emphasize the importance of S1P in maintaining endothelial barrier 

function. However, we are the first one to demonstrate the role of S1P in protecting endothelial 

barrier in isolated pressurized arteries as most previous studies have focussed on cultured 

endothelial cells and veins. We also further demonstrate novel findings in which S1P likely 

maintains endothelial barrier through NO-mediated activity (Figure 7.1). S1P-induced activation 

of S1P1 or S1P3 receptors stimulates eNOS activation and NO generation 

[33,34,121,122,386,441,442]. Such NO-stimulated endothelial barrier tightening likely prevented 

leakage of S1P to the VSMCs resulting in no effect on vascular tone. I also show that SNP (NO 

donor) at low concentrations enhanced the basal (unstimulated) barrier, but also decreased 

endothelial permeability generated by infusion of thrombin, but not LPS or gB, into uterine 

arteries. These differences in the capacity of SNP to enhance the barrier could be associated with 

the differences in the mechanisms utilized by these products from infectious agents compared to 

those produced physiologically. 

The high-end physiological concentration of S1P (1 µmol/L) infused into uterine arteries 

had no effect on vascular tone despite having increased endothelial permeability. However, when 

the same concentration of S1P, was added extraluminally, vascular tone was increased. We have 
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shown that 0.01 µmol/L S1P or NO (SNP at 20 µmol/L) enhances the basal barrier, and these 

findings suggest that in isolated arteries whose blood components has been flushed out, these 

arteries exhibits some “low-level” leakiness. This idea is supported by studies showing that 

perfusion of rat mesenteric venules with erythrocyte-derived S1P led to a decrease in basal 

permeability [417]. It is therefore likely that the 1 µmol/L S1P-induced permeability promotes its 

own leakage to the VSMCs but the induced vasoconstriction is overcome by the likely S1P-

generated NO. This argument is supported by the dramatic increase in vascular tone from infused 

1 µmol/L S1P when NOS activity was inhibited by L-NAME. Furthermore, taking into account 

basal NO production, the level of constriction after infusion in the presence of L-NAME is still 

only approximately 50% for 1 mol/L S1P of that found when added to the bath, suggesting the 

existence of partial functional barrier that can allow leakage of S1P to the VSMCs. These results 

are further supported by the results showing that infusion of 1 mol/L S1P into arteries from 

eNOS KO mice increased vascular tone which was absent in arteries from WT mice. These 

results indicate that S1P does access the VSMCs but the NO produced in arteries from eNOS KO 

mice [820] was not sufficient to overcome the S1P-induced vasoconstriction. 

The mechanism through which S1P increases endothelial permeability in uterine arteries 

may be NO-mediated (Figure 7.1). This idea is partly supported by results showing that high 

concentrations of NO donor 50 or 100 µmol/L SNP increased endothelial permeability compared 

to the control or lower SNP concentrations. In addition, co-infusion of SNP with U46619 (which 

we now know signals via the S1P pathway to increase permeability and vascular tone) increased 

endothelial permeability. Given the lack of SNP-induced permeability in arteries from eNOS KO 

mice, it is likely that the mechanism through which NO increases endothelial permeability in 

uterine arteries involves sustaining a positive feedback loop leading to eNOS activation, but it is 

also likely that the arteries from eNOS KO mice generates NO scavengers like apha-globin 

[821,822] which could take up most of the exogenously delivered NO via SNP inhibiting 

increase in endothelial permeability. NO has also been shown to activate Rho GTPases 

disrupting endothelial VE-cadherin [749]. Thus far, these findings indicate the role of S1P in 

regulating endothelial barrier mediated by the actions of NO. Such endothelial barrier control 

determines the outcome of vascular tone induced by S1P.  

Another novel finding is that endothelial permeability induced by S1P at a physiological 

concentration (1 µmol/L) promotes leakage of circulating vasoconstrictors into the underlying 
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VSMCs increasing vascular tone. These S1P-mediated effects of endothelial permeability and 

vascular tone occur in at least two vascular beds: the uterine and mesenteric arteries. The co-

infusion of S1P with U46619 into uterine arteries was associated with increased permeability 

mediated by S1P via S1P3 allowing leakage of U46619 increasing vascular tone (Figure 7.1). 

The vascular tone induced by infused S1P, U46619 or their combination were markedly 

enhanced when NOS was inhibited by L-NAME, indicating that both of these drugs produce NO 

that blunts the vascular tone generated. Like S1P, co-infusion of NO donor (SNP) with U46619 

was accompanied with increased endothelial permeability and vascular tone. While the 20 

µmol/L SNP and U46619 independently had no effect on permeability it is more likely that the 

permeability was contributed by NO contributed by both SNP and U46619. Such co-induced 

permeability was completely abolished in arteries from eNOS KO mice, suggesting that the NO 

produced activates eNOS, which continually make NO available to increase permeability. This 

argument is supported by the evidence presented earlier that the 50 or 100 µmol/L SNP-induced 

endothelial permeability was completely inhibited in arteries from eNOS KO mice. Although 

U46619 does not appear to potentiate S1P-induced permeability, these differences could be 

associated with the way NO is generated by S1P and SNP, and ultimately activate eNOS. It was 

however, unexpected that co-infusion of the NO donor with U46619 could lead to an increase 

vascular tone (contributed by leakage of U46619 by co-induced permeability). However, as 

expected such vascular tone was lower (decreased by SNP-derived NO) compared to that 

induced by infused U46619 in the presence of L-NAME. Collectively, these findings indicate 

S1P at a physiological concentration increases endothelial permeability via eNOS/NO which is 

presumably within tolerable limits that allows circulating vasoactive agents to access the 

underlying VSMCs to maintain normal vascular tone.  

The concept that increased endothelial permeability promotes leakage of circulating 

vasoconstrictors to the VSMCs increasing vascular tone is also demonstrated by the 

pathophysiological levels of S1P, permeability-inducing factors thrombin, LPS, gB and TXA2. 

S1P at pathological levels (10 µmol/L) increased endothelial permeability, and promoted leakage 

of S1P to the VSMCs increasing vascular tone. Although inhibiting NOS dramatically increased 

S1P-induced permeability, it is likely that the permeability induced by10 µmol/L S1P in the 

absence of L-NAME experiences barrier enhancing signals generated by NO activity. Unlike 1 

µmol/L S1P, the constriction induced by infused 10 µmol/L S1P was not different from that 
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obtained when added extraluminally. This is likely because 10 µmol/L being pathophysiological, 

S1P could stimulate other mechanisms that can interfere with NO bioavailability including the 

generation of ROS. While 10 µmol/L S1P contributes to the generation of ROS [823], it is 

unknown whether that is applicable in arteries used in this study. Like 10 µmol/L S1P, thrombin, 

LPS, gB-induced permeability also facilitated leakage of a co-infused vasoconstrictor (U46619) 

to the VSMCs increasing vascular tone. TXA2 was used at high concentrations to investigate the 

potential effects of this lipid in promoting pathological-related effects on the vasculature. For the 

first time, I show that endothelial permeability and vascular tone generated by TXA2 is mediated 

through an S1P pathway. TXA2 increases permeability in cultured endothelial cells through 

disruption of VE-cadherin and PECAM-1 [8]. In my study, infusion of U46619 into mouse 

uterine arteries led to SK-1, ABCG2 (but not ABCC1), and S1P1/S1P3-dependent induction of 

permeability that was reversed by an S1P1 receptor agonist, SEW2871. The SEW871-mediated 

reduction in permeability was accompanied with decreased vascular tone from infused U46619, 

suggesting that enhanced endothelial barrier prevented leakage of U46619 to the VSMCs. The 

role of SEW2871 as an endothelial barrier enhancing agent has been shown before [782], 

including in my study whereby SEW2871 reversed endothelial permeability induced by 

thrombin, but also prevented thrombin-mediated leakage of U46619 and induction of vascular 

tone. I also found that the vascular tone induced by infused U46619 was mediated by ABCC1 

and S1P1/S1P3 on the VSMCs of uterine arteries. These results are consistent with the findings 

that I presented earlier in which S1P utilizes S1P3 to increase vascular tone. Moreover, the 

vascular tone induced by U46619 in the bath containing mesenteric arteries from male and 

female mice was mediated via SK-1, ABCC1 and ABCG2. Interestingly, stimulation of arteries 

in the bath led to an increase in endothelial permeability that was approximately 50% of that 

induced when U46619 was infused. The induced permeability and vascular tone were mediated 

through TP receptors and ABCC1.These results suggest that vascular tone alone can contribute 

to increase in endothelial permeability. I therefore convincingly demonstrate that indeed TXA2 

utilizes the S1P pathway to increase endothelial permeability and/or vascular tone in mouse 

uterine and mesenteric arteries. Although, U46619 appears to induce the production of NO as 

already discussed, it is still not clear whether the permeability induced by TXA2 is mediated 

through the S1P/eNOS/NO pathway. 

While TXA2 is clearly a stimulus that leads to S1P generation, I also found that CMV 



 
 

171 
 

infection enhances the vascular tone induced by S1P or TXA2 in uterine arteries (potential 

contribution of immunological responses, please see section 6.2.8). The induced vascular tone 

was partly mediated through the Rho kinase pathway. While the TXA2-induced vascular tone is 

mediated through the S1P pathway under conditions of no-infection, the role of SK-1, ABCC1 

but not ABCG2, and the S1P3 receptors were profoundly decimated following CMV infection. 

Instead, infection opened up a new avenue for induction of vascular tone by TXA2 involving SK-

2 and S1P1 receptors, but also S1P-induced vascular tone was mediated through both S1P1 and 

S1P3 receptors. Although TXA2 still stimulates vascular tone via the S1P pathway under 

condition of CMV infection, a large proposition of the response appear to be mediated through a 

different mechanism that is independent of the S1P pathway. 

In summary, the findings presented here, will expand our understanding of the 

physiological control of endothelial barrier and vascular tone by S1P with potential for 

therapeutic applications. The results suggest that under pathological conditions, excessively 

increased endothelial permeability in reproductive arteries (like uterine) during pregnancy could 

increase vascular tone in these arteries limiting nutrient and blood supply to the fetus affecting 

fetal growth. This can lead to pregnancy disorders like intrauterine growth restriction. Moreover, 

increases in endothelial permeability and vascular tone in mesenteric arteries can interfere with 

systemic blood pressure. Therefore, therapeutic approaches aimed at reducing endothelial 

permeability via S1P-mediated actions, can be useful in the treatment of vascular complications 

associated with increased vascular tone like hypertension and intrauterine growth restriction. 

TXA2 is associated with various disease-related conditions like vascular tone, vascular leakage, 

rheumatoid arthritis, atherosclerosis, inflammation, and preeclampsia. Considering the findings 

from this study, targeting the S1P pathway could ameliorate the clinical signs associated with 

vascular complications caused by elevated levels of TXA2. CMV infection will likely potentiate 

the vascular complications mediated by TXA2 or S1P and there is therapeutic potential in 

targeting the S1P pathway. 
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CHAPTER 8: LIMITATIONS AND FUTURE DIRECTIONS 

In this thesis, the use of pressure myography provided very useful information as it also 

helps to investigate vascular function in near physiological conditions. However, the 

physiological relevance of the findings can be corroborated with additional studies from in vivo 

models. The impact of vascular tone demonstrated in isolated arteries can be assessed in vivo, by 

delivering drugs into study animals and changes in blood pressure can be measured using tail 

cuff method or plethysmography. Endothelial permeability can also be assessed in vivo using 

miles assay. In this assay, Evans Blue dye (or fluorescent dextran of choice) is injected 

intravenously to the test animal (e.g. mice) followed by delivery of the experimental treatment 

(e.g. drugs). Evans Blue dye binds to albumin, and under physiological conditions albumin does 

not pass through an intact endothelium, and therefore the dye remains within the blood stream. 

When endothelial permeability is increased, the endothelium becomes permeable to albumin, 

allowing extravasation of Evans Blue dye to the tissues. Endothelial permeability can then be 

determined by visualization or quantitatively from the amount of dye embedded (in tissues) per 

tissue weight. The dye can be extracted using formamide. The advantage of this technique is that 

is it simple and also the ease with which results can be quantified. However, this technique is 

time consuming starting from the experiment itself, extraction of the dye and determination of 

optical density by spectrophotometry [824,825]. Alternatively, more advanced technologies to 

image vascular responses in vivo can be considered. The use of intravital microscopy provides 

tremendous opportunities to not only image vascular responses in live animals but also cellular 

and subcellular changes following treatment of the animals with drugs of interest [826]. 

In Chapter 3 of the thesis, I showed that S1P regulates normal vascular tone through 

endothelial permeability in mouse arteries. The S1P does this by promoting leakage of 

circulating vasoactive agents to the underlying VSMCs controlling vascular tone. However, the 

VPC23019 used as an S1P receptor antagonist binds to the S1P1 and S1P3 receptors 

simultaneously [698] making it difficult to accurately interpret the results. However, the use of 

the S1P3 receptor KO mice which were available on a 129 (strain) background helped to 

streamline the interpretation. Although the S1P3 KO mice do not display any growth-related 

defects [681], it is unknown whether any physiological compensations occurs in these mice that 

can affect the S1P responses. Future experiments should determine the levels of S1P receptor 

(S1P1, S1P2, because S1P1-3 are the receptors mainly found on the vasculature) expression in 
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arteries from these type of S1P3 KO mice. However, as already noted earlier, it is technically 

challenging to specifically measure the receptors on the endothelium or on VSMCs given that the 

arteries are very small. Although measuring the receptor expression by Western in a whole 

vessel as conducted in our study can provide useful information, the contribution of specific 

receptors to endothelial permeability or vascular tone (vascular function) will remain unclear. 

However, technologies like Laser Capture Microdissection with the capacity to isolate individual 

cells from tissues can be utilized, from which the cells can be stained for the receptors and 

analyzed by flow cytometry or imaged. 

I couldn’t analyze the role of the S1P2 receptor in the S1P-induced responses in earlier 

experiments because we didn’t have S1P2 KO mice then, which are now available, but also the 

JTE013 an S1P2 receptor antagonist available at the time was reported to be non-specific [800]. 

However, we interpreted the findings from this study that the compounds used (including 

U46619) were likely signaling through the S1P pathway to induce the responses, and indeed, as 

demonstrated in my thesis U46619 signals via the S1P pathway. Although I have shown that at 

high concentrations JTE013 increases vasodilation, at the concentrations used in my study 

JTE013 did not increase vasodilation on its own. 

There were also limitations in the use of S1P1 KO mice, as genetic deletion of this 

receptor is lethal; however, endothelial-specific S1P1 KO mice have now been generated [827], 

which together with S1P1-specific antagonists such as W146 [700,828,829], and those that are 

currently under evaluation [830], once they become commercially available, they will be 

valuable tools for analysis of vascular responses to S1P. It is noteworthy, that the responses of 

uterine arteries to infused 1 µmol/L S1P from 129 strain female mice induced vascular tone but 

those from C57Bl/6J mice didn’t. Unlike uterine arteries from 129 strain, mesenteric arteries 

from the same strain showed increased vascular tone to infused S1P or U46619. These 

differences could be associated with vascular-bed, sex or genetic-related differences. To address 

these differences, vascular responses to infused S1P, U46619 or their combination should be 

repeated with uterine or mesenteric arteries isolated from our in-bred C57Bl/6 male and female 

(KO and WT) mice now available, but also determine the levels of S1P or TP receptor 

expression in these arteries. 

In Chapter 3 and 4, I used the CMV glycoprotein gB at 0.5 µg/ml, which I showed 

increases endothelial permeability but also potentiates U46619-induced vascular tone in uterine 
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arteries. While these findings suggests that CMV viral attachment alone is sufficient to increase 

endothelial permeability and promote leakage of circulating vasoconstrictors to the VSMCs 

increasing vascular tone, using one viral protein alone does not mimic the effects of an intact 

virus. Future studies, should co-deliver an intact mouse CMV virus with U46619 or any other 

vasoconstrictor, and assess the effects on endothelial permeability and vascular tone. The 

protocol for delivering intact virus into arteries has already been established in our lab [574]. 

Since CMV infection has been shown to increase endothelial permeability in cultured cells [661], 

and high blood pressure in a rodent model [655], further experiments can now test whether an in 

vivo CMV infection contributes to an increase in vascular tone by promoting leakage of 

circulating vasoconstrictors to the VSMCs. This means that CMV infection will act as a 

permeability factor, and U46619 can be infused directly into arteries isolated from CMV-

infected mice and vascular tone evaluated. However, in vivo experiments can also be conducted 

whereby fluorescently labeled U46619 or S1P (which we have) can be delivered into CMV 

infected mice, and permeability can be traced to specific arteries. Since I have already shown 

that CMV infection promotes an increase in vascular tone in an S1P-dependent manner, both of 

which increases endothelial permeability, further experiments should evaluate whether CMV-

infection utilizes S1P signaling to increase endothelial permeability (and vascular tone-generated 

following infusion). These findings will be clinically important not only to CMV infection-

induced pathologies, but also those induced by TXA2 (which induces permeability and/or 

vascular tone via S1P pathway). 

The inhibitors I used although some of them gave me specific responses, but some of 

them were useful in assessing general signal transduction mechanisms. L-NAME inhibits all of 

the NOS isoforms (eNOS, iNOS, nNOS) [831], but also L-NAME has been reported to activate 

NOS [767-769]. Although I used eNOS KO mice to determine the contribution of eNOS to the 

vascular responses, it was difficult to determine the contribution of other isoforms. To determine 

the role of each of these isoforms on vascular responses to S1P, U46619 or SNP, experiments in 

arteries from eNOS KO mice should be conducted in the presence of specific inhibitors to iNOS 

such as 1400W [832,833] or to nNOS like N-ω-propyl-L-arginine hydrochloride [834,835].  

Although L-NAME did not appear to activate NOS in the presence of S1P, but with SNP, L-

NAME enhanced the vasodilation induced by SNP. To find out whether L-NAME contributes to 

NOS activation, experiments can now be repeated by co-treating mouse uterine arteries with L-
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NAME and SNP and determine eNOS phosphorylation at ser1176 or the experiments can be 

conducted using flourigenic NO probes (e.g. DAF-2, DAR-2) [836,837] that can detect NO 

generation.  

Although I dissected the pathway through which TXA2-induces endothelial permeability 

and/or vascular tone through the S1P pathway, there are three limitations (1) rodents express 

only one subtype of TXA2/prostanoid receptors TPα, but humans express both TPα and TPβ 

receptors. These differences questions the applicability of my results in human situations, 

however, TPβ is easily downregulated in human cells at high TXA2 concentrations including the 

concentration used in this study [524,528,778]. This means that my results mimics the 

pathophysiological conditions that occur in humans; (2) I mainly used inhibitors including those 

of ABC transporters, whose primary role (ABC) is to export ATP out of the cells. Since I 

targeted multiple steps of the S1P pathway, and demonstrated a high level of consistence of the 

message, the results generated using MK571 (ABCC1) or FTC (ABCG2) does not weaken the 

overall conclusion of my studies. However, if need be, additional transporters such as spns2 can 

be evaluated, and although the inhibitors for this transporter are not available, the siRNA-

mediated silencing can be utilized, but also the spns2-specific KO mice have now been generated 

[371]; (3) Although I showed that U46619 signals through the S1P pathway to induce its 

responses, I did not quantitatively show that in the arteries I studied the S1P is released following 

U46619 treatment. We now have an S1P-specific antibody, and these experiments can be 

repeated for verification if need be. Experiments can also be conducted in cultured endothelial or 

VSMCs and the amount of S1P released following stimulation by U46619 can be determined 

using tin-layer chromatography or mass spectrometry. 

While I used uterine arteries as a model to study the effects of S1P/TXA2 on endothelial 

permeability and/or vascular tone, being reproductive arteries, further studies should look at such 

effects on normal pregnancy as this being one of the areas of focus of the Hemmings’ Lab. S1P 

has been shown to play various roles in pregnancy including ovarian function. In pregnant rats, 

S1P was shown to prevent the apoptosis of luteal cells (cells in the corpus luteum) mediated by 

caspase or PGF2α. S1P also maintains normal blood vessel density (number of vessels per area) 

in the corpus luteum [699,838,839]. S1P is also involved in implantation, immune function 

during pregnancy, placentation and delivery [840,841]. We have also shown that S1P controls 

vascular tone mediated through the Rho-kinase and the NO-mediated pathways in human 
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placental arteries isolated from the chorionic plate and stem villi [473]. However, the role of S1P 

in controlling endothelial barrier and the impact on vascular tone in pregnancy remains to be 

demonstrated. While I showed that in mouse uterine and mesenteric arteries, TXA2-induced 

endothelial permeability and/or vascular tone is mediated through the S1P pathway, because of 

the great vascular changes that occur during pregnancy, experiments will need to be repeated to 

confirm whether such a pathway still operates following pregnancy. Since this thesis also 

establishes a link between CMV infection and S1P/TXA2-induced vascular tone, further studies 

should evaluate the impact of CMV infection on the S1P (TXA2)-mediated control of endothelial 

barrier and vascular tone in pregnancy.  
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Claypool Publishers. 

2. Figure 1.14: permission was granted by Dr. Teresa Compton and Elsevier  

3. Figure 1.15: permission was granted by Dr. Rajiv Khanna and the American Society for 

Microbiology  

 
 
 
 
 
 
 
 



 
 

230 
 

 
 
 
 



 
 

231 
 

 
 
 
 



 
 

232 
 

 
 
 



 
 

233 
 

 
 
 



 
 

234 
 

 
 
 
 



 
 

235 
 

 
 
 
 



 
 

236 
 

 
 
 

 



 
 

237 
 

 
 



 
 

238 
 

 
 
 
 
 



 
 

239 
 

 
 
 
 
 
 



 
 

240 
 

 
 
 
 
 
 



 
 

241 
 

 
 
 
 



 
 

242 
 

 
 
 
 
 
 



 
 

243 
 

 
 
 
 
 
 
 



 
 

244 
 

 
 
 
 
 
 
 



 
 

245 
 

 


