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Abstract

In model-based reinforcement learning a model is learned which is then used to

find good actions. What model to learn? We investigate these questions in the

context of two different approaches to model-based reinforcement learning. We also

investigate how one should learn and plan when the reward function may change or

may not be specified during learning.

We propose an off-line API algorithm that uses linear action models to find

an approximate policy. We show that the new algorithm performs comparably to

LSPI, and often converges much quicker. We propose a so-called pseudo-MDPs

framework. In this framework, we learn an optimal policy in the pseudo-MDP

and then pull it back to the original MDP. We give a performance error bound for

the approach. Surprisingly, the error bound shows that the quality of the policy

derived from an optimal policy of the pseudo-MDP is governed only by the policy

evaluation errors of an optimal policy in the original MDP and the “pull-back”

policy of an optimal policy in the pseudo-MDP. The performance error bound of the

recent kernel embedding AVI can be derived using our error bound. The pseudo-

MDP framework is interesting because it not only includes the kernel embedding

model but also opens the door to new models.

We introduce a so-called universal option model. The problem we address is

temporal abstract planning in an environment where there are multiple reward func-

tions. A traditional approach for this setting requires a significant amount of com-

putation of option return for each reward function. The new model we propose

enables a very efficient and simple generation of option returns. We provide algo-

rithms of learning this model as well as planning algorithms for generating returns

and value functions. We also prove the convergence of these algorithms.
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Chapter 1

Introduction

1.1 Reinforcement Learning

Sequential decision making means a setting where a computer agent or a human

makes a decision on choosing some action in order to achieve a certain goal; the

decision is made continuously, usually updated when a new observation of the envi-

ronment arrives. The problem is universal to cover fundamental problems in Artifi-

cial Intelligence. Examples of sequetial decision making include large board games

(Tesauro, 1994; Silver et al., 2007), helicopter piloting (Coates et al., 2008), eleva-

tor scheduling (Crites and Barto, 1995), investment strategy modeling (Choi et al.,

2007), and complex power system management (Powell et al., 2012).

Reinforcement learning is the learning framework for sequential decision mak-

ing. The key that leads to these success is that reinforcement learning is grounded in

maximizing long-term rewards through observations in a highly scalable way. Dy-

namic Programming has been successful in learning and planning, but it is limited

to small problems because it requires an accurate model of the environment (Sutton

and Barto, 1998). By the use of state abstraction and function approximation, re-

inforcement learning is scalable to problems with large state spaces. By the use of

action abstraction, reinforcement learning is scalable to problems with large action

space. We will review these two topics in the literature and present our contribution

in this thesis.

We first review necessary concepts in reinforcement learning briefly, including

state and reward, policy, value function, state abstraction, transition, action abstrac-
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tion and Bellman equation.

Reinforcement learning problems can be categorized into two fundamental prob-

lems: policy evaluation (learning) and control (planning).

1.1.1 States and Rewards

Reinforcement learning uses the “agent-environment” framework to describe se-

quential decision making. The agent is the party that makes decisions and takes

actions. The environment is the party that collects the status of the other objects

and reports the information to the agent. The agent takes actions. In reponse, the

environment updates its status report, reflecting the agent’s influence on the other

objects. The environment can contain other agents as well; so the framework is

general enough to cover multi-agent scenarios.

The status of the environment is called the state, summarizing all the informa-

tion of the environment. The state is temporal, which is updated by some (usually

unknown) function in the environment every time step. In addition, the environ-

ment also gives a reward (a scalar signal) that can be observed by the agent. In this

framework, the agent follows some policy to take an action at the current state, and

then receives the reward and observes the new state; the iteration continues. Re-

inforcement learning is all about evaluating policies and choose the best policy to

maximize future rewards. Normally we assume there is a reward (utility) function

that generates the rewards after taking actions. The reward function is goal depen-

dent; in practice, it is usually provided by a system designer in order to achieve

some goal.

1.1.2 Decision Making and Policies

A policy is a way of choosing actions. In this thesis, we assume that all policies are

deterministic. A deterministic policy takes in a state and maps to an action. Policy

gives us a device to talk about both low-level and high-level decision making. Low-

level and high-level decisions really mean the time scale at which decisions are

made. A low-level decision is an action to take at a time step, while a high level

decision is a sequence of actions to take over multiple time steps. The following is

2



an everyday example to illustrate low- and high-level decision making.

Going-to-library example: Alex decides to go to library when sitting at the chair

in an office at the Computer Science building. With this goal, he stands up, walks

out of the office, makes a turn to the hallway, steps out of the building and takes

a walk or drives to the library. Each step can be decomposed into millions of tiny

scales where the human body is making decisions on taking actions.

In this process, we see different levels of decision making.With a specified goal,

high level decision of choosing a way of going to the library, e.g., by car or on foot.

This process chooses a policy, which is called planning or control in reinforcement

learning terminology. Third, once the policy is decided, it is then followed dur-

ing the process. For example, walking his steps to the office door, making a turn,

locking the door, and turning to the hallway are all traces of following the policy.

Like this example, we may face a reinforcement learning problem every mo-

ment in real life. A baby may learn that if she smiles then her mother will kiss her.

So she may figure out that, “when I see mother, I will smile but not cry.” Here she is

making a decision to follow a policy that will give her a reward. The policy will be

triggered at the special states—when she sees her mother. Reinforcement learning

is the science that generalizes these daily life examples, with a goal to help people

build computer programs that help people make decisions.

1.1.3 Value Function and Recursive Temporal Dependence

There are “good” and “bad” states when making a decision. In reinforcement learn-

ing, good/bad states are those that lead to large/small future rewards starting from

there. A state has a value. The value of a state is associated with policies. A state

has multiple values—each associated with a policy from the state. The same state

can have a very large value under a policy, but a small value under another.

In the going-to-library example, the beginning state is sitting at the chair, one

intermediate state can be standing at the entrance of the Computing Science depart-

ment building; and the library is the goal state. Suppose the state of arriving the

library has a reward 1.0, and all the other states have reward 0.0 if he chooses to

walk; otherwise -1.0 because of fuel cost if he chooses to drive. Suppose he chooses

3



to walk, then all the states have a value 1.0. It helps to work backward from the goal

state. The intermediate state leads to the library, so it is natural for it to have a value

1.0. From the office, he walks to the entrance of the building, so the office which is

the initial state should have a value 1.0. Suppose he chooses to drive, then he suf-

fers negative rewards when reaching the library. Thus driving is an inferior policy

to walking in this example. We can see that the all the states except the goal(library)

state have different values under the two policies.

The importance of states is defined in a forward way. The value of a state is de-

fined by the future states that can be reached from the policy from the state, or more

precisely, by the future rewards of following the policy from this state. The defini-

tion of state values has a temporal nature, which looks forward in time to search for

rewards at future states to define the value of the current state. Indeed this backward

propagation is an important feature of reinforcement learning. In early days, people

used “delayed reward/credit assignment” to describe the nature of reinforcement

learning since in many early studied problems there comes a nonzero reward only

when reaching the goal state (Sutton, 1984). An intuive way to think of reinforce-

ment learning is, if the goal state is reached, what are the values for the previous

states in the best policy? Correctly figuring out the answer will help future decision

making in similar situations. Backward propagation is a ubiquitous pattern seen in

many reinforcement learning algorithms.

In defining the value of a state under a given policy, it suffices to align it to

the immediate next states. This results in a recursive definition—every state re-

spects the immediate next states that can be reached in one step. This recursion is

known as Bellman equation or Bellman optimality, which is a fundamental fact in

reinforcement learning and dynamic programming.

1.1.4 State Abstraction

In some problems, states are not observable. Sometimes states are observable but

we need to generalize to new states that are not previously observed. State abstrac-

tion deals with state representation, often called features. State abstraction is ubiq-

uitous in reinforcement learning and machine learning. In this thesis we will con-
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sider the parametric approach to the state representation which involves a number of

parameters to be learned by algorithms. State abstraction enables algorithms to deal

with large discrete-state problems and continuous-state problems. Algorithms with-

out state abstraction are usually only applicable to small problems. Representation

learning and parameter learning are important problems in reinforcement learning.

1.1.5 Transition

In reinforcement learning, sample comes in the form of a tuple 〈xi, ai, xi+1, ri〉, i =

1, 2, . . ., where at state xi the agent takes action ai and then observes the next state

xi+1 and a reward ri. This sample is called a transition of action ai. If ai is selected

according to a policy, it is also called a sample of following the policy. If these

samples are presented to algorithms in a real-time fashion, i.e., algorithms can

access a sample immediately after it happens, then this is called online learning.

If samples are given as a batch to algorithms, then this is called offline learning.

Samples are interaction experience of the agent with the environment, and provide

statistics of taking actions. From samples, an algorithm can figure out the value

function directly, which is called a direct algorithm or a model-free approach. An

algorithm can also first build some model (e.g., the probabilities of reaching a state

after taking an action from some other state) from samples and then use the model

to derive the value function, which is called a model-based approach.

1.1.6 Action Abstraction

The motivation of action abstraction is to facilitate high-level planning. Instead of

reasoning with single-step transitions, with action abstraction one can reason about

the consequence after taking a sequence of actions from given states. Option, a

data structure comprising of a policy, a termination function and an initiation set is

convenient for this purpose. With options, one can ask questions like the following

examples.

“From a state, if one takes actions according to a policy, what will happen after

five time steps?” In this case, the termination function is specified by the number

of time steps.
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“What will happen if one reaches the library in the going-to-library example?”

The termination condition is specified by states.

The consequence of executing an option often include, e.g., what states the

agent will be at, and how many rewards can one achieve when an option stops?

In order to answer these questions, certain models of the world need to be built.

Indeed, option is a good example of model-based planning.

1.1.7 Policy Evaluation

Policy evaluation deals with questions like “if I follow this policy (from any given

state), what are the expected rewards in the future”? In otherwords, policy eval-

uation is the problem of estimating the value function given a policy. Depending

on the means of obtaining this estimate, there are model-based and model-free ap-

proaches. Model-based approach first estimates some model from following the

policy and then solves the model to have the value function estimate. Model-free

approach estimates the value function directly from samples. Some policy evalua-

tion algorithms are based on states without abstraction. Other algorithms are based

on state abstraction.

1.1.8 Control

The planning or control problem in reinforcement learning is to find a policy that

brings the largest future rewards in the future. One can think of the control problem

as to look for the largest values for states in the best situation—“I am going to be

optimal. My value cannot be bigger than following the optimal policy.” A plan-

ning algorithm often have a counterpart policy evaluation algorithm, the value of a

state under the optimal policy also recursively looks forward the future states from

the state. Similar to policy evaluation, there are also model-based and model-free

approaches.
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1.2 Problems Studied and Contributions

In this thesis, we study two problems. One is finding a near-optimal policy using

value function approximation, i.e., control learning. The other is evaluating a high-

level policy in temporal abstract planning. There are three contributions in this

thesis:

• In Chapter 3, we propose an off-line API algorithm that uses linear action

models to find an approximate policy. We show that the new algorithm

performs comparably to LSPI, and often converges much quicker (Yao and

Szepesvári, 2012).

• In Chapter 4, we propose a so-called pseudo-MDPs framework. In this frame-

work, we learn an optimal policy in the pseudo-MDP and then pull it back to

the original MDP. We give a performance error bound for the approach. Sur-

prisingly, the error bound shows that the quality of the policy derived from an

optimal policy of the pseudo-MDP is governed only by the policy evaluation

errors of an optimal policy in the original MDP and the “pull-back” policy

of an optimal policy in the pseudo-MDP. This result is interesting because

performance error bound of the recent kernel embedding AVI (Grünewälder

et al., 2012) can be derived using our error bound (Yao et al., 2014a). The

pseudo-MDP framework is interesting because it not only includes the kernel

embedding model (Grünewälder et al., 2012) but also opens the door to new

models. We propose a least-squares approach and a constrained optimiza-

tion approach of learning factored linear models, which can be used for AVI.

We studied the performance of the new AVI algorithms and explored feature

construction based on them.

• In Chapter 5, we introduce a so-called universal option model. The problem

we address in this chapter is temporal abstract planning in an environment

where there are multiple reward functions. A traditional approach for this

setting requires a significant amount of computation of option return for each

reward function. The new model we propose enables a very efficient and
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simple generation of option returns. We provide algorithms of learning this

model as well as planning algorithms for generating returns and value func-

tions. We also prove the convergence of these algorithms (Yao et al., 2014b).

When working on this thesis, we proposed a linear Dyna-style planning that uses

multi-step predictions. We showed empirically that this multi-step prediction Dyna

gives better results for both policy evaluation and control. We studied issues in im-

plementing linear Dyna-style planning, including step-sizes for learning, modeling,

and planning. With careful implementation, we demonstrated that linear Dyna as

a model-based algorithm learns faster than model-free TD learning and Q-learning

(Yao et al., 2009b).

We also proposed a new two-time scale gradient-descent algorithm called LMS-

2 that is useful to the literature of machine learning and RL (Yao et al., 2009a).

LMS-2 has the same order of complexity as Least-Mean-Square (LMS) but it im-

proves the learning speed to near that of recursive least-squares. These two works

are not included in this thesis.
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Chapter 2

Background

In this chapter we provide necessary background on reinforcement learning (RL).

All results presented in this section can be found in (Puterman, 1994; Bertsekas and

Tsitsiklis, 1996; Szepesvári, 2010).

2.1 Markov Decision Processes

We use Markov Decision Processes (MDPs) as a theoretical framework to study

RL. Thus we define an MDP by a 5-tuple,

(X ,A, (Pa)a∈A, (fa)a∈A, γ),

where X is the state space which we will assume to be finite, 1 A is the finite action

space, Pa is a transition model with Pa(x, x′) being the probability of transitioning

to state x′ after taking action a at state x, fa is a reward model with fa(x, x′)

being the immediate reward of the state transitioning, which is a real number, and

γ ∈ [0, 1) called a discount factor. An MDP gives rise to a sequential decision

process, where at each step of the process an action has to be chosen based on the

past observations, leading to a next observed state X ′ sampled from the conditional

distribution Pa(·|x), where x is the current state and a is the action chosen. While

transitioning to X ′, a reward fa(x, x′) is incurred and also observed.

The question then is how to choose actions so that the expected total discounted

reward incurred is maximized regardless of the initial state for the process. A stan-

dard result is that this can be achieved by choosing an action At at time step t

1Finiteness assumption of the state spaces is not essential but it simplifies presentation.
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from some distribution α(Xt, ·). Note α can be viewed as α : X × A → [0, 1]

with
∑

a∈A α(x, a) = 1 for all x ∈ X . Such functions will be called stationary

Markov policies and the above describes how a given stationary Markov policy can

be “followed” in an MDP. We denote the set of stationary Markov policies by Π.

Value functions. We will denote by V α(x) the expected total discounted reward

incurred while following α from some state x ∈ X :

V α(x)

= E
{∑∞

t=0 γ
tfAt(Xt, Xt+1)

∣∣∣
X0 = x,Xt+1 ∼ PAt(·|Xt), At ∼ α(Xt, ·), t = 0, 1, . . .

}
.

One can show that V α is well defined. V α is called the state value function or value

function for short. The problem of evaluating some policy α is to find a “good”

approximation to its value function V α. Since the value function is often estimated

from data, the process in which the approximation is constructed is called learning.

The optimal value function is V ∗ : X → R,

V ∗(x) = sup
α∈Π

V α(x),

for all x ∈ X . That is, the optimal value function is the value function that satisfies

V ∗(x) ≥ V α(x), for all x ∈ X and α ∈ Π. Note V ∗ can be shown to exist and must

be well defined. A policy whose value function is V ∗ is called an optimal policy.

Note, there can be more than one optimal policy for an MDP, but there is one and

only one optimal value function.

The state-action value functions which we define next facilitate control by ex-

tending the concept of the value function to include also actions. In particular, for

a state-action pair (x, a), its value under policy α is defined by the expected total

discounted reward of taking a at state x and behaving henceafter according to α:

Qα(x, a) = E
{ ∞∑

t=0

γtfAt(Xt, Xt+1) |

X0 = x,A0 = a,At ∼ α(Xt, ·), Xt+1 ∼ PAt(·|Xt), t = 1, 2, . . .
}

It follows from the definition that

Qα(x, a) = E{fa(x,X ′) + γV α(X ′)|X ′ ∼ Pa(·|x)}, (2.1)
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Let Q∗ be the state-action value function of an optimal policy. We also call Q∗

the optimal state-action value function. Note Q∗ can be used to derive V ∗:

V ∗(x) = max
a∈A

Q∗(x, a), (2.2)

for all x ∈ X and a ∈ A (Bertsekas and Tsitsiklis, 1996).

Equation 2.1 and 2.2 imply that the optimal state value function satisfies the

following so-called Bellman equation:

V ∗(x) = max
a∈A

∑
x′∈X

Pa(x, x′)[fa(x, x′) + γV ∗(x′)]. (2.3)

Any policy that selects actions at state x from the set of those that give the maximum

on the right-hand side (RHS) of either (2.2) or (2.3) is an optimal policy. Those

maximizing actions are called “greedy” with respect to V ∗ (if equation 2.3 is used)

or Q∗ (if equation 2.2 is used).

Dynamic programming iteratively updates an estimation of V ∗:

V (x)← max
a∈A

∑
x′∈X

Pa(x, x′)[fa(x, x′) + γV (x′)].

This algorithm is called value iteration. Value iteration is guaranteed to converge

to the solution of Bellman equation given that all states are updated infinitely many

times (Bertsekas and Tsitsiklis, 1996).

Value iteration applies only one sweep of policy evaluation. The effect is that in

value iteration the value function is not solved until convergence for the most recent

policy. Another way of generating an estimate of V ∗ is policy iteration, in which

the value function of the most recent policy is solved accurately before updating the

policy.

2.2 Value Function Approximation

Value function approximation provides generalization among states for problems

with a large state space. Linear function approximation is widely used in practice,

because of its elegance, simplicity and ease of interpretation. Given d (d < |X |)
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feature functions ϕj (·) : X 7→ R (R is the set of real numbers), j = 1, . . . , d, the

feature vector of state x is 2

φ(x) = [ϕ1(x), ϕ2(x), . . . , ϕd(x)]>.

The value of a state x (under some policy) is then approximated by V̂ (x) = φ(x)>θ,

where θ is a d-dimensional weight vector to be “learned”.

To approximate the state-action value function, we often use state-action fea-

tures. Similar to previous passage, let ψ(x, a) ∈ Rd0 be the feature vector of the

state-action pair, (x, a). The value of (x, a) is then approximated by Q̂(x, a) =

ψ(x, a)>θ, where θ is a weight vector. In this thesis we adopt the most widely used

practice for the state-action features, which is, first using d features for the states

and then using a lookup table for the actions. Thus ψ(x, a) and θ have |A| × d

components.

With function approximation introduced, we will seek approximate solutions to

Bellman equation.

2.3 Policy Evaluation Algorithms

In the section, we briefly review some algorithms for learning the state value func-

tion of some fixed policy, including Temporal Difference (TD), least-squares TD

(LSTD), Dyna and linear Dyna for policy evaluation. They all use linear state value

function approximation. These algorithms learn from experience, i.e., sample tran-

sitions of following the policy to be evaluated). For other relevant algorithms, please

refer to (Nedič and Bertsekas, 2003; Bertsekas et al., 2004; Geramifard et al., 2007;

Yao and qiang Liu, 2008). In the end of this section, we also review off-policy

learning, which is the problem of policy evaluation when the transition in the data

may come from a policy different from the one being evaluated.

Both TD and LSTD are incremental, in the sense that some data structures are

updated after every transition and can be implemented conveniently online. TD

2We use “feature” short for “feature vector” when there is no risk of causing confusion in the
remainder of this thesis.
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updates a weight vector (Sutton and Barto, 1998); LSTD updates a matrix and a

vector in addition to a weight vector (Bradtke and Barto, 1996; Boyan, 2002).

2.3.1 TD

TD learns according to the difference in the predictions of the values of the current

and next states. In the tth transition sample, given state Xt, we choose action At

according to the fixed policy α, and observe a reward Rt = fAt(Xt, Xt+1) where

the next state is Xt+1. TD adjusts the weight vector by

θt+1 = θt + ηt(Rt + γθ>t φt+1 − θ>t φt)φt,

where φt = φ(Xt) and ηt is a positive step-size that is chosen by the user of the

algorithm. TD is guaranteed to converge with a diminishing step-size (Tsitsiklis

and Van Roy, 1997) to the fixed point which is the solution to the following linear

system, Aθ + b = 0, with

A = E[φt(γφt+1 − φt)>], b = E[φtRt].

2.3.2 LSTD

LSTD removes the step-size in TD learning. It builds a matrix A ∈ Rd×d and vector

b ∈ Rd from the transition experience:

At+1 = At + φt(γφt+1 − φt)>, bt+1 = bt + φtRt.

Then one solves a linear system, At+1θt+1 + bt+1 = 0. In the case that At+1 is not

invertible, one often adds to the matrix a diagonal matrix of uniform negative en-

tries. LSTD has been shown to learn more accurate solutions for policy evaluation

than TD given the same amount of data in some domains (Boyan, 2002). LSTD

converges to the same fixed point as TD.

2.3.3 Dyna and Linear Dyna

Dyna is an integrated architecture that simultaneously learns a value function, builds

a model, and uses the model to speed up learning (Sutton, 1990). It uses TD meth-

ods to update the value function from samples. It also records the samples and use
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the samples to build a model in order to predict the outcome given a state. In the

inner loop, first a state is sampled according to some distribution (not necessarily

the distribution of the samples), and then the model is applied to project into the

expected next reward and expected next state. This projected experience is then

treated as a real-time sample and TD learning is re-applied. Dyna is successful in

that its model is grounded in experience of the world; and the model can be used to

speed up learning.

Linear Dyna is built on the idea of Dyna and extends to linear function approxi-

mation. Linear Dyna does not have to record the samples to build a model as Dyna

does. Instead, the model is a compressed data structure, and is updated incremen-

tally from samples. The linear Dyna for policy evaluation builds a model—a matrix

and a vector pair, (F, e), where F ∈ Rd×d, e ∈ Rd. The model is sample dependent,

and is updated on the tth transition by using

et+1 = et + ηt(Rt − φ>t et), (2.4)

and

Ft+1 = Ft + ηt(φt+1 − Ftφt)φt. (2.5)

Given a feature vector φ, φ>e predicts the expected one-step reward and Fφ predicts

the expected next feature vector following the policy. In the inner loop we sample

a feature vector φ and apply the model to generate projected experience. Then TD

method is re-applied:

θt+1 = θt + ηt(e
>
t+1φ+ γθ>t Ft+1φ− θ>t φ)φ.

Linear Dyna for policy evaluation converges to the same solution as TD method

under mild conditions (Sutton et al., 2008).

The accuracy of the model is important to the performance of linear Dyna. The

model can be updated using recursive least-squares to speed up model learning and

have better performance than model-free TD learning for online policy evaluation

and control (Yao et al., 2009b).
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2.3.4 On-policy vs. Off-policy Learning

Evaluating a policy using samples collected from following itself is called on-policy

learning. This is what we considered so far. Evaluating a policy using samples col-

lected from another policy is called off-policy learning. In an off-policy learning

problem, the policy to evaluate is called the target policy, and the policy that col-

lects samples is called the behavior policy. Off-policy learning is very useful since

sample collection costs time and money and we would like to learn as many policies

as possible from data. More importantly, control learning often needs to evaluate

off-policy learning. However, off-policy learning is much more challenging than

on-policy learning because the sample distribution follows the behavior policy and

is usually not the same as that of the target policy. In particular, it may fail to be

representative of the target policy. TD method is not guaranteed to converge for

off-policy learning. Recently, fast gradient methods with a complexity of linear in

the number of features were proposed and are guaranteed to converge (Sutton et al.,

2009b,a).

2.4 Control Algorithms

In this section, we introduce control algorithms including approximate value itera-

tion, Q-learning, Least-Squares Policy Iteration (LSPI), and linear Dyna for control.

They all aim to approximate the optimal state-action value function Q∗ and all of

them use state-action value function approximation.

2.4.1 Q-learning

Let (Xt, At, Rt, Xt+1) be the transition sample at time step t, where At can be

chosen by any mechanism based on past observations. Let ψt = ψ(Xt, At), A∗t+1 =

arg maxa∈A ψ(Xt+1, a)>θt. The update rule of Q-learning is,

θt+1 = θt + ηt
[
Rt + γψ(Xt+1, A

∗
t+1)>θt − ψ>t θt

]
ψt.

In Q-learning, usually At is selected to be the maximizing action of ψ(Xt, a)>θ for

a ∈ A. To collect good samples, one often selectsAt to be some exploration action,

such as in the epsilon-greedy policy (Sutton and Barto, 1998).
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Q-learning is usually used as an AVI algorithm. However, it can be also used as

an API algorithm as follows. There are two weight vectors. One can keep the first

weight vector fixed for some time steps and use it for action selection. The second

weight vector is updated every time step. Then the first weight vector is set to the

second weight vector. The procedure repeats until the first weight vector change is

smaller than some threshold.

2.4.2 LSPI

LSPI is an API algorithm. Given the tth sample, LSPI performs greedification

according to its state-action value function estimate Q̂ to obtain A∗t+1 at Xt+1 in

the same way as in Q-learning. A variant of LSTD (LSTDQ) updates a matrix

A ∈ R(d·|A|)×(d·|A|) and vector b ∈ Rd·|A| by

At+1 = At + ψt
[
γψ(Xt+1, A

∗
t+1)− ψt

]>
, bt+1 = bt + ψtRt.

This accumulation is performed for all the samples where the greedy action is se-

lected using the weight vector from last iteration. After the accumulation, θ is

solved for equation Aθ + b = 0. Then one updates the policy to be the greedy

policy with respect to the previous one (Lagoudakis and Parr, 2003).

Q-learning and LSTDQ are both off-policy, since they both approximate the

optimal policy in the long run irrespective of what policies they follow (Q-learning)

or sample from (LSTDQ).

Given sufficient samples and appropriate features, LSPI will find an optimal or

near-optimal policy if they converge. LSPI is considered as one of the most pow-

erful control algorithms in the RL literature (Li et al., 2009). However, LSPI does

not have convergence guarantees, unfortunately. If the state-action value function

produced during iteration stays bounded, then LSPI converges (Lagoudakis and

Parr, 2003). Finite-sample performance bounds for LSPI are given by Munos and

Szepesvári (2008); Antos et al. (2008).
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2.4.3 Linear Dyna for Control

In linear Dyna for policy evaluation the model is a single matrix-vector pair that

is learned from past observations. On the other hand, the model built in linear

Dyna control is a set of matrix-vector pairs, (F a, ea) for each action a ∈ A, where

F a ∈ Rd×d and ea ∈ Rd. We call this collection of pairs a linear action model

(LAM). At time step t, only the model for action a = At is updated as in 2.4 and 2.5.

Note in linear Dyna for policy evaluation, the reward model e is used to predict the

expected one-step reward following the policy. In linear Dyna for control, a reward

model ea is used to predict the expected one-step reward of the action. Similarly,

in linear Dyna for policy evaluation, the matrix F is used to predict the expected

next feature vector following the policy. In linear Dyna for control, a matrix F a is

to predict the expected next feature vector of an action a.

Given a feature vector φ, the expected immediate reward of action a is predicted

to be φ>ea. The expected next feature vector is predicted to be F aφ. The state-

action value function is approximated by combining these two predictions:

Q̂(x, a) = φ(x)>ea + γθ>(F aφ(x)), x ∈ X , a ∈ A.

To build an approximation to Q∗, the model is used as follows. In a process that

runs in parallel to the model updates, a feature vector φ is sampled according to

some mechanism, and the greedy action

A∗ = argmaxa∈A[φ>ea + γθ>(F aφ)]

is computed. TD learning is then applied to update the weight vector θ using the

data (φ,A∗, R, φ′), where R = φ>eA
∗ and φ′ = FA∗φ.

2.4.4 Fitted Q-iteration

Fitted Q-iteration is a family of control algorithms. First define T ∗ : RX×A →

RX×A:

(T ∗Q)(x, a) =
∑
x′∈X

Pa(x, x′)
(
fa(x, x′) + γmax

a′∈A
Q(x′, a′)

)
, (x, a) ∈ X ×A.
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Given a state-action value function Q from last iteration, one first computes Monte-

Carlo approximation to (T ∗Q)(x, a) at selected state-action pairs, and then per-

forms regression on the resulting points. There are counter-examples showing that

fitted Q-iteration can diverge unless a special regressor is used (Baird, 1995; Boyan

and Moore, 1995; Tsitsiklis and Van Roy, 1996). Special regressors that can guaran-

tee convergence include kernel averaging (Ormoneit and Sen, 2002) and tree-based

regressors (Ernst et al., 2005).

2.5 Temporal Abstraction and Options

The terminology, ideas and results in this section are based on the work of (Sutton

et al., 1999) unless otherwise stated. An option, o = (α, β), has two components:
3 a policy α, and a continuation function β : X → [0, 1]. The latter maps a state to

the probability of continuing the option from the state. We assume that β is state-

dependent and stationary. An option o is executed as follows. At time step t, when

visiting state Xt, the next action At is selected according to α(Xt, ·). The environ-

ment then transitions to the next state Xt+1, and a reward Rt+1 = fAt(Xt, Xt+1) is

observed. The option terminates at the new stateXt+1 with probability 1−β(Xt+1).

If it does not terminate, it continues: a new action is chosen from the policy of the

option, etc. When one option terminates, another option can start.

The model of option o is a pair (Ro, po), where Ro is the so-called option return

and po is the so-called (discounted) terminal distribution of option o. In particular,

Ro : X → R is a mapping such that for any state x, Ro(x) gives the expected total

discounted return starting from x until the option terminates. More precisely,

Ro(x) = E[R1 + γR2 + · · ·+ γT−1RT ], (2.6)

where T is the random termination time of the option, assuming that the process

(X0, R1, X1, R2, . . .) starts at time 0 at state X0 = x (initialization), and every time

step the policy underlying o is followed to get the reward and the next state until

3Notice the definition of an option can also include a third component, an initialization set,
indicating if the option is available at a state. In this thesis, we assume all options are available at
each state. That is, the initialization set is the state space for each option.
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termination. The mapping po : X × X → [0,∞) is a function that, for any given

x, x′ ∈ X , gives the discounted probability of terminating at state x′ provided that

the option is followed from the initial state x:

po(x, x′) = E[ γT I{XT=x′} ] =
∞∑
k=1

γk P{XT = x′, T = k} . (2.7)

Here, I{·} is the indicator function, and P{XT = x′, T = k} is the probability of

terminating the option at x′ after k steps away from x.

A semi-MDP (SMDP) is like an MDP, except that it allows multi-step transi-

tions between the states. An MDP with a fixed set of options gives rise to an SMDP,

because the execution of options lasts multiple time steps. Given a set of options

O, an option policy is then a mapping h : X × O → [0, 1] such that h(x, o) is the

probability of selecting option o at state x (provided the previous option has termi-

nated). We shall also call these policies high-level policies. Note that a high-level

policy selects options which in turn select actions. Thus a high-level policy gives

rise to a standard MDP policy (albeit one that needs to remember which option

was selected the last time, i.e., a history dependent policy). Let flat(h) denote the

standard MDP policy of a high-level policy h. The value function underlying h is

defined as that of flat(h): V h(x) = V flat(h)(x), x ∈ X . The process of constructing

flat(h) given h is the flattening operation. The model of an option is constructed

in such a way that if we think of the option return as the immediate reward ob-

tained when following the option and if we think of the terminal distribution as

transition probabilities, then Bellman’s equations will formally hold for the tuple

〈X ,O, (Ro)o∈O, (p
o)o∈O, γ = 1〉.
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Chapter 3

Linear Action Models for
Approximate Policy Iteration
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3.1 Introduction

LSPI is an API algorithm that takes advantage of a variant of LSTD for a high data

efficiency (Lagoudakis and Parr, 2003; Szepesvári, 2010). LSPI does not build any

model of the environment. 1

In this chapter, we introduce a model-based API framework that is built upon

linear action models (LAMs). LAMs were previously used in linear Dyna for con-

trol (Sutton et al., 2008), which describe transitions among state feature vectors.

Compared to the standard MDP model, a LAM is compressed and abstract, which

enables efficient storage and computation. We separate LAMs from linear Dyna

and prioritized sweeping. The concrete advancement of this separation is that LAM

can be used for off-line policy iteration and off-policy learning (Yao and Szepesvári,

2012).

3.2 Linear Action Models

In this section, we define LAMs and projection operations. We also show how to

perform approximate policy evaluation and policy improvement with LAMs. For

the remainder of this section, we fix an MDPM = (X ,A, (Pa)a∈A, (fa)a∈A, γ),

and a feature extractor ϕ : X → Rd, e.g., as specified in Section 2.2.

Definition 1. A linear model of the MDPM is a list of individual linear models for

the actions, (F a, ea)a∈A, where F a ∈ Rd×d is a matrix and ea ∈ Rd is a vector.

The key operations of LAM are the reward and feature projections. The projec-

tion operations of LAM enable predicting what will happen after taking an action at

a state with a given feature vector φ ∈ Rd. In particular, the reward projection pre-

dicts the expected immediate reward after taking an action a via: r̃a = φ>ea. The

feature projection predicts the expected next feature vector via: φ̃a = F aφ. Given

these two projection operations of LAM, we are able to perform approximate policy

evaluation and policy improvement.

1The matrix and the vector that LSPI builds both depend on policies.
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Algorithm 1 The least-squares algorithm of learning LAM.
Input: a data set, D = {(φi, ai, φi+1, ri)}
Output: a set of LAM, {〈F a, ea〉}.
Initialize Ha, Ea and ha for all a, where Ha ∈ Rd×d, Ea ∈ Rd×d, ha ∈ Rd
for i = 1, 2, . . . , d do

a = ai
Update LAM structures of a:
Ha = Ha + φiφ

>
i

Ea = Ea + φi+1φ
>
i

ha = ha + φiri
end
for all a, compute
F a = Ea(Ha)−1

ea = (Ha)−1ha

3.3 Approximate Policy Iteration with a LAM

In this section, we show how to learn a LAM and use it for API. We give an algo-

rithm of learning LAM. We show how to use a LAM for policy evaluation. We then

provide a sample-based policy evaluation method with a LAM. Lastly, we show

how to perform policy improvement and API with a LAM.

3.3.1 Learning a Least-squares LAM

In this section, we give an algorithm of learning a LAM.

Without loss of generality, we assume there is a set of sample transitions:

D = {(φi, ai, φi+1, ri)}, i = 1, 2, . . .

The least-squares approach of learning LAM is to learn 〈F a, ea〉 for all action a ∈

A, such that

F a = arg min
F∈Rd×d

|D|∑
i=1

Iai=a · ‖φi+1 − Fφi‖2
2, (3.1)

and

ea = arg min
e∈Rd

|D|∑
i=1

Iai=a · (ri − φ>i e)2, (3.2)

where ‖x‖2 denotes the 2-norm
√∑

i x
2
i of vector x, and Iai=a = 1 if ai = a;

otherwise Iai=a = 0. That is, we classify the transitions by their action “label” and

perform model learning for each individual class.
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Algorithm 1 shows a straightforward way of computing the above least-squares

solution. In the algorithm, for an action a, matrixHa accumulates the auto-correlation

of the features, matrix Ea accumulates the correlation of the feature vectors and

their consecutive next feature vectors, and vector ha accumulates the correlation

of the feature vectors and the rewards. Given Ha, Ea and ha, F a and ea are ob-

tained by inverting Ha. The method does not require tuning a step-size or repeated

training.

3.3.2 Policy Evaluation

In this section, we show how to evaluate a policy α using a LAM. Note although

we focus on the least-squares learned LAM in this thesis, there is generally no

restriction on the type of LAM that can be used in this section.

Note that α can be the optimal policy or any other policy. The transition dy-

namics Pα and the immediate reward rα are defined by

Pα(x, x′) =
∑
a∈A

α(x, a)Pa(x, x′), ∀x, x′ ∈ X

and

rα(x) =
∑
a∈A

α(x, a)ra(x), ∀x ∈ X ,

where ra(x) =
∑

x′∈X Pa(x, x′)fa(x, x′). For any V ∈ R|X |, we define

TαV = γP αV + rα, (3.3)

and

T aV = γPaV + ra, a ∈ A, (3.4)

where Pα, Pa, rα and ra are viewed as |X | × |X | matrices and |X |-dimensional

vectors, respectively, obtained by fixing an arbitrary ordering of the states in X , or

equivalently identifying X with {1, 2, . . . , |X |}.

The equations 3.3 and 3.4 define the operators, Tα, T a : R|X | → R|X |, both of

which are affine linear. The relationship between the operators Tα and T a is

(TαV )(x) =
∑
a∈A

α(x, a)(T aV )(x), ∀x ∈ X . (3.5)
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Note that V α is the fixed point of V = TαV (which is Bellman equation for

policy evaluation). Because of (3.5),

V α(x) =
∑
a∈A

α(x, a)(T aV α)(x), ∀x ∈ X . (3.6)

With linear function approximation, V α(x) ≈ φ(x)>θ. In this case, we want to

retain (3.6). Thus

φ(x)>θ ≈
∑
a∈A

α(x, a)(T a(Φθ))(x), ∀x ∈ X ,

where Φ ∈ R|X |×|X | is the so-called feature matrix whose xth row is φ(x)>. Ex-

panding the definition of T a, this rewrites into

φ(x)>θ ≈
∑
a∈A

α(x, a)
[
γ(φ̄a(x))>θ + ra(x)

]
,

where the term, φ̄a(x) =
∑

x′∈X Pa(x, x′)φ(x′), is the expected next feature vector

under taking a at state x.

Since they are unknown, we replace φ̄a(x) by φ̃a(x) = F aφ(x), and ra(x) by

r̃a(x) = φ(x)>ea. With all these, we arrive at a linear system of equations:

φ(x)>θ =
∑
a∈A

α(x, a)
[
γ(φ̃a(x))>θ + r̃a(x)

]
, ∀x ∈ X . (3.7)

The linear system can then be solved iteratively or directly.

The solution of the linear system 3.7 is generally not guaranteed to exist for

least-squares LAM, because the underlying matrix in the linear system is not nec-

essarily invertible. Nonetheless in our experiments we found that good performance

can often achieved. In case that the matrix is not invertible, one can apply the same

perturbation trick as in LSTD. In Chapter 4, we propose method that can learn

a LAM which guarantees the contraction property in the approximate transition

model, for which the solution of 3.7 must exist.

To perform policy evaluation with a LAM, we generate a set of sample transi-

tions, {(φ, φ̃, r̃)}, from a set of feature vectors {φ} using LAM. Note that the policy

to evaluate needs to select actions for feature vectors. For example, the greedy pol-

icy defined in section 3.3.3 is able to do so. We then feed these sample transitions
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Algorithm 2 LAM-API with LSTD (LAM-LSTD for short).
Input: a set of feature vectors, {φ}, and a LAM, {〈F a, ea〉}a∈A, where F a ∈ Rd×d, ea ∈
Rd
Output: a weight vector θ ∈ Rd.
Initialize θ
repeat until θ no longer changes

for φ in the data set do
Project a sample using the greedy action:
a∗ = arg maxa{φ>ea + γθ>F aφ}
φ̃ = F ∗φ //F ∗ = F a

∗

r̃ = φ>e∗ //e∗ = ea
∗

Accumulate LSTD structures:
A = A+ φ(γφ̃− φ)>

b = b+ φr̃
end
θ = −A−1b

end

to LSTD or any other off-policy learning algorithm. Note that this is an off-policy

learning task. The distribution of φ is determined by the underlying state distri-

bution, which can be an arbitrary distribution. However, the transition sample is

projected according to a target policy. Hence there is a mismatch between where

the source states of the transitions are from and what policy the transitions follow.

Thus we need convergent off-policy learning algorithms. LSTD is suitable for this

task: First it is guaranteed to converge for off-policy learning if the TD solution

exists. Second, LSTD is efficient for batch data.

3.3.3 Policy Improvement

The projection power of LAM lends itself to policy improvement. In particular,

given the latest policy parameter θ, policy improvement can be performed by taking

a∗ = arg max
a

[
φ>ea + γ(F aφ)>θ

]
, (3.8)

for any feature vector φ ∈ Rd.

Algorithm 2 shows an API algorithm with LAM for projection and LSTD for

evaluation.
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3.4 Empirical Results

In this section, we provide empirical results of LAM-LSTD on chain-walk exam-

ples and a cart-pole balancing problem. We compare with LSPI on the learned pol-

icy and number of iterations required for convergence. On chain-walk problems,

LAM-LSTD found the optimal policy in the same number of iterations as LSPI

(4-state chain), and much fewer number of iterations than LSPI for 50-state chain

(LAM-LSTD: 2 iterations; LSPI: 14). On pendulum, LAM-LSTD balanced the

pendulum for 2930 steps on average and LSPI balanced for 2700 steps on average

both with 400 episodes of training data. The variance of LAM-LSTD is also much

smaller than LSPI. LAM-LSTD spent 4.3 iterations to converge in general while

LSPI spent 8.2 iterations on average for the same number of training episodes.
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Figure 3.1: The 4-state chain-walk (figure is from (Lagoudakis and Parr, 2003)).
States 2 and 3 are rewarding only.

3.4.1 The 4-state Chain

The problem is the chain-walk example originally used by Koller and Parr (2000).

The problem is shown in Figure 3.1. There are two actions, “Left” (L) and “Right”

(R). With probability 0.9, an action leads to a state in the intended direction; with

probability 0.1, it leads to a state in the opposite direction. The discount factor is

0.9. The nonzero reward (one) is given exclusively at the middle states. Features

are, φ(s) = [1, s, s2]>, s = 1, 2, 3, 4. A data set of ten counts of each state-action

pair was used (notice this training data has no randomness involved, so the follow-

ing experiments can be reproduced almost exactly). θ was initialized to 0 for all

algorithms. The algorithms were stopped if the L2-norm of the change of θ in two

successive iterations was smaller than 0.001.

Figure 3.2 shows the performance of LAM-LSTD. In the figure, the x-axis

shows the states, and the y-axis shows the following value functions:

Q̂∗L(s) = φ(s)>eL + γ(FLφ(s))>θ,

represented by blue dash-dot line, marker ‘•’; and

Q̂∗R(s) = φ(s)>eR + γ(FRφ(s))>θ,

represented by red dashed line, marker ‘+’. LAM-LSTD found the optimal policy

in 2 iterations. Notice that the success of LAM-LSTD can be somehow predicted by

checking the quality of LAM in advance. In fact, because the weight vector θ was
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Figure 3.2: LAM-LSTD (dashed) and LSPI (solid) for the 4-state chain. The
blue line shows estimate of the optimal value of going left, and the red line shows
estimate of the optimal value of going right. The two algorithms finds the same
policy at all the iterations. For example, at iteration 3, both algorithms find the
optimal policy “RRLL” which means the optimal actions at states 1, 2, 3, 4 are
going right, going right, going left, and going left, respectively.

initialized to 0, the plot at iteration 0 actually shows the reward approximations. In

Figure 3.2, the first plot not only shows the approximated rewards of states 2 and 3

are bigger, but also shows that they are close to each other. For this experiment, the

learned linear reward model was eL = eR = [−1.9675, 2.4702,−0.4943]>, 2 and

reward predictions are φ(1)>eL = 0.0084 ≈ 0, φ(2)>eL = 0.9956 ≈ 1, φ(3)>eL =

0.9941 ≈ 1, φ(4)>eL = 0.0039 ≈ 0. The quality of F can be checked before

iteration in a similar way.

Though LSPI found exactly the same policy as LAM-LSTD, the learned (state-

value) value functions were different. In particular, LAM-LSTD converged faster

than LSPI in the first two iterations. One reason might be, though both algorithms

initialized their weight vector to 0, the initial policies were actually different. In

particular, LAM-LSTD took advantage of the linear reward model, and the initial

state-action value function was initialized to the one-step approximated reward. The

2The two reward models are the same, because the rewards only depend on the states.
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initial state value function was 0 for LAM-LSTD. while for LSPI it was the initial

state-action value function that was 0. This explains why at iteration 1 LAM-LSTD

was a bit better, but cannot explain why at iteration 2 LAM-LSTD became much

better. This difference is caused by that LAM-LSTD takes advantage of using a

learned model, while LSPI learns on the real samples. The projected samples used

by LAM-LSTD summarize across the real samples all possible results for any state

through the use of LAM; the real samples used by LSPI only contain pieces of

single-step transitions. Therefore policy improvement at one projected sample by

LAM-LSTD actually considers many transitions in real samples. In this example,

we saw that LSPI caught up in iteration 3. We expect the advantage of LAM-LSTD

increases with problem size with a good model.

3.4.2 The 50-state Chain

For the 50-state chain, the reward one is now given exclusively at states 10 and 41.

We also used exactly the same radial basis features as Lagoudakis and Parr (2003),

giving 22-dimensional state-action features (used by LSPI), and 11-dimensional

state features (used by LAM-LSTD). We used a sample set comprising 100 pairs

for each state-action (this gives 100× 50× 2 = 10, 000 samples).

In total, LSPI spent 14 iterations to converge, and found the optimal policy at

the last iteration. The initialization plus two early iterations are shown in Figure

3.3. Three later iterations in Figure 3.4. There is a noticeable policy degradation

from iteration 7 to iteration 8. At iteration 8, the shape of the state-action value

function looks much worse than the previous iteration.

LAM-LSTD spent 4 iterations to converge, and found the optimal policy at

iteration 2 as shown in Figure 3.5. After one iteration, LAM-LSTD already found a

nearly optimal policy. In the figures, both algorithms used the same initialization for

policy evaluation. In particular, the matrix and vector in both LSTDQ and LSTD

were initialized to 0. Ha used by the least-squares algorithm of learning LAM

was initialized to 100I (I is the identity matrix) for both actions. We also tried

extensively to optimize the initialization of this matrix for both algorithms, As the

experiment with the 4-state chain, the weight vector was initialized to 0 for both
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Figure 3.3: LSPI on the 50-state chain-walk, shown are iteration 0 (initialization)
plus iteration 1 and 7. Like the 4-state chain, the actions for the states are shown
for the iterations. Note that only states 10 and 41 are rewarding. The two bumps at
iteration 7 shows the state-action value function of the policy has a good shape (but
not optimal yet; in fact LSPI found the optimal policy at iteration 14).

algorithms. The first plot of LAM-LSTD, showing the reward approximations by

the features, indicates that the positions of the largest rewards are modeled correctly.

With five polynomial bases, however, we found the positions of the largest reward

are modeled incorrectly, and hence LAM-LSTD only gave a sub-optimal policy,

which is consistent to LSPI’s results (Lagoudakis and Parr, 2003).
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Figure 3.4: LSPI on the 50-state chain-walk continued: iteration 8, 9, 14. At
iteration 14, LSPI converges.
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Figure 3.5: LAM-LSTD on the 50-state chain-walk. At iteration 2, the policy
is already optimal. (LAM-LSTD converges in two more iterations.) The policy
actions for the last two iterations remain unchanged and are optimal. We run to
many iterations and it is still stable.
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3.4.3 Cart-Pole System

We used exactly the same simulator as Lagoudakis and Parr (2003). The state is

(ϑ, ϑ̇), where ϑ is the angle between the pendulum and the vertical line, and ϑ̇ is

the velocity of the pendulum. The goal is to keep a pendulum above the horizontal

line (|ϑ| ≤ π/2) for a maximum of 3000 steps. There are three actions: applying a

left or right force of 50 Newton or not applying any force. The problem is shown in

figure 3.6 The discount factor is 0.95. The features are state-based RBFs, 9 regular

Gaussians plus a constant basis over the 2D state space. The features of a state x

are φi(x) = exp(−||x− ui−1||2/2), i = 1, 2, . . . , 10, where u0 = s, and the other

ui are the points from the grid {−π/4, 0, π/4}× {−1, 0, 1}. We collected 100 data

sets, each comprising 1000 episodes of data. In each episode, the pendulum was

started from a uniformly random perturbation from the state (0, 0), and applied a

uniformly random policy. An episode finished when the |ϑ| > π/2. The lengths of

these episodes were around 6 to 9. Each data set was then split into subsets, giving

20 tsets with 50, 100, . . . , 1000 episodes, respectively.

The results are shown in Figure 3.7 and Figure 3.8, which show the balancing

steps and number of iterations of the algorithms respectively, given various sizes

of training data. Figure 3.7 shows that LAM-LSTD policies had a significantly

better control performance (in terms of both mean and variance of the balanced

steps) over LSPI policies across all the sizes of training data. Figure 3.8 shows that

LAM-LSTD spends much fewer iterations than LSPI. In generating the figures, a

LAM-LSTD policy and an LSPI policy were learned from the same training data of

a particular size, and were both evaluated 100 times to give the average performance

of the policies. The experiment was then repeated on the 100 sets of training data

of the identical size, to further give the final, average balancing steps for a policy.

Finally, twenty such experiments were performed for all the sizes of training data.

Both algorithms initialized the matrix to −0.01I . This leads to better performance

and fewer iterations for LSPI than initializing the matrix to 0. For learning all LAM,

Ha = 0.
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Figure 3.6: Cart-pole balancing problem.
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Figure 3.7: Pendulum: balancing steps of LAM-LSTD and LSPI.
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3.5 Conclusion

For evaluating fixed policies, it is known that building linear models of policies

is advantageous in improving the sample efficiency (Boyan, 2002; Sutton et al.,

2008; Parr et al., 2008). However, these models do not generalize across policies.

In this chapter, we have introduced a model-based API framework that uses linear

action models learned from data. Linear action models are shared across policies,

and hence can be used to evaluate multiple policies. As opposed to model-free

methods, our approximate policy iteration method can use state value functions

since the model can be used to predict action values. This might reduce the variance

of the value- function estimates. Our empirical results show that LAM-LSTD gives

better policies than LSPI, often in significantly fewer iterations. Our work suggests

actions models are effective and efficient for off-policy learning and control. It

would be interesting to build other (such as nonlinear) action models, from which

we may have more accurate projections and hence better performance.
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Chapter 4

Pseudo-Markov Decision Processes
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4.1 Introduction

This chapter deals with a model-based approach for large-scale learning and plan-

ning. We want to learn a near-optimal policy for an MDP with a generic model.

The desired properties of the model are as follows.

1. The optimal value function of the model can be efficiently computed.

2. It leads to a policy in the original MDP whose sub-optimality can be con-

trolled in terms of how well the model approximates the MDP.

3. The model can be learned from data, efficiently and effectively.

4. The model is flexible.

Item 4 is not really well-defined, but we wish to use models similar to those of the

previous chapter, while items 1 and 2 answer the deficiency of the approach in the

previous chapter.

This chapter is based on (Yao et al., 2014a). It is organized as follows.
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4.2 Preliminaries

In this chapter, we will allow continuous state space. As such, we need to change

the notation slightly and introduce some more notations. In particular, now Pa will

be a probability kernel: for all (x, a) ∈ X × A, Pa(·|x) is a probability measure

over the state space, which is assumed to be equipped with a measurability structure.

We also simplify (without loss of generality) the reward function fa, which in this

chapter will take only one argument: for x ∈ X , a ∈ A, fa(x) is the immediate

reward received when action a is taken in at state x. In this chapter, we use lower

case variables to denote states and actions.

For a measure µ over some measurable set W , let L1(µ) denote the space of

µ-integrable real-valued functions with domain W . Further, for a kernel Pa let

L1(Pa) = ∩x∈XL1(Pa(·|x)). We also let

L1(P) = ∩a∈AL1(Pa) = ∩a∈A,x∈XL1(Pa(·|x)).

We require that for any a ∈ A, fa ∈ L1(Pa) and further that for any measurable

set U ⊂ X , a ∈ A, Pa(U |·) ∈ L1(P) (in particular, x 7→ Pa(U |·) must be

measurable). These conditions ensure that the integrals below are well-defined.

Note that L1(Pa) and L1(P) are vector-spaces.

Under some extra mild conditions, the optimal value function V ∗ still satisfies

the “Bellman optimality equation”,

V ∗(x) = max
a∈A

fa(x) + γ

∫
Pa(dx′|x)V ∗(x′), ∀x ∈ X .

One simple sufficient condition is that the rewards are bounded.

For a normed vector space V = (V , ‖ · ‖), the (induced) norm of an operator

T : V → V is defined by ‖T‖ = supV ∈V,V 6=0 ‖TV ‖/‖V ‖. An operator is called a

contraction if ‖T‖ < 1. The difference of two operators T, T̂ : V → V is defined

via (T−T̂ )V = TV −T̂ V . The supremum norm ‖·‖∞ of a (real-valued) function f

over some set W is defined by ‖f‖∞ = supw∈W |f(w)|. We will denote by δx0(dx)

the Dirac measure concentrated on x0:
∫
f(x)δx0(dx) = f(x0) for any measurable

f .
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4.3 Pseudo-MDPs

We shall consider abstracting MDPs into what we call “pseudo-MDPs”, which we

define as follows.

Let S be a measurable space. Recall that a signed measure µ over S maps

measurable subsets of S to reals and satisfies µ(∪iSi) =
∑

i µ(Si) for any countable

family (Si)i of disjoint measurable sets of S. We call the tuple

N = (S,A, (Qa)a∈A, (ga)a∈A, γ)

a pseudo-MDP if Qa maps elements of S to signed measures over S (Qa(·|s) .
=

Qa(s, ·) is a signed measure over S) and ga : S → R is a measurable function. As

for MDPs, we assume that ga ∈ L1(Q) and for any measurable U ⊂ S and action

a ∈ A, Qa(U |·) ∈ L1(Q), and γ ∈ [0, 1).

The difference between a pseudo- and a “real” MDP is that in a pseudo-MDP

Qa(·|s) does not need to be a probability measure. This can be useful when con-

structing “abstractions” of an MDP as dropping the requirement that the transition

kernel must be a probability measure increases the power of what can be repre-

sented. The concepts of policies and value functions extend to pseudo-MDPs with

almost no change. In particular, the concept of policies does not change. To define

value functions, first notice that in an MDP, (X ,A, (Pa)a∈A, (fa)a∈A, γ), the value

function of a stationary Markov policy is equivalently defined by defining the prob-

ability measure µx,α as the distribution of the trajectories (x0, a0, x1, a1, . . .), where

x0 = x, and for t ≥ 1, at−1 ∼ α(xt−1, ·), xt ∼ Pat−1(·|xt−1). Then

V α(x) =

∫ ∞∑
t=0

γtfat(xt)dµx,α(x0, a0, x1, a1, . . .).

Copying this definition, in a pseudo-MDPN , we define the value function of a pol-

icy β, by considering the signed measures µs,β induced by (Qa)a and β over the set

({s}×A)×(S×A)N of trajectories starting at some state s ∈ S as before. Then, the

value function of β, vβ is defined by vβ(s) =
∫ ∑∞

t=0 γ
tgat(st)dµs,β(s0, a0, s1, a1, . . .).

We assume that vβ is finite-valued for any policy β ofN . In pseudo-MDPs, we gen-

eralize the Bellman-optimality to

v∗ = max
a∈A

(4.1)
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We assume for now that this has a solution. The approach followed will be to

compute v∗ and then a polity that is greedy with respect to v∗ inN . As before such

a policy chooses actions that maximizes the RHS of 4.1. For brevity we call these

policies Bellman optimal, and the actions they take N -greedy.

The purpose of constructing pseudo-MDPs is to create abstractions that facili-

tate efficient computation. However, for an abstraction to be of any use, we need to

be able to use it to come up with good (near-optimal) policies in the source MDP.

Denote the abstracted, or source MDP by

M = (X ,A, (Pa)a∈A, (fa)a∈A, γ).

The connection of M and N will be provided by a measurable map φ : X →

S, which must be chosen at the time of choosing N . In what follows we fix the

mapping φ.

We let ΠM,ΠN be the space of policies in the original MDP and the pseudo-

MDP, respectively. The map φ can be used to pull any policy of the pseudo-MDP

back to a policy of the source MDP:

Definition 1 (Pullback Policy). Let N be a φ-abstraction ofM. The pullback of

policy β ∈ ΠN is the policy α ∈ ΠM that satisfies α(x, a) = β(φ(x), a). The map

that assigns α to β will be denoted by L and we will call it the pullback map. In

particular, L : ΠN → ΠM and L(β)(x, a) = β(φ(x), a), for any x ∈ X , a ∈ A.

The power of pseudo-MDPs is that it provides a common framework for many

MDP-abstractions that were considered previously in the literature: Some examples

are as follows.

Example 1 (Finite Models). Let S be finite set, for s ∈ S, a ∈ A, Qa(·|s) be a

distribution over S, ga : S → R be an arbitrary function.

Example 2 (Linear Action Models). Assume that S = Rd where measurability is

meant in the Borel sense. For each a ∈ A, let F a ∈ Rd×d, fa ∈ Rd. Then, for each

s ∈ S, a ∈ A, U Borel measurable, Qa(U |s) = I{Fas∈U} and ga(s) = (fa)>s.
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Example 3 (Factored Linear Action Models). Let S = X , ψ : X × A → Rd,

ξ : B → Rd, where B is the collection of measurable sets of X . Then, for x ∈ X ,

a ∈ A, U ∈ B, Qa(U |x) = ξ(U)>ψ(x, a), while ga is arbitrary.1

In the first two examples (Qa)a are probability kernels. Discrete models are

typically obtained in a process known as state aggregation (Van Roy, 2006) in

which case φ : X → S is assumed to be surjective and is known as the state-

aggregation function. Given φ, one further chooses for each s ∈ S a distribu-

tion µs supported on φ−1(s) = {x ∈ X |φ(x) = s}. Then, Qa is given by

Qa(U |s) =
∫
µs(dx)Pa(dx′|x)I{φ(x′)∈U} and ga(s) =

∫
fa(x)µs(dx). Linear ac-

tion models arise when the transition dynamics underlying each action is approxi-

mated via a linear model such as in the previous chapter. In this case φ is known as

the “feature-map”. Note that one can represent any finite MDP with linear models:

Given a finite modelN with state space S = {1, . . . , d}, define S̃, the state space of

the linear model, as the simplex of Rd, (F a)j,i = Qa(j|i), fai = ga(i), 1 ≤ i, j ≤ d.

Motivation examples. While abstractly it is clear that pseudo-MDPs are more

powerful as tools to abstract MDPs, we also provide two specific examples below

to illustrate this. Often, the pseudo-MDP differs from an MDP only in that the

transition kernel is unnormalized (i.e., for some s ∈ S, a ∈ A, Qa(S|s) 6= 1). It is

temping then to normalize (Qa)a∈A.

The first example shows that this may ruin how well V̂ ∗ approximates V ∗. The

second example shows that normalization may ruin how well the policy obtained

from V̂ ∗ performs when pulled back toM.

Example 4. The MDP M is A = {a},S = {1, 2},Pa = [0.01, 0.99; 0, 1], ga =

[1, 0]. V ∗(1) ≈ 0.01, V ∗(2) = 0, γ = 0.9. The pseudo-MDP is identical to M

except that Qa = [0.01, 0; 0, 1]. It is easy to see that V̂ ∗ = V ∗. If normalizing the

model (i.e., normalizing each row of Qa by its `1 norm), we get, Q̄a = [1, 0; 0, 1],

and V̂ ∗(1) = 10, V̂ ∗(2) = 0, a much worse approximation that we had before.

Example 5. The MDPM is,A = {a1, a2},S = {1, 2},Pa1 = [0.01, 0.99; 0, 1],Pa2 =

[0, 1; 0, 1], ga1(1, 1) = 100, ga1(1, 2) = 0, ga1(2, 2) = ga2(2, 2) = 10, ga2(1, 2) =

1A natural restriction on ga would be to assume ga(x) = (fa)>ψ(x, a).
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Figure 4.1: A small MDP used in Ex. 2.

100, and the discount factor is 0.9. The optimal policy is α∗(1) = α∗(2) = a2. The

MDP is is shown in Figure 4.1.

The pseudo-MDP again differs fromM only in the choice of (Qa). In particular,

Qa1 = [0.01, 0; 0, 1],Qa2 = [0, 1; 0, 1]. The normalized model has the kernels,

Q̄a1 = [1, 0; 0, 1], Q̄a2 = [0, 1; 0, 1]. A small calculation shows that greedy policy

with respect to V̂ ∗ is the optimal policy ofM, but the same does not hold for the

normalized model. In particular, the optimal policy according to the normalized

model selects action a1 at state 1.

Let us now return to discussing versions of linear action models. Although lin-

ear action models are powerful, it may be difficult to compute a Bellman-optimal

policy in a linear action model. The idea of factored linear models is similar ex-

cept that here the state space is unchanged; the “abstraction” happens because the

transition kernel is written in a factored form: The map ψ extracts the features of

state-action pairs, while the “features” of the sets one may arrive at are extracted by

ξ. An interesting special case is when ξ takes the form

ξ(U) =

∫
U

f(x′)µ(dx′), (4.2)

where µ is a signed measure over X and f : X → Rd is some fixed measurable

function. A concrete example is when

ξ(U) =
n∑
i=1

f(x′i)Ix′i∈U . (4.3)

for some x′i ∈ X , 1 ≤ i ≤ n. Then Qa(U |x) =
∑n

i=1 f(x′i)
>ψ(x, a)Ix′i∈U , and for

v ∈ L1(Qa), ∫
v(y)Qa(dy|x) =

n∑
i=1

f(x′i)
>ψ(x, a)v(x′i).
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In this case, under some additional conditions the optimal policy can be computed

efficiently. Indeed, if V̂ ∗ denotes the optimal value function for the pseudo-MDP,

from the Bellman optimality equation, we get

V̂ ∗(x) = max
a∈A

ga(x) + γ

(
n∑
i=1

V̂ ∗(x′i)f(x′i)

)>
ψ(x, a)

= max
a∈A

(T̂ aV̂ ∗)(x),

where the last equation defines the operators T̂ a. By this equation, knowing V̂ ∗

at states in X ′ = x′1, x2, . . . , x
′
n suffices to compute an optimal action of N at any

state x ∈ X . The Bellman optimality equation will be guaranteed to have a solution

if T̂ a is a contraction in the ‖ · ‖∞-norm, which holds if |
∑n

i=1 f(x′)>ψ(x, a)| ≤ 1

for any (x, a) ∈ X × A. Using the Bellman optimality equation again, we see that

V̂ ∗|X′ is the optimal value function of the finite pseudo-MDP

(X ′, (Qa|X ′×2X′ )a∈A, (g
a|X ′)a∈A) (4.4)

and, as such, it can be found, e.g., by either value iteration or linear programming.

Factored linear models which satisfy equation 4.3 will be called finitely sup-

ported factored linear models (FSFLMs).

We now show that FSFLMs generalize existing models. First, we show that

finite models are also FSFLMs. Indeed, given a finite model

N = (S,A, (Qa)a∈A, (ga)a∈A)

with S = {1, . . . , d} and a surjective map φ : X → S, pick µ(·|i) so that for each

i ∈ S, µ(·|i) is a probability distribution supported on φ−1(i) = {x ∈ X |φ(x) = i}.

Define the probability kernels (P̂a)a∈A by P̂a(dx′|x) =
∑

j∈S µ(dx′|j)Qa(j|φ(x)).

By choosing ξi(dx) = µ(dx|i), ψi(x, a) = Qa(i|φ(x)), 1 ≤ i ≤ d, we see that

P̂a(U |x) = ξ(U)>ψ(x, a), thus a finite model gives rise to a factored model. If we

choose µ(·|j) to be atomic, say, supported at x′j , we can write ξi(U) = Ix′i∈U and

ξ(U) =
∑n

i=1 eiIx′i∈U , thus we get Pa defines a FSFLM.

Let us now argue that the kernel-based model of Ormoneit and Sen (2002)

also gives rise to an FSFLM. Let Z = X × A, (z1, x
′
1), . . . , (zn, x

′
n) ∈ Z × X ,
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ν(·|x) a probability kernel over X , and k : Z × Z → [0,∞) a function such

that
∑n

j=1 k( (x, a), zj) > 0 for any (x, a) ∈ Z . Define ξi(dx
′) = ν(dx′|x′i)

and ψi(x, a) = k( (x, a), zi)/
∑n

j=1 k( (x, a), zj). The resulting factored linear

model generalizes the kernel-based model of Ormoneit and Sen (2002) who chooses

ν(dx′|x′i) = δx′i(dx
′). In this case, ξ can be put in the form (4.3) with fi(x′) =

I{x′=x′i} and µ(dx′) =
∑n

j=1 δx′j(dx
′), and we get a FSFLM. The model of Grünewälder

et al. (2012) that embeds the transition kernels into reproducing kernel Hilbert

spaces can also be seen to be an FSFLM, though to allow this we need to replace

the range of ξ and ψ with some Hilbert space.
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4.4 A Generic Error Bound

From Section 4.2, we know that any policy in a pseudo-MDP can be used for action

selection in the source MDP through the pull-back operation. In this section, we

derive a bound on how well the pullback of a near-Bellman optimal policy of a

pseudo-MDPN will perform in the source MDPM. Note that we will not assume

contraction for Bellman operator of the pseudo-MDP. Before stating this result, we

need some definitions. Given any measurable function v over S , we let Vv denote

the function over X defined by

Vv(x) = v(φ(x)),

and Vv is called the pullback of v. We also introduce a left inverse l : ΠM → ΠN to

L. We call l a pushforward map. Thus, l(L(β)) = β holds for any β ∈ ΠN . Note

that to ensure that L has a left inverse, φ must be surjective:

Assumption A1 φ is surjective.

When φ is surjective, it is easy to see that a left inverse of L indeed exists because

for any s ∈ S all policies act uniformly for any state of φ−1(s). Figure 4.2 illustrates

the mappings, φ, l, and L.

The push-forward map is a theoretical construction in the sense that it is only

used in characterizing the “power” of abstractions (it is not used algorithmically).

This allows one to choose the best push-forward map that gives the tightest error

bounds.

A push-forward and a feature map together give rise to the concept of approxi-

mate value functions:

Definition 2 (Approximate Value Function). Fix a push-forward map l and a fea-

ture map φ. Given a policy α ∈ ΠM, we call vl(α) the value-function of α under

l in N . Further, we let V α
v

.
= Vvl(α) , i.e., the pullback of vl(α), be the N -induced

approximate value function underlying policy α.2

2In fact, in addition to N , both l and φ influence V αv .
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X S

φ

L

!

Figure 4.2: Illustration of φ, l, L using a MDPM with two actions. The coloring
of the states in X and S identifies φ: φ keeps the colors of states. The bars next
to states in S define a policy in ΠN . This is pulled back to a policy of M, by
L. Note that identically colored states of X will be assigned the same probability
distribution over the two actions. The mapping l takes a policy in L(ΠN )
and maps it to a policy of N . As long as l mixes action-distribution of identically

coloured states, l will be a left inverse of L.

Let B(X ) = (B(X ), ‖ · ‖) be a normed subspace of L1(P): B(X ) = {V : X →

R |V ∈ L1(P), ‖V ‖ <∞}. We use the norm ‖·‖ associated with B(X ) to measure

the magnitude of the errors introduced by N : We call

ε(α) = ‖V α − V α
v ‖ (4.5)

the evaluation error of policy α induced by N .

To compare policies we will use the expected total discounted reward where the

initial state is selected from some fixed distribution, ρ. Given any V : X → R,

define Vρ =
∫
x∈X V (x)ρ(dx). Then V α

ρ =
∫
x∈X V

α(x)ρ(dx) gives the expected

total discounted reward collected while following α assuming that the initial state

is selected from ρ. Further, for a function V ∈ L1(P), define its L1(ρ)-norm by

‖V ‖L1(ρ) =
∫
|V (x)|ρ(dx) and let Kρ = supV ∈B(X ) ‖V ‖L1(ρ)/‖V ‖. We will denote

by φ∗(ρ) the push-forward of ρ under φ. Thus, φ∗(ρ) is a probability measure on S:

it is the distribution of φ(X) where X ∼ ρ.
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4.4.1 An Error Bound

With this, we can present our first main result which bounds the suboptimality of

the pullback of the pseudo-MDP’s optimal policy:

Theorem 1. Let α∗ ∈ arg maxα∈ΠM V α
ρ , β∗ ∈ arg maxβ∈ΠN v

β
φ∗(ρ) and let α∗L =

L(β∗) be the pullback of β∗. Then, under A1,

V α∗

ρ −Kρ(ε(α
∗) + ε(α∗L)) ≤ V

α∗L
ρ ≤ V α∗

ρ .

The theorem shows that the quality of the policy derived from an optimal policy

of the pseudo-MDP is governed by the error induced by N on the value functions

of policies α∗, α∗L alone. Thus, it suggests that when considering the construction

of N , one should concentrate on the evaluation error of these two policies. The

result is remarkable because it suggests that the common objection against model

learning—a good model must capture all the details of the world—has not theoreti-

cal basis. Of course, the difficulty is that while β∗ may be accessible (givenN ), α∗

is hardly available. Nevertheless, the result suggests an iterative approach towards

constructing N , which we will explore later.

The policy evaluation error defined in (4.5) depends on the norm chosen for

the functions over X . If one chooses the supremum norm, Theorem 1 immediately

gives the following result:

Corollary 2. Let ‖ · ‖ = ‖ · ‖∞ in (4.5). Then, under A1, for any optimal policy

α∗ of M and optimal policy β∗ of N , ‖V α∗L − V ∗‖∞ ≤ ε(α∗) + ε(α∗L), where

α∗L = L(β∗).

It is remarkable that none of these results uses contraction arguments. Note that

the definition of α∗ and β∗ in Theorem 1 is different from the definition used in

this corollary. While here α∗, β∗ are required to be optimal, in Theorem 1 they are

optimal only in a weaker, average sense. Note that choosing the norm in (4.5) to be

the supremum norm makes Kρ = 1 for any distribution ρ (which is great), but can

increase the values of ε(α∗) and ε(α∗L). Hence, the norm that optimizes the bound

may very well be different from the supremum norm.
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Finally, before the proof let us discuss the computation of the “optimal” policies

inN mentioned in these two results. In Theorem 1, β∗ = arg maxβ∈ΠN v
β
φ∗(ρ). One

can show that this policy can be obtained from the solution of a linear program (LP)

φ∗(ρ)>v → min s.t. v ≥ T̃av, a ∈ A

where

(T̃av)(s) = ga(s) + γ

∫
Qa(ds′|s)v(s′).

When (Qa)a∈A are non-negative valued and φ∗(ρ) has full support, any solution of

this LP can be shown to satisfy the Bellman-optimality equation. With the con-

straint on (Qa)a∈A dropped, not much can be said about the LP. With the positivity

condition on (Qa)a∈A, the optimal policy β∗ of Corollary 2 (i.e., the policy that

satisfies vβ∗ ≥ vβ for any β ∈ ΠN ) exists if the Bellman-optimality equation has a

solution. Again with no condition on (Qa)a∈A, this is not guaranteed.
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4.4.2 Proof

We need the following definitions pertaining MDPs: For any V ∈ L1(P), define

the operator T a : L1(P) → L1(P) by (T aV )(x) = fa(x) + γ(PaV )(x), where

Pa : L1(P) → L1(P) is the operator defined by (PaV )(x) =
∫
x′
Pa(dx′|x)V (x′).

For a policy α, define the operator Tα : L1(P)→ L1(P) by,

(TαV )(x) =
∑
a∈A

α(x, a)(T aV )(x), x ∈ X .

Further, define the policy mapping Πα : L1(P)A → L1(P) by (Πα[Va]a∈A)(x) =∑
a∈A α(x, a)V a(x), for x ∈ X . Therefore, we can rewrite Tα as

TαV = Πα(f + γPV ),

where f = [fa]a∈A and PV = [PaV ]a∈A, for any V ∈ L1(P). The operator Tα is

called the policy evaluation operator of policy α. As it is well known, for any pol-

icy α, TαV α = V α holds, i.e., V α is the fixed point of Tα. (This equation is also

known as the Bellman equation for V α). The optimal value function also satisfies a

fixed point equation: V ∗ = T ∗V ∗, the Bellman optimality equation. The operator

T ∗ : L1(P) → L1(P) in this equation is called the Bellman optimality operator

and is defined by (T ∗V )(x) = maxa∈A(T aV )(x). Furthermore, as mentioned pre-

viously, any policy α that satisfies that for any state x ∈ X , α(x, ·) is supported on

argmaxa∈A(T aV ∗)(x) is an optimal policy.

Recall that for any measurable function v over S, we let Vv denote a function

over X defined by Vv(x) = v(φ(x)). Now, we also introduce gaL to denote the

function over X defined via gaL(x) = ga(φ(x)).

Let Fφ(X ) = {Vv | v : S → R}. Note that Fφ(X ) is a vector space. For

a ∈ A, α ∈ ΠM, we define the operators QaL, T̂ a : Fφ(X ) → Fφ(X ) in the

following way: Given x ∈ X , a ∈ A, Vv ∈ Fφ(X ),

(QaLVv)(x) = (Qav)(φ(x)) =

∫
s′
Qa(ds′|φ(x))v(s′),

(T̂ aVv)(x) = gaL(x) + γ(QaLVv)(x) .

Note that these are well-defined because for any V ∈ Fφ(X ) there is a unique

function v : S → R such that V = Vv. We further define T̂α : Fφ(X )→ Fφ(X ) as
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follows: For V ∈ Fφ(X ), T̂αV = ΠαT̂ V , where T̂ : Fφ(X ) → Fφ(X )A is given

by (T̂ Vv) = [T̂ aVv]a∈A.

Recall the definition of approximate value functions: For policy α ∈ ΠM , the

(N -induced) approximate value function of α is V α
v

.
= Vvl(α) . For all β ∈ ΠN ,

because l(L(β)) = β, Vvβ = Vvl(L(β)) , i.e., Vvβ is the approximate value function of

policy L(β). Moreover, Vvβ is the fixed point of operator T̂L(β):

Proposition 3. For any policy β ∈ ΠN , we have

Vvβ = T̂L(β)Vvβ .

Proof. First, note that a standard contraction argument shows that vβ satisfies the

Bellman equations: vβ(s) =
∑

a β(s, a)(ga(s) + γ
∫
s′
Qa(ds′|s)vβ(s′)), s ∈ S .

Take any x ∈ X . Then,

(T̂L(β)Vvβ)(x) =
∑
a∈A

L(β)(x, a)
(
T̂ aVvβ

)
(x)

=
∑
a∈A

β(φ(x), a) (gaL(x) + γ(QaLVvβ) (x))

=
∑
a∈A

β(φ(x), a)

(
ga(φ(x)) + γ

∫
s′
Qa(ds′|φ(x))vβ(s′)

)
= vβ(φ(x)) = Vvβ(x),

where the first equality holds due to the definition of T̂L(β), the second holds due to

the definition of T̂ a and the pullback of policy β, the third holds due to the definition

of gaL and QaL, the fourth due to the Bellman equation for vβ , and the last holds due

to the pullback of value functions.

Corollary 4. For any policy α ∈ ΠM,

V α
v = T̂α

′
V α
v , where α′ .= L(l(α)). (4.6)

Proof. Apply Proposition 3 to β = l(α).

Let ΠL
M = {L(β) | β ∈ ΠN} be the range space of L. Note that L ◦ l is an

identity over ΠL
M but not over ΠM \ΠL

M. For a policy α ∈ ΠM \ΠL
M, the operator

T̂α
′ may be different from T̂α and as a result, V α

v may be different from V α.

A simple calculation shows that the following holds.
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Proposition 5. For any β ∈ ΠN , V L(β)
v,ρ = vβφ∗(ρ).

Proof. We have

V L(β)
v,ρ =

∫
V L(β)
v (x) ρ(dx) (definition of V L(β)

v,ρ )

=

∫
vl(L(β))(φ(x)) ρ(dx) (definition of V L(β)

v )

=

∫
vβ(φ(x)) ρ(dx) (because l(L(β)) = β)

=

∫
vβ(s)φ∗(ρ)(ds) . (definition of φ∗(ρ))

Recalling the definition of Kρ, we immediately get the following result:

Proposition 6. For any α ∈ ΠM, |V α
ρ − V α

v,ρ| ≤ Kρε(α).

Proof. We have

|V α
ρ − V α

v,ρ| =
∣∣∣∣∫ (V α(x)− V α

v (x))ρ(dx)

∣∣∣∣
≤
∫
|(V α(x)− V α

v (x))| ρ(dx) (triangle inequality)

= ‖Vα − V α
v ‖L1(ρ) (definition of ‖ · ‖L1(ρ)

≤ Kρ‖Vα − V α
v ‖ (definition of Kρ)

= Kρε(α). (definition of ε(α))

For a policy β and distribution ρ′ over S, we define vβρ′
.
=
∫
vβ(s)ρ′(ds) as

the “expected” total discounted reward of β in N when the distribution of the

initial state is ρ′. Given a measurable function v : S → R, we also let Vv,ρ =∫
x∈X Vv(x)ρ(x)dx and given a policy α ∈ ΠM, we define V α

v,ρ =
∫
Vvl(α)dρ(x).

With this, we are ready to prove Theorem 1.

Proof. By the definition of α∗, V α∗L
ρ ≤ V α∗

ρ , thus it remains to prove the lower

bound on V α∗L
ρ .
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We have

V
α∗L
v,ρ = vβ

∗

φ∗(ρ) ≥
∫
vl(α

∗)(s)φ∗(ρ)(ds) = V α∗

v,ρ ,

where the first equality is due to Proposition 5, the inequality is due to the defini-

tion of β∗, and the last equality is due to the definition of V α∗
v,ρ and Proposition 5.

Therefore,

V
α∗L
ρ = V

α∗L
v,ρ +

(
V
α∗L
ρ − V α∗L

v,ρ

)
≥ V α∗

v,ρ + I1,

where we define I1 = V
α∗L
ρ −V α∗L

v,ρ . Now, V α∗
v,ρ = V α∗

ρ +
(
V α∗
v,ρ − V α∗

ρ

)
. Note the last

term is just the policy evaluation error of α∗. Thus V α∗
ρ − V α∗

v,ρ ≤ Kρε(α
∗), due to

Proposition 6, and similarly I1 ≥ −Kρε(α
∗
L). Thus

V α∗

ρ −Kρ(ε(α
∗) + ε(α∗L)) ≤ V

α∗L
ρ ,

completing the proof.

Finally, we provide the proof of Corollary 2.

Proof. According to Theorem 1, for any ρ, 0 ≤ V α∗
ρ − V

α∗L
ρ ≤ Kρ(ε(α

∗) + ε(α∗L)).

Note that α∗, α∗L are both independent of ρ. Given a point x0 ∈ X , we can pick

ρx0 = δx0(·) to select this point (thus, by definition ρx0(U) = I{x0∈U} for any

measurable U ⊂ X and so
∫
f(x)ρx0(dx) = f(x0) for any measurable function f ).

Then for any α ∈ ΠM, V α
ρx0

=
∫
V α(x)δx0(dx) = V α(x0). Thus

0 ≤ V α∗(x0)− V α∗L(x0) ≤ Kρx0
(ε(α∗) + ε(α∗L)).

According to the definition of the L1(ρ) norm, for any V ∈ B(X ) and any x0 ∈ X ,

‖V ‖L1(ρx0 ) =

∫
|V (x)|ρx0(dx) = |V (x0)| ≤ ‖V ‖∞,

which means that Kρx0
= 1 for all x0 ∈ X . Therefore, for any x0 ∈ X , 0 ≤

V ∗(x0)− V α∗L(x0) ≤ ε(α∗) + ε(α∗L), and ‖V α∗L − V ∗‖∞ ≤ ε(α∗) + ε(α∗L).
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4.5 State Space Preserving Abstraction

When the feature map φ : X → S is injective (and thus invertible), the generic

bound of the previous section gives rise to a bound of a particularly appealing form.

When φ is a bijection, we can identify S with X without loss of generality and

choose φ to be the identity map, an assumption that we will indeed make in this sec-

tion. 3 The factored linear action model considered in the previous section gives a

useful example when S = X . In general, when S = X , the approximation happens

implicitly using a transition kernel that introduces additional structure (invariances).

For simplicity, we also assume that ga ≡ fa, i.e., the rewards are not approx-

imated (the extension of the results to the general case is trivial). In summary, the

pseudo-MDP considered in this section takes the form

N = (X ,A, (P̂a)a∈A, (fa)a∈A)

(we replace Qa by P̂a to emphasize that the approximate kernels are now over the

state space of the source MDP).

Define ‖P̂‖1,∞ = supx,a ‖P̂a(·|x)‖1. When ‖P̂‖1,∞ ≤ 1, corollary 2 together

with a standard contraction argument leads to the following result:

Theorem 7. Let

N = (X ,A, (P̂a)a∈A, (fa)a∈A)

be a pseudo-MDP such that ‖P̂‖1,∞ ≤ 1. Then, for any optimal policy α̂∗ of N ,

‖V α̂∗ − V ∗‖∞ ≤ 2γ
(1−γ)2

min{ ‖(P̂ − P)V ∗‖∞, ‖(P̂ − P)v∗‖∞},

where v∗ = V α̂∗
v .

Note that v∗may be different from the optimal solution of the Bellman-optimality

equation inN . When P̂a(·|x) is non-negative valued, they are guaranteed to be the

same.
3An injective mapping is a function that preserves distinctness. Every element of the function’s

codomain has at most one element of its domain. Injective mapping is also called one-to-one map-
ping. A bijection or surjection mapping, on the other hand, uniquely maps all elements in both
domains to each other.
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Again, we see that it suffices if P̂ is a good approximation to P at V ∗. The other

term, ‖(P̂ − P)v̂∗‖∞, is more helpful. We can estimate it and reduce it by feature

learning. Since V ∗ is unknown, in practice one may choose a normed vector-space

F of functions over X and construct P̂ such that it is a good approximation to

P over F in the sense that ε(F) = supV ∈F ,‖V ‖F=1 ‖(P̂ − P)V ‖∞ is small (here,

‖ · ‖F denotes the norm that comes with F). Can this approach succeed? Let

∆P = P̂ − P . Then, for any V ∈ F , ‖∆PV ∗‖∞ ≤ ‖(P̂ − P)(V ∗ − V )‖∞ +

‖∆PV ‖∞ ≤ 2‖V ∗ − V ‖∞ + ε(F)‖V ‖F . Taking the infimum over V ∈ F , we get

the following result:

Corollary 8. Under the same conditions as in theorem 7, for any optimal policy α̂∗

of N , ‖V α̂∗ − V ∗‖∞ ≤ 2γ
(1−γ)2

infV ∈F {2‖V ∗ − V ‖∞ + ε(F)‖V ‖F}.

Thus, the approach will be successful as long as our bet that V ∗ is close to F is

correct and in particular if the L∞-projection of V ∗ to F has a small F-norm. Note

that corollary 8 can be viewed as a generalization/specialization of Theorem 3.2 of

Grünewälder et al. (2012).4 The assumption ‖P̂‖1,∞ ≤ 1 can be relaxed.

In the next section, we show how to learn models such that the assumption is

satisfied.

4The specialization comes from the fact that while Theorem 3.2 considers all kind of approx-
imations, we concentrate on the approximation induced by the approximate model as we find the
approach that separates this from other approximation terms much cleaner.
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4.5.1 Proof

We start with a general contraction result (see, e.g., Lemma 5.16 of Szepesvári 2001

for a somewhat weaker result of this type):

Lemma 9. Let V = (V , ‖ · ‖) be a Banach space, T̂ : V → V a γ-contraction on V

and T : V → V a continuous operator on V . Assume that the iteration Vn+1 = TVn

converges to V in ‖ · ‖. Then

‖V − V̂ ‖ ≤ ‖(T̂ − T )V ‖
1− γ

,

where V̂ is the fixed point of T̂ .

Proof. We have

‖Vn+1 − V̂n+1‖ = ‖TVn − T̂ V̂n‖

= ‖TVn − T̂ Vn + T̂ Vn − T̂ V̂n‖

≤ ‖TVn − T̂ Vn‖+ ‖T̂ Vn − T̂ V̂n‖

≤ ‖TVn − T̂ Vn‖+ γ‖Vn − V̂n‖.

Taking the limit of both sides as n → ∞ and reordering gives the claimed result.

Recall that ∆P = P−P̂ , S = X and φ is the identity, by assumption. The next

lemma bounds the policy evaluation error induced by N :

Lemma 10. Assume that supx,a ‖P̂a(·|x)‖1 ≤ 1. Then, for any policy α ∈ ΠM =

ΠN , it holds that

‖V α − V α
v ‖∞ ≤

γ

1− γ
min(‖∆P V α‖∞, ‖∆P V α

v ‖∞) .

Proof. Since φ is the identity, l(α) = α. Hence,

V α
v = Vvα = vα .

Thus, it remains to bound ‖V α − vα‖∞. For this, we use lemma 9 with V =

(B(X ), ‖ · ‖∞), T = Tα and T̂ = T̂α
.
= Πα(f + γP̂).5 The conditions of lemma 9

5To be precise, we need to use the restrictions of these operators to B(X ).
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can be seen to be satisfied. Furthermore, V of the lemma is equal to V α, the fixed

point of Tα since Tα is a γ-contraction. Hence,

‖V α − vα‖∞ ≤
1

1− γ
‖(T̂α − T̂α)V α‖∞.

Now, Tα − T̂α = Πα(f + γP)−Πα(f + γP̂) = γΠα(P − P̂) and the first part of

the result follows since ‖(Tα− T̂α)V α‖∞ = γ‖Πα∆PV α‖∞ ≤ γ‖∆PV α‖∞. The

second part follows similarly, just reverse the role of Tα and T̂α in the application

of lemma 9.

We now show a similar bound on the difference between V ∗ − v∗ (here, v∗ is

the optimal value function in N ). For proving this result, the following notation

will be useful: Define the “max” operator M : RX×A → RX by (MQ)(x) =

maxa∈AQ(x, a) given Q ∈ RX×A and x ∈ X . With this definition, the Bellman

optimality operator T ∗ : L1(P)→ L1(P) underlyingM is given by

T ∗V = M(f + γPV ) , V ∈ L1(P) .

Recall that T ∗ is a γ-contraction w.r.t. ‖ · ‖∞ and the fixed-point of T ∗ is V ∗, the

optimal state value function of M. Now define the Bellman optimality operator

T̂ ∗ : L1(P̂)→ L1(P̂) based on N :

T̂ ∗V = M(f + γP̂V ), V ∈ L1(P̂) .

When supx,a ‖P̂a(·|x)‖1 ≤ 1, T̂ ∗ is also a γ-contraction and its unique fixed point

is v∗.

Lemma 11. Assume supx,a ‖P̂a(·|x)‖1 ≤ 1. Then,

‖V ∗ − v∗‖∞ ≤
γ

1− γ
min {‖∆P V ∗‖∞, ‖∆P v∗‖∞} .

Proof. To bound ‖V ∗ − v∗‖∞ we use lemma 9. The conditions of the Lemma are

satisfied with V = (B(X ), ‖ · ‖∞), T = T ∗, T̂ = T̂ ∗. Further, since T ∗ is also a

contraction, V of the Lemma equals V ∗. Hence,

‖V ∗ − v∗‖∞ ≤
1

1− γ
‖(T̂ ∗ − T ∗)V ∗‖∞ .
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Now,

‖(T̂ ∗ − T ∗)V ∗‖∞ = ‖M(f + γP̂V ∗)−M(f + γPV ∗)‖∞ ≤ γ‖(P̂ − P)V ∗‖∞,

where the last inequality follows since

| sup
w∈W

f1(w)− sup
w∈W

f2(w)| ≤ sup
w∈W
|f1(w)− f2(w)|

holds for any two functions f1, f2 : W → R. Putting together the inequalities

obtained we prove ‖V ∗ − v∗‖∞ ≤ γ
1−γ‖∆PV

∗‖∞.

The above proof also holds if we “exchange” the original MDP with the puseudo-

MDP. Therefore, ‖V ∗ − v∗‖∞ ≤ γ
1−γ‖∆Pv

∗‖∞.

We are now ready to prove theorem 7.

Proof. According to corollary 2, it suffices to bound ε(α∗) + ε(α̂∗). We have

ε(α∗) + ε(α̂∗) = ‖V α∗ − V α∗

v ‖∞ + ‖V α̂∗ − V α̂∗

v ‖∞

≤ γ

1− γ
(‖∆PV ∗‖∞ + ‖∆PV α̂∗

v ‖∞)

=
γ

1− γ
(‖∆PV ∗‖∞ + ‖∆Pv∗‖∞),

where the second line is due to lemma 10, and the third line is due to V α̂∗
v = v∗.

Then, thanks to lemma 11,

‖∆Pv∗‖∞ ≤ ‖∆P(v∗ − V ∗)‖∞ + ‖∆PV ∗‖∞

≤ 2‖v∗ − V ∗‖∞ + ‖∆PV ∗‖∞

≤ 2γ

1− γ
‖∆PV ∗‖∞ + ‖∆PV ∗‖∞

=
1 + γ

1− γ
‖∆PV ∗‖∞.

Thus ε(α∗) + ε(α̂∗) ≤ 2γ
(1−γ)2

‖∆PV ∗‖∞, finishing the proof for the first part.

Now for the second part, we have

‖∆PV ∗‖∞ ≤ ‖∆P(v∗ − V ∗)‖∞ + ‖∆Pv∗‖∞

≤ 2γ

1− γ
‖∆Pv∗‖∞ + ‖∆Pv∗‖∞

=
1 + γ

1− γ
‖∆Pv∗‖∞.
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where the second inequality is from Lemma 11.
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4.6 Learning Factored Linear Models

In this section we propose two approaches of learning factored linear models in-

cluding a least-squares approach and a constrained optimization approach. We then

give the procedure of finding the fixed point of the Bellman optimality operator of

the resulting pseudo-MDPs. Finally we propose a feature learning method.

4.6.1 The Least-Squares Model

In this section we show how factored linear models arise from a least-squares ap-

proach, essentially reproducing the model of Grünewälder et al. (2012) in a finite-

dimensional setting from simple first principles (thus, hopefully catching the inter-

est of readers who may shy away from the infinite dimensional setting consider by

(Grünewälder et al., 2012)). The factored linear model that arises will be the basis

of the feature learning method proposed in the next section.

As before, we will denote Z = X × A. Choose V ∈ L1(P) and suppose

that we are interested in estimating the function (x, a) 7→
∫
Pa(dx′|x)V (x′) where

(x, a) ∈ Z . Let Z = (X,A) be a random state-action pair sampled from a distri-

bution with full support over Z and X ′ ∼ PA(·|X). Then,
∫
Pa(dx′|x)V (x′) =

E[V (X ′)|Z = (x, a)]. Assume that we are given a mapping ψ : X × A → Rd

to extract features based on state-action pairs and our goal is to find the best lin-

ear estimator z 7→ u>ψ(z) based on ψ of the function z 7→ E[V (X ′)|Z = z].

The parameter vector of the estimator that minimizes the expected squared error

is u∗(V ) ∈ arg minu∈Rd E[
(
V (X ′)− u>ψ(Z)

)2
]. A simple calculation shows that

u∗(V ) = E[ψ(Z)ψ(Z)>]†E[ψ(Z)V (X ′)], where M † denotes the pseudo-inverse of

matrix M .

In practice, u∗(V ) is approximated based on a finite dataset, (〈zi, x′i〉, i = 1, . . . , n).

Defining un(V ) =
(
Ψ>Ψ

)†
Ψ>V̄ , where Ψ = [ψ(zi)

>] ∈ Rn×d and V̄i = V (x′i),

1 ≤ i ≤ n, un(V ) optimizes the squared prediction error of u>ψ(z) computed over

(〈zi, x′i〉, i = 1, . . . , n). Introducing F = Ψ
(
Ψ>Ψ

)† and letting Fi: denote the ith
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row of F (i.e., Fi: ∈ R1×d), we calculate

un(V )>ψ(x, a) = V̄ >Fψ(x, a)

=

∫ n∑
i=1

V (x′)δx′i(dx
′)Fi:ψ(x, a) . (4.7)

Thus with ξ(dx′) =
∑n

i=1 δx′i(dx
′)F>i: , if P̂a(dx′|x) = ξ(dx′)>ψ(x, a) then given

ψ, (x, a) 7→
∫
P̂a(dx′|x)V (x′) is the best linear least-squares estimator of (x, a) 7→∫

Pa(dx′|x)V (x′) for any V ∈ L1(P). In this sense, (P̂a)a∈A is the “best” estimate

of (Pa)a∈A.

Since (P̂a)a∈A is of the form (4.3) with f(x′) = I{x′=x′i}F
>
i: , the discussion after

(4.3) applies: The Bellman optimality equation of the approximate model can be

solved with finite resources up to any desired accuracy.

For computational purposes, it is worthwhile to define π : Z → Rn using

πi(x, a) = Fi:ψ(x, a). Then, the prediction of E[V (X ′)|Z = (x, a)] simply be-

comes6

un(V )>ψ(x, a) = V̄ >π(x, a).

As discussed beforehand, if

‖π(x, a)‖1 ≤ 1, x ∈ {x′1, . . . , x′n}, a ∈ A , (4.8)

holds, the Bellman optimality operator of the finite pseudo-MDP given by (4.4)

underlying (P̂a)a will be a contraction and thus V̂ ∗, the optimal value function in

the pseudo-MDP will exist.

The following counterexample shows that (4.8) is not guaranteed to hold. Con-

sider an MDP with S = {1, 2}, and A = {1, 2}. The (state) feature vectors are,

φ(1) = 1, φ(2) = 2. Let Daj = diag(d1,j, d2,j) with di,j being the frequncy of tak-

ing aj at state i, i = 1, 2; j = 1, 2. Let the samples be arranged such that samples

of action a1 appear first. Let Φ> = [1, 2]. We have

(Ψ>Ψ)† =

(
(Φ>Da1Φ)† 0

0 (Φ>Da2Φ)†

)
=

(
1/(d1,1 + 4d2,1) 0

0 1/(d1,2 + 4d2,2)

)
6 When using kernels to generate the features, the matrix Ψ will be an n × n symmetric matrix

and the formula given here reduces to that of Grünewälder et al. (2012).
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r=1

a2

r=0
a1,r=0

a1,r=1

Figure 4.3: An MDP example used to show that least-squares model does not guar-
antee the L1-norm constraint.

Now

‖π(1, a1)‖1 = ‖Ψ(Ψ>Ψ)†ψ(1, a1)‖1 =
n∑
i=1

ψ(xi, bi)
>[1/(d1,1 + 4d2,1), 0]>

= (d1,1 + 2d2,1)/(d1,1 + 4d2,1).

Set d1,1 = 9, d2,1 = 1 so that ‖π(1, a1)‖1 ≈ 0.8462. Set d1,2 = 1, d2,2 = 9. Then

‖π(2, a1)‖1 = 2‖π(1, a1)‖1 ≈ 1.6923, ‖π(1, a2)‖1 = 0.5135, and ‖π(2, a2)‖1 =

1.0270.

Now look at the MDP in Figure 4.6.1, with Pa1 = [0, 1; 1, 0];Pa2 = [1, 0; 0, 1].

ga2(1, 1) = ga1(2, 1) = 1.0, ga1(1, 2) = 0.0, ga2(2, 2) = 0. The discount factor is

0.9. The features are specified as above. We used 9 pairs of (x = 1, a = 1), one pair

of (x = 2, a = 1); one pair of (x = 1, a = 2) and 9 pairs of (x = 2, a = 2). Note

this guarantees the same model as above. The L1-norm constraint is not satisfied.

The AVI procedure using the model quickly diverges.

One solution is to normalize each π(x, a) by the `1 norm (Grünewälder et al.,

2012) to guarantee 4.8. As we saw earlier, this may lead to an unwanted perfor-

mance loss. In the next section, we propose another solution.

4.6.2 The Constrained Optimization Model

We propose to modify the least-squares fitting problem by adding constraint (4.8).

The resulting least squares problem can be formulated in terms of the matrix F ∈

Rn×d:

minimize ‖ΨF> − In×n‖2
F (4.9)

subject to
n∑
j=1

|Fj:ψ(x′i, a)| ≤ 1, a ∈ A , 1 ≤ i ≤ n ,
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where In×n is the n × n identity matrix and ‖ · ‖F denotes the Frobenius norm.

Note that the objective function is a quadratic function, while the constraints can be

rewritten as linear constraints. To explain the objective function, note that by (4.7),

for V ∈ L1(P) arbitrary, the least-squares prediction of∫
Pai(dx′|xi)V (x′) ≈ V (x′i)

is V̄ >Fψ(xi, ai). Hence, F should be such that
∑n

i=1(V̄ >Fψ(xi, ai) − V (x′i))
2 =

‖(ΨF> − In×n)V̄ ‖2
2 is small.

Choosing V ∈ {e1, . . . , en} and summing, we get the objective of (4.9). Note

that this suggest alternative objectives, such as supV̄ :‖V̄ ‖2≤1 ‖(ΨF> − In×n)‖2 =

‖ΨF> − I‖2, which is again convex.

Let y = (F1:, . . . , Fn:)
> ∈ Rnd, e = (e>1 , . . . , e

>
n )>. The objective function of

(4.9) can be written as

‖ΨF> − In×n‖2
F =

n∑
i=1

‖ΨF>i: − ei‖2
2 = ‖Hy − e‖2

2, (4.10)

where H ∈ Rn2×nd is defined by

H =


Ψ 0 . . . 0
0 Ψ . . . 0
...

...
...

...
0 0 . . . Ψ

 .

Note that H>H ∈ Rnd×nd is given by

H>H =


Ψ>Ψ 0 . . . 0

0 Ψ>Ψ . . . 0
...

...
...

...
0 0 . . . Ψ>Ψ


To put (4.9) into the canonical form of linearly constrained quadratic optimization,

introduce the variables ξj,ia = |Fj:ψ(x′i, a)|. Further, let Sj ∈ Rd×nd be the block

matrix Sj = (0, . . . , 0, Id×d, 0, . . . , 0) so that Sjy = F>j: . With this, we can write
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(4.9) as

minimize y>H>Hy − 2e>Hy

subject to

ξj,ia ≥ ψ(x′i, a)>Sjy, 1 ≤ i, j ≤ n, a ∈ A ,

ξj,ia ≥ −ψ(x′i, a)>Sjy, 1 ≤ i, j ≤ n, a ∈ A ,
n∑
j=1

ξj,ia ≤ 1, 1 ≤ i ≤ n, a ∈ A .

Denote the transition kernels derived from the solution of (4.9) by (P̃a)a∈A and

the resulting pseudo-MDP by Ñ .

To summarize, to learn a model and to use it to produce a policy, the following

steps are followed: (i) data is collected of the form (〈zi, ri, x′i〉, i = 1, . . . , n), where

zi = (xi, ai) ∈ Z , x′i ∈ X and ri ∈ R (the intention is that 〈zi, ri, x′i〉 represents a

transition sampled from the true model); (ii) based on the data, matrix F and then

the normalized table (π̃j(xi, a))1≤i,j≤n,a∈A are calculated; (iii) value-iteration is

used to find the optimal value function of the finite pseudo-MDP with n states where

the reward at state i is ri, 7 the transition kernel isQa(j|i) = π̃j(xi, ai). Denote the

computed optimal value function by v. We will view v as an n-dimensional vector

over x′i. Finally, computing an optimal action at state x ∈ X of the underlying the

model that uses (P̃a)a∈A is obtained by computing argmaxa∈A g
a(x) +γv>π̃(x, a).

The pseudo code of the proposed algorithm is shown in Algorithm 3.

One can prove that when the constraints in the optimization problem in equation

(4.9) are removed, the resulting solution is equal to the least-square solution.

Proposition 12. Define F = arg minM∈Rn×d ‖ΨM> − In×n‖2
F . We have F =

Ψ(Ψ>Ψ)†.

Proof. By setting the gradient of the right-hand side of 4.10 to zero, we have

2(H>Hf −H>e) = 0. This gives f = (H>H)†H>e, or Fi: = ψ(xi, ai)
>(Ψ>Ψ)†

for i = 1, . . . , n, which is equivalent to F = Ψ(Ψ>Ψ)†.

7Policy iteration may or may nor converge.
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Algorithm 3 Value iteration for FSFLMs.
Input: A set of samples (〈xi, ai, ri, x′i〉)i=1,2,...,n, a feature mapping ψ : X ×A → Rd, and
a matrix F ∈ Rn×d.
/*Those x′i that are terminal have ψ(x′i, a) = 0, which ensures π(x′i, a) = 0; for ∀a ∈ A.
*/
Output: A policy α and an estimate of V α at the samples (x′i)i=1,2,...,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Compute the action model π for all x′i:
For i = 1, . . . , n

For each action a
Compute π(x′i, a) = Fψ(x′i, a)

End
End
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialize policy α /*α is specified at (x′i)i=1,2,...,n */
Initialize V̄ α /*n-dimensional vector; V̄ α(i) estimates V α(x′i) */
Generate vector r̄ with r̄(i) = ri.
Repeat

Solve V̄ α for the current policy: /* iteratively or directly*/
V̄ α(i) = π(x′i, α(x′i))

>(r̄ + γV̄ α), i = 1, 2, . . . , n,
For i = 1, . . . , n

Compute α(x′i) = arg maxa∈A π(x′i, a)>(r̄ + γV̄ π).
End

End

We need an efficient solver for the constrained approach (standard QP solu-

tions scale poorly with the number of constraints). Let matrix A ∈ Rd×|A|n be

A = [Ψ>a1 ,Ψ
>
a2
, . . . ,Ψ>a|A| ] where Ψak is in Rn×d and Ψak(i, j) = ψj(xi, ak). The

optimization problem can be written as

min
F :‖A>F>‖1,∞≤1

1

2
‖FΨ> − I‖2

F ⇔ min
F,Y :Y=A>F>

1

2
‖FΨ> − I‖2

F + δ(‖Y ‖1,∞ ≤ 1).

(4.11)

where δ(·) = 0 if · is true and∞ otherwise. Let ‖Z‖p,q := (
∑

i(
∑

j |Zij|p)q/p)1/q,

i.e., the `q norm of (y1, y2, . . .)
> where yi is the `p norm of the i-th row of Z. It is

well known that the dual norm of `p norm is the `p∗ norm, where 1/p + 1/p∗ = 1.

The dual norm of ‖ · ‖p,q is ‖ · ‖p∗,q∗ .

Note that we are deliberately decoupling A>F> and Y . We solve the opti-

mization problem on the right-hand side of 4.11 by applying Alternating Direc-

tion Method of Multipliers (ADMM) (Boyd et al., 2011), which gradually enforces
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Y = A>F> through minimizing augmented Lagrangian

L(F, Y,Λ) =
1

2
‖FΨ> − I‖2

F + δ(‖Y ‖1,∞ ≤ 1)

− tr(Λ>(Y − A>F>)) +
1

2µ
‖Y − A>F>‖2

F

in the following steps:

1. Initialize F0 and set Y0 = A>F>0 and Λ0 = 0. t← 1.

2. Yt ← arg minY L(Ft−1, Y,Λt−1).

3. Ft ← arg minF L(F, Yt,Λt−1).

4. Λt ← Λt−1 + 1
µ
(A>F>t − Yt).

5. t← t+1, and go to step 2. Terminate if the difference between Yt andA>F>t
falls below some threshold.

Step 2 essentially solves

min
Y :‖Y ‖1,∞≤1

1

2
‖Y − Zt‖2

F ,

where Zt = µΛt−1 + A>F>t−1. Note the constraint and objective are decoupled

along rows, and therefore it suffices to solve

min
y:‖y‖1≤1

1

2
‖y> − (Zt)i:‖2

F ,

where (Zt)i: stands for the i-th row of Zt. This can be solved in linear time by, e.g.,

the algorithm of Duchi et al. (2008).

Step 3 minimizes an unconstrained quadratic in F :

min
F

1

2
tr(FΨ>ΨF>) +

1

2µ
tr(FAA>F>)− tr(C>t F ),

where Ct = Ψ − Λ>t−1A
> + 1

µ
Y >t A

>. Setting the gradient of the objective to 0, a

solution is optimal if and only if Ct = FΨ>Ψ + 1
µ
FAA>. Thus Ft = Ct(Ψ

>Ψ +

1
µ
AA>)†. The matrix inversion can be performed once before the iteration starts.

The larger the value of µ is, the less effective is the constraint and thus the closer

is the solution to the least-squares solution. In practice, µ is usually set to a small

positive constant, e.g., 0.01.
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4.7 A Feature Selection Method

Both of the proposed approaches aim to obtain a model F by minimizing ‖ΨF> −

I‖2
F , which is equal to the sum of the mean square errors of predicting all the basis

unit vectors that have length n. The smaller the error, the better the features pre-

dict an arbitrary value function. Alternatively, ‖ΨF> − I‖2
2 can also be viewed as

an upper bound on the empirical loss of an arbitrary value function at the sample

points:
n∑
i=1

(V̄ >Fψ(xi, ai)− V (x′i))
2 ≤ ‖ΨF> − In×n‖2

2‖V̄ ‖2
2.

It thus makes sense to select features from a dictionary that minimize the difference

between ΨF> and I . Note that V̄ >Fψ(xi, ai) is a sample of (P̂V ), and V (x′i)

is a sample of PV given the transition (xi, ai, x
′
i). As a result, the loss function

‖P̂V ∗ − PV ∗‖∞ is minimized by the selected features (given sufficient samples).

According to Theorem 7, this reduces the upper bound of the performance loss and

hence better performance is likely to be expected. A nice property of this feature

selection method is that it does not require any transition data.

65



4.8 A Nonlinear Feature Generation Algorithm

Assume that we are given a dictionary of real-valued functionsD = (φp(x); p ∈ I),

where I is a (potentially infinite) index set. The problem considered here is to

design an algorithm that finds a good, parsimonious approximation of the optimal

value function V ∗ based on some dataset (〈zi, ri, x′i〉, i = 1, . . . , n) of transitions

using the dictionary elements φp.

Our method works iteratively: The method is initialized by selecting a small set

of dictionary elements (this choice is left to the user). Denote the index set of the

selected elements by I ′. Define the basis functions B1 = (ψp,a; p ∈ I ′, a ∈ A),

ψp,a : Z → R is given by ψp,a(x, a′) = φp(x)I{a=a′}. This is our initial sequence of

d1 = |A| × |I ′| basis vectors for round one. In round k, we are given a sequence

of basis functions Bk = (ψ1, . . . , ψdk).8 We use the data available and the method

of the previous section to get vk ∈ Rn and πk : Z × Rn. Next, if Vk defined

using Vk(x) = maxa∈A g
a(x) + γv>k πk(x, a) is too close to Vk−1

9 in the sense that

maxi |Vk(xi) − Vk+1(xi)| ≤ ε for some preselected, fixed constant ε > 0 then

choose a yet unselected dictionary element φp from D, say, at random, and add

(ψp,a; a ∈ A) to Bk to get Bk+1.10 Otherwise, add Vk to Bk to get Bk+1, finishing

round k.

The idea of the method is to work with the current set of features as long as it

gives approximations to the value function that are sufficiently dissimilar from the

approximation of the previous round. Note that Vk is a nonlinear function of the

basis functions due to the presence of max in its definition. One potential issue

with the algorithm is that the complexity of evaluating the basis functions increases

rapidly as more and more computed value functions are added. However, this cost

may very well be offset by the gain in performance since these value functions are

obviously highly useful. In practice, we observed that performance indeed rapidly

improves (see below).

8Here, we took the liberty to reuse symbol ψi with a single index, hoping that this will not cause
any confusion.

9It is also possible to use π̃k. In our experiments, for simplicity and also because it worked quite
well, we used πk.

10For round one, V0(x) = maxa∈A g
a(x).
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4.8.1 Theoretical Guarantee

From theorem 7 we know that the suboptimality of the policy obtained in round k

is bounded as a function of ‖(P̂k − P)V ∗‖∞, where P̂k is the transition model of

the pseudo-MDP of round k. Our next theorem shows that the algorithm forces the

related quantity, ‖(P̂ak −Pa)V ∗‖a to decrease. Here ‖f‖2
a = 1

|i:ai=a|
∑

i:ai=a
f 2(xi),

i.e., ‖ · ‖a is the empirical L2-norm induced by those elements xi where ai = a (we

assume that there exists such elements). We denote by 〈·, ·〉a the underlying inner

product: 〈f, g〉a = 1
|i:ai=a|

∑
i:ai=a

f(xi)g(xi) and Πa
k is the projection w.r.t. ‖ · ‖a

to the space spanned by the functions in Bk.

Theorem 13. Either Vk is in the subspace spanned by Bk, or, for any a ∈ A, we

have ‖∆Pak+1V
∗‖a = | sinωk,a| ‖∆PakV ∗‖a, where ωk,a = 〈gk, fk〉a/(‖f‖a‖g‖a) is

the angle between gk = Vk − Πa
kVk and fk = ∆PakV ∗.
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4.8.2 Proof

For simplicity, the result is proven for finite MDPs; the extension to the general case

is routine. Note that in this case Pa is a |X | × |X | matrix and (Pa)x′,x = Pa(x′|x).

Let ρa (a ∈ A) be the distribution of the states where taking action a; Da be a

diagonal matrix with Da(i, i) = ρa(xi). Define the inner product for any z1, z2 ∈

f |S|, 〈z1, z2〉Da =
√
z>1 Daz2. Denote the corresponding L2 norm by ‖ · ‖Da .

Lemma 14. We have, for any a ∈ A,

P̂ak+1 = P̂ak +
1

d2
(Πa

kVk − Vk)(Πa
kVk − Vk)>DaPa,

where d = ‖Vk − Πa
kVk‖Da .

Proof. Let Φk be the |S| × dk state feature matrix at iteration k, Φk = [φ(x)>]x∈S ,

where φ(x) : S → Rdk , dk being the current number of feature functions. Then

Πa
k = Φk(Φ

>
kDaΦk)

−1Φ>kDa. According to the feature iteration algorithm, Φk+1 =

[φ(x)>, Vk(x)]x∈S . We have P̂ak+1 = Πa
k+1Pa. We can finish by proving that

Πa
k+1 = Πa

k + 1/d2(Πa
kVk − Vk)(Πa

kVk − Vk)>Da by noticing that

(Φ>k+1DaΦk+1)−1 = ([Φk, Vk]
>Da[Φk, Vk])

−1

=

[
Φ>kDaΦk Φ>kDaVk
V >k DaΦk V >k DaVk

]−1

=

[
(Φ>kDaΦk)

−1 + 1/d2vkv
>
k −vk/d2

−v>k /d2 1/d2

]
,

where vk = (Φ>kDaΦk)
−1Φ>kDaVk.

Lemma 15. For any vector y ∈ R|S| and any a ∈ A, we have ‖∆Pak+1y‖2
Da

=

‖∆Paky‖2
Da
− d2

y/d
2, where dy = (Πa

kVk − Vk)>DaPay.

Proof.

‖∆Pak+1y‖2
Da = (P̂ak+1y − Pay)>Da(P̂ak+1y − Pay)

= z>Daz,
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where

z = P̂ak+1y − Pay

= P̂aky + 1/d2(Πa
kVk − Vk)(Πa

kVk − Vk)>DaPay − Pay

= P̂aky + dy/d
2(Πa

kVk − Vk)− Pay,

according to Lemma 14 and the definition of dy. Thus,

‖∆Pak+1y‖2
Da = (P̂aky − Pay)>Da(P̂ay − Pay)+

2dy/d
2(P̂aky − Pay)>Da(Π

a
kVk − Vk) + d2

y/d
2

= (P̂aky − Pay)>Da(P̂ay − Pay)− 2dy/d
2(Pay)>Da(Π

a
kVk − Vk)

+ d2
y/d

2

= ‖∆Paky‖2
Da − d

2
y/d

2.

We are ready to prove Theorem 13.

Proof. According to Lemma 15, we have

‖∆Pak+1V
∗‖Da = ‖∆PakV ∗‖Da −

((Πa
kVk − Vk)>DaPaV ∗)2

‖Πa
kVk − Vk‖2

Da

,

or,

‖∆Pak+1V
∗‖Da = ‖∆PakV ∗‖Da −

((Πa
kVk − Vk)>Da(PaV ∗ − Πa

kPaV ∗))2

‖Πa
kVk − Vk‖2

Da

,

If ‖∆PakV ∗‖Da = 0, the optimal policy is achieved; otherwise, note that Πa
kPa =

P̂ak , we have

(εak)
2 = 1− ((Vk − Πa

kVk)
>Da(∆PakV ∗))2

‖Πa
kVk − Vk‖2

Da
‖∆PakV ∗‖2

Da

.

We complete the proof by noticing that the second therm is just cos2 θa.
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Figure 4.4: Value functions for the 20-state problem for various rounds.
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Figure 4.5: Value functions for the 20-state problem for rounds 1 (circle), 5 (plus),
10 (square), 15 (dotted) and 20 (star) for three different dictionary sets. The
graph labeled by “cos” corresponds to fp(i) = cos(i − p); “xExp” to fp(i) =
(i− p) exp−(i−p); “cosExp” to fp(i) = cos(i− p) exp−(i−p)/20.

4.9 Empirical Results

The point of the experiments is to demonstrate the behavior of the feature gener-

ation method. In particular, we designed experiments to test the robustness of the

method against changing the dictionary. We also investigate the power of the fea-

ture generation method by removing the option of adding the learned value function

(effectively, setting ε =∞ in the algorithm). We chose a simple domain so that we

can visualize the findings easier.
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Figure 4.6: The learned value functions for 20-state chain with the feature-
generation turned off. The value functions for rounds 1, 5, 10, 15, 20 and 50 are
shown.

4.9.1 Chain-walks

The chain walk problem is already stated in Section 3.4.1. We consider here 20-

state chain walk. The reward is one at states 1 and 20. Elsewhere the reward is zero.

No exploration is used. The initial set of features consists of polynomials of degree

zero and one. In both cases, neither LSPI or LAM-API can find the optimal policy

with these features alone (Lagoudakis and Parr, 2003; Yao and Szepesvári, 2012).

We used 10 samples of each state-action pair (thus 400 samples in total). During

feature generation, the threshold for adding the obtained value function is ε = 10−4.

The pth dictionary element to be added after the first round is fp(i) = sin(i− p) (a

deliberately poor choice for a dictionary).

Figure 4.4 shows the evolution of value functions during the rounds. During the

first 40 rounds, the algorithm added a dictionary element only at rounds 3 and 5.

All policies after round 9 are optimal. To confirm that the findings are robust when

the dictionary is changed, we rerun the experiments with other dictionaries (cf.

Figures 4.5). The experiments indeed confirm the robustness of the method. Finally,

to test the contribution of the feature generation method we ran experiments with

ε =∞ so that the value functions are never added to the basis set. In Figure 4.6, the

nonlinear’ feature generation method is turned off. The result in the figure shows

that without the feature method, many more dictionary elements are necessary to
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obtain good results.
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4.10 Chain Walk: LS diverges and constrained per-
forms well

Consider a 4-state chain in Section 3.4.1. The discount factor was 0.99 in this

experiment. The features are, ψ(x) = [1, x, x2], where x ∈ X = {1, 2, 3, 4}. Value

iteration is used for both the LS model and the constrained model. We used 10

samples for each state action pair (thus 80 samples in total). We performed up to

20 iterations for both the value iteration procedures. An `2 regularization factor 1.0

was used for the LS model.

Figure 4.7 shows that value iteration using the LS model quickly diverges, and

using the constrained model is convergent. Figure 4.8 shows that the learned value

function using the constrained model has a good shape (in fact, the learned policy

is optimal). The value function of the LS model happens to have a good shape

althought it is divergent.
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Figure 4.7: Iteration errors of the value iteration algorithms using the least-squares
model and the constrained model.
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and the constrained model.
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4.10.1 Chain-Walk: Feature Selection

We consider a 4-state chain (see Section 3.4.1).

The dictionary contains 55 RBFs with the mean varying from 0 to 10 and the

variance from [1, 1.75, 2.5, 3.25, 4]. The dictionary is chosen to be extensive to

contain good features. The original features are 3 polynomial features, ψ(x) =

[1, x, x2], for x = 1, 2, 3, 4. We used 10 samples for each state action pair (thus

80 samples in total). For the reported results in this experiment, we used the con-

straint model for both feature methods. The results are similar using LS model with

normalization.

We used matching pursuit to select four features from the dictionary. The se-

lected RBFs are, φ(x) = exp−‖x−ui‖
2
2/(2σ

2
i ), with

(ui, σi) ∈ {(2, 1.00), (2, 3.25), (5, 1.00), (8, 3.25)}.

Figure 4.9 shows the learned value function using the automatically selected RBFs

as well as the value function learned by using the original polynomial features by

Lagoudakis and Parr (2003). Both feature methods lead to the optimal policy, but

the feature selection method gives a much more accurate estimate of the optimal

value function. In particular, the learning error of the feature selection method is,

‖V ∗ − V̂ ∗‖2 = 5.2749× 10−6. Figure 4.10 shows the approximate identity matrix

using the polynomial features, which has an error of 74.00. Figure 4.11 shows the

approximate identity matrix using the feature selection method, which has an of

error 72.00. This shows that improving features by reducing ‖ΨF> − I‖2
F gives a

better value function.
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Figure 4.10: Approximation of the identity matrix by the three polynomial features.
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Figure 4.11: Approximation of the identity matrix by the four automatically se-
lected RBFs.
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4.10.2 Cart-pole Balancing

The problem is studied in Section 3.4.3. No exploration was used.

Recall that for both the LS model and the constraint model the goal is to learn a

matrix F such that Î = ΨF> approximates the identity matrix In×n well where n is

the number of samples. We first tried the nine radial basis functions plus a constant

feature Lagoudakis and Parr (2003). For a state s, φi(s) = exp(−||s− ui−1||2/2),

i = 1, 2, . . . , 10, where u0 = s, and the other ui are the points from the grid

{−π/4, 0, π/4} × {−1, 0, 1} (Lagoudakis and Parr, 2003). The algorithms did not

perform well with these features. It turns out that the approximation of the iden-

tity matrix is poor for both models. For example, the LS approximation is shown

in Figure 4.12 using about 1, 600 samples collected by a random policy by start-

ing the pole from a random state near the state [0, 0]. The diagonal part is well

approximated but the other part is noisy.

To circumvent this problem, we used a new feature method which we call the

tensor-product features. We first partitioned the state space into rectangular cells

and then use the RBF features restricted to the cells to provide generalization. Both

the LS model and the constraint model approximate the identity matrix well with

this feature method. For example, Figure 4.13 shows the approximated identity ma-

trix using LS. In these two figures, we partitioned each state dimension into three

equal parts. There are effectively three grids laid in the state space because six of

them are all failure states (with |θ| > π/2) whose feature vector is all zero. To

illustrate the matrix better, we sorted the samples according to the grid index that xi

belongs to and then according to the action ai using a stable sorting algorithm. Be-

cause of this feature method the approximate matrix contains only diagonal blocks

and outside these blocks the values are strictly zero. The sorting operation ensures

that the diagonal part of the approximate identity matrix is in the order of action

blocks, each of which contains the smaller approximate identity matrices for the

grids. The approximated identity matrix (using ADMM) is 3D visualized in Figure

4.14. The ADMM algorithm was run with µ = 1.0 and 30 iterations. The algorithm

took 318 seconds for 30 iterations on a desktop with 1.7GHz Intel Core i7 and 8GB

1600 MHz DDR3.
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Figure 4.12: 3D plot of the approximate identity matrix using the RBF features
used by Lagoudakis and Parr (2003).

In order to evaluate the performances of the normalized LS model and the con-

straint model, we conducted 30 independent runs of experiment. In each run, we

collected a number of episodes of samples from the random policy. We learned

the LS model and the constraint model, and then used them independently in AVI

to compute an approximate optimal policy. The LS model used `1 normalization.

Each model was used in the AVI procedure to produce a policy. We then evaluated

each policy 100 times up to 3000 steps in each evaluation. The averaged number of

balanced steps was then used as a measure of the quality of the model. Figure 4.15

shows the balanced steps by the policies for both models. The constraint model

is substantially better than the LS model. The constraint model was solved using

µ = 1.0 and 10 iterations for all size of training data.
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Figure 4.13: The approximate identity matrix by the tensor-product features (LS fit
using 3 partitions in each state dimension).

Figure 4.14: 3D plot of the approximate identity matrix by the tensor-product
features .

79



100 200 300 400 500

0

500

1000

1500

2000

2500

3000

#Episodes

B
a

la
n

c
e

d
 S

te
p

s

 

 

The LS model

The Constraint model

Figure 4.15: The balanced steps of the pole for the cart-pole system by the AVI
algorithms using the normalized LS model and the constraint model.

80



4.11 Conclusion

In this chapter, we have proposed a pseudo-MDP framework. In this framework,

we work with an approximate model to derive a near-optimal policy for a given

MDP. We give a generic error bound for the performance of the learned policy.

This result shows that only the policy evaluation errors of an optimal policy in the

MDP and a pull-back policy of an optimal policy in the pseudo-MDP matter. This is

interesting because it gives a direction for model-based reinforcement learning: an

exhaustively accurate model is not necessary in order to learn a good policy—it only

needs to be accurate in two projected directions (some terms in the error bound).

Although one error term (the one that depends on an optimal policy of the MDP)

is unknown, we show by a feature learning method that it can be approximated; so

that we can learn new features to reduce it to give tighter error bound and better

performance.

Our pseudo-MDP work is interesting not only because it relates to recent kernel-

embedding models and recovers their error bound (Grünewälder et al., 2012), but

it also opens the door to new models. We explored a class of models called finitely

supported factored linear models (FSFLM) (see Section 4.3). These models have

a nice property that they can be learned efficiently. We use least-squares and con-

strained optimization methods to learn them. We show that the least-squares with-

out normalization can possibly diverge; while with normalization the least-squares

model can give bad policies. The constrained optimization model is guaranteed to

converge, and constantly gives good policies in our experiments. However, for the

constrained model there are computation scalability issues that remain to be ad-

dressed. The procedures that are based on the dual representation that we also use

need to work and sometimes invert n × n matrices for a sample size of n. This is

clearly infeasible even for medium size data. In the supervised learning literature

much research went into speeding up these operations, such as Nyström’s method

and variants (Le et al., 2013; Hsieh et al., 2014). It will be interesting to incorporate

these into our setting. In the RL literature, there have been advancements for sce-

narios where ψ satisfies certain structural assumptions (Kveton and Theocharous,
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2013), or sample subsampling (Kveton and Theocharous, 2012), which we can also

try to incorporate.
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Chapter 5

Universal Option Models
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5.1 Introduction

Conventional methods for real-time abstract planning over options in reinforcement

learning require a single pre-specified reward function. Here we consider planning

with the same dynamics but multiple reward functions. This problem arises in a

number of scenarios. In inverse reinforcement learning and apprenticeship learning

there is a set of reward functions from which a good reward function is extracted

(Ng and Russell, 2000; Abbeel et al., 2010; Syed, 2010). Some system designers

iteratively refine their provided reward functions to obtain desired behavior, and will

re-plan in each iteration. In real-time strategy games, several units on a team can

share the same dynamics but have different time-varying capabilities, so selecting

the best unit for a task requires knowledge of the expected performance for many

units. Even article recommendation can be viewed as a multiple-reward planning

problem, where each user query has an associated reward function and the relevance

of an article is given by walking over the links between the articles (Page et al.,

1998; Richardson and Domingos, 2002). We propose to unify the study of such

problems within the setting of real-time planning with abstractions, where a reward

function can be specified at any time and the expected option-conditional return for

a reward function must be efficiently computed.

Function approximation deals with spatial abstraction. Planning with temporal

abstractions, which provides temporal abstraction, enables one to make abstract

decisions that involve sequences of low level actions. Options are often used to

specify action abstraction (Sutton et al., 1999; Precup, 2000; Sorg and Singh, 2010).

An option is a course of temporally extended actions, which starts execution at some

states, and follows a policy in selecting actions until it terminates. When an option

terminates, the agent can start executing another option. The traditional model of

an option takes in a state and predicts the sum of the rewards in the course till

termination, and the probability of terminating the option at any state. When the

reward function is changed, abstract planning with the traditional option model has

to start from scratch.

We introduce universal option models (UOM) as a solution to this problem. The
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UOM of an option has two parts. A termination prediction part, as in the traditional

option model, predicts the states where the option terminates. An accumulation

part, new to the UOM, predicts the occupancies of all the states by the option after

it starts execution. We also extend UOMs to linear function approximation, with

which UOMs scale to problems with a large state space. We show that the UOM

outperforms existing methods in two domains.
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5.2 Universal Option Models (UOMs)

In this section, we define the UOM for an option, and prove a universality theorem

stating that the traditional model of an option can be constructed from the UOM

and a reward vector of the option.

For the basics of options, please refer to Section 2.5. The goal of UOMs is to

make models of options that are independent of the reward function. We use the

adjective “universal” because the option model becomes universal with respect to

the rewards. In the case of MDPs, it is well known that the value function of a

policy π can be obtained from the so-called discounted occupancy function under-

lying π, e.g., see (Barto and Duff, 1994). This technique has been used in inverse

reinforcement learning to compute a value function with basis reward functions (Ng

and Russell, 2000). The generalization to options is as follows. First we introduce

the discounted state occupancy function, uo, of option o(π, β):

uo(x, x′) = E
[ T−1∑
t=0

γt I{Xt=x′}
]
. (5.1)

Then,

Ro(x) =
∑
x′∈X

fπ(x′)uo(x, x′) , (5.2)

where fπ is the expected immediate reward vector under π and (fa)a∈A, i.e., for any

x ∈ X , fπ(x) =
∑

a∈A π(x, a)fa(x). For convenience, we shall also treat uo(x, ·)

as a vector and write uo(x) to denote it as a vector. To clarify the independence of

uo from the reward function, it is helpful to first note that every MDP can be viewed

as the combination of an immediate reward function, (fa)a∈A, and a reward-less

MDP,M = (X ,A, (Pa)a∈A, γ).

Definition 2. The UOM of option o in a reward-less MDP is defined to be the

pair (uo, po), where uo is the option’s discounted state occupancy function, de-

fined by (5.1), and po is the option’s discounted terminal state distribution, defined

by (2.7).

Theorem 16. Fix an option o(π, β) in a reward-less MDP M, and let uo be the

occupancy function underlying o in M. Let (fa)a∈A be some immediate reward
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function. Then, for any state x ∈ X , the return of option o with respect toM and

(fa)a∈A is given by Ro(x) = (uo(x))>fπ.

Proof. We start with the definition of the return of an option:

Ro(x) = E[R1 + γR2 + . . . γT−1RT ]

= E
[ ∞∑
t=0

γtRt+1 I{t<T}
]

=
∞∑
t=0

γt E[Rt+1 I{t<T}] .

Now,

E[Rt+1 I{t<T}] = E[E[Rt+1 I{t<T}|Xt] ]

= E[ I{t<T} E[Rt+1|Xt] ] = E[ I{t<T} fπ(Xt) ] ,

where the second to last equality follows from the following reasoning: LetE1, E2, . . .

be the indicator random variables such that Ei = 1 if at step i, given Xi the option

execution is stopped, i.e., these represent the results of coin flips, which determine

if the process is continued. Note that given Xt, Rt+1 and Xt are independently

drawn from each other. Similarly, given Xt, Rt+1 is independently sampled from

Ei for i < t. Now, by its definition, T is the first time when ET = 1. Thus,

{t < T} = {E1 = 0, . . . , Et = 0}. Therefore,

E[Rt+1 I{t<T}|Xt] = E[Rt+1 I{E1=0,...,Et=0}|Xt]

= E[E[Rt+1 I{E1=0,...,Et=0}|Xt, E1, . . . , Et]|Xt]

= E[I{E1=0,...,Et=0} E[Rt+1|Xt, E1, . . . , Et]|Xt] .

Now, E[Rt+1|Xt, E1, . . . , Et] = E[Rt+1|Xt], sinceRt+1 is independent ofE1, . . . , Et,

givenXt. Thus, E[Rt+1 I{t<T}|Xt] = E[I{t<T} E[Rt+1|Xt, E1, . . . , Et]|Xt] , as promised.

Continuing our calculation, notice that by the law of total expectation, E[ I{t<T} fπ(Xt) ] =∑
x′∈X f

π(x′)E{I{t<T,Xt=x′}}. Thus,

Ro(x) =
∑
x′∈X

fπ(x′)E
[ ∞∑
t=0

γt I{t<T,Xt=x′}
]

=
∑
x′∈X

fπ(x′)uo(x, x′) ,

thus finishing the proof.
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5.3 UOMs with Linear Function Approximation

In this section, we introduce linear universal option models which use linear func-

tion approximation to compactly represent reward independent option-models over

a potentially large state space. In particular, we build upon previous work where the

approximate solution has been obtained by solving the so-called projected Bellman

equations. We assume that we are given a function φ : X → Rd, which maps any

state x ∈ X into its d-dimensional feature representation φ(x). Let Vθ : X → R

be defined by Vθ(x) = θ>φ(x), where the vector θ is a so-called weight-vector. 1

Fix an initial distribution µ over the states and an option o = o(π, β). Given a re-

ward function f = (fa)a∈A, 0 ≤ λ ≤ 1, the TD(λ) approximation Vθ(TD,f) to Ro

is defined as the solution to the following projected Bellman equations (Sutton and

Barto, 1998):

E
[ T−1∑

t=0

{Rt+1 + γVθ(Xt+1)− Vθ(Xt)} Zt+1

]
= 0 .

Here X0 is sampled from µ, the random variables (R1, X1, R2, X2, . . .) and T (the

termination time) are obtained by following o from this initial state until termina-

tion, and

Zt+1 =
t∑

`=0

(γλ)t−`φ(X`) . (5.3)

It is easy to see that if γ = λ = 0 then Vθ(TD,f) becomes the least-squares ap-

proximation Vω(LS,f) to the immediate rewards f under o given the features φ. The

least-squares approximation to f is given by

ω(LS,f) = arg min
ω
J(ω) = E

[ T−1∑
t=0

{
Rt+1 − ω>φ(Xt)

}2
]
.

We restrict our attention to this TD(0) solution in this chapter, and refer to ω as an

(approximate) immediate reward model.

The TD(0)-based linear UOM (in short, linear UOM) underlying o (and µ) is

a pair of d× d matrices (U o,M o), which generalize the tabular model (uo, po).

1Note that the subscript in V· always means the TD weight vector throughout this chapter.
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Basically the ith row of U o corresponds to the TD weight vector under an artificial

“reward” signal, r̆i = φi, which is the ith feature. Formally, (U o)> = [u1, . . . , ud],

ui ∈ Rd, where ui is the weight vector such that Vui is the TD(0)-approximation to

the return of o for the artificial reward. We update an estimate of U o at each time

step during the execution of the option, by

U o ← U o + η [φt + γU oφt+1 − U oφt]φ
>
t , (5.4)

where η is a step-size and φt is the feature vector of the tth state Xt. 2 Note

that if we use tabular representation, then ui,x = uo(x, i) holds for all x, i ∈ X .

Therefore our extension to linear function approximation is backward consistent

with the UOM definition in the tabular case. However, this alone would not be

a satisfactory justification of this choice of linear UOMs. The following theorem

shows that just like the UOMs of the previous section, the U o matrix allows the

separation of the reward from the option models without losing information.

Theorem 17. Fix an option o = o(π, β) in a reward-less MDP,M = (X ,A, (Pa), γ),

an initial state distribution µ over the states X , and a function φ : X → Rd. Let U

be the linear UOM of o w.r.t. φ and µ. Pick some reward function f and let Vθ(TD,f)

be the TD(0) approximation to the return Ro. Then, for any x ∈ X ,

Vθ(TD,f)(x) = (ω(LS,f))> (Uφ(x)) .

Proof. Let

A = E
[ T−1∑
t=0

φ(Xt) (γtφ(Xt+1)− φ(Xt))
>
]
,

C = E
[ T−1∑
t=0

φ(Xt)φ(Xt)
>
]
.

It is not hard to see that U satisfies C + AU> = 0, any θ(TD,f) satisfies

bf + AθTD,f = 0 (5.5)

and any ω(LS,f) satisfies bf − Cω(LS,f) = 0,3 where bf = E[
∑T−1

t=0 φ(Xt)Rt+1]. Let

θ̂ = U>ωLS,f . The claim of the theorem is that θ̂ satisfies (5.5). By simple algebra,
2Each ui has a standard TD update, ui ← ui + η(φit + γu>i φt+1 − u>i φt)φt.
3Here, we allow for the non-uniqueness of solutions. Uniqueness follows under stronger as-

sumptions, which we do not need here.
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we indeed find bf + Aθ̂ = bf + AU>ωLS,f = bf − CωLS,f = 0, thus finishing the

proof.

The significance of this result is that it shows that to compute the TD approxi-

mation of an option return corresponding to a reward function f , it suffices to find

ω(LS,f) (the least squares approximation of the expected one-step reward under the

option and the reward function f ), provided one is given the U matrix of the op-

tion. We expect that finding a least-squares approximation (solving a regression

problem) is easier than solving a TD fixed-point equation. Note that the result also

holds for standard policies, but we do not explore this direction in this thesis.

The definition of M o. The matrix M o serves as a state predictor, and we call

M o the transient matrix associated with option o. Given a feature vector φ, M oφ

predicts the (discounted) expected feature vector where the option stops. When

option o is started from state X and stopped at state XT in T time steps, we update

an estimate of M o by

M o ←M o + η(γTφ(XT )−M oφ(X))φ(X)>.

Formally, M o is the solution to the associated linear system,

Eµ,o[ γTφ(XT )φ(x)> ] = M o Eµ,o[φ(X)φ(X)> ] , (5.6)

where Eµ,o is the expectation operator with respect to µ (the distribution where X0

is sampled from) and the option o. Notice that M o is thus just the least-squares

solution of the problem when γTφ(XT ) is regressed on φ(X), given that we know

that option o is executed. Again, this way we obtain the terminal distribution of

option o in the tabular case.

Our goal is to find an option model that can be used to compute a TD approxi-

mation to the value function of a high-level policy h (flattened) over a set of options

O. The following theorem shows that the linear UOM suits this purpose. In prac-

tice, this means that we can speed up the computation of multiple V h that depend

on different reward functions.

A high-level policy h defines a Markov chain over X × O. Assume that this

Markov chain has a unique stationary distribution, µh. Let (X, o) ∼ µh be a draw
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from this stationary distribution. The following theorem shows that the value func-

tion of h can be computed from option returns and transient matrices.

Theorem 18. Let Vθ(X) = φ(X)>θ. Under the above conditions, if θ solves

Eµh [ (Ro(X) + (M oφ(X))>θ − φ(X)>θ)φ(X) ] = 0, (5.7)

where Eµh is the expectation operator with respect to the stationary distribution µh.

then Vθ is the TD(0) approximation to the value function of h.

Proof. Add # to the state space and extend φ to the new state space X ∪ {#}

through φ(#) = 0. Let X = X0, R1, X1, R2, . . . be the state-reward sequence

obtained while following h. Further, let Q1, Q2, . . . be an i.i.d., Bernoulli sequence

such that P(Q1 = 0) = γ. Choose (Qt) to be independent of all the other random

variables. For t ≥ 1, let X̂t = # if Qt = 1 or X̂t−1 = #, otherwise let X̂t = Xt.

We claim that

E[φ(X)φ(X̂T )>] = E[γTφ(X)φ(XT )>] . (5.8)

Indeed,

E
[
φ(X)φ(X̂T )>

]
= E

[
φ(X)φ(XT )>I{Q1=...=QT=0}

]
= E

[
E
[
φ(X)φ(XT )> I{Q1=...=QT=0}

∣∣T,XT , X
] ]

= E
[
φ(X)φ(XT )>E

[
I{Q1=...=QT=0}

∣∣T,XT , X
] ]

= E
[
φ(X)φ(XT )>γT

]
,

where the first equality follows since φ(#) = 0 and the last equality follows by the

choice of (Qt). Thus, the claim is proved.

Now, with a similar reasoning, and using the strong Markov property, one can

show that Vθ = θ>φ is a TD(0) approximation to V h if and only if

E[(Ro + Vθ(X̂T )− Vθ(X))φ(X)] = 0 . (5.9)

(The proof is similar to proving that the value function of a high-level policy h

satisfies a Bellman equation which uses the option models, see, e.g., Equation (8)

of Sutton et al. (1999).) Let θ̂ be a solution to (5.7). Our goal is to show that
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θ̂ satisfies (5.9). Clearly, it suffices to check if the second equality holds in the

following series of equalities:

E
[
φ(X)φ(X̂T )>θ̂

]
= E[φ(X)Vθ̂(X̂T )]

= E
[
φ(X)(M oφ(X))>θ̂

]
= E

[
φ(X)φ(X)>(M o)>θ̂

]
.

After taking transposes, this boils down to checking

E[φ(X̂T )φ(X)>] = E[M o φ(X)φ(X)>].

Now, by (5.8), E[φ(X̂T )φ(X)>] = E[γTφ(XT )φ(X)>] = E
[
E
[
γTφ(XT )φ(X)> | o

] ]
.

By the definition M o (cf. (5.6)),

E
[
γTφ(XT )φ(X)

∣∣ o] = E
[
M oφ(X)φ(X)>

∣∣ o ] .
hence,

E
[
φ(X̂T )φ(X)>

]
= E

[
E
[
M oφ(X)φ(X)>

∣∣ o ] ]
= E

[
M oφ(X)φ(X)>

]
,

thus finishing the proof.

Recall that Theorem 17 states that the U matrices can be used to compute the

option returns given an arbitrary reward function. Thus given a reward function, the

U and M matrices are all that one would need to solve the TD solution of the high-

level policy. The merit of U and M is that they are reward independent: Once they

are learned, they can be saved and used for different reward functions for different

situations at different times.

5.4 Learning and Planning with UOMs

In this section we give incremental, TD-style algorithms for learning and planning

with linear UOMs. We start by describing the learning of UOMs while following

some high-level policy h, and then describe a Dyna-like algorithm that estimates

the value function of h with learned UOMs and an immediate reward model.
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5.4.1 Learning Linear UOMs

Assume that we are following a high-level policy h over a set of optionsO, and that

we want to estimate linear UOMs for the options in O. Let the trajectory generated

by following this high-level policy be . . . , Xt, Qt, Ot, At, Xt+1, Qt+1, . . .. Here,

Qt = 1 is the indicator for the event that option Ot−1 is terminated at state Xt and

so Ot ∼ h(Xt, ·). Also, when Qt = 0, Ot = Ot−1. Upon the transition from Xt to

Xt+1, Qt+1, the matrix UOt is updated as follows:

UOt
t+1 = UOt

t + ηOtt δt+1 Z
>
t+1, where

δt+1 = φ(Xt) + γUOt
t φ(Xt+1)I{Qt+1=0} − UOt

t φ(Xt),

Zt+1 = φ(Xt) + γλZtI{Qt=0}

and ηOtt ≥ 0 is the learning-rate at time t associated with option Ot. Note that

when option Ot is terminated the temporal difference δt+1 is modified so that the

next predicted value is zero. Also, the eligibility trace is reset when a new option is

selected.

The (M o) matrices are updated using the least-mean square algorithm. In par-

ticular, matrixMOt is updated when optionOt is terminated at time t+1, i.e., when

Qt+1 = 1. In the update we need the feature (φ̃·) of the state which was visited at

the time option Ot was selected and also the time elapsed since this time (τ·):

MOt
t+1 = MOt

t + η̃Ott I{Qt+1=1}

{
γτtφ(Xt+1)−MOt

t φ̃t

}
φ̃>t ,

φ̃t+1 = I{Qt+1=0}φ̃t + I{Qt+1=1}φ(Xt+1) ,

τt+1 = I{Qt+1=0}τt + 1 .

These variables are initialized to τ0 = 0 and φ̃0 = φ(X0).

Algorithm 4 shows the pseudo-code of learning UOMs.

Theorem 19. Assume that the stationary distribution of h is unique, all options inO

terminate with probability one and that all options in O are selected at some state

with positive probability.4 If the step-sizes of the options are decreased towards

4Otherwise, we can drop the options in O which are never selected by h.
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Algorithm 4 Dyna-Universal: Learning UOMs.
Input: A feature mapping φ, a policy h over a set of options.
Output: Linear UOMs for the options.
parameters: η, the modelling step-size.
Initialize U o,M o for all the options
/* run the following for each episode */
Initialize φ0

Do at each time step
Select an option o according to policy h. If terminating, set φt+1 = 0; other-

wise, take an action according to the policy associated with o, and observe the
next feature vector φt+1

U o ← U o + η [φt + γU oφt+1 − U oφt]φ
>
t

If terminating, update M o for the φk at which o was started:
M o ←M o + η[γt−kφt −M oφk]φ

>
k

zero so that the Robbins-Monro conditions hold for them, 5 then for any o ∈ O,

MO
t → M o and U o

t → U o with probability one, where (U o,M o) are defined in the

previous section.

Proof. The proof can be reduced to studying the individual (U o
t ,M

o
t ) pairs as fol-

lows: Using an appropriate sequence of stopping times and relying on the strong

Markov property, one can argue that the updates for all options can be viewed on

their own. Now for a single option, the convergence of M o
t follows since it is an

LMS update rule. The convergence of U o
t essentially follows from the previous re-

sults in Section 6.3.4 of (Bertsekas and Tsitsiklis, 1996) (for on-line updating, one

should combine this argument with that of (Jaakkola et al., 1994, Theorem 3)).

5.4.2 Learning Reward Models

In conventional settings, a single reward signal will be contained in the trajectory

when following the high level policy, . . . , Xt, Qt, Ot, At, Rt+1, Xt+1, Qt+1, . . .. We

can learn an immediate reward model, ωOt , for this reward signal with a least-mean

square update rule:

ωOtt+1 = ωOtt + η̃Ott I{Qt+1=0}

{
Rt+1 − ωOt

>
φ(Xt)

}
φ(Xt) .

5That is, the sum of the step-sizes diverges, while the sum of their squares converges.

94



In other settings, the immediate reward model can be constructed in different

ways. For example, more than one reward signal can be of interest, so multiple

immediate reward models can be learned in parallel. Moreover, such additional

reward signals might be provided at any time. In some settings, the immediate

reward model for a reward function can be provided directly from knowledge of the

environment and features where the immediate reward model is independent of the

option.

5.4.3 Policy Evaluation with UOMs and Reward Models

Consider the process of policy evaluation for a high-level policy over options from

a given set of UOMs when learning a reward model. When starting from a state

X with feature vector φ(X) and following option o, the return Ro(X) is esti-

mated from the reward model ωo and the expected feature occupancy matrix U o

by Ro(X) ≈ (ωo)>U oφ(X). The TD(0) approximation to the value function of a

high-level policy h can then be estimated online from Theorem 18. Interleaving up-

dates of the reward model learning with these planning steps for h gives a Dyna-like

algorithm.

Algorithm 5 shows the pseudo code of evaluating a high level policy using

Dyna-style planning architecture.
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Algorithm 5 Dyna-Universal: linear Dyna with UOMs for evaluating a high-level
policy h.

Input: Linear UOMS and policy h.
Output: TD solution θ for the value function of h.
parameters: α, the planning step-size.
Initialize ωo for all the options, and the policy weight parameter vector θ
/* run the following for each episode */
Initialize φ0

Do at each time step
Select an option o. If not terminating, take an action according to the policy

associated with the option and observe a reward Rt+1

ωo ← ωo + η
[
Rt+1 − φ>t ωo

]
φt

Do planning for τ times
sample a feature vector φ
select an option ε according to policy h for φ
/* Update with the UOM(U ε,M ε) and f ε of the option ε */
R← (U εφ)>ωε

φ′ ←M εφ
θ ← θ + α(R + φ′>θ − φ>θ)φ

96



1o

G

5o

2o

3o

6o

7o

4o

8o

B

9o

(11, 11)

G

0 20 40 60 80 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of episodes

R
M

S
E

 

 

UOM

LOEM

Figure 5.1: (a: left) A Star Craft local mission map, consisting of four bridged
regions, and nine options for the mission. (b: middle) A high-level policy h =<
o1, o2, o3, o6 > initiates the options in the regions, with deterministic policies in
the regions as given by the arrows: o1 (green), o2 (yellow), o3 (purple), and o6

(white). Outside these regions, the policies select actions uniformly at random. (c:
right) The expected performance of different units can be learned by simulating
trajectories (with the standard deviation shown by the bars), and the UOM method
reduces the error faster than the LOEM method.

5.5 Empirical Results

In this section, we provide empirical results on choosing game units to execute

specific policies in a simplified real-time strategy game and recommending articles

in a large academic database with more than one million articles.

We compare the UOM method with a method of Sorg and Singh (2010), who

introduced the linear-option expectation model (LOEM) that is applicable for eval-

uating a high-level policy over options. Their method estimates (M o, bo) from ex-

perience, where bo is equal to (U o)>ωo in our formulation. This term bo is the ex-

pected return from following the option, and can be computed incrementally from

experience once a reward signal or an immediate reward model are available.

A simplified Star Craft 2 mission. We examined the use of the UOMs and

LOEMs for policy evaluation in a simplified variant of the real-time strategy game

Star Craft 2, where the task for the player was to select the best game unit to move

to a particular goal location. We assume that the player has acces to a black-box

game simulator. There are four game units with the same constant dynamics. The

internal status of these units dynamically changes during the game and this affects

the reward they receive in enemy controlled territory. We evaluated these units,

when their rewards are as listed in the table below (the rewards are associated with
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Game Units
Enemy Locations Battlecruiser Reapers Thor SCV
fortress (yellow) 0.3 -1.0 1.0 -1.0
ground forces (green) 1.0 0.3 1.0 -1.0
viking (red) -1.0 -1.0 1.0 -1.0
cobra (pink) 1.0 0.5 -1.0 -1.0
minerals (blue) 0 0 0 1.0

Table 5.1: The reward functions of all our agents (column; first letter capitalized).
On facing an enemy agent or minerals (a row), a reward is given according to the
corresponding entry of the table. All the other rewards are zero.

the previous state and are not action-contingent). A game map is shown in Figure

5.1 (a). The four actions could move a unit left, right, up, or down. With probability

2/3, the action moved the unit one grid in the intended direction. With probabil-

ity 1/3, the action failed, and the agent was moved in a random direction chosen

uniformly from the other three directions. If an action would move a unit into the

boundary, it remained in the original location (with probability one). The discount

factor was 0.9. Features were a lookup table over the 11 × 11 grid. For all algo-

rithms, only one step of planning was applied per action selection. The planning

step-size for each algorithm was chosen from 0.001, 0.01, 0.1, 1.0. Only the best

one was reported for an algorithm. All data reported were averaged over 30 runs.

We defined a set of nine options and their corresponding policies, shown in Fig-

ure 5.1 (a), (b). These options are specified by the locations where they terminate,

and the policies. The termination location is the square pointed to by each option’s

arrows. Four of these are “bridges” between regions, and one is the position labelled

“B” (which is the player’s base at position (1, 1)). Each of the options could be ini-

tiated from anywhere in the region in which the policy was defined. The policies

for these options were defined by a shortest path traversal from the initial location

to the terminal location, as shown in the figure. These policies were not optimized

for the reward functions of the game units or the enemy locations.

To choose among units for a mission in real time, a player must be able to

efficiently evaluate many options for many units, compute the value functions of

the various high-level policies, and select the best unit for a particular high-level

goal. A high-level policy for dispatching the game units is defined by initiating
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different options from different states. For example, a policy for moving units from

the base “B” to position “G” can be, h =< o1, o2, o3, o6 >. Another high-level

policy could move another unit from room 2 to “G” by a different route with h′ =<

o8, o5, o6, o3 >.

We evaluated policy h for the Reaper unit above using UOMs and LOEMs. We

first pre-learned the U o and M o models using the experience from 3000 trajecto-

ries. Using a reward function that is described in the above table, we then learned

ωo for the UOM and and bo for the LEOM over 100 simulated trajectories, and

concurrently learned θ. As shown in Figure 5.1 (c), the UOM model learns a more

accurate estimate of the value function from fewer episodes, when the best perfor-

mance is taken across the planning step size. Learning ωo is easier than learning

bo because the stochastic dynamics of the environment is factored out through the

pre-learned U o. These constructed value functions can be used to select the best

game unit for the task of moving to the goal location.

This approach is computationally efficient for multiple units. We compared the

computation time of LOEMs and UOMs with linear Dyna on a modern PC with an

Intel 1.7GHz processor and 8GB RAM in a MATLAB implementation. Learning

U o took 81 seconds. We used a recursive least-squares update to learn M o, which

took 9.1 seconds. Thus, learning an LOEM model is faster than learning a UOM for

a single fixed reward function, but the UOM can produce an accurate option return

quickly for each new reward function. Learning the value function incrementally

from the 100 trajectories took 0.44 seconds for the UOM and 0.61 seconds for the

LOEM. The UOM is slightly more efficient as ωo is more sparse than bo, but it is

substantially more accurate, as shown in Figure 5.1 (c). We evaluated all the units

and the results are similar.

Article recommendation. Recommending relevant articles for a given user query

can be thought of as predicting an expected return of an option for a dynamically

specified reward model. Ranking an article as a function of the links between ar-

ticles in the database has proven to be a successful approach to article recommen-

dation, with PageRank and other link analysis algorithms using a random surfer

model (Page et al., 1998). We build on this idea, by mapping a user query to a
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reward model and pre-specified option for how a reader might transition between

articles. The ranking of an article is then the expected return from following ref-

erences in articles according to the option. Consider the policy of performing a

random-walk between articles in a database by following a reference from an ar-

ticle that is selected uniformly at random. An article receives a positive reward

if it matches a user query (and is otherwise zero), and the value of the article is

the expected discounted return from following the random-walk policy over arti-

cles. More focused reader policies can be specified as following references from an

article with a common author or keyword.

We experimented with a collection from DBLP that has about 1.5 million arti-

cles, 1 million authors, and 2 millions citations (Tang et al., 2008). We assume that

a user query q is mapped directly to an option o and an immediate reward model

f oq . For simplicity in our experiment, the reward models are all binary, with three

non-zero features drawn uniformly at random. In total we used about 58 features,

and the discount factor was 0.9. There were three policies. The first followed a ref-

erence selected uniformly at random, the second selected a reference written by an

author of the current article (selected at random), and the third selected a reference

with a keyword in common with the current article. Three options were defined

from these policies, where the termination probability beta was 1.0 if no suitable

outgoing reference was available and 0.25 otherwise. High-level policies of dif-

ferent option sequences could also be applied, but were not tested here. We used

bibliometric features for the articles extracted from the author, title, venue fields.

We generated queries q at random, where each query specified an associated

option o and an option-independent immediate reward model ωoq = fq. We then

computed their value functions. The immediate reward model is naturally con-

structed for these problems, as the reward comes from the starting article based on

its features, so it is not dependent on the action taken (and thus not the option).

This approach is appropriate in article recommendation as a query can provide both

terms for relevant features (such as the venue), and how the reader intends to fol-

low references in the paper. For the UOM based approach we pre-learned U o, and

then computed U oωoq for each query. For the LOEM approach, we learned a bq for
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each query by simulating 3000 trajectories in the database (the simulated trajecto-

ries were shared for all the queries). The computation time (in seconds) for the

UOM and LOEM approaches are shown in the table below.

Number of reward functions 10 100 500 1,000 10,000
LOEM 0.03 0.09 0.47 0.86 9.65
UOM 0.01 0.04 0.07 0.12 1.21

The table shows that LOEM is less computationally efficient than UOMs for rank-

ing articles. LOEM and other conventional option models do not scale to handle

many real-time queries on large databases. The UOMs proposed in this thesis scale

to handle large numbers of reward functions and are especially suitable for large

online systems.
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5.6 Discussion and Conclusion

We proposed a new way of modelling options in both tabular representation and lin-

ear function approximation, which is called the universal option model. We showed

how to learn UOMs and how to use them to construct the TD solution of option re-

turns and value functions of policies, and prove their theoretical guarantees. It is

important to emphasize that the focus of this thesis is not the extension of linear

Dyna to options which is the work of LEOM (Sorg and Singh, 2010), but a new

computational device by which learning new value functions for existing options

becomes efficient, both computationally and information theoretically. UOMs are

advantageous in large online systems. Estimating the return of an option given a

new reward function with the UOM of the option is reduced to a one-step regres-

sion. Computing option returns dependent on many reward functions in large online

games and search systems using UOMs is much faster than using previous methods

for learning option models.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we proposed a model-based API algorithm called LAM-API in Chap-

ter 3, which first learns linear action modes and then use them for off-policy eval-

uation and control. In Chapter 4, we proposed a pseudo-MDP framework in which

we learn an optimal policy in the pseudo-MDP and then pull it back to the original

MDP. In Chapter 5, we studied evaluating high-level policies with options in envi-

ronments where there are multiple reward functions, and proposed using universal

option models to construct returns efficiently.

6.2 Contributions

There are three contributions in this thesis:

• Our experiments show that our LAM-API performs comparably to LSPI (ar-

guably one of the most powerful RL algorithms), and often converges much

quicker (Yao and Szepesvári, 2012).

• In the pseudo-MDPs framework, we give a performance error bound for the

approach. Surprisingly, the error bound shows that the quality of the policy

derived from an optimal policy of the pseudo-MDP is governed only by the

policy evaluation errors of an optimal policy in the original MDP and the

“pull-back” policy of an optimal policy in the pseudo-MDP. This result gives

a direction for model-based reinforcement learning: an exhaustively accurate
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model is not necessary in order to learn a good policy—it only needs to be

accurate in two projected directions (some terms in the error bound). This

result is interesting because performance error bound of the recent kernel

embedding AVI (Grünewälder et al., 2012) can be derived using our error

bound (Yao et al., 2014a).

The pseudo-MDP framework not only includes the kernel embedding model

(Grünewälder et al., 2012) but also opens the door to new models. We propose

a least-squares approach and a constrained optimization approach of learning

factored linear models, which can be used for AVI. The least-squares ap-

proach without normalization can possible diverge while with normalization

(a standard practice in kernel-based methods) it is guaranteed to converge but

possibly to bad policies even with good features. The constrained optimiza-

tion approach is guaranteed to converge and give good policies in our exper-

iments. We explored a feature learning method based on our error bound,

which can find good features in a simple experiment.

• The universal option model enables a very efficient and simple generation

of option returns. We provide algorithms of learning this model as well as

planning algorithms for generating returns and value functions. We also prove

the convergence of these algorithms (Yao et al., 2014b). In a simulated game

playing scenario, we show that selecting the best unit in a team for executing

a task can benefit in computation efficiency from universal option models. In

article recommendation, we show that recommending articles to users with

personal preference reward functions has a significant computation advantage

using universal option models over traditional models.

6.3 Open Questions

Our LAM-API algorithm suggests actions models are effective and efficient for off-

policy learning and control. It would be interesting to build other (such as nonlinear)

action models, from which we may have more accurate projections and hence better

performance.
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In the pseudo-MDP framework, the constrained optimization model we pro-

posed is guaranteed to converge, but there are computation scalability issues that

remain to be addressed. The procedures that are based on the dual representation

that we also use need to work and sometimes invert n × n matrices for a sample

size of n. This is clearly infeasible even for medium size data. In the supervised

learning literature much research went into speeding up these operations, such as

Nyström’s method and variants (Le et al., 2013; Hsieh et al., 2014). It will be in-

teresting to incorporate these into our setting. In the RL literature, there have been

advancements for scenarios where ψ satisfies certain structural assumptions (Kve-

ton and Theocharous, 2013), or sample subsampling (Kveton and Theocharous,

2012), which we can also try to incorporate.
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Sutton, R. S., Szepesvári, Cs., and Maei, H. R. (2009b). A convergent O(n)
temporal-difference algorithm for off-policy learning with linear function ap-
proximation. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., edi-
tors, Advances in Neural Information Processing Systems 21 (NIPS-21), pages
1609–1616. Curran Associates. (December 8–10, 2008).

109



Syed, U. A. (2010). Reinforcement Learning Without Rewards. PhD thesis, Prince-
ton University.
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