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Abstract

In Alberta and Saskatchewan, many heavy oil formations have a communicating
high water saturation zone, which makes it difficult to employ steamflooding as an oil
recovery method. In view of the remarkable success of steam injection for heavy oil
recovery, it is important 1o seek techniques for using steam in such marginal reservoirs.
This was the underlying objective of the research reported here.

The approach employed was essentially experimental, with theoretical
interpretations using classical methods. A heavy oil reservoir in Saskaichewan, the
Aberfeldy reservoir in Lloydminster, was selected as the prototype for the scaled model
steamflooding experiments. One-quarter of an eight hectare five-spot was constructed
using low pressure scaling principles.

Base case waterfloods and steamfloods were established for reference. Gas and
solvent additives were investigated for homogeneous and bottom water formations, with 2
view to divert steam early from the water zone. The effect of solvent slug size on recovery
was also investigated for a thin bottom water case.

Steam injection experiments were conducted in four combinations of vertical and
horizontal wells (injectors and producers) using two bottom water thicknesses in the one-
quarter of a five-spot. The use of a small volume of solvent with steam was also
examined.

Temperature measurements and theoretical analyses were used to interpret the
results obtained. The experimental findings suggest that there is an optimal bottom water
thickness, below which formation heating by conduction is far more useful than use of gas
or solvent additives. An optimal bottom water thickness value was determined to be
between 7-10% of gross formation thickness. The application of horizontal injectors and
producers in marginal reservoirs subjected to steamfloods seems to be the best strategy in

the light of this work.
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NOMENCLATURE

half of the major axis of drainage ellipse, [L]

area for heat loss to overburden associated with reservoir volume Vy, [L2L-3]
formation volume factor, [L3L-3]

half of the minor axis of drainage ellipse, [L]

specific heat, [L2t2T-1]

shape parameter of the water oil contact

concentration of component j in phase i, mass fraction
height above datum, m; D=D(x), [L]

distance of the surnmit of the water crest to the top of the reservoir, or diameter, [L]
steam quality, dimensionless

acceleration due to gravity, [Lt2]

enthalpy per unit mass, [L2t2)

thickness of formation, [L]

permeability, [L2]

thermal conductivity, MLt3T-1]

relative permeability, dimensionless

length or distance, [L]

latent enthalpy p.r unit mass, [L2t2]

arbitrary variable, or mass [M]

pressure, [ML-1-2]

flow rate, [L3t"1]

conductive heat flux, [M/t-3]

injection/production rate, [L3t-1]

flow rate into a horizontal well, [L3t1]

heat loss rate, [ML2t3]



Te

Tw

radius, [L]

drainage radius, [L]

effective radius of model well, {L]
effective wellbore radius, {L]
saturation, mass fraction

temperature, [T]

time, [t]

volumetric flux (Darcy velocity), [Lt1]
internal energy, [L%t2]

mass flow rate, [Mt1]

X, ¥, Z coordinates

Greek Symbols

o thermal diffusivity, [L2t']]

Ap pressure drop, {ML-1t2]

Ar  half of horizontal well length, [L}
®  potential function, [ML-1t2]
¢ porosity, dimensionless

H fluid viscosity, [ML-1t1]

p density, [ML"3]

6 parameter

@  slit width, {L]

v streamline function, [ML-1t-2]



Subscripts

o m

is

ob

or

sat

§8

wC

aqueous phase

cap or base rock

dimensionless quantity

vapour phase

horizontal well

initial

steam injection rate

phase (oil, water or steam)

model

oil or oleic phase

overburden

residual oil saturation to steam
prototype

reference variable used to obtain a dimensionless quantity
reservoir rock, except with k
steam

saturation temperature or pressure
calculated steam temperature
superheated steam

total interval

vertical well

water (unless otherwise specified)

irreducible water



Chapter 1

Introduction

Many heavy oil formations in the Lloydminster area of Saskatchewan and in eastem
Alberta are not suitable for thermal recovery methods, such as steamflooding, cyclic steam
stimulation, and in situ combustion. Approximately 85% of Saskatchewan’s thin, heavy
oil formations are classified as “marginal reservoirs”. These reservoirs are characterized by
relatively thin pay sections (6-13 m) and underlying high water saturation zones. The
water sand, which is often in communication with the oil zone, can be either a transition
zone or else a zone of high water saturation that can approach 100%. Under these
conditions, low oil recovery and poor sweep are expected due to excessive vertical heat
losses and steam scavenging effects by the bottom water zone. As marginal reservoirs
constitute a major portion of the heavy oil reserves in Canada, it is essential to establish a
viable recovery technique for such reservoirs.

The main focus of this research was to incorporate vertical and horizontal well
combinations in the steamflood process of a marginal oil reservoir in Lloydminster,
Saskatchewan. The experiments were conducted in a scaled physical model of the
Aberfeldy heavy oil reservoir. Other recovery schemes included the applications of a gas
additive and a solvent slug, and were investigated under various reservoir conditions, such
as the homogeneous (no bottom water), thin bottom water (10%), and thick bottom water
(50%) cases. The present research discusses the results of the above experiments,
suggesting strategies which may permit the economic production of a marginal heavy oil

reservoir.



Chapter 2

Statement of the Problem

The specific objectives of this research were to employ horizontal well strategies for

steamflooding heavy oil formations with a communicating water zone, using experimental

and theoretical methods, which are outlined as follows:

Experimental Objecti

1.

Improved experimental design:

a) Modification of the boiler unit to improve steam quality;

b) Design and installation of a data acquisition system for recording and
analyzing experimentai data;

c) Design and construction of a produced fluid collection system; and

d) Converting the existing walk-in cooler to a freezer in order to create bottom
water in situ.

Methods for steamflooding thin, heavy oil formation, with and without bottom

water: '

a) Gas injection; and

b) Solvent Injection.

Horizontal well strategies for steamflooding marginal reservoirs:

a) No bottom water;

b) Thin bottom water; and

c) Thick bottom water.

Theoretical Objecti

1.

2.

Derivation of steamflooding scaling criteria with gas as the only additive and the
evaluation of gas runs in light of these criteria.

Interpretation of selected runs.



Chapter 3

Literature Review

Extensive reviews of theoretical and experimental studies of steamflooding for oil
recovery have been conducted. This review presents laboratory studies of the steam drive
process, horizontal well applications and case histories of horizontal well technology, and
the incorporation of solvent into steam injection. Scaling methods will also be covered

briefly.

Physical Model Studi ¢ St floodi
Physical models, which can be unscaled or scaled, are used to predict the

performance of a proposed recovery scheme in the reservoir under investigation. They are
especially useful for studying new processes whose mechanisms are not fully understood.
They are used to complement numerical studies by validating the predictions of the
mathematical models or obtaining process parameters for the simulator. Farouq Ali and

Redford! presented a review of various approaches to scaling steam injection processes.

Unscaled Physical Models

Unscaled models are relatively simple, and are selected on the basis of the recovery
method being studied. Their dimensions are often limited by the physical constraints on
the laboratory equipment. Sometimes, they are referred to as “elemental models” since the
materials used and the operating procedures represent the specific conditions of the field at
some point in its life. Unscaled experiments give an understanding of the dominant
recovery mechanisms such as diffusion, dispersion, gravity segregation and rate
dependence. As an example, Watts and Hutchinson2 showed from their unscaled Asphalt
Ridge tar sands model that optimum oil recovery occurred when intermediate quality steam
was injected, instead of a high quality steam or a hot waterflood.



Scaled Physical Models

Scaled models are desirable because their results may be directly applied for field
predictions. The principle of similarity, the basis of scaled physical models, expresses the
spatial and temporal configuration of a physical system by means of dimensionless ratios
within the system. There are four types of similarity: (i) geometric (dimensions are
similar), (ii) mechanical (static—geometric similarity is preserved when deforming forces
are applied to a static body, kinematic—ratio of time is constant, or dynamic similarity—
ratio of forces is constant), (iii) thermal (ratio of thermal conductivities are similar) and
(iv) chemical (ratios of chemical properties, such as chemical composition, potentials, and
concentrations are constant). Since it is impossible to satisfy all scaling criteria

simultaneously, engineering judgement is often used to relax some of the criteria, leading to

a reduced set of similarity groups.

High Pressure Models

Scoled models can be divided into two categories: high pressure and low pressure.
High pressure models scale rock-fluid interactions, temperature dependence of rock
properties, emulsions, steam distillation, gas solubility, compressibility, and fluid
properties3:4 more accurately than low pressure models, which are constrained to operate at
lower temperatures, and thus, must use rocks and fluids different from those in the
Teservoir. |

Huygen? deveioped a high pressure model (400-4020 kPa) representing one half
of a five-spot, which used the field crude oil and crushed Berea sandstone. Only heat flow
was considered in the scaling calculations. He studied the effects of oil viscosity, initial oil
saturation, and distillation residue on oil recovery.

Pujol and Boberg’sS multidimensional steam injection scaling criteria are widely
used for the design of high pressure models. They showed that unscaled capillary

pressures had a negligible effect on oil recovery for oils with a very low ratio of capillary to



viscous forces. Hence, accurate scaling of capillary pressure was not required for viscous
crudes. However, optimistic recoveries were obtained when capillary pressures were
unscaled for medium viscosity oils (<10, 000 mPass).

Pursley’ applied Pujol and Boberg’s6 high pressure scaling criteria to his Cold
iake model (3450 kPa). He investigated the effects of reservoir heterogeneities, such as
the presence of a gas cap, bottom water, presence of vertical flow barriers (tight or low
permeability streaks). He also studied the effects of process variable, such as pattern size,
steam quality and steam additives, on steam drive performance. It should be noted that
Pujol and Boberg’s6 scaling criteria do not allow for steam additives.

Lo® constructed an intermediate pressure model (100 kPa) of a seven-spot pattern
for the Lloydminster heavy oil. He based his model on Pujol and Boberg’s® analysis, but
scaled mobility rather than permeability. Scaling mobility permits greater flexibility in
selecting model materials, but fails to scale oil viscosity, as done by Stegemeier, Laumbach
and Volekd. Subsequently, Singhall® included the ratio of enthalpies of vapour-to-liquid
water in the previously used groups to match steam quality.

To satisfy the similarity groups for scaling geometry, viscous forces and
gravitational forces, Pujol and BobergS required that the pressure drop in the model be
different from that in the field. They overcame this obstacle by selecting a porous medium
for the mode! different from that found in the prototype. Kimber, Puttagunta and Farouq
Ali3 presented new scaling criteria, which allowed the same fluids and same porous
medium to be used to scale steam or steam processes for horizontal reservoirs. As a
consequence of satisfying other scaling requirements, they relaxed some of the geometric
scaling groups. They compared the relative merits of their approach with those previously
published in literature, both analytically (inspectional and dimensional analysis)3 and
experimentallyl1-12 (steamflooding scaled physical models representing one-eight of a

five-spot pattern).



Low Pressure Models

Low pressure models are designed to operate at subatmospheric pressures and low
temperatures. Better scaling of the Clausius-Clapeyron relationship (steam saturation
pressure-saturation temperature relation) in low pressure models result 11_1 a more accurate
representation of temperature and velocity distributions than a high pressure model. Unlike
high pressure models, low pressure models often require a fluid with different properties
from that of the prototype to satisfy all the relevant criteria. The low pressure scaling
approach requires considerable skill in satisfying a multitude of criteria, with both the
operating conditions and rock and fluids being totally different from those in the prototype.

Simulation of models operating in the vacuum range was first described by
Stegemeier et al.? whose low pressure scaling criteria have been the basis of several
studies. They conducted extensive steam injection experiments in two dipping reservoirs,
the Mt. Poso and the Midway Sunset fields.

Prats!3 used the Stegemeier et al.? approach to model the Peace River oil sand. He
found that vacuum models appeared to be the most suitable for simulating vaporization
phenomena associated with pressure blowdown in the pressure cycling process. Proctorl4
applied the same approach to investigate several aspects of steamflooding thin, heavy oil
reservoirs with a communicating water saturation zone. His three-dimensional physical
model represented one-quarter of a five-spot in the Aberfeldy reservoir.

Doscher and Lechtenberg? took a slightly different approach than Stegemeier et al.?
in developing their low pressure scaling criteria for their Kern River model. They derived
the similarity groups by the integral approach, developed by Yortsos and Gavalas!3.16, as
opposed to the differential approach developed by Stegemeier et al.9. Yortsos and
Gavalas15:16 used the integral form of the thermal energy and latent heat balance to
determine the upper bounds of the steam zone for multidimensional reservoirs. Although

the integral approach caused distorted saturation and temperature distributions, Doscher and



Lechtenberg4 noted that process phenomena, such as oil recovery, oil-steam ratio,
efficiency and override are of an integral nature. Hence, they concluded that the integral
approach was a more accurate representation of recovery process than the differential

method.

Steamflooding in the Presence of Bottom Water

Relatively few studies have been conducted on heavy oil reservoirs in the presence
of bottom water. The first instance where steam was injected into an underlying water sand
was in the case of the Slocum field in northeast Texas. However, in spite of the high oil
saturation (65%), the large quantities of steam required for the process reduced the
profitability of the project”.

Prats}3 modelled the Peace River reservoir (200 000 mPars), which is characterized
by an underlying water zone containing a large oil saturation (55%). In the laboratory
experiments, a modified steam injection scheme consisted in using the steam to heat the
basal zone. The recovery process invoived pressurizing the zone, producing some oil,
blowing it down to the steam zone, and finally, conducting a steamflood in the oil zone.

Pursley? used a scaled model of the Cold Lake reservoir (100 000 mPa-s) to
examine the effect of steam injection into a thin bottom water layer (15% PV) and an
overlying gas zone (2.5% PV). It was concluded that the tendency of steam override was
responsible for the high recovery obtained in the bottom water model because it enabled
steam to contact a greater portion of the sand. Further, a steam drive through a basal sand
appeared to be feasible only if the vertical permeability was high and if heating close to the
base of the oil sand could be affected.

Ehrlich!8, and Huygen and Lowry19 performed steamflooding experiments through
a simulated bottom water layer in scaled laboratory models of the Wabasca formation
(5 x 106 mPass). Their conclusions agreed with those of Prats!3; high recovery was a

result of conduction heating of bitumen due to steam flow through the bottom water zone.



In all instances’-18.12, bottom water provided the initial injectivity path for steam in viscous
oil sands.

Doscher and Huang?® investigated the steamflood performance through a thin
bottom water zone (15% of total pay). Their studies indicated that while steam initially
advanced through the basal sand, continued injection caused the oil to drain down and be
carried through the water zone. Eventually, with continued steam injection, steam override
occurred. Contrary to previous studies, increasing steam injection rate did not result in a
monotonic increase in oil-s:>am ratio at any given recovery factor. Doscher and Huang20
concluded that there was a critical injection rate, above and below which steam-drive
performance deteriorated.

Proctor, George and Farouq Ali?1 studied steam injection strategies for thin bottom
water reservoirs in a scaled physical model. They showed that the effect of bottom water
was small for some minimum bottom water thickness (10% of gross thickness). Kasraie
and Farouq Ali22 used a numerical model to examine heavy oil recovery in the presence of
bottom water. They concluded that thick water zones delayed the steamflood response and
consequently reduced process profitability.

Hori L Well_Applicati

This review of horizontal well technology for producing heavy oils and oil sands
discusses the reservoir engineering aspects of horizontal wells, which are relevant to this
investigation. Special emphasis is placed on the productivity of horizontal wells in
homogeneous and isotropic reservoirs as well as the influence of anisotropy on
productivity. The use of horizontal wells in bottom water zones is examined as it offers a
means of delaying water coning effects. Horizontal well flow behaviour is analyzed for
early and late time flow geometry. The steam assisted gravity drainage process, when
employed with horizontal wells, gives substantially higher recoveries than from vertical

wells. Finally, optimum horizontal-vertical well patterns are investigated.



Background

In recent years, interest in horizontal wells has been rekindled (see Table 3.1).
Horizontal wells have been proposed for conventional recovery from tight reservoirs where
production from horizontal wells exceeds that from vertical wells due to their greater
reservoir contact. They are particularly effective when vertical fractures are present, in thin
pay sections where water or gas coning is a problem, and in soft formations, such as chalk,
which are liable to collapse. Horizontal wells may have great potential in the recovery of
bitumen and heavy oil in Alberta and Saskatchewan. Satisfactory steam injection rates are
only feasible at formation parting pressures because of the low injectivity of steam in oil
sands. However, while high pressure steam injection is acceptable for a cyclic steam
stimulation procéss, it may be detrimental for a subsequent steamflood. Horizontal wells
may offer a non-fracture alternative to the steam fracturing technology.

Theoretical and laboratory studies as well as reported field successes indicate that
horizontal wells will likely be more effective than vertical wells in certain situations. A
horizontal well contacts a much greater portion of the reservoir, and hence, the production
rate from a horizontal well may be two to five times greater?? than a vertical well.
Horizontal wells operate with lower local fluid velocities in the reservoir while still
providing adequate productivity due to the vast area which is exposed to the reservoir.
" This results in less sand transport into the well and reduced coning of gas or water when a
gas cap or a bottom water zone is present, respectively.

The negative aspects of horizontal wells include high drilling and completion costs,
1.5 to 2 times greater24 than conventional vertical wells, and their inability to produce
zones separated by impermeable layers via a single wellbore. Horizontal wells are
ineffective in thick (150 to 180 m) reservoirs with low vertical permeability23. Of nearly

150 horizontal wells drilled worldwide, only the ones in Table 3.1, less than 10% of the



Table 3.1 _List of Horizontal Well Proj _

1978/83/89

1979

1979/89

1984

1987

1987/89

1988

1988

1988
1988/89
1988/89
1989
1989

1989

1989
1989

Field
Yarega, USSR

Rospo Mare, Ttaly

Fort McMurray, Alberta

Cold Lake, Alberta

Cold Lake, Alberta

Fort McMurray, Alberta

North Tangleflags,
Saskatchewan

Kemn River, California

Medicine Hat, Alberta

Pelican Lake, Alberta
Pelican Lake, Alberta
Winter, Saskatchewan
Suffield, Alberta

Winter, Saskatchewan

Plover Lake

Provost, Alberta
Provost, Alberta

Company,

EIf Aquit. (& Institut

Frangais du Petrole in
1978/83)
Texaco

Esso Resources Canada
Lic.

Esso Resources Canada
Lud.

AOSTRA

Sceptre Resources and
Murphy Oil

Dietrich Corp.

Alberta Energy Co.
(AEC)

Gulf

CS Res,

CS Res.

AEC

Saskoil

Saskoil

Pan Canadian Petroleum
Renaissance Energy

Process  Comments

Steam

Primary

Steam

Steam

Steam

Steam

First horizontal well.
Mine assisted steam.
{Same horizontal well
was used for injection
and production.)
Offshore in Italy.

Wells drilled from a
single drill pad using a
slant rig. (Same
horizontal well was used
for injection and
production.)

Steam assisted gravity
drainage process.
(Horizontal producer.)
Longest recorded
horizontal well, Cyclic
steam process.
(Horizontal producer.)
Underground Test
Facility (UTF). Steam
assisted gravity drainage.
(Two separate horizontal
wells for injection and
production.)

Thermal EOR in gas
cap/bottom walter area.
(Horizontal producer.)
Steam injJoil recovery
lateral holes drilled
radially from a central
shaft parallel to and a
few feet above the base
of the heavy oil column.
{Horizontal injector.)
14° API oil,

14° API oil.

Long radius well.
Long radius well.
Water coning inherent.
Field was not previously
waterflooded.
Horizontal steam
producer, vertical
injector proposed.

N/C

N/C



wells drilled to-date, were located in heavy oil formations. Thus, the experience with

horizontal wells for heavy oil production is limited.
The Productivity of Horizontal Weils

nd I i
One advantage of horizontal wells is that their productivity may be greater than
conventional vertical wells. The productivity of a conventional well is a function of
permeability and thickness. Thus, low productivities result from either low formation
permeability or low values of formation thickness or both. Horizontal wells can
compensate for these problems in heterogeneous reservoirs because they have a greater

chance of penetrating a favourable geological structure, such as vertical fractures.

The Influence of Anisotropy

In many reservoirs, the vertical permeability is less than the horizontal permeability.
A decrease in vertical permeability can be detrimental for a horizontal well because it will
result in an increase in the vertical flow resistance and a decrease in oil production rates.
Conversely, if the vertical permeability is greater than the horizontal permeability, then
there will be a decrease in vertical flow resistance and‘ an increase in oil production.

Muskat25:26 accounted for reservoir anisotropy by modifying the vertical coordinate as

Z = h.Jky/k, and defining the average or isotropic equivalent reservoir permeability as

Jkyky . This modification leads to an elliptical wellbore. It has been shown that replacing

the elliptical wellbore by a circular wellbore has a negligible effect on wellbore

productivity. Giger, Reiss and Jourdan26 did not recommend using horizontal wells when

ky/ky was less than one. However, ky/ky values greater than one indicated that vertical

fractures were present in the reservoir, thereby suggesting favourable productivity

conditions for horizontal wells.

11



Water Coning and Cresting

Production with horizontal wells offers a new approach to reduce the effect of water
coning during oil production. Regardless of the method of production, there is always a
“critical velocity” which when exceeded can lead rapidly to the entry of gas or water into
the well when producing in the presence of a bottom water or gas cap zone, respectively.

Water coning, as shown in Figure 3.1, is due to pressure gradients resulting from
the production of fluid from the reservoir. If a water-oil contact exists in the producing
interval, these pressure gradients will induce water to rise in the immediate vicinity of a
vertical well which acts as a single point in a horizontal plane. The tendency of the water to
cone is partially offset by gravitational forces because water has a higher specific gravity
than oil. Thus, a balance exists between the gravity forces arising from the difference in
the specific gravities of water and oil, and the pressure gradients causing the flow of fluids
into the wellbore. When the pressure gradient exceeds the gravitational force, water coning
occurs with increased water production.

Horizontal wells, which extend parallel to the initial oil-water contact, reduce
coning tendencies by generating more favourable flow conditions and shallower pressure
gradients and thus, reduce coning tendency. Horizontal wells exhibit better performance
because they require a much smaller pressure drawdown as compared to vertical wells to
produce oil at the same rate. Horizontal wells exhibit an approximately linear pressure
gradient from the wellbore to the drainage radius. However, water may rise in horizontal
wells in the form of crests instead of cones. Water cresting is shown in Figure 3.1.

Giger27 determined the shape of the water-oil contact (WOC) created by the
development of a water crest in an oil column during production with a horizontal well. He
showed that the shape of the water-oil contact is an ellipse with a horizontal tangent close to
its sides. Below the well, the shape of the water crest is represented by a branch of a

parabola; this is also the case far from the well.

12
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Giger?7 also defined the critical flow rate, qc, as the rate which will cause watar to
enter the wellbore. He showed that q¢ will continue to approach the production rate until a
time, te, at which it is equal to the production rate. At this time, water begins to appear in
the production. To prevent water production, the production rate of the horizontal well

must be gradually reduced with time so that the production rate will always be less than the

critical flow rate.
Well Flow Behaviour

Early Time Flow Hori W

While horizontal drainholes and horizontal wells Lave been available for numerous
years, only recent advances in horizontal drilling have mac'e it economically feasible and
technically possible to drill in various formations. As shown previously in Table 3.1, the
Russians were the first to apply horizontal well technology to heavy oil formations.
Borisov28 was one of the earliest researchers, who studied the flow potentials of horizontal
and highly-deviated wells. In his study, he proposed formulae to determine the production
rates of single and multiple groups of deviated wells for various well configurations.

Joshi23 found that a horizontal well of length L has an ellipsoid drainage pattern, as
shown in Figure 3.2(a). Joshi?3 presented equations for early time horizontal well flow
geometry, that is, until the first pressure transient reaches the upper or lower reservoir
flow boundaries. Figures 3.2(b) and (c) schematically represent the method Joshi23 used
to simplify this problem. He subdivided the three-dimensional ellipsoid problem into two,
two-dimensional problems: flow into a horizontal well in a horizontal plane and flow in a
vertical plane. It is observed that the radius of the reservoir drained by this flow regime is
approximately equal to one-half of the reservoir height. Joshi23 used the potential theory
presented by Muskat25 in Figure 3.2(d) for flow from an infinite reservoir into a finite line

source to obtain the solution.

14



i \ (a) Horizontal well drainage volume schematic
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Figure 3.2: Schematic of Potential Flow to a Horizontal Well.
(Modified from Ref. 23)
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Figures 3.2(c) and (d) show a schematic diagram of flow to a horizontal well i the
x-y plane at early times. Joshi?3 presents the equations for the equipotential function (®)

which is represented by ellipses and the streamline function (y) which is expressed by

hyperbolas:
w(z) = +iy =cosh™ (%} ) (3.1)
where:
zZ=X+y (3.2)
& = cosh'l H* (3.3)
y=cos'l H (3.4

%
. xz-i-y"'+Arzi\[(x2+y2+Ar2)z—4Ar2x2
H = - 3.5)

He then gave the equation for flow into a horizontal plane:

(3.6)

From Figure 3.2(b), which schematically demonstrates flow in a vertical plane (x-2),

Joshi23 obtained:
w(z) = @ +iy = qf( W4 )cos8 - 1n(1%)] +ig|(T/ )sin6 - o] G
The flow into a horizontal well in the vertical plane is given as

Ap
2zk,
= A (3.8)

]

Joshi23 multiplied the two flow equations (Equations 3.6 and 3.8) by the reservoir height,

h, and used an electric analog to calculate flow resistance in the horizontal and vertical
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planes. He added the horizontal and vertical flow resistances to obtain the equation for
flow into a horizontal well in the early time flow regime:

(anohAp]
KB,

N AIH(L)

L, L \2r

w

(3.9}

for L>h and %< 0.9 1.

where
0.5

Lil 1 1
==+ |—+4 —-——a 5.10
7202 \}4 (0.51. )" G-10)
TH

In a recent study of extended reach and horizontal wells, Economides and Nolte2?

presented Joshi’s23 flow equation, perhaps because of its simplicity and popularity.
Giger26.30 also obtained his equations for the steady-state flow into a horizontal well and

the productivity index of horizontal wells based on Muskat’s2> potential flow theory.

Late Time Flow G f a Hori | Well

Figure 3.3(c) depicts the flow geometry in the final flow period (flow at earlier
times is illustrated in Figures 3.3(a) and 3.3(b)) at which time flow lines are almost
completely linear everywhere outside the well. This flow regime is known as plane parallel
flow and is caused by the pressure response in the reservoir in response to the effects of the
lateral boundaries. It should be noted, however, that radial flow still dominates in the
immediate vicinity of the wellbore.

It has been determined that if the length of the horizontal well is significantly larger
than the height of the reservoir (L/h >>1), then the production from a horizontal well can be
considered to be equivalent to the production from a fully penetrating vertical fracture?331,



2

2 h b A

7

Figure 3.3 (a): Intermediate-Time Linear flow.
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Figure 3.3 (b): Late-Intermediate-Time Linear flow.
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Figure 3.3 {c): Late-Time Linear Flow.
(Modified from Ref. 31)
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Gravity Drainage

In cyclic steam stimulation, the dominant production mechanism is the pressure
gradient between the reservoir and the production well. In stearnflooding, oil production
rates are governed by the pressure gradient between the injection and production wells.
However, in steam assisted gravity drainage, the only pressure drop is due tc the gravity
head between the injection and production wells. Oil production is controlled solely by
gravity drainage and the rate of gravity drainage is enhanced by a reduction in oil viscosity
resulting from steam heating. The steam assisted gravity drainage concept (SAGD) as
introduced by Butler and associates32:33 will be discussed as it relates to horizontal wells.

Figure 3.4 shows a horizontal well pair located near the bottom of an oil column
with the injection well above the production well. The wells are placed as close as possible
to each other in order to minimize the pressure gradient and maximize the gravity head
between them. Steam is introduced intc tie upper injection well, which is located at the
base of the reservoir. Oil viscosity is reduced as stears wises and heats the surrounding
formation. The heavier condensates and the heated oil will flow to the lower production
well as a result of the gravity drainage mechanism. The pressure within the steam zone will
essentially remain constant. The steam zone will continue to grow upwards and sideways
as the oil is produced. Butler, McNab and Lo32 reported that the rate of upward growth
rate was larger than the sideways rate. However, the upwards growth would eventually be
limited by the top of the reservoir at which time sideways growth would become the critical
consideration, and steam forms a single layer above the oil zone. Figure 3.5 represents the
expected growth of steam zone above adjacent horizontal wells. Steam assisted gravity
drainage permits a high process efficiency and thus, increased recovery due to improved
sweep efficiency. Furthermore, hot il is preduced as soon as it is displaced from the

formation, which differs from cyclic steam stimulation and steam drives. Favourable
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relative permeability conditions for oil flow are created as a result of the creation of
independent flow paths for oil, condensed water and steam. In addition, steam injection
can be stopped and reinitiated without any significant loss in the recovery efficiency in the
event of early steam breakthrough.

The negative aspects of gravity drainage are that it requires a relatively thick oil
column (= 15 m) and it may be hindered in zones separated by thick, continuous shale
layers. In the latter case, horizontal wells may have to be drilled in each layer that is to be
di'ained. Also, SAGD is not applicable for mobile oils and was not investigated in this
study.

Butler and Stephens33 developed a semi-analytical solution to calculate oil
production and oil-steam ratios (OSR) for parallel horizontal wells. Joshi34 studied twe
possible well configuration schemes for field applications which are shown in Figure 3.6.
Joshi’s34 results indicated that the optimum well scheme for reservoirs with non-
continuous shale barriers is Scheme II (Figure 3.6) with vertical injectors and a horizontal

producer.

Well Patterns

Steam override is a common phenomenon in steam injection processes. Steam rises
to the formation top, and sweeps the upper portion of the reservoir. The lower portion is
primarily swept by condensate. Consequently, high oil saturation zones in the lower
portion of the reservoir can remain after a steamflood. Horizontal wells used in
combination with vertical wells provide a way to improve the overall sweep efficiency and
help to drain such high oil saturation zones. The following discussion on well
configurations is based on numerical simulation studies.

Figure 3.7 represents two horizontal well configurations studied by Gussis33. The
first pattern (Scheme I, a line drive, considers a series of injection and production wells at

the base of the reservoir. Scheme II places the injectors at the bottom and the producers at
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the top of the reservoir simulating a zig-zag line drive. Pattern II loses too much heat to the
overburden near the top of the reservoir. It was concluded, strictly from a recovery
standpoint, that Scheme I produced the best results. This was the scheme used for the

horizontal well steam injection experiments in the present study for the Aberfeldy reservoir.

Applications of Horizontal Wells to Steamflood Processes

The selection of oil sand recovery processes is influenced by the formation depth.
Shallow formations may be exploited by surface mining techniques, such as the Syncrude
and Suncor operations, while deep formations may require in situ methods, as in the case
of Esso Resources, who employ horizontal wells with cyclic steaming, However, there are
intermediate areas in the Athabasca oil sands which are too deep for mining and too shallow
for in situ methods. The Underground Test Facility (UTF), as initiated by the Alberta Oil
Sands Technology and Research Authority (AOSTRA), investigates thermal recovery
processes (SAGD, and the Heated Annulus Steam Drive or HAS Drive) in the McMurray
oil sands formation (5 x 106 mPass). One of the primary objectives of this pilot was to
develop the shaft and tunnel access concept (SATAC). Three horizontal well pairs were
drilled at the base of the colums; from an underground tunnel system constructed in the
Devonian limestone underlying the oil sands. Preliminary results from the pilot indicated
that horizontal wells and gravity drainage processes could revolutionize in situ bitumen and
heavy oil production by substantially lowering recovery costs than conventional cyclic
steam stimulation methods36.

Because reservoir conditions at the Kern River field were unfavourable for
conventional oil recovery processes or novel oil-mining techniques, such as the UTF, a
horizontal-well steam pilot was proposed. It appeared to be an appropriate adjunct to the
previous primary and steam-soak operations. Eight horizontal wellbores spaced at 45°
increments were drilled radially at the base of the heavy oil cotumn (13 to 20 °API) from a

vertical shaft located at the center of the pilot area3’. Conventional vertical wells were

-
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drilled within each of the eight horizontal well sectors. The horizontal wells were first
preheated with steam slugs to initiate oil production. Next, steam was injected vertically
and oil was recovered through the horizontal wells. However, as a result of low oil
recovery (2.5% of QOIP), which was attributed to low vertical permeability, and
unfavourable project economics, the pilot was terminated.

The Tangleflags North Steamflood Pilot involved drilling a 500 m horizontal
wellbore to recover the heavy oil (12-13° API) from the Lloydminster area37.38.39, A gas
cap above and a water table below the reservoir resulted in poor oil production by
conventional vertical wells. Horizontal wells offered a feasible alternative to gas or water
coning. The pilot, which began in June 1987, was operated for six months without steam
and subsequently for 18 months with steam. Two vertical steam injection wells were used
in conjunction with a horizontal producer completed at the oil-water contact39. Itis
anticipated that oil recovery will increase from less than 1%, by primary methods, to 50%

through a horizontal production well40,

v i i i i

It has been reported previously#1:42 that heavy oil recovery can be improved by
injecting a small amount of solvent. The recovery mechanism of an effective solvent on
stearn recovery processes consists of several factors which improve the sweep by creating a
mobile transition zone. When the solvent mixes with the oil, a transition zone of lower-
viscosity fluid is created between the steam and heavy oil. As the mobility ratio of the
displacing and displaced fluid is improved, viscous fingering is suppressed and sweep
efficiency improves. Shu and Hartman?2 found that lighter solvents (CO2, ethane or other
gases) promoted earlier oil recovery, whereas medium solvents (naphtha) provided the
greatest increase in total production. Further, heavy solvents (Ci6 to Cp range) did not

improve oil recovery. Oracheski, Farouq Ali and George?! confirmed the success of
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injecting a small naphtha slug prior to steam injection. Shu and Hartman?2 suggested that
co-injection of solvents with steam would increase the transition zone and hence, recovery.
Farouq Ali and Snyder?3 investigated the recovery of bitumen using a solvent in a
two-dimensional, vertical tar pack. Naphtha injection prior to steam injection in a
homogeneous pack was used to develop initial channels for steam flow. This was highly
effective in a homogeneous model, but ineffective in the presence of a high permeatility
channel. Naphtha only entered the permeable channel and did not contact the tar pack.
Also, formation plugging caused by asphaltene flocculation during naphtha injection
occurred only when large volumes were injected. Using a three-dimensional model,
Farouq Ali and Abad** found that bitumen recovery depended on the solvent type and slug
size, and on the placement of the solvent in the sandpack. Smaller solvent slugs injected

through the production well were found to be more effective than injection through the

injection well.
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Chapter 4

Scaling Parameters and Calculations

The development of scaled physical models is based on the recognition that
dimensional similarities between prototype and model systems exert control over the
geometrical, mechanical, thermal and chemical phenomena occurring. This concept of
dimensional similarity, as applied by Stegemeier et al.? through the principle of inspectional
analysis, was used in the development of the scaling parameters. The development of the
parametric scaling principles required corresponding model and prototype simnilarities at the
physical and dynarnié points within the system. The following chapter discusses the
techniques used to implement this scaling method and also presents examples of its

application.

Unscaled Parameters

Scaled physical laboratory models, like numerical models, are developed under
certain physical constraints which unfortunately lead to approximations and simplifications
in the final product. These simplifications are necessary to achieve greater ease in the
handling of the problem and are based on the best current understanding of the process
dynamics. Hence, as a result of the simplifications required to match the scaled model and
field prototype, it is impossible to satisfy all of the similarity parameters simultaneously.
Consequently, a reduced number of parameters known as scaling parameters were
generated.

The parameters which were not scaled between the model and prototype systems in
this study are:
1. steam distillation of the crude oil;

2. capillary pressure and relative permeability;
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3. thermal expansion and compression of the reservoir fluids and matrix;
4, the extent of emulsification and its mechanism;
5. specifications corresponding to the injection and production of a horizontal well

(such as pressure drop in the vicinity of and within the wellbore, skin factor, most

desirable perforation intervals); and
6. effects of asphaltene flocculation.

For strict scaling, the relative permeability and capillary pressure relationship would
have tc be the same functions of saturation in both the model and prototype.
Unfortunately, they cannot be scaled in an unconsolidated bead pack because of the large
difference in the respective grain sizes. They could thus have a significant effect on the
displacement processes. Pratsi3 stated that the failure to scale relative permeability resulted
in the inability to determine the three-phase curves for the prototype under the anticipated
operating conditions. In spite of this limitation, Prats!3 produced favourable correlations
between the Peace River scaled physical model and prototype. Pujol and Boberg6 and
Demetre?2 proved numerically and experimentally that capillary pressure scaling was not
required for a prototype with a high viscosity crude oil. Demetre?3 showed that the
breakthrough recovery, at large mobility ratios, was only a weak function of the capillary
number provided that the displacement is stable.

The scaling of the parameters stated above could be more readily addressed by a
high pressure system where pressure, temperature, fluid and matrix components could be
made to approach the values at which the processes occur in practice. However, the
success of vacuum model studies imply that the listed phenomena have only a second order
effect on the mechanical processes involved in the production of viscous crude oils
resulting from steamflood process. It is noted that while these phenomena may not be

actively scaled, they may occur and/or exist during the steam drive process.
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Scaling Procedures

The procedure that Stegemeier et al.% used to obtain the scaling parameters in

Table 4.1 for modelling the steam drive processes was to:

1.

formulate the governing equations (partial differential, constraint, constitutive and
auxiliary equations) in dimensionless form (mp) by dividing the dimensional
variables (m) by a suitable reference quantity (mg). Thus:

m
m, = — 4.1
>~ (4.1
identify the set of similarity parameters by inspectional analysis; and
obtain a set of scaling parameters by combining and modifying, using engineering
judgement, the similarity parameters which could be matched between the scaled

model and field prototype.

Stegemeier et al.? made the following assumptions when deriving the scaling

criteria in Equations (4.2) to (4.17) for the low pressure model:

1.

N v s w N

three phases consisting of oleic, aqueous and steam phase (no volatile
hydrocarbons) may exist;

there is no partitioning into or out of the oil phase {(dead oil assumption);

rock compressibility and thermal expansion are negligible;

Darcy’s and Fourier’s equations are valid;

capillary pressure effects are negligible;

the system is in local thermodynamic equilibrium;

kinetic energy, potential energy and dissipation energy are negligible compared with
the thermal energy;

the enthalpy and internal energy are linear functions of temperature and are
approximately equal for the oleic phase and aqueous phase;

the difference between the steam enthalpy and internal energy can be neglected;



Number Scaling Parameter Name of Scaling Parameter
—Pr__ .
1. Pegrly Poiseuille Number divided by Stokes number
stLvr d :
2. 4] A Modified jacob Number + 1
CRTR
falaPr Ratio of steam pressure gradient to oil pressure
3. _l»lnp.n— gradient
Kintn . A Fourier Number or Peclet Number
4. 9= SePaCrli
¢, SpitpL
5. k};;ngl;t: Stokes Number
Wty Poiseuille Number divided by Modified
6. XN Poiseuille Number
* Subscript 'R’ denotes the reference variable used to obtain a a dimensionless term.

K When $AS is not matched, A takes on a value between unity and ¢RSR( PeCr ]

~— If reservoir heating or heat production predominates, use unity.

~  If cap and base rock heating predominates, then use ¢RSR[B€3§3—J.
sR™eR

(Modified from Ref. 9)



10. the time rate of change of the specific steam enthalpy in the steam zone is negligible;

11. the internal energy of the rock is a linear function of temperature;

12.  the saturated steam temperature is the maximum temperature at any location;

13. relative permeabilities depend exclusively on the saturations;

14.  Sorsand Swc are constant and uniform throughout the model;

15. critical saturation for steam flow is assumed to be zero; and

16.  the changes in the density of the immobile water and residual oil are negligible.
Using the above assumptions and applying the conservation of mass balance to the

oil phase, denoted by the subscript ‘0’, yielded:

¢——a(°a°ts )+ 9.(p,5,)=0 4.2)

The continuity equation for water, including both liquid and vapour (steam) phases denoted

by subscript ‘w’ for water in the liquid phase and ‘s’ for the vapour, was:

¢____a(p5t8,,) +V-(p,i,)+ ¢i(%‘t§'l +V-(p8,)=0 (4.3)

From the assumption that Darcy’s equation was valid, the following equation was

written for any species j, ~where j=0, w, or s (z-coordinate is positive downward):

kk ..
u; = “f(vp - pjg) (4.4)

]

The conservation of energy for the reservoir was expressed by

ot

(.S, i
[(1-9)p.C, +6(p.C.S, + p..C.,Sw)]%—T + Lv[tb—(p—'—l +V. (p.u.)]
Hp,C.3, +puCuii,) VT +p,d,-Vh, +V-g=0 4.5)




Conductive heat flux is given by the Fourier equation:

q=-k, VT (4.6)
When all the saturations were present, the constraint equation became
So+ 8w +S8s=1 (4.7)
The functional form of Clausius-Clapeyron relationship at saturated conditions,
where pressure and temperature are mutually dependent, can be written as:
Psat = Psat (Tsat) (4.8)
The remaining constitutive equations, required to describe the dependence of the material

properties in the reservoir system on the thermodynamic state variables, were expressed in

their functional forms as

$=0(y,2) (4.9)

Pj=pj(@ T) (4.10)
k=k(xY,2) (4.11)
kej = krj (S) (4.12)
K= Kj (D (4.13)
hg = hg (T) (4.14)
Lyv=Ly(D) (4.15)
knh =kn (x,y, 2) (4.16)
Pr=Pr(X, ¥, 2) (4.17)

where S denotes phase saturation dependence.
Calculati f P tric Val for the Aberfeldy 1 P Model

Prototype and Model Correlations
The design of the vacuum model involved the selection of representative values that

were typical of the Aberfeldy heavy oil reservoir, chosen as the prototype. The calculations
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used to scale the prototype data to model values are expressed in this section. A summary

of the Aberfeldy prototype and model values is given in Table 4.2.

Length Scale Selection

Since it was assumed that the model element of symmetry and the prototype are
geometrically similar, the scaling factor was defined as the ratio of the dimensions of the
model and prototype. The length scale, ¥(L), for a prototype with a production well
pressure of 100 psiz or less was dependent on the temperature-pressure relationships and
the physical constraints placed on the model size. Stegemeier et al.9 recommended that the
best match between the pressure-temperature correlarion for saturated steam could be
achieved by making (L) as small as possible and thus, the model as large as possible
within the practical limitations of cost and time to prepare the model. In addition, the
increased probability of leaks and the necessity for larger structural requirements for larger
models, were also considered. Hence, the selection of the length scale was somewhat
arbitrary.

The model used in the study represented one-quarter of an eight hectare five-spot in
the Aberfeldy heavy oil reservoir. The prototype length, Ly, for the 2 ha section was
determined to be 141.4 m corresponded to 32 inches (81.3 cm) in the model, L. Since
the prototype and model were geometrically similar, the length scale was calculated as

L
E?- =%(L)=173.99 (4.18)
Applying the length scale in three dimensions, the model thickness representing the

prototype thickness of 11 m was 6.3 cm (2.5 in).

Model Pressure Scaling
The most difficult relationship to match is the Clausius-Clapeyron temperature-

pressure relation. The result of not scaling the Clausius-Clapeyron relation is that the
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Aberfeldy Field Property Prototype Value Model Value
Well Spacing 8 hectare (20 acre), 5-spot 1/4 of 5-spot
Depth of Reservoir 5224 m —
Net Pay Thickness 11m 632cm
Gross Pay Varies from 1010 13 m 6.32cm
Porosity 1% 32.1%
Permeability 2000 md 539024
Thermal Conductivity 0.002077 K¥W/mK 0.003266 kW/m-K
(1.2 BTU/hrefe°F}
Heat Capacity 22217 kl/kg'K 2.3824 KIfkg'K
Initial Fluid Saturations So=0.75 S0 =0.85
Sy =023 Sw=0.10
Sg = 0.02 Sg -~ 0.05
Steamflood Residual Qil Sor=0.15 Sor=0.05
Saturation
Qil Viscosity 1275 mPa-s at 23.9°C 0257 mPass at 3.2°C
560 mPass at 32.2°C 243 mPass at 22.9°C
%0 mPass at 65.6°C
12.5 mPass at 135.0°C
1.29 mPass at 301.7°C
Water Viscosity 0.891mPars at 25.8°C 0.891mPass at 25.8°C
Gas Viscosity 0.013 mPa-s at 23.3°C -
0.016 mPass at 134.4°C
Solvent Viscosity 0.46 mPass at 25.0°C 0.46 mPass at 25.0°C
Specific Gravity of Gas 0.55 _
Initial Reservoir 23.3°C 3.0°C
Temperature
Initial Reservoir Pressure 3.45 MPa 0.0267 MPa
Steam Injection Pressure 1.9 MPa -—
Steam Injection Rate 100 - 150 m3/D 247.49 cm3/min
Steam Quality 0.70 0.093
(Actually fg is 0.80 to 0.85, but
a lower value was used to
compensate for wellbore heat
loss)
Solvent Injection Rate 80.81 m3/D 200 cm3/min
Pressure Range Upper Range: fracture
gradient of reservoir
Lower Range: bottom hole Lower Range: 0.006895 MPa
production pressure (1 psia)
(0.345 MPa (50 psia)

back pressure



temperature and pressure will not correspond at all points within the steam zone. This
problem is overcome by operating the model at subatmospheric pressure levels and low
temperatures. Thus, for typical prototype length scales of 100 to 200 and pressures as low
as 0.345 MPa (50 psia), the best match can be obtained by selecting the lowest possible
value of model production pressure. From a practical standpoint, the lowest pressure that
can be maintained is limited by the vapour pressure and the physical constraints of the

vacuum pump is approximately 1 psia.

From the parametric equality:
v(Ap) = (b=pe), _ Potily (4.19)
= (P=Pa)n Pubalm '
L
where: EP- =y(L)=173.99
v(p:) =§-’- =0.9 (4.20)
v(g.)= i—ﬂ =10 (4.21)
PP = 0.345 MPa (50 psia) (4.22)
(pp)p = 6.895 kPa (1 psia) (4.23)

where pp denotes production well pressure.
Table 4.3 is obtained by substituting the identities in equations (4.18) and (4.20)
through (4.23) into equation (4.19) to obtain the model pressure relation as a function of

the prototype pressure, where pm and pp are in MPa:
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(p~0.345 MPa)_

=0.9x10x173.2
(p—0.006895 MPay_

which reduces to: pm = 0.004692 + 0.006386pp (4.24)

Model Temperature Scaling

To obtain the best match between the model and prototype oil viscosity curves, it is
desirable to make the model temperature range as large as possible and hence, the initial
model temperature as low as possible. However, from a practical standpoint, the minimum
initial model temperature (Tj)m is about 3°C since cooling below this range would have
resulted in localized freezing of the model.

Stegemeier et al.? recommend selecting a value in the middle of the pressure range
when calculating the temperature difference ratio since the majority of oil production will
occur when these temperatures are significant. This is further supported by the fact thata
poor fit is achieved for the pressure-temperature relation for saturated steam in the lower
pressure range.

From the relation:

(ar), (L-T) (L-Ta),
(AT)m B (Tm - TR)m - (Tl _Tk)m

4.25)

and using the midrange prototype and model temperatures from Table 4.3:

(TR)p = 23.3°C

(TR)m = (Tm = 3.0°C

(Ts)p = 212.42°C (at 2.0 MPa)
(T9m = 56.97°C (at 0.0175 MPa)
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AT,  212.42°C-23.3°C

substitution leads to =
AT, 56.97°C-3.0°C

AT
which yields the identity A'I‘P =3.5 (4.26)

To have the properly scaled proportion of energy stored as internsl energy, this ratio must

be constant over the temperature range. Thus,

(T, —23.3°C)
o =35
(T, —3.0°C)_
Or, T = 0.286T - 3.657 (4.27)

As noted from Table 4.3, the calculated values, T, do not correspond exactly with the
saturation temperatures, Ts, Stegemeier et al.? state that better scaling is achieved by

allowing the error to occur at lower temperatures.

Time Scale Determination

Using the dimensionless parameter (4) in Table 4.1 and assuming that the heating
of the cap and base rock predominates such that A" = ¢Sg{PrCr/PCer ) Stegemeier et

al.9 developed the following time scale ratio:

Ipm MI } (4.28)
pcp op

where Khm = Kgranite = 0.003266 kW/meK (2.81 kcal/(mehr-°C) )
knp = Ksandstone = 0.002077 kW/m*K
PemCem = 2.3824 kI/kg*K (granite cap block)
PcpCep = 2.1803 kI/kgK (sandstone cap block}
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L
—£=173.99
L

m

The density-specific heat products for the cap rock and the reservoir matrix were assumed

to be approximately equal:
PemCem = PepCep and pmCm = ppCp (4.29)

Therefore, the substitution of the variables into equation (4.28) yields
t 0.002077 kW / me =
-m= =2.1007%10
t, (0 003266 kW/m-KI PxCo Il?3 99

For t;, in minutes and tp in years, the final form of the time ratio is:

-t

-tl=2.1007x10'5><365.25 D/yrx24 hr/Dx60 min/ hr
P

Eta =11.05 min / yr (4.30)

Flow Rate Scaling

Stegemeier et al.? used parameter (6) in Table 4.2 to scale the injection and

Vo _ (P«n I ) (4’ AL I_r_ .31)
W, \Pe $_AS

where from (4.18), (4.20) and (4.28):

production rates:

Lo
Lm
¥p,)=2r =09

Pm



~*

i =2.1007 %10
and ém =0.321  (in accordance with the specifications of the Wygal48 particle
distributor) (4.32)
dp = 0.31 (4.33)
ASy =0.85  (scaling assumption) (4.34)
ASp=1-Sgr- Swe=1-0.15-0.23 =0.62 (4.35)

Substitute identitites (4.18), (4.29) and (4.31) to (4.34) into equation (4.30):
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[ 10%cm® ]
3 .
w_ (1)( 1 )(0.321)(0.85)( 1 )=0.143>< 24 hir/Dx 60 min/ hr

w, \0.9A173.99/10.21x0.625 A 2.1007 x10°° m’/D
which reduces to:
3 .
%a =9,8995 0. [ min /n[’)m (4.36)
m

P

Since the model simulates one quarter of the total prototype injection rate of 100 m3/D, the
total steam injection rate, Qism, for this study was determined to be 247.49 cm3/min as

follows:

cm’ / min
m’/D

x 100 m® / D x 9.8995 =247.49 cm® / min

Al

Qi =

Scaling of Steam Quality
When using parameter (2) in Table 4.2 to determine the model steam quality,

Stegemeier et al.? assumed that cap and base rock heat predominates, which is often the

case in steam drive processes in thin reservoirs, so A’ = ¢zSg(PrCr/P&Car):
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_(cuaT) [( £, ¢ 23, Y 2:Cy )
f"“-( L, L{(C ATH),, [tb 35, 1p.C mIpq, .J] 1} @39

The model steam quality was then calculated for all corresponding pressures in Table 4.3
using the constants as already described in (4.29), and (4.32) to (4.35) with f5=0.70 for
the prototype.

Example 4.11
All the sample calculations, unless otherwise specified, pertain to the last row of data in

Table 4.3 corresponding to pp=0.345 MPa (50 psia) and pm=0.006895 MPa (1 psia).

£ = 148.53 k3 /kg | J(0.7x2149.7 kI /kg _, x[( 0.31x0.62 )(1)(1)]_1 —0.1163
2410.39 kI /kg )|\ 485.48KkJ/kg . 1\0.321x0.85

To complete the scaling of steam quality, the proportions of injected water (w,) and
superheated steam (wgg) were calculated. The guality and hence, water proportions was a
function of the enthalpy of steara from the steam generator at 120°C, the temperature of the
feed water (generally taken at the room temperature at 23°C) and the heat loss from the
metal lines. The heat balance is formed by equating the enthalpy rate of the two inlet water
streams mixed together (Wwi =W + Wss) to the enthalpy rate of wet steam injected into the

model plus the heat losses.

w, w, _h, -fL -C,AT-gq,/W,

Wy W, +W, - hu - hwa

(4.38)

The heat loss (qy) was assumed to be zero.



Example 4.2;
W, _2725.51J/kg—(0.1163x 241039 kI /kg) 14853 kI / kg =0 _ ) oo
w,, 2725.5kJ / kg -96.518 kI / kg e

Scaling of Model Oil Viscosity

It is important that oil production after steam breakthrough be scaled by matching
the pressure gradient in the steam zone and oil. Thus, the oil viscosity was scaled

according to parameter (3) in Table 4.2:
L-n{fﬂTEﬁI& g«_n} (4.39)
Ho o J e APan APop

Example 4.3:

Substituting the data from Table 4.3 and identities fs = 0.70 and (4.20) into equation (4.39)
yields:

B =(0.116 0.0102)(0.532 1 )=160
e \0.70 A0.0138 A0.046 A0.9)

Scaling of Model Permeability

Stegemeier et al.? scaled the model permeability using Stokes Number (Parameter
Number 5) in Table 4.1:

ko _ [ﬁ&és_mlkulﬂalh .tr_) (4.40)

K, (0,85, \L, Ay APeo Al
Equation (4.40) shows that ky/kp is temperature dependent since Hm/itp is a function of
temperature. However, since km/kp cannot be a function of temperature, a single
representative value of jm/llp must be selected to determine a single value for the model

permeability. As previously noted, the um/pp ratio is significant only when steam

pressures are low. This occurs after steam breakthrough and around the vicinity of the
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production well. Consequently, Stegemeier et al.? suggested that the lower portion of
Table 4.3 should be weighted heavily. Substituting an average value of jim/pp taken at a
1.00 MPa prototype pressure, and the constants defined in (4.1 8)~, (4.20), (4.30), 4.32) to
(4.35) into Equation (4.40) yields:

k, (0.321x0.85Y 1 1
—n = 7.71)(0.9) s | =2695.08
k, ( 0.31x0.62 )( 173.99)( X 9)[2.1007x 10") 0

Since the permeability of the prototype, kp, is 2 darcies,

k,, =k, x2695.08 =2 darcies x 2695.08
Thus, k_ =5390.17 darcies (4.41)

Scaling of Vertical Wells

As a result of the small size of the model with a length scale of 173.99 and the large
size of the glass beads, it was impractical to geometrically scale the vertical wells directly.
This was primarily due to the mechanical problems encountered in constructing a small
diameter well as well as the probability that the well size would lose significance when the
diameter of the beads in the porous medium approached or exceeded the model diameter.
Stegemeier et al.9 introduced the ‘slit” well concept where the effective radius of the slit

was a function of the bead pack arrangement in front of the slit and the slit width, o:
® = 27y (4.42)

where ® = slit width and rp, = the effective radius of the model well.
This study assumed that the diameter of the prototype well was 6 inches. Using
this assumption and substituting it into equation (4.18), the model well width was

determined to be 0.108" as described below:



L 6"

p

m~173.99  173.99

=0.0345"=d_

Thus, since the model well radius is r, = 0.01725", the slit width was calculated from

equation (4.42):

®=27m(0.01725") = 0.108" (4.43)

Table 4.4 summmarizes the scaling set used for the Aberfeldy model.

Scaling criteria for steam injection with an inert gas as the only additive present with

the steam was derived by inspectional analysis for a one dimensional system, not

necessarily horizontal, The assumptions used to develop the scaling criteria were based on

the following series of assumptions:

1.
2.

gas is present with steam;

the additive may be present in the oleic and vapour phases only, but not in the
aqueous phase, which consists only of water;

the vapour phase consists of both steam and the gas additive;

the solubility of the gas in oil is zero; and

diffusion and dispersion effects are neglected.

Define Cjj as the concentration of phase i in component j. Assume this is a three

phase system, consisting of the oleic (0), aqueous (a) and vapour (g) phases. The three

components are oil (0), water (w) and additive (gas). Table 4.5 lists the constraints and

constituitive relationships used in the derivation.

Using the above assumptions and applying the conservation of mass to the oil

equation yields:

V-[p%(vpo +p°gVD)]+q2 '—"%(tbsopo) (4.44)

-]



Table 4.4; Scaling Set for Steam Processes

Length Scale:

Pressure Relation:

Temperature
Relation:

Time Scale:

Steamn Quality:

Viscosity Ratio:

Injection and
Production Rates:

Permeability
Slit Width

L
ZE=(L)=173.99

m

Pm = 0.004692 + 0.006386p
Tm = 0.286Tp - 3.65

i=1105m1n/yr

ty

¢ [CATY )(£L,
=L, J|\c.aT )

X[(tb S I

w—-

. w, =hJ—f,L,—C,AT-qh/w“

3 .
h=9.3995w_
w m’ /D

P

k, =5390.17 darcies
@ =0.108"

(4.18)

(4.24)
(4.27)

(4.30)

PersCom

PoCo

(4.32)

(4.33)

(4.34)

(4.36)

(4.41)
(4.43)

oy
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Table 4.5: _Constraints and Constituitive Relationshi

Constraints
So+Sw+8g=1
Cga+Caw=1
Pg = Po + Pego (So, Sw)

Pw = Po - Pcow (So: Sw)
Cow =Kwgw 0, T, Cgw)
Cga/Cow = Kgaw (p, T, Cga, Cgw)

~oustituitive Relationshi

Po = Po (Po» T)
Pw = Pw (Pw: T)
Pg=Pg (Pg T, Cga, Cow)
Ho = Ho (Po, T)
Hw = bw (Pw: T)
g = Hg (Pg: Cga, Cgw)
ko = ko (S0, Sw, Sg)
Kw = kw (So, Sw Sg)
kg = kg (So» Sw. Sp)
ho=ho (p, T)
hw=hw (p, T)
hg =hg (p, T)
he = h (T)
knr = knr (T)
khob = khob (T)
¢ = constant
pr = constant
g = constant
D=D(,y,2z)
Uo=Up {p, T, ho)
Up=Us (0, T, hw)

Ug = Uo (p, T, hg, Cga, ng)

Ur=Ur(T)
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Similarly, the material balance equation for water, including both the aqueous and

vapour phase, can be written as:

w B

C k = L] -
v -[Eﬁ-k—‘"-(va + pwgVD)} +V -[—5-‘;%-*‘-(%3 + psgVD)]+ % +Cady

|

(08,0, +05,Cpupy)  (4.45)

QU

t

The continuity equation for the gas additive is:

C 2 k L] - a
\Y -l:—"Ilp—%—E(Vps + P, gVD)]+ Cal; = &-(qasscs_pg) (4.46)

g
Applying the law of conservation to the energy term yields:

V-(k VT) +V- Pﬁ&(v}wogvo)]

L o

4| RaXalle (v +pwgVD)]

w

+V- E*—Jc-ih-i(vl:hg +plgVD)]
L *s

+q, — 4L
d U,
= ¢a(posuuo +p,8,U, +p,S,U, )+ (1-0)p, a3 (4.47)

The expanded forms of the oil, water, additive and energy balances are oresented in
Appendix A. Table 4.6 is a summary of the scaling criteria for steam injection with a gas
additive, derived by inspectional analysis.

Dimensional analysis may be employed if the differential equation is not known.
The objective is to express the variable of interest as 2 function of other variables.
Buckingham’s Pi Theorem is used to obtain the final relationships, with the particular

variable embedded in a dimensionless group. This group is subsequently expressed as 2
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product of powers of other dimensionless groups composed of the variables involved.
Given n separate variables and k principal dimensions (mass, length, time, temperature,
force, and heat), a complete set of relationships will consist of n-k dimensionless groups43.
Inspectional analysis normalizes differential equations by making independent variables
dimensionless, and carrying out a judicious rearrangement of these variables. However, as
it is impossible to describe all process phenomena with differential equations, inspectional
analysis will not give all the groups. Hence, it is advisable to also derive the similarity

groups by dimensional analysis to obtain a complete set of dimensionless groups.
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Chapter 5

Experimental Apparatus and Procedure

This chapter describes the apparatus, materials and procedures used in this study.
This section summarizes the experimental procedures, such as packing and fluid saturation,
used when preparing and operating homogeneous, bottom water and gas injection models.
Appendix B provides detailed information about the laboratory apparatus 2nd procedures.
Appendix C lists the suppliers of the materials used in this study.

Experimental Apparatus

The apparatus used in this study consisted of the following essential components:
the model cart and rail system, solvent and steam injection equipment, produced fluids
collection unit, and cold storage component. Figure 5.1 is a schematic illustration of the
scaled physical model and its accompanying equipment. Plates 5.1 and 3.2 present an
overall view of the experimental apparatus including the cap and base rocks clamped in

place on the scaled physical model.

Physical Model

The model used in this study was designed to represent one-quarter of an eight
hectare (20 acre) five spot pattern having the dimensions of 281.55m x 281.55mx 11 m
(thick) in the Aberfeldy heavy oil reservoir. Plate 5.3 is a photograph of the scaled
physical model, which was a custom built fibreglass tray filled with glass beads that
simulated the porous medium. Four vertical slit wells were constructed, according to the
description of the scaled vertical wells used by Stegemeier et al., in each corner of the
fibreglass model. Granite blocks were placed above and below the model to act as the
overburden and underburden.

Because the model was to be designed with the length scale factor of 173.99, the
fibreglass tray was constructed with the dimensions of 81.28 cm (32 in) x 81.28 cm (32 in)
x 6.35 cm (2.5 in thick). To satisfy the low pressure scaling critera, the experiments were
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performed under vacuum conditions which involved applying severe loads over a large
surface area. Therefore, it was required to select a material with a low heat transfer
coefficient that could withstand a high degree of loading. Fibreglass was selected as the
model material since it not only satisfied the conditions, but was also inexpensive and
relatively easy material to machine.

The cap and base rocks of the model were made of two granite blocks each
weighing 1100 pounds and having the dimensions of 91.44 cm (36 in) x 91.44 cm (36 in)
x 21.59 cm (8.5 in thick). These blocks were used to simulate the heat transfer
characteristics of the overburden and underburden of the Aberfeldy reservoir. The sides of
the fibreglass tray were covered with cellular Neoprene to minimize heat loss from the

lateral “no flow” boundaries of the model.

Vertical and Horizontal Wells

Figure 5.2 shows the detailed internal features of the model, including the location
of temperature sensors and well positions. Scaled aluminum slit wells were machined in
each corner of the model to simulate vertical wells. The effective radius of each slit well
was a function of the slit width and the arrangement of the bead pack directly in front of the
slit. The wells were also designed to permit the insertion of a gate device which would
enable the preferential selection of injection and production intervals.

Horizontal wells were represented by perforations machined into two sides of the
model. Each well was 16 inches long and located between two vertical wells on each side
of the model. Because the wells were unscaled, skin factor or pressure transients within
the horizontal wellbore were not considered. However, the wells were designed to meet
the material balance specification, by considering constant injection and production rates,
such that the total flow capacity of one horizontal well was equivalent to that of its scaled

vertical counterpart.
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Porous Medium

To obtain a model permeability of 4200 darcies and hence, satisfy the scaling
criteria, a glass bead pack having an average bead diameter of 3 mm (6-8 U.S. mesh) was
selected as the porous medium. For economic reasons, the glass beads were cleaned and
dried after each experiment for reuse in future runs. The beads can be seen in their

containment unit in Plate 5.1.

Model Cart, Rail System and Cold Storage Compartment

A cold storage compartment was built to enable the model to be cooled to an initial
temperature of 3°C that was required to fulfill the model temperature scaling criteria. The
cooler was converted to a freezer to permit the creation of bottom water. The custom buiit
walk-in cooler/freezer had the dimensions of 8 ft x 10 ft x 7 ft and is shown in Plate 5.1
along with the Wygal#8 particle distributor, glass beads, and bead drier.

The entire model, including the two granite blocks, rested on top of a support cart
which was set on castors. This facilitated the movement of the model which was rolled in
and out of the cold storage compartment on the accompanying tracks. The upper granite
block was placed on top of the fibreglass tray with a hydraulic hoist system. A shaft,
connecting the rack and pinion system to a gear box, was welded to the support cart. The
gear box was used to tilt the 2200 pound model to a maximum angle of 45° with respect 10
the horizontal. Tilting the model frame permitted uniform model saturation by gravity
flow. Dipping reservoirs can also be simulated using the existing equipment.

Fluid Injection System

The steam injection equipment consisted of two Milroyal controlled volume pumps
and a low pressure boiler. To generate the desired steam quality, a stream of superheated
steam was mixed with room temperature water. One of the Milroyal pumps transported

degassed, distilled water at room temperature to the water-steam mixing point while the
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other pumped superheated steam generated from the boiler. The boiler electrically
converted room temperature feed water to superheated steam. It consisted of an oil bath
with seven heating rods and 80 ft (24.38 m) of 1/4" diameter stainless steel tubing coiled
inside the unit as can be seen in Plate 5.4, The boiler coil was divided into two subcoils
each 40 ft length— the inner coil pre-heated the water and the outer one converted the water
to superheated steam.

Solvent was injected into the model by a Milroyal pump at 200 cc/min. It was
hoped that this relatively high injection rate would create more distinct and extensive
solvent channels in the oil zone. This would provide a more conductive path for the steam

to travel within the oil zone.

Fluid Collection System

The collection system, shown in Figure 5.3 and Plate 5.5, was developed to enable
a single operator to extract large instantaneous samples of produced fluids without
assistance. The unit consisted of a hydraulic pump, a mercury manometer, two plastic
vacuum trap collection containers, each equipped with a chilling coil and a fluid level
indicator tube, a circulating pump for the condenser coolant, rized discharge
system, a vacuum line to evacuate the container, and a dry ice bat.

Although each vacuum trap was capable of collecting a maximum sample size of
4000 cc, 2700 cc samples were taken using 2000 cc graduated cylinders to generate more
data samples for the experimental analysis. A hydraulic suction pump was used to generate
a vacuum and extract the samples. Under standard experimental conditions, it maintained a
constant vacuum of 68 ¢cm of mercury for a fully evacuated system. The vacuum was
monitored during the run by an adjoining mercury manometer.

Since the traps were opaque and the samples were produced as a frothy mixture, it
was impossible to monitor the volume of production using an electrical probe. Clear

vacuum tubing was used to visually monitor the fluid level in each cylinder and hence, the
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Plate 5.4: Internal View of the Boiler.
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quantity of production. Under low pressure vacuum conditions, some vaporization of
produced fluids may occur. Thus, chilling coils consisting of 20 ft of 3/8" stainless steel
tubing were installed in each trap to recirculate antifreeze coolant, using a circulating pump.
The coils were used in order inhibit the vaporization of produced samples and were built
inside the containers.

The flasks were designed to enable each flask to operate independently of the other.
Because of the high viscosity of the hydrocarbon in the initial phase of the experiment, a
pressurized discharge was built into each flask. The purpose of this inlet was to inject air at
approximately 1 psig into the container to shorten the length of time required to drain each
collection container. If more than 1 psig of pressure was applied, it would propel the
plastic container away from the plastic fittings and valves. Thus, a flexible cable was
added 1o enclose the entire containment unit (plastic container, fitting and valves) as a safety
precaution. To maintain a vacuum, each container was pre-evacuated using the negative
pressure outlet prior to sample collection by tuming the 2-way valve towards the vacuum
source. Finally, a carbon dioxide dry bath was instalied at the downstream of the collection

unit to gather any produced vapours that had passed through the condensers in the flasks.

Data Acquisition System

An extensive data acquisition network, consisting of thirty-seven thermocouple
channels and four pressure transducers, was installed at selected locations within the
fibreglass model. The model was machined to permit a maximum of thirty-two type-J
thermocouples to be strategically installed in two layers inside the model, with sixteen in
zach layer. Additionally, five type-J thermocouples were used to measure the injection and
production temperatures at various locations as well as the temperature of the mixing point.
However, because these points of injection and production are situated close to metal

fittings and connection, ungrounded thermocouples were chosen instead to prevent any
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grounding effects from occurring. The transducers were placed adjacent to each well to
monitor the inlet and outlet pressures.

During this study, three data acquisition systems were used to collect and process
the experimental data with the aid of an IEM PC: Megadac 2000, Process I/O System and
Metrabyte. Megadac was succeeded by the Process 1/O, which, in turn, was replaced by
the Metrabyte system. Metrabyte was used for the majority of the experiments. More
detailed information regarding the operation and installation of Megadac and Metrabyte are
provided in Appendix B.

The Megadac 2000 data acquisition unit had the potential to monitor 128 input
channels as guickly as 2000 samples per second or as slowly as one sample per second. In
all experiments, the scan time was set as one scan every thirty seconds. The Megadac 2000
data acquisition system broke down prior to the initiation of Run 70B. Because of the high
repair cost and extensive amount of repairs needed for the Megadac unit as well as the
modifications required for the Megadac software package, Optim Users Software, another
acquisition system was selected.

The new system was developed by the Department of Chemical Engineering at the
University of Alberta and was modified specifically for the purposes of this research
project. The Process I/Q System is based on a Digital Equipment Corporation (DEC) LSI
11/03 microcomputer using an Adac Corporation Model 1113AD with 2 Model 1113EX
boards to provide low level analog input. Thirty two channels of input were available,
configured as thermocouple type input or +100 millivolt input. If a channel was configured
as a thermocouple type, cold junction compensation was performed on the board.

The /O operating system used on the LSI 11/03 was the DEC RT11 system. The
program to perform the input and prepare the data for storage on an IBM PC was written in
Parallel Pascal which was a product from Interactive Technology Incorporated. The
program used to receive the data from the LSI 11/03 was written under DOS in Modula-2

as implemented in the M2SDS development system. This system was chosen because
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equipment repairs and software revision could be performed quickly at the University of
Alberta whereas the only place to service the Megadac 2000 is in Maryland, U.S.A. The
new system could be adapted to the existing IBM personal computer in the laboratory with
a series of thermocouple jack panels built to satisfy the total nimber of thermocouple
inputs.

Based on the results from 70B, the Process /O system was assessed to be a poor
replacement for the old Megadac data acquisition unit. It was inflexible to any alterations;
each time slight modifications to the equipment were implemented, such as the addition of
another thermocouple lead, the data collection program had to be completely rewritten in
Modula-2. The Process I/O lacked expansion capability reading only 32 thermocouple
temperature values simultaneously. It was unable to handle any more input channels for
future experiments, such as heat flux transducers or additional thermocouples or other
modifications to the system. The system was undependable, since it ran on an eight inch
disk and an obsolete computer unit which had to be replaced twice in the duration of the
run. “Black box” calculations used to process and generate the data were also
questionable. Therefore, the unit was returned at the end of the trial period due to a lack of
experimental confidence in the Process /O System.

After investigating other data acquisition units including a Macintosh computer
package, a DAS-8 board, four EXP-16 multiplexers and the Labtech Notebook Software
from the Metrabyte Corporation was purchased. The advantages of this system were its
versatility, expansion capability, equipment repair accessibility and the supplemental
software package. Labtech Notebook package processed all raw thermocouple (mV) and
pressure transducer (mV) measurements and converted them into real values of temperature
and pressure (°C and kPa) and time (seconds). Because the experimental data was stored in
ASCII file format, it could be analyzed in a spreadsheet program, such as Lotus 1-2-3 or
Symphony, directly through Labtech Notebook.
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Model Fluids

lection il for the A Idv Reservoi
Choosing the upper limit values of the viscosity relationships between the model oil
and the Aberfeldy prototype oil as previously stated in Table 4.3 in Chapter 4, an average
ratio of model oil viscosity to prototype oil viscosity (oM/Hop) Was determined to be 7.26.
The ideal viscosity of the model oil was then calculated at different model temperatures
using both the viscosity and the temperature relationship between the model and prototype

in equation 4.39 and is shown in Table 5.1

Table 5.1; Temperanure vs. il Viscosity [ 1a for Prototype and Ideal Model Oil.

Prototype Prototype Oil Model Ideal Model Oil
°C)  Viscosity (nPass)  Temperare ('C)  Viscosity (mPass)
23.9 1275 3.2 9256.5
32.2 560 5.6 4065.6
65.6 90 15.1 653.4
135.0 12.5 35.0 90.75
301.7 1.29 82.6 9.37

Figure 5.4 is a viscosity-temperature profile plot of the refined MCT 30 base oil
called Faxam-100, which was selected as the actual model oil. Faxam-100 was chosen
because its curve best matched that for the ideal Aberfeldy oil. The model temperature
range in the experiments was 3° to 80°C approximately.

Solvent Selection
Following an extensive viscosity investigation, Heavy Virgin Naphtha solvent

(HVN) was selected for the steamflood investigations conducted in the low pressure

model. The chemical properties of the Heavy Virgin Naphtha, primarily the initial boiling
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point of 61.0°C, caused the partial vaporization of the solvent to occur during the
steamflood process which had an average upper temperature range of 80° to 100°C. This
phenomenon produced favourable results since the partial vaporization of the Heavy Virgin
Naphtha enhanced the mobilization of the oil as a consequence of the diffusion of the
solvent vapour into the oil ahead of the solvent bank.
Figure 5.5 is a plot of viscosity versus HVN solvent concentration. Other

properties of Heavy Virgin Naphtha are:

puvN = 0.7320 g/ce

API gravity = 61.7° API

Initial Boiling Point = 61°C

Final Boiling Point = 131.5°C

p ion of the Experimental Model

Model Packing Procedure

A “particle distributor” was used to pack the model with glass beads since
traditional tamping and vibrating methods were not feasible for the large irregularly shaped
fibreglass model. The concept of a distributor matrix was first introduced by Currie and
Gregory, and was later modified by Wygal®8. According to Wygal48, the particle
distributor produced mechanically stable packs with uniform properties throughout that
could be accurately reproduced, while tamping and vibrating procedures generated non-
uniform or unstable particle packs.

The success of the particle distributor occurred as a result of the hitting action of the
beads falling onto the pack surface. It was observed that the beads strike the pack singly
after being distributed through a series of sieves. Part of their kinetic energy was
transferred to the surface beads which were thereby knocked into more stable positions.
As the bead pack grew, Wygal*8 stated that the surface appeared to be fluid and alive for a

depth of two or three particle diameters.
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Figure 5.5: Viscosity of the Mixture of Faxam-100 and Heavy
Virgin Naphtha vs. HVN Solvent Concentration.
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Figure 5.6 is a schematic diagram of the Wygal48 particle distributor constructed for
this study. It consisted of a 32" x 32" x 26" plywood frame, a metering board and five
wire mesh screens each with 5/8" openings that were offset from each other. The model
was packed by supplying a continuous supply of the glass beads at a constant rate to the
orifices on the metering board until the model was filled. The particle distributor was
removed and excess beads were trimmed off the model surface. Average model porosities
ranged from 32% for a homogeneous model to 35% for a bottom water model, which was

partially packed by hand.

Fluid Saturation Process

After the model was packed with glass beads, a thin layer of silicone sealant was
applied to the edges of the fibreglass model being careful not to cover the slit wells. A 3'x
3'x 1/8" thick sheet of Celtite Neoprene was then positioned on top of the tray and the top
granite block was lowered and clamped onto the model. The entire apparatus was tilted and
evacuated for saturation since saturating from the lower to upper end creates a more
efficient gravity stabilized front.

A total of six saturation ports, three on each opposing side of the model, were
machined into the model to enhance saturation efficiency. The model fluids entered the
apparatus from downdip and were pulled upward due to the vacuum at the updip end.
Initially, degassed, distilled water saturated the model. The pore volume was determined
as the volume of water taken into the system from which the porosity could be determined.
Next, the model was saturated with Faxam-100 oil in the same manner used for water
saturation. The total volume of water displaced during oil saturation was equivalent to the
initial oil saturation. The volume of water remaining after no more water was produced
was referred to as the irreducible water saturation. When the quick connect fittings were
removed at the injection and production ends, a vacuum was maintained within the model

as was confirmed by a vacuum regulator.
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Preparation of a Bottom Water Model

Since this experimental study investigated marginal reservoirs containing a bottom
water zone, a method was devised to create a bottom water zone and is discussed in
Appendix B. Approximately two days were required to prepare a bottom water model.

A predetermined volume of 5% (by weight) sodium chloride solution, which
corresponded to a percentage of the gross model thickness, was poured into the empty
fibreglass tray. Glass beads were then sprinkled by hand with the aid of a beaker to cover
the brine solution. Another thin layer of beads was added to compensate for the expansion
of water due to freezing. The model was then pushed, along with a 50 litre tub of clean,
dry glass beads, into the walk-in cooler/freezer until the bottom water layer was completely
frozen.

Once the bottom water layer was frozen, the remainder of the model was packed
with cold glass beads using the Wygal8 particle distributor and any excess was rimmed
off. The model was then saturated in the usual manner as quickly as possible to minimize
the thawing of the bottom water layer. The refractive indices of the produced water
solutions were measured to determine the quantity of bottom water lost due to melting,
using the lever rule. Thus, th volume of bottom water remaining after saturation could be

determined.

Creation of a Gas Zone

A gas zone was created by injecting a small quantity of inert nitrogen gas into the
model prior to the experiment. Gas injection was expected to improve oil recovery by
divesting the injected fluid away from the bottom water zone and into the oil zone and
hence, mitigate the heat scavenging effects of bottom water. Nitrogen gas was injected at 1
psig for a period of one prototype year (11.5 minutes). A larger injection pressure was

avoided since it would break the vacuum seal.

71



Once the homogeneous model was packed and saturated, it was pushed into the
walk-in cooler/freezer and cooled overnight to 3°C. For the bottorn water model, it was
necessary to allow the model to thaw out completely before it could be cooled. The
injection vessels were filled with distilled water and degassed using a vacuum pump while
the model was cooling in preparation for the experimental run.

Prior to each experiment, the chilling system in the fluid collection unit was turned
on to cool the coils and the collection flasks were evacuated. The Labtech Notebook data.
acquisition software was then loaded into the computer. The model was rolled out of the
cooler/freezer and the thermocouple cables were connected to the thermocouples inside the
fibreglass tray. Broken thermocouples or cable short circuits were detected when the cold
junction cable value was displayed on the computer by Labtech. Furthermore, the pressure
transducers could be checked and calibrated with the aid of Labtech. Labtech was then
reloaded in preparation of the run, dry ice was added to the dry ice bath, the production line
was connected to the desired outlet port, either the vertical or horizontal producer, and the
experiment was ready to proceed.

It was crucial to record the time at the beginning and conclusion of the injection of
different fluids (water, steam or gas) from Labtech to determine the lag time between fluid
hook up and total injection length. To provide experimental consistency, 2000 cc samples
were collected from the vacuum traps in graduated cylinders and labelled chronologically.
Each run lasted for approximately two hours during which two pore volumes of fluid were
injected (2 PV cumulative volume injected). Fluid injection rates could be adjusted by the

controller on the Milroyal pump.

Waterflood

Because steam was not required for a waterflood run, it was not necessary to pre-

heat the boiler. Degassed, distilled water at room temperature.was pumped throngh the
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injection line to flush out any trace fluids from previous experiments. The injection line
was inserted into the desired inlet port either the vertical or horizontal injector. Water was

then injected into the mode! and the produced samples were collected.

Steamflood in a Homogeneous Model

For a steam injection run, the oil bath was pre-heated in the boiler to the desired
temperature. Feed water was pumped through the boiler to convert it to superheated steam,
which was mixed with room temperature water in proper proportions to form the required
steam quality. This time, the injection line was flushed with steam before connecting to the

inlet.

Solvent-Steamflood

In solvent-steamfloods, the only variation was that the solvent Milroyal pump was
used to initially inject a specified volume of Heavy Virgin Naphtha into the model prior to
steam injection. The steam Milroyal pump was attached, the injection line was flushed with
steam and the steamflood commenced in the usual manner. The volume of solvent
recovered in each sample was determined from the refractive index of the sample, but the
solvent concentration changed due to evaporation over a short period of time. Therefore,
the refractive index of the samples was measured immediately after they were taken or if it
was desired to record the information later, the cylinders were sealed with an impermeable

material.

Bottom Water Runs
For bottom water runs, like solvent-steamfloods, the volume of bottom water

production was inferred using the refractive indices of the produced samples.

Gas Injection Runs
For gas injection runs, an inert gas cylinder was connected to the model using

plastic tubing. In all cases, nitrogen was injected at a constant pressurc of 1 psig which
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was monitored using a pressure regulator. Since the irjection pressure was greater than
atmospheric pressure, a slight drop in the vacuum occurred at the production end and could

be seen in a decrease in the level of mercury in the manometer during gas injection.

Apparatus Cleanup

At the conclusion of the experiment, the aluminum clamps and the top block were
removed. The Neoprene sheet was peeled off the model, shaken to remove any attached
beads, and then disposed in a waste container. The glass beads were carefully removed to

avoid damaging the thermocouples. Any broken thermocouples were replaced and the bent
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ones were repositioned. A degreasing agent followed by a laboratory detergent was

applied by hand to the glass beads to remove all hydrocarbon residues (Faxam-100 oil and
Heavy Virgin Naphtha solvent) and water. The glass beads were placed into two 3-ft
stainless steel cylinders set on risers. Any water would drain through an outet line
attached at the bottom of the cylinder. The beads were then dried by connecting the
cylinders to air inlets and forcing air w flow through the beads.

Excess silicone sealant was scraped off the tray using a chisel. A degreasing
solution, followed by Varsol and acetone were applied to the tilted fibreglass model. After
the waste was drained using a siphon, the traces of the cleaning agents were removed by
using laboratory wipers. Plastic cylinders were washed with dishwashing detergent while
glass ones were cleaned using the laboratory detcrgent. Thus, the model was ready for the

next experiment.

Following each experiment, the data was recalled from Labtech Notebook and
analyzed by a data spreadsheet program, such as Lotus 1-2-3 or Microsoft Excel. All
pertinent data including porosity, initial fluid saturations, fluid recoveries, initial modet

temperature and cumulative pore volume injected were summarized in an experimental



table. The following variables were then correlated as a function of cumulative pore
volume: % oil in sample, % cumulative oil recovery (%0OIP),% solveat in sample, %
cumulative solvent recovery and average effluent temperature. Temperature top and cross-
section profiles were constructed, where applicable, at 0.25, 0.50, 1.0 and 1.5 PV of

stezi:,r_l injected, using the programs in Appendix D.
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Chapter 6

Discussion

This chapter discusses the experimental results underscoring the importance of
steam quality control in the steamflood process, and analyzes the following types of
experiments: waterflooding, gas injection, steamflooding in the presence of bottom water,
solvent-steamflooding, and horizontal-vertical well strategies. Corresponding tables and
figures for each experiment appear throughout the discussion as appropriate. Temperature
profiles were obtained for all thermal experiments and these are included as contours.

Detailed experimental results are given in the tables for all runs in Appendix E.

Presentation of Results

A total of thirty-eight experiments were conducted in the scaled physical model of
the Aberfeldy reservoir during this study. Thirty-five of these experiments were
successfully completed, while three were prematurely terminated because of mechanical
failures and system limitations. The following section discusses steam injection
experiments of several types in thin, heavy oil formations in the low pressure apparatus:
continuous steamfloods and waterfloods under a variety of reservoir conditions (with and
without bottom water, and with a gas additive), solvent-steamnfloods, and horizontal-
vertical well strategies.

The experiments, as illustrated schematically in Figure 6.1, were divided into three
main categories: wazierflood, steamflood and solvent-steamflood. Pertinent model
properties, such as porosity and initial fluid saturations, as well as recovery results are
summarized for all runs in Table 6.1. To avoid confusion with the horizontal well
experiments, discussed later, all runs, unless otherwise specified, were conducted using &
vertical producer and a vertical injector well pair, representing one~quarter of a five-spot

pattern.
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Figure 6.1: Overview of Exparimental Runs
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Initial water and steam runs were conducted in a homogeneous (in the following
discussion, this will imply no botiom water) model to establish a series of base experiments
for future analysis. Waterflood runs, which were the simpler type of experiments, were
the first group of experiments conducted. Even these experiments took as long as any of
the steamflooding experiments, the average turnaround time being about two weeks.
Several scenarios incorporating steam and gas additives with the waterflood were
investigated.

Next, steamfloods were performed iz both hémogeneous and bottom water models
for four horizontal-vertical well combinations in one-quarter of a five-spot pattern:
horizontal producer-vertical injector (HPVI), horizontal producer-horizontal injector
(HPHI), vertical producer-horizontal injector (VPHI), and vertical producer-vertical
injector (VPVI). Horizontal-vertical well steamflood strategies were investigated for thin
bottom water (10% of gross mode! thickness) and thick bottom water (50% of gross model
thickness) formations. Additional runs incorporating an inert gas additive and varying
bottom water thicknesses were also studied.

Finally, the runs examining the application of small solvent slugs in steamfloods
were conducted. The effect of a solvent slug on stcamflooding thin, bottom water
formations was studied. As an adjunct to the horizontal-vertical well study, a small slug
(10% PV) of Heavy Virgin Naphtha (HVN) solvent was injected through a vertical well
prior to steam injection in the presence of thin bottom water. The effect of injecting the

solvent horizontally was also investigated for the HPHI 10% bottom water case.

Steam Quality

The crucial variable, which governs the outcome of any successful steamflood, in
the laboratory or field, is the steam quality. Substantial heat loss from the fluid lines or
improper mixing of feedwater and superheated steam can reduce the quality to zero. This is

especially critical in low pressure experiments because the scaled steam quality is low to
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begin with — 5-15%. The obvious consequence of reducing a steamflood to hot
waterflood is reflected by low ultimate oil recovery. In the present vacuum model, because
of the low stecm quality (10%) derived from the scaling procedure, correct steam quality is
essential. Any fluctuations in the superheated steam temperature from the generator as a
result of atmospheric pressure fluctuations or heat loss that occurs while the fluid is
transported from the steam mixing point to the injection point, can easily decrease the
quality from 10% to zero, with further cooling of the condensate below te saturation
temperature.

All the exposed lines were insulated with rigid neoprene hose. It was determined
from thermocouple readings that the temperature drop between the generator and the mixing
point for the low pressure model was 40°C. Hence, the boiler was set to 160°C to
compensate for the heat loss from the lines and thus, enabled precise mixing of 120°C
superheated steam with 23°C water. It was calculated that the heat loss occurring from the
mixing point to the injection point in the model, reduced the quality by 5 percentiles. Thus,
the fluid flow rates were calculated from the revised wa/wy quantity for 15% quality.

Steam quality was calculated both mathematically and determined experimentally.
Fluid temperatures were measured using thermocouples located at the boiler, the feedwater
vessel, the mixing point and the injection point. Hence, using the steam properties in a heat
balance, steam quality was calculated. The quality, defined as the mass fraction of steam
vapour in a water-steam system, was also measured physically. A mixture of superheated
steam and feedwater was pumped through the flow line and the resulting liquid was
collected in a graduated cylinder. The mass fraction of vapour was determined by
difference between this volume and the CWE (cold water equivalent) flow rate of wet steam
over the same period. It was believed that the major source of error in this method was that
the measured wet steam volume was larger than expected. This was because its volume
also included the steam coudensate produced as a result of cooling in the lines.

Consequently, the measured quality would be lower than the actual steam quality.

o
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However, several trials showed that the condensation effect was not as significant as earlier

believed, since the experimental results closely coincided with the calculated values.

Steamfloods in a Homogeneous Model

The simplest thermal recovery method, the hot waier drive, involves only two
phases: oil and water. At any given time, the temperature at the injection point is equal to
the fluid temperature. Temperature decreases away from the injection point until it
eventually reaches the original reservoir temperature.

An additional gas phase enables steam processes to exhibit better sweep and
displacement efficiencies. The presence of a gas phase causes lighter crude components to
be distilled and carried as hydrocarbon components in the gas phase. The performance is
due to the presence and condensing effects of the condensing vapour. The viscosity of the
crude at the condensation front, where the steam and condensable hydrocarbons condense,
will be reduced. Three steamfloods (Runs 77, 104, 107) were conducted in a
homogeneous model to serve as a basis for comparison and to test the reproducibility of the
experiments.

To further verify that a steam drive, as contrasted with a hot water drive, was the
primary recovery process in the model, a plot of the ratio of cumulative production to
cumulative injection (CP/CI) vs. cumulative pore volumes injected was constructed for Run
104, given in Figure 6.2. Initially, as steam is injected into the cold formation, the
cumulative production is less than the cumulative injection due to the low mobility of the
viscous crude. As the formation is heated and the steam zone expands, steam distillation
effects cause the cumulative production to exceed the cumulative injection. The rise in the
curve is indicative of the premises of the Marx-Langenheim theory*?, which assumes that
the latent heat of the injected steam is greater than the rate of its consumption. However,
Mandl-Volek30 stated that at some critical time, this ceases to be so and allowance must be

made for the convective heat transport by hot water ahead of the condensation front, which

83



Figure 6.2: Cumulative Productlon/Cumulative injectlon,
(CP/Cl) va. Cumulative Pore Volume Injected
for Run 104 - Sjeamflood in a Homogeneous Model.
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is shown by the decline in the curve. Eventually, as the formation is allowed to return to
the initial temperature, the oil volume will decrease and the hot waterflood process will
dominéte. Thus, the curve approaches a CP/CI ratio of one.

As an illustration of the importance of steam quality, Table 6.2 cornpares the results
of Run 79, solvent-steamflood in 2 homogeneous model, with its hot waier counterpart,
Run 6751, The most noticeable difference is that the ultimate oil recovery from the
steamflood (56%) is 30 percentiles more than that for the hot waterflood (26%). The steam
drive process, as seen from Figure 6.3, is even more evident in Run 79 than in Run 104
discussed previously. In a hot waterflood, there is clearly no steam zone, assuming that
pressure control is precise enough to preclude flash steam formation. Consequently,
CP/CI is always unity for Run 6751, The small anomaly at the beginning of the Run 67
CP/CI curve can be attributed to the dissolved gas coming out of solution from the crude as
a result of the increase in temperature, which also occurs in waterﬂo&as.

Only one of the base case steamfloods, Run 77, will be discussed in this section.
Figure 6.4 presents a concise overview of the results. The oil production rate is high
initially and declines with time, resulting in an ultimate recovery of 57% at 2.0 PV steam
injected (CWE). The produced water-oil ratio approached a constant value of 7 after 1.5
PV of cumulative steam injection. It was shown experimentally that this water-oil ratio
remained approximately constant even after 3.5 PV injection. It was also noted from the
top view temperature profiles in Figure 6.5 that the average model temperature was 60°C
after approximately 1.5 PV of steam was injected. It was decided to terminate all
experiments at 2.0 PV of steam injectio-n since there did not appear to be any significant
changes in temperature or oil recovery thereafter. On average, oil recovery only increased
between 8-10 percentiles after a total of 3.0-3.5 PV of steam was injected. The time
constraints and high operation costs did not warrant steam injection exceeding 2.0PV. The

cross-section profile at 0.5 PV in Figure 6.6 showed steam override, with excessive
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Figure 6.3: Cumulative Production/Cumulative Injection,
(CP/CI) vs. Cumulative Pors Volume Injected
for Runs 67 (Ref. 51) and 79 — 7%BW, 10% HVN.
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Figure 6.5:  Top View Temperature Profiles for Run 77—Steamflood using a
Horizontal-Vertical Well Combination in a Homogencous Model.
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steam/steam condensate production and very low oil production, primarily by condensate

segregation.

Waterflood followed by a Steamflood

The next series of experiments examined the process of steamflooding a previously
waterflooded reservoir. In Run 70A, a homogeneous reservoir was waterflooded,
followed by a subsequent steamflood in Run 70B. This strategy is of particular interest for
waterflooded reservoirs in Saskatchewan, which yield less than 5% by primary recovery,
and between 5 and 10% by secondary (waterflood) recovery methods. To test
experimental reproducibility, these runs were repeated (Runs 105A and 105B). Since the
results were similar, only Run 1£5 will be considered. |

In Run 105A, water was injected until a water-oil ratic (WOR) of approximately 15
was achieved, which is typical of many field operations. The ultimate recovery by
waterflooding was only 18%. A steamflood was then initiated in Run 105B. Figure 6.7
shows the gradual increase in oil production upon steam injection and a cumulative oil
recovery of 61% after 2.0 PV of steam was injected. While steam segregation and
preferential flow through the path of least resistance are mutualiy opposing effects, the
dominant factor controlling steam flow was segregation. Figures 6.8 and 6.9 show that the

injected steam followed the high water saturation channels on the top of the formation and

also showed override.

Gas Injection R

By injecting a small slug of an inert gas prior to steamflooding, it is expected that
the gas would create flow channels in the upper portion of the model, thereby creating a
more conductive path for the injected fluid. This is particularly effective in the case of a
bottom water zone where heat scavenging is a problem. The gas channels should divert the
injected fluid away from the bottom water. Thus, gas injection could offer a means of

increasing initial reservoir injectivity for a waterflood.
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Figure 6.8: Top View Temperature Profiles for Run 105A-Waterflood (WOR of 15)
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Figure 6.9:  Top View Temperature Profiles for Run 105R—Steamflond foilowing a
Waterflood.
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Prior to a Conventional Waterflood

Nitrogen was selected because of its inert nature, availability and low cost.
Nitrogen gas was injected for one prototype year (approximately 11.5 minutes) at 7 kPa (1
psig). Injection pressure was monitored regularly to ensure that it did not exceed 7 kPa.
Pressures above this level were sufficient to lift the model and break the vacuum seal.

In Run 71, gas injection in a homogeneous pack resulted in an initial gas saturation
of approximately 3%. The initial gas saturation was equivalent to the volume of fluid
displaced during the gas injection. Results of this run indicate that gas injection prior to
waterflooding did not improve oil recovery as can be seen in Figure 6.10. Only 19% of the
original oil in place was recovered at a WOR of 20 compared to 18% for the waterflood in

Run 105A with no gas injection.

Prior to a Hot Waterflood

Gas injection subsequent to a waterflood may produce preferential channels in
addition to the ones created by water. Hot water at 70°C was then injected for 1.5 PV unil
a constant WOR was obtained. Hot water was chosen because its highef sensible heat
would improve ultimate recovery, without the complexity of a steamflood. Again, as seen
in Figure 6.11, gas injection did nét seem to alter the recovery curves in spite of the hot
water drive. The cumulative recovery increased by 13% with the initiation of a hot
waterflood in a homogeneous model. Figure 6.12 shows significantly lower temperature
contours, on average 25°C less, than those produced from steam drives. The lower

thermocouple contours showed that a layer of cold water was flowing in the lower portion

of the pack.

Effect of a Gas Zone on Steamflood Recovery
The effect of gas on steam injection processes in the presence of bottom water was

examined in the next two runs. Nitrogen gas was injected using the procedure described
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Figure 6.11: Production History for Run 72: Waterflood In

a Homogeneou's Model, followed by N2 Injection
and then, by a Hot Waterfliood.
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Figure 6.12:

98

Top View Temperature Profiles for Run 72B —Gas Injection prior 10 a Hot

Waterflood.
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previously. It was noted that the nitrogen gas displaced a volume of fluid equal to the
volume of the gas zone. Continued gas injection did not cause further fluid production.
Instead, it was observed from the production tubing that the gas flowed directly through the

channels created during the injection.

Thick Bottorm Water

The thick bottom water model had a much higher initial gas saturation (44.5%) than
the homogeneous case in Run 105B (3%). In Run 935, the positive back pressure created
as a result of gas injection caused rapid bottom and formation water production. Under
normal conditions, fluid was drawn through the production side solely due to the vacuum
pump. In gas injection, nitrogen was injected under 1 psig while the pump was
simultaneous'y extracting the fluid. Hence, a positive pressure was created causing a lower
manometer reading. As mentioned previously, no fluid was produced from gas injection
after a certain point. Approximately six litres (5615 cc) of steam was injected into the
model before oil broke through.

As shown in Figure 6.13, gas injection in the presence of a bottom water layer did
improve oil recovery. Initially, only bottom water was produced in the early stages of
steam injection for both Run 95 (gas injection) and Run 100 (no gas.injcction). However,
oil breakthrough occurred earlier when gas was injected by approximately 0.25 PV or one
prototype year. Temperature contours for Run 95 in Figure 6.14 showed that the gas slug
caused the steam zone to advance more rapidly and farther in the formation compared to
Run 100, temperature contours for which are shown in Figure 6.15. The significantly
higher cumulative oil recovery for Run 95 is attributed to improved displacement efficiency

due to the larger gas saturation, which diverted steam away from the water zone.
Thin Botrorn Water
In Run 96, nitrogen was injected prior to steam injection, in the presence of a thin

bottom water zone. Nitrogen caused later oil breakthrough ir. this case. Figure 6.16
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Figure 6.13: Produciion History for Steamfloods in 50X Bottom
Water—Run 95 (Pre—Injection of N2 Gas) and
Run 100 (Continuous Steamflood, No Gas).
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Figurc 6.14: Top View Teiaperature Profiles for Run 95—Gas Injection prior to a
Steamflood in a Thick (50%) Bottom Water Model.
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Figure 6.15:
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shows that oil breakthmugh in Run 96 occurred 0.25 PV later than the conventional
steamflood (Run 90), which was the opposite for thick bottom water. Temperature profiles
for Run 96, in Figure 6.17, show that steam dispersed farther into the formation than for
Run 90 (Figure 6.18, without gas injection). However, there is an additional benefit of
conduction heating for gas injection in the thin bottom water case. At 1 PV, oil production
from Run 96 starts to exceed that in Run 90. At the conclusion of the experiments, the
ultimate oil recovery for Run 96 (50.2%) was greater than that for Run 90 (47.3%),
although the difference is of the order of experimental error. It should be noted that in the

previous work oil recovery was consistently higher when gas was used 4,

Steamflood in the Presence of Bottom Water

Figure 6.19 presents the results of four steamfloods conducted in the presence of
varying bottom water thicknesses: 0%, 7%, 10% and 50%. Figure 6.19 shows that the
initial production for 7% BW was less than that for the homogeneous case, but gradually
exceeded that for the homogeneous case as conduction heating effects start to dominate the
recovery process. The higher recovery in Run 83 (7% BW) was attributed to increased
reservoir heating by conduction through the bottom water zone.

As noted by Proctor et al.2l, there appears to be some minimum bottom water
thickness below which the preferential flow of steam through the basal layer and the
concomitant conduction heating would lead to higher ultimate recovery than that for a
homogeneous (no bottom water) formation. Figure 6.19 shows that 7% bottom water
produced slightly more oil than the homogeneous pack and significantly more than the 10%
and 50% BW situations. This suggests that the optimum bottom thickness is less than the

10% value suggested previously.

Solvent-Steamfloods
The purpose of injecting a small solvent slug prior to steamflooding is similar to

that for gas injection. The channels created by solvent injectiun would increase steam
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Figure 6.17:
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Top View Temperature Profiles for Run 96—Gas Injection prior to a
Steamflood in a Thin (10%) Bettorn Water Model.
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Figure 6.18: Top View Temperature Profiles for Run 90—Steamflood using a
Horizontal- Vertical Well Combination in a Thin (10%) Bottom Water

Model.
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Figure 6.19: Cumulative Oll Recoveries for Steamfloods using
a Vertical Producer and a Vertical Injector

as a function of Bottom Water Thickness.
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injectivity by providing the initial steam paths in an otherwise low mobility oil. The solvent
is also effective in reducing oil viscosity provided it disperses readily into the oil zone.
This is most likely to occur in the form of viscous fingering as a result of the high viscosity
of the formation oil and the low viscosity of Heavy Virgin Naphtha (HVN) solvent. Due to
increased oil mobility, a larger hydrocarbon (oil and solvent) bank would form and a2 more
stable steam displacement would occur.

The application of solvent injection is particularly useful for bottom water reservoirs
because it would divert the stean: away from the basal zone. Because the solvent is a non-
wetting phase, it would tend to channel only through the oil zone in the upper portion of the
reservoir instead of the basal zone.

Too large a solvent slug would create an oil bank in the oil zone leading to a greater
pressure drop. The greater flow resistance in the upper portion of the reservoir would
cause solvent to channel into the bottom water zone. Asphaltene flocculation would also

occur if large volumes of Heavy Virgin Naphtha were injected.

Results of Solvent-Steamfloods

In the following experiments, the effect of the solvent slug size on the overall
recovery performance was studied. The objective was to determine the optimal slug size to
maximize oil recovery in the presence of thin bottom water formations. Four slug sizes
(0%, 10%, 20% and 30%) were preinjected into a 7% bottom water formation prior to a
steamflood in Runs 83, 78, 84 and 82, respectively. Individual production results with the
accompanying temperature profiles are presented in Figures 6.20 through 6.27. The most
noticeable feature of these runs is that approximately 100% of the injected solvent was
recovered during the experiment. This was most likely caused by the aforementioned
steam distillation effects. The lighter naphtha solvent was carried along with the gaseous

steam phase resulting in a higher displacement.
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Figure 6.20: Production History for Run 83: No Solvent
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Figure 6.21: Top View Temperature Profiles for Run 83—No Solvent Steamflood ina
Thin (7%) Rottom Water Model.
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Figure 6.22: Production History for Run 78: Solvent, 10% PV,

Injection in a Bottom Water Model, 7% BW, prior to

a Continuous Steamflood.
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Top View Temperature Profiles for Run 78—Solvent (10% PV) Steamtlood
Thin (7%) Bottom Water Model.
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Figure 6.24: Production History for Run 84: Solvent, 20% PV,
injection In g Bottom Water Model, 7% BW, prior to
a Continuous Steamfiood.
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Figure 6.25: _
in a Thin (7%) Bottom Water Model.
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30% PV,

Production History for Run 82: Solvent
injection in a Bottom Water Model

a Continuous Steamfliood.

Figure 6.26
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Top View Temperature Profiles for Run 82—Solvent (30% PV) Steamflood

Figure 6.27:
in a "Thin (79%) Bottom Water Model.
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Temperature profiles for 0% and 30% solvent, Figures 6.21 and 6.27, respectively,
show a radial displacement pattern. In Figure 6.27, the slow development of the initial
isotherms was due to the prolonged injection period of the solvent, which was injcctéd at
room temperature. However, by 1.5 PV, they were exhibiting the typical radial behaviour.
Figures 6.23 and 6.25 (10% and 20% solvent with 52.9% and 52.1% oil recoveries,
respectively), on the other hand, show a linear displacement pattern normal to the injection
and production sides of the model. Figure 6.28 shows that 0% (56.6%) and 30% (54.3%)
solvent slug sizes yielded the greatest recovery. This indicates that a radial displacement
may be more favourable than an orthogonal pattern. However, the differences in oil
recovery are only slightly above experimental error.

Figure 6.28 reveals that oil recovery was not a strong function of solvent slug size
as the runs produced similar results. Although Run 83 (no solvent) had the highest
recovery (56.6%), none of the runs was distinctly better than the others. All of the solvent
runs had lower recoveries than the continuous (0% solvent) steam case. The results of
these experiments suggest that the use of solvent does not improve recovery when the
bottom water layer is less than 7%.

By diverting the steam away from the bottom water zone through the use of a
solvent slug, the conduction mechanism is forfeited. This is particularly apparent when
conduction heating effects through the bottom water zone are dominant. Under these
conditions, a continuous steamflood is more beneficial than a solvent-steamflood. The
optimum bottom water thickness of 7% also coincides with the results of stcam injection in

a homogeneous pack for Run 83 as presented in Figure 6.19.

Hori l-Vertical Well Strategi
Steam injection experiments, employing combinations of horizontal and vertical
wells, were performed in the Aberfeldy model. The objective of this study was to develop

a viable steamflood process for such thin, heavy oil reservoirs, often with a contiguous
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bottom water zone. Horizontal well runs were carried out for three cases: homogeneous,
thin (10%) bottom water and thick (50%) bottom water case: namely, the horizontal
producer-vertical injector (HPVT), the horizontal producer-horizontal injector (HPHI) and
the vertical producer-horizontal injector (VPHI) combinations. The effect of solvent
injection prior to steam injection in a thin (10%) bottom water formation, incorporating
horizoatal-vertical well strategies, was also investigated. The horizontal wells were placed
laterally at the center of the vertical plane (1.25 inches in the scaled model or 5.5 m,

prototype length).

Horizontal Producer-Vertical Injector

Figure 6.29 summarizes the cumulative oil recovery curves for the horizontal
producer-vertical injector combination. It is seen from Figure 6.29 that the 50% bottom
water cumulative oil recovery (32.4%) was significantly less than that the other two cases.
However, the 10% BW curve was not consistently less than the 0% case. Although
similar, slightly lower quantities of oil were produced initially than those for the
homogeneous case (48.5%). In the latter portion of the run, conduction effects caused the
cumulative recovery (53.6%) to exceed that for the homogeneous case.

Temperature profiles for Runs 74 (Figure 6.30, homogeneous model), 87 (Figure
6.31, 10% BW) and 97 (Figure 6.32, 50% BW) show that the steam front was
perpendicular to the horizontal producer. It appears, from the contours, that the fluid influx
into the producer was relatively uniform. There is no indication that most of the fluid
entered only one end of the producer. Gravity override is evident. Notice that at early
times (Figure 6.30, 0.25 and 0.50 PV), the steam front in the upper part of the model was
approximately radial, although the condensate enieriig the horizontal well followed a more

linear pattern. Possibly the gravity override effect is accentuated by well placement.



Figure 6.29: Cumulative Oll Recoveries for Steamfloods using
a Horlzontal Producer and a Vertical Injector
as a functlon of Bottom Water Thickness.
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Figure 6.30: Top View Temperature Profiles for Run 74—Steamflood using a
Horizontal-Vertical Well Combination in a Homogeneous Model.
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Figure 6.31: Top View Temperature Profiles for Run 87—$teamﬂood using a
Horizontal-Vertical Well Combination in a Thin (10%) Botiom Water
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ig 32:  Top View Temperature Profiles for Run 97-—Steamflood using a
Figure 63 Hoir)‘izomal-\/ertical Well Combination in a Thick Bottom (50%) Water
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Horizontal Producer-Horizontal Injector

The curves in Figure 6.33 follow a pattern similar to the ones presented in Figure
6.29. Again, high ultimate oil recovery was attributed to conduction effects from the thin
bottom water zone. However, the cumulative recoveries are significantly higher for the
HPHI than the HPVI combination. Figures 6.34 through 6.36 show that the steam
advanced parallel to the horizontal injector and producer. This suggests a linear advance of
the stearn front because of the horizental injector. It should be noted that stez;m was
introduced at the midpoint of the horizontal injector. The temperature contours shown in
the figures are slightly distorted at the corners, because a thermocouple was installed at one

corner and not the other.

Vertical Producer-Horizontal Injector

Figure 6.37 shows that bottom water has an adverse effect on recovery when a
vertical producer-horizontal injector combination is used. This is most likely because steam
has a strong tendency to be diverted to the bottom water zone when injected vertically in
view of the large pressure gradients. When horizontal injectors are used, steam will be
injected above the basal zone. This is more effective since heat transport into the mobile
water zone will be minimized and hence, process efficiency will increase. It was necessary
to establish a line for the position of the horizontal well to consider thick and thin bottom
water situations in the same model.

The steam front advanced uniformly in a linear fashion for the three reservoir
situations, as shown in Figures 6.38 through 6.40. In the last case, there was some
tendency for steam to advance in a radial fashion at the right extremity of the horizontal
well, possibly because this was the steam inflow end from the steam generator. In this
case, there was no evidence of recovery improvement due to the conduction effects
observed previously. Preferential heating of the basal zone, which occurred when steam

was injected vertically, did not occur in this instance. The most probable reason is that the
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Figure 6.33: Cumulative Oil Recoveries for Steamfloods using

a Horizontal Producer and a Horizontal Injector
as a function of Bottom Water Thickness.
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Figure 6.34:
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Top View Temperature Profiles for Run 75--Steamflood using

Horizontal-Vertical Well Combination in a Homogeneous Model.
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Figure 6.35:;
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Top View Temperature Profiles for Run 101—Stcamflood using a

Horizontal-Vertical Well Combination in a Thin (10%) Bottom Water

Model.
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Figure 6.36: Top Vicw Temperature Profiles for Run 98—Steamflood using a
Horizontal-Vertical Well Combination in a Thick Bottom (50%) Water

Model.
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Figure 6.37: Cumulative Oil Recoveries for Steamfloods using

Cumulative Oil Recovery, %z 00IP

a Vertical Producer and a Horizontal Injector

as a function of Bottom Water Thickness.
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Figure 6.38:

Produstion Well

Top View Temperature Proliles for Run 76—Steamtlood using a
Horizontal-Vertical Well Combination in a Homogeneous Model.
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Figure 6.39: Top View Temperature Profiles for Run 102—Steamflood using a

hHonz'izrimtal—Vertical Well Combination in a Thin (10%) Bottom Water
odel. '
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Figure 6.4(): Top View Temperature Profiles for Run 99—Steamflood using a
ﬁor(liz?nuﬂ-Vcnical Well Combination in a Thick Bottom (50%) Water
odel.

Temperaiura Profile for Temperature Proflle for
0.25 Pore Volumea Injecled 0.50 Pore Yolumes Injocied

Praduction Waell Producilon Well
r

32
3

13
28

s s
5 £
= i~
=8 2R
B >
& [
3 .
] -
2 3
% |94, L LTy .4 »
8 2 | e 507 amneet
T T Lot AR do L. -
= > a- . oW
I R e - /
h o L . $7 A
o 4 . 2 W 220 24 M %
Herlzontal Modsl Langth, inchaa 4 Horizontal Modsl Lenglh, inches 4
Upper Model Tamperature C In]ecilon Weil * Uppar Model Temperature C ’ In]oclion Wall
. -Lower Uodsl Temperalure C__ Aewer Model Tamparature C_

N N N N N o N N N o N o N N
* e A Y o o Nl N D NN LA
0.5 N N N e e N o N o VY NI T
Temparatura Profile for Temperalurs Proflle for
1.00 Pore Voiumes Injectad 1.50 Pore Volumes Injected
Production Well Preduction Welt
~
-‘~ ‘I ~ “ “h‘
“ % e - n:.‘ . SN “t
§ £ Coa ‘{"'. .
o8 g 45 s, ’ e
a e e B - ._.-‘ )
2 | 45 .. {,-'. o
S S .
ek 2 5w 1 S
3 2= T®e
-
£ a
3 3
3 3™
Z o
O T e 7 R
%o L *
- .
° H H 1= 1 20 24 28 33 % H . 2 * 0 24 1 32
Herizonial Medel Lengih, inches 4 Horizonla! Madel Langih, Inches 4
Upper Model Temperglurs © injecilon Wall Upper Model Tamperolure €~ Injection Well




133

placement of the horizontal injector did not enable the steam to contact the basal zone.
However, in Run 101 (Figure 6.33), conduction heating from a horizontal iniector seemed
to develop because the well was located closer to the basal zone, leading to favourable
conditions. Bottom water thawing during saturation generated inaccurate basal zone
thicknesses and hence, affected the vertical distance to the well. Thus, based on the results
of the experiments, the horizontal injector and the perforations for vertical wells should be

placed as close as possible to the basal zones to maximize production from thin bottom

water reservoirs.

Comparison of the Reservoir Situations
The following sections compare the results of the various vertical-horizontal well

situations. An optimal production strategy can be developed for different reservoirs, with

and without bottom water.

Homogen

As can be seen from Figure 6.41, the horizontal producer-vertical injector
combination in Run 74 yielded the lowest ultimate recovery (2.5 PV) of 48.5% while
horizontal producer-horizontal injector produced the highest values of 60.9% in Run 75,
However, quantitatively speaking, in view of ultimate recovery, .th; verﬁcal producer-
vertical injector combination in Run 77 yielded approximately the same results (57.4%) as
R;m 75 (HPHI). The primary difference is in instantaneous oil recovery which is shown in
Figure 6.41. In all horizontal well combinations (VPVI case is included in all figures for
comparison only), initial oil production is high and falls off rapidly after 0.75 to 1.5 PV of
steam injection. While initial oil production in the VPVI case was not as high as in the
situations incorporating horizontal wells, uniform production is observed to 1.0 PV before
oil production rate begins to decline. The cumulative oil recovery plots in Figure 6.41
show the rate of recovery as evidenced by the slope of the curve. This is seen to be the

highest in the case of the HPHI arrangement.
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Temperature distributions tend to show the usual early breakthrough of steam.
However, in the case of the HPHI combination, the flow pattern, as shown by temperature

profiles resemble a line drive, resulting in a sustained oil cut of about 25% over 1.5 PVs.

Thin Bottom Water

Horizontal-vertical well combinations performed better in thin bottom water
situations than in the homogeneous case. It can be seen from Figure 6.42 that the HPHI
combination again yielded the highest recovery (64.5%), which is about 5% greater than
the homogeneous case in Run 75. A horizontal producer-vertical injector combination
(Run 87) produced the second highest recovery (53.6%). Again, Run 87 (HPVI)
produced approximately 7 percentiles higher than its homogeneous counterpart. However,
both vertical production well combinations, VPHI and VPV], yielded similar results, where
ultimate oil production decreased compared to the homogeneous steamfloods in the
presence of thin bottom water.

The oil production rate curves shown in Figure 6.42 are somewhat different from
those shown in Figure 6.41. The oil production rate builds up from zero to the maximum
value over 0.5 to 1 PV of steam injected. This is because the steam initially penetrates the
bottom water layer. Subsequently, heat conduction mobilizes the oil above, leading to an
increase in the oil cut. At the same time, steam advances into the mobilized oil zone. In
the case of the vertical injectors, the wells were completed in the oil zone. Oil recovery was

low in the cases involving vertical injectors,

Thick Bottorn Water

Thick bottom (50% of gross thickness) water adversely affected recoveries in all
well combinations by decreasing oil production by about 20 percentiles. In all the instances
in Figure 6.43, bottom water production was observed for about 3 to 4 project years (0.75
PV). The most promising results were obtained from the HPHI combination followed

closely by a vertical producer-horizontal injector well pair. A VFHI combination works
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better in thick bottom water, while 2 HPHI combination is essential to steamfloods in thin
bottom water formations. The experiments that a horizontal injector performs better than a
vertical one in a thick bottom water formation. The oil bank breakthrough occurred much
later in all cases at 0.5-0.75 PV injected. The temperature profiles tend to show that the
injected steam condensed and advanced in the bottom water zone for a considerable time.
When the overlying cil was mobilized sufficiently, oil production started while the

condensate continued to flow in the bottom water zone.

Application of Horizontal-Vertical Well Strategies in Solvent-Steamfloods

In a series of runs (Runs 91, 92, 93 and 94), a small slug of solvent (10% PV
Heavy Virgin Naphtha, see Table 6.2) was injected in the presence of a thin bottom water
(10%) layer through a vertical wellbore ahead of steam. Oracheski et al.*! suggested that
an optimum solvent slug size of 10% seemed to maximize the amount of oil recovered in a
solvent-steamflood process when the bottom water thickness is less than 25% of the model
thickness. However, the results, as summarized in Figure 6.44, show only a 5%
improvement in recovery as a result of preinjection of solvent. No asphaltene flocculation
occurred primarily because a small volume of naphtha was used*3. Approximately 80% of
the solvent was recovered in the early stages of the steamflood.

The effect of solvent injection (10% PV) through a horizontal rather than a vertical
well was also examined for a 10% bottom water in Run 106. The horizontal producer and
horizontal injector combination was selected for this run since it had consistently produced
the highest recovery in all other runs. Run 92 (HPHI) yielded the greatest overall recovery
of 67.5% in the presence of thin bottom water when the solvent was injected vertically.
Temperature contours for HPVI, HPHI, VPHI and VPVI combinations are presented in
Figures 6.45 through 6.48, respectively. -

Figure 6.49 shows that the type of well through which the solvent is injected affects

the cumulative oil recovery. Incremental recovery as a result of solvent injection through a
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Figure 6.45: Top View Temperature Profiles for Run 91—3olvent (10% PV)-
Steamflood using a Horizontal-Vertical Well Combination in a Thin (10%)

Bottom Water Model.
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Figure 6.46: Top View Temperature Profiles for Run 92—Solvent (10% PV)-
Steamflood using a Horizontal-Vertical Well Combination in a Thin (10%)
Bottom Water Model,
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Figure 6.47: Top View Temperature Profiles for Run 93—Solvent (10% PV)-
Steamilood using a Horizontal-Vertical Well Combination in a Thin (10%)

Bottom Water Model.
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Figure 6.48: Top View Temperature Profiles for Run 94—Solvent (10% PV)-
Steamflood using a Horizontal-Vertical Well Combination in a Thin (10%)

Bottom Water Model.
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Figure 6.49: Solvent Injaction Strategies for Steamfloods
using a Horizontal Producer and a Horlzontal
Injector (10% BW, 10% HVN)
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horizontal welibore is about 5% less than injection through a vertical well. ‘The results of
Run 106 closely resembled those for Run 101 (10% BW, no solvent), which would imply
that the use of a horizontal solvent injector in a thin bottom water zone is not beneficial

considering performance and cost.

Summary of Horizontal-Vertical Well Strategies

Figure 6.50 provides a comparison of ultimate oil recovery for the different
injection-production strategies used, for all cases (with and without solvent). The
superiority of the horizontal injection-horizontal production combination is clear. On
average, highest recoveries were obtained in thin bottom water cases. The results showed
that the horizontal producer-horizontal injector combination worked best for all reservoir
situations. While comparing the different bottom water cases, it should be noted that the
actual volumes of oil in place differ considerably evcn though the oil saturations are within
experimental error. Thus, the oil recoveries in terms of volume will be quite difterent even

if the percent values are the same.

Repr ibili Resul
Several runs were repeated to test experimental reproducibility. Resuits in Table
6.1 for Run 86 (Repeat of Run 74, VPHI in a homogeneous pack) and 104 (Repeat of Run

77, VPVI in a homogeneous pack) prove that the experiments could be reproduced within

an error of ¥2%.



Figure 6.50: Comparison of the Varlous Infection—Production

Strategles on Ultimate Oll Recovery, for the

Different Bottom Water Cases Investigated.
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Chapter 7

Conclusions

Steamflood experiments of several types were carried out in an extensively

redesigned scaled model, with varying amounts of bottom water present. The following

conclusions are reached on the basis of the observed performance in the scaled model:

a)

b)

)

Generally, bottom water has an adverse effect on steamflood performance.
However, a thin bottom water zone may help to improve oil recovery. It was
found that a 7% bottom water thickness is the optimum value, below which
formation heating by conduction is more beneficial than the use of gas or

solvent additives, for increasing oil recovery.

The implementation of vertical-horizontal well combinations in thin, heavy oil
formations led to the following findings:
A horizontal producer-horizontal injector combination (HPHI) worked best
for all reservoir situations, investigated in this work. The oil recovery by
HPHI was 10 to 20 percentiles greater than the poorest well combination,
characterized by the smallest cumulative oil production.
Horizontal production wells performed better in thin (10% of gross
thickness) bottom water situations than in a homogeneous reservoir with no
bottom water. Qil recovery was approximately 4 percentiles higher when
steam was injected in the presence of a thin basal water saturation zone.
In the presence of thick bottom water (50% of gross thickness), all well
combinations exhibited similar performance, but a horizontal injector still
performed better. The HPHI combination recovered 41% OOIP compared
to the 33% recovery by the VPVI combinations
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A 10% naphtha slug injected ahead of steam improved oil recovery by only 5
percentiles in the presence of a thin bottom water zone, resulting in a maximum

oil recovery of 68%.

Pre-injection of a slug of solvent or gas was successful in diverting the steam
away from the heat scavenging basal water zone. This was proven to be
particularly effective in thick bottom water formations, as exhibited by the

improved steamflocd performance.

The precision of the steam quality control governs the outcome of any
successful steamflood, in the laboratory or field. This is especially critical in
low pressure experiments as the scaled quality is between 5-15%. A plot of the
ratio of cumulative production to cumulative injection (CP/CT) vs. cumulative
pore volumes injected can verify whether the recovery process is a steamflood

or a hot waterflood.
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Chapter 8

Recommendations for Further Studies

This study has presented steam injection methods for recovering oil from marginal
heavy oil reservoirs in Alberta and Saskatchewan. Of these methods, the use of a gas
additive and horizontal wells appear to be the most promising. Laboratory studies in scaled
physical models should be continued to devise techniques for increasing the profitability of
the present field operations in these reservoirs.

In view of the current shut-in steam projects in Alberta and Saskatchewan, heat
scavenging techniques could offer a means of recovering additional oil beyond the current
economic limit, Future studies should investigate the viability of using an inert gas additive
to partially recover the heat remaining in the formation following a steamflood.

The construction of four vertical injection wells in the model permits the steamflood
experiments to be conducted in one-quarter of a nine-spot pattern. The effect of closer well
spacing could be considered. In addition, multiple vertical injectors/producers strategies
could be studied: one horizontal producer-two vertical injectors and two vertical producers-
one horizontal injector.

To complement the current investigation, a thicker model of the Aberfeldy reservoir
should be constructed according to the criteria presented here. A thicker model would
permit more flexibility in the placement of horizontal wells with respect to the vertical
plane, and in bottom water creation. To maintain the same pore volume, yet increase the
thickness, the model should be constructed as one-half of its element of symmetry. This
could be accomplished in two ways: a rectangular model (one-half the areal size of the
present model, which could scale the horizontal wells used in the current study), and a
triangular model representing one-eight of a five spot as opposed to one-quarter (vertical
wells could be scaled and the different placement of horizontal wells compared to the

rectangular model could be studied). Another alternative is to design a model using a larger



150

length scale, which would produce a thicker model. Impermeable blocks could be inserted
as required to maintain the same pore volume. As in all thermal studies, temperature is 2
crucial element. Therefore, a thicker model, which would permit more thermocouple leads,

should be incorporated into the apparatus.
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1. MODEL PREPARATION

L1 _Preparation of 3 Homogeneous Model
1.1.1 Sealing the Model

a) Place the Wygal48 particle distributor on top of the frame of the fibreglass model.

b) Fill the distributor with approximately 40 litres of 3 mm diameter glass beads using
a 2 litre volume beaker.

¢) Allow beads to pass through a metering board onto the mesh screens in the
distributor.

d) Trim off excess beads off the model surface using a metal straight edge to ensure a
flat surface with no protrusions.

e) Apply a thin (1/8" thick), uniform layer of clear silicone sealant (Dow Coming RTV
Sealant 732) around the edges of the fibreglass tray.

f) Place 1/8" thick Celtite Neoprene Sponge on top of the tray and hence, covering the
sealant.

g) Place the (overburden) granite block on the tray and clamp the model.

h) Turn on the vacuum pump and evacuate the fluid containers.

i) Turn injection well off.

j) Connect the production well to the the collection system.

k) Aim the three way valve towards one of the containers and open the production well
in the direction of the up dip saturation ports in order to evacuate the model.

~ When the system is completely sealed, it will be indicated by a constant vacuum in
excess of 68 cm of Hg which can be read from the adjacent manometer.

1.1.2 ing the Model

a) Once the model is evacuated, tighten the clamps and tilt the model to 45°.

b) Immerse the saturation tube in a vessel filled with 16 litres (Vi) of distilled water,

¢) Connect the saturation tube to the model.

d) Open the injection well by turning it in the direction of the down dip saturation
ports.

~~ Saturation occurs as a result of the suction force of the pump at the production end
which draws the water from the down to up dip end of the model.

e) Close the production well when the model is completely saturated with water which
is indicated by water production in the collection flasks,
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f) Record the volume of water displaced during the water saturation process (V1),
disconnect the saturation tube and measure the volume of water remaining in the
water vessel (V).

g) Determine the volume of the pore volume (PV) of the bead pack:

Total Initia] Amount of Water Final Volume
Pore Volume = - -

Water Volume Displaced
PV =V;-V;-Vy
Since the bulk volume of the model is 42005 cc, the porosity may be obtained:

of Water Remaining

PV PV
o [Bulk Volume) o 42005 cc x100%

h) Place the saturation tube in a 20 litre pail of Faxam-100 oil and reconnect it to the
injection ports.

i) Open the production wells and collect all fluid production in the pre-evacuated
collection flasks.

j) Close the production saturation port when oil saturation is complete.

~ This is signified when water is no longer produced, that is, when the bead pack has
reached its irreducible water saturation (Swj).

k) Measure the amount of water displaced during water saturation (V2).

) Calculate the hydrocarbon pore volume (HYC PV):

Hydrocarbon
Pore Volume

Amount of Water Displaced
= (Pore Volume) -

During Qil Saturation
i.e. HYCPV isthe amount of oil taken into the model
HYCPV=PV-V3
Thus, the initial oil saturation is

- HYC PV N
PV
Since the inital gas saturation is assumed to be zero (Sgj) unless otherwise specified
as in the case of a gas run, the irreducible water saturation can be calculated since
Soi + Swi+ Sgi =1, but Sgi = 0

Hence, Swi=1-S8gi

m) Disconnect the saturation tube and production well.

n) Return the model to the horizontal position.

o) Push the model into the walk-in cooler.

S 100%



p) Turn on the cooler thermostat to 37.5°F (3°C).
~— Tt takes 24 hours to cool the entire model to 3°C.

1.2 _Preparation of a Bottom Water Model
1.2.1 In ign
The primary objectives are:

a) to simulate a bottom water layer using a layer of frozen 5% NaCl solution

b) to measure the refractive index of displaced water during the water/oil saturation
process and hence, determine the quantity of bottom water remaining as a function
of total gross model thickness

122 B W lati

a) Express the thickness of bottom water (t) required as a percentage of gross model
thickness.
b) Assume: $avg = 34%.
¢) From the Science Data Book, pNact = 2.165 g/cc and pr2o =1.000 g/ce at 293 K.
d) Calculate the average pore volume (PVyyg) of the model for the given sttuation:
PV, =0y XV,
where: Vp = 42005 cc = bulk volume
e) Determine the pore volume (Vp) that the bottom water of thickness 't occupies:

total model thickness (=2.5") _ PV,,
t Vv

P
f) Include a correction volume in Vj to account for bottom water loss due to melting

during saturation: Vp = Vp + Correction
g) In order to determine the quantities of NaCl and H20 required to make a 5% (by
weight) NaCl solution, the following equation is solved by trial and error:

,» In .
Vp =10 + Eﬁﬂ. where mp =0. 95[1]3 o™t O.OSmN.Q
)
Pro  Paa

Sample Calculation 1. 10% Bottom Water Mixture (10% BW)

a) For 10% BW (% gross model thickness):
t =(10%) % 2.5"=0.25"

164



b)

d)

g

165
Given: ¢ayg =34% and Vi = 42005 cc,
PV, =34% x 42005 cc = 14282 cc

avg

The pore volume that the bottom water occupies is:
2.5" 14282 cc
= s V.o=142
025 V. p = 1428 co

?
Add a correction factor of 600 cc to the total volume of brine required to
compensate for melting:
Vp = 1428 cc + 600 cc = 2028 cc
If it is assumed that the total mass of the BW required is 2085 g:
mp20=0.95x 2085g=1981 ¢
mnac1=0.05x 2085g=104 g
Check to see that the volume calculated using the masses and densities correspond

to the required volume of V' which was determined in Step (d):
1981 g 104 cc
=——>"—=1981cc; Vyq=————=48cc
B0 1000 g/cc A 2165g/ cc
Hence, V, e = 1981 cc +48 cc=2029 cc
If Vp' calculated does not agree with Vp' required Within a + 10 cc tolerance then

reiterate on Step () by assuming another value of total mass required for 10% BW.

1.2.3 Formation of a4 Bottorn Water Layer

a)
b)

c)

g

h)

Pour the required volume of 5% NaCl solution into the fibreglass model.

Sprinkle enough glass beads into the tray using a 200 ml beaker to cover the bottom
water solution,

Add an additional thin layer of beads to the brine to compensate for water swelling
due to freezing.

Push the model into the walk-in cooler in preparation for freezing.

Place 40 litres of dry glass beads into the cooler.

Close the ccoler and adjust the thermostat to -30°F (-34°C).

Freezing generally takes approximately 24 hours for bottom water thickness
variations up to 50% of the total gross model thickness.

When the bottom water is completely frozen, pack the remainder of the mode! with
the frozen beads using the Wygal48 particle distributor.

Skim off any excess beads using a straight edge.
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i) Seal and saturate the bottom water model using the same procedure which is applied
to the homogeneous model.

~~ The purpose of using frozen beads and cold water instead of room temperature
materials are simply to act as a heat sink by minimizing the thawing effects of the
bottom water layer during the saturation process.

j} Measure the refractive index of each sample to determine the amount of bottom
water which has melted using the lever rule.

~~ A plot of refractive index versus the percentage of NaCl in solution was constructed
for various %NaCl combinations. From the linear relationship, which was
achieved and is shown below as Figure B.1, it was determined that 0% NaCl
corresponded to 0% bottom water and had the refractive index of distilled water,
1.33246 at 25.5°C. Similarly, 5% NaCl corresponded to 100% bottom water and
had the refractive index of distilled water, 1.3410 at 25.5°C.

1342 7
1341 - RF=1.3410, %BW=100% ——>
1340 3
1339 ]
1338 3

RI

1337 3
1336 3
1335 4
1334 3
1333 3

“— RF=1.33246, %BW=0%

2 3
% NaCl
Figure B.1: A Plot of Refractive Index vs. %NaCl.

Sample Calculation 2. %BW Loss Due to Melting Using Refractive Indices

a) Given: RI =1.3350 at 25.5°C
Sample Volume =V =1200 cc
PV = 14000 cc
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Volume of Bottom Water Frozen Initially = Vp =2029 cc
Find: The volume of BW remaining in the model after this sample is taken,
b) From Figure B.1, %NaCl = 1.5% at RI = 1.3350. Using the lever rule determine

%BW in sample,
%BW in Sample _ 1.5%NaCl
100%BW  5%NaCl
. L.5%NaCl
Thus, %BW in Sample = SANaCL x 100%BW = 30%BW
¢) Calculate:
BW Produced = %BW in Sample x Sample Volume
= 30% x 1200 cc
BW Produced = 360 cc
d) Then, solve:
BW Remaining= Vp' - (BW Produced)
= 2029 cc- 360 cc
BW Remaining= 1669 cc
¢) Bottom water thickness can now be determined:
2.5" 14000 cc
t 1669 cc
t =0.298"=11.9%BW(%gross model thickness)

0.298"

where %gross thickness = x100% =11.9%

2. DATA ACQUISITION SYSTEMS

2.1 _Megadac

The following procedures are u:zd to generate and record the data from steam
injection experiments in a scaled physical model using the Megadac 2000 data acquis tion
unit. This system has now been replaced by the Metrabyte and Labtech Unit which is
described in Section 2.2.

211 in

a) Turn on the IBM Personal Computer, MEGADAC SYSTEM 2000 and the EPSON
Printer.

b) To change the directory, type CD\OPUSHELEN.

¢) To run the OPUS software package, type OPUS.
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d) Press PF§ (MEASUREMENT USING MEGADAC) followed by
RETURN.
~ If the Megadac and IBM screen both have the correct time and date, and no other

error message appears on either screen, then go to Step 2.1.3 otherwise go to Step
2.1.2.

212 M Inigalizati
PartA

Type PF9 for initialization instructions which are as follows:

a) Press RESET button on Megadac 2000.

b) Press SETUP button on Megadac 2000.

¢) Type 2 to set the mode.

d) Type 99.

e) Press ENTER button on Megadac 2000.

f) Tum off Megadac 2000.

g) Turn on Megadac 2000 to establish initial baud rate.

h) Wait for the REMOTE light on the Megadac panel to appear. Then, press PF10.

~ If no error is indicated on the IBM screen, then proceed to Step 2.1.3. However, if
there is still an error in either the time, . ate or any other information printed on the
screen , then the time and date must also be reset as listed in Step 2.1.2: Part B.

PartB

a) Press RESET button on MEGADAC 2000.
b) Press SETUP button on MEGADAC 2000.
c) Press 1 to set the time.
d) Type the time and date in the following sequence:
date month year hour minute seconds or dd mm yy hr mi ss
~- Please note:
~ There are no spaces in this character chain.
~ Each itein consists of two intc gers,
o~ Time format is based on 2400 hours.
~ For example, :
‘ May 19, 1990 at 10:30:35 am is typed in as 190590103035.
October 2, 1990 at 3:45:00 pm is typed in as 021090154500.
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e) Turn off Megadac 2000 to reinitialize baud rate.
f) Turn on Megadac 2000.
g) When the REMOTE light comes on, press PF10.
~ If no error message appears on Megadac or on the IBM screen, go to Step 2.1.3.

2.1.3 Initializing Data Tables

a) Press PF4 (RUN — DATA TO DISK) and then RETURN.

b) A screen from the OPTIM USER'S SOFTWARE is generated to record SCAN
AS PER TABLE. Type PREPARE in the grey box beside the title "Name of
Experiment Table". This is done in order to check if the thermocouples are all
working.

c) Press PF10 to accept the PREPARE file.

d) Suffix to be given to data file: D__ is shown on the screen. Type in the grey box
the suffix number, such as 67 so the data will be recorded as D67.

¢) Press PF10 again to continue in addition to checking the thermocouples and
pressure transducers on the model. The Optim User's Software Package converts
voltage readings to temperature and pressure units for the repective sensors. White
numbers refer to positive values (kPa or *C) while red numbers indicate negative
values (kPa or °C). Thermocouple temperatures should be between zero and three
degrees Celsius (0 to 3°C). Check and adjust any thermocouple or transducer
connections with temperature and pressure readings in excess of a factor of 1000.
Possible sources of error are loose connections between the data cable and sensor
junction, broken thermocouples or electrical shorts in data cables which connect the
sensors with Megadac.

f) OPUS and Megadac will continue scanning the thermocouples until all reading
are satisfactory. To stop scanning, press PF8.

g) To return to the OPUS wenu, press PF10.

~~ Once the thermocouples are producing acceptable results, the next stage of the
program is to allow OPUS to record all the experimental results in the IBM hard
drive and print all the transmitted data simultaneously on the EPSON printer.

h) Press PF4 (RUN — DATA TO DISK) and RETURN.

i), This time the "Name of Experiment Table" is typed in as RUNS instead of
PREPARE as in Step (b). Then type RETURN to accept the table.

7 The RUNS table records the experimental results. To receive a printed copy
simultaneously with the displayed results, press RETURN to cursor the grey box
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to the desired selection: PRINTED/MEASURED RESULTS. Type 1 beside
PRINTED/MEASURED RESULTS. This command will allow the EPSON printer
to print one measured result for each one displayed on the IBM terminal.

%) Press PF10 to retum to the screen.

1) Press PF10 to accept the new input data.

2.1.4 Recordin Run D

~~ Record the data only pertinent to the run such as solvent injection and steam
injection. Well connection time is ignored.

a) When the solvent inlet is connected to the injection well , begin scanning when
solvent injection begins. This is done by pressing PF10 which stores the run data
for each 30 second scan. Record the scan numbers from the IBM screen when
solvent injection begins and ends.

b) The solvent port is then disconnected and is replaced by the steam port. The
objective is to open the production well approximately half (1/2) a scan before the
injection well. First, open the production well and record that scan number.
Second, open the injection well on the following scan and record that scan number.
It is essential to record the scans at which each sample is collected as well as the
instant the pump is shut off (ie. when the experiment ends). Also record additional
scans, such as pressure buildup and pore volume injected, as they are helpful when
analyzing the results.

~ Tt is desired to maintain a production pressure between 80 and 90 kPa. If the
pressure exceeds this range then the seal will most likely break and destroy the
vacuum; the results from the run will then be useless.

d) Other items which should be recorded include the refractive index of the samples ,
the total volume of the sample and the respective volumes of solvent and oil in the
cylinder.

2.1.5. Ouirt

a) To stop scanning and storing the data, press PF8.

b) To return to the OPUS menu, press PF10.

c) To terminate the OPUS program, press PF10.

d) To exit OPUS and return to DOS, press PF10.

e) Finally, type YES or Y when prompted to exit the OPUS package.
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2.2 Metrabyte

The Megadac 2000 data acquisition system broke down prior io the initation of Run
70B. After evaluating situation, it was decided that it would not be economical to repair the
Megadac unit or the Optim User's software package. Rather, it was more feasible to
replace Megadac with another acquisition system. A Metrabyte data acquisition systern was
chosen primarily because of its low cost, its ability to interface with the existing IBM
personal computer which was used to process Megadac 2000 data, easy accessibility for
necessary repairs as well as the availability of consultants. In addition, an integrated data

acquisition, control and analysis software package called Labtech Notebook was also
purchased.

One of the advantages of choosing Metrabyte is its expansion capability. The
central processing unit is an eight channe! 12 bit high speed A/D converter and
timer/counter board for the IBM PC called the DAS-8 board. The EXP-16 multiplexer
offers a relatively inexpensive way to expand the input capabilities of the DAS-8. Each
EXP-16 has 16 fully differential inputs that can be multiplexed into a single A/D board
input channel. The EXP-16 is ideal for measuring thermocouple inputs because of the
temperature sensor on the board which permits the cold junction temperature (CJC) to be
monitored. Although it is possible to have a maximum of eight EXP-16 panels attached to
one DAS-8 multiplexer, the steam injection experiments require oply a maximum of 37 J-
type thermocouples and 4 pressure transducers. Therefore, four EXP-16 boards were
ordered and were installed according to Figure B.2:

D‘?qsufﬁ'l‘,’:',‘.;'e’ EXP - 16 Boards

Gain =200 16 Thermacoupies

Gain =200 16 Thermocouples

Gain =200 § Thermocouples

Gain=1/2 3 Pressure
T ransducers

Figure B.2: A Schematic of the Metrabyte Data Acquistion Unit.
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Labtech Notebook processes all raw thermocouple (mV) and pressure transducer
(mV) measurements and automatically converts them into real values of temperature
(degrees Celsius) and pressure (kPa) as a function of real time (seconds or minutes). No
programming was required because Labtech is menu driven. To initiate Labtech, simply
change the Main directory to the Notebook one by typing the DOS command cd\nb
followed by nb which will execute the program. In addition, Notebook includes
foreground/background operations which permits the user to perform other tasks while data
is being collected. Furthermore, Labtech Notebook interfaces all data files, which are
stored in an ASCII file format, to IBM software packages, such as Lotus 1-2-3 of Lotus
Symphony. It is important to note that a hard drive is preferable in order to maximize
efficiency due to the large size of this software package. In addition, the hard drive must
be referred to as 'C’" if it is desired to use Labtech's intallation program (Version 4.36),
otherwise Notebook must be installed manually.

3. CLEANING THE MODEL

3.1 General Procedure

a) Remove the clamps from the model.

b) Bleed off the vacuum in the model by opening one of the quick-connects. If this is
not done, then the top granite block will tend to stick to the Neoprene sheet and
consequently, the fibreglass tray as a result of the vacuum created during the run.

¢} Remove the top block using the hydraulic jack,

d) Pull the cart containing the lower block and tray away from the jack into an open
area for cleaning.

¢} Remove the Neoprene sheet.

f) Shake the sheet to remove any glass beads which may be imbedded in the
Neoprene.

g) Dispose of the Neoprene sheet in a waste container since it will not be reused in
future runs.

h) Scoop out the glass bead pack from the model using a small beaker and place them
into several plastic pails.

~ Try to avoid bending the thermocouples since they break very easily.

i) Clean the beads as per the instructions in Section 3.2..

i) Clean the fibreglass model as per the instructior:s in Section 3.3,
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leani he Gl B

From past experiences, it is more desirable to clean the glass beads in smaller portions
in a 10 litre plastic pail instead of a 20 litre one in order to maximize task efficiency.

a) Fill one-third (1/3) to half (1/2) of a 10L pail with the glass beads.

b) Add approximately 100 to 200 ml of SLIK #5 degreaser to the pail.

¢) Immerse the beads in hot water.

d) Wash the beads in the degreaser-water solution by hand to remove oil and any
residual solvent from the beads.

~~ SLIK #5 degreaser is water soluble, so it may be poured directly into the sink.

¢) Rinse the beads with hot water and add 50 mL to 100 mL of Sparkleen soap to the
pail. Clean the beads and empty the pail.

f) Repeat Step () and continue to rinse the glass beads until there is no more oil or
soap on them.

~ Usually, one wash cycle in degreaser and two wash cycles in Sparkleen followed
by four to five rinses in hot water are sufficient.

~ The average time required to clean 5 L to 7 L of beads is approximately 10 to 15
minutes.

g) Pour the glass beads into the metallic bead driers which are situated on risers.

h) Allow any excess water to drain out of the driers in order to expedite the drying
period.

i) Connect tubing from the driers to the air inlet valve.

j) Tum on the air valve and inject air into the bead drier.

~ This process may be left unattended and usually takes between 18 to 24 hours to
complete.

33 _Cleaning the Fibreglass T

a) Scrape off the silicone sealant layer using a chisel or sharp metal straight edge, such
as a dull knife blade, being careful not to scratch the fibreglass tray.

b) Remove all rimmings and dispose in wastc basket.

¢} Tilt the model 45° using the same the procedure described for model saturation.

d) Mix 200 mL to 300 mL of degreaser with 4 litres of hot water. Pour half of the
solution into the up dip side of the model to remove all traces of oil from the model.

e) Drain the model using a siphon.
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~~ A siphon is the quickest and most efficient way to remove the liquid waste. This is
done by sealing one end of a pizce of rubber tubing with one thumb and adding
water in the other end until the tubing is completely filled. Then, seal this end
immediately trying to eliminate any air bubbles. Place one end in the bottomn of the
model and the other in a disposal pail on the floor. Remove both thumbs
simultaneously. The suction force caused by the height differential and thus,
pressure differences between both ends should draw the water and any remaining
beads from the model into the waste pail.

f) Add the remainder of the degreaser solution to the model and drain the waste.

g) Rinse the model with hot water and drain with siphon. Repeat until there is no
more oil in the model.

h) Dry the model with Kimtuff wipers.

~~ Kimtuff disposable wipers are used to absorb residual oil and solvents from the
model.

i) Apply Varsol to the fibreglass tray and its edges using a wash bottle.

j) Wipe the tray and edges with Kimtuff wipers.

k) Apply acetone to the fibreglass tray and its edges using a wash bottle.

~~ Both Varsol and acetone are used because some hydrocarbons break down better in
Varsol than in acetone and vice-versa. It is hoped that using both solvents can
remove all traces of the hydrocarbons used in the experiments, such as Faxam-100
and heavy virgin naptha. Because the use of toluene is restricted to areas with
sufficient ventilation like fume hoods, it is not used in the steam injection
experiments which are run in open laboratory conditions.

) Dry the tray and edges with the wipers.

m) Lower the model.

n) Straighten any bent thermocouples and replace any broken ones.

~~ New thermocouples are replaced by inserting them through the ferrels and fittings
into the fibreglass tray to the desired length. Tighten the fittings and seal all
exposed areas with the silicone sealant to ensure that no areas will be potential
sources where the vacuum may escape.

3.4 Miscellaneous Comments

a) Any containers storing solvent must be emptied in a waste receptacle not in the sink
as solvent is not water soluble and will corrode the sink and its pipes.
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c)
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175

Scrub the glass cylinders, flasks and beakers with beaker brush using Sparkleen

detergent and hot water.

Plastic cylinders and beakers are tipped upside down on top of a layer of Kimtuff
wipers and allowed to drain out any excess oil. Sparkleen is primarily used for

glassware and is not suitable for cleaning plastics. However, common household

dishwashing liquid detergent is a very effective and inexpensive way to clean

plastic containers of all traces of oil.

Celtite Neoprene sponge is cut in 3'x3' sheets using a utility knife. Epoxy joined
portions of the Neoprene roll are cut off as they are often sources of seal leakage
and hence, result in vacuum loss. Exact cutting precision is not necessary since the
flexible and cushy nature of Neoprene allows it to conform to all situations.
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Appendix C
List of Suppli d Material
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Supplier

STHI Closed Couple Liquid Ring Vacuum Pump
(SIHI LRM 10603—1.5 hp close coupled glass
filled epoxy resin vacuum pump c/w 208/3/60

teflon motor c/w teflon gaskets)

Silastic 732 Adhesive Sealant RTV
Kimtuff wipers
Hammond (plain aluminum) panel

1/8" Celtite Neoprene™ sponge

Faxam-100

Sparkleen Detergent
Parafilm M* Laboratory Film

Fisherbrand disposable (flint glass) pasteur pipets

Kimwipes wipers
Fisherbrand mechanical pump fluid
Sodium chloride

DAS-8—8 channel A/D Board
EXP-16—16 channel multiplexer
C1800—cables
LTN-03—Labtech Notebook

Fluke-83 Multimeter

0.3 mm fibre ploiter pens for the HP plotter

(for plotter paper)
Graphics plotter paper

T.D.H. Fluid Systems Inc.
4634-91 Avenue
Edmonton, Alberta, T6B 2L1

Central Stores

Materials Management Departmen
The University of Alberta
Edmonton, Alberta T6G 2E1

(403) 492-4246

Continental Petroleum

((CP) Rubber Inc.)
9725-62 Avenue
Edmonton, Alberta T6G OES
(403) 437-1260

McEwen's Esso

3704-92 Avenue

Box 8671, Station L
Edmonton, Alberta T8C 474
(403) 465-0152

Fisher Scientific

10720-178 Street
Edmonton, Alberta T5S 1J3
(403) 483-2123

Dycor Industrial Research Ltd.
#130, 17303-102 Street
Edmonton, Alberta T5S 1J8
(403) 486-0091

Cardinal Industrial Electronics
10630-172 Street

Edmonton, Alberta TS5S 1H8
(403)483-6266

Northwest Digital
10640-170 Street

| Edmonton, Alberta

T5S 1P3
(403) 486-3598
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Supplier

Industrial glass beads
(3 inm diam. (6-8 U.S. mesh) technical quality
solid glass spheres)

Walk-in cooler/freezer

36"x36"x8.5" granite block

Fibreglass tray

1.5" vacuum traps
1.5" polyethylene trap jar

2—4207951506 bushings

24207721150 nipples

2—4207721142 nipples

2—42(7721130 nipples

4—4206690010 elbows

2—4206900010 female adaptor
2-—7436265010 Hayward 1" 3-way ball valve
4—4207500010 hose adaptor

Slik MNo.5 medium-duty degreaser

(oxginator: Baroid of Canada Ltd,
Calgary, Alberta, (403) 263-8740)

Swagelok fittings

Rotair Industries
1040-78 Avenue
Edmonton, Alberta
T6P 1L7

(403) 440-2775

Edmonton Refrigeration Lid.
14203-128A Avenue
Edmonton, Alberta TSL 4P5
(403) 454-3000

DoAll Edmonton Ltd.
9743-45 Avenue

Edmonton, Alberta T6E 5V§
(403) 436-0373

Triple M Fibreglass Ltd.
8135 Wagner Road
Edmonton, Alberta T6E 4N6
(403) 465-0726

Tri "S" Dairy Equipment Lid.
14804-119 Avenue
Edmonton, Alberta TSL 2M6

Scepter Manufacturing Co. Ltd.
4225-92 Avenue

Edmonton, Alberta T6B 3M7
(403) 468-4444

NL Treating Chemicals
1500, 840-7th Avenue S.W.
Calgary, Alberta T2P 3G2
(403) 263-8740

Edmonton Valve and Fitting Ltd.
4503-93 Street
Edmonton, Alberta TGE 5589
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Item Supplier

A11-16-J-GSS-15" (miniature quick disconnect  Alltemp Sensors Inc.
small diameter thermocouple, type J3168S sheath 9245-34A Avenue
A11-16-J-USS-6" (miniature miniplug type J Edmonton, Alberta T6E 5ST6
thermocouple, ungrounded junction) (403) 463-7035
1237-6-J—connectors mini stripanel
(for J-type thermocouples)
1210-J—mini jack connector
1260-J—mini plug connector
640-JX-PC-PC20 (J-thermocouple wire)
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Appendix D
Plottin hin



Table of Contents for Appendix D

. INTRODUCTION. ...utuiieriecteeieansnmncsaentntatsnssssenarasestrnseataniarastesrsssnns 182
. CONNECTING TO MTS FROM MICROCOMPUTERS .......ocviviiiiiiiannnnn. 182
2.1 Signing on to MTS via an IBM Personal Computer..............ceouienenn. 182
2.2 Signing on to MTS via a Macintosh COmMPULET........cccvsmnnnitiricinns 182
. GENERATING DISSPLA PLOTS FROM AN IBM TERMINAL................. 183
3.1 Top View Temperature Profiles...........coooimiiiiiinnnn 183
3.2 Cross-Section Temperature Profiles........c..oooiiiiiiiiiiiin. 185
. RUNNING TELL-A-GRAF PLOTS FROM AN IBM .....cccoiiiiiniiiiiinneens 186
. PLOTTING FROM A MACINTOSHTO ANHPDEVICE ..........ccoviiiiiennnne 187
5.1 General COMIMENLS ...uvvevveriernarsssraseersensastasssanannsrscsssrssesessssaess 187
5.2 Graphing Procedures for DISSPLA Plots using the Macintosh............. 188
5.3 Generating Tell-A-Graf Plots from the Macintosh...........cooeiiinii. 189
5.4 Cable SCheMAtiCS . .uvvveerienrerentnrnisirrsieicasertiiinssrseiaiasiasiesanas 190
. CONTOUR PLOT PROGRAMS......cciciitiiiinererinsieticinsiasmniasnraasinanenes 190
6.1 Top View Temperature Profiles............cccivimmmninimnniiiiienniane 190
6.2 Injector to Producer Cross-Section Temperature Profiles.........c.ccecov... 193
6.3 Macro Program........cccccciiiimmmermrnesinaninis e enees 195
6.4 MTS  Sigfile..iiuciieeiiiiiiiiineiiricerrimen et s 196
. DATA FILE CONSTRUCTION....cccciiiiimremmiantinistisniimmsniiamiasissiann, 196
7.1 General Procedure ......cvvrnierereiisiniisrannrerasasaarscsssraasssitieisssnasans 196
7.2 Pore Volume Injected........cccovmrermmmimeiiimmmaaiiiiiiii, 197
7.3 Solvent Slug Calculation. ... ....euveeeivesrenseesersiicrormnaeieiisasnnses 197
7.4 Top View DataFiles........cccieuiiiniminiiiiiiiinie. 198

7.5 Cross-Section Data Files....c.cceieianerisiestirensrarseenasarocrsiasnmonesaas 199

181



1. INTRODUCTION

The DISSPLA graphics package is used to generate the temperature contours for
both the top view of the model and the model cross-section for each run. DISSPLA and
Tell-A-Graf programs are all compiled in the M1'S (Michigan Terminal Sysiem) main frame
computer system. The Tell-A-Graf software package is used to plot additional
experimental results, such as "Cumulative Oil Recovery versus Pore Volume Injected” and
“Temperature-Viscosity Profile for Ideal and Actual Model Oil". Additional programs were
writien in a macro file in MTS to increase the efficiency of generating DISSPLA and Tell-
A-Graf plots. Appendix B deals with the procedures required to produce many of the plots
in this thesis.

2. CONNECTING TO MTS FROM MICROCOMPUTERS
2.1 _Sieni to MTS.vi IBM P LC :

a) Turn on IBM Personal Computer screen and hard drive.

b) Switch "Data Director” switch to position A (MTS).

c) Type cd\ to return to the main directory.

d) Type pctie.

e) Ensure that the Gandalf modem is set to '04' before turning on the switch in order
to connect to MTS.

f) Type signon CSID or sig CSID.

~~ Although MTS recognizes uppercase as well a lower case commands, the
DISSPLA and Tell-A-Graf packages require all instructions be typed in uppercase
letters.

g) Type ‘password' when prompted by MTS.

22 Sieni o MTS via a Macintosh C :

a) Tum on Macintosh computer and its hard drive.

b) Switch "Data Director” switch to position A (MTS).

¢) Open the communications folder containing the program Mactie by double clicking
on the icon.

d) Open the MACTIE application.

e) Again, as in the case of the IBM, ensure that the Gandalf modem is set to '04'
before turning on its switch to connect to MTS.

f) Type signon CSID or sig CSID, followed by the ‘password'.



3. GENERATING DISSPLA_ PLOTS FROM AN IBM TERMINAL

3.1 Top View Temperature Profiles

a)

b}

c)

d)
e)

Type cplot then press RETURN, hereafter denoted as Ret.

Type the name of the DISSPLA file in Section 6.1 which will generate a top view

profile, TOPVIEW, and enter Ret.

Screen output is:
ENTER THE NAME OF THE DATA FILE:

Type the name of the desired data file, such as R39.025 and press Ret.

S i ion of the TOPVIEW hick be edited:
CALL HEADIN ((T)EMPERATURE (P)ROFILE FOR¥',100,1.0,4)
CALL HEADIN (0.25 (P)ORE (V)OLUMES (DNJECTED$',100,1.0,4)
CALL HEADIN (' $',100,1.0,4)

CALIL HEADIN (' $',100,1.0,4)

CALL XNAME ((H)ORIZONTAL (M)ODEL (L)ENGTH, INCHES',37)
CALL YNAME ((V)ERTICAL (M)ODEL (L)ENGTH, INCHES',35)
CALL INTAXS

CALL GRAF (0,4,32,0,4,32)

CALL MESSAG (‘(FIGURE 1: (R)UN 39%$,100,1.8,7.0)

Cursor to the headings in bold letters and edit them as required for each run.
Press CRTL and Ret simultaneously to quit the visual edit mode in MTS.

$EMPTY -LOAD#

EMPTY -PLOT

EMPTY -PLOTHP

RUN *FORTG SCARDS=TOPVIEW

RUN -LOAD#+*DISSPLA 5=X39.025 9=-PLOT

RUN *PLOTSEE T=5 PAR=-PLOT HP7475F PAGEFILL RETURN
EDIT -PLOTHP D1

183

before the plot file is transferred to the [BM hard drive:

END OF DISSPLA 9.0 -- 4881 VECTORS GENERATED IN 1 PLOT FRAMES,
PROPRIETARY SOFTWARE PRODUCT OF ISSCO,SAN DIEGO,CA. 11608
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VIRTUAL STORAGE REFERENCES; 7 READS; 0 WRITES.:1 LINE DELETED

Fil fer is initiated by the followi I
CONTROL *MSOURCE* FT BREP MTS -PLOTHP C:R39.025

f) Type %EX and Ret to exit pctie and to enter DOS.

g) Turn "Data Director" switch to position B (Hewleti Packard 7550A Plotter).

h) Type DIR and Ret to the check the remaining amount of disk space in the hard
drive and to confirm if the file has been transferred successfully to the main
directory. There should be a plotter file in the main directory calied R39.025.

i) Type DOPLOT and Ret to initialize the HP plotter.

~~ Doplot and the communications commands are software programs installed in the
main directory of the IBM which permit the ploiter and computer to interface.

Screen output is:
MODE COMI1:9600,N,8,1,P

j) Type COPY filenamel COMI and Ret.

~~ In this case, type: COPY R39.025 COM1

~~ The HP 7550A should begin plotting the temperature contours immediately, If it
does not,

i) check the printer -- IBM connection to ensure that it is securely attached
ii) check to see if the paper has been fed properly. Usually, the paper needs to
be reloaded every time the HP7550A is turned on.

k) To reload the plotter paper automatically, type COPY PAGE COMI1. Page is
simply a filename in the main directory containing the command "PG1;" which will
prompt the plotter to feed one sheet of paper through the tray thereby loading the
paper. If it is desired to feed two sheets through the plotter, then replace "PG1;" by
"PG2;". -

~- To reload the paper manually, press the LOAD/UNLOAD button on the HP
plotter.



3.2 Cross-Section Temperature Profiles

The procedure for generating injector to producer cross-section profiles is the
essentially the same as the one used in Section 3.1 to plot top view temperature profiles,
with the exception of a few minor changes listed in this section. For detailed explanations
of the of the plot generation commands, please consult Section 3.1.

a) Type cplot then press RETURN, hereafter denoted as Ret.

1 . - 7

ENTER THE NAME OF THE *DISSPLA FILE:

b) Type the name of the DISSPLA file in Section 6.2 which will generate a cross-
section profile, XSECTION, and enter Ret.

Screen output is:
ENTER THE NAME OF THE DATA FILE:

¢) Type the name of the desired data file, such as X74.075 and press Ret.

ri ] rtion of the XSECTION program which it
CALL HEADIN ((B)IGURE 7: (R)UN 74 (T)EMP (P)ROFILES$,
+100,1.0,4)
CALL I—I(I)E.ADIN ((ONJECTOR TO (P)RODUCER (C)ROSS-(S)ECTIONS,,
+-100,-1.0,4)
CALL HEADIN ('0.75 (P)ORE (V)OLUMES (DNJECTEDS,
+100,0.8,4)
CALL HEADIN (' $',100,1.2,4)
CALL XINTAX

CALL GRAF (0.,5.,45.,0.,,.5,2.5)

d) Cursor to the headings in bold letters and edit them as required for each run.
¢) Press CRTL and Ret simultaneously to quit the visual edit mode in MTS.

$EMPTY -LOAD#

EMPTY -PLOT

EMPTY -PLOTHP

RUN *FORTG SCARDS=XSECTION

RUN -LOAD#+*DISSPLA 5=X74.075 9=-PLOT

RUN *PLOTSEE T=5 PAR=-PLOT HP747SF PAGEFILL RETURN
EDIT -PLOTHP D1

185
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Upor. the completion of the DISSPLA program. the screen will list the following

END OF DISSPLA 9.0 -- 4881 VECTORS GENERATED IN 1 PLOT FRAMES,
PROPRIETARY SOFTWARE PRODUCT OF ISSCO,SAN DIEGO,CA. 11608
VIRTUAL STORAGE REFERENCES; 7 READS; 0 WRITES.:1 LINE DELETED

Fil or is initiated by the followi A
CONTROL *MSOURCE* FT BREP MTS -PLOTHP C:X39.025

r I r
#:FILE TRANSFER - HOST SIDE NORMAL EXIT

f) Type %EX and Ret to exit pctie and to enter DOS.
g) Turn "Data Director” switch to position B (Hewlett Packard 7550A Plotter).

h) Type DIR and Ret. There should be a plotter file in the main directory called
X39.025.

i) Type DOPLOT and Ret to initialize the plotter.
j) Type COPY filenamel COMI and Ret,
~~ In this case, type: COPY X74.075 COM1

k) To reload the plotter paper automatically, type COPY PAGE COMI or press
the LOAD/UNLOAD button on the HP plotter.

4. RUNNING TELL-A-GRAF PLOTS FROM AN IBM

All Tell-A-Graf plots are generated through MTS. The signon procedure is the
same as the one described in Section 1.

a) If the computer terminal has graphics capability, such as a video card for the IBM
or is a Macintosh computer, the Tell-A-Graf plot may be viewed on the computer
screen through MTS prior to sending it to the plotter. This is done by typing
%T4010 to enter the graphics mode.

b) Type TAG to run the Tell-A-Graf program.

~~ TAG is a source file listed Section 6.3.

~~If the TAG is not available in the Macro program, then it is necessary to type:

RUN *TELLAGRAF.

¢) Type include “plot name'”. Then Ret.

d) Press Ret again.

e) Type send.
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Quiput is:

9 was referenced, but unit is not set.
Enter a new file/device name, "CANCEL",or "HELP".
9

Type -AA and Ret (-AA is a temporary file to which the plot is sent).
f) Type quit. and Ret.

Quipuyt is:
END OF TELLAGRAF 4.0 -- 3312 VECTORS GENERATED IN 2 PLOT
FRAMES.

PROPRIETARY SOFTWARE PRODUCT OF ISSCO,SAN DIEGO,CA.
#08:07:23 T=1.234 RC=0

g) Press CTRL and ESC to return to the MTS write screen.

h) Type the following:
RUN *PLOTSEE T=5 PAR=-AA HP7475f PAGEFILL RETURN and
then press Ret.

Output is:

...For information about the placement of HP7475 plots,
...see the file "LEEN:PLOTS=E.NOTE".

#08:11:05

End of plot file

#08:11:12 T=0.0462 RC=0

i) Type EDIT -PLOTHP DEL 1 and Ret.

i) Type %FT BREP MTS -PLOTHP C:plot name and then Ret.
k) Type %EX to exit MTS.

) Turn "Data Director” switch to position B (Plotter).

m) Type DOPLOT for plotter initialization.

n) Type COPY plot name COML to print the graph.

o) Type COPY PAGE COMI to reload the paper.

5. PLOTTING FROM A MACINTOSH TO AN HP DEVICE

5.1 General Comments

To plot any graphs using a Hewlett Packard plotter, one requires a copy of the "File
to HP7475" plotting program (which is available through the University of Alberta
Computing Services), a MacWrite application (Version 5.01 and up) and a cable with the
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same internal components as an Imagewriter cable are required in order to be able to plot
graphs from the Macintosh to an HP plotter.

The "mock” Imagewriter cable, as shown schematically in Section 5.4, connects the
Macintosh to the plotter and attempts to generate the illusion to the Macintosh that the HP
plotter is really an Imagewriter. Thus, to plot a graph, one chooses the Imagewriter printer
device and then opens the "File to HP7475" application which will allow the user to open
the desired plot file, and then print the MacWrite document. The computer believes that it
is printing a2 MacWrite document using an Imagewriter when in reality it is sending the
material to an HP the plotter. Although the programs are written for the HP7475, they
have also been tested successfully on the HP7550A and HP7470A.

MACPLOT is a macro program in MTS which will automatically compile and
transfer any DISSPLA program to a Macintosh computer. MACPLOT is the Macintosh
equivalent to the CPLOT program used for the IBM. Tell-A-Graf plots are first generated
using the TAG macro and can be transferred using the TELPLOT macro. To avoid
redundancy, the Macintosh commands are listed briefly in Section 5.2 and 5.3 without any
detailed comments. All of the macros are listed in Section 6.3,

The primary difference between plotting from an IBM or Macintosh is that the IBM
transfers the plot file in binary code (BREP) whereas the Macintosh appends the file
(BAPP) during any transfer. In addition, sometimes the Mactie will prompt the user for a
device, at which time "HP7475" will be typed. Hence, the command used to transfer a
*plotsee file is

%FT BAPP MTS -PLOTHP {filename}
To send an MTS file via Mactie to the LaserWriter, simply type:
%FT MTS {MTS file to be printed} {Name of the printer file}

One will then quit Mactie, without neccessarily signing off, and open the printer file, which
is formatted as a MacWrite document, and print the file in the normal manner.

52 Graphing Procedures for DISSPLA Pl ing the Macintos}

a) Type macplot then press Ret.



b)

g)
h)

i)

a)

b)
¢)
d)
€)

g
h)
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Type the name of the DISSPLA file when prompted, TOPVIEW for top view
temperature contour profiles and X-SECTION for a cross-section profile, followed
by entering Ret.

Type the name of the desired data file, such as X74.075 and press Ret.

Cursor to the headings in bold letters and edit them as required for each run.

Press command and Ret simultaneously to quit the visual edit mode in MTS.
The *plotsee program and the file transfer commands are sourced automatically
from the Macplot macro in Section 6.3 so there is no need to type any additional
command.

Occasionally, MTS asks: "What type of device are you on?". If this occurs, type:
HP7475.

The fil cor is initiated by the followi .
CONTROL *MSOURCE* FT BAPP MTS -PLOTHP X39.025

Type %EX and Ret or select quit to exit Mactie.

Choose Imagewriter printer device.

Open File to HP7475 application.

Select and open the desired plot file when prompted, in this case, X39.025 which is
now in a MacWrite document.

The Hewlett Packard plotter should begin plotting immediately otherwise check
cable connections and open the plot file in MacWrite to ensure that the file was
transferred properly and its contents are complete.

1-A- r

The Tell-A-Graf plot may be viewed on the computer screen through MTS prior to
sending it to the plotter by selecting or typing %T4010 to enter the graphics mode.
Type TAG to run the Tell-A-Graf program.

Type include "plot name"”. Then Ret.

Press Ret again.

Type send.

Type quit. and Ret.

Press command and Ret to return to the MTS write screen.

Type source sigfile.

Type TELPLOT which will scarce the following commands:
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TYPE THE NAME OF THE *TELLAGRAF FILE TO BE TRANSFERRED:

j) Type any name, for simplicity the title of the Tell-A-Graf file, which will
correspond the file name in MacWrite to which the data will be transferred.

The resulti 1l be:

RUN *PLOTSEE T=5 PAR=-AA HP7475f PAGEFILL RETURN
EDIT -PLOTHP DEL 1

%F1T BAPP MTS -PLOTHP *TELLAGRAFILE

k) Type %EX or command Q to exit MTS.
1) Repeat Steps (h) and (i) in Section 5.2 to send file to HP plotter.

5.4 Cable Schematics

Because the objective used in sending Tell-A-Graf and DISSPLA plots to an HP
plotter is to mislead the Macintosh computer into believing that the HP plotter is really an
Imagewriter, certain cables must be constructed in the manner described in Figure D.1.

6. CONTOUR PLOT PROGRAMS

6.1 Top View Temperature Profiles

The following DISSPLA program is used to generate a contour plot of two sets of
X, Y, Z data, with Z representing the temperature at the given (X, Y) coordinates.

LOGICAL *1 FREE (1) /*/
DIMENSION ZMAT (35,5)
DIMENSION IPAK (1000)
REAL DUMMY (2) 0.,0./
COMMON WORK (20000)
CALL PAGE (8.5,11.)
CALL PHYSOR (2.0,2.5)
CALL AREA2D (5.5,5.5)
CALL FRAME

CALL DUPLX

CALL BASALF ('L/CSTD")
CALL MIXALF (STANDARD"

nno

The following commands are used to generate both the text material and the plot
axes:

olplplep]

CALL HEADIN ((T)EMPERATURE (P)ROFILE FOR$',100,1.0,4)
CALL HEADIN (1.50 (P)ORE (V)OLUMES (DNJECTEDS',100,1.0,4)



Gandalf Switchbox Macintosh
DB25P DB25P DB25P DASP DA9S IN8
{ =————1 GAN 1 e—rrre—1 1 —E GND
5 ———2 WwHT 2——5 <5—3 | TXD-
3———3 RED 3—9 >9——5 | RXD-
3 3 GND
7 —7 BKK 7—':8 >8-———8 RXD+
g———8 org 8§——7 > 7——2 HSKi
(+12v) < 6 ————1 HSKo
<] —6 TXD+
(+5v) 2——7 NC
Note: Above cable may
be readily purchased.
H.P. Plotter

or Imagewriter Switchbox

Macintosh

DB25P/S DB25P DB25P DASP MALE DIN CONNECTOR
{ =————-1 GRN 1 1
2 — 2 WHT>? 9
3 . | RED<3 5
7 — 7 Bk 7 3
E 8
20 ————200RG> 20 e 7

4—

5 _ > Optional
6]

8

Cable schematics reprinted with the permission of:
R.K, Stefaniuk, E.E.T., U of Alberta Techiiical Services

1990-01-10

Figure D.1: Cable Schematics for Macintosh Compute: to Modem/Ploizer.
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CALL HEADIN ( $',100,1.0,4)
CALL HEADIN (' $,100,1.0,4)
CALL XNAME (‘(H)ORIZONTAL (M)ODEL (L)ENGTH, INCHES',37)
CALL YNAME ((V)ERTICAL (M)ODEL (L)ENGTH, INCHES',35)
CALL INTAXS
CALL GRAF (0,4,32,0,4,32)
CALL MESSAG ((F)IGURE 4: (R)UN 104$,100,1.8,7.0)

CAI(_),L 1(\)/[§S§AG ((SYTEAMFLOOD OF (BYOTTOM (W)ATER (M)ODELS$',
+100,1.0,6.7

These DISSPLA commands are used to label the injection points:

CALL HEIGHT (0.12)
CALL MESSAG ((I)NJECTION (W)ELLS$', 100,4.4,-0.7)
CALL MESSAG ('(PYRODUCTION (W)ELL$',100,0.0,5.775)

These series of routines draw arrows from the two labels described above to the
injection and production wells, respectively:

CALL VECTOR (5.5,-.5,5.5,-.25,2201)
CALL VECTOR (0.0,5.75,0.0,5.5,2201)

The following series generates legend text material:

CALL LINESP (2.0)
CALL LINES ('(U)PPER M)ODEL (TDEMPERATURE (C)$'.IPAK,1)
CALL LINES ('(L)YOWER (M)ODEL (T)EMPERATURE (C)$',IPAK,2)
CALL BGNMAT (5,5)
D0 20J=1,2
READ (5,FREE) N
DO 10I=1,N _
READ (5,FREE) XY ,Z
Z=Z+3.0
CALL GETMAT (X,Y,Z,1,0)
CALL ENDMAT (ZMAT,0)

Contouring routines:

CALL BCOMON (10000)

CALL CONMAK (ZMAT,5,5,5.)

CALL CONMIN (1.5)

CALL CONDIG (0)

IF (J.EQ.2) GO TO 15

CALL SETCLR (BLUE")

CALL CONLIN (0,'SOLID','LABELS',1,10)
GOTO 16

CALL SETCLR (RED")

CALL CONLIN (0,DASH',LABELS',1,9)
CONTINUE

CALL RASPLN (0.2)

CALL CONTUR (1,LABELS',DRAW")

CONTINUE
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The following commands generate a legend with the appropriate colour markers:

CALL SPCMOD

CALL LEGLIN

CALL CURVE (DUMMY,DUMMY ,2,0)
CALL CURVE (DUMMY,DUMMY,2.0)
CALL MYLEGN ('.1)

CALL LEGEND (IPAK.2,0.,-1.)

CALL ENDPL (0)

CALL DONEPL

STOP

END

This subroutine is used to define different textures between the line types and
colours:

SUBROUTINE MYSPEC (IENTRY)
GO TO(1,2), IENTRY

CALL SETCLR (BLUE)

RETURN

CALL DASH

CALL SETCLR (RED")

RETURN

END

- i r i

. The following DISSPLA program is used to generate a temperature profile through
" a cross-section of the model from the injection well to the production well.

LOGICAL *1 FREE (1) /*/

DIMENSION ZMAT (7,7)

DIMENSION IPAK (400)

COMMON WORK (20000)

CALL DSPDEV (PLOTTER)

CALL PAGE (11.,8.5)

CALL PHYSOR (1.8,2)

CALL AREA2D (7.5.4.)

CALL FRAME

CALL DUPLX

CALL BASALF (L/CSTD")

CALL MIXALF (STANDARD")

CALL XNAME ((D)ISTANCE, INCHES$',100)

CALL YNAME ((V)ERT. (S)CALE = 10X (H)OR. (S)CALES$',100)
C;%OLL (I::)IEADIN ((FIGURE 3: R)UN 74 (T)EMP (P)ROFILE¥,
+100,1.0,4)

CAOL(.)L }-IéEADIN ((DNJECTOR TO (P)RODUCER (C)ROSS-(S)ECTIONS',
+-100,-1.0,4)

CALL HEADIN ('0.75 (P)ORE (V)OLUMES (DNJECTEDS',
+100,0.8,4)

CALL HEADIN (' $,100,1.2,4)

CALL XINTAX

CALL GRAF (0.,5.,45.,0.,.5,2.5)
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The following commands generate arrows and text material which label the injection
and production points:

CALL HEIGHT (0.12)

CALL MESSAG ((NJECTION (W)ELLS$', 100,0.0,-0.7)
CALL MESSAG ('(P)RODUCTION (W)ELL$',100,6.2,-0.7)
CALL VECTOR (0.0,-0.5,0.0,-0.25,2201)

CALL VECTOR (7.5,-0.5,7.5,-0.25,2201)

The next section of commands read in the data. Note that the X-coordinates were
measured from the top view temperature profile described in Section 6.1 using an
Engineers scale. The 1:60 scale was chosen so that the length from the injection
well to the production well was 46.2 units. Thus, there was no need to modify
the X-coordinates since the actual model length was 45.2548 inches. In other
words, 1 unit (on a 1:60 Engineers scale) = 1 inch (on the model).

The Z-coordinates are 0.8333 and 1.6667 inches for the lower and upper layer
of thermocouples, respectively.

CALL BGNMAT (7,7)
READ (5,FREE) N
DO 10 1=1N
READ (5,FREE) X,Y,Z
CALL GETMAT (X,Y.Z,1,0)
CALL ENDMAT (ZMAT,0)

Contouring routines:

CALL BCOMON (10000)

CALL CONMAK (ZMAT,7,7,5.)

CALL CONMIN (1.5)

CALL CONDIG (0)

CALL SETCLR (RED’)

CALL CONLIN (0,'SOLID',LABELS',1,10)
CALL. RASPLN (0.2)

CALL CONTUR (1,LABELS',DRAW)
CALL ENDPL (0)

CALL DONEPL

STOP

END

6.3_Macro Program

bt
§~8-§0\m.huto-—-

TAG 1000
BANK 1100
CPLOT 1200
MACPLOT 1300
TELPLOT 1400

/END

MACRO TAG

>*

>* The tag macro invokes the Tellagraf program



1003
1004
1005
1100
1101
1102
1103
1104
1105
1200
1201
1201
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1300
1301
1301
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
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>*

$RUN NEW:TELLAGRAF

ENDMACRO

MACRO BANK

¥

>* The bank macro invokes the Tellabank program
=%

$RUN NEW:TELLABANK

ENDMACRO

MACRO CPLOT

> The cplot macro prompts for the Fortran DISSPLA file and a data file for
>* contouring. It then compiles the DISSPLA program which produces a plot
>*  file in '-plot'. The '-plot’ file is then converted to an HPGL plot file for the
>* HP7475A plotter using the "*plotsee’ program. Then, the first line of this
Sk file is deleted so that it can be transferred to the HP7550 or any HP plotters
>k other than the HP7475A. The resulting file,'-plothp’, is then sent to the
>*  IBM PC 1o the 'C:' drive under the name of the data file.

>*

define dispfile

define datafile
write "ENTER THE NAME OF THE *DISSPLA FILE:"
read dispfile from *source*
write "ENTER THE NAME OF THE DATA FILE:"
read dispfile from *source*

$EDIT {dispfile} V18

IF FILE ("-LOAD#") EXISTS, $SEMPTY -LOAD#
IF FILE ("-PLOT") EXISTS, $SEMPTY -PLOT
IF FILE ("-PLOTHP") EXISTS, $EMPTY -PLOTHP
$RUN *FORTG SCARDS={dispfile}
IF RUNRC > 0, EXIT
$RUN -LOAD#+*DISSPLA 5={datafile} 9=-PLOT
$RUN *PLOTSEE T=5 PAR=-PLOT HP7475F PAGEFILL RETURN
$EDIT -PLOTHP D1
$CONTROL *MSOUPR.CE* FT BREP MTS -PLOTHP C:{datafile}
>ENDMACRO
MACRO MACPLOT

>*  The macplot macro prompts for the Fortran DISSPLA file and a data file for
>*  contouring. This program is the Macintosh equivalent of the CPLOT (IBM)
>* macro program which is used to run and transfer the contour plot file

>*  generated from the "*plotsee' program to the HP7550 plotter. The resulting
>* file, -plothp, is sent to the Macintosh hard drive in the form of a MacWrite
>¥* document file which uses the same title as the datafile. To run the program
>* successfully, one must have MacWrite as well as the corresponding cables.

define dispfile

define datafile
write "ENTER THE NAME OF THE *DISSPLA FILE:"
read dispfile from *source*
write "ENTER THE NAME OF THE DATA FILE:"
read dispfile from *source*

$EDIT {dispfile} V18

IF FILE ("-LOAD#") EXISTS, $SEMPTY -LOAD#
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1318 IFFILE ("-PLOT") EXISTS, $SEMPTY -PLOT

1319  IF FILE ("-PLOTHP") EXISTS, $SEMPTY -PLOTHP

1320 $RUN *FORTG SCARDS=({dispfile}

1321 IF RUNRC > 0, EXIT

1322 $RUN -LOAD#+*DISSPLA 5={datafile} 9=-PLOT

1323 $RUN *PLOTSEE T=5 PAR=-PLOT HP7475F PAGEFILL RETURN
1324 $EDIT -PLOTHP D1

1325 $CONTRCL *MSOURCE* FT BAPP MTS -PLOTHP {datafile}

1326 >ENDMACRO

1400 MACRO TELFLOT

1401 >*

1401 >* The telplot macro will transfer the compiled tellagraf program resulting
1403 >* from the tag macro to a MacWrite document located in the Macintosh
1404 >¥ hard drive in order to be sent to a HP plotter.

1405 define tellagrafile

1406 write "ENTER THE NAME OF THE TELLAGRAF FILE TO BE
1407 TRANSFERRED:"
1408 >*

1409 $SRUN *PLOTSEE T=5 PAR=-PLOT HP7475F PAGEFILL RETURN
1410 $EDIT -PLOTHP D1

1411 $CONTROL *MSOQURCE* FT BAPP MTS -PLOTHP {tcllagrafile}
1412 >*

1413 >ENDMACRO

6.4 MTS Sigfile
In order to be able to access the Macro file from MTS, it is essential to include the

following commands in the MTS sigfile:

SET MACROS=0FF

SET MACROS=0FF

SET MACROS=0ON

>SET VAR MACLIB(1)="MACLIB"

where MACLIB(1)
MACLIB

refers to the macrolibrary file 1 to be called
the name of the macrolibrary file 1 containing the
programs to be called and are listed in Section 6.3

7. DATA FILE CONSTRUCTION

1.1 _General Procedure

Lotus 1-2-3 is used to analyze the experimental data generated from Labtech
Notebook. The following types of data calculations which serve the basis for contour plots
are explained in detail in this section:

7.2  Pore Volume Injected Calculations

7.3 Solvent Slug Calculations based on %PV Injected -
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7.4  Top View Temperature Contour Data File Formulation
7.5  Injector to Producer Temperature Cross-Section Contour Data File
Formulation

1.2_Pore Volume Injected

The objective of this section is to examine the procedure used to calculate the time
corresponding to a specified injected pore volume.

Let: %PV = the amount of pore volume injected at a certain time, t
A = the pore volume of the bead pack, cc
q = total steam injection rate, cc/min
t = the tme at which %PV pore volume injected is obtained,
minutes
Assume: V, q and %PV are given.
where, %PV is chosen arbitrarily at an interval where a contour plot

is desired, such as %PV = 0.75 PV or %PV = 1.50 PV.

‘= (%PV)x (V)

q
After calculating the time it takes to reach a desired pore volume, simply extract the
thermocouple temperature values from Lotus 1-2-3 at that time to obtain the necessary
information for the temperature profiles.

Thus, t can be determined:

le Calculation 1:
iven; %PV = 0.25
v = 15150 cc
q = 230.1 cc/min
Find: tat 0.25 PV steam injected

. (%PV)xV _ (0.25)x (15150 cc)
Qo 230.1 cc/ min

=16.26 minutes = 16.5 min.

The calculated time value is rounded up to the next 0.5 minutes since the data in the
steamflood experiments was formatted to record data every 30 seconds.

13 Solvent Slug Calculation

In solvent slug calculations, the objective is to deterrnine the time required to inject a
specified amount of solvent into the physical model which is measured as a percentage of
the total pore volume of the model. The amount of solvent that is required to be injected is
calculated using the method described in Section 7.2.
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Let %SPV = th:e)d percentage of solvent injected into the pore volume of the
model

Vv = the pore volume of the bead pack, cc

Qsolveni= solvent flow rate, cc/min

tsolvent = the time at which %SPV is injected into the model, min
ASSHH’IQ; %SPV, VY and Jsolvent
Thus, tsovent €an be determined: bevens = @M

qselvmt

Sample Calculation 2:

Given: A =15340 cc
gsolvent =200 cc/min
%SPV =10%
Find: Isolvent At 10% PV in.]ectﬂd
¢ = (010)x(15340 co) _ ;) o iintes = 8.0 min.
200 ¢c/ min

7.4_Top View Data Fil

Selected experimental data from Lotus-1-2-3 are transferrred to the Michigan Terminal

System (MTS) manually. Top view data files are typed in Ri#t#.### files in the following
format:

# thermocouples in

TOP layer of model, 12

x-coordinate of y-coordinate of MEGADAC value as
TOP thermocouples, F6.3 TOP thermocouples,F6.3 listed in RUNS D.##,F6.3

# thermocouples in

BOTTOM layer of model, 12

x-coordinate of y-coordinate of MEGADAC value as
BOTTOM thermocouples, F6.3 BOTTOM thermocouples, F6.3 listed in RUNS D.##, F6.3

N.B: *Do not double space the data.



Sample of Top Profile Data File

18

32.C00 0.0000 103.4
23.63 8.50 50.0
15.75 9.00 38.2
7.50 8.75 2.2
4.00 7.50 2.1
8.125 4.00 1.6
13,125 12.5 13.4
8.438 20.0 2.9
13.305 27.725 2.3
3.75 24.375 3.6
12.125 18.375 11.2
20.000 24.063 6.4
28.063 24.125 4.1
25.125 28.000 3.5
19.250 20.000 11.8
24.625 12.250 15.7
18.750 4.00 13.9
0.000 32.000 4.0
17

32.000 0.0000 103.4
28.000 7.3750 99.7
20.063 7.563 14.1
12.125 7.188 39.2
13.375 3.750 13.2
8.313 12.0 17.1
13.375 20.313 20.0
8.305 28.0 1.8
4.00 28.00 2.8
1.75 23.5 3.9
15.75 23.5 3.5
28.000 28.00 3.1
19.250 28.00 4.2
25.125 20.000 17.1
18.438 12.125 - 36.9
24.000 4.000 84.3
0.000 32.000 4.0
7.5 Cross-Section Data Fil

Injector to producer temperature cross-section data files are denoted by the format

X## ## in MTS and are inputted as follows:

*Total number of
data readings from top

view temperature plot, 12
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X-coordinate of top Z-coordinate=1,6667 Temperature contour interval
thermocouples at contour ALWAYS! for C, F3.0

interval, C, F6.3 Top thermocouples

X-coordinate of bottom  Z-coordinate=0.8333 Temperature contour interval

thermocouples at contour ALWAYS! for C,F3.0
interval, C, F6.3 Bottom thermocouples
1 10 20 Column

where C = n,, 65., 60,, 55., 50., 45, ..., 10, 5.
= temperature contour interval
* = refers to the total number of readings which have temperature contour
intervals that appear on the diagonal line from the injection to production well

determined from Figure D.2.

mpl - D ile:
39 where 39 = total number of data points read
0.5 1.6667 105.0 from the top view profile; total
1.1 1.6667 100.0 number of data lines in cross-
1.6 1.6667 95.0 section data file.
2.1 1.6667 90.0
2.6 1.6667 85.0 Column1 = 1:60 Eng.Scale reading
3.1 1.6667 80.0 Column?2 = depth, Z-coordinate, of
3.6 1.6667 75.0 J-thermocouple in the
42 1.6667 70.0 model
47 1.6667 65.0 Column3 = thermocouple temperature
52 1.6667 60.0 contour reading, °C
12.1 1.6667 55.0
13.6 1.6667 50.0
15.3 1.6667 45.0
16.8 1.6667 40.0
18.5 " 1.6667 35.0
20.2 1.6667 30.0
22.0 1.6667 20.0
323 1.6667 15.0
0.3 0.8333 100.0
1.4 0.8333 95.0
2.6 0.8333 90.0
3.8 0.8333 85.0
6.0 0.8333 80.0
7.2 0.8333 75.0
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Production
Well (32, 0)
AP
d
32"
\/ Injection
Well (0, 0)
et} |
32 1)
Y 4
Z
X Y
X

Coordinate System for
Top View Profile Data

Coordinate System for
Cross-Section Data

Figure D.2: A Schematic of the Top View of the Aberfeldy
Model Showing the Coordinate Systems used
for the DISSPLA data files.
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8.3 0.8333 70.0
9.4 0.8333 65.0
10.7 0.8333 60.0
11.9 0.8333 55.0
13.0 0.8333 50.0
14.2 0.8333 45.0
15.3 0.8333 40.0
16.6 (0.8333 35.0
17.8 0.8333 30.0
20.5 0.8333 25.0
244 0.8333 20.0
26.8 0.8333 15.0
29.0 0.8333 10.0
32.6 0.8333 5.0
Addition mments:
~~ Do not double space the data.

~~ According to the XSECTION program listed in Section 6.2, an Engineers Scale
was chesen such that the diagonal length from the injection to production well is
46.2 inches, which was the closest approximation to the actual model diagonal
length of 45.25 inches. By trial and error, the only scale that satisfies this criteria is
the 1:60 Engineers Scale. In other words, since d2 = (32 in.)2 + (32 in.)?, the
hypotenuse is therefore, d = 45.2548 in. Hence, the best fit scale is the 1:60 scale:
d = 46.2 units = 45.2548 inches

~ Figure D.2 is a schematic diagram of the physical model shows the method used to
determine the correct engineering scale used in the cross-section plots. The
coordinates are written as (X, Z) because the Y coordinate is zero for all injector to
producer temperature contour plots; that is, since (X, Y, Z) = (X, 0, 7), for
simplicity, let (X, 0, Z) = (X, 2).
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Appendix E
Production Histories of Experiments Conducted
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