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Abstract 

The transition towards low carbon electricity generation can be guided by investigating the 

economic and environmental consequences of policy decisions. However, there is limited 

information on greenhouse gas (GHG) emissions, energy footprints, and changes in production 

cost under different policy constraints for emerging sustainable energy generation systems. This 

thesis, therefore, explores the environmental and economic implications of transitioning to a low 

carbon electricity generation system through a life cycle approach.  

Large-scale solar power plants have captured the attention of energy policymakers and industrial 

stakeholders globally because they can contribute to the long-term plan to reduce the impacts of 

climate change related to conventional fossil fuel power plants. In this study, we developed a 

comprehensive bottom-up life cycle assessment model to evaluate the emissions and energy 

profiles of large-scale solar photovoltaic systems. A case study for a fossil fuel-based energy 

jurisdiction, Alberta, a western province in Canada, was conducted. We also investigated the 

potential to use such an energy system to provide consistent electricity supply to the grid compared 

to peak load options. The results show life cycle GHG emissions of 60.21-79.61 g CO2eq/kWh, a 

net energy ratio (total energy output divided by total fossil fuel consumed over the lifecycle) of 

7.48-10.04, and an energy payback time (time required to regain the invested energy) of 2.73-3.00 

years. The system was integrated with lithium-ion energy storage for a consistent electricity supply 

over a period. The corresponding results are 155.25-220.61 g CO2eq/kWh, an NER of 2.63-3.61, 

and a payback time of 7.01-9.45 years. More than 60% of the energy consumed is in upstream 

manufacturing processes.  

We also developed a novel framework to evaluate the long-term environmental consequences of 

marginal changes in electricity generation that result from policy decisions in fossil fuel-dominant 

jurisdictions. The framework integrates market penetration, long-term energy demand and supply 
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modeling, and marginal cost and emissions analyses. A case study for Alberta was conducted. 

Based on the province’s specific energy generation resources and its policy initiatives, we created 

9 scenarios investigate the effects of renewable energy penetration under competitive market 

conditions (no renewable targets), regulations to ensure minimum production from renewables, 

improved storage capabilities, and GHG emission targets. With the Long-range Energy 

Alternatives Planning (LEAP) framework, we developed an energy generation model to calculate 

probable future electricity mixes, generation costs, and the resulting GHG emissions. The marginal 

changes in energy generation and GHG emissions were quantified for each scenario to incorporate 

different policy decisions and market effects. We determined that in Alberta combined cycle power 

plants and wind energy are the key marginal suppliers of electricity in the transition to a cleaner 

grid. The effects of adding energy storage to the grid along with renewable energy systems, 

replacing natural gas with renewable energy, and setting more aggressive GHG emission reduction 

targets than current policies require were also investigated. 

The information provided in this thesis would help concerned entities in formulating policies and 

making investments in the electricity sector.   
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Chapter 1  

Introduction 

1.1 Background 

Global primary energy consumption is projected to increase 10.17% between 2019 and 2050 in 

the Organization for Economic Co-operation and Development (OECD) countries and nearly 50% 

worldwide, which would increase energy-related CO2 emissions by 18.6% [1]. Anthropogenic 

greenhouse gas (GHG) emissions from fossil-based energy are acknowledged as a major cause of 

global warming [2]. Unprecedented and rapid human intervention is a must to reduce GHG 

emissions and limit the global surface temperature below 1.5 °C [3]. The Paris Agreement is an 

ambitious collective effort to reduce climate change impacts by transitioning to low-carbon energy 

sources while maintaining a reliable energy supply [4]. While recent GHG emissions’ reduction 

strategies in key global economic sectors have been discussed broadly, and several sets of 

procedures, rules, and mechanisms have been implemented [5-7], there have been aggressive 

enforcement of GHG mitigation policies in the electricity generation sector [8, 9]. The electricity 

sector provides an important share of energy services as demand is increasing with the rising 

electrification of transportation, heating, and cooling devices. One-third of global GHG emissions 

are from this sector because of its heavy reliance on fossil fuels [1]. Hence, the major avenue for 

energy policymakers to ensure climate change goals can be met by decarbonizing the electricity 

sector through increasing renewable energy resources resource shares and the electrification of the 

transportation and full electrification of building sectors [10, 11]. Globally, renewable capacity 

additions accounted for 75% of all net power capacity growth in 2018 [12]. The declining costs of 

renewables such as solar and wind have also gained considerable interest among policymakers. 

Solar, wind, and hydro technologies have proven to be reliable sources of electricity because of 
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improved efficiencies and their capacities to provide bulk electricity. As a result of improvements 

in solar, wind and hydro energy technologies, these resources can help decarbonize the electricity 

sector.  

The electricity sector in Canada was responsible for 78 Mt of CO2 emissions in 2014, or about 

11% of national emissions [13]. The sector is the fourth largest emitter, even though Canada has 

one of the cleanest electricity systems in the world (almost 80% of electricity is produced from 

non-emitting sources). As part of the Pan-Canadian Framework on Clean Growth and Climate 

Change, which aims to reduce the overall GHG emissions from 730 Mt CO2 eq to 513 Mt CO2 eq, 

the Canadian government has laid out many measures that it plans on implementing [13]. Alberta, 

one of the highest GHG-emitting provinces, has been considering renewable energy alternatives 

as a viable means to reduce electricity sector emissions. The electricity generation sector accounted 

for 17% of the GHG emissions in Alberta, of which 45% are from coal-based power plants in 2017 

[14]. Currently, there is a plan to phase out coal by the end of 2030, which means a large portion 

of future electricity demand will need to be met by other clean sources. Solar energy has been 

gaining considerable interest among stakeholders in Alberta as the province has the highest annual 

sunlight of all the provinces in Canada (around 319 days) [15]. Alberta has an installed capacity 

of 17 MW of utility-scale solar power and more than 582 MW of planned capacity additions [16]. 

This huge addition of large-scale solar energy is an attempt to lower Alberta’s electricity grid GHG 

intensity, which is the highest in Canada. Since utility-scale solar energy systems have 

significantly higher capacities, they have relatively larger economies of scale, which makes them 

great alternatives to some fossil fuel-based energy generation systems.  

Although solar photovoltaic (PV) panels are considered a safe and reliable source of electricity 

with low GHG emissions, consideration of the full life cycle stages such as resource extraction, 
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manufacturing, and the transportation of main components could provide information about their 

overall GHG footprint from a life cycle perspective. Around 60% of the solar PV panels used in 

Alberta are manufactured in China, where carbon-intensive fuels are used. The shipping of these 

materials over long distances also significantly contributes to overall life cycle GHG emissions. 

With these factors in mind, there is a pressing need to understand the economy-wide environmental 

consequences of implementing solar PV-based electricity generation projects in Alberta. That is 

one of the focus of this research.  

1.2 Life cycle assessment 

Life cycle assessment (LCA) is a system-based approach used to evaluate the environmental, 

economic, and social impacts of a product system that takes into account its entire life cycle 

starting from raw material acquisition through to production and use phases as well as end of life 

[17]. LCA identifies the most GHG-intensive processes in the life cycle of a product or service 

and provides insights to appropriate policymakers and stakeholders to help them make better 

decisions based on data-driven research. LCA is an internationally standardized and harmonized 

tool. The International Organization for Standardization (ISO) provides guidelines and 

frameworks for conducting LCA [18, 19]. LCA, according to the ISO, has four phases: goal and 

scope definition, inventory analysis, impact assessment, and interpretation [18, 19]. The goal of 

an LCA sets the context of the study. It should clearly state the main purpose, the intended 

audience, and how the key findings are communicated to the intended audience. The scope defines 

the system boundary of the product system, its functional unit, time and location, modeling 

approach, and other methodological procedures.  
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The life cycle inventory analysis compiles and evaluates material and energy inputs and the 

associated emissions at each stage of the product system. It is the most time-intensive part of an 

LCA. In the impact assessment, the results are translated to several environmental problems such 

as acidification, climate change, eutrophication, human health, resource depletion, etc. The last 

stage of an LCA is interpretation, which deals with how to communicate the LCA results.  

There are two modeling choices in LCA: attributional and consequential. Attributional life cycle 

assessment (ALCA) links or/and partitions the unit processes of the system where the inputs and 

outputs are attributed to the functional unit according to a normative rule [20]. Consequential life 

cycle assessment (CLCA) is a system modeling approach in which activities within a product 

system are linked in such a way that they would change because of a change in demand of the 

functional unit. The questions that both approaches attempt to answer differ considerably. While 

the purpose of the attributional approach is to identify certain aspects of a product system and link 

them to the contributing unit processes, the consequential approach provides decision support, 

implying that consequences are traced forward in time. The main difference between these two 

approaches starts with the allocation methods in the life cycle inventory analysis phase. 

Attributional models use normative cut-off rules and allocation to isolate the investigated product 

system from the rest of the world [21]. In contrast, consequential models expand the system 

boundary to incorporate the changes that occur in multifunctional product systems. CLCAs also 

have the capabilities of reflecting economic and physical causalities. More details are discussed in 

subsequent chapters. 

In a solar power system, for example, an ALCA provides information on the global share of its 

environmental impact as a snapshot. The results from a solar power system ALCA can be 

compared with technologies that have the same functionalities such as renewable- or fossil-based 
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power generation systems. An attributional LCA of a utility-scale solar electricity generation 

system does not take into consideration the net change in environmental impacts as a response to 

change in demand for electricity or the penetration of renewable energy technologies that result 

from policy measures. However, most renewable technologies available today face economic and 

technological barriers [22]. Their ability to provide electricity to the grid on a large scale, to 

provide constant power, and to compete economically with existing power-providing sources are 

some of the major factors that determine the policies related to their penetration into the electricity 

grid, and these can be addressed through CLCA. Understanding the long-term environmental 

consequences of the penetration of renewable energy resources into the electricity generation 

sector would help determine the most beneficial GHG mitigation policies to implement while 

maintaining a reliable supply of electricity at the cheapest price possible. CLCA provides 

information about the long-term consequences of changes at the level of product output (plant 

capacity and energy production), which includes the effects of change both inside and outside the 

life cycle of the product. Creating a robust CLCA framework that can systematically answer the 

questions related to long-term economy-wide environmental effects of increased renewable 

penetration and marginal suppliers of electricity requires the development of market penetration 

and energy models capable of assessing electricity mixes under different policy scenarios.  
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1.3 Literature review 

The environmental sustainability of solar-based energy technologies has been assessed widely 

through LCA [18, 19]. LCAs of solar photovoltaic (PV) panels have focussed largely on measuring 

the energy performance in terms of energy payback time (EPBT) [23, 24], net energy ratio (NER) 

[25, 26], and GHG emissions [24, 25]. Other factors such as heavy metal emissions [27], land-use 

intensity [27-29], human health and well-being [30], and impacts on biodiversity [31] have also 

been assessed as they influence the decisions of energy policymakers [26, 32, 33]. Most of the 

LCA studies on energy systems followed the ALCA approach.  

Although ALCAs related to electricity generation are available in the literature, because of recent 

technological advancements [34], the life cycle environmental impact and techno-economic 

performance have changed considerably. Moreover, the recent wider application of utility-scale 

solar electricity systems presents the need for up-to-date, bottom-up estimates of energy and 

environmental profiles that incorporate the solar panels and their balance-of-system (BOS) 

requirements. A few research articles are available on grid-connected utility-scale solar farms [35, 

36], mainly focusing on the production supply chain and associated GHG emissions and energy 

yield estimates. The impacts from the BOS equipment, end-of-life stages, and regionalized aspects 

have received little attention. In the case of utility-scale solar energy systems, BOS equipment 

such as inverters, mountings, and, in some cases, energy storage systems, is often required in large 

quantities. The integration of this equipment on a large scale would have significant life cycle 

implications. There are few Canadian studies on this topic. For example, Barrington-Leigh and 

Ouliaris performed a spatial analysis of Canada’s renewable energy landscape at a provincial level 

[37]. The study provides information about installation and optimal site selection for solar energy 

systems. Vandelight et al. also carried out an environmental performance assessment of solar PV 
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technologies for rooftops and façades in Ontario and British Columbia [38]. However, there is 

very limited information on ground-mounted utility-scale solar farms for Canada, let alone the 

province of Alberta, which plans to add significant solar capacity to its grid. Grid-connected 

systems have received less attention because of the difficulties in sizing system configurations, 

which could affect energy yield estimates over the entire life cycle. Similarly, ensuring a consistent 

supply of electricity using PV technology by adding energy storage options on a large scale is also 

missing from the LCAs, whose focus is mostly on off-grid systems [39, 40]. In addition, since 

LCAs are data intensive and LCA practitioners rely on publicly available data often, the 

uncertainties associated with the results need to be acknowledged. This thesis addresses these gaps 

and questions in chapter 2. 

This thesis also extends the environmental assessment to include the long-term consequences of 

large-scale renewable penetration in fossil-dominant jurisdictions through a CLCA framework. 

Previous research in the domain of CLCA for the electricity sector has used publicly available 

projection datasets, which often do not consider policy alternatives [21]. Moreover, since CLCA 

modeling approaches are dictated by specific questions that have been set in line with the research 

objective, more often than not research articles related to CLCAs for the electricity sector are 

unable to provide universal answers. Since electricity is a strategic product, the conventional 

market mechanisms are often superseded by regional policy implementations and therefore often 

difficult to model. A few research articles demonstrate the application of this change-oriented LCA 

approach by modeling the effects of increased offshore wind power in the electricity grid [41], 

cycling of thermal power plants during electricity transition periods [42], and changes that may 

occur in the transmission and distribution lines due to the addition of newer technologies [32, 43]. 

But a holistic assessment of the long-term competitive technologies in the electricity sector is 
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unavailable in the current literature, and a gradational method of conducting such assessment is 

also missing. As a result, even though a few research articles are available in this research domain, 

they are not directly applicable to Alberta, where the key question is: What are the implications of 

increased renewable energy generation and phase-out of fossil fuel-based power plants? Therefore, 

there is a need to develop proper scenarios that are in line with current and probable policy 

initiatives and to use the information from these scenarios for a robust market penetration 

estimation. Complex energy generation models have recently been developed for each province 

and territory aimed at identifying GHG emissions mitigation pathways from the electricity sector 

[44-46]. This research extends the scope of those energy models by developing scenarios based on 

policy alternatives and incorporating updated cost and technical information to conduct a CLCA 

aimed at identifying marginal suppliers and quantifying changes in the electricity marginal mix as 

consequence of demand change.  
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1.4 Research objectives  

This thesis aims to address the following research and knowledge gaps: 

• There is little research done on LCA of utility-scale solar power plants, especially for 

Western Canada, and we set out to conduct a comprehensive and independent LCA study 

on the energy and environmental viability of such systems by calculating overall energy 

consumption by primary sources as well as EPBT and NER. 

• Implementing solar power systems at a large scale requires taking into consideration the 

intermittent nature of solar power systems. Hence, understanding energy storage 

requirements and consequent energy and environmental impacts is necessary from an LCA 

perspective. This issue has not been properly addressed in the existing literature. Thus, we 

performed an analytical simulation to estimate the optimum number of batteries and panels 

required to supply constant electricity, based on price and physical performance 

parameters. 

• It is important to quantify the GHG emissions associated with every stage of the life cycle 

of utility-scale solar power plants (system components, the balance of system, end of life 

management, etc.) in order to implement policy decisions, and we developed a bottom up 

LCA model to incorporate all the lifecycle stages. 

• In the electricity sector, ALCAs of standalone power systems have received more attention, 

but these do not take into consideration the long-term changes associated with shifts in 

market phenomena, which makes it difficult to make policy decisions based on LCA 

results. CLCAs for long-term electricity grid mixes have not received wide attention in the 

existing literature. We addressed this gap by conducting a CLCA to assess the long-term 

environmental consequences of the transition to cleaner electricity generation in Alberta,  



10 

 

• Accurate assessment frameworks that can aid in modeling the sector-wide energy and 

emission changes, which are essential to understand the consequences of policy decisions, 

have not been developed. We developed a market penetration and electricity grid model to 

estimate the optimal long-term electricity mixes in different policy scenarios and identify 

the technologies that would be the marginal suppliers. 

1.6 Scope and limitations of the thesis 

This research uses two life cycle assessment approaches, ALCA and CLCA. The ALCA 

quantitatively assesses the life cycle GHG emissions and energy use of utility-scale solar energy 

systems in Alberta. The results of this assessment help us understand the environmental impacts 

of implementing such systems on a large scale. The scope of the ALCA is extended in the CLCA 

approach, in which a framework is proposed and implemented for Alberta’s electricity sector. It 

provides long-term analysis of energy mixes and marginal technologies to help policymakers 

understand the consequences of their decisions. Life cycle information, technical parameters, and 

cost data of existing technologies and emerging energy generating systems were considered to 

perform this assessment. 

The research has the following limitations:  

• With respect to solar panel production, only the multi-silicon solar PV modules were 

considered for the assessment as they are currently the most widely used PV technology.  

• With respect to energy storage systems, only lithium-ion battery systems were considered, 

as reliable life cycle inventory data for other energy storage systems such as nickel-

cadmium, nickel-metal hydride, sodium-sulfur, etc., were not available when this research 

was conducted. However, the method established to size the energy storage capacity 
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requirements for utility-scale solar energy systems can be used for other battery 

technologies.  

• The ALCA model developed in this research assumes linearity in scaling up the production 

capacity of power plants; this may result in an overestimation of GHG emissions. 

• The CLCA study is focused on the electricity generation system and does not incorporate 

interactions with other sectors, as they were deemed outside the scope of this study. 

Including the interactions between different sectors may require complex economic 

modeling efforts. 

1.7 Organization of the thesis 

The thesis is in paper format and organized in four chapters. It is written in such a way that each 

chapter can be read independently. Hence some of the introductory content might be repeated.  

Chapter 1 discuss the background on overall global energy use, associated GHG emissions, and 

the role of renewable energy in decarbonizing the electricity sector. The chapter outlines the 

research gaps, key research objectives, and the scope and limitations of the study. 

Chapter 2 discusses the development of a bottom-up ALCA framework to evaluate the energy and 

GHG footprints of a utility-scale solar energy system. The technology-specific description of the 

life cycle stages including raw material extraction, silicon upgrading, solar PV panel 

manufacturing processes, system integration, operation, and end-of-life management phases is 

presented. The chapter also includes an analysis of system sizing of utility-scale solar energy 

systems with energy storage to estimate the energy use and GHG footprint in the case of adding 

consistent electricity supply capabilities. The chapter provides key insights on GHG emissions and 
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a net energy use profile of the systems, which would be beneficial to estimate site-specific regional 

aspects.  

Chapter 3 provides a framework for evaluating the long-term environmental consequences of the 

transition to clean electricity generation in fossil-fuel dominant jurisdictions. This chapter extends 

the ALCA approach discussed in chapter 2 to incorporate a change oriented LCA model. The 

framework integrates market penetration modeling, energy modeling, and marginal supplier 

identification to answer key policy questions related to energy system transition and the long-term 

environmental consequences of marginal changes in electricity generation. Alberta was used as a 

case study in this chapter, and the research contributions include the development of cost-driven 

market penetration curves and electricity mixes in nine scenarios. The scenarios were meticulously 

developed based on policy drivers and technology advancements, current and future cost of 

electricity production, GHG emissions, and the impacts of substitutional effects. Key results 

include the environmental and economic consequences of increased renewable penetration in 

varying market conditions and marginally affected technologies. 

Chapter 4 presents the key findings and notable observations from the research. It also includes 

recommendations for further improvements for the attributional and consequential models.  
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Chapter 2  

Life cycle greenhouse gas emissions and energy footprints of utility-scale solar energy 

systems 

2.1 Introduction 

The electricity generation sector accounts for more than one-third of global greenhouse gas (GHG) 

emissions because of the fossil fuels consumed to generate electricity [47]. Using renewable 

energy sources in the electricity capacity market is of interest globally. Solar photovoltaic (PV) 

panels are among the many options. They are a reliable source of electricity and thus are expected 

to play an important role in future energy markets. Notable technological advancements in the 

manufacturing and operation of solar PV on a large scale can been seen in China, India, and Europe 

[48-50]. Projects there have proven the usefulness of solar PV panels as a means to generate 

electricity on a large scale.  

Asia has seen remarkable growth in the market penetration of solar PV technology. China is the 

leader in its use, and India has surpassed European countries in generation capacity. The United 

States (US) is the second-fastest growing solar PV market. Unlike the US, Canada contributed less 

than 5% to global solar-based electricity generation [51] as of 2017. Canada has an installed 

capacity of 2911 MW and around 138 solar PV farms with a capacity over 1.0 MW [17, 52]. 

Alberta, a western province in Canada, has the country’s highest solar electricity generation 

potential [53] and yet has less than 1% [34, 54] of the national generation capacity. Alberta is 

considered one of the most suitable provinces to install solar farms on a large scale. At large scales, 

the electricity generated can be incorporated into the market. According to the Government of 

Alberta’s Climate Leadership Plan [55], 30% of the electricity generation must come from 

renewable energy sources, i.e., wind, solar, hydroelectricity, etc., by the end of 2030. Currently, 

about 89% of Alberta’s electricity is produced from fossil fuels (50% from coal and 39% from 



14 

 

natural gas) and the rest from sources like biomass, hydro, wind, etc. [56]. Alberta is committed 

to phasing out coal-based power plants by 2030 to ensure a transition to a clean and reliable 

electricity system. As of 2018, three major utility-scale solar farms in Brooks, Bassano, and 

Calgary, Alberta, with a combined capacity of 20 MW, are underway to supply electricity to the 

grid by 2020 [57, 58]. 

Ensuring the sustainability of electricity generation technologies is a crucial aspect of the transition 

to a low-carbon economy. Life cycle assessment (LCA) is a comprehensive framework for 

evaluating the environmental performance, economic viability, and social acceptance of a product 

along its life cycle starting from raw material acquisition through to production and use phases and 

end of life [17]. An LCA framework allows us to identify the key environmental hotspots through 

life cycle impact categories [18, 19]. The technology behind solar PV modules has changed rapidly 

in the last three decades [34], and its environmental impact have been evaluated through LCA. 

However, using generic results from the literature and making decisions for a specific situation 

has been challenging mainly because of differences in individual study’s system boundaries and 

life cycle inventory models, as pointed out by Xu et al. [59] and in the assumptions about 

technology levels and installation sites [60].  

The energy and environmental performances of solar PV applications have been assessed widely 

through LCA [18, 19]. The focus in most of the studies have been on energy payback time (EPBT) 

[23, 24], net energy ratio (NER) [25, 26], and GHG emissions [24, 25], as these indicators 

influence the decisions of energy policymakers [26, 32, 33]. Other indicators such as heavy metal 

emissions [27], land use intensity [27-29], human health and well-being [30], and impacts on 

biodiversity [31] have also been assessed. Although these studies conduct a detailed comparison 

of different solar PV technologies (i.e., crystalline silicon modules, CdTe modules, amorphous 
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silicon modules, and many other laboratory-scale technologies), none consider the material and 

energy flows throughout the supply chain. This creates difficulty for concerned stakeholders as 

EPBT, NER, and GHG emissions are directly affected by the manufacturing technology of a 

specific product system and its energy-generating location [61]. Grid-connected systems have 

received less attention because of the difficulties in sizing system configurations, which could 

affect the estimation of energy yield over the entire life cycle. Hou et al. and Yu et al [35, 36] 

performed comparative LCAs of grid-connected systems (conventional and metallurgical solar PV 

panel productions), mainly focusing on production and with limited emphasis on the balance of 

system (BOS). For grid-connected systems, characterizing and accurately sizing BOS equipment 

is essential as it has environmental impacts. The methods used in most studies is to model the 

highly complex utility-scale solar components (“PV plus BOS”) are ambiguous, making it difficult 

for others to use LCA results in user-specific situations [34, 62, 63].  

Advances in battery systems (in terms of cost, efficiency, and improved cycle life [64, 65]), 

especially lithium-ion, nickel-cadmium, nickel metal hydride, and sodium sulfur batteries, have 

also helped address the intermittency of solar power generation technologies. Several authors have 

studied the integration of battery-based energy storage technologies in off-grid solar PV 

applications [39, 40, 66]. The studies focused on low-cost options of generating electricity through 

conventional lead-acid batteries. Several location-based LCA studies have been conducted in Asia 

[26, 59, 67] and Africa [61]. These places have high solar insolation; that is, there is an abundance 

of solar irradiation. Hence, the results of these studies are not helpful in countries like Canada. 

Until recently, including modern battery systems in LCAs of solar PVs was difficult, as there was 

no dependable life cycle inventory of new and modern battery technologies. Such inventories are 

now available for both stationary [64] and mobile operations [65, 68], yet the studies do not include 
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an accurate prediction of environmental performances of on-grid electricity generation systems 

using solar PV and battery storage. 

As solar electricity use is still in the early stages in Canada, the environmental consequences need 

to be investigated and compared to conventional sources of electricity. There are few detailed LCA 

studies on the energy and GHG performances of utility-scale solar PVs in Canada. Barrington-

Leigh and Ouliaris performed a spatial analysis of Canada’s renewable energy landscape at a 

provincial level to determine installation optimal sites [37]. Vandeligt et al. summarized the EPBT 

for crystalline solar PV for rooftops and façades [38]. To the best of the authors’ knowledge, there 

is no information on ground-mounted utility-scale solar farms for Canada. One critical aspect of 

implementing solar panels in northern regions like Canada is the snowy conditions much of the 

year. Anis Haque [69] conducted experiments to evaluate the energy loss from snowy conditions 

in Alberta. Snow accumulation could reduce annual energy yield by 9%, a high marginal loss 

compared to the other system losses, so it needs to be considered in enviromental performance 

assessment studies. 

Our review of the relevant research shows both a lack of robust LCA results for utility-scale solar 

power systems and ambiguities resulting from the regional aspects; different atmospheric 

conditions, system boundaries, and technological levels considered in the LCA studies; and 

improper sizing of utility-scale solar power systems (based on technical parameters). This study, 

therefore, aims to address these identified research gaps. The specific objectives of this study are: 

− Developing a spreadsheet-based, bottom-up LCA model for cradle-to-grave utility-scale 

solar power plant analyses. 

− Estimating energy payback time (EPBT) and net energy ratio (NER). 
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− Performing a simulation to estimate the optimum number of batteries and panels to supply 

constant electricity, based on price and physical performance parameters. 

− Performing sensitivity and uncertainty analyses with the physical performance 

characteristics of the equipment and technological requirements in upstream processes.  

2.2 Method 

The LCA was conducted following the principles and framework and requirements and guidelines 

of the International Organization for Standardization [18, 19] and the guidelines provided by the 

International Energy Agency Photovoltaic Power System Programme [70, 71]. Each stage of the 

LCA is discussed in the sections that follow.  

2.2.1 Goal and scope definition 

The goal of this study is to quantitatively assess the life cycle GHG emissions and energy use 

footprint of utility-scale solar power systems. The findings of this study are intended to help energy 

stakeholders in government and private entities make informed energy policy decisions. The 

results can also be used to compare the environmental impacts of solar power plants with other 

large-scale electricity-generating technologies using both renewable and non-renewable sources. 

The defined product system is a 5 MWp utility-scale grid-connected solar power plant assumed to 

be located in the province of Alberta in Canada. The functional unit is set as “1 kWh of electric 

energy generated” from solar PV. 

Figure 2.1 depicts the cradle-to-grave system boundary considered in the study. The boundary 

includes the upstream processes of extracting the silicon ore from mines and several material 

processing steps. In the intermediate processes the high purity silicon feedstock is melted and 

turned into blocks. Subsequently they are sliced into thin wafers which are then etched and coated 

with screen printing materials. Energy and material requirements as well as raw material 
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transportation in each step are considered in creating the life cycle inventory. In terms of 

transportation, both domestic ground and international maritime transportation are considered. For 

the “balance of system,” the following major equipment types were considered: inverters, 

mounting structures, transformers, and physical infrastructures required for operation and 

maintenance. To account for the GHG emissions from recycling certain equipment, several end-

of-life scenarios were considered. The total land requirement for module assembly, line 

transmission and distribution, and the associated land use change emissions are also evaluated. 

2.2.2 Solar PV production 

The silica (SiO2) used in solar PV production is extracted using an established technology well 

described by Hou et al. [35]. We calculated GHG emissions by estimating the amount of explosive 

material and gasoline/diesel required to extract one kg of silica sand. The amount of explosive 

material required was estimated through the following equation: 

 4𝑇𝑁𝑇 + 21𝑂2 = 28𝐶𝑂2 ↑ +10𝐻2𝑂 + 6𝑁2 ↑ (1) 

 

The energy requirement in the form of electricity and fossil fuel was taken from literature [51].  

The silica extracted from the mines is reduced to industrial-grade silicon, resulting in silicon of 

99.6% purity. The typical process yield is 80% [23]. The byproduct of this process is silicon slag, 

which is sold separately. The silica is reduced according to the following carbothermic chemical 

reaction: 

 

 𝑆𝑖𝑂2 + 2𝐶 = 𝑆𝑖 + 2𝐶𝑂 (2) 

 

Industrial-grade silicon for electronic or solar panel applications needs to have high purities and is 

produced through the Siemens process, wherein fractional distillation takes place to convert the 
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silica sand into volatile compounds. This process is costly and has low yields [33, 72]. In this 

study, we consider a modified Siemens process, one that is more advanced, less energy-consuming, 

and offers 99.999% purity [33]. The solar-grade silicon is converted into large blocks of multi-

crystalline silicon. In this process, silicon feedstock is melted under an inert atmosphere (Argon 

gas) and poured into a graphite crucible where the blocks solidify under controlled thermal 

conditions [23].  

 
Figure 2.1: System boundary for a utility-scale solar farm 

Following casting, the silicon blocks are cut into thin slices using a multi-wire saw combined with 

a slurry of cooling liquid and abrasive particles, typically silicon carbide (SiC) [73]. The damages 

occurred in this process is removed by subsequent etching with sodium hydroxide (NaOH) and 

washing with water and sulfuric acid (H2SO4). The solar cells are then processed by adding n-type 

emitter layers and treated with fluoric acid. Finally, the front and back of the solar cells are screen 

printed to prevent recombination of holes [23]. In this study, square shaped solar cells have been 

considered while modeling as they provide the highest packing density. Aluminum frame was 

considered for module assembly. Detailed description of the solar PV panel production process 

can be found in Appendix A1. 
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2.2.3 System integration 

In this phase of the life cycle, energy and emissions from raw material production and 

manufacturing the BOS equipment (mounting structures, cables, inverters, transformers, and 

battery banks, for the case of consistent electricity supply) are considered.  

2.2.4 Operation 

For the electricity generation base case model, the energy yield was calculated using the following 

formula: 

 𝐸 = 𝐴 × 𝐻 × 𝑃𝑅 × 𝜂 (3) 

 

where E is energy output per year (kWh), A is the effective area of the panel, H is solar insolation 

(kWh/m2), PR is the performance ratio, and η is efficiency of the Solar panel. The procedure used 

to calculate the energy yield over the lifetime is provided in Appendix A2. 

The solar insolation data is from the Natural Resources Canada dataset [53], which provides 

monthly electricity data for every municipality in Canada. Alberta’s average insolation was used. 

The monthly average insolation in Alberta is 186.3 kWh/m2; December and June have the lowest 

(65.7 kWh/m2) and highest (297.6 kWh/m2) [53]. Spring and summer have the highest electricity 

generation potential. The electricity generation potential from September to March is lower, but 

the yield from the panels should be higher, given the colder temperatures during this period, as the 

current flowing through the panels would be reduced and the voltage would increase. Table 1 

shows the input parameters used to model the system.  
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Table 2.1: Input parameters for the electricity generation model 

  Parameters Value Unit Comments/Reference 

Solar PV 

panel 

Maximum peak power 

(W) 
325 Wp 

Values are taken from a Canadian 

solar panel supplier (manufacturers 

specification sheet) [74]. Peak 

power of panels ranges from 290-

400W and efficiency from 12% to 

23.81%. Those ranges were 

considered in sensitivity and 

uncertainty analyses.  

  

Efficiency (ηpv) 16.72%  

Dimension (A) 1.95 m2 

Weight (m) 22.4 kg 

Performance ratio (PR) 0.8  

Geographic specific PR value is 

according to the guidelines 

provided by the International 

Energy Agency (IEA) [70].   

Lifetime (L) 25 years 

The solar PV panel lifetime can 

range from 20 to 30 years as 

reported in IEA. An average value 

was considered for the base case, 

while the maximum and minimum 

years were reflected in the 

sensitivity and uncertainty analyses 

[70]. 

Inverter 

Input DC power 1 MW Inverter specification data were 

obtained from the manufacturer’s 

specification sheet according to the 

IEA’s guidelines [75]. 

  

Efficiency 96.50%  

Lifetime 10 years 

 

For simplicity, we assumed that the degradation of the solar PV panels is the same every year. A 

linear degradation is often assumed [25, 71, 76]. Figure 2.2 shows the relationship between the 

lifetime of solar PV panels and the energy yield for different mounting orientations. The graph 

was developed using Equation 6. 
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Figure 2.2: Annual electricity generation by a utility-scale solar farm for different orientations and 

lifetimes 

Utility-scale solar power plant with energy storage 

The intermittency of power generation has always been the biggest challenge in using solar energy. 

As the power generation industry moves toward smart grid technologies [77-79], rapid change in 

a distributed resource like solar power can result in voltage, frequency, and ramp rate issues [80]. 

The daytime-only nature of solar power has limited the growth of solar power globally [81]. In 

practice, solar and other intermittent renewable energy assets rely on conventional diesel 

generators or natural gas-based auxiliary power generators. Low-cost, deep-cycle, highly efficient 

batteries offer an opportunity to mitigate the intermittency issues and provide more reliability. At 

the same time, if fossil fuel-based power plants are phased out in the near future, it is essential to 

understand the potential of renewable energy technologies to provide base load consistently. 

Therefore, incorporating energy storage technologies and their environmental footprint would also 

be of interest to concerned stakeholders. The battery technologies currently used in various 

stationary and mobile applications are lead-acid, lithium-ion, sodium sulfur, nickel cadmium, and 

nickel metal hydride batteries [64, 65, 68]. Commercially, lead-acid and lithium-ion batteries have 

the widest applications in off- and on-grid solar PV installations. For this study, lithium-ion 
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batteries were considered. Compared to lead-acid batteries, they have fewer environmental impacts 

[64, 82] and better electrical performance [83]. The depth of discharge (DOD) is another key 

performance metric used to compare battery technologies. While most lead-acid battery 

manufacturers suggest that the DOD should not be more than 50% in most cases [76, 84], lithium-

ion batteries can achieve a discharge depth of 100% [85]. Lithium-ion batteries also have higher 

lifetime cycles of about 700-800 compared to lead-acid batteries with lifetime cycles of about 300. 

Electricity generation model for a system with energy storage 

A numerical algorithm was created to determine the optimal size at which solar power plants can 

provide consistent electricity to the grid. In the scenario with energy storage, the electricity 

generation system is the source of consistent electricity throughout the day, while the system 

without the energy storage provides intermittent energy. For a system with energy storage, the 

optimum number of solar panels and energy storage equipment (batteries) needs to be determined. 

The method developed by Borowi and Salameh [86] was used. This method applies the concept 

of loss of power supply probability and economics of the system. This method allows us to 

characterize a system that can provide a base load and to evaluate the energy and environmental 

consequences. Loss of power supply probability (LPSP) can be described as the long-term average 

fraction of the load that is not dispatched from the energy storage-enabled solar farm. The LPSP 

values range from 0 to 1, where 0 means no load dispatch and 1 refers full load dispatch [86] . 

In the energy storage system model, it is assumed that energy will be stored in batteries when the 

power generated through the PV array is greater than the specified load, and energy will be 

discharged when the generated energy is below the load. If the power generated by the PV array 

is not enough to meet the demand and the batteries are also depleted to their maximum depth of 

discharge, the load will not be satisfied. To prevent the shortening of the battery life, the control 
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system intervenes and stops the charging process should overcharging occur. The corresponding 

equations to the charging and discharging of the batteries to a specific condition can be found in 

the SI section. The input parameters for the simulation model are provided in Table 2. The 

algorithm used to determine the optimum number of solar PV panels and batteries is shown in 

Figure 2.3.  

Table 2.2: Input parameters for the electricity generation model for the system with energy storage 

Parameter Value Unit Comments/reference 

Capacity 13.5 kWh The largest battery unit size at the time of this 

research work was considered [80].  

Efficiency 90.00%  Based on the manufacturer's specification 

sheet [80] 

Initial charge 11 kWh 
 Assumed 80% of capacity for increased 

performance. 

Depth of discharge 75.00%  

Ranges of 50%-75% have been considered 

Lifetime 5 years 
5 years lifetime was assumed based on charge 

cycles. Range of 3-7 years were considered in 

the sensitivity and uncertainty analyses.  
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Figure 2.3: Algorithm used to size the system with energy storage 

The GHG emissions during the operation phase are mainly due to energy use in site preparation 

and maintenance. Site preparation includes leveling, constructing drainage and ditches, and pad 

area soil removal. The GHG emissions and energy use during the transportation of raw materials 

and equipment were considered separately as part of the transportation phase.  

2.2.5 Decommissioning and recycling 

There is no recycling policy in place in Canada or anywhere else in North America for solar PVs. 

Most solar projects are a long way from their end of life phase. Europe, on the other hand, has 

implemented a policy of “take back and recycle,” wherein the PV panels are collected from solar 

farms and individual users and recycled [63]. Therefore, in this study, the recycling phase 

emissions are estimated based on the European Life Cycle Inventory Data [87]. Data from five 

solar PV recycling facilities in Europe were considered. The GHG emissions were estimated with 
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energy consumption values and emissions factors specific to Alberta. A sensitivity analysis was 

conducted to estimate the impact of variation in GHG emissions factors. 

Large-scale use of lithium-ion batteries in stationary and mobile applications began only a decade 

ago and has not reached the scale at which reliable data on energy use and GHG emissions from 

recycling can be forecasted accurately. Therefore, the energy use and GHG emissions from 

recycling the batteries were left out of this study. 

2.2.6 Transportation 

The transportation details of the raw materials in each life cycle stage were taken from industry 

data and the literature. Asia-pacific domestic transportation data was assumed for the raw materials 

for solar panels. The energy use and emissions from maritime transportation were calculated by 

creating a transportation model that uses the distance between ports in Asia and Vancouver, 

Canada. According to market research [88, 89],  inverters are assumed to be produced in Quebec, 

Canada, and the batteries in Nevada, USA.  

2.3 Life cycle inventory 

A life cycle inventory was developed through relevant empirical models. Energy and mass balance 

were considered for equipment sizing. Data from literature and industrial sources were also used. 

Tables 3 and 4 summarize the characteristics of the solar panel and the inverter considered in the 

study. The physical characteristics are based on manufacturers’ specification sheets and were used 

as inputs in the inventory calculation for the life cycle inventory. 

The study developed a flow sheet to analyze the life cycle stages in the system boundary. The 

energy and raw materials required to generate 1 kWh of electricity by a utility-scale solar PV 

power plant were determined and converted to GHG emissions. Table 5 lists the inventory data in 

the production of the solar PV panels, inverter, mounting structure, and lithium-ion battery. The 
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manufacturing energy for battery assembly was considered to be 8.34 kWh of electrical energy per 

kg of battery material based on earlier studies [90, 91]. 

Table 2.3: Physical characteristics of the solar panel under standard test conditions (STC) with an 

irradiance of 1000 W/m2, AM spectrum of 1.5, and cell temperature of 25oC based on manufacturer 

specification [74]  

Parameter Value Unit 

Nominal maximum power (Pmax) 325 W 

Optimum operating voltage (vmp) 37 V 

Optimum operating current (imp) 8.78 A 

Open Circuit voltage (VOC) 45.50 V 

Short circuit current (isc) 9.34 A 

Efficiency  16.72 % 

Operating temperature -40 ≈ +85 ⁰C 

Cell type Multi-crystalline  

Cell arrangement 72 (6×12)  

Dimensions 1960×992×40 mm 

Weight 22.4 Kg 
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Table 2.4: Specifications of the inverter considered for the LCA based on manufacturer specification 

sheet [75] 

Input parameters Value Unit 

Max PV power 2 × 600 kW 

Nominal DC power 2 × 515 kW 

DC voltage range, mpp 450 to 750 V 

Maximum DC Voltage 900 V 

Maximum DC Current 2 × 1145 A 

Output parameters 

Nominal AC output power 1000 kW 

Nominal AC current 28.9 A 

Nominal output voltage 20 kV 

Output frequency 50/60  

Efficiency 97.4 % 

Own power consumption 1310 W 

Physical parameters 

Dimensions 6930 × 2970 × 2430 Mm 

Weight 20 Tons 

Temperature range -20 - +40 ⁰C 
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Table 2.5: Life cycle inventory for a multi-crystalline solar panel as determined in the study 

Life cycle stage Item Amount Unit Comment/reference 

Ore extraction 

Explosives 0.056 kg 
Estimated using equation 1. 

Electricity requirement was 

based on  [35] . Ranges of 

±10% were considered for the 

electricity requirement. 

Gasoline 0 kg 

Electricity 0.038 kWh 

Product Silicon ore 1 kg 

Industrial grade silicon 

upgradation 

Wood chip 0.003 kg 

Carbothermic reduction of 

silicon ore. Inventory data 

averaged from the most up to 

date IEA photovoltaic power 

systems program and literature 

representing recent PV 

technologies [36, 59, 71] . 

Hard coal 23.1 kg 

Graphite 0.1 kg 

Charcoal 0.17 kg 

Petroleum 

coke 
0.5 kg 

Silicon ore 2.7 kg 

Liquid 

oxygen 
2 kg 

Electricity 11 kWh 

Product 
Industrial 

grade silicon 
1 kg 

Solar grade silicon upgradation 

Industrial 

grade silicon 
1.3 kg 

Modified Siemens process. 

Data obtained from literature 

representing the most recent 

PV technologies [36, 59]. The 

heat energy required in this 

process is disputed in the 

literature and a range of 148-

225 MJ have been considered 

for the uncertainty analysis. 

HCl 1.6 kg 

NaOH 0.348 kg 

H2 0.05 kg 

Electricity 110 kWh 

Heat 185 MJ 

Product 
Solar grade 

silicon 
1 kg 

Ingot Casting 

Solar grade 

silicon 
1.009 kg This is a fairly well-established 

process with less uncertainties 

regarding the material and 

energy requirements. Data 

obtained from literature 

representing the most recent 

PV technologies [23, 27].  

Ar 1.92 kg 

HF 0.046 kg 

NaOH 0.009 kg 

Electricity 9.917 kWh 

Product Ingot 1 kg 

Wafer Slicing 

Ingot 1.638 kg The material and energy 

requirement in this unit process 

is low when considering the 

overall lifecycle. Data have 

obtained from the references 

which have provided full 

description of the process and 

the equipment involved [23]. 

SiC 0.053 kg 

Steel Wire 5.185 kg 

Detergent 0.668 kg 

Electricity 2 kWh 

Product Wafer 1 kg 

Cell Processing Wafer 3.242 kg 
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Life cycle stage Item Amount Unit Comment/reference 

Ag 0.089 kg 

The amount of POCl3 

estimated using equation A1 in 

Appendix A1. Silver and 

aluminum requirements were 

varied by ±20% as different 

values are reported in literature 

[23, 36, 61, 92].  Average 

Similar numbers are reported 

for other chemical reagents, 

hence  average values were 

considered  [23, 36, 61, 92] 

Aluminum 0.405 kg 

HCl 0.501 kg 

HF 0.815 kg 

HNO3 1.083 kg 

NH3 0.2 kg 

NaOH 0.222 kg 

POCl3 0.018 kg 

N2 6.99 kg 

Electricity 162.5 kWh 

Product Cell 1 kWp 

Module Assembly 

Cell 1.055 kWp 

Data obtained from literature 

representing the most recent 

PV technologies [23, 36, 61, 

93]. Electricity requirement 

has been varied ±20% as the 

mentioned references provide 

different estimations. Rest of 

the values have been averaged 

from the sources. 

Glass 68.087 kg 

Aluminum 15.023 kg 

EVA 7.573 kg 

PET 2.9 kg 

Electricity 22.5 kWh 

Product 
Solar 

Module 
1 kWp 

Inverter 

Steel 9792 kg 

Data obtained from 

International Energy Agency's 

guidelines and life cycle 

inventory estimation [71]. 

Transformer oil has been 

considered as vegetable oil 

instead of mineral oil to lower 

GHG emissions. 

Aluminum 894 kg 

Copper 2277 kg 

Polyamide 

injection 

molded 

485 kg 

Polyester 300 kg 

Polyethylene 150 kg 

Transformer 

oil 
6001 kg 

Product Inverter 1 p 

Mounting Structure 

Aluminum 3.98 kg 

Material inventory based on 

literature representing most 

recent technologies [71]. Base 

case considered as the 2-axis 

mounting system. 

Corrugated 

board 
0.086 kg 

Polyethylene 0.001 kg 

Polystyrene 0.005 kg 

Alloyed steel 7.2 kg 

Stainless 

steel 
0.247 kg 

Concrete 0.001 kg 

Product 
Open 

ground 
1 p 
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Life cycle stage Item Amount Unit Comment/reference 

mounting 

structure 

Energy Storage 

Cathode 45 kg Data for the energy storage 

was taken from [64, 82, 94]. 

Based on the mentioned 

references, a triangular 

distribution of the energy 

requirement has been 

considered, as they provided 

wide range of data. Other 

material composition has been 

considered from the GREET 

lifecycle model as they provide 

the most recent inventory and 

emission factors. 

Anode 38.75 kg 

Electrolytes 13.75 kg 

Separator 2.5 kg 

Case 25 kg 

Electricity 

equivalent 
20.85 

kWh/kg 

of 

battery 

material 

2.4 Environmental impact assessment 

An LCA of a utility-scale solar PV power plant was conducted by developing a spreadsheet-based 

bottom-up data-intensive model. The study analyzed the energy and environmental performance 

of the system using NER, EPBT, and GHG emissions as metrics. 

2.4.1 Net energy ratio 

NER is an energy performance metric that measures the total amount of energy the solar power 

plant can generate throughout its lifetime relative to the total energy being consumed  [95, 96]. It 

is estimated using Equation 4. An NER greater than one indicates that the system is a net energy 

generator meaning it produces more energy than consumed. 

 𝑁𝐸𝑅

=
𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑓𝑟𝑜𝑚 𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑙𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒
 

(4) 
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2.4.2 Energy payback time 

The EPBT quantifies the years required to generate the same amount of energy that has been 

invested into the system over the entire lifecycle as primary energy. It is estimated using Equation 

5: 

 
𝐸𝑃𝐵𝑇 =

𝐸𝑚𝑎𝑡 + 𝐸𝑚𝑎𝑛 + 𝐸𝑡𝑟𝑎𝑛 + 𝐸𝑖𝑛𝑠 + 𝐸𝐸𝑂𝐿

𝐸𝑎𝑛𝑛𝑢𝑎𝑙

𝜂𝐺
− 𝐸𝑂&𝑀

 
(5) 

 

where Emat, Eman, Etran, Eins, and EEOL are the energy consumption during raw material production, 

manufacturing, transportation, installation, and end-of-life phases of the system equipment in 

kWh, respectively. Eannual is the average annual electricity generation and EO&M is the energy 

demand for operation and maintenance. 𝜂𝐺  is the average energy-to-electricity conversion 

efficiency at the demand side. The average 𝜂𝐺  values for North American countries are 0.30 to 

0.31 [97]. 

2.4.3 Greenhouse gas emissions and land footprint  

The life cycle GHG emissions of all the components in the system boundary were calculated with 

the most recent emission factors published by the IPCC [98] as grams of carbon dioxide 

equivalent.. The main GHG emissions included are carbon dioxide (CO2), methane (CH4), 

dinitrogen monoxide (N2O), and chlorofluorocarbons (CFC) with global warming potential of 1, 

34, 265, and 4750-14400, respectively. In addition to the GHG emissions from material and energy 

use, GHG emissions due to land use change are also included. Direct land use GHG emissions are 

taken from Yeh et al. [99] and, Turney and Fthenakis [30], where the carbon stock values for semi 

arid grassland, forest areas and mixed areas are provided. Land use change GHG emissions due to 

respiration of unsupported soil that occurs in the first 10-20 years after deforestation, removal of 
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vegetation, and the loss of natural carbon sequestration has been incorporated in the study. GHG 

emissions are calculated through the following equation: 

 𝐺𝐻𝐺 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡

=
∑(𝐺𝐻𝐺𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑛𝑑 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑠𝑒 + 𝐺𝐻𝐺𝑑𝑖𝑟𝑒𝑐𝑡 𝑙𝑎𝑛𝑑 𝑢𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 )

∑ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑦𝑒𝑎𝑟
 

(6) 

 

Land use footprint has been calculated using the information about array area requirements, 

packing factors [100], transmission and distribution line requirements [101] and total lifecycle 

energy generation. Calculation methods related to land use footprint and direct land use change 

GHG emissions are provided in Appendix A7. 

2.5 Results and discussion 

A sample simulation model result for utility scale solar energy farms with energy storage under 

different hourly load requirements is illustrated in Figure 2.4(a). Based on the method described 

in section 2.1.3, 5 simulations were run to obtain the relationship between the solar PV capacity 

and energy storage capacity. It was found that they follow a linear trend as shown in Figure 2.4(b) 

and 2.4(c). The system has been designed in a way to ensure 8 hours of consistent electricity 

supply. The simulation model developed to size a system capable of supplying electricity 

consistently shows that with an assumed DOD of 75%, the ratio of panel-to-batteries requirements 

would be 9.49:1, or for every 10 panels there must be 1 battery as shown in Figure 2.4(b). For the 

case where 50% DOD was considered, it can be seen that the ratio changes to 6.17:1. This can be 

attributed to the fact that, due to the increased DOD, the amount of storage capacity required would 

be reduced by a significant amount. 
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(a) 

 
(b) 
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(c) 

Figure 2.4:  (a) Sample simulation results for an optimal system configuration incorporating energy 

storage, (b) relationship between optimum number of panels and batteries for 75% DOD and (c) 

50% DOD 

2.5.1 Energy use profile and net energy ratio 

Figure 2.5 shows the energy consumption in various stages of the life cycle of a utility-scale solar 

power plant with a rated capacity of 5 MWp. The energy consumed during the life cycle is estimated 

to be 2.33×107 kWhe. Upstream processes related to raw material production and solar PV panel 

assembly are the most energy intensive of all the processes and account for 76.56% of the energy 

use. The energy required to produce a single panel was calculated as 1157.5 kWhe. Upgrading 

silicon ore into a usable form for solar cells consumes 65.29% of this energy. Process energy in 

the form of heat and electricity were found to be responsible for most of this energy use. This value 

is considerably lower than the values reported by others [59, 60, 71, 102] because the assumption 

in this study is that module assembly will take place in Canada and use a large share of recycled 

raw materials. The module assembly stage is the third highest energy-consuming process in the 

production process and accounts for 22.48% of the energy. Upstream energy consumed to produce 

the aluminum frames is responsible for a large share. According to the life cycle inventory analysis, 
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each panel requires around 67.4 kWhe to produce the aluminum frames needed. The mounting 

structures account for 68.79% of the energy consumption in the system integration stage, followed 

by the inverters at about 31.06%. The key challenge in providing more accurate results for this 

stage is that process energy data for the two processes is scarce, and so there is a high amount of 

uncertainty. Maritime and ground transportation are responsible for just over 1% of the energy 

consumption. As discussed above, the end-of-life scenarios were modelled with data from 

European recycling plants; this stage of the life cycle makes up less than 3% of energy 

consumption.  

Energy use during the production of lithium-ion batteries was calculated to be 5283.74 kWhe per 

battery. The upstream energy requirements to produce the raw materials for batteries were 

calculated as 2606.25 kWhe. The production lithium-ion batteries has six major steps; these are 

discussed in an earlier study [64]. The energy required for raw material production ranges from 

8.33 to 27.78 kWhe/kg [39]. The process energy required for battery manufacturing was estimated 

based on the life cycle inventories of lithium-ion batteries used in electric vehicles [90]. Although 

the energy requirement for that use can be much lower than for solar PV panels, their GHG 

emissions are significantly higher, as section 3.3 shows. 

Figure 2.6 presents the NER results for a utility-scale solar power plant with several orientations. 

The NER values show a similar trend as EPBTs. The values range from 4.28-8.74, which indicates 

that the systems are net energy producers. The NER decreases by 34.76% when the plant is 

integrated with an energy storage system, because of the addition of batteries. The net energy ratio 

is highly dependent upon the efficiency and lifetime of the solar PV panels as they are the only 

energy-generating equipment in the assumed system boundary and these two parameters dictate 

how much energy will be generated throughout the entire life cycle. Continuous improvement in 
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the solar PV industry to achieve higher efficiency and lifetime for solar PV panels should increase 

NERs in future.  

 

Figure 2.5:  Energy consumption profile of a 5MWp utility scale solar farm 

 
Figure 2.6: Net energy ratio for different orientations 
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2.5.2 Energy payback time 

Figure 2.7 shows the EPBTs of utility-scale solar PV plants at different mounting orientations. 

Mounting orientations have a significant effect on overall energy yield of large-scale solar farms. 

It determines how much solar energy will fall on the panels and thus how much energy can be 

converted to usable electricity. As EPBT is a measure of how long it takes a system to return the 

amount of energy that has been invested during its material formation, production, transportation, 

installation, and estimated energy use at the end of life, a lower EPBT is always desired. The lowest 

EPBT of 2.86 years is estimated when dual-axis trackers are considered as mounting structures. 

On average, using a dual-axis tracking system would reduce the EPBT of large-scale solar farms 

by 1.7.  Solar panels having the same or a ±15⁰ tilt angle as the latitude of the location are the next 

best options with an EPBT of around 4.3 years. For a utility-scale system with energy storage, the 

EPBT values obtained are significantly higher, at a factor of 2.87. This is mainly due the 

consumption of high amounts upstream energy in the life cycle of the batteries.   

 
Figure 2.7: Energy payback time for different orientations 
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2.5.3 Life cycle GHG emissions and land use  

For the base case, the total life cycle GHG emissions were 69.14 g CO2 eq /kWh of generated 

electricity. This result is on par with regions of similar global solar irradiance values. Figure 2.8 

shows the breakdown of system GHG emissions by life cycle stage. Understandably, the 

production phase of the solar PV panels contributes the highest amount of emissions, 48.68 g CO2 

eq /kWh. The most GHG-intensive processes in the production phase are associated with 

upgrading the quartz sand to a usable form, namely industrial grade (14.40 g CO2 eq /kWh) and 

solar grade silicon (15.99 g CO2 eq /kWh). During the assembly processing stage, the aluminum 

frames are another major source of GHG emissions, 10.90 g CO2 eq /kWh. If the aluminum frames 

are not considered, then the module assembly stage constitutes only 3.47 g CO2 eq /kWh. 

Aluminum frames are not required in snowy conditions like Alberta’s as snow would easily slide 

off the panels. The contribution GHG emissions from direct land use is very marginal. The values 

range from 0.80-2.76 g CO2eq/kWh, for arid grasslands and mixed type areas, which is minimal 

compared to overall lifecycle GHG emissions.  Direct land use change GHG emissions have been 

calculated by discarding the transmission and distribution line area requirements as they do not 

directly affect the lifecycle emissions.  

To supply the same amount of energy with energy storage options, the environmental cost of 

continuous electricity supply is 118.80 g CO2 eq /kWh. The GHG footprints of batteries themselves 

is significantly higher than the system without the energy storage option. 
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Figure 2.8: Life cycle GHG emissions by phase 

To provide a contextual understanding of the results of this study, Table 6 lists some established 

electricity-generating technologies and impact assessment indicator figures extracted from studies 

that used a similar system boundary. The table makes clear that coal-based power plants have the 

biggest impact on the environment based on GHG emissions, but they also have a very high NER. 

The ranges shown for domestic natural gas-based power plants are averaged values for simple and 

combined cycles; these have significantly fewer GHG emissions than coal. They also provide high 

energy yield during their life cycle. These two fossil fuels are currently the major electricity 

sources in Alberta. However, renewable energy wind and hydroelectricity are the most relevant  as 

they account for more than 61% of the renewable energy-based electricity produced in Alberta 

[52]. Relevant LCA results based on regional characteristics for these two technologies were not 

found in the literature. According to the results obtained in this study, the energy and 

environmental performance of utility-scale solar farms would be most comparable with wind 

energy. Economic lifetime assumptions for hydropower reservoirs are 70-100 years, which is one 

of the main reasons for their low GHG emissions and high life cycle energy yield predictions.  
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Bearing in mind Alberta’s long-term plan to phase out coal power plants, the feasibility of using 

renewable energy sources as the base load has to be considered, as earlier discussed. The results 

from the LCA model with energy storage show that adding batteries to ensure consistent electricity 

supply would significantly increase GHG emissions compared to the scenario without an energy 

storage system. That said, electricity from such sources would still be at least 76% cleaner than 

coal power. When LCA studies are compared, it was found that a major parameter affecting the 

overall life cycle performance of different utility-scale electricity-generating facilities is their 

lifetime. Tradeoffs between GHG emissions and energy yield must be considered by concerned 

policymakers, as coal power plants generally serve well beyond 50 years.  

Table 2.6: GHG emission and energy performances of conventional and renewable energy sources 

System Type 

GHG 

(gCO2/kWh) 

EPBT 

(years) 

NER 

(kWh/kWh) 

Reference 

Coal-fired  780-1029.65 1.73 29-31 [103-105]   

Natural gas  400-725.75 9-12 28 [103, 104]   

Nuclear 22.2-24.2 0.8 74.92 [104, 106]  

Hydropower (run of river/non-

tropical) 

0.5-152 0.37-8.92 3.27-112.7 [104, 107]  

Wind (onshore) 3-45 0.58-1.4 3.9-16 [104]  

 

The land use footprint from utility-scale solar farms largely depends on the transmission and 

distribution line length which is defined as the distance from the powerplant to the end user. In 

this study a range of value from 0.25-1.23 m2/kWh were found for twin axis systems for 

transmission and distribution line lengths of 100-500 km, and 0.23-1.15 m2/kWh for fixed width 

systems. The land footprint attributed only from the PV and balance of system installation is very 

insignificant.  
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2.5.4 Sensitivity and uncertainty analysis 

Sensitivity and uncertainty analysis were performed to capture the effects of changes in the input 

parameters on the NER, EPBT, and GHG emissions of a utility-scale solar power plant. The effects 

of changes in lifetime, efficiency, electricity and other forms of unit operation energy, and physical 

parameters such as dimension and weight were investigated through the sensitivity analysis. The 

Morris statistical method was used to perform this analysis. A detailed description of the 

methodology is given in [108]. The results are given in Figure 2.9.  

Higher Morris mean and standard deviation values indicate higher sensitivity of the input 

parameter in changing the results of the LCA model. One hundred partial derivatives were 

considered across the parameter space (model inputs). A large standard deviation (y-axis) indicates 

that the model is either non-linear or there is interaction effect between the inputs. Since all the 

input variations and the relationships in the formulas have been identified as linear relations, it can 

be interpreted that for all the three outputs (as shown in Figure 2.9(a), 2.9(b) and 2.9(c)), are driven 

by the interaction effect. Each of the points that are depicted in the zone 1 can be neglected as the 

have negligible effect on the output. The parameters in the zone 2, shown in the upper right quartile 

of the graph are the critical ones and influence the output most.  

GHG emissions are most sensitive to the expected lifetime of the system as shown in Figure 2.9(a). 

As the lifetime of the solar PV modules increases, allowing the system to produce more electricity 

during the life cycle, the overall GHG emissions of the system is expected to decrease. The lifetime 

sensitivity can vary up to 24.22 gCO2 eq/kWh. The electricity for solar-grade silicon upgradation 

and hard coal for industrial-grade silicon demand are also important parameters. As both energy 

sources account for a significant portion of GHG emissions during these processes, increasing the 

efficiency of energy conversion would drastically reduce the GHG emissions. For the system with 
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the energy storage option, the process energy requirement for battery production, the material 

requirements, and expected lifetime are the most sensitive parameters, in addition to those 

mentioned in the base case. As discussed in section 2.3, it is difficult to estimate the process energy 

requirements during battery production due to lack of reliable data.  

The EPBT is most sensitive to the peak wattage of panels, the hard coal for industrial-grade silicon, 

and the electricity for solar-grade silicon production as shown in Figure 2.9(b). The peak wattage 

of PV panels and their dimensions dictate the energy per effective area, and the higher the peak 

wattage from the same panel dimensions, the lower the EPBT will be. For the system with energy 

storage, process energy and material percentages add to the parameters.  

The NER, like the EPBT, is sensitive to the same parameters, as both depend on upstream energy 

consumption and energy yield during the operational phase. It can be seen from Figure 2.9(c), the 

sensitivity for electricity consumption during the upgrading of silicon cells can account for a 

change in NER of 5.65 for the base case. All three life cycle impact indicators are sensitive to the 

weight of the panels, and this is related to the upstream energy requirements and emissions during 

raw material production. The parameters in between zone 1 and zone 2 can be identified as semi-

sensitive parameters and the choice of including them in the uncertainty analysis is a subjective 

matter. In this study, all the semi-sensitive parameters have been included in the uncertainty 

analysis. 
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(a) 

 
(b) 
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(c) 

Figure 2.9: Sensitivity analysis of the LCA model outputs using Morris method (a) GHG emissions, 

(b) EPBT,  (c) NER 

Uncertainty analysis was performed to evaluate the effects of a simultaneous change in multiple 

input parameters on the NER, EPBT, and GHG emissions. A Monte Carlo simulation was 

conducted using the RUST model developed by Di Lullo et al. [108]. In order to perform the 

simulations, the statistical distributions of the input parameters are required. Because data is 

limited, a triangular distribution was generated for every parameter except peak wattage, weight, 

lifetime, and solar PV panel efficiency (detailed information is provided in the SI). A triangular 

distribution gives conservative results for predictable values as well as a lower standard deviation. 

For the energy requirements in different unit processes, especially silicon upgrading, it is hard to 

predict values reliably as these parameters can differ significantly from site to site. This difference 

is accounted for by choosing a uniform distribution as it gives the most conservative distribution 

and treats all the inputs equally. A random sample was selected from the range of input variables 

and iterated 10,000 times to obtain final output distributions. The formulas used to calculate the 

sampling error are provided in the SI. To reduce the computational time a total of 20 parameters 
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were selected for the uncertainty analysis based on the identified sensitive parameters in the Morris 

sensitivity test. 

The results of the uncertainty analysis are shown in Figure 2.10(a), 2.10(b) and 2.10(c). The mean 

GHG emissions for a system with and without energy storage options are 69.14 and 187.89 g CO2 

eq /kWh, respectively as shown in Figure 10(a). It can be seen that there is  high uncertainty in the 

estimation of GHG emissions for the system with the energy storage option, which can be 

attributed to the unreliable data related to energy requirements during the production of lithium 

ion batteries as discussed in section 2.2.  The EPBT mean values are 2.80 and 7.71 years, 

respectively, for the two scenarios. Their ranges are 2.67-2.94 years and 6.58-9.02 years, 

respectively as shown in Figure 2.10(b). The NER mean values are 8.92 and 3.22. Their ranges 

are 7.66-10.22 and 2.78-3.76 for systems without and with energy storage options, respectively as 

shown in Figure 2.10(c).  
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(c) 

Figure 2.10: Uncertainty analysis results for the systems with and without energy storage (a) GHG 

emissions, (b) EPBT, (c) NER 

2.6 Conclusions 

The objective of this study was to evaluate the GHG emissions and energy use profile of utility-

scale solar farms. A case for a North American jurisdiction was conducted. The key results for the 

base case were found to be in the range of   69.14−8.93
+10.47𝑔𝐶𝑂2 𝑒𝑞/𝑘𝑊ℎ for GHG emissions, 

2.86−0.13
+0.14 years for energy payback time and 8.74−1.26

+1.30 for net energy ratio. In order to fill the 

identified research gaps, this study provides a robust model with life cycle inventory data based 

on the most recent commercially available technologies and maps the entire value chain. 

Simulation models were used to develop a utility-scale solar power plant and determine the 

required equipment sizes, thereby improving the reliability of the results. The electricity generation 

models developed used location-specific solar insolation data and considered changes in 

performance from snowy conditions. The results provide a good estimate of energy yield. The 

complimentary model, where an optimal system configuration was sized using the LPSP concept 

and prices of panels and batteries, provides a robust platform to calculate the energy and GHG 

emissions profile for a system that incorporates energy storage. 

The life cycle energy profile for a utility-scale solar power plant shows that most of the energy is 

consumed during the production of solar panels and BOS equipment accounting for more than 
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76% of the total energy demand. The energy mix of the manufacturing site plays a crucial role. 

For example, the fossil fuel-dependent electricity mix in China contributes more than 36% of the 

GHG emissions. China is the largest manufacturer of solar panels, and yet its GHG footprint is 

imposed on the end user, in this case Alberta. It was also found that the land use change emissions 

are minimal in terms of lifecycle GHG emissions (less than 1%) and would not be a key hotspot 

in case of power plants in Alberta landscape.  

The principal findings of this work are the determination of the optimum size requirements for 

utility-scale solar farms with and without ES options and the resulting environmental and energy 

implications. The study found that the GHG emissions from prospective solar farms in Alberta 

would be well below those from conventional power plants currently in use. This information 

would be relevant during the phase-out of coal-based power plants and provide a better 

understanding of environmental implications. The trade-off between energy efficiency and GHG 

reduction can also be understood through the sensitivity and uncertainty analyses of the life cycle 

GHG and energy performance results. 
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Chapter 3  

Transition to cleaner electricity generation for fossil fuel-dominant jurisdictions: a 

consequential life cycle assessment approach 

3.1 Introduction 

Global energy-related CO2 emissions increased by 1.7% in 2018 from the previous year (almost 

double the average growth in 2010) due to increased energy consumption [1]. Natural gas is the 

main contributor, accounting for nearly 45% of the change in energy demand. The contribution 

from coal has substantially decreased over the last decade, but they still account for almost 26% 

of the total global energy consumption [1].While renewable energy sources accounted for 25% of 

global energy demand growth, these are far from meeting the fast-growing global demand for 

electricity [1]. The electricity generation sector accounted for more than 30% of the global 

greenhouse gas (GHG) emissions in 2019 [1, 47]. In an attempt to reduce global temperature 

increases and the adverse effects of global warming, there is a growing focus on mitigating GHG 

emissions from the electricity generation sector in regions that rely heavily on fossil fuel energy 

sources [109].  

The transition to a lower carbon electricity generation system has put considerable emphasis on 

increasing the penetration of renewable resources into electricity generation systems. Many 

jurisdictions have recognized the need to address global warming caused by energy generation 

systems and started to set energy policies to reach emission reduction targets [110-113] through 

the transition towards low-carbon electricity [114]. However, understanding the pathways to 

achieving a reliable electricity supply is a challenge. Although a decline in fossil fuel-based energy 

generation has been predicted throughout the last century [115], conventional fossil fuel industries 

have proven to be very resilient. The integration of renewable energy sources poses technological 

and economic challenges [116], [117]. Incorporating renewable energy into existing electricity 
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generation systems has challenges related to renewable energy ramp-up, production, and the added 

cost of power generation [81]. Understanding the long-term environmental and economic 

consequences of different policy alternatives on renewable energy is not straightforward. It 

requires a robust framework that can systematically answer questions such as: What would be the 

optimal long-term electricity mix in different policy scenarios for a jurisdiction? Which of the 

technologies would be the marginal supplier of electricity? How would the emissions change from 

an increase in demand in each policy scenario? How would these change from a substitution? How 

does the cost of generating electricity change in each situation? 

Resolving these questions requires determining the optimal electricity generation mix for each 

policy decision. It can be expected that changes in the electricity mix, especially from the 

penetration of renewable energy technologies, would result in drastic GHG emissions mitigation 

in a fossil fuel-dominant jurisdiction. However, due to technical constraints such as lower 

efficiencies and intermittent delivery of power for technologies such as solar and wind, any change 

from the forecasted demand may be detrimental to overall grid performance. Here the question is 

whether marginal environmental benefits outweigh the technical drawbacks incurred along a 

product value chain. These key issues raise further questions about incorporating market 

information into environmental assessments of renewable energy technologies and the electricity 

market. In addition to these issues, deviating from the status quo would have a substitutional effect 

on GHG emissions. Understanding the substantial effect requires thorough investigation to 

measure the perceived benefits of increased penetration from renewable energy technologies. This 

paper, therefore, conducts a consequential life cycle assessment (LCA) of the available technical 

and economic characteristics of power generation systems currently in use as well as potential new 

technologies.  
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LCA is a tool widely used to integrate the environmental, economic, and social aspects of decision-

making processes [118]. LCA has two approaches, attributional and consequential [119], [120]. 

Attributional LCA uses the normative rule to account for inputs and outputs and associated 

environmental impacts of a product system. Attributional LCA determines the allocated shares of 

activities that make up the life cycle of a product using market average data. Consequential LCA 

(CLCA) is a modeling approach that determines the potential change in a product system [121]. 

The long-term consequences of modifying electricity generation systems to decarbonize the sector 

need to be studied in the context of optimal electricity mixes for specific jurisdictions, which vary. 

The CLCA approach has been widely used to quantify the environmental implications of policy 

alternatives in different sectors such as agriculture [122-124], animal husbandry, bioenergy [125-

127], livestock production [128-130], etc. The multi-functionality of these product systems creates 

the need to avoid allocating co-products and quantifying the changes happening outside the system 

boundary. There is limited CLCA research on electricity generation. Published research related to 

the electricity sector, considered a “uni-functional” system, receives less attention from LCA 

practitioners, and there are relatively very few assessments of the long-term consequences of 

policy decisions in this sector. Moreover, the few research articles in the electricity domain have 

different concerns, mainly because they focus on different aspects of the electricity sector [131-

133]. As long-term electricity policies are often dictated by jurisdictional preferences and 

government initiatives, directly applying the CLCA approach in the electricity sector from 

different regions often becomes difficult. This study addresses these gaps and uses the CLCA 

approach to quantitatively assess changes in the electricity sector. 

A few studies have demonstrated the CLCA approach in the electricity sector. But the researchers 

followed their own methods to reach the answers which were sought. Turconi et al., for example, 



52 

 

evaluated the emissions from the expansion of electricity distribution infrastructure in Denmark’s 

electricity transmission and distribution system [43]. The authors argued that the impacts of 

electricity distribution would significantly increase in the future, because of the forecasted increase 

in the penetration of renewables and decentralized electricity generation. Their main contribution 

was the life cycle inventory datasets for electricity distribution systems (power lines, transformer 

substations and other equipment) that can be added to LCAs of energy systems. But their work 

does not analyze the penetration of renewable electricity in terms of capacity addition or projected 

market share. A more focused of a specific technology penetrating the electricity grid was done by 

Pehnt et al., who performed a consequential environmental system analysis of expected offshore 

wind electricity production in Germany [41]. Their work analyzed in depth the substitutive and 

structural effects of wind power on the supply of power and the subsequent altered operation of 

conventional power plants. The authors did this by coupling the life cycle assessment of offshore 

wind use with a stochastic model of the German electricity market. Their work demonstrates that 

the construction and operation of offshore wind parks have lower CO2 emissions than substitutions 

in the electricity mix and offshore wind mainly replaces medium-load technologies. Turconi et al. 

investigated the effect of wind power penetration on the cycling of thermal power plants [42]. 

They used the attributional approach and then expanded the system boundary to account for the 

effects outside the system boundary. They argued that increased cycling emissions did not negate 

the benefits of higher wind penetration. They also found that energy storage combined with 

baseload coal did not reduce system emissions. Although there are many studies on the effects of 

increased renewables on conventional thermal power plants, there is scarcity of studies focusing 

on market dynamics or the effects of policy decisions on net GHG emissions due to increased 
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electricity demand and the replacement of energy sources over a long time period, which are the 

focus of this research.  

To the best of the authors’ knowledge, Canada-specific research related to the long-term 

consequences of policy decisions in the electricity sector from a CLCA point of view has not been 

developed yet. Davis et al. conducted long-term energy modeling for Canada, including an 

integrated energy systems model of the national energy system [45]. They used the Long-range 

Energy Alternative Planning (LEAP) system to model the energy system in each region in Canada, 

and their modeling approach can be used to perform CLCA [134]. The electricity mix of Alberta, 

a western province in Canada and the area of investigation in this study, comprises 35.53% coal-

based power plants, with a little over 15% from renewable sources (hydroelectric, wind, and other) 

[135]. The optimal way of transitioning to a lower carbon electricity generation for this region is 

to consider the technical, economic, and environmental parameters from the life cycle perspective.   

This study aims to address the research gaps by developing a framework to quantitatively assess 

the changes in the electricity sector through the CLCA approach. The framework incorporates 

market penetration information and energy modeling systems with environmental impact 

assessment methods. The specific objectives are to: 

1. Develop a general electricity sector - CLCA framework integrating bottom-up 

energy modeling, 

2. Develop scenarios based on policy initiatives and future available electricity 

generation technologies, 

3. Identify the technologies that would be the marginal supplier in each scenario, 

4. Quantify the change in GHG emissions due to an increase in demand in each policy 

scenario,  
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5. Determine the effect of technology substitution on GHG emissions in each 

scenario,  

6. Estimate the change in the cost of electricity generation in each scenario. 

3.2 Methodology  

3.2.1 General framework 

A generalized CLCA framework was developed to provide insights into long-term marginal 

changes in a product system and economy-wide environmental consequences resulting from policy 

decisions. Figure 3.1 presents the conceptual framework, which includes scenario development, 

market penetration, energy modeling, and marginal supplier identification methods. Scenario 

development refers to the creation of pathways using qualitative and quantitative parameters in 

order to understand critical issues related to long-term consequences of a change in demand from 

a product system. The scenarios are used as input in the market penetration model, which provides 

information on the current and probable future outputs of a product system. The long-term 

consequences are quantified based on changes in the system and thus the penetration potential of 

emerging suppliers over the timeframe of the study helps assess changes in environmental impacts.  

While the market penetration model estimates of the probable capacity of each technology in the 

future, the technology mix depends on the amount of the output and the technology cost. Hence, 

in order to understand the competitiveness of each technology and to evaluate economic and 

environmental performances from different policy scenarios, an energy model was developed 

capable of handling different technical and economic aspects through the Long-range Energy 

Alternatives Planning (LEAP) model platform. LEAP is a data-intensive framework and primarily 

used for energy-environment investigations of different sectors in an economy. The LEAP 

framework consists of technological and environmental datasets, which include the technical 
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features, costs, and environmental impacts of energy-generating resources. The framework uses a 

bottom-up approach allowing the characteristics of each individual resource or technology to be 

modeled accurately. The framework has been used widely to conduct GHG mitigation studies in 

Alberta related to regional energy systems [44, 45], in the mining industry [135, 136] and in 

renewable electricity generation pathways [46]. For example, Davis et al. assessed various 

renewable electricity generation pathways for coal-dominant jurisdictions by developing a number 

of scenarios based on different policies and technology mixes with a focus on the GHG abatement 

cost of each scenario [46]. The energy modeling in LEAP provides information on technology 

mix, cost, and GHG emissions of each technology. That information is fed to the marginal supplier 

identification model. The objective of identifying the marginal supplier is to determine which 

technologies would be used as a consequence of additional demand in a given year. Identifying 

the marginal supplier through a robust consequential assessment is challenging, but as the 

environmental characteristics can be examined by identifying affected activities (changes in the 

technology mix), it can add significant value in making informed policy and investment decisions. 

Unlike the conventional attributional approach, any change within the system boundary as a result 

of a change in output levels needs be identified. This allows market information to be included in 

the product’s system boundary and provides realistic and detailed results of environmental 

consequences [137]. 
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Figure 3.1: Proposed framework for consequential life cycle assessment 
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3.2.2 Case study for Alberta’s (a western province in Canada) electricity generation sector 

using the proposed framework 

Alberta is a western Canadian province and has a fossil fuel-based electricity system. The 

developed framework was applied to Alberta’s electricity generation sector to provide insights into 

long-term marginal changes in electricity generation from different sources and potential 

environmental consequences due to policy decisions in a fossil-fuel dominant jurisdiction. The 

application includes the energy use and emissions in the processes required to get the final energy 

product. Energy demand was calculated based on end-use categories ranging from industrial to 

residential energy use; this was done in prior work by the authors [44]. These bottom-up 

projections take into account the economic, energy efficiency, and industry production 

expectations for the study period. The assessment is focused on the net GHG emissions change 

that due to the variation in electricity mixes, thus net changes in the upstream processes were not 

taken into consideration. Such upstream analysis demands further research and modeling of wider 

economic consequences and might require the coupling of economic models that are outside the 

scope of this work. Energy use and GHG emissions at the end of life of the infrastructure in each 

electricity-generating technology (such as decommissioning) and the recycling of solar and wind 

components were not included due to the lack of reliable data. Land reclamation from coal mines 

and natural gas infrastructure were also excluded from this study due to the unavailability of 

reliable data. Each component of the framework is discussed in the following sections.  
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3.2.3 Scenario development  

We developed 9 scenarios for Alberta’s electricity sector based on policy initiatives, available 

resources, and key technical parameters. Electricity systems are multifaceted and influenced by 

social, political, economic, technical, and environmental drivers. The overarching emphasis on 

GHG mitigation, diversifying technology, and ensuring low-cost electricity generation presents 

critical uncertainty for the future and hence was the rationale in developing the scenarios. Table 1 

lists and describes the scenarios.  

The base case scenario is the only one in which the results of the market penetration model are 

used. In all the other scenarios, where changes in market penetration depend on the policy 

decisions or the changes in technological advancements, the future capacities are derived from the 

energy modeling exercise based on the lowest cost of electricity generation. Since LEAP’s built-

in functions perform market penetration of electricity generation facilities only, market penetration 

modeling was not used for any of these scenarios. This assessment focuses on the policy decisions 

of the aggressive phase-out of coal power plants and the deployment of power generation systems 

with lower GHG intensities.
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Table 3.1: Detailed descriptions of the scenarios developed for energy modeling 

Scenario Symbol Main Features Description 

Base case BASE 

• Historical and future 

capacities from the 

market penetration 

model 

• 30% renewable target by 

2030   

The exogenous capacity of the power mix specified from the logistic curves is obtained from 

the market penetration model. Policies of phasing out coal power plants and a target of 30% 

renewable energy by 2030 are implemented by constraining the total fossil fuel capacity. No 

optimization features are used, and the dispatch order is generated based on the specified merit 

order.  

Optimized base 

case scenario 
O-BASE 

• Only historical capacity 

information is provided. 

Future capacity is 

determined using the 

OSYMOSYS 

optimization feature.  

Exogenous capacities of different technologies are specified only based on historical electricity 

generation capacities. The planned decommissioning and estimated end of operational lifetime 

for existing power plants (natural gas and renewables) are specified so that the optimization 

framework can replace outgoing power plants with incoming “new” technologies based on the 

lowest net present value (NPV) at the system level, subject to constraints.  

No renewable 

targets 

NO-R-

TAR 

• Optimized capacities 

without any renewable 

targets 

• No emissions target 

• Objective is to minimize 

the cost of production.  

The only difference from O-BASE in this optimized scenario is that there are no renewable 

energy electricity generation targets set in the foreseeable future, and no emissions targets are 

set. The planned decommissioning of the coal power plants remains. This scenario was 

developed to understand the consequences of no policy actions towards greening the electricity 

generation system with the penetration of renewables. 

Solar farms with 

storage 
SOL-B 

• Capacity credits 

increased for solar farms. 

• Increased capital cost for 

sized systems 

• 30% renewable target, as 

before 

Utility-scale solar farms are added with energy storage options by modeling the effect of energy 

storage by increasing capacity credits. The capital cost of utility-scale solar farms was 

increased based on the system-sizing method using the concept of loss of power supply 

probability (LPSP) and economics of panels and batteries [138]. The cost declination 

projection for panels and batteries were also considered. The method used to size such systems 

can be seen in Appendix A4. The emissions factors for such systems were also adjusted based 

on the system sizing principles.   

Wind farms with 

storage 
WND-B 

• Capacity credits 

increased for wind farms. 

• Increased capital cost for 

sized systems 

• 30% renewable target, as 

before 

The same method applied for utility-scale solar farms was applied to the base optimization 

model with wind instead of solar farms. 
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Scenario Symbol Main Features Description 

Solar and wind 

farms with storage  

SOL-

WND-B 

• Capacity credits 

increased for solar and 

wind farms. 

• Increased capital cost for 

sized systems 

• 30% renewable target, as 

before  

In this scenario, both solar and wind power systems are given energy storage options. The use 

of storage in both renewable options allows us to understand the comparative performance 

characteristics in terms of cost of electricity generation, GHG emissions, and change in the 

marginal mix over a long period of time for renewable systems. 

Energy storage 

instead of natural 

gas 

NO-NG 

• Historical natural gas 

capacities and their 

decommissioning time 

specified 

• No new natural gas 

addition 

In this scenario, natural gas power systems (both simple cycle and combined cycle) are 

removed from the supply system and solar and wind systems are equipped with storage 

systems. The existing natural gas power systems are not rendered inactive from 2019, but their 

assumed end of operational life is specified. This is an extreme scenario, as a full omission of 

natural gas power plants may not be completely realistic in real life, but the this scenario was 

developed to understand the economic and environmental consequences of replacing all coal 

and natural gas power systems with solar and wind power plants.  

GHG emissions 

reduction by 50% 

by 2050 

50×50 

• Emissions reduction 

target instead of 

renewable addition 

targets 

Instead of aiming for a 30% electricity generation commitment from renewables by 2030, the 

GHG emissions target was changed to a reduction of GHG emission to 50% of 2019 levels by 

2050. This scenario was created to understand the differences in policy implementations of 

setting GHG emission targets versus simply specifying renewable penetration targets.  

GHG emissions 

reduction by 50% 

by 2030 

30×30 

• Emissions reduction 

target instead of 

renewable addition 

targets 

This scenario sets a more aggressive target of reducing GHG emissions to 50% of 2019 levels 

by 2030 instead of by 2050.   
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3.2.4 Market penetration modeling 

The market penetration of current and potential future electricity-providing technologies was 

estimated by developing an energy-economic model. Several market penetration modeling studies 

of renewable energies were found in the literature. Many studies use experience curves to estimate 

the cost of GHG emissions’ reduction; the studies assume improved market penetration related to 

economies of scale for renewable energy technologies [139-141]. However, the market penetration 

of many emerging technologies such as solar, wind, and biomass relies on techno-economic 

factors, which may depend on system infrastructure characteristics, cost of energy resources, and 

jurisdictional protocols [142]. In most of these studies, a specific renewable energy system was 

examined, but the studies did not compare the market penetration potential of the renewable system 

to the established and commercially more viable technologies. This study develops a market 

penetration model that focuses on the techno-economic factors of emerging and established 

electricity generation systems to estimate the available capacities of different electricity generation 

technologies.  

In Alberta, there is an ongoing phase-out of coal-fired power plants with the goal of reducing the 

GHG intensity of electricity generation. This goal presents the question: which technologies are 

best equipped technically and economically to reduce the GHG intensity of electricity generation? 

The economies of scale for many emerging renewable technologies and the resulting decline in 

the projected cost of electricity production need to be considered when developing a market share 

model. The main factors taken into consideration are the phase-out of specific technologies, 

capacity constraints, capital cost, operation and maintenance costs, and the discount rate, which 

affects the market adoption rate. The specific technologies considered are subcritical coal, 

supercritical coal, simple cycle natural gas, combined-cycle natural gas, cogeneration, solar, wind, 
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and hydro in line with AESO’s projection about future emerging technologies capacity addition 

and based on data availability.  

Equations 1 and 2 were used to analyze the market adoption rate of individual electricity generation 

technologies; their application in projecting the market share of competing technologies have been 

demonstrated by Mau et al. and Nyober  [143, 144]. MSi, j is the market share of technology i in 

year j. LCCi is the life cycle cost of technology i. m is the number of technologies in the competition 

node. r is the discount rate and n is the cost variance (power function) parameter which is a measure 

of market heterogeneity, which is an indication of market structure, consumer segmentation, and 

consumer type. Cost variance was derived from historical capacities and used for future predictions 

[145, 146]. The results from Equations 1 and 2 provide the market share of individual technologies 

in a specific time period. 

 𝑀𝑆𝑖,𝑗 =
𝐿𝐶𝐶𝑖

−𝑛

∑ 𝐿𝐶𝐶𝑖,𝑗
−𝑛𝑚

𝑖=1

 (1) 

 𝐿𝐶𝐶𝑖 = (𝐶𝐶 × (
(1 + 𝑖)𝑟

(1 + 𝑖)𝑟 − 1
)) + 𝑂&𝑀𝑡 + ∑ 𝐸𝑗,𝑘 (2) 

3.2.5 Energy modeling 

The most critical parameters in accurate analysis of electricity sector modeling are demand trends 

and load shapes, available resources, and their associated economic and environmental costs. 

Relevant technical characteristics such as electricity generation process efficiencies, capacity 

factors, and energy resource requirements are also key parameters that need to be considered for 

reliable regional energy modeling. Given the accuracy required, an electricity generation model 

was developed using the Long-range Energy Alternatives Planning (LEAP) framework, which is 

a data-intensive framework and primarily used for energy-environment investigations of different 

sectors in each economy.  
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This LEAP modeling work extends the modeling completed in an earlier study in which electricity 

demands in Alberta were modeled to the year 2050 [45, 46]. The calculations in the LEAP model 

start from the end-user demand by determining annual electricity requirements from the different 

demand sectors in Alberta. The electricity demand and peak load requirements prompt the 

electricity supply system to respond. Then the total required capacity is determined, and 

technology-specific expansion is determined. The expansion of specific technologies is governed 

by technical and economic characteristics and the constraints that have been set up in each 

scenario. To account for the upstream emissions, primary resource extraction modules were added; 

these calculate the amount of feedstock fuel required and their associated emissions. GHG 

emissions can be quantified by applying Intergovernmental Panel on Climate Change (IPCC) 

emission factors from the Fifth Assessment Report within the model at any point of fuel 

combustion in the energy system being analyzed (electricity generation, upstream fossil fuel 

production, etc.). For a detailed description of this model, the reader is referred to earlier studies 

[45, 46].   

Key differences between the LEAP modeling done in the present study and the modeling done by 

Davis et al. [46] include the addition of life cycle GHG emissions, battery storage, an alternative 

capacity building method, and a different set of scenario assumptions and evaluation criteria. 

Furthermore, in this research, LEAP was integrated into CLCA methods in order to quantify 

electricity mixes, the cost of electricity generation, and the resulting GHG emissions to identify 

the marginal supplier of electricity following policy decisions. The framework used for energy 

modeling in LEAP is demonstrated in Figure 3.2. 
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Modeling the scenarios defined in Section 2.2.1. involved two capacity-building approaches in 

LEAP, one in which the electricity transformation module was not optimized, meaning future 

capacity additions are specified by the user based on the results derived from market penetration 

modeling, and one in which the electricity transformation module was optimized, meaning that 

instead of user-defined future capacities, LEAP would add required capacities based on sets of 

constraints. For the unoptimized case, the required input data for the electricity generation module 

(exogenous capacity) was obtained from the market share model (mentioned in the previous 

section), which was validated against the Alberta Electricity System Operator’s (AESO) historical 

electricity generation data [145]. Comprehensive industry-specific data on load curves, capacity 

factors, transmission and losses, reserve margin, etc., were incorporated into this module to assess 

the electricity generation dispatch of each process in the electricity mix. The key modeling 

considerations for the LEAP framework are provided in Table 2 with references. 

For the optimized scenarios, only the existing electricity generating capacities were defined along 

with their planned decommissioning year. One of the main objectives of this CLCA was to find 

out which technologies penetrate the market when the demand for electricity increases or a planned 

decommissioning happens. The LEAP optimization feature uses the Open Source Energy 

Modeling System (OSeMOSYS), which provides energy generation outputs based on the least-

cost method [147]. 

Energy storage has a key role in the grid integration of intermittent renewable energy sources like 

solar and wind, hence energy storage systems are added to electricity generation systems 

worldwide. Energy storage modules help balance fluctuations in supply and demand by storing 

electricity during periods of high production and low demand and dispatching electricity during 

periods of low production and high demand. These technologies are even more crucial with 
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increased penetration of solar and wind power [148]. Since the application considered in this 

research for energy storage systems is for peak load delivery, the approach to model the effect of 

storing energy was to increase the capacity credit of the processes taking on energy storage (i.e., 

solar and wind electricity generation systems). The capacity credit variable in LEAP represents 

the fraction of a plant's installed capacity that is used to calculate capacity addition requirements 

to satisfy reserve margin requirements. Solar and wind plants have a lower capacity credit than 

fossil-fuel-based plants because solar and wind have variable output generation whereas a fossil-

fuel plant’s output can be highly controlled. Capacity credit is a function of storage duration for 

variable output generators [149, 150]. The AESO has not developed any regulations on capacity 

credit for utility-scale energy storage systems, but the California Public Utilities Commission 

(CPUC) has developed a resource adequacy rule (“CPUC 4-hour rule”) for investor-owned utilities 

[151]. The regulation mentions that for any energy storage system to be eligible, it must be able to 

operate for at a minimum of four consecutive hours at its maximum output, which in turn results 

in a 100% capacity constraint. A similar “4-hour-rule” is used by the New York Independent 

System Operator [152]. For this research, based on previous work by the authors, solar and wind 

energy systems were designed to provide electricity for four hours at 50% of their nameplate 

capacity [138].
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Figure 3.2: Energy modeling framework 
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Table 3.2: Key parameters considered while developing scenarios in the LEAP framework 

Process 
Efficiency 

(%)a 

Maximum 

availability 

(%)b 

Capacity credit 
Merit 

orderi 

Maximum 

capacity 

addition (MW)c 

Overnight capital 

cost ($2017 

CAD/kW) 

Fixed O&M 

($2017 

CAD/kW) 

Variable O&M 

($2017 

CAD/MWh) 

Lifetime (years) References 

Subcritical coal 33.6 72 100 1 n/a n/a 35.1 7 n/a [146, 153] 

Supercritical coal 39.5 72 100 1 n/a n/a 36 7 n/a [146] 

Combined cycle 52.4-60e 71 100 2 455 1259 50 3 30 [88] 

Simple cycle 35.2 84 100 3 240 1359 53 1 30 [88] 

Wind 35 33 0, 50f 1 1000 1,091-1,928e,g 37 0 25 [89, 154] 

Solar 16-21 16.7 0, 50 1 1000 958-1,333f,g 46 0 25 [154, 155] 

Hydro 95 50 50 1 100 4,106 18 4 40 [153] 

Cogeneration 59-65d 70 100 1 300 1,290.6 15 4 30 [146, 153] 

a. Assumed based on published literature values [88, 155-158]. Efficiencies have been adjusted by accounting for plant use of electricity.  

b. Based on historical ranges and expected changes in maximum availability and capacity factors.  

c. Assumed or based on Canada’s historical ranges and penetration requirements to meet renewable electricity generation targets from the market penetration model. 

d. Effective efficiency refers to the electricity output, a portion of input fuel used to produce electricity, and fuel savings due to the cogeneration of electricity and steam 

compared to using a stand-alone boiler for steam generation. 

e. Ranges represent 2017-2050 values. 

f. Capacity credit of 50% given for 4 hours of storage in scenarios where energy storage functions have been added [159]. 

g. For wind energy systems with energy storage, an overnight capital cost range of 1301.9 - 2,426.7 $CAD/kW was considered [89, 91, 154] 

h. For solar energy systems with energy storage, an overnight capital cost range of 1616.8 - 2,675 $CAD/kW was considered [91, 154, 155]. 

i. The merit order of a process indicates the order in which it will be dispatched. Processes with the lowest value merit order are dispatched first (baseload) and those with 

the highest merit order are dispatched last (peak load). Processes with equal merit orders are dispatched together in proportion to their available capacity (Capacity * 

Availability). The merit order is only used for dispatching for the base case scenario. 

j. A conservative value of 10% for T&D losses was considered and is in line with reports from the AESO [160].
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3.2.6 Marginal supplier identification 

Implementing the consequential approach for electricity generation is difficult because identifying 

the marginal electricity technology, an energy resource affected by a small change in demand, is a 

contentious issue [161-163]. Since electricity is a strategic product, generation sources and 

capacities are often influenced by regional and national policies instead of technological 

competitiveness and historical trends. At the same time, the electricity market is temporally 

segmented due to short-term changes in demand that lead to a mix of suppliers for peak and off-

peak hours [164]. The co-production of electricity from industrial or district heating processes 

creates difficulty in discerning the main product. Lastly, capital costs, the “environmental 

cleanliness” of producing electricity from certain sources, and the subsequent monetary credit 

given to cleaner technologies also need to be taken into consideration. Thus, electricity is different 

from other industrial products, wherein a new and improved technology replaces an older 

technology in a predictable manner. This uniqueness in the sector demands that probable policy 

measures be taken into consideration while modeling. Consequently, the changes that might occur 

in the electricity generation sector due to changes in technical parameters and environmental policy 

initiatives also need to be understood. That said, valuable insights can be found by identifying the 

marginal suppliers of electricity, as these provide information on the most competitive 

technologies under certain market conditions and the resulting changes in GHG emissions caused 

by a decision. 

In this assessment, a five-step process, first proposed by Weidema et al., was adopted to identify 

the marginal technology in each scenario [163]. This step-wise approach provides a specific and 

easy-to-implement framework for identifying marginal suppliers from a CLCA perspective. The 

approach has been widely used in a number of recent studies for application in various industries 
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[129, 165-167]. Several authors modeled the potential changes in a system boundary due to output 

variability by identifying marginal technologies following different approaches. Rehl et al. showed 

the difference between attributional and consequential LCA of energy generation from biogas 

[168]. They used system expansion to deal with the multi-functionality of the biogas system, 

whose alternative products include manure, digestate, and heat. Marginal systems were identified 

based on past trends using data from national statistics. Lund et al. identified the long-term yearly 

average marginal technology of the Danish electricity system using the EnergyPLAN system 

analysis model to include the processes that are most likely to respond to a change [169].  

Figure 3.3 shows the main steps involved in our study. In the first step, the time frame is defined. 

For a long-term assessment, the time frame needs to be set so that the technologies considered can 

finish their useful life and be replaced. In the second step, the projected demand is analyzed and 

the subsequent effect observed, i.e., it is observed whether the changes affect a market or different 

processes. The constrained technologies are also identified based on planned decommissioning, 

phase-out, insufficient primary resources, political constraints, etc. The last three steps are 

quantitative; the marginal mix is based on the classification of newer and older technologies. The 

marginal technology is the one with the lowest cost.  



 

70 

 

 

Figure 3.3: The identification of the marginal mix of technologies through the process adopted from 

Weidema et al. [163] 

With respect to defining the qualitative steps, the long-term time horizon was considered, from 

2019 to 2050. This was done to identify the effects of technologies’ replacement of electricity 

generation plants as a result of policy implementation as well as technical and environmental 

constraints. This timeframe was used to determine which technology is competitive in the long 

term. As this study focuses on the overall electricity generation mix instead of changes in the 

upstream stages, the effects of demand changes in the manufacturing processes are outside the 

study scope.  

The details of the quantitative aspects are provided in Appendix B2 information section. Using the 

energy mixes obtained from the LEAP framework, the trends in the volume of energy provided by 

each technology for each scenario were analyzed. The technologies projected to be 

decommissioned or phased out are identified as constrained technologies. In addition, technologies 

that might have insufficient primary resources or be dependent on other processes to generate 

electricity are also identified as constrained technologies. This step allows us to discard the 

technologies that may not be able to react to an increase in demand and add capacity to the 

electricity generation system. The remaining technologies are classified as “new” or “old” based 
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on their capital replacement rates and annual growth rates. Technologies that have higher annual 

growth rates than capital replacement rates are classified as new technologies and they constitute 

the marginal mix. This process was followed for each scenario. The lowest economic cost option 

is identified as the marginal supplier that would supply any increase in demand. 

In addition to identifying the marginal suppliers, the current policies were compared with the 

effects of different policy decisions in terms of change in electricity mix to find out which 

technology is more competitive in the electricity market in each scenario. This analysis shows that 

the long-term effectiveness and investment requirements shift from one policy to the other. 

Hourly marginal supplier 

The approach described here to identify marginal technology focuses on the long-term marginal 

mix and marginal technology. When intermittent renewable resources such as wind and solar are 

considered, the mixture of marginal production is complex [169]. In addition to assessing the long-

term marginal suppliers of electricity in a regional electricity generation system, it is important to 

understand a specific technology’s adaptability with short-term load changes. While a number of 

studies discuss the long-term implications of the transition of electricity generation systems from 

fossil fuel dominance to newer renewable options, none of them include hourly marginal analysis. 

Hence, this study augments the analysis provided in the previous sections by providing an hourly 

simulation model of the electricity generation using hourly demand and supply data. Figure 3.4 

shows the developed linear programming framework that models the hourly mix of electricity 

supply based on real-time hourly demand data [89]. Equations 3 through 10 present the objectives 

and constraints considered. Equations 4 through 7 are the constraints for hourly demand and 

supply, and Equations 8 through 10 are the capacity, GHG emissions, and cost constraints. The 

levelized cost of electricity is calculated using the same dataset that was used for the LEAP model 
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as shown in Table 2. The model calculates the electricity demand at a particular hour and then 

dispatches electricity from the lowest cost and lowest GHG-intensive processes. After modeling 

the supply and demand equilibrium, the changes in the electricity mix were identified. Two 

scenarios were developed, one in which the only objective was to minimize production costs and 

one in which economic and environmental costs were minimized. The AESO considers two 

seasons to define Alberta’s internal load, winter (November 1-April 31) and summer (May 1-

October 31) [170]. One of the drawbacks of our model is that it was created using Alberta’s 

historical electricity demand for one year, as future projections of hourly electricity demand are 

not available [171]. Hence this model cannot identify marginal suppliers in future conditions where 

the hourly trends of demand might vary significantly. The model takes into consideration the 

following factors: seasonal hourly electricity demand (average load during each season), hourly 

availability of each technology (hourly global solar irradiance data for Alberta [63]), real-time data 

from Blackspring Ridge Wind Farm [172], cost parameters, GHG emission intensities, and 

seasonal variation in demand and supply capacities.   

 

Figure 3.4: Framework for hourly analysis of marginal technologies 
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The equations for the linear programming model are given below: 

 min 𝑧 = ∑ 𝑐𝑗𝑥𝑖,𝑗+ 𝑐𝐺𝐻𝐺,𝑗 ∑ 𝐺𝐻𝐺𝑗𝑥𝑖,𝑗 (3) 

Subject to:  

 ∑ 𝑥1,𝑗 ≥ 𝑑1 (4) 

 ∑ 𝑥2,𝑗 ≥ 𝑑2 (5) 

 ∑ 𝑥3,𝑗 ≥ 𝑑3 (6) 

……….. 

……….. 

……….. 

 ∑ 𝑥24,𝑗 ≥ 𝑑24 (7) 

 𝑥𝑖,𝑗 ≤ ℎ(𝑎𝑖,𝑗) (8) 

 ∑ 𝐸𝑗 ≤ 𝐸𝑗, 𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟 (9) 

 
∑ 𝑐𝑗𝑥𝑖,𝑗

∑ 𝑥𝑖,𝑗
≤ 𝐶 (10) 

 

where cj is the cost of electricity production by technology j, $/kWh; xi,j is electricity supplied by 

technology j at hour i,kWh; cGHG,j is the cost assigned to a unit mass of GHG emissions, $/metric 

ton CO2 eq; di is electricity demand at hour i, kW; h is the percentage of available capacity, ai,j is 

the available capacity of technology j at hour i, kW; and E is emission, g CO2 eq/kWh. 

3.3 Results and Discussion 

3.3.1 Development of market penetration curves 

Figure 3.5 shows the market penetration curves for seven technologies considered: coal-

subcritical, coal-supercritical, hydro, natural gas-combined cycle, natural gas-simple cycle, solar, 

and wind. To comply with the status quo in Alberta as of 2019, market share curves for several 

commercially available electricity generating technologies were also developed through a cost-

driven modeling approach. The penetration model results were validated using the AESO’s long-
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term predictions [145]. This was done by determining the cost variance for the base year of 

calculation based on the existing capacities of each technology and then keeping a constant value 

for this parameter throughout the timeframe. The more narrowly defined the cost of a technology 

becomes, the less likely it will overlap the costs of a competitive technology. The steeper the curve, 

the greater the share of the market the less-expensive technology assumes. As shown in Figure 3.6, 

the results from all the renewable sources appear to accurately match the AESO’s future 

projections. After the anticipated coal phase-out by 2030, most of the electricity supply mix will 

be dominated by the penetration of natural gas-based combined cycle power systems, due to its 

higher capacity factor (maximum availability), leading to a lower levelized cost of electricity. The 

market penetration rate of combined cycle power generation will jump from 10.7% in 2019 to 

more than 28.7% in 2050. Among the renewable energy options, wind energy penetrates the 

electricity mix at the highest rate of around 9.7% in 2019 and 27.6% in 2050. The main reason 

behind this massive growth in wind power compared to solar is due to its higher efficiency and 

capacity. The higher energy generation potential of wind power plants with the same nameplate 

capacity as solar power results in a more cost-effective and efficient energy resource [173, 174]. 

Since there is no feedstock cost, other than coal and natural gas, the variable cost of such energy 

is also lower for this technology. Although the market penetration rate of solar power is high, 

reaching 4.4% in 2050 from 0.1% in 2019, the overall growth is not as high as wind or combined 

cycle power plants. This is because the efficiency of solar PV panels (15-17%) is projected to 

increase by only a fractional level from 2019 values. The lower efficiency of solar panels results 

in lower power output over the nameplate capacity and, as a result, the investment cost of this 

technology is higher than its counterparts. Electricity from hydro is dependent on the usable 

resources in the jurisdiction and therefore an additional constraint on its capacity increase was 
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imposed. The production of electricity from cogeneration facilities depends largely on industrial 

heating and electricity demands. Hence, the market penetration curve for this technology was not 

used and the projection from the AESO was used in the succeeding steps of the analysis.  

 

Figure 3.5: Projected market share for different technologies 

3.3.2 Electricity mix in different scenarios  

Figures 3.6, 3.7, and 3.8 show the electricity mix in the nine scenarios: status quo (with and without 

optimized capacities) with no targets for renewables, solar with storage, wind with storage, solar 

and wind with storage, solar and wind with storage to replace natural gas power systems, and 50% 

GHG emissions’ reduction by 2030 and 2050. The base case scenario (BASE) is based on the 

assumption that capacities would be added to the generation system according to the AESO’s 

projections [145]. In this case, the LEAP framework dispatches power systems from the supply 

module based on their merit order. Since natural gas power plants would become baseload 
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suppliers (merit order=1) after the phase-out of coal resources, combined cycle and simple cycle 

power plants would supply most of the energy demand. The results from this scenario, as shown 

in Figure 3.6-A, highlight the fact that the electricity mix is heavily dependent on natural gas-based 

power systems, especially combined-cycle power plants. The mix is projected to generate 50.1 

thousand GWh by 2030 and plateau at about 54.8 thousand GWh of electricity by 2040 from 

combined cycle power plants. In the modeling, wind and solar resources were selected to be 

dispatched at full capacity, meaning that whenever these resources produce electricity, they should 

be added to the electricity generation system. Electricity from renewable resources is mostly 

dominated by wind resources, starting at 4.4 thousand GWh and reaching 15.2 thousand GWh in 

2050. Solar electricity dispatch is anticipated to be much lower (only 1.7 thousand GWh per year) 

due to the assumption that the capacity addition would not exceed 1000 MW during the considered 

timeframe, according to the AESO’s long-term outlook [145].  

In the succeeding scenarios, where the optimization feature of the LEAP framework was used 

(from O-BASE to 50×30), only the 2019 capacity of each technology and its decommissioning 

time were specified based on the assumed lifetime. For all the scenarios, LEAP presents the 

optimal electricity generation mix based on the lowest cost of production. In addition to the lowest 

cost of production, a 30% target of renewable electricity generation was added in accordance with 

current Alberta policies. Figure 3.6-B shows the electricity mix obtained from the O-BASE 

scenario. The results follow the same trend as the unoptimized (BASE) scenario. The only 

differences are the earlier retirement of coal capacities and significantly higher dispatch from wind 

energy (reaching 34.9 thousand GWh per year in 2036), which together reduce the overall share 

of electricity from combined cycle power plants, which are expected to peak at 31.1% of overall 

electricity generation in 2030. Electricity production from utility-scale solar power plants will 
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decrease as their yield will be significantly lower than wind power and other natural gas-based 

power systems. The lower yield of solar power results in a higher levelized cost of electricity. 

Simple cycle power plants will dispatch a significantly lower amount of energy from combined 

cycle power plants because of their lower efficiency and higher costs. Even when there are no 

renewable targets set on the electricity generation system for the third scenario (NO-R-TAR), the 

optimal electricity generation mix does not change significantly. As the capital cost of the 

renewable energy options is projected to decrease in the later years of the timeframe, a case can 

be made that adopting renewable energy systems, especially wind power, might become a 

preselected phenomenon. The addition of storage to renewable energy resources (in scenarios 

SOL-B, WND-B, and SOL-WND-B) increases the overall capital cost of these technologies, which 

results in a lower generation share in the electricity generation mix. In sizing the optimal systems, 

we found that wind power systems would require less storage than the solar power systems as they 

tend to have a higher capacity factor (maximum availability) and, as a result, a much lower capital 

investment. 
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Figure 3.6: Electricity  generation mix in the BASE (A), O-BASE (B), and NO-R-TAR (C) scenarios 
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The share of electricity generation from wind with storage is projected to peak at 25.9% in 2030 

and 55.2% in 2050 (Figure 3.7-B). The significant increase in wind power generation can be 

attributed to the capital cost reduction in the later stages of the timeframe. Solar with storage is 

projected to reach 1.08% (1.2 thousand GWh) of the total electricity mix by 2050 (Figure 3.7-A). 

As mentioned earlier, the effect of storage was mimicked by increasing the capacity credits of 

these renewable energy resources. Solar with storage (SOL-B) is projected to have the lowest 

amount of penetration into the electricity mix as it would incur the highest capital cost with the 

lowest capacity factor. As shown in Figure 3.7-C, the scenario in which both solar and wind are 

added with storage does not show any significant change from the scenario in which only wind 

has added storage options.  
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Figure 3.7 Electricity generation mix in the SOL-B (A), WND-B (B), and SOL-WND-B (C) scenarios 
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resources (solar and wind) were considered as replacements for natural gas power plants, almost 

the entire replacement is seen from wind resources, which are projected to reach a peak of 67.9% 
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and 50×30), wind energy penetration is significantly higher than the optimized base scenario. The 

electricity generation share reaches peaks of 33.3% and 33.8% when a 50% reduction in GHG 

emissions in 2050 and 2030, respectively, is considered. Fossil fuel-based systems, both natural 

gas-based combined cycle and simple cycle systems, and cogeneration dispatch fall significantly 

as they have much higher emission factors.  
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Figure 3.8: Electricity generation mix in the NO-NG (A), 50×50 (B), and 50×30 (C) scenarios 
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not accounted for. However, the lower capacity credits attributed to solar and wind energy systems 

make them less competitive. The SOL-WND-B scenario with energy storage added both to solar 

and wind shows the lowest cost of electricity production in the later stages of the timeframe as 

costs decline rapidly. The remaining scenarios show a similar cost trend as the GHG emissions 

reduction targets and renewable energy penetration result in similar energy mixes. A key aspect is 

that, in all the scenarios, a significant share of the energy demand is satisfied by cogeneration 

power systems, the most cost-competitive technology among the systems. 

 

Figure 3.9: Cost of producing electricity from the grid in each of the modeled scenarios 
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3.3.3 Greenhouse gas emissions for different scenarios 

In this section, the GHG emissions’ footprint in kg CO2 eq per MWh of electricity generation mix 

from all scenarios is discussed (Figure 3.10). The BASE scenario, based on current policies 

without any optimization, results in the highest GHG emissions per MWh of electricity production. 

The GHG footprint ranges from 661.7 kg CO2 eq/MWh down to 278.2 kg CO2 eq/MWh in the 

later years of the timeframe. The O-BASE scenario provides a GHG emissions’ reduction 

opportunity, 50.4 kg CO2 eq/MWh on average. The NO-R-TAR scenario with no renewable target 

also shows low GHG emissions from the electricity generation system (from 661.7 to 218.9 kg 

CO2 eq/MWh), because it has a similar electricity generation mix to the BASE scenario. The 

lowest GHG emissions, 74.6 kg CO2 eq/MWh, are seen in the scenarios where energy storage 

along with renewable energy is used instead of natural gas power plants. Adding energy storage 

with wind and solar power systems also shows promising GHG emissions’ reduction potential in 

the long term, taking the total GHG emissions to less than 150 kg CO2 eq/MWh in the later stages 

of the assessment period. GHG emissions’ reduction of 50% by 2050 and 2030 also provide similar 

results as the optimized base case. In both the 50×50 and the 30×30 scenarios, wind and combined 

cycle power systems are the dominant producers of electricity. 
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Figure 3.10: GHG emissions in each of the modeled scenarios 
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term. In the BASE scenario, combined cycle power plants can meet the marginal demand increase 

most competitively with an incremental cost of $57.5/MWh. The incremental cost of wind power 

is less than $54.4/MWh, although wind technology provides the largest share of energy supply, 

21.1%. Except for the NO-R-TAR scenario, the wind power generation system appears to be the 

most competitive technology to provide increased supply at higher percentage shares (up to 82.5% 

in the NO-NG scenario) and the lowest marginal cost (38.6 to 54.4 $/MWh). As peak load power 

plants, natural gas based simple cycle power plants are the least cost-competitive technology; the 

cost of providing additional energy ranges from $108.3/MWh in the BASE scenario to 

$608.5/MWh in the 50×30 scenario. 
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Figure 3.11: Marginal mix of technologies in each scenario 
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Table 3 presents the marginal change in GHG emissions per MWh from an increase in demand by 

one thousand GWh. Almost every scenario shows very little change in marginal emissions as the 

marginal mix is dominated by two technologies, combined cycle power plants and wind power 

plants. In most of the scenarios, these plants have a large share in the electricity mix, thus an 

increase in production from either shows minute changes.  

Table 3.3: Marginal change in emissions due to demand increase 

Scenario 2020 2025 2030 2035 2040 2045 2050 

BASE -2.9 -2.1 0.5 0.6 0.5 0.5 0.5 

O-BASE -1.3 -0.7 1.1 -1.1 -2.0 -1.4 -3.0 

NO-R-TAR -6.0 -6.4 -3.5 9.5 17.1 20.3 29.7 

SOL-B -5.5 0.1 0.8 -1.0 -0.9 -3.5 -1.8 

WND-B -1.6 0.3 3.3 -0.9 10.4 3.3 3.6 

SOL-WND-B -1.0 -2.1 2.1 0.8 2.5 1.8 1.7 

NO-NG -0.6 -0.7 1.7 -4.2 -0.8 -0.9 -0.4 

50×50 -6.1 -7.4 -7.5 22.3 31.8 28.4 0.4 

50×30 -9.7 -8.4 -5.3 -4.8 -4.2 -5.0 -2.0 

3.3.5 Substitution effect 

This section discusses the environmental consequences of a change in policy measures displacing 

a technology. Each scenario is compared with the status quo or reference scenario to find out which 

technologies will be substituted and what the change in GHG emissions is. Figure 3.12 shows the 

results for the O-BASE scenario only. Almost all the other scenarios show a similar trend; they 

are presented in section S4. All the scenarios show that the transition pathways towards cleaner 

electricity in the long term are mostly dominated by those adding capacities of wind power 

generation systems. This is an interesting phenomenon observed in Alberta given that we identified 

natural gas-based combined cycle power plants as one of the major marginally competitive 

technologies in both the long-term and in the short-term (hourly) analyses. The substitutional effect 

in terms of GHG emissions follows the same pattern as that of the electricity mixes. Figure 3.14 

shows the substitution of GHG emissions from four scenarios compared with the BASE scenario. 
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The results from the other scenarios can be found in section S5. In every scenario, the increase in 

GHG emissions is from the expansion of cogeneration facilities. The O-BASE scenario considers 

that a large portion of coal-based power plants would be replaced by natural gas-based combined 

cycle power plants. While the replacement of older coal-based power plants is dominated by 

natural gas-based power plants, the GHG emissions’ reduction from the overall grid system is seen 

from the additional expansion of wind power systems. Since it is projected that the cost of energy 

generation from wind would become competitive with combined cycle power plants, its addition 

would be beneficial both economically and environmentally. 

 

 

Figure 3.12: Substitution of energy generation sources in the BASE scenario 
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Figure 3.13: Changes in GHG emissions due to the substitution of energy sources 
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Hourly marginal supplier 

The approach taken in this study to identify the marginal supplier was based on the analysis of the 

electricity generation mix over the long term. Since one of the main objectives of this study is to 

understand the performance of solar and wind energy in the mix, the intermittency of these sources 

must be considered. Thus, the marginal technologies were identified on an hourly basis and the 

results are shown in Figure 3.14. The hourly analysis shows that in addition to high initial capital 

cost, the daily availability of solar power is relatively low compared to every other technology; 

therefore, increasing production from this source is difficult. Wind power availability is higher 

than solar in Alberta and as a result this source’s ability to respond to demand growth is greater. 

Compared to wind and solar energy generation, natural gas-fired power plants have a lower 

electricity production cost; ramping up production is easier, although these plants are the most 

GHG intensive of all the options. The results from this analysis confirm the findings of the long-

term analysis; that is, natural gas-based power plants are the lowest cost marginal technology when 

the objective is to minimize the cost of electricity production. However, if the goal is to minimize 

GHG emissions as well as cost, regardless of the time of year, wind energy reduces both GHG 

emissions and costs more than the other options.   
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Figure 3.14: Hourly marginal analysis of competing technologies based on an increase in demand 

3.4 Conclusion 

The applications of life cycle assessment methods continue to evolve as demands from 

policymaker’s change. This research proposed a generalized framework to understand the cause 

and effect relationship between technologies in a product system and successfully demonstrated 

its application to Alberta’s electricity sector. The penetration of renewable energy resources into 

the electricity mix will have a significant effect on cost and GHG emissions. Both electricity 

production costs and the GHG emissions can be reduced significantly in the long run by increasing 

the capacity of renewable technologies, thus proving that the marginal benefits from higher 

renewable penetration outweigh the current technical drawbacks. Incorporating energy storage 

with wind energy is more feasible than with solar in Alberta, thus wind energy is more competitive 

over the long term. Wind power generation systems, in addition to natural gas-based power plants, 

offer the most cost-competitive way to transition to cleaner electricity generation from coal-based 

power. A 30% renewable energy generation target could result in a similar electricity mix as 50% 
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GHG emission reduction targets in Alberta, as the declining cost of renewables would 

automatically make their adoption a natural choice in the long term.  

By integrating the CLCA and long-term energy modeling, this research demonstrates how cause 

and effect relationships within an energy generation system can be modeled and how the resulting 

changes in environmental impacts can be incorporated in long-term decision making.  

There are many additional interactions within the entire value chain of an electricity generation 

system that have not been investigated using this study’s approach, and that is a major limitation 

of this work. These interactions include the effects of carbon pricing in the electricity generation 

mix, the effects on the distribution network due to the addition of large amounts of renewable 

resources, and the emissions from fossil fuel-based thermal power plant cycling during the 

transition period. Despite the shortcomings, the results obtained in this research would have 

significant benefit to the LCA community and policymakers in general. Applying this framework 

may alleviate some of the ambiguities in the current literature related to CLCA and enable the 

LCA community to examine various energy policy issues more thoroughly. 
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Chapter 4  

Conclusions and recommendations  

4.1 Conclusion 

The economic and infrastructure growth of any jurisdiction is heavily dependent on the electricity 

sector. At the same time, there is an overarching need to reduce the negative environmental impacts 

from this sector to achieve sustainable development. Alberta is the third largest electricity producer 

in Canada and contributes the highest amount of GHG emissions per capita from this sector. This 

research aims to provide relevant, up-to-date, and actionable information for concerned 

policymakers on the environmental impacts of changes in the electricity generation system.  

The ALCA conducted in this research work comprehensively provides the results of detailed 

bottom-up estimates to determine the energy and environmental impacts of utility-scale solar 

energy systems implemented in Alberta. A bottom-up LCA model was developed to conduct this 

assessment and incorporates life cycle inventory data associated with all the life cycle stages of a 

utility-scale solar energy system. The upstream processes, i.e., raw material extraction, 

manufacturing/assembly of major components, and transportation, account for 75% of the energy 

use and are the most energy-intensive processes. Upgrading the silicon ore to a usable form of 

solar cell accounts for 65% of the total life cycle energy consumption. The contribution of 

transportation is less than 1%. 

A complimentary analytical model was created to estimate the amount of energy storage required 

to supply consistent electricity from utility-scale solar energy systems. The results indicate that the 

addition of energy storage systems to solar farms significantly increases the GHG emissions from 

such systems, yet environmentally they are still better than their fossil fuel-based counterparts, as 

shown in Figure 4.1.  
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Figure 4.1: Energy and environmental performance parameters for different systems 

Extensive sensitivity and uncertainty analyses were performed to provide key information on 

sensitive parameters over the life cycle stages and capture uncertainties in life cycle inventory data. 

We found that the overall life cycle GHG emissions were mostly sensitive to the efficiency and 

lifetime of solar panels, as they dictate the amount of energy generated. Energy requirements 

during the upgrading of silicon solar cells and the peak power of solar panels during the operational 

phase affected NER and EPBT the most.  

The research also extends the scope of ALCA to include the long-term, economy-wide 

environmental consequences of marginal changes in the electricity sector to help policymakers in 

formulating energy policies and their potential environmental significance. We developed a 

generalized CLCA framework that provides a clear workflow to identify long-term marginal 

changes in a product system and its economy-wide implications in policy decisions. This 

framework was applied to assess the long-term changes in the Alberta electricity sector. Nine 

policy scenarios were strategically developed based on qualitative and quantitative parameters. 

This enabled us to address critical issues related to the long-term consequences of decarbonizing 

electricity grids. 
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We found that although replacing coal and natural gas-based power plants with solar and wind 

energy provides the highest opportunity to mitigate GHG emissions among the nine scenarios, it 

also results in the highest cost of generation (as shown in Figure 4.2 and 4.3), which may deem it 

infeasible in a real context. 

 
Figure 4.2 Cost of electricity production in the 

scenarios developed in the CLCA 

 
Figure 4.3 GHG emissions per MWh of electricity 

production in the scenarios developed in the CLCA 

We also found that the capital cost predictions for renewable energy resources compete with the 

combined cycle and simple cycle power plants. This makes a bigger case for the penetration of 

renewable resources, especially for wind energy in Alberta as it has higher energy yield and lower 

environmental impacts than solar resources. 

While identifying the marginal suppliers of electricity, we found that natural gas-based power 

plants (simple cycle and combined cycle) were the most cost-competitive options in any change 

in demand, but wind energy systems constituted the major portion of the marginal supplier mix in 

almost every scenario. As the marginal mix is dominated by wind energy systems, the CLCA 

demonstrates that the expansion of wind power systems would be beneficial both in terms of 

environmental effects and economic feasibility. 
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This research can make a significant contribution to policy formulation for government agencies 

and investment decision making for industry. As this research includes an ALCA model for a 

utility-scale solar energy system that can be replicated for other renewables, it will help the 

renewable energy industry pinpoint areas to further reduce GHG intensity. Incorporating a 

framework for CLCA will provide insights into the consequences of long-term policy decisions, 

and the framework can be replicated in other sectors as well. 

4.2 Recommendations for future work 

Further research is recommended in the following areas: 

• The ALCA modeling of utility-scale solar was done based on current best practices and the 

most commercially available technological resources used in the industry. Several new 

methods of solar PV production and different types of solar cells with new materials are 

being developed globally. An investigation into their life cycle environmental 

performances can be incorporated into the model to capture a wide array of solar 

technologies. 

• In this research project, emissions from land use and infrastructure construction were not 

included for either attributional or consequential LCA. Although land-use and 

infrastructure emissions are assumed to be minor (unlike other life cycle emissions), 

incorporating them in the system boundary would result in a more robust analysis.  

• When incorporating energy storage systems in the utility-scale solar and other technologies 

in the ALCA and CLCA approaches, only lithium-ion battery technology was considered 

due to a lack of reliable life cycle inventory data for other emerging storage technologies 

for these applications. Analyzing the effects of other mechanical and chemical storage 

systems would broaden this study. 
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• The research can also be extended to evaluate the cost feasibility of utility-scale solar 

energy in Alberta and compare it with other large-scale renewable and non-renewable 

energy technologies through a techno-economic assessment framework. 

• In the consequential analysis, the focus was mainly on the electricity grid and resulting 

marginal changes in the production of electricity, costs, and environmental emissions. By 

using partial/general equilibrium models or economic input-output tables, we can capture 

the interaction between sectors that are interlinked with the electricity sector to provide 

policymakers even more in-depth information on global consequences of policy decisions 

as they relate to the economy and the environment.  

• A major drawback in the LEAP framework was the incorporation of storage systems as a 

separate transformation module. As a result, there is still room for improvement in 

estimating the effects on the electricity grid from the large-scale implementation of storage 

systems.
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Appendix  

Appendix A 

A1. Solar PV material processing steps 

The n-type emitter layer forms in the wafers through a POCl3 process in which nitrogen gas passes 

over the wafers with oxygen in an 800-900°C oven. 

 4𝑃𝑂𝐶𝑙3 + 3𝑂2 → 2𝑃2𝑂5 + 6𝐶𝑙2 (A1) 

 

The phosphorus silica glass layer that remains after the chemical process is treated with fluoric 

acid. 

 𝑆𝑖𝑂2 + 6𝐻𝐹 → 𝐻2𝑆𝑖𝐹6 + 2𝐻2𝑂 (A2) 

 

To prevent short circuiting, the edges formed during fluoric acid treatment are etched off through 

a plasma etching process. In this process, the wafers are placed in a plasma reactor where fluorine 

atoms are freed from CF4 and react with silicon [23]. 

 𝑆𝑖 + 4𝐹 → 𝑆𝑖𝐹4 (A3) 

 

The final stage in solar cell processing is screen printing the front (aluminum) and back (silver) of 

the cells. This prevents the generated electrons and holes from recombining. After that is done, the 

wafers are fired into a belt oven where they go through heat treatment at temperatures of 120-

150°C, evaporating the solvents, and then at 300-400°C where the resins are burned to sintered frit 

at a temperature of 600°C. 

The individual cells produced in screen printing are laid out in a 6×12 formation (6 columns and 

12 rows). They are interconnected in series and parallel patterns. Square-shaped cells were 
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considered here as they provide the highest packing density, thereby increasing the effective area. 

In this study, the material and energy balances of the aluminum frame were considered in the 

module assembly process. The process yield for this unit operation is considered to be 99% [23]. 

A2. Electricity generation model for the system without the energy storage 

The following procedure was followed to configure the size of the power generation system: 

− The peak capacity of the system was specified in MW. 

− The number of panels required to achieve the peak wattage of power was determined by 

the following formula: 

 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑛𝑒𝑙𝑠 =
𝑃𝑒𝑎𝑘 𝑤𝑎𝑡𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑀𝑊)

𝑃𝑒𝑎𝑘 𝑤𝑎𝑡𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑜𝑙𝑎𝑟 𝑃𝑉 𝑝𝑎𝑛𝑒𝑙 (𝑊) × 10−6
 (A4) 

 

− The number of inverters was calculated through the following: 

 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑠 =
𝑃𝑒𝑎𝑘 𝑊𝑎𝑡𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑀𝑊)

𝐼𝑛𝑝𝑢𝑡 𝐷𝐶 𝑊𝑎𝑡𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 (𝑀𝑊)
 (A5) 

 

− The electricity generation on year 𝑖 was calculated as follows: 

 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑦𝑒𝑎𝑟 (𝑖) = (𝐴 × 𝐻 × 𝑃𝑅 × 𝜂)𝑖−1 × (1 −
𝑃𝑅

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒
) (A6) 

− The life cycle electricity generation was calculated using the following: 

 𝐿𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑡 𝑦𝑒𝑎𝑟 (𝑖) (A7) 
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A3. Electricity generation model for the system with energy storage 

The loss of power supply probability (LPSP) value is calculated using Equation 5: 

 𝐿𝑃𝑆𝑃 = Pr {𝐸𝐵(𝑡) ≤ 𝐸𝐵𝑚𝑖𝑛
: 𝑓𝑜𝑟 𝑡 ≤ 𝑇} (A11) 

where EB(t) is energy stored in batteries at any time, t, EBmin is the battery’s minimum allowable 

energy level (depth of discharge).  

Energy generated by the PV array for hour t, EG(t), can be expressed as follows: 

 𝐸𝐺(𝑡) =  𝑁𝑃𝑉  . 𝐸𝑃𝑉(𝑡) (A12) 

where EPV(t) is energy generated by a PV module and NPV is the number of PV modules in a PV 

array. 

If the energy generated by the PV array exceeds the load demand, the batteries will be charged 

according to the following equation: 

 𝐸𝐵(𝑡) =  𝐸𝐵(𝑡−1) +
(𝐸𝐺(𝑡) − 𝐸𝐿(𝑡)

𝜂𝑖𝑛𝑣
 (A13) 

 

where ηinv is the efficiency of the inverter, EB(t) is energy stored in batteries in hour t, EB(t-1), is 

energy stored in batteries in the previous hour, and EL(t) is load demand in hour t. 

When the load demand is greater than the available energy generated, the batteries will discharge 

the amount of energy needed to cover the deficit. This discharge can be expressed as follows: 

 𝐸𝐵(𝑡) =  𝐸𝐵(𝑡−1) − (
 𝐸𝐿(𝑡)

𝜂𝑖𝑛𝑣
− 𝐸𝐺(𝑡)) (A14) 

The energy stored in the batteries is subject to the following constraint, which ensures that the 

batteries would not be overcharged or over discharged at any time: 

 𝐸𝐵 𝑚𝑖𝑛 ≤ 𝐸𝐵(𝑡) ≤ 𝐸𝐵 𝑚𝑎𝑥 (A15) 
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When the available energy generated and stored in the batteries is insufficient to satisfy the load 

demand for hour t, that deficit, called Loss of power supply, for hour t, can be expressed as  

 𝐿𝑃𝑆(𝑡) =  𝐸𝐿(𝑡) − (𝐸𝐺(𝑡) + 𝐸𝐵(𝑡−1) − 𝐸𝐵 𝑚𝑖𝑛). 𝜂𝑖𝑛𝑣 (A16) 

The LPSP for a considered period t is the ratio of all LPSt values for that period to the sum of the 

load demand. This can be defined as: 

 𝐿𝑃𝑆𝑃 =  
∑ 𝐿𝑃𝑆𝑡

𝑇
𝑡=1

∑ 𝐸𝐿(𝑡)
𝑇
𝑡=1

 (A17) 

Once we had determined the available energy generated from the PV module for every hour of a 

typical day each month, we were able to calculate different combinations of the number of PV 

modules and batteries for the desired LPSP. 

Once the total electricity generation potential is determined, the optimum number of panels and 

batteries are calculated based on an economic approach. To estimate the most economical PV and 

battery combination at the lowest cost, the following was developed:   

 𝐶 =  𝛼 . 𝑁𝑃𝑉 +  𝛽 . 𝑁𝑏𝑎𝑡𝑡 + 𝐶0 (A18) 

where C is the capital cost of the system, α is the cost of a PV module, β is the cost of the battery, 

and C0 represents the fixed costs, including the cost of design and installation.  

The condition to obtain the optimum solution from Equation A12 yields: 

 
𝜕𝑁𝑃𝑉

𝜕𝑁𝑏𝑎𝑡𝑡
=  −

𝛽

𝛼
 (A19) 
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A4. Results of the sensitivity analysis for the ES option 
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A5. Inputs for the uncertainty analysis 

Parameter Minimum Most Likely Maximum 

Peak wattage of panel 

(Wp) 

310 325 330 

Efficiency (Panel) 0.12 0.17 0.18 

Dimension (m2) 1.56 1.95 2.33 

PV panel weight (kg) 17.9 22.4 26.9 

PR 0.7 0.8 0.9 

Expected lifetime 

(panel) (years) 

20 25 30 

Lifetime of inverters 

(years) 

8 10 12 
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Lifetime of batteries 

(years) 

4 5 6 

Battery weight (kg) 100 125 125 

Hard coal (IG Silicon) 

(kg) 

18.5 23.1 27.72 

Electricity (IG Si) 8.8 11 13.2 

Electricity (SoG Si) 

(kWh) 

88 110 132 

Heat (SoG Si) 148 185 222 

Electricity (ingot 

casting) (kWh) 

7.9 9.92 11.9 

Electricity (wafer 

slicing) (kWh) 

1.6 2 2.4 

Electricity (cell 

processing) (kWh) 

130 162.5 195 

Glass (module 

assembly) 

54.5 68.09 81.8 

Aluminum (module 

assembly) 

12.02 15.02 18.02 

Electricity (module 

assembly) (kWh) 

18 22.5 27 

Energy (kWh/kg) 

(battery) 

8.34 20.85 22.24 
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A6. Equation for calculating the sampling error in the Monte Carlo simulation 

The Monte Carlo sampling error determines the error that occurs between simulations and can be 

calculated using the following equation: 

Sampling error, 𝑋 =
𝑧×𝜎

√𝑛
                                    

where σ is the standard deviation of the mean and n is the number of samples. The Z value is 

determined based on the confidence interval of the standard normal distribution. 

Confidence Interval (%) Z value 

90 1.645 

95 1.96 

98 2.33 

99 2.58 

A7. Calculation method for land use footprint 

The following equations were used to evaluate the land use footprint: 

 
𝐿𝑈𝐹 (

𝑚2

𝑘𝑊ℎ
) =

𝐿𝑎𝑛𝑑𝑃𝑉 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑎𝑛𝑑𝑇&𝐷

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 (𝑙𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒)
 (A20) 

 𝐿𝑎𝑛𝑑𝑃𝑉 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛(𝑚2)

= (𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑚𝑜𝑑𝑢𝑙𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠)

/𝑎𝑟𝑟𝑎𝑦 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

(A21) 

 𝐿𝑎𝑛𝑑𝑇&𝐷(𝑚2) = 𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑎𝑦 𝑤𝑖𝑑𝑡ℎ (A22) 

 𝐴𝑟𝑟𝑎𝑦 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑎𝑟𝑟𝑎𝑦 𝑎𝑟𝑒𝑎

𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎
  (A23) 
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A8. Emission factors for land use change emissions 

Emission source 

Low carbon stock 

(Semi arid grassland) 

Medium carbon 

stock (mixed) 

High carbon 

stock 

(forest) 

Unit 

Soil Carbon 400 1200 2000 kg/ha 

Biomass 1900 8950 16000 kg/ha 

sequestration 2200 2650 3100 kg/ha 
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Appendix B 

B1. Marginal supplier identification process 

1. The generation in target years is derived from LEAP outputs for each scenario. 

2. The capital replacement rate is calculated as the inverse of plant lifetime, with a minus sign. 

3. The net annual growth rate is calculated as the annual growth rate minus the capital replacement rate. 

4. If the annual growth is lower than the capital replacement rate, the technology is considered old. 

5. Net annual growth is calculated as the generation in base year times the net annual growth rate. 

 

Table B4: Quantitative calculation for marginal mix identification in the base case scenario (BASE)  

BASE 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long-term 

marginal 

mix 

Aggregated 

cost (CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 36096 0 -3.2% 40 -2.50% -0.73% OLD -261.99 0.00% $3,477,261,627 $11,784 $12 

Supercritical coal 6995 0 -3.2% 40 -2.50% -0.73% OLD -50.77 0.00% $896,090,624 $11,650 $12 

Simple cycle 3480 5111 1.5% 30 -3.33% 4.84% NEW 168.62 2.02% $11,492,989,008 $108,298 $108 

Combined cycle 8516 53770 17.1% 30 -3.33% 20.48% NEW 1743.69 20.86% $76,691,670,372 $57,500 $58 

Solar 127 1752 41.4% 25 -4.00% 45.40% NEW 57.50 0.69% $2,918,012,867 $79,619 $80 

Wind 4364 15244 8.0% 25 -4.00% 12.04% NEW 525.52 6.29% $22,711,548,339 $54,423 $54 

Hydro 1958 2724 1.3% 50 -2.00% 3.26% NEW 63.88 0.76% $2,300,356,578 $29,212 $29 

Cogeneration oil sands 22399 22411 0.0% 30 -3.33% 3.34% NEW 747.03 8.93% $25,380,195,269 $35,401 $35 

Cogeneration biomass 2112 2114 0.0% 30 -3.33% 3.34% NEW 2495.32 29.85% $681,123,825 $10,074 $10 

Cogeneration other 7618 7623 0.0% 30 -3.33% 3.34% NEW 2559.20 30.61% $8,632,516,345 $35,401 $35 

                8360.75 100.00%       
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Table B5: Quantitative calculation for marginal mix identification in the optimized base case scenario (O-BASE) 

O-BASE 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

Growth 

(%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(Thousand 

GWh/year) 

Long term 

Marginal 

mix 

Aggregated 

Cost (CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 1844 1112 -1.3% 30 -3.33% 2.05% NEW 37.86 0.47% $10,955,058,477 $365,069 $365 

Combined cycle 11204 30499 5.6% 30 -3.33% 8.89% NEW 995.89 12.40% $52,598,967,151 $65,701 $66 

Solar 20 0 -3.2% 25 -4.00% 0.77% NEW 0.15 0.00% $7,617,600 $30,652 $31 

Wind 7357 34632 12.0% 25 -4.00% 15.96% NEW 1174.10 14.62% $34,619,718,308 $41,371 $41 

Hydro 5367 8310 1.8% 50 -2.00% 3.77% NEW 202.28 2.52% $3,934,395,538 $18,779 $19 

Cogeneration oilsands 24803 30207 0.7% 30 -3.33% 4.04% NEW 1001.08 12.47% $32,528,792,986 $35,383 $35 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2208.01 27.50% $478,167,284 $7,075 $7 

Cogeneration other 7479 5712 -0.8% 30 -3.33% 2.57% NEW 2410.29 30.02% $7,700,026,089 $32,472 $32 

                8029.66 100.00%       

 

  

Table B6: Quantitative calculation for marginal mix identification in the (no renewable targets) scenario (NO-R-TAR) 

NO-R-TAR 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 2049 1093 -1.5% 30 -3.33% 1.83% NEW 37.45 0.47% $10,493,726,639 $228,245 $228 

Combined cycle 11486 32691 6.0% 30 -3.33% 9.29% NEW 1066.91 13.44% $57,236,200,197 $63,348 $63 

Solar 41 79 3.0% 25 -4.00% 6.98% NEW 2.86 0.04% $167,624,822 $67,389 $67 

Wind 6779 31163 11.6% 25 -4.00% 15.60% NEW 1057.73 13.32% $27,161,938,219 $38,639 $39 

Hydro 5367 8801 2.1% 50 -2.00% 4.06% NEW 218.11 2.75% $4,224,679,525 $19,614 $20 

Cogeneration oil sands 24730 30396 0.7% 30 -3.33% 4.07% NEW 1007.12 12.69% $32,616,189,016 $35,376 $35 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2164.95 27.27% $478,167,284 $7,075 $7 

Cogeneration other 7623 6249 -0.6% 30 -3.33% 2.75% NEW 2383.05 30.02% $7,822,336,727 $32,418 $32 

                7938.17 100.00%       
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Table B7: Quantitative calculation for marginal mix identification in the solar farms with storage scenario (SOL-B) 

SOL-B 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 1828 1134 -1.2% 30 -3.33% 2.11% NEW 38.54 0.47% $10,321,995,405 $347,226 $347 

Combined cycle 11183 28598 5.0% 30 -3.33% 8.36% NEW 934.54 11.48% $50,329,858,006 $66,087 $66 

Solar 62 1183 58.0% 25 -4.00% 61.99% NEW 38.63 0.47% $2,330,357,101 $93,877 $94 

Wind 7357 37811 13.4% 25 -4.00% 17.35% NEW 1276.68 15.68% $35,890,878,279 $41,155 $41 

Hydro 5367 6838 0.9% 50 -2.00% 2.88% NEW 154.81 1.90% $3,329,979,682 $16,883 $17 

Cogeneration oil sands 24803 29195 0.6% 30 -3.33% 3.90% NEW 968.46 11.89% $32,372,476,696 $35,404 $35 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2288.39 28.10% $478,167,284 $7,075 $7 

Cogeneration other 7473 5712 -0.8% 30 -3.33% 2.57% NEW 2443.20 30.00% $7,595,447,629 $32,487 $32 

                8143.24 100.00%       

 

 

Table B8: Quantitative calculation for marginal mix identification in the wind farms with storage scenario (WND-B) 

WND-B 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 1836 1064 -1.4% 30 -3.33% 1.98% NEW 36.28 0.42% $7,158,267,487 $157,229 $157 

Combined cycle 11194 13626 0.7% 30 -3.33% 4.03% NEW 451.58 5.17% $39,294,125,468 $65,010 $65 

Solar 41 53 0.9% 25 -4.00% 4.91% NEW 2.01 0.02% $117,256,360 $67,688 $68 

Wind 7357 62094 24.0% 25 -4.00% 28.00% NEW 2059.99 23.60% $48,487,757,888 $44,085 $44 

Hydro 5367 7820 1.5% 50 -2.00% 3.47% NEW 186.46 2.14% $3,837,373,759 $18,489 $18 

Cogeneration oil sands 24803 21065 -0.5% 30 -3.33% 2.85% NEW 706.17 8.09% $30,869,031,417 $35,622 $36 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2549.87 29.21% $478,167,284 $7,075 $7 

Cogeneration other 7476 4751 -1.2% 30 -3.33% 2.16% NEW 2736.33 31.35% $6,777,868,746 $32,595 $33 

                8728.69 100.00%       
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Table B9: Quantitative calculation for marginal mix identification in the solar and wind farms with storage scenario (SOL-WND-B) 

SOL-WND-B 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 1828 1059 -1.4% 30 -3.33% 1.98% NEW 36.14 0.41% $7,165,986,653 $157,718 $158 

Combined cycle 11183 13608 0.7% 30 -3.33% 4.03% NEW 451.00 5.13% $39,424,664,593 $64,989 $65 

Solar 62 26 -1.9% 25 -4.00% 2.13% NEW 1.33 0.02% $236,137,068 $113,103 $113 

Wind 7357 64118 24.9% 25 -4.00% 28.89% NEW 2125.27 24.17% $49,230,069,714 $44,053 $44 

Hydro 5367 5857 0.3% 50 -2.00% 2.29% NEW 123.16 1.40% $2,773,097,589 $14,912 $15 

Cogeneration oil sands 24803 21051 -0.5% 30 -3.33% 2.85% NEW 705.75 8.03% $30,902,257,445 $35,617 $36 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2613.74 29.72% $478,167,284 $7,075 $7 

Cogeneration other 7473 4751 -1.2% 30 -3.33% 2.16% NEW 2736.90 31.12% $6,792,093,220 $32,594 $33 

                8793.28 100.00%       

 

 

Table B10: Quantitative calculation for marginal mix identification in the energy storage instead of natural gas scenario (NO-NG) 

NO-NG 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 2223 1 -3.2% 30 -3.33% 0.11% NEW 2.42 0.02% $1,410,773,587 $122,362 $122 

Combined cycle 7209 239 -3.1% 30 -3.33% 0.21% NEW 15.47 0.16% $3,561,816,323 $66,241 $66 

Solar 1418 15315 31.6% 25 -4.00% 35.60% NEW 505.02 5.17% $71,008,000,954 $126,864 $127 

Wind 7068 74878 30.9% 25 -4.00% 34.95% NEW 2470.14 25.31% $74,042,550,985 $47,937 $48 

Hydro 5367 8562 1.9% 50 -2.00% 3.92% NEW 210.42 2.16% $3,523,117,603 $17,854 $18 

Cogeneration oil sands 23617 10412 -1.8% 30 -3.33% 1.53% NEW 361.27 3.70% $20,107,142,984 $38,716 $39 

Cogeneration biomass 2112 1316 -1.2% 30 -3.33% 2.12% NEW 2993.06 30.66% $433,577,486 $7,682 $8 

Cogeneration other 7623 1859 -2.4% 30 -3.33% 0.89% NEW 3203.48 32.82% $5,139,367,572 $33,005 $33 

                9761.28 100.00%       
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Table B11: Quantitative calculation for marginal mix identification in the GHG emissions reduction by 50% by 2050 scenario (50×50) 

50×50 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 2057 881 -1.8% 30 -3.33% 1.49% NEW 30.63 0.38% $12,182,936,361 $245,890 $246 

Combined cycle 11497 29588 5.1% 30 -3.33% 8.41% NEW 966.80 11.93% $54,749,157,190 $63,406 $63 

Solar 20 289 44.3% 25 -4.00% 48.27% NEW 9.48 0.12% $25,490,280 $47,415 $47 

Wind 6779 37522 14.6% 25 -4.00% 18.63% NEW 1262.88 15.58% $29,702,544,661 $38,544 $39 

Hydro 5367 6838 0.9% 50 -2.00% 2.88% NEW 154.81 1.91% $3,087,283,211 $16,051 $16 

Cogeneration oil sands 24732 29778 0.7% 30 -3.33% 3.99% NEW 987.19 12.18% $32,505,894,574 $35,393 $35 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2269.79 28.00% $478,167,284 $7,075 $7 

Cogeneration other 7623 5574 -0.9% 30 -3.33% 2.47% NEW 2424.60 29.91% $7,738,900,227 $32,422 $32 

                8106.19 100.00%       

 

 

Table B12: Quantitative calculation for marginal mix identification in the GHG emissions reduction by 50% by 2030 scenario (30×30) 

30×30 

Feedstock 

Generation 

in 

2019(GWh) 

Generation 

in 2050 

(GWh) 

Annual 

growth (%) 

Lifetime 

(years) 

Capital 

replacement 

rate (%) 

Net annual 

growth 
Classification 

Net annual 

growth 

(thousand 

GWh/year) 

Long term 

marginal 

mix 

Aggregated cost 

(CAD) 

Per 

GWh 

Per 

MWh 

Subcritical coal 30237 0 -3.2% 40 -2.50% -0.73% OLD -219.46 0.00% $3,236,873,478 $12,708 $13 

Supercritical coal 5859 0 -3.2% 40 -2.50% -0.73% OLD -42.53 0.00% $808,837,944 $12,549 $13 

Simple cycle 2017 913 -1.8% 30 -3.33% 1.57% NEW 31.63 0.39% $9,611,718,139 $608,511 $609 

Combined cycle 11442 29719 5.2% 30 -3.33% 8.49% NEW 970.99 12.03% $49,801,057,369 $70,441 $70 

Solar 41 0 -3.2% 25 -4.00% 0.77% NEW 0.32 0.00% $65,263,108 $70,016 $70 

Wind 7357 36077 12.6% 25 -4.00% 16.59% NEW 1220.73 15.12% $42,387,210,930 $44,036 $44 

Hydro 4876 8310 2.3% 50 -2.00% 4.27% NEW 208.29 2.58% $3,714,510,944 $18,111 $18 

Cogeneration oil sands 24719 29740 0.7% 30 -3.33% 3.99% NEW 985.93 12.21% $32,470,243,419 $35,418 $35 

Cogeneration biomass 2112 2112 0.0% 30 -3.33% 3.33% NEW 2223.67 27.54% $478,167,284 $7,075 $7 

Cogeneration other 7623 5712 -0.8% 30 -3.33% 2.52% NEW 2431.96 30.12% $7,322,644,485 $32,476 $32 

                8073.52 100.00%       
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B2. Electricity generation mixes in different scenarios 
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Figure B1: Electricity mixes in different scenario 
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B3. Substitution of technologies due to changes in policy decisions 

  

  

  

  

Figure B2: Substitution of technologies due to changes in policy decisions   
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B4. The effect of technology substitution on GHG emissions 

  

  

  

  
 

Figure B3: The effect technology substitution on GHG emissions 
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