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Abstract

A significant portion of quantitative information about entities in open-sourced data

and data lakes is presented in tabular format, yet these tables often lack consistent la-

beling and schema, complicating querying and integration tasks. This thesis addresses

the challenge of identifying and annotating numerical columns that may contain data

from multiple sources with inconsistent units. For instance, weight measurements

might be expressed in kilograms or pounds without clear unit indications. We pro-

pose a robust method for annotating mixed-unit numeric data, develop a benchmark

for this task, and introduce an algorithm that accurately detects semantic types (e.g.,

height) and links them to corresponding types in a knowledge graph. Our method

outperforms state-of-the-art techniques, particularly in detecting mixed units and

assigning appropriate semantic labels. Our evaluation of mixed-unit columns with

varying levels of complexity confirms the effectiveness of our approach in improving

annotation accuracy. Additionally, our evaluation provides new insights into the ac-

curacy of annotating mixed-unit columns, a problem that has not been thoroughly

explored in previous work.
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Chapter 1

Introduction

1.1 Background and Motivation

In the digital age, an ever-growing number of tables reside in data lakes and open

sources, containing potentially valuable data for various tasks such as question an-

swering, fact verification, and decision-making processes [1, 2]. Data lakes, with their

offering of a centralized repository to store both structured and unstructured data

at any scale, are becoming increasingly prevalent in both the public and private sec-

tors [3]. For instance, open government data can include tables of economic indicators,

health statistics, or demographic information, while corporate data lakes might store

customer information, sales data, or product inventories [4]. These datasets are rich

in information and have the potential to drive significant insights and innovations

across multiple domains.

However, effectively leveraging these tables for downstream tasks requires a clear

understanding of the semantics of each column and the relationships between different

columns. This semantic understanding is crucial for tasks such as query generation,

data integration, and advanced analytics [5, 6]. For example, in the context of ques-

tion answering systems, accurately understanding the meaning of columns can signifi-

cantly improve the system’s ability to provide correct and relevant answers. Similarly,

in fact verification, the accuracy and the reliability of the verification process depend

heavily on the correct interpretation of the data columns.

1



Tables within corporate databases also utilize semantic labels to enhance the per-

formance of query generation tools. Semantic labels help bridge the gap between raw

data and the meaningful insights that can be derived from it. They provide con-

text, making it easier to interpret data correctly and use it effectively in analytical

processes. For instance, a column labeled “Customer Age” in a sales database may

provide information that can be used to segment customers for targeted marketing

campaigns or to analyze age-related purchasing patterns.

1.2 Use Cases

Quantitative information about entities constitutes a significant portion of columns

in these table repositories. However, the semantics of these quantitative columns are

often inadequately represented [7]. For instance, consider a list of hockey players

sourced from two different sporting websites and integrated into a single table with-

out meticulous examination or mediation. As shown in Table 1.1, one data source

represents the height (column C1) in meters and the weight (column C2) in kilo-

grams, while the other data source expresses the height in feet and the weight in

pounds. This amalgamation of data from disparate sources often overlooks unit con-

sistency or conversion. This inconsistency in units poses a significant challenge for

data integration and analysis. Without a standardized understanding of what each

column represents, the data cannot be effectively used for downstream tasks such as

information extraction and question answering. Therefore, it is essential to identify

quantity columns with mixed units and assign accurate semantic labels to them. Ac-

curate semantic labels ensure that the data can be correctly interpreted and utilized

in various analytical tasks.

As another use case, imagine integrating medical records from different hospitals

where patient weights are recorded in kilograms at one hospital and in pounds at an-

other. Without converting these units to a common standard, any analysis of patient

weight data would be flawed, leading to incorrect conclusions. Similarly, in financial

2



Entity C1 C2 Source

P
la
y
e
r

1.88 84

espn.co.uk
1.85 87

1.85 93

1.93 104

6.25 192

nhl.com6.17 218

6.25 208

Table 1.1: The height and weight of NHL players integrated from two sources: https:
//www.espn.co.uk/ and https://records.nhl.com/.

datasets, different sources might report monetary values in different currencies, and

failing to account for these differences could lead to erroneous financial analyses.

The issue of mixed-unit columns becomes particularly prominent in scenarios in-

volving table integration tasks, such as table union or stitching [8–10]. When tables

from different sources are combined, columns may end up containing data in different

units. For instance, during a table union operation, two columns representing the

same attribute (e.g., height or weight) might be integrated despite being recorded in

different units. Consequently, these mixed-unit columns require proper annotation to

ensure their utility in subsequent data processing and analysis tasks. This is not only

relevant for ensuring data quality but also for enabling accurate data analysis, which

is critical for applications in data science and business intelligence. Moreover, several

data integration tasks, such as data warehousing, ETL (Extract, Transform, Load)

processes, and the creation of unified data views, frequently involve the merging of

datasets from multiple sources. These tasks often result in columns that mix differ-

ent measurement units, leading to inconsistencies that must be addressed. Accurately

annotating these mixed-unit columns is essential for maintaining the integrity of in-

tegrated datasets and for performing reliable data analysis across various domains.

3
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1.3 Problem Statement

The problem addressed in this thesis is the semantic annotation of numerical columns,

with a particular focus on those with mixed units. Specifically, we aim to develop

methods for identifying whether a column contains mixed units or not and annotat-

ing the semantic type of that column. By overcoming the challenges posed by unit

inconsistencies, our goal is to enhance data integration and analysis capabilities.

Our study aims to address the problem by investigating whether quantity columns

with mixed units can be identified and accurately labeled with semantic annotations.

We leverage knowledge graphs as a source for semantic types. Knowledge graphs

provide a structured representation of knowledge, capturing entities, their attributes,

and the relationships between them [11, 12]. Using knowledge graphs for semantic

labeling offers several benefits, including enhanced data interoperability, improved

query performance, and more accurate data integration.

Knowledge graphs, such as DBpedia1, Wikidata2, and Google’s Knowledge Graph3,

have been extensively used in various applications due to their ability to provide rich,

contextual information about entities [13, 14]. By mapping table columns to entities

and types in a knowledge graph, we can achieve a deeper understanding of the data’s

semantics. Detecting those mappings not only aids in data integration and query

generation but also enhances the overall quality and usability of the data.

1.4 Challenges in Column Semantic Mapping

Mapping the columns of a table to a knowledge graph presents several challenges,

particularly for numerical columns:

1. Existence of Desired Semantic Types: If the desired semantic types or

column values do not exist in the knowledge graph, existing methods are unable

1http://dbpedia.org/
2https://www.wikidata.org/
3https://developers.google.com/knowledge-graph
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to make accurate predictions. Knowledge graphs might lack specific types or

values needed for precise mapping. For instance, a knowledge graph might have

extensive information about people and locations but lack detailed types for

certain scientific measurements or specialized industry data.

2. Measurement Inaccuracies: Quantitative measurements of identical entities

from different sources seldom match precisely due to inherent inaccuracies in

measurements and reporting. For example, the height of the Eiffel Tower is

listed as 330 meters on Wikipedia, while it is stated as 324 meters on Wikidata.

These discrepancies arise from measurement errors, rounding differences, or

updates over time. Such variations are common in many domains, including

scientific research, healthcare, and public records.

3. Dynamic Nature of Quantitative Data: Quantitative data frequently change

over time due to the dynamic nature of measurements. Attributes such as the

name and nationality of a player are less likely to change, whereas measure-

ments such as height and weight can change regularly. This variability adds

complexity to the task of semantic labeling. For example, consider a database

tracking the population of cities over time; the population figures will change

annually, requiring constant updates to maintain accurate semantic labels.

4. Mixed Units: Quantitative data may be reported using different units (e.g.,

kilograms and pounds for weight), complicating the mapping of columns with

mixed units or those inconsistent with the knowledge graph. Ensuring unit

consistency is critical for accurate data interpretation. For instance, in interna-

tional trade data, weights might be recorded in metric tons in some countries

and short tons in others, necessitating careful unit conversion to ensure accurate

analysis.

Due to these challenges, reliably determining the semantic type of numerical data
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and assigning appropriate annotations remains a formidable task. Accurate semantic

labeling is essential for ensuring data quality and facilitating effective data integration

and analysis.

1.5 Related Work and Limitations

Various methods exist for detecting the semantic types of columns, often involving

mapping the columns to types in knowledge bases. However, most approaches are

tailored for textual data [15–17]. Textual data, such as names and categories, are

often easier to map to predefined types in a knowledge graph. For example, a column

labeled “Country” can be easily mapped to country entities in a knowledge graph.

Despite attempts to adapt these methods for numerical data, progress has been slow,

and the adaptability of the methods remains questionable [17].

Many approaches targeting numerical data leverage the statistical properties of

the columns, such as mean and standard deviation, along with statistical testing, to

assign a type [18–21]. These methods assume that the values of each semantic type

follow a known distribution and that the query column is a random sample from the

same distribution. However, these assumptions are often violated. Statistical tests

can reject the null hypothesis—that there is no significant difference between the

means of the two distributions—when the means are significantly different, but they

cannot confirm the null hypothesis when the means are similar.

Recent work attempts to relax some of these distributional assumptions, yet most

methods assume that column values are uniformly expressed using the same unit [22].

This assumption may not hold when data are gathered from multiple sources, as

discussed earlier. For example, data integration tasks often involve merging data

from sources with different unit conventions, leading to mixed-unit columns.

6



1.6 Our Contribution

Our work aims to further relax assumptions about data distribution, specifically

avoiding the assumption that column values are uniformly expressed using the same

unit. To tackle the challenges associated with mixed-unit data, we propose a Three-

staged Numeric Data Annotation Pipeline. This pipeline systematically addresses

the problem by first generating plausible data models, then assigning semantic types,

and finally aggregating the results. Our main contributions include:

1. Three-Staged Numeric Data Annotation Pipeline:

(a) Model Generation: Plausible models of data subsets are generated, and

data points are assigned to those sub-models. This stage involves cluster-

ing data points based on their statistical properties and unit conventions.

For example, height measurements in meters and feet can be clustered

separately, allowing the model to handle each subset appropriately.

(b) Type Annotation: A semantic type is assigned to each sub-model follow-

ing a cost optimization framework for numerical data. This stage leverages

knowledge graphs to identify the most appropriate semantic type for each

subset. For instance, height measurements might be mapped to a “Height”

type in the knowledge graph, regardless of the unit used.

(c) Aggregation Phase: Sub-model costs are aggregated to estimate the

cost of each unifying model covering the entire column values and to select

models with the least cost. This stage ensures that the final annotation

is both accurate and consistent across the entire dataset. By consider-

ing the cost of different unifying models, the approach balances accuracy

and complexity, selecting the most suitable semantic label for the entire

column.

2. Mixed-Unit Numeric Annotation Benchmark: We develop a benchmark
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for testing annotation methods on columns with mixed units. This benchmark

provides a standardized dataset for evaluating the performance of different an-

notation approaches. The benchmark includes a variety of columns with mixed

units, sourced from diverse domains such as sports, healthcare, and finance,

ensuring comprehensive testing of annotation methods.

Our experimental evaluation on a diverse collection of data, including our bench-

mark and other datasets, demonstrates the superiority of our approach over strong

baselines from the literature in both detecting and annotating mixed-unit numeric

columns. Our approach effectively handles mixed-unit columns, providing accurate

and consistent semantic labels that facilitate downstream analysis.

1.7 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2 reviews related works, highlighting the limitations of existing meth-

ods and positioning our contributions within the broader context. This chap-

ter provides an in-depth analysis of the current state-of-the-art methods, their

strengths and weaknesses, and how our approach addresses existing gaps.

• Chapter 3 details the construction of our datasets, including the mixed-unit

numeric annotation benchmark. This chapter describes the process of collecting,

cleaning, and preparing the datasets, ensuring their suitability for our experi-

mental evaluation.

• Chapter 4 outlines our methodology, explaining the steps involved in the pro-

posed approach. This chapter provides a detailed explanation of the model

generation, type annotation, and aggregation phases, highlighting the novel as-

pects of our approach.

8



• Chapter 5 presents the experimental setup and results, comparing our ap-

proach with state-of-the-art methods. This chapter includes a comprehensive

analysis of the performance of our approach on various datasets, demonstrating

its effectiveness and robustness.

• Chapter 6 concludes the thesis, summarizing our contributions and discussing

the implications of our findings. This chapter also outlines potential future

work, suggesting directions for further research in the field of semantic annota-

tion of numerical data.

9



Chapter 2

Related Work

Related work can be categorized into two main areas: (1) column type annotation,

and (2) table search and annotation.

2.1 Column Type Annotation

The literature on semantic labeling of table columns, or column type annotation

methods, can be categorized into two main themes: textual columns and numerical

columns. This structured overview highlights the specific advancements, benefits, and

limitations of the relevant approaches, setting the stage for our work in the following

chapters.

2.1.1 Annotating Textual Columns

Semantic labeling of tables has been extensively studied with a focus on textual

columns. Some of these approaches may be applied to numerical data. One notable

work in this area is by Efthymiou et al. [15], who explore the use of semantic em-

beddings to match web table rows with entities in knowledge bases. The approach

leverages the semantic similarities between entities by embedding them in a contin-

uous vector space, which captures the nuances of entity names and contexts. This

method has shown significant improvement in annotation accuracy for textual data.

However, it struggles with interpreting numerical data, especially those with mixed

10



units, as the embedding approach does not naturally extend to numerical values that

require unit normalization and contextual understanding.

Zhang et al. [23] present a method for semantic table interpretation that improves

upon the original TableMiner [24] system. Their approach, named TableMiner+, uses

contextual information both within and outside the tables to enhance annotation ac-

curacy. The incremental bootstrapping approach they adopt begins with preliminary

annotations that are refined iteratively, reducing computational overhead and im-

proving efficiency. Despite its strengths in dealing with textual data, TableMiner+

struggles with numerical columns, particularly when these columns contain mixed

units. This is because TableMiner+ assumes that all values in a numerical column

are in the same unit, simplifying the process of linking the column to a single property

in a knowledge base. However, when units are mixed, the method lacks the ability

to detect and convert between different units, leading to potential errors in semantic

annotation.

Limaye et al. [16] introduce a comprehensive multi-step method to link table cells

to knowledge bases through statistical and semantic analysis. The process effectively

handles relationships between entities within tables, improving the robustness of the

annotations. This method is mainly designed for textual data, but it can also handle

numerical data. However, it struggles with mixed-unit data because it assumes each

column is single-unit and tries to link all values to a specific property in the knowledge

base.

Chen et al. [17] introduce ColNet, a neural network-based framework designed to

annotate column types in web tables. ColNet integrates knowledge base (KB) reason-

ing with machine learning techniques, using convolutional neural networks (CNNs) to

learn semantic representations of columns. It employs a multi-task learning approach

that simultaneously performs column type prediction and entity linking, leveraging

the relationships between these tasks for improved accuracy. While ColNet shows en-

hanced accuracy in column type prediction for textual data by combining KB reason-

11



ing with CNNs, its performance is dependent on the quality and comprehensiveness

of the underlying KB. Moreover, the use of CNNs and multi-task learning increases

the computational complexity, which may limit its application in resource-constrained

environments.

Nishida et al. [25] present TabNet, a hybrid deep neural network architecture for

table type classification that treats tables as matrices of text. TabNet uses a re-

current neural network to encode sequences of tokens for each cell, capturing both

local and global semantic relationships within tables. While this architecture im-

proves classification accuracy for textual data, it requires extensive computational

resources, impacting its scalability. Additionally, TabNet primarily addresses textual

data, leaving numerical data less effectively handled.

2.1.2 Annotating Numerical Columns

Several works have focused specifically on the semantic labeling of numerical columns,

often highlighting the unique challenges posed by numerical data, such as unit incon-

sistencies and distributional assumptions.

Takeoka et al. [26] employ probabilistic models to annotate table columns, effec-

tively handling ambiguous entity names and varying contexts. However, a key limi-

tation is its reliance on the assumption that column values are uniformly expressed

in the same unit, which is often violated in real-world datasets where numerical data

from multiple sources are aggregated without unit standardization.

Alobaid et al. [18] apply fuzzy clustering techniques to annotate numerical data.

Fuzzy clustering allows for the identification of potential semantic types by grouping

similar data points. This method effectively handles datasets with varying degrees

of uncertainty and imprecision. However, it heavily relies on statistical properties

such as mean and standard deviation, making it sensitive to outliers and skewed data

distributions. This sensitivity can limit its effectiveness in heterogeneous datasets

where these statistical properties are not consistent across the data points.

12



Zhang et al. [27] employ a hybrid machine learning model to detect semantic types

by integrating both local and global contextual information to enhance accuracy. The

method uses a combination of recurrent neural networks (RNNs) and convolutional

neural networks (CNNs) to process table data. While effective in certain contexts, this

approach requires substantial computational resources and high-quality training data,

which can be challenging to obtain for numerical data. The need for extensive labeled

datasets remains a significant limitation, particularly when dealing with numerical

columns.

Nguyen et al. [28] introduce an embedding-based approach specifically for numer-

ical data, converting numerical columns into a continuous vector space that captures

their semantic meanings. By mapping these numerical vectors to a knowledge base,

the approach can effectively determine the most relevant semantic labels. While

promising, the approach’s performance is heavily dependent on the quality and rep-

resentativeness of the training data. If the training data does not adequately represent

the diversity of the numerical columns in practice, the resulting embeddings may fail

to capture the full range of semantic meanings.

Neumaier et al. [19], Pham et al. [20], and Ramnandan et al. [21] propose methods

relying heavily on the statistical properties of numerical columns to assign seman-

tic types. These methods use statistical tests to determine the relevance of data

to specific types, assuming that values within each semantic type follow a known

distribution. While these approaches can be effective in certain scenarios, they of-

ten struggle with real-world datasets where the assumptions about data distributions

are violated. The inability to handle columns with mixed units further limits their

applicability.

Kacprzak et al. [29] emphasize the importance of high-quality training data for

effective semantic labeling. Their approach, while robust for consistent datasets,

encounters significant challenges with heterogeneous data where statistical properties

are not uniformly expressed. The reliance on statistical distributions makes these

13



methods less adaptable to datasets with diverse sources and inconsistent units.

Su et al. [22] introduce SAND, a novel method for annotating numeric columns in

web tables by linking them to properties in knowledge graph. SAND leverages the

semantic information available in knowledge graphs, bypassing the need for contex-

tual information that may be missing or labeled data, which can be costly and time-

consuming to obtain. The method involves identifying numeric columns in web tables

and linking these numbers to corresponding properties in a knowledge graph. This

process enhances the semantic understanding of the data, making it easier to query

and analyze. One of the main benefits of SAND is its reliance solely on existing se-

mantic information within knowledge graphs, which makes the approach more robust

and less dependent on external data sources. However, the quality and comprehen-

siveness of the annotations are heavily dependent on the completeness and accuracy

of the underlying knowledge graph. Additionally, the approach might struggle with

highly heterogeneous or noisy web tables, where the numeric data does not clearly

map to well-defined properties in the knowledge graph.

Ho et al. [30] present a method for extracting quantity facts from web tables

through the normalization and contextualization of numerical values. This approach

significantly improves the precision and relevance of search results involving quantita-

tive data. The method involves recognizing quantities, normalizing their values and

units, and aligning them with the appropriate entities in the tables. Contextual cues

are then used to match sophisticated queries with modifiers. However, the process

requires extensive contextual information and computational resources, limiting its

scalability for large datasets.

Kruit et al. [31] introduce TAKCO, a large-scale platform designed to extract novel

facts from web tables for inclusion in knowledge graphs. Takco focuses on identifying

novel facts while maintaining high precision, addressing the issue of redundancy in

traditional methods. The platform’s novel interpretation algorithm enhances the

accuracy of fact extraction by analyzing the structure and content of web tables.

14



However, the process requires sophisticated algorithms and significant computational

resources, impacting scalability. The platform’s effectiveness also depends on the

quality and diversity of the web tables it processes.

Ibrahim et al. [32] address the quantity alignment problem by linking numerical

data in tables with their textual context. This bidirectional linking enhances the

interpretability and usability of web tables by connecting numerical facts with their

explanations or references in the surrounding text. The method’s reliance on high-

quality contextual information can be a limitation, especially when the text is sparse

or ambiguous. Additionally, the normalization and matching processes can be com-

putationally intensive, particularly for large datasets.

2.2 Tabular Data Search and Annotation

A substantial body of research focuses on identifying tables that are related through

joinability, unionability, or semantic similarity. Many of these studies either involve

annotating tables or benefit from an annotation process.

2.2.1 Finding Related Tables

The work on finding related tables is aligned with ours, as it involves comparing tables

and identifying whether two columns match in content or semantic type.

Nobari et al. [33] address the challenge of transforming tables to ensure joinability

when data from different sources are formatted inconsistently. The approach focuses

on normalizing data formats to enable seamless integration of tables. The relationship

between this task and our work lies in the shared goal of addressing inconsistencies in

data. While Nobari et al.’s work focuses on making columns joinable despite format

discrepancies, our task involves handling inconsistencies where a column contains

mixed-unit data, aiming to accurately annotate these columns by finding similar

columns in a knowledge graph.

Khatiwada et al. [8] introduce Santos, a framework that improves union search
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accuracy by considering the semantic relationships between pairs of columns within

tables. Unlike traditional table union methods that rely solely on metadata or basic

column metrics, Santos uses semantic models to better understand the relationships

between columns, which can lead to more accurate unions. However, this relationship-

based approach can also contribute to the unintentional merging of columns with

different units, creating mixed-unit columns.

Nargesian et al. [9] address the challenge of identifying unionable tables in large

datasets, particularly in open data repositories by proposing a probabilistic approach

that models unionability based on domain-specific characteristics, allowing for flexible

and scalable union searches. While this method enhances the ability to combine

tables from diverse sources, it also increases the likelihood of merging columns with

different units, thus creating mixed-unit columns that pose challenges for subsequent

data analysis.

Narisawa et al. [34] explore the concept of numerical common sense by extract-

ing and analyzing numerical expressions from web contexts. Their study introduces

methods to infer whether a number is large, small, or normal based on its context,

which can aid in understanding numerical annotations in data tables. This work

provides an interesting perspective on the semantic interpretation of numerical data,

especially when different units and ranges are involved. It is relevant to our research

because it offers a method for determining whether a numerical value belongs to a

specific type and unit, which is essential for ensuring the correct semantic labeling of

mixed-unit columns in tabular data.

These works also highlight the importance of considering the effects of table union

processes on column consistency, particularly in the context of numerical data. The

union of tables from different sources can lead to mixed-unit columns, which require

careful handling during semantic labeling and data integration tasks.
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2.2.2 Annotating Relational Data on the Web

This group of works focuses on the task of annotating relational data on the web,

which aligns with the broader objective of semantic annotation in our research.

Cannaviccio et al. [35] focus on annotating relational data on the web by using

language models to identify and rank relationships between entities in tables. Their

approach improves the accuracy of relational annotations, facilitating the extraction

of meaningful insights from web-based tables. While their work centers on relational

annotations, our research addresses the semantic annotation of numerical data, par-

ticularly columns with mixed units. Both approaches contribute to enhancing the

semantic understanding of tabular data, albeit in different contexts.

Bollengala et al. [36] introduce the concept of relational duality in their work on the

unsupervised extraction of semantic relations between entities on the web. This ap-

proach captures relationships either by listing all instances (extensional) or by defining

paraphrases (intensional), which is essential for tasks like information extraction and

relation detection. Although their focus is on web data, this work aligns with our

research’s goal of enhancing the semantic understanding of data—specifically, numer-

ical data in tables—by accurately identifying and labeling relationships and semantic

types.

Weston et al. [37] present an approach that connects language and knowledge bases

through embedding models for relation extraction. Their method jointly learns em-

beddings for words, entities, and relationships from both text and knowledge bases,

effectively integrating these sources of information. This approach enhances the ex-

traction of semantic relations by leveraging both textual data and structured knowl-

edge, which aligns with our research’s goal of using knowledge graphs to semantically

annotate mixed-unit columns in tabular data.
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2.3 Summary

The review of existing literature on semantic labeling of tables reveals significant

progress in both textual and numerical column type annotation. Approaches for

textual columns, such as those leveraging semantic embeddings and neural network

architectures, have achieved notable success in improving annotation accuracy by

capturing semantic relationships within the data. However, these methods often

struggle when extended to numerical columns, particularly when dealing with mixed

units or requiring precise contextual understanding.

For numerical columns, methods that rely on statistical properties, probabilistic

models, and knowledge graph integration have been developed to address the unique

challenges posed by numerical data. While these approaches offer robust solutions

for specific scenarios, they often face limitations related to assumptions about data

distribution, the need for uniform data units, and the dependency on high-quality

training data.

In the area of tabular data search and annotation, research has primarily focused on

identifying related tables based on joinability, unionability, and semantic similarity.

These methods typically involve annotating tables or utilizing existing annotations

to enhance search capabilities and facilitate data integration. These approaches have

significantly improved the ability to discover and link related tables, enabling more

effective combination and analysis of data from diverse sources. However, the process

of joining and unioning tables can lead to the creation of mixed-unit columns, which

is a challenge that this thesis aims to address.

Overall, the literature highlights the need for approaches that can effectively handle

the heterogeneity of numerical data without relying on strict assumptions about data

uniformity. Our work builds on these insights, aiming to further advance the field

by introducing a method that can more accurately and comprehensively annotate

numerical data across a wide range of applications.
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Chapter 3

Dataset Construction

There is a lack of datasets for evaluating semantic annotation of numeric columns.

The SemTab challenge [38], held annually since 2019, evaluates tabular data map-

ping to a knowledge graph, but it primarily includes textual columns. In SemTab

Challenge 2021 [39], a task was introduced in Round 2 to identify the semantic rela-

tionship between an entity and a numeric property (e.g., (Kielzugvogel,5.8) and (MT

explosive motorboat,5.62)). However, this task differs from annotating a numerical

column. Recent papers [18, 22] have introduced small manually annotated datasets,

but all column values in these datasets have the same semantic type and unit. To

our knowledge, there is no public multi-unit numeric column annotation dataset.

To fill this gap, we introduce a mixed-unit numeric column annotation dataset with

varying levels of separability difficulty between units. To quantify this separability

difficulty, we introduce the concept of reflectivity before discussing our dataset.

3.1 Reflectivity

Some mixed-unit columns are challenging to separate, even for human experts, due to

significant overlap in data ranges from different units. In contrast, other mixed-unit

scenarios are readily identifiable. To quantify this difficulty, we introduce the con-

cept of reflectivity, which was used in a different context to quantify the interference

between data dimensions [40].
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Reflectivity, as defined by Agrawal and Srikant [40], measures the likelihood that

a data point’s reflection exists within the dataset. If xi⃗ denotes a data point in a

multidimensional space, the reflections of xi⃗ include all points obtained by permuting

the coordinates of xi⃗ , including the point xi⃗ itself. For example, the reflections of

(1,2) will be {(1, 2), (2, 1)}. The reflectivity of a 2-dimensional dataset D points is

formally calculated as:

Reflectivity(D, r) = 1− 1

|D|
∑︂
xi⃗∈D

θ(xi⃗ )

ρ(xi⃗ )
(3.1)

where θ(xi⃗ ) denotes the number of points within Euclidean distance r of xi⃗ , ρ(xi⃗ ) is

the number of points in D with at least one reflection within distance r of xi⃗ , |D|

is the dataset cardinality, and r is a distance threshold chosen experimentally. For

higher dimensions, the reflectivity is computed as the average reflectivity across all

2-dimensional subspaces.

In our work, we are interested in the reflectivity relationship between different units

of a property. Given two sets of quantities, U1 and U2, both measuring the same

property but in different units, each value in U1 can be considered similar to values

in U2 if their magnitudes are close. To capture this relationship between units, we

create our dataset D as the Cartesian product U1×U2, which includes every pair (a, b)

where a ∈ U1 and b ∈ U2. A high reflectivity in this dataset indicates a greater average

number of reflections falling within distance r of existing data points. Intuitively, this

scenario implies an increased degree of overlap between the data represented by the

units U1 and U2. This overlap makes it more challenging to separate these units. To

illustrate, consider data points (ai, bi), (aj, bj) ∈ D that are not within distance r of

each other. If the reflection (bi, ai) of (ai, bi) is within distance r (aj, bj), it suggests

that the values bi and aj, as well as bj and ai, are similar. Since we know ai and aj

belong to U1, and bi and bj belong to U2, this proximity of values from different units

suggests a greater degree of overlap between the units. Conversely, a low reflectivity

suggests that the values in different units are largely distinct, with minimal overlap.
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In our dataset generation, we set the value of r such that the average number of

points within distance r is 2.5. This decision was made to capture reflections that

fall within top 2-3 neighbours of a data point. This choice was based on experimental

observations, aiming to balance the detection of overlapping values while controlling

the reflectivity of the dataset. Setting the number of neighbors to 2-3 ensures that

the reflectivity values remain meaningful; if set to 0, the reflectivity for all datasets

would be 0, while a larger number would yield excessively high reflectivity values for

most columns.

Entity Size (meters) Size (yards)

S
o
cce

r
F
ie
ld
s

100

84 91.86

110

100.58

103 112.64

82.30

Figure 3.1: Data with high reflectivity and their distributions, reflectivity = 0.875

Examples of high and low reflectivity can be seen in Figures 3.1 and 3.2. In each of

the figures, we present a table that includes two numerical columns, displaying data
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in one or two different units. Figure 3.1 illustrates high reflectivity, while Figure 3.2

shows low reflectivity. In Figure 3.1, a dataset is constructed using all possible pairs

where the first element is a size in meters and the second value is a size in yards. The

figure shows these pairs and their reflections, which are close to the original points,

indicating high overlap (as evident in the table). Conversely, Figure 3.2 shows player

weights in pounds and kilograms, with distant reflections demonstrating minimal

overlap.

Entity Weight (lb) Weight (kg)

P
la
y
e
rs

210 95.25

194

150

176

67

178.56 81

73

92

Figure 3.2: Distribution of non-reflective data, reflectivity = 0
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3.2 MixedSAND Dataset

We introduce the MixedSAND dataset for evaluating multi-unit semantic annotation

models. Leveraging real-world numeric data from Wikidata, we have transformed it

into a robust dataset designed to test the model’s ability to handle mixed units. The

dataset is generated systematically, allowing control over key parameters such as unit

counts, percentages of each unit within a column, and levels of data reflectivity within

each column.

We generate three variations of the MixedSAND dataset, each consisting of 200

columns with 30 rows per column. Each column consists of data in two different

units, with an equal distribution of values from each unit. The values of different

units in each column are present in varying proportions and degrees of overlap.

• Easy Dataset: This dataset is designed to present the least challenge in identify-

ing mixed-unit columns. The majority of columns (60%) exhibit low reflectivity

(< 0.3), indicating minimal overlap between the two units present within each

of these columns. This characteristic makes the identification of mixed-unit

columns relatively straightforward in this dataset. The remaining columns are

divided equally between those with moderate reflectivity (0.3 - 0.6) and those

with higher reflectivity (> 0.6).

• Medium Dataset: This dataset introduces a moderate level of difficulty in identi-

fying mixed-unit columns. The distribution of reflectivity levels differs from the

Easy dataset. The majority of columns (60%) exhibit moderate reflectivity (0.3

- 0.6), indicating a noticeable overlap between data points with different units.

The remaining columns are divided equally between those with low reflectivity

(< 0.3) and those with higher reflectivity (> 0.6).

• Hard Dataset: This dataset presents the most challenging scenario for mixed-

unit column identification. The majority of columns (60%) exhibit high re-
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flectivity (> 0.8). This indicates that a substantial portion of the data points

appear with both units, making it significantly more difficult to distinguish be-

tween the two units and identify mixed-unit columns. The remaining columns

are equally divided between those with low reflectivity (< 0.3) and those with

moderate reflectivity (0.3 - 0.6).

Evaluating models across these three diverse datasets with varying levels of diffi-

culty in mixed-unit column annotation provides a comprehensive assessment of their

performance and robustness across a wide range of potential challenges.
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Chapter 4

Methodology

Consider a table with a set of columns c1, . . . , cn, and let val(ci) denote the set of

values in column ci. We focus on annotating columns containing only numeric values.

Each table often describes a set of entities (e.g., person, organization, location) or

relationships between entities, and this limits the set of types a column can take.

Problem 1 (Numeric Column Type Annotation) Let T be a set of entity types,

P be a set of properties and U be a set of units. A semantic type can be denoted as

a triple <t, p, u> where t ∈ T, p ∈ P and u ∈ U. The problem of column type

annotation for a numeric column cq is the task of assigning a semantic type to cq.

Our approach involves using the proximity of val(cq) to the samples val(c) of candidate

semantic types c.

In this work, we propose a solution that involves using the proximity of val(cq) to

the samples val(c) of candidate semantic types c. We utilize a knowledge graph (KG)

to construct our candidate semantic types. For each candidate semantic type c, we

require a representative set of data points, val(c). We operate under the closed world

assumption, meaning that the candidate set is considered complete. This assumption

is commonly made in similar approaches on annotating tabular data [15, 17, 22, 23].
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Figure 4.1: MixedSAND column annotation pipeline

4.1 Background on Single Unit Column Annota-

tion

A few methods have been developed under the assumption that the input column con-

sists of a single unit [18, 22]. Our methodology is built around SAND [22], a method

that is shown to achieve the state-of-the-art performance for annotating single-unit

numeric columns, and it is reviewed in this section. SAND[22] compares a given

numeric column, known as the query column, with all candidate columns in the

knowledge graph. This comparative analysis is executed by constructing a complete

bipartite graph between the query column and the candidate column. On one side,

nodes represent the numbers in the query column, while on the other side, they cor-

respond to the numbers in one of the candidate columns. Edges in this graph signify

the numerical disparity between the nodes they connect. Each mapping of the query

column to a candidate column is represented with a subgraph and is associated with

a cost. This cost is defined as the cumulative cost of the edges in the mapping.

SAND utilizes a minimum cost flow algorithm[41, 42] to identify the minimum-

weight subgraph encompassing all nodes from the query column. The weight of

this subgraph represents the cost associated with mapping the query column to the

candidate column.

On the other hand, the model operates under the assumption that all query

columns are single-unit columns, and each query column is compared with candi-

date columns that solely feature a singular unit. When units are mixed within the

query column, the model maps values across different units from a mixed-unit query

column to single-unit candidate columns. Consequently, the model fails to produce
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satisfactory results when the query column consists of mixed units, as shown in our

evaluation section.

Furthermore, this approach presumes that all values in the query column align

with units available in the knowledge graph. If the data exists in a different unit

within the knowledge base, SAND’s predictive accuracy is compromised.

4.2 Annotating Mixed-Unit Columns

We initiate the process of annotating by considering the column to be mixed-unit 1.

Our approach consists of a three-staged pipeline, as illustrated in Figure 4.1: (1)model

generation, where plausible models of data subsets are generated, and data points are

assigned to those sub-models, (2) sub-model annotation, where a semantic type is

assigned to each sub-model, following a cost optimization framework for numerical

data similar to SAND [22], and (3)aggregation phase, where sub-model costs are

aggregated to estimate the cost of each unifying model covering the entire column

values, and to select models with the least cost.

4.2.1 Model Generation

Given a column with mixed units, each grouping of the column values can be associ-

ated with a specific unit. The total number of possible groupings or models of data is

determined by the powerset of the column values. Our hypothesis is that quantities

or measurements with the same unit are more likely to be closer to each other than

those with different units. Based on this hypothesis, a clustering of the column values

should place values with the same unit in the same cluster. As the simplest and most

commonly used clustering method, k-means is an option. However, there are two key

problems that need to be addressed:

1. Choosing an appropriate distance function: The scale of the numbers can vary

significantly between units (e.g., millimeters and kilometer), making the abso-

1This assumption is relaxed in Section 4.3.
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Entity Property Unit

C
ity

684.4
km2

115

87,430,000
m2

630,200,000

Table 4.1: Area of a few Canadian cities

lute difference between two quantities less meaningful when they are of different

units.

2. Determining the number of units (k): Often the number of units in a mixed

column is unknown, which complicates the determination of the appropriate

number of clusters k. We initially assume the number of units in a column is

known. This condition is relaxed in Section 4.3.

Choosing an appropriate distance function The default distance function in

k-means is the Euclidean distance, which treats all differences between quantities the

same. This poses a problem when clustering quantities with different measurement

scales and units. For example, consider the “Area” column in Table 4.1, which lists

the areas of Canadian cities in both square meters and square kilometers. Without

knowing the units, the default k-means distance function (Euclidean distance) would

incorrectly cluster the first three cities with areas 684.4, 115, and 87,430,000 together,

while separating the fourth city with an area of 630,200,000. This error occurs because

the default metric fails to account for the scale variations inherent in mixed-unit data,

as depicted in Figure 4.2 which uses min-max normalization for clearer illustration.

In contrast, humans typically have no problem recognizing these scale differences and

will likely cluster the first two cities with measurements in square kilometers together

and the last two cities with measurements in square meters together. Our proposed

solution to this problem is the Bray-Curtis distance, a normalized relative difference
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Figure 4.2: Normalized area values (min-max scaling) for Canadian cities in Table
4.1. The visual gap between the third and fourth rows highlights the scaling issue
leading to a misclassification.

function defined in Equation 4.1. This distance function is commonly used in ecology

for comparing quantities with different scales [43]. The Bray-Curtis distance incor-

porates the magnitudes of quantities into the comparison, effectively replicating this

intuitive clustering of city areas in our example and mitigating scaling errors. In

our city area example, the Bray-Curtis distance between the areas in Rows 3 and 4

is 0.7563, indicating that Row 3 is considered closer to Row 4 than Row 1, as the

distance between Rows 1 and 3 is 0.9999. Section 5.5 confirms that this adaptation

results in more accurate unit-based clustering with the k-means algorithm. Addi-

tionally, the Bray-Curtis distance is a metric, ensuring smooth integration within

clustering algorithms.

distance(x, y) =
|x− y|
x+ y

for x, y ≥ 0 and x+ y > 0. (4.1)
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Clustering We employ a clustering approach using the k-means algorithm, but with

the Bray-Curtis distance function, with k set to the number of units, to partition

a mixed-unit column into sub-columns. Initially, we assume the number of units is

known, a presumption we relax in Section 4.3. Assuming the clustering process is

entirely accurate (for clarity in the following sections, though errors may occur), each

resulting sub-column should predominantly contain values associated with the same

semantic type and unit. Next, we discuss the annotation process for each sub-column.

4.2.2 Annotating Sub-Models

In our model generation, a query column is partitioned into sub-columns, and each

sub-column is expected to map to an atomic semantic type and unit. This mapping

is performed using a single-unit annotation method; in our case, this is done using

SAND, as discussed in Section 4.1. However, there are two issues in using a single-unit

annotation process. First, while the knowledge graph may be complete in terms of the

semantic types covered, it is less likely to include all possible units for each property

or sufficient samples for each unit. Thus, the knowledge graph may not have the exact

unit that matches a query sub-column. To address this, we compile a set of possible

units and conversion rates 2 between all convertible units, though it’s not exhaustive.

When comparing a candidate column from the knowledge graph to a query column,

we expand the knowledge graph column with all other applicable units for which we

have conversion rates. This type expansion is also applied to data samples using our

conversion tables, meaning each new unit will have data samples. For example, if the

knowledge graph has human height in centimeters, the data samples in centimeters

are mapped to meters, feet, etc.

Another issue is the cost function in SAND, which is defined as the sum of the

edge weights in a mapping, with the edge weight determined by the absolute difference

between matching quantities. We replace this function with one that provides a more

2https://exchangeratesapi.io https://www.unitconverters.net
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accurate cost estimate when dealing with multiple units, as discussed in the next

subsection.

4.2.3 Aggregating Sub-Model Annotations

In the previous two steps, a mixed-unit column is separated into sub-columns, and

each sub-column is mapped to a semantic type. When a column consists of multiple

sub-columns, those sub-columns may be assigned different semantic types and units,

each associated with a cost. The cost of a sub-column prediction is defined as the sum

of the edge weights in the subgraph that maps the query sub-column to a candidate

knowledge graph type.

Our MixedSAND model treats sub-column type predictions as possible candidates

for the entire column. The cost of a prediction for the entire column is defined as the

cumulative costs of sub-column predictions. However, this cost model is only mean-

ingful if the costs across different sub-columns are comparable. Using the default edge

weight in SAND, defined as the absolute difference between the quantities connected

by the edge, these costs are not comparable across different units.

We modify the edge weights so that the weight of an edge connecting two quantities

u and v is defined using Bray-Curtis distance, as given in Equation 4.1. As discussed

earlier, this new edge weight ensures the cost is normalized based on the scale of

the quantities matched, making the mappings costs across different sub-columns and

candidate types comparable.

4.3 Relaxing the Assumption on Unit Count

In this section, we relax the assumption from the previous section that the number

of units in a query column is known. Detecting the number of units based solely on

the distribution of values is not straightforward, especially when the ranges of values

for different units overlap. Each choice of k yields a model of data with an associated

cost. Our hypothesis posits that a correct model should yield a better mapping of the
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query column and result in the least cost.

Based on this hypothesis, we vary the number of units k from one to a maximum

and estimate the cost of the mapping under each value of k. For example, for k = 2,

our query column is divided into two sub-columns using k-means clustering. With

each sub-column assumed to contain only one unit, we proceed with the annotation

process individually for each. This results in a final annotation with an associated

cost value for each sub-column. The cumulative cost of the two sub-column mappings

gives the cost for having two units. We expect the range of possible values for k to be

small, and that the optimal number of partitions, where the cost value is minimized,

signifies the ideal partitioning of the column into its constituent units.
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Chapter 5

Evaluation

In this section, we evaluate our model’s performance on diverse datasets with varying

parameters, such as data reflectivity and unit counts. These datasets were generated

specifically for testing purposes to ensure a comprehensive assessment. We begin by

detailing our experimental setup, followed by an analysis of the model’s accuracy in

determining if a column contains mixed units. Next, we assess its ability to determine

the number of units within mixed-unit columns. We then compare our model’s per-

formance against SAND, the state-of-the-art baseline, and the Kolmogorov Smirnov

(KS) test which is used in a few related work[19, 20, 29]. Following this, we eval-

uate the model’s effectiveness in annotating columns after they have been correctly

clustered. We also examine the impact of using relative difference versus absolute dis-

tance on the model’s performance and assess its robustness to changes in the number

of units within a column. Finally, we investigate the impact of query column size on

the model’s accuracy.

5.1 Experimental Setup

To evaluate our model’s performance, we utilize the following datasets:

• MixedSAND datasets: As detailed in Chapter 3, these are mixed-unit datasets

derived from the Wikidata knowledge graph. We generated three variations

(Easy, Medium, and Hard) to assess the model’s robustness across different
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levels of unit overlap and reflectivity.

• WDC dataset: This dataset is the same real-world, single-unit dataset employed

in the evaluation of SAND [22]. Specifically, we utilize the same subset of the

WDC table corpus that was used in the SAND evaluation, which contains 69

columns. This subset is particularly relevant for our purpose as it allows for

direct comparison with the state-of-the-art method on a standardized bench-

mark.

By evaluating our model on both the mixed-unit MixedSAND datasets and the single-

unit WDC subset, we can gain a comprehensive understanding of its capabilities

across diverse scenarios.

5.2 Detecting the Number of Units

Single-unit vs. multi-unit columns. We first evaluate our model’s ability to

detect whether a column contains mixed units or not. To assess this, we use three

datasets: the easy and hard datasets introduced in the previous section, which contain

mixed-unit columns, and the subset of the WDC dataset utilized for evaluation in

[22] which contain single-unit columns. The results of running the model on each

dataset are presented in Table 5.1.

As shown in the results, the accuracy of identifying single-unit columns in the

WDC dataset (which is a single-unit dataset) is higher than the accuracy of identi-

fying mixed-unit columns in the hard dataset. This outcome aligns with our expec-

tations, given that we utilized the hard dataset characterized by columns with high

reflectivities, making it inherently more challenging to discern whether they contain

mixed units. The complexity arises due to the substantial overlap of numbers in

different units within these columns, contributing to a lower accuracy in recognizing

them as mixed units compared to single units.

Given that a mixed-unit column contains data from different units (e.g., weight

34



in pounds and kilograms), and because of the differences in range and scale between

units, the overall distribution of the column is likely to appear as if composed of

two or more distinct distributions. As one can see in Figure 5.1, this phenomenon

manifests as multimodality, where the distribution exhibits multiple peaks or modes.

To provide context for our model’s performance, we employed a common method for

Figure 5.1: Distribution of a mixed-unit column

identifying multimodal distributions: Kernel Density Estimation (KDE)[44]. KDE is

a non-parametric statistical technique that estimates the probability density function.

We can use KDE to assess the potential multimodality of a column’s distribution [45,

46], which is manifested by the number of “peaks” when plotting the data distribu-

tion. The presence of multiple distinct peaks in the KDE plot indicates a multimodal

distribution, which suggests a mixed-unit column. Conversely, a smooth, unimodal

distribution is more characteristic of a single-unit column. We anticipate that the

KDE-based baseline will perform reasonably well on datasets with clear unit separa-
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tion but might face challenges in scenarios with high reflectivity. In those cases, the

overlap between different units could mask multimodality in the KDE plot. In fact,

as can be seen in the Table 5.1, our model demonstrated superior performance to

the KDE-based baseline, achieving a 27% higher accuracy on the hard dataset. This

result highlights our method’s ability to discern subtle unit patterns.

Hard dataset Easy dataset WDC

Number of Columns 200 200 69

MixedSAND Accuracy (%) 0.58 0.765 0.696

KDE Accuracy (%) 0.50 0.55 0.652

Table 5.1: Accuracy of MixedSAND compared to a KDE-based baseline in detecting
multi-unit columns (%)

Determining the number of units Next, we evaluate our model’s ability to

accurately count the number of distinct units within mixed-unit columns. To facilitate

this evaluation, we constructed a dataset, which we refer to as the Varying Unit Count

Dataset (VUCD), consisting of 300 distinct, randomly generated columns derived

from the real-world dataset Wikidata. The dataset was designed to include an equal

number (75) of columns containing 2, 3, 4, or 5 different units. The results are

presented in Table 5.2.

MixedSAND KDE

Number of columns 300 300

Accuracy 0.516 0.193

Table 5.2: Performance of MixedSAND compared to KDE on determining the number
of units in columns

Clearly, our method significantly outperforms the KDE approach. This is likely

due to KDE’s reliance on density estimation, which can become inaccurate when
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distributions are not well-separated. Consequently, when data from different units

overlap, the performance of KDE is expected to deteriorate.

5.3 Type Detection Performance

In this section, we present an end-to-end evaluation. We take a column without prior

knowledge of whether it contains mixed units or not, input it into our model, and

then evaluate the performance based on the predicted semantic types output by our

model.

We have also compared MixedSAND with SAND [22] (the state-of-the-art base-

line). Tables 5.3, 5.4 and 5.5 present the performance in terms of top-1, top-3, and

top-5 accuracy, which measures the fraction of annotated columns for which the cor-

rect semantic type was returned in the top-n predictions.

The results indicate that our model outperforms SAND across the Easy, Medium,

and Hard datasets. The performance gap between our model and the SAND model is

more significant in the Easy dataset compared to Medium and Hard. This is because

the Easy dataset primarily consists of low reflectivity data, meaning that data in

different units have minimal overlap and may have large gaps. The SAND model

aims to annotate all of the data at once, but it struggles to do so in the Easy dataset.

However, in the Hard dataset, where there is significant overlap between data in

different units, the SAND model performs well.

Our model demonstrates strong performance across all datasets, with accuracy

slightly higher in the Easy and Medium datasets compared to the Hard dataset.

This is because our model can more effectively recognize and separate distinct units

when there is minimal overlap between values, as is the case in the Easy dataset. In

contrast, the higher degree of overlap in the Hard and Medium datasets makes unit

separation more challenging, leading to a slight decrease in accuracy compared to the

Easy dataset.

We also evaluated our model against the SAND and KS-test on the WDC dataset,
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Method Top-n Accuracy

n = 1
SAND 0.195

MixedSAND 0.485

n = 3
SAND 0.36

MixedSAND 0.75

n = 5
SAND 0.53

MixedSAND 0.825

Table 5.3: Performance comparison of MixedSAND vs. SAND on semantic labeling
of the Easy dataset

Method Top-n Accuracy

n = 1
SAND 0.22

MixedSAND 0.335

n = 3
SAND 0.455

MixedSAND 0.64

n = 5
SAND 0.65

MixedSAND 0.80

Table 5.4: Performance comparison of MixedSAND vs. SAND on semantic labeling
of the Medium dataset

which comprises single-unit columns. The results, presented in Table 5.6, demonstrate

that our model performs comparably to SAND, the current state-of-the-art baseline,

and outperforms KS-test even when tested on a single-unit dataset.

5.4 Stage 2 and 3 Evaluation

In this section, we evaluate our model’s performance on a dataset where the columns

have already been separated and clustered. Specifically, we focus on scenarios where

we have multiple numeric columns with the same type and property but potentially

different units. Given that these columns share the same type and property, our goal
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Method Top-n Accuracy

n = 1
SAND 0.275

MixedSAND 0.33

n = 3
SAND 0.455

MixedSAND 0.60

n = 5
SAND 0.665

MixedSAND 0.775

Table 5.5: Performance comparison of MixedSAND vs. SAND on semantic labeling
of the Hard dataset

is to annotate them correctly, considering only the possibility of differing units. This

evaluation allows us to assess the annotation capabilities of our model independently

of the clustering step.

This evaluation focuses on the Annotating Sub-Models (Section 4.2.2) and Ag-

gregating Sub-Model Annotations (Section 4.2.3). Annotating columns when the

clustered are separated is highly relevant in real-world scenarios, particularly in table

integration tasks such as table union or stitching. In these situations, it is com-

mon to encounter columns with the same type and property but with uncertain unit

consistency. This section assesses how effectively our model handles these scenarios.

To perform this evaluation, we constructed a dataset consisting of 100 tables, each

containing two columns. Both columns in each table correspond to the same type

and property but have different units. This dataset was derived from real data within

Wikitables, which includes 1.9 million tables extracted from Wikipedia. We sys-

tematically identified numeric columns representing the same property and manually

annotated a subset to determine their type and unit. From this, we selected columns

with the same type and property but different units to create the dataset used in this

evaluation.

We applied our model to this dataset, and the results are summarized in Table
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Method Top-n Accuracy

n = 1
KS-test 0.069

SAND 0.116

MixedSAND 0.101

n = 3
KS-test 0.129

SAND 0.232

MixedSAND 0.26

n = 5
KS-test 0.277

SAND 0.42

MixedSAND 0.405

Table 5.6: Performance comparison of MixedSAND vs. SAND and KS-test on se-
mantic labeling of the WDC dataset

5.7. As expected, the accuracy of our model in this specific task is higher than its

accuracy for mixed-unit and single-unit columns. This is predictable because, in the

case of mixed-unit and single-unit columns, the model must first determine whether

a column is mixed-unit or not before proceeding to the annotation step, introducing

potential errors at each stage. Therefore, it is anticipated that the accuracy of this

specific aspect of our model is superior to the overall model accuracy.

Top-n Accuracy

n = 1 0.62

n = 3 0.76

n = 5 0.89

Table 5.7: Performance of the Stages 2 and 3 of Model on the Wikitables Dataset
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5.5 Evaluating the Impact of Relative Difference

In this section, we examine the advantages of using relative difference (or Bray-Curtis

distance) instead of absolute distance for two key tasks: determining the number of

units within mixed-unit columns and distinguishing between single-unit and mixed-

unit columns.

Determining the Number of Units. To illustrate the effectiveness of the relative

difference function, we compared our model’s performance using relative difference

versus absolute distance on the VUCD dataset, which contains mixed-unit columns

with varying numbers of units.

As shown in Table 5.8, our model consistently achieves superior results when em-

ploying relative difference. As argued earlier (Section 4.2.1), mixed-unit data involves

values measured on different scales (e.g., kilograms vs. pounds), absolute differences

can be misleading. In contrast, relative difference accounts for these scale variations,

allowing for more accurate clustering and unit count determination.

VUCD

MixedSAND using relative difference (%) 51.6

MixedSAND using absolute distance (%) 25

Number of Columns 300

Table 5.8: Impact of relative vs. absolute distance on MixedSAND’s clustering accu-
racy

Differentiating Between Single-Unit and Mixed-Unit Columns To assess

the impact of relative difference on the identification of mixed-unit columns, we com-

pared our model’s performance using relative difference versus absolute distance on

the easy (mixed-unit) and WDC (single-unit) datasets.
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Table 5.9 reveals a clear improvement in performance when using relative difference.

This is attributed to the inherent limitations of absolute distance when dealing with

mixed-unit data. Large absolute differences can occur between values belonging to

the same unit if their magnitudes are high, leading to over-clustering. Conversely,

small absolute differences between values from different units with low magnitudes can

result in under-clustering. Relative difference mitigates these issues by considering

the scale of the values, thus enhancing the model’s ability to correctly distinguish

between single-unit and mixed-unit columns.

Easy dataset WDC

Number of Columns 200 69

MixedSAND using relative difference 0.765 0.696

MixedSAND using absolute distance 0.665 0.493

Table 5.9: Accuracy of MixedSAND in distinguishing single-unit vs. mixed-unit
columns using relative difference vs. absolute distance (%)

5.6 Assessing Robustness to Changes in the Num-

ber of Units

Lastly, we investigate the robustness of our method with respect to the number of

units within a mixed-unit column. To achieve this, we needed datasets containing

mixed-unit columns with varying numbers of units, while keeping other influential

metrics, such as reflectivity, constant. To this end, we constructed four datasets, each

containing columns with a specific number of units (ranging from two to five types,

with a total of seven possible types). We assume there are no more than seven units

in a single column, which justifies the selection of this upper limit. Each dataset has

the following characteristics:

• It contains 100 columns, each with 40 rows.
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• The reflectivity distribution of the columns matches that of the easy dataset

described in the evaluation setup section, and the data is derived from the

real-world dataset Wikidata.

The results of evaluating our model’s performance across these four datasets are

summarized in Table 5.10. It’s important to note that with seven possible types, a

random selection would yield an accuracy of approximately 0.14.

Dataset with Top-n Accuracy

n = 1
2-Units 0.49

3-Units 0.41

4-Units 0.41

5-Units 0.42

n = 3
2-Units 0.74

3-Units 0.69

4-Units 0.70

5-Units 0.70

n = 5
2-Units 0.82

3-Units 0.80

4-Units 0.80

5-Units 0.81

Table 5.10: Column type annotation performance of MixedSAND on columns with
varying numbers of units

As evidenced by Table 5.10, our model demonstrates robustness to changes in the

number of units within a column. Notably, the performance remains consistent across

datasets containing columns with 3, 4, or 5 units.
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5.7 Impact of Query Column Size on the Model

In this section, we analyze the impact of query column size on the model’s accuracy.

For this evaluation, we required datasets where only the query column size varies

while other parameters remain constant. To achieve this, we constructed a dataset

of single-unit columns derived from real-world numeric data in Wikidata, with each

column containing 50 entries. To assess our model’s performance across different

query column sizes, we used random samples from the query columns rather than the

entire column.

Figure 5.2 presents the top-n accuracy, which initially shows that as the length of

the query column increases, the model’s accuracy improves. However, at a certain

point, further increasing the query column length leads to a decrease in accuracy.

While it might be expected that larger query columns would enhance model accuracy,

this is not always the case. When the query column size exceeds the size of the

candidate column, injection mapping becomes impossible. To address this, we sample

the query column to match the candidate column’s length whenever it surpasses the

candidate column size. For the injection mapping algorithm to function correctly, the

data in the query column must map entirely to the data in the candidate column.

However, if the candidate column contains outlier data, this can lead to inaccurate

predictions by the model.

In the single-unit dataset used in this section, the average size of the candidate

columns is 43. As illustrated in Figure 5.2, the model’s accuracy improves as the

query column size increases up to 30. Beyond this point, as the query column size

increases further, the accuracy begins to decrease.
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Figure 5.2: Model Accuracy with Varying Query Column Size
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we tackled the complex problem of annotating numerical columns with

mixed units in tabular data—a challenge often encountered in data integration tasks

such as query generation, data analysis, and decision-making processes. When tables

from diverse sources are combined, inconsistent unit representations can significantly

hinder the effective use of data.

To address this issue, we introduced a novel three-staged annotation pipeline that

does not assume uniform unit representation across columns. Our approach includes:

(1) generating plausible models for subsets of data, (2) assigning semantic types

through a cost optimization framework, and (3) aggregating sub-model costs to deter-

mine the most accurate overall annotation. This method advances the state-of-the-art

by incorporating a new benchmark for mixed-unit column annotation and leveraging

the SAND model’s capabilities in a novel way.

Our extensive experiments, including evaluations on our newly introduced mixed-

unit benchmark and other datasets, demonstrate that our method outperforms ex-

isting approaches in accuracy. By effectively detecting and annotating mixed-unit

numeric columns, our approach addresses a critical challenge in data integration and

validation.

46



6.2 Future Work

While our approach has demonstrated significant effectiveness in annotating mixed-

unit numerical columns, several promising avenues for future research could further

advance its capabilities. One key direction involves improving the efficiency of our

model by pre-determining whether a column is mixed-unit before starting the anno-

tation process. This advance could reduce computational overhead and enhance the

overall running time.

Another important area for exploration is the enhancement of annotation accuracy

by considering multiple columns within the same table. By leveraging the interde-

pendencies between columns, our method could better utilize the context provided

by related columns to refine annotations. For example, if columns within a table are

known to be related, incorporating this information could improve the precision of

unit detection and semantic labeling.

Exploring integration with other data sources and knowledge graphs could also

provide richer semantic context and improve annotation accuracy. Future research

could investigate how combining multiple knowledge sources impacts the effectiveness

of unit detection and type assignment.
In summary, our research establishes a strong foundation for the annotation of

mixed-unit numerical data, offering insights that pave the way for further develop-
ments in data integration and analysis. By pursuing these future directions, we can
enhance the applicability and robustness of our approach, ultimately contributing to
more accurate and efficient data processing in diverse real-world scenarios.
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