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We examine the transient evolution of a negatively buoyant, laminar plume in an

emptying filling box containing a uniform porous medium. In the long time limit,

τ → ∞, the box is partitioned into two uniform layers of different densities. However,

the approach towards steady state is characterized by a lower contaminated layer that

is continuously stratified. The presence of this continuous stratification poses nontrivial

analytical challenges; we nonetheless demonstrate that it is possible to derive meaningful

bounds on the range of possible solutions particularly in the limit of large µ, where µ

represents the ratio of the draining to filling timescales. The validity of our approach is

confirmed by drawing comparisons against the free turbulent plume case where, unlike

with porous media plumes, an analytical solution that accounts for the time-variable

continuous stratification of the lower layer is available (Baines & Turner, J. Fluid Mech.,

vol. 37, 1969, pp. 51–80; Germeles, J. Fluid Mech., vol. 71, 1975, pp. 601–623). A separate

component of our study considers time-variable forcing where the laminar plume source

strength changes abruptly with time. When the source is turned on and off with a half-

period, ∆τ , the depth and reduced gravity of the contaminated layer oscillate between

two extrema after the first few cycles. Different behaviour is seen when the source is
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merely turned up or down. For instance, a change of the source reduced gravity leads

to a permanent change of interface depth, which is a qualitative point of difference from

the free turbulent plume case.

1. Introduction

Hundreds of investigations have been dedicated to the study of high Reynolds number

convection from a discrete source since the seminal work of Morton et al. (1956) who

described a turbulent plume in an infinite stratified or unstratified ambient. Morton et al.

(1956) developed their analytical model starting from the equations for mass, momentum

and buoyancy conservation, supplemented by a parameterization that describes the

entrainment of external ambient fluid by turbulent engulfment. Baines & Turner (1969)

extended the Morton et al. (1956) model by considering the “filling box” problem of

a turbulent plume inside a closed control volume. Starting from a uniform state, the

ambient becomes density-stratified as a result of the accumulation of discharged plume

fluid on the boundary opposite the source. Because some fraction of this discharged

plume fluid is subsequently re-entrained, the plume dynamics are non-trivially different

from the infinite ambient case. Extensions of Baines & Turner’s filling box model

have subsequently been developed to describe numerous environmental and industrial

problems, for instance, volcanic eruptions (Woods 2010), the filling of a room with smoke

during fires (Kaye & Hunt 2007), and architectural exchange flows (Nabi & Flynn 2013).

Moreover, and whilst studying the mixing of liquids in chemical storage tanks, Germeles

(1975) developed a numerical scheme to efficiently solve Baines & Turner’s governing

equations in order to determine, among other parameters, the ambient density profile as

a function of depth and time. The Germeles (1975) algorithm has since been adopted

to investigate a variety of filling box (Worster & Huppert 1983; Caulfield & Woods
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2002) and ventilated or emptying filling box flows (Linden et al. 1990; Bolster et al.

2008; Bolster & Caulfield 2008) where, in the latter case, some fraction of the discharged

plume fluid is allowed to flow out of the control volume as a result of hydrostatic forces.

Of course, any such outflow must be counterbalanced by an equal inflow. The canonical

emptying filling box problem therefore places vents (or openings) along the upper and

lower boundaries. If, as we suppose here, the plume is more dense than the ambient,

there will be outflow and inflow, respectively, through the lower and upper openings

– see figure 1a below. Emptying filling box models have, in conjunction with analogue

similitude experiments, been broadly applied in studying the natural ventilation of the

built environment. Particular attention has been paid to one- (Linden et al. 1990; Linden

1999) and two-zone (Lin & Linden 2002; Flynn & Caulfield 2006) buildings and also to

the transient approach towards steady state (Kaye & Hunt 2004) and the possibility of

multiple steady states (Holford & Hunt 2000). More recently, Vauquelin (2015) performed

a novel theoretical investigation of oscillatory flow behavior in the more general context

of a non-Boussinesq emptying filling box flow.

An equally recent theoretical and experimental development has been the development

of so-called porous media filling box flows in which case we imagine not a free turbulent

plume but rather one that falls at low Reynolds number through a (uniform, isotropic)

porous medium. In this vein, both closed (Sahu & Flynn 2015, 2016) and ventilated

(Roes et al. 2014) control volumes have been examined. Problems of this sort are of

particular interest in hydrology and related disciplines, as related e.g. to the (i) dissolution

of non-aqueous phase liquids or geologically-sequestered CO2 into potable groundwater

(Neufeld et al. 2011; MacMinn et al. 2012), (ii) leakage of contaminants from waste piles

(Oostrom et al. 2007; Carroll et al. 2012), and (iii) development and commercialization
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of enhanced oil recovery technologies such as cyclic steam stimulation and steam-assisted

gravity drainage (Xu 2008; Chen et al. 2009).

Further to the above body of literature, a major objective of this study is to investigate

time-dependent flows in an emptying filling box filled with porous media. For t > 0 in

which t is time, the box is comprised of two fluid layers, an upper uncontaminated layer

containing ambient fluid and a lower layer comprised of discharged plume fluid. (The

plume fluid and ambient are assumed to be fully miscible one within the other.) The latter

layer is continuously stratified, but approaches a uniform density in the long time limit.

Although the density profile in the contaminated layer for the case of a free turbulent

plume can be obtained by adapting the numerical technique of Germeles (1975), an

analogue description specific to porous media plumes has not yet been developed. Even

in the absence of such a model, however, meaningful bounds on the range of possible

solutions can be obtained provided t is not too small. Our approach is substantiated by

drawing extensive comparisons with the analogue free turbulent plume flow. In this way,

we identify the qualitative and quantitative similarities between these two categories of

filling box model, one thoroughly studied over the past two decades, the other very much

less so.

The rest of the discussion is organized as follows: In §2, we formulate the problem

with reference to boxes that are either filled with or devoid of porous media. Solutions

derived assuming an initially uncontaminated box are then presented and discussed in

§3. In §4, the criteria for the contaminated layer to overshoot its steady-state depth is

outlined. Time-varying sources are then considered in §5 and §6. We conclude with a

detailed comparison between the free turbulent and porous media plume cases in §7 and

a series of summary remarks appropriate to the work as a whole in §8.
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2. Theory – basic formulation

We begin by investigating the flow dynamics of a ventilated filling box that is either

filled with, or devoid of, a porous medium. A pair of schematics illustrating these two

cases are presented in figure 1, which indicates the position of the negatively-buoyant

plumes relative to the lower openings†. These openings, along with the upper opening of

figure 1a and the open top of figure 1b, connect the box interior to an infinite external

ambient of density ρa. Note that the difference of opening configuration along the upper

boundary reflects the fact that porous media flows in nature, such as those mentioned

in the previous section, are, in general, more realistically represented by an open upper

boundary.

Applying conservation of volume and buoyancy to the lower contaminated layer leads

to

dV

dt
= Qp −Qout, (2.1)

d(SI)

dt
= F0 −Qoutg′|x=H , (2.2)

where V is the volume of the contaminated layer. In the case of a box devoid of porous

media, V = Sh where S and h denote the cross-sectional area of the box (independent

of depth) and the depth of the lower contaminated layer, respectively. By contrast, if the

box is filled with a porous medium, V = φSh in which φ is the porosity or void fraction.

Meanwhile, Qp and Qout denote, respectively, the plume volume flux at the level of the

† In the porous media flow literature, such an opening is more typically referred to as a

“fissure”. Likewise, in the natural ventilation literature, the term “vent” is often applied. Because

a major focus of this study is to draw a comparison between the porous media and free turbulent

plume cases, we prefer to use the more generic term “opening” throughout. We do so on the

understanding that viscous dissipation respectively is and is not dynamically significant in the

porous media and free turbulent flow scenarios.
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Figure 1: Schematic of emptying filling boxes devoid of (panel a) and filled with (panel b)

porous media. Each box contains a single negatively buoyant plume, which is supposed

to originate from either a point- or a line-source.

interface and the volumetric rate of outflow through the lower opening. F0 is the source

buoyancy flux and I is the integrated buoyancy of the contaminated layer, defined as

I =

∫ H

H−h
g′dx, (2.3)

in which H is the total depth of the box and g′ is the reduced gravity of the contaminated

layer, i.e.

g′ = g
ρ− ρa
ρa

. (2.4)

Here ρ is the density of the contaminated layer, which we allow to vary in time, t, and

in the vertical direction. We assume a Boussinesq flow so that density differences are

dynamically important only when they multiply gravitational acceleration.

In order to solve (2.1) and (2.2), we require expressions for Qp and Qout. These are
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given as follows (see for instance Kaye & Hunt 2004; Roes et al. 2014):

free turbulent plume: Qp = CjF
1/3
0 (x+ x0)j , Qout = A?

√
I + g′|x=Hb, (2.5)

point-source porous media plume: Qp = 8πDφ(x+ x0), Qout =
Akf
νb (I + g′|x=Hb), (2.6)

line-source porous media plume: Qp =
(

36DφF0k(x+x0)Λ
2

ν

)1/3
, Qout =

Akf
νb (I + g′|x=Hb). (2.7)

In (2.5) j depends on the plume geometry, i.e. j = 5/3 and j = 1 correspond to point-

and line-source plumes, respectively. Furthermore, the constant Cj is obtained from

the entrainment coefficient and source geometry, x is the vertical coordinate measured

relative to the source, x0 is the virtual origin correction for non-ideal plumes having a

finite source volume flux, A? is the weighted area of the lower and upper openings, and

b is the depth of the lower opening. In (2.6) and (2.7), D denotes the solute dispersion

coefficient which we assume to be spatially-invariant (Wooding 1963). The problem of

a spatially-variable D has been studied, among many others, by Sahu & Flynn (2015,

2016) whose expressions for Qp could just as easily be used instead of the above formulas.

Moreover, A and kf denote, respectively, the cross-sectional area and permeability of the

lower opening, ν is the kinematic viscosity, k denotes the permeability of the box, and Λ

is the depth of the line-source into the page. The virtual origin corrections in (2.5)-(2.7)

are respectively defined as

free turbulent plume: x0 =

(
Q0

CjF
1/3
0

)1/j

, (2.8)

point-source porous media plume: x0 =
Q0

8πDφ
, (2.9)

line-source porous media plume: x0 =
Q3

0ν

36DφF0kΛ2
, (2.10)

where Q0 (> 0) is the plume source volume flux.

We define the average reduced gravity of the contaminated layer as ḡ′ = I/h and use
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(2.5)-(2.7) to rewrite (2.1) and (2.2) as

S
dh

dt
= CjF

1/3
0 (H − h+ x0)j −A?

√
ḡ′h+ g′|x=Hb, (2.11)

S
d(ḡ′h)

dt
= F0 −A?

√
ḡ′h+ g′|x=Hbg′|x=H , (2.12)

for a free turbulent plume, and as

φS
dh

dt
= 8πDφ(H − h+ x0)− Akf

νb
(ḡ′h+ g′|x=Hb), (2.13)

φS
d(ḡ′h)

dt
= F0 −

Akf
νb

(ḡ′h+ g′|x=Hb)g′|x=H , (2.14)

for a point-source porous media plume, and finally as

φS
dh

dt
=

(
36DφF0kΛ

2

ν

)1/3

(H − h+ x0)1/3 − Akf
νb

(ḡ′h+ g′|x=Hb), (2.15)

φS
d(ḡ′h)

dt
= F0 −

Akf
νb

(ḡ′h+ g′|x=Hb)g′|x=H , (2.16)

for a line-source porous media plume. We also introduce the following dimensionless

parameters

δ = ḡ′
CjH

j

F
2/3
0

(free turbulent plume)

ξ = h
H and δ = ḡ′ 8πDφHF0

(point-source porous media plume)

δ = ḡ′
(

36DφkHΛ2

F 2
0 ν

)1/3
(line-source porous media plume)

, (2.17)

where ξ and δ represent a dimensionless interface depth and a dimensionless average

reduced gravity of the contaminated layer, respectively. For an emptying filling box

problem, two timescales are typically considered (Kaye & Hunt 2004)

free turbulent plume: Td =
SC

1/2
j H(j+1)/2

A?F
1/3
0

, Tf =
S

CjF
1/3
0 H(j−1)

, (2.18)

point-source porous media plume: Td =
8πDφ2νSH2

AkfF0
, Tf =

S

8πD
, (2.19)

line-source porous media plume: Td =
(

36Dφ4ν2kΛ2S3H4

A3k3fF
2
0

)1/3
, Tf =

(
S3φ2H2ν
36DF0kΛ2

)1/3
, (2.20)

where Td is the draining timescale and is proportional to the time taken for a contami-

nated layer spanning the entire depth of the box to drain completely through the lower
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opening. Meanwhile, Tf is the filling timescale assuming an ideal plume with source

buoyancy flux F0.

Having introduced the draining and filling timescales, we can now non-dimensionalize

time according to t =
√
TdTfτ . Equations (2.11) and (2.12) may then be rewritten for a

free turbulent plume as

dξ

dτ
=
√
µ
(

1− ξ +
x0
H

)j
− 1
√
µ

√
δξ + δ|x=H

b

H
, (2.21)

dδ

dτ
=

√
µ

ξ

[
1− δ

(
1− ξ +

x0
H

)j]
+
δ − δ|x=H√

µξ

√
δξ + δ|x=H

b

H
. (2.22)

The analogue, and similar looking, expressions for a laminar plume falling through a

porous medium are given by

dξ

dτ
=
√
µ
(

1− ξ +
x0
H

)k
− 1
√
µb/H

(
δξ + δ|x=H

b

H

)
, (2.23)

dδ

dτ
=

√
µ

ξ

[
1− δ

(
1− ξ +

x0
H

)k]
+
δ − δ|x=H√
µξb/H

(
δξ + δ|x=H

b

H

)
, (2.24)

where k = 1 and k = 1/3 correspond to point- and line-source plumes, respectively. In

(2.21)-(2.24), µ is the ratio of the draining to the filling timescales. More explicitly,

free turbulent plume: µ =
C

3/2
j H(3j−1)/2

A?
, (2.25)

point-source porous media plume: µ =
(8πDφ)2νH2

AkfF0
, (2.26)

line-source porous media plume: µ =

[
(36Dφ)2νk2Λ4H2

A3k3fF0

]1/3
. (2.27)

There arise two circumstances where the latter terms on the right hand sides of (2.22)

and (2.24) can be neglected. As noted by Bolster et al. (2008), who studied free turbulent

plumes, the ratio of the latter to the former terms on the right hand sides of (2.22) and

(2.24) are proportional to µ. Hence, for large µ, these latter terms, which specifically

incorporate the stratification of the contaminated layer, become negligible compared to

the former terms. The latter terms can also be ignored assuming a well-mixed model. In
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this case, the density of the contaminated layer is assumed to be spatially uniform such

that there is no difference between δ and δ|x=H .

Far from being an abstract idealization, the well-mixed solution is, in fact, always

approached in the long time limit as a result of the continuous re-entrainment of

contaminated fluid into the plume and its subsequent discharge along the bottom of

the box. From (2.21)-(2.24) it is elementary to determine the steady-state depth, ξss,

and reduced gravity, δss, of the contaminated layer either by solving

µ2
(

1− ξss +
x0
H

)3j
=

(
ξss +

b

H

)
, (2.28)

δss =
1(

1− ξss + x0

H

)j , (2.29)

for a free turbulent plume, or

µ
(

1− ξss +
x0
H

)2k ( b

H

)
=

(
ξss +

b

H

)
, (2.30)

δss =
1(

1− ξss + x0

H

)k , (2.31)

for a porous media plume. Furthermore, from (2.28) and (2.30) we can determine the

range of µ for which ξ assumes a physical value of between 0 and 1. To wit

free turbulent plume:

√
b/H√

(1 + x0/H)3j
< µ <

√
1 + b/H

(x0/H)3j
, (2.32)

porous media plume:
1

(1 + x0/H)2k
< µ <

1 + b/H

(b/H)(x0/H)2k
. (2.33)

For µ smaller than the lower bound, the draining capacity of the box is much larger than

the filling capacity of the source so that a contaminated layer is never realized. On the

other hand, for µ larger than the upper bound, the outflow from the lower opening cannot

balance the source volume flux and contaminated fluid therefore occupies the entirety of

the box; hence, a ventilation flow is not obtained.

In order to derive bounds on the range of possible solutions for the depth and reduced

gravity of the contaminated layer, we examine two limiting cases. Firstly, we consider
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a scenario in which the lower layer is, in spite of the possible presence of stratification,

assumed to be well-mixed, i.e. the density is assumed to be spatially-uniform within the

contaminated layer for all t rather than just large t. Hence, the latter terms from the

right-hand sides of (2.22) and (2.24) disappear. In the bookend opposite limiting case

(hereafter referred to as the “approximate stratified model”), the density of the lower

layer at the bottom of the box, which is unknown in case of porous media plumes, is

assumed equal to the plume density at the level of the interface. This plume density,

which we express in terms of the reduced gravity as g′p(x = H − h) = F0/Qp, is the

largest possible density that can be achieved within the contaminated layer whether or

not the interface is stationary. Accordingly the factor δ|x=H that appears in (2.21)-(2.24)

is replaced with 1/ (1− ξ + x0/H)
j

for free turbulent plumes and 1/ (1− ξ + x0/H)
k

for

porous media plumes.

So as to validate the legitimacy of the above approach, we apply the Germeles (1975)

numerical technique to the free turbulent plume problem (2.21-2.22) to confirm that

Germeles’s “exact” filling box solution is bounded by the above limiting cases, at least

when τ is not small. A comparison of model output is presented in figure 2, which shows

the Germeles’s exact filling box, well-mixed, and approximate stratified model solutions

for canonical conditions, i.e. µ = 6.2 and x0/H = b/H = 0. Also included in figure 2a

are data corresponding to the numerical simulations of Kaye et al. (2009), whose results

were shown to agree very well with a series of small-scale laboratory experiments and

theoretical models – see e.g. their figure 12. Shortly after “turning on” the source, figure

2 indicates that the Germeles’s solution becomes bracketed by those of the well-mixed

and approximate stratified models. The initial discrepancy is due to the fact that in

our numerical solutions of (2.21) and (2.22) the non-dimensional reduced gravity of the

contaminated layer can never start from a value less than unity, i.e. in the aforementioned
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Figure 2: Evolution of the contaminated layer non-dimensional depth (panel a) and

reduced gravity (panel b) calculated from Germeles (1975), the well-mixed model given

by (2.21) and (2.22) with spatially-uniform δ, and the approximate stratified model

given by (2.21) and (2.22) with δ|x=H specified using the plume density at the level of

the ambient interface. Also included is the evolution of the contaminated layer depth as

extracted from figure 12 of Kaye et al. (2009). Here we assume an ideal point-source free

turbulent plume with x0/H = 0; moreover, b/H = 0 and µ = 6.2.

limiting cases the initial conditions are given by

ξ = 0, and δ =
1(

1 + x0

H

)j at τ = 0 . (2.34)

By contrast, the initial conditions for the Germeles (1975) algorithm assuming an ambient

that is initially unstratified read ξ = 0 and δ = 0 at τ = 0. Hence, it takes some finite,

but generally small, time, τcr, for the system to evolve to the point that the Germeles’s

solution becomes bracketed. Elaborating on this point, figure 3 shows τcr for an ideal

point-source plume with b/H = 0. Initially, τcr increases with µ; the maximum τcr

corresponds to the maximum overshoot of contaminated layer depth, which is discussed

in further detail below. As µ increases still further, the contaminated layer deepens

comparatively rapidly; hence, τcr decreases with µ. Note that, in the following sections
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Figure 3: Non-dimensional time needed for the Germeles solution to become bracketed

by the well-mixed and approximate stratified models. We consider here an ideal point-

source plume with b/H = 0. Qualitatively similar results (not shown) are obtained for

other plume configurations.

where we study a cyclic or time-variable buoyancy source, the exact solution is bounded

for all τ when we start from a non-zero contaminated layer depth.

Of course, figure 2 presents results for a relatively classical problem, namely an

emptying filling box for a box devoid of porous media, rather than the more novel problem

of a laminar, porous media plume in a ventilated box. To reiterate, our motivation for

revisiting such a classical problem is that it gives us good confidence that a similar

approach of bounding the exact solution can be applied when considering porous media

convection where, as already highlighted, no analogue to the Germeles (1975) algorithm

has ever been derived. Following on from the previous discussion, this confidence is based

on the strong similarities between (2.21-2.22) and (2.23-2.24) which, in turn, follows

from a judicious non-dimensionalization of the relevant governing equations. In summary,

and although an exact solution is unavailable for the flow of figure 1b, we expect such

a solution to be bounded by the appropriate limiting cases of (2.23) and (2.24); the

vertical distance between these bounds decreases substantially in the limit of large µ. Note

finally that the bounds are little influenced by the effects of ambient diffusion/dispersion
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because (2.3) depends on the integral of the density difference rather than its vertical

distribution. As an example, if one were to allow for some intermingling of contaminated

and uncontaminated fluid parcels across the ambient interface (as has been done for filling

boxes devoid of porous media by Baines 1983 and Kaye et al. 2010), the outflux would

not change. Thus the neglect of ambient diffusion/dispersion, which is formally valid for

sufficiently large Qp
√
t/Dφ/S, is not a major limitation of the analysis to follow.

3. Initial transient

From figure 2 and the discussion thereof, we expect to be able to bracket exact solutions

to (2.23) and (2.24) provided τ is not too small. On this basis, we now proceed to solve

these equations using the aforementioned assumptions so as to infer the true behavior

of porous media filling box flows. For the case where the initial interior density is the

ambient density, we take τ = 0 as the moment when the plume first touches the bottom

of the box. Therefore, similar to (2.34), the initial conditions read

ξ = 0, and δ =
1(

1 + x0

H

)k at τ = 0. (3.1)

Figure 4 shows the evolution of ξ and δ for ideal point-source free turbulent and

porous media plumes with b/H = 0.1†. When µ is small, the contaminated layer is highly

stratified. Dense fluid continuously drains from the bottom of the box and therefore the

time rate of increase of the average density of the contaminated layer is small compared

to cases where µ is large and the contaminated layer has a more or less uniform density

profile. Hence, the outflow volume flux, which depends on this average density, increases

† Because the evolution of ξ and δ in the line-source case is qualitatively similar to the

behavior seen in the point-source case, the former set of figures is not shown for the sake of

brevity. In a similar spirit, and in sections 5-7, whenever the results for point- and line-source

plumes are qualitatively similar, only the figures for point-source plumes will be presented.
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comparatively slowly and the contaminated layer thickens quickly. Consequently, the

contaminated layer first reaches then exceeds its steady-state depth. Over time, ξ relaxes

back to this steady-state value as the filling and draining of the contaminated layer

become balanced. On the other hand, when µ is large, there is, as noted before, relatively

little vertical variation in the density of the contaminated layer. Now, however, the filling

timescale is smaller than the draining timescale. Therefore, an overshoot of contaminated

layer depth is again observed. We defer till §7 a quantitative comparison of the maximum

overshoots for small and large µ. Suffice it to say for now that (i) the overshoot is, in

magnitude, comparable for the free turbulent and porous media plume cases, but, (ii)

the steady-state depth of the contaminated layer is greater in the free turbulent plume

case for the same µ (figure 4). This difference can be explained by comparing the latter

terms from the right hand sides of (2.21) and (2.23) which describe the outflow volume

flux. Due to the difference in the exponents, and for fixed µ, x0/H and b/H, the outflow

volume flux is smaller for a box devoid of porous media. As a result, the steady-state

depth and reduced gravity of the contaminated layer are both larger when the plume is

of free turbulent type. Note finally that with the approximate stratified model, we can

predict the overshoot in the contaminated layer depth for both small and large µ. In the

case of the well-mixed model, by contrast, overshoot requires that a threshold value of µ

is first exceeded – see Kaye & Hunt (2004) and the discussion of the next section.

Figures 5 and 6 respectively show the effects of changing x0/H and b/H on the

evolution of the contaminated layer depth and reduced gravity. As confirmed by the

former figure, increasing x0/H results in an increase in the contaminated layer depth

and a decrease in its reduced gravity for both free turbulent and porous media plumes.

Meanwhile increasing the depth of the opening increases the hydrostatic draining capacity

of filling boxes devoid of porous media. This, in turn, results in a decrease in the



16 A. Moradi and M. R. Flynn

Figure 4: Ideal point-source free turbulent and porous media plumes with µ = {2, 5, 10}

and b/H = 0.1. (a, b) Free turbulent plumes and (c, d) porous media plumes. The

solid and dashed curves correspond to the well-mixed and approximate stratified models,

respectively.

contaminated layer depth and reduced gravity. However, in case of a box filled with a

porous medium, outflow is dominated by viscous drag and increasing the lower opening

depth decreases, rather than increases, Qout – see (2.6) and (2.7). Thus, the contaminated

layer depth and reduced gravity increase with b/H.

4. Overshoot criteria

In order to compute, for the case of a well-mixed contaminated layer, the value of µ

at which overshoot first occurs for given x0/H and b/H, we linearize (2.21-2.22) and
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Figure 5: Point-source free turbulent and porous media plumes with µ = 5, x0/H =

{0, 0.1, 0.2} and b/H = 0.1. (a, b) Free turbulent plumes and (c, d) porous media plumes.

The solid and dashed curves correspond to the well-mixed and approximate stratified

models, respectively.

(2.23-2.24) about their steady-state values, i.e.ξ̇
δ̇

 ≈

∂ξ̇
∂ξ

∣∣∣
δ=δss,ξ=ξss

∂ξ̇
∂δ

∣∣∣
δ=δss,ξ=ξss

∂δ̇
∂ξ

∣∣∣
δ=δss,ξ=ξss

∂δ̇
∂δ

∣∣∣
δ=δss,ξ=ξss


ξ − ξss
δ − δss

 . (4.1)

Following Kaye & Hunt (2004), we draw an analogy with a mass-spring-damper system,

i.e. the system is overdamped when the above matrix has two distinct real eigenvalues

and is underdamped when the eigenvalues are complex conjugates. For given x0/H and

b/H, we numerically determine µc, the critical value of µ, corresponding to the boundary

between an over- and underdamped system. Figure 7 shows µc for ideal free turbulent

and porous media plumes as functions of b/H.
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Figure 6: Ideal point-source free turbulent and porous media plumes with µ = 5 and

b/H = {0.1, 0.2, 0.3}. (a, b) Free turbulent plumes and (c, d) porous media plumes. The

solid and dashed curves correspond to the well-mixed and approximate stratified models,

respectively.

Figure 7: µc for ideal free turbulent and porous media plumes as functions of b/H. (a)

Free turbulent plumes and (b) porous media plumes.
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To reiterate, in the case of a box devoid of porous media, increasing the depth of the

lower opening results in an increase in the hydrostatic pressure difference between inside

and outside, which, in turn, increases the outflow of contaminated fluid. Thus, for the

contaminated layer to overshoot, the filling capacity of the box should likewise increase

to compensate, i.e. the filling timescale should decrease. It is no surprise then that an

increase in b/H corresponds to an increase in µc in figure 7a. When the box is filled with

porous media, however, (2.6) and (2.7) indicate that the outflow volume flux is inversely

proportional to the depth of the lower opening. Therefore, increasing b/H in figure 7b

results in a decrease in µc.

Although the overshoot criterion discussed in this section is clearly related to the

transient evolution of the system, it must be reiterated that the source is assumed time-

independent for all cases considered thus far. There are, however, numerous scenarios

where a time-variable source constitutes a more reasonable approximation. For instance,

and for a filling box devoid of porous media, we imagine a naturally-ventilated lecture

theatre that is occupied intermittently throughout the day. Conversely, and in the case

of a porous media filling box, technologies such as cyclic steam stimulation or CO2

“huff ’n puff” both entail periodic fluid injections for purposes of enhanced oil recovery.

Motivated by these and other examples, we turn in the next two sections to a discussion

of time-variable source conditions.

5. Transient source turned on and off

Consider now a situation where the plume source is sequentially turned on and off

with a half-period of ∆τ . When the plume source is off, contaminated fluid continues

to be discharged from the bottom of the box. As a consequence, the lower layer depth

decreases monotonically in time until the source is again turned on. If the contaminated
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layer drains completely, i.e. if ∆τ is sufficiently large, the box then consists of uniform

ambient fluid just as with the presumed initial condition. For ∆τ less than this critical

value, the contaminated layer remains of finite thickness; its reduced gravity equals the

value at the instant the source was turned off.

Figure 8 shows the evolution of ξ and δ for ideal point-source free turbulent and

porous media plumes with µ = 10, b/H = 0.1, and ∆τ = 0.25. If ∆τ is smaller than

the non-dimensional time required for the system to approach steady state, ξss and δss

will never be realized regardless of the number of cycles. Rather, after a few cycles, the

depth of the lower layer oscillates between two extrema whose values depend on the

magnitude of ∆τ in addition to µ, x0/H, and b/H (figures 8a and 8b). Consistent with

the discussion of the previous paragraph and for sufficiently large ∆τ , the lower extrema

corresponds to a box devoid of contaminated fluid (figures 8c and 8d). Also, consistent

with our previous discussions, the time rate of increase of the contaminated layer depth is

greater for the approximate stratified model compared to the well-mixed model. Hence,

for the period when the source is on, the contaminated layer reaches a greater depth and

correspondingly it takes longer for the contaminated fluid to drain out of the box for the

period when the source is off.

6. Transient source turned up or down

Building on the material of the previous section, we now consider a limited increase

or decrease in the source buoyancy flux or volume flux. Thus the source buoyancy flux

might change from an initial value of F0 to F0 + ∆F or the source volume flux might

change from an initial value of Q0 to Q0 + ∆Q. Note that ∆F and ∆Q can be either

positive or negative quantities but, by assumption, F0 +∆F > 0 and Q0 +∆Q > 0. Note
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Figure 8: Ideal free turbulent and porous media plume responses to cyclic variations in the

source conditions with b/H = 0.1, µ = 10 and ∆τ = 0.25. (a, b) Free turbulent plume and

(c, d) porous media plume. The thick solid curves pertain to the well-mixed case where

the source remains on indefinitely. The curves with circle and cross markers correspond

to the time periods when the source is respectively on and off. Similar comments apply

to the dashed curves, though these correspond to the approximate stratified model.

also that a change in Q is not supposed to result in a change in F and vice-versa, i.e. ∆Q

and ∆F are assumed to be uncorrelated.

Given a final buoyancy flux F0 + ∆F or a volume flux Q0 + ∆Q, we can rewrite

(2.21)-(2.24) as

dξ

dτ
= χ

1/3
1

√
µ

1− ξ +

(
χ2

χ
1/3
1

)1/j
x0
H

j − 1
√
µ

√
δξ + δ|x=H

b

H
, (6.1)

dδ
dτ =

√
µ

ξ

χ1 − χ1/3
1 δ

[
1− ξ +

(
χ2

χ
1/3
1

)1/j
x0

H

]j+ δ−δ|x=H√
µ

√
δξ+δ|x=Hb/H

ξ2 , (6.2)
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for a free turbulent plume and

dξ

dτ
= χn1

√
µ

[
1− ξ +

(
χ2

χn1

)1/k
x0
H

]k
− 1
√
µb/H

(
δξ + δ|x=H

b

H

)
, (6.3)

dδ
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√
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ξ

{
χ1 − χn1 δ

[
1− ξ +

(
χ2

χn
1

)1/k
x0

H

]k}
+ δ−δ|x=H√
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(
δξ+δ|x=Hb/H

ξ

)
, (6.4)

for a porous media plume where

χ1 =
F0 +∆F

F0
and χ2 =

Q0 +∆Q

Q0
. (6.5)

Also, in (6.3) and (6.4), n = 0 and n = 1/3 correspond to point- and line-source porous

media plumes, respectively.

Figure 9 shows the effect of changing the source volume flux of point-source free

turbulent and porous media plumes with µ = 5, x0/H = 0.1, and b/H = 0.1. In both

cases, the lower layer reduced gravity decreases (increases) for an increase (decrease) in

the source volume flux. As a result, the outflow volume flux becomes smaller (larger)

and the contaminated layer depth increases (decreases) to compensate. It should be

emphasized that, for both categories of plume, the steady-state depth of the contaminated

layer depends on the source volume flux. Therefore changing the source volume flux

results in a permanent change in the steady-state value of ξ (and, of course, δ).

Figure 10 illustrates the effect of changing the source buoyancy flux of an ideal point-

source free turbulent plume, and ideal point- and line-source porous media plumes with

µ = 10 and b/H = 0.1. In the case of a free turbulent plume, an increase (decrease) in

the source buoyancy flux results in a transient increase (decrease) in the depth of the

contaminated layer. However, as the outflow from the contaminated layer adjusts, so too

does ξ; ultimately the interface depth returns to its previous value. Qualitatively different

behavior is seen for the case of porous media plumes. Unlike the free turbulent plume

case where the steady-state depth of the contaminated layer is independent of the source

buoyancy flux, the new value for ξss is now different from the value observed before
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Figure 9: Effects of changing the source volume flux of point-source free turbulent and

porous media plumes with µ = 10, b/H = 0.1 and an initial value of x0/H given by 0.1.

(a, b) Free turbulent plume and (c, d) porous media plume. The dotted curves show the

initial evolution of the system toward steady state before changing the source volume

flux at τ = 5. Also, the dashed curves show model predictions corresponding to the

approximate stratified model.

adjusting F0. For the case of line-source porous media plumes, increasing (decreasing)

the source buoyancy flux increases (decreases) the plume volume flux. Thus, the depth

of the contaminated layer initially rises (falls). Correspondingly, the outflow volume flux

increases (decreases) and ultimately balances the plume volume flux at a new ambient

interface elevation, which is lower (higher) than its original value. However, for the

case of point-source porous media plumes, (2.6) shows that the plume volume flux is,

surprisingly, independent of the source buoyancy flux. Therefore, an increase (decrease)

in the source buoyancy flux does not result in an initial transient increase (decrease)
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in the contaminated layer depth. Rather, the variation of ξ with τ is monotonic as is

confirmed by figure 10c.

7. Comparison of point- and line-source plumes in boxes filled with

and devoid of porous media

Up till now, our comparisons between porous media laminar and free turbulent plumes

have not been especially direct. In figures 9 and 10, for instance, the two plume types are

considered in separate panels. However, an objective of our study is to quantify points

of similarity and difference between these flow scenarios. Therefore, in this penultimate

section, we will more directly compare flow characteristics in emptying filling boxes filled

with and devoid of porous media. Because changing x0/H and b/H does not alter the

dynamical features of the system except for an increase or a decrease in the contaminated

layer depth and reduced gravity, this comparison shall mostly consider ideal plumes with

fixed lower opening depth.

Figure 11 illustrates, for fixed x0/H and b/H, the variation of the depth and reduced

gravity of the contaminated layer as a function of µ. As expected, and for both types of

plume, ξss increases from close to zero for small µ, to close to unity for large µ. Also, and

for both plume geometries (i.e. point- and line-source), the contaminated layer depth and

reduced gravity is greater in case of a free turbulent plume vs. a porous media plume.

Figure 12 shows the magnitude of the overshoot relative to the steady-state depth.

For small values of µ this relative magnitude is greater for free turbulent plumes which

suggests a higher stratification in the contaminated layer. However, as µ increases, the

relative magnitude of the overshoot becomes greater in the porous media plume case.

Moreover, the relative magnitude of the overshoot is more significant for the approximate

stratified model as compared to the well-mixed model. As µ increases however, the
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Figure 10: Effects of changing the source buoyancy flux of ideal point-source free

turbulent, and ideal point- and line-source porous media plumes with µ = 10 and

b/H = 0.1. (a, b) Free turbulent plume, (c, d) point-source porous media plume and

(e, f) line-source porous media plume. The dotted curves show the initial evolution

of the system toward steady-state values before changing the source buoyancy flux at

τ = 5. Also, the dashed curves show model predictions corresponding to the approximate

stratified model.
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Figure 11: ξss and δss as functions of µ for ideal free turbulent and porous media plumes

with b
H = 0.1. (a, b) Point-source plumes and (c, d) line-source plumes.

contaminated layer becomes nearly well-mixed and there is no distinguishable difference

between the well-mixed and approximate stratified model predictions.We noted above

that the latter model anticipates overshoot for all physically-acceptable µ and also that

µc, defined by the solution of (4.1), is relatively small for ideal plumes. In spite of this

latter fact, figure 12 does not show results for small µ, particularly in the porous media

case. This discrepancy is due to the fact that in order to correctly identify an overshoot

and to define the time corresponding to it, a non-dimensional threshold value of 10−3 is

applied. Because the overshoot amplitude falls below this threshold for relatively small

µ, the overshoot is neither identified nor represented in figure 12 when µ is small.

Figure 13 shows the time, τss,wm, taken to reach 99.9% of the steady-state depth for the

well-mixed model. (Results corresponding to the approximate stratified model are, except
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Figure 12: Normalized overshoot magnitude as a function of µ for ideal plumes with

b
H = 0.1. (a) Point-source plumes and (b) line-source plumes. The solid and dashed

curves correspond to the well-mixed and approximate stratified models, respectively.

for a justifiable time offset, similar and are therefore not presented here.) Initially τss,wm

increases with µ. However, for large µ, the time rate of increase of the contaminated

layer depth substantially increases and the lower layer spans almost the entire box. The

filling of this deep contaminated layer occurs so quickly that τss,wm later decreases with

µ. The dashed lines of figure 13 indicate, for those cases characterized by an overshoot,

the time to reach ξss for the first time. As noted above, the time rate of increase of

ξ is larger for larger µ. The time taken to first reach 99.9% of the steady-state depth

therefore monotonically decreases. Kaye & Hunt (2004) considered turbulent plume flow

in emptying filling boxes devoid of porous media and observed, for intermediate µ, a

“bulge” in their predicted values for τss,wm (see their figure 8). This bulge was due to

their definition of τss,wm in the context of overshoot. More specifically, they identified an

overshoot as occurring if ξover − ξss > 10−2. Our threshold value is, as noted previously,

smaller and we do not therefore observe a comparable bulge in figure 13. If, in this figure,

we had considered either a less stringent threshold value or if we had considered still larger

values for µ, we would observe that the overshoot eventually becomes imperceptible. At

this point, τss,wm would decrease significantly, and the solid and dashed curves of figure
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Figure 13: τss,wm as a function of µ for ideal plumes with b
H = 0.1. (a) Point-source

plumes and (b) line-source plumes. The solid and dashed curves correspond, respectively,

to the time needed to reach 99.9% of the steady-state depth and, for those cases having

an identifiable overshoot, the initial time to reach this same elevation.

Figure 14: Time taken to reach the maximum overshoot depth as a function of µ for

ideal plumes with b
H = 0.1. (a) Point-source plumes and (b) line-source plumes. The

solid and dashed curves correspond to the well-mixed and approximate stratified models,

respectively.

13 would converge. Figure 14 illustrates the time, τover, taken to reach the maximum

overshoot depth for both the well-mixed and approximate stratified models. Similar to

τss, τover is greater in case of free turbulent plumes compared to porous media plumes.

For the case of an ideal source that is turned on and off with half-period ∆τ , figure

15 compares the aforementioned extrema of ξ and δ for the two plume configurations.
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Figure 15: Extrema of ξ and δ after a number of cycles for ideal free turbulent and

porous media plumes. (a, b) Point-source plumes and (c, d) line-source plumes. The

solid and dashed curves correspond to the well-mixed and approximate stratified models,

respectively.

If ∆τ is large enough, all of the contaminated fluid drains from the bottom of the box,

which is then comprised of uniform ambient fluid, represented on figures 15b and 15d by

δ = 1. Similar to the previous results and for prescribed µ, x0/H and b/H, the extrema

of both ξ and δ are greater for free turbulent plumes than for porous media plumes, often

significantly so.

Figure 16 shows the steady-state depth and reduced gravity of the contaminated layer

after changing the source volume flux while keeping the source buoyancy flux constant.

From §6, we know that increasing (decreasing) the source volume flux results in an

increase (a decrease) in the steady-state depth of the contaminated layer. Figure 17
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illustrates the time taken to reach 99.9% of the steady-state depth after changing the

source volume flux for both the well-mixed and approximate stratified models. Depending

on the magnitude of χ2, the contaminated layer depth may undershoot or overshoot its

steady-state value. Again we apply a criterion where the difference between the magnitude

of the maximum overshoot/undershoot and the steady-state depth after changing Q0

must be greater than 10−3. Otherwise, we do not consider an overshoot/undershoot

to have occurred. There is in figure 17 therefore a pair of sudden jumps in ∆τ that are

observed for the free turbulent plume case. For instance, in figure 17a, such sudden jumps

are observed when χ2 ' 0.25 and χ2 ' 1.95 for a point-source free turbulent plume with

the well-mixed model. No such sudden jumps are noted in the analogue porous media

case because, within the accuracy imposed by our threshold, no overshoot/undershoot

occurs. It should be noted that in figure 17, the gap near χ2 = 1 is due to the fact that

in order to accurately measure a departure from the original steady state, we used the

criterion that the difference between the new and old values for ξss had to exceed 10−3.

Figure 18 shows the steady-state depth and reduced gravity of the contaminated layer

after changing the source buoyancy flux while keeping the source volume flux constant.

In the case of free turbulent plumes, µ is independent of the source buoyancy flux (see

equation 2.25). Hence, changing F0 does not alter the contaminated layer steady-state

depth for either source geometry. However, µ is a function F0 in the case of porous media

plumes and a change in F0 therefore results in a corresponding increase or decrease in

ξss. Because we imagine a fixed source volume flux, changes to the source buoyancy

flux are synonymous with changes to the source reduced gravity. Hence, as χ1 increases

or decreases, so too does the contaminated layer reduced gravity. Figure 19 depicts the

time taken to reach 99.9% of the steady-state depth after changing the source buoyancy

flux for both the well-mixed and approximate stratified models. As expected, it takes
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Figure 16: Steady-state depth and reduced gravity of the contaminated layer after

changing the source volume flux of free turbulent and porous media plumes. (a, b) Point-

source plumes and (c, d) line-source plumes.

Figure 17: Time taken to reach 99.9% of the steady-state depth after changing the source

volume flux of free turbulent and porous media plumes. (a) Point-source plumes and

(b) line-source plumes. The solid and dashed curves correspond to the well-mixed and

approximate stratified models, respectively.
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Figure 18: Contaminated layer steady-state depth and reduced gravity after changing

the source buoyancy flux of free turbulent and porous media plumes. (a, b) Point-source

plumes and (c, d) line-source plumes.

longer to approach steady state according to the approximate stratified model for both

free turbulent and porous media plumes. Also, the porous media plumes reach steady

conditions faster than the free turbulent plumes.

8. Conclusions

The principal contribution of this study is to outline a mathematical methodology by

which the emptying filling box behavior of a control volume filled with porous media may

be approximated. Specific reference is made to two end member cases, namely one where

the contaminated layer is assumed to be uniform and another where the density of the

discharged fluid is supposed to equal the plume density at the level of the interface. The

predictions associated with these models typically represent upper and lower bounds; the
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Figure 19: Time taken to reach 99.9% of the steady-state depth after changing the source

buoyancy flux of free turbulent and porous media plumes. (a) Point-source plumes and

(b) line-source plumes. The solid and dashed curves correspond to the well-mixed and

approximate stratified models, respectively.

bounds become increasingly sharp in the limit of large µ where µ is defined by the ratio of

the draining timescale to the filling timescale. This ratio plays an equally critical role in

the analogue and well-studied problem of an emptying filling box devoid of porous media.

Indeed, the governing equations (2.21-2.22) appropriate to this free turbulent plume case

closely resemble those germane to a laminar porous media plume (2.23-2.24). Our solution

of these judiciously non-dimensionalized equations confirms that comparable dynamical

behaviour is often observed notwithstanding the important physical differences between

laminar and turbulent plumes. For instance, we have demonstrated that for a box filled

initially with ambient fluid, the contaminated layer depth may overshoot its steady-

state value. Furthermore, while the well-mixed model will only predict an overshoot if

µ exceeds a threshold value, µc, no such limitation applies to the approximate stratified

model, which admits overshoot for small and large µ alike.

Results from the above research can be applied to numerous practicable situations.

Consider, for instance, a short waste pile of length 200 m and width 2 m that is situated

on top of saturated soil with a permeability of k = 10−11 m2 and a porosity of φ = 0.10.
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This unconfined aquifer is 100 m thick with a cross-sectional area of 105 m2, and has

along its base a 1 m thick confining stratum (e.g. a layer of clay) below which there

exists a confined aquifer that supplies water for crop irrigation – see e.g. figure 2.11 of

Todd (1980). We suppose that the layer of clay contains one or more fissures so that

some limited communication exists between the confined and unconfined aquifers. In the

presence of rainfall, we suppose that the waste pile produces a 2D leachate plume having

average source volume and buoyancy fluxes of 4.6 × 10−5 m3/s and 5.3 × 10−10 m4/s3,

respectively. Given these parameters, and assuming a solute molecular diffusion coefficient

comparable to sodium chloride (i.e. Dm = 2.5×10−9 m2/s), we estimate from figure 1a of

Delgado (2007) a dispersion coefficient of approximately 10−8 m2/s. On this basis, panels

a and b of figure 20 respectively show the time required to reach the maximum overshoot

and steady-state depths. Over a broad range of Akf , we anticipate that tover ' 20 weeks

and tss < 100 weeks, both of which seem to be quite sensible predictions in view of the

spatial scales of interest here.

Our study has also considered time-varying conditions where the buoyancy source is

either turned on and off with a half-period of ∆τ or subjected to a limited increase or

decrease in the source buoyancy flux or volume flux. We showed that when the source

is turned on and off periodically, the depth and reduced gravity of the contaminated

layer oscillates between two extrema after a handful of cycles. In the case of an increase

(decrease) in the source volume flux,Q0, the reduced gravity of the contaminated layer de-

creases (increases) which results in a permanent increase (decrease) in the contaminated

layer depth. Different behaviour is noted when adjusting the source buoyancy flux, F0,

at least when considering boxes devoid of porous media. The contaminated layer depth

is then independent of F0 and so the original depth is recovered after some transient

adjustment phase. On the other hand, the steady-state depth of the contaminated layer
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Figure 20: Time taken to reach (a) the maximum overshoot depth and (b) 99.9% of the

steady-state depth. The solid and dashed curves in (a) correspond to the well-mixed and

approximate stratified models, respectively. The solid and dashed curves in (b) were both

drawn assuming a well-mixed model. They correspond, respectively, to the time needed

to reach 99.9% of the steady-state depth and, for those cases having an identifiable

overshoot, the time to reach this same elevation for the first time.

is a function of F0 for porous media plumes; thus, a change in the source buoyancy flux

leads to a permanent change of interface depth, analogous to the case where Q0 is altered.

Acknowledgments: Funding for this study was generously provided by the Natural Science

and Engineering Research Council (NSERC).

REFERENCES

Baines, W. D. 1983 Direct measurement of volume flux of a plume. J. Fluid Mech. 132, 247–

256.

Baines, W. D. & Turner, J. S. 1969 Turbulent buoyant convection from a source in a confined

region. J. Fluid Mech. 37, 51–80.

Bolster, D. T. & Caulfield, C. P. 2008 Transients in natural ventilation – a time-

periodically-varying source. Build. Ser. Engng Res. Technol. 29 (2), 119–135.

Bolster, D. T., Maillard, A. & Linden, P. F. 2008 The response of natural displacement

ventilation to time-varying heat sources. Energy and Buildings 40 (12), 2099–2110.

Carroll, K. C., Oostrom, M., Truex, M. J., Rohay, V. J. & Brusseau, M. L. 2012



36 A. Moradi and M. R. Flynn

Assessing performance and closure for soil vapor extraction: integrating vapor discharge

and impact to groundwater quality. Journal of Contaminant Hydrology 128 (1), 71–82.

Caulfield, C. P. & Woods, A. W. 2002 The mixing in a room by a localized finite-mass-flux

source of buoyancy. J. Fluid Mech. 471, 33–50.

Chen, Z., Liu, J., Elsworth, D., Connell, L., Pan, Z. & others 2009 Investigation of

CO2 injection induced coal-gas interactions. In 43rd US Rock Mechanics Symposium &

4th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association.

Delgado, JMPQ 2007 Longitudinal and transverse dispersion in porous media. Chemical

Engineering Research and Design 85 (9), 1245–1252.

Flynn, M. R. & Caulfield, C. P. 2006 Natural ventilation in interconnected chambers.

J. Fluid Mech. 564, 139–158.

Germeles, A. E. 1975 Forced plumes and mixing of liquids in tanks. J. Fluid Mech 71, 601–623.

Holford, J. M. & Hunt, G. R. 2000 Multiple steady states in natural ventilation. In

Proc. 5th Intl. Symp. on Stratified Flows, Vancouver (ed. G. A. Lawrence, R. Pieters

& N. Yonomitsu), pp. 661–666.

Kaye, N. B., Flynn, M. R., Cook, M. J. & Ji, Y. 2010 The role of diffusion on the interface

thickness in a ventilated filling box. J. Fluid Mech. 652, 195–205.

Kaye, N. B. & Hunt, G. R. 2004 Time-dependent flows in an emptying filling box. J. Fluid

Mech. 520, 135–156.

Kaye, N. B. & Hunt, G. R. 2007 Smoke filling time for a room due to a small fire: the effect

of ceiling height to floor width aspect ratio. Fire Safety Journal 42 (5), 329–339.

Kaye, N. B., Ji, Y. & Cook, M. J. 2009 Numerical simulation of transient flow development

in a naturally ventilated room. Building and Environment 44 (5), 889–897.

Lin, Y. J. P. & Linden, P. F. 2002 Buoyancy-driven ventilation between two chambers. J. Fluid

Mech. 463, 293–312.

Linden, P. F. 1999 The fluid mechanics of natural ventilation. Ann. Rev. Fluid Mech. 31 (1),

201–238.

Linden, P. F., Lane-Serff, G. F. & Smeed, D. A. 1990 Emptying filling boxes: the fluid

mechanics of natural ventilation. J. Fluid Mech. 212, 309–335.



Emptying filling boxes – free turbulent vs. laminar porous media plumes 37

MacMinn, C. W., Neufeld, J. A., Hesse, M. A. & Huppert, H. E. 2012 Spreading and

convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water

Resour. Res. 48 (11).

Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection

from maintained and instantaneous sources. Proceedings of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences 234 (1196), 1–23.

Nabi, S. & Flynn, M. R. 2013 The hydraulics of exchange flow between adjacent confined

building zones. Building and Environment 59, 76–90.

Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity

currents in a porous medium. part 1. a localized sink. J. of Fluid Mech. 666, 391–413.

Oostrom, M., Rockhold, M. L., Thorne, P. D., Truex, M. J., Last, G. V. & Rohay,

V. J 2007 Carbon tetrachloride flow and transport in the subsurface of the 216-Z-9 trench

at the Hanford site. Vadose Zone Journal 6 (4), 971–984.

Roes, M. A., Bolster, D. T. & Flynn, M. R. 2014 Buoyant convection from a discrete source

in a leaky porous medium. J. Fluid Mech. 755, 204–229.

Sahu, C. K. & Flynn, M. R. 2015 Filling box flows in porous media. J. Fluid Mech. 782,

455–478.

Sahu, C. K. & Flynn, M. R. 2016 Filling box flows in an axisymmetric porous medium.

Transport in Porous Media 112 (3), 619–635.

Todd, D. K. 1980 Groundwater Hydrology , 2nd edn. New York, NY: John Wiley and Sons.

Vauquelin, O. 2015 Oscillatory behaviour in an emptying–filling box. J. Fluid Mech. 781,

712–726.

Wooding, R. A. 1963 Convection in a saturated porous medium at large Rayleigh number or

Péclet number. J. Fluid Mech. 15 (04), 527–544.

Woods, A. W. 2010 Turbulent plumes in nature. Ann. Rev. Fluid Mech. 42, 391–412.

Worster, M. G. & Huppert, H. E. 1983 Time-dependent density profiles in a filling box.

J. Fluid Mech. 132, 457–466.

Xu, J. Q. 2008 Modeling unsteady-state gravity-driven flow in porous media. Journal of

Petroleum Science and Engineering 62 (3), 80–86.


	Introduction
	Theory – basic formulation
	Initial transient
	Overshoot criteria
	Transient source turned on and off
	Transient source turned up or down
	Comparison of point- and line-source plumes in boxes filled with and devoid of porous media
	Conclusions

