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Abstract

Demands for more computing power are increasing. Parallel hardware, which pro-
vides a large amount of computing power, is now commonplace and is a cost-effective
solution. However, this type of hardware is not being fully utilized since parallel
programming is not a user-friendly task to many developers. To make matters worse,
parallel programming becomes more complex when it comes to the object-oriented
(O0) paradigm. We believe that one of the solutions is to build tools that help pro-

grammers convert their sequential OO programs to parallel ones.

Revy is a platform-neutral, easy-to-use, object/method granularity visualization
system that helps inexperienced parallel programmers transform their sequential 0O
programs into parallel ones. Revy is a program visualization system that allows
users to view and inspect the object communication patterns of their applications.
Revy is also a profiling system which helps users identify the high-granularity ob-
jects/methods as candidates for remote execution. Revy achieves these objectives by
providing an annotation subsystem which instruments any user’s classes and meth-
ods. The user’s application is then compiled and executed to produce the granularity
information as well as the object communication patterns, which are then processed
and visualized using a graphical user interface. In this thesis, we present the re-
quirements, architecture, design and implementation of Revy. We also discuss some
problems and concerns, and suggest a few further enhancements. Finally, the exper-

imental results that confirm the usefulness of Revy are presented.
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Chapter 1

Introduction

Demands for more computing power are increasing. Networked and multiprocessor
workstations provide users with a large amount of computing power by executing
the user’s application on many processors at once. This type of hardware is now
commonplace and is a cost-effective approach to solving computationally-intensive
applications. However, the software advances necessary to exploit this power have

lagged behind the hardware advances.

Writing parallel software is often perceived as a complicated endeavor. The de-
sign, implementation and testing of parallel software is more difficult than compara-
ble sequential software. Parallel programming extends the complexity of sequential
programming to include issues such as synchronization, deadlock, non-deterministic
program behaviour due to concurrent execution, and the communication and granu-

larity issues in the remote execution of tasks.

In the Object-Oriented (OO) programming paradigm, writing parallel programs
encounters additional problems than in traditional procedural languages. OO systems
model real world objects, which are generally autonomous entities whose activities
are performed concurrently. Thus, objects and parallel programs seem to be a per-
fect match. However, this is not always the case. For instance, the problems with
inheritance, encapsulation, and reusability are identified as the outstanding research

issues for concurrent OO language designers.



Several researchers [KL89. MY94] have pointed out that the main problem in
concurrent object programming is the conflict of the inheritance and synchronization
constraints. These two constraints often interfere with each other, resulting in the
Inheritance Anomaly, where the re-definition of inherited methods is necessary in or-
der to maintain the integrity of concurrent objects. Parallel object-based languages
therefore either do not support inheritance [AMS87], or do so only by compromising

the encapsulation [YT86] or the reusability [CA88S] properties.

Observing that there are difficulties in concurrent 00 programming, we need tools
today which help parallel software developers build their 0O systems easily and ef-
ficiently. The dream tool for concurrent OO programming would be a parallelizing
compiler that automatically transforms a sequential program to a parallel version, for
example, “g++ -parallel myFile.cc”. However, such a tool is still many decades
away. This thesis proposes an alternative approach, a parallelization advisor, that

assists programmers in parallelizing OO applications.

Reuvy is an integrated system that provides inexperienced parallel programmers
with an easy-to-use tool to help them convert their sequential 00 programs into par-
allel ones. [WW94] pointed out that there is a need for a tool that allows one to
visualize the object communication patterns to help in the development of concurrent
OO programs. Revy is such a program visualization system. Revy is also a profiling
system. With the help of Revy’s profiling feature, users can easily identify the ob-

jects/methods to be parallelized, by analyzing the granularity information provided.

Chandy and Taylor [CT92] state that “the granularity of a computation is the
ratio of computation to communication”. This is illustrated in Figure 1.1. Executing
the method foo() remotely on another computer frees up CPU cycles on the local
machine, but results in communication overheads. The overheads include the time
spent on directing the remote processor to invoke the method, as well as packing,
sending, receiving, and unpacking the data. Therefore, programmers must weigh the
benefits of freeing up the local processor versus the costs of the communication over-

head.

[



anObject. foo(arg) e y4 A

~ / |
send/call method receive/return
(communication) computation  (communication)

Figure 1.1: Granularity of a Method

In object-oriented systems, granularity plays an even more important role since
OO programs are typically fine-grain in nature. In other words, OO programs often
have a low computation to communication ratio. Developers tend to implement many
short methods instead of a few long ones to increase the reusability and maintainabil-
ity of their software. To enhance encapsulation, they introduce many simple classes.
For example, a phone number is sometimes declared as a class rather than simply a
string of 10 digits. As a result, one can see that managing granularity is critical to

efficient OO programming.

1.1 The Revy System

As an integrated parallelization advisor, Revy is built with three research objectives

in mind;

1. to explore visualization techniques that help users understand the object com-

munication patterns of their OO programs,

2. to implement profiling techniques for collecting and processing the granularity
and trace information of an OO program, so that higher-grain objects/methods

can be identified for parallelization, and

3. to investigate some parallelization heuristics which may be implemented to

(more) correctly suggest the candidate objects/methods for parallelization.

Revy has two features that distinguish it from traditional profiling and program
visualization tools. First, Revy considers not only the timing statistics, but also the

object and method parameter sizes of a user program. Such information is essential



Chapter 2
Related Works

The result of this thesis is the implementation of a tool, Revy, that visualizes the gran-
ularity and the runtime behaviour of a user’s object-oriented program and provides
hints for program parallelization. Although other research has addressed different
aspects of Revy, we know of no other project that has the same goal. In this chap-
ter, we examine several of these related projects, with emphasis on the three areas:
visualization, granularity and program parallelization. This survey is not meant to

be exhaustive, but rather it gives a flavor of what others have done.

2.1 Visualization

As pointed out in [TU94], program visualization research has been motivated by the
desire to explain the functioning of algorithms by means of an animated display. Re-
searchers usually apply visualization techniques for program understanding, testing
and reverse engineering. In the course of this project, we have studied two visualiza-

tion systems: Enterprise and Eiffel // !.

2.1.1 Enterprise

Enterprise ( [SS93], [IM95] and [MA96)) is an integrated parallel programming system
that provides facilities to create, compile, execute, tune, and debug parallel programs

on a network of workstations. The goal of the Enterprise project is to simplify the task

!Eiffel //, pronounced “Eiffel Par”, stands for Eiffel Parallel.



of writing correct parallel programs in C. Enterprise provides two integrated mod-
els: a programming model and a mela-programming model. The programming mocdlel
specifies the sequential semantics of the user code, and the meta-programming model
allows a user to specify the parallelism in an application. The meta-programming
model is a hierarchical combination of assets, which represents the user’s program as
a business enterprise. It is described by an asset graph, which is created in the Enter-
prise graphical user interface (GUI). The Enterprise GUI has the following features:
(1) user specified parallelization techniques for the application by means of an asset
graph, (2) animation of the execution of parallel programs, and (3) presentation of
performance statistics of the parallel program using coloring, visual cues, charts and

other symbolic representations (WI95).

There exist many fundamental differences between Enterprise and Revy. En-
terprise handles a procedural language (C), while Revy deals with object-oriented
languages (C++ and Java). Enterprise helps users write parallel programs, while
Revy helps users in visualizing and analyzing granularity in sequential programs.
Since Enterprise is an integrated parallel programming environment, it provides a
user-friendly interface for: parallel programming by means of an asset graph, source
code editing, compilation and execution, and performance tuning debugging using
animation [IM95]. Revy provides users with an interface for: declaring a project,
parsing source code, compilation and execution, building an object call graph, col-
lecting runtime statistics about granularity, and identifying granularity by means of
visualization and animation. The statistjcs gathered are for both object and messages
in an OO program. Although the two projects serve different purposes, some of the

concepts of Revy emerged from the Enterprise project.

2.1.2 Eiffel //

Eiffel // [AC96], is an extension to the programming language Eiffel. The Eiffe] //
system provides an interactive programming environment for parallel object-oriented
programming and visualization. It provides features such as the graphical represen-

tation of objects, visualization of semantjc rules of the Eiffel language, and animation

T



tools to show the concurrent activities of objects. The graphical environment displays
objects and their interactions (object topology, attribute values, concurrent activities,
subsystems, synchronizations), provides a set of primitives for controlling and prob-
ing the execution (granularity of interleaving, step-by-step execution. control over
the interleaving), and detects deadlock configurations when they occur. The most
interesting contribution of their system is the collection of runtime data without user
instrumentation. Instead, they use semantic rules to express the dynamic behaviour
of a program. They claim that their system contributes: (1) a pedagogic environ-
ment to demonstrate concepts of object-oriented programming and formal semantics,
and (2) a step towards environments for the formal study of parallel object-oriented

programming.

Eiffel // helps users investigate a parallel OO program using rich visualization sup-
port. The information gathering, execution control and performance tuning features
provided are extensive. To collect the runtime behaviour of a user’s program, they
introduce an additional abstract layer, the semantic layer, which expresses the dy-
namic binding behaviour on a semantics engine. As a result, their system is language
neutral since it needs “no instrumentation code”. The user’s program can therefore
be kept semantically correct. Such abstraction means that no probe effects due to
the execution of instrumented code are introduced. However, there are a few draw-
backs to this approach. Defining the semantics for a language is not an easy task and
is, in fact, an extremely abstract concept. As a result, the benefits of the language
neutral feature are questionable. Moreover, the extra layer is subject to another kind
of probe effect: the translation and communication between the extra layer. Unfor-
tunately, the authors did not explain the process of semantic interpretation clearly,
and provided the reader with no analysis on the performance of their system. For
the area of visualization control, the Eiffel // environment is more elaborate than
the Revy system. For instance, Revy provides no execution control, no inspection of
objects’ states and variables, and no source code animation since these features are
not critical to Revy’s intended goal. On the other hand, the layout of an object call
graph in Eiffel // is too simple: there is no presentation of the objects’ and messages’

statistics, no features to unclutter call graphs, and so on. In essence, although Revy

8



and Eiffel // share the objective of visualizing OO programs. the exact goals are

different: visualization of execution control versus visualization of granularity.

2.2  Granularity

Granularity is one of the key factors for efficient program parallelization. By under-
standing the granularity of their programs, developers can identify the potential par-
allel performance bottlenecks and decompose their programs more efficiently. Some
tools already exist to help developers determine the granularity of the components
of their programs. This section evaluates three existing tools for profiling sequential

programs: gprof, “java -prof” and ObjectTrace.

2.2.1 Profiling Tools

The command gprof is a UNIX utility program for profiling C and C++ programis.
It displays the call-graph profile data obtained by executing a program compiled with
the “~pg” option. The report produced by gprof consists of a textual call graph, an
execution time profile giving the CPU time for each routine itself and for the routines
called by it, the number of times each routine was called, the fraction of the total
time spent in it, and the average processing time per call. The “~pg” option causes a
C/C++ compiler to instrument the user’s code with the UNIX signal SIGPROF han-
dlers and interrupts for logging function invocations by regular sampling. The log file

is then interpreted by gprof to produce human-readable profiling information.

In Java, virtual machines (VMs) come with an option “-prof” which traces
method calls in a Java program. Similar to the gprof command, “java -prof” pro-
vides the user with method-based profiling information, such as the method name, the
number of times called, the method’s caller and the processing time of the method.
In addition, it provides minimal memory information such as the heap size and size of
the free heap. Although different VMs may use different instrumentation techniques

to implement this option, they do not modify the user’s source code and the logging



is performed at a lower level - the interpreter level.

ObjectTrace [0S94] is a commercial tool from ObjectSoft Incorporated. It is a
set of tools that can generate and interpret trace information for applications written
in C++. ObjectTrace gathers statistics on: object creation, object destruction and
invoked methods. It then builds a textual call graph from the trace data. It does not
compute the memory used by an object or a method. However, it does report memory
leaks (memory allocated for objects that is not released). ObjectTrace achieves this
by instrumenting the C++ source code directly. Since the implementation details are
proprietary information, it is difficult to comment on the efficiency and accuracy of
the timings of their tool. The strength of ObjectTrace is its instance-based profiling
data. For traditional profilers, the unit of operation is a function, while ObjectTrace

keeps track of the lifetime and activities of all objects.

2.2.2 Critique

There are numerous advantages and disadvantages of the above tools as compared to
the features of Revy. First of all, Revy is, except for the parsing and instrumentation
part, a language neutral tool, while the rest of these tools are language specific. Sec-
ond, these tools are inflexible in instrumentation. Users do not have full control on
the procedures to be logged and presented. The “java -prof” command does not
allow users to restrict the methods to be profiled. They can either profile all or none.
In gprof and ObjectTrace, users can skip the profiling of all the methods in a source
file, but not a single method. On the other hand, Revy allows users to selectively
instrument each single method or whole classes. Third, the profiling information is
not instance-based in traditional profilers nor in Java's built-in profiler. Instance-
based profiling data is essential for programmers to understand and parallelize 00
programs. This is due to the fact that different instances of the same class can execute
methods for radically different time intervals, and different invocations of the same
method can also vary considerably. Fourth, the data size of instances and messages,
which are critical information for program parallelization, are not supported in any

of these tools. The size of an object has to be taken into consideration when it has to

10



be transfered or replicated over a network. The performance of a Remote Procedure
Call (RPC) is affected by the size of the parameters as they have to be packed at
the local machine, sent and received over the network and unpacked at the remote
machine. Fifth, as pointed out in [HU95], most of these tools attempt to measure
the CPU time spent in executing the program; however, what the typical user today
really cares about is clock time?, not CPU time. Therefore, Revy computes the clock
time spent on executing messages. Sixth, the measurement in gprof employs UNIX
signals which may have a smaller probe effect, but uses regular sampling that is sub-
ject to statistical errors. On the other hand, Revy uses high-level instrumentation,

which introduces higher overheads, but accurate statistics.

2.3 Program Parallelization

Researchers have been working on different approaches to transform a sequential pro-
gram into a parallel one. One approach to program parallelization is to decompose the
program into a set of communicating tasks and then apply some graph partitioning
and task-to-processor mapping algorithms. The ideal approach would be a compiler
that does all the work, for example, “g++ -parallel myFile.cc”. In this section,

we discuss two program parallelization projects: IRPC and JAVAR.

2.3.1 Parallelization Algorithms

One approach to program parallelization makes use of runtime performance data to
determine the granularity and locality constraints of a program, and then applies
graph partitioning heuristics to generate an optimal task-to-processor assignment.
There have been some parallelization algorithms proposed, such as those presented
in [CT92]: Bin Packing, Randomization, Pressure Model and the Manager-Worker
scheme, and those discussed in [SB96]: Heaviest-Edge-First (HEF), Minimal Com-

munication (MC), Kernighan-Lin (KL), and so on. This section presents a relatively

*The use of clock time measurement is valid only if the instrumented process does not compete
with other processes for the resources such as CPU and I/0.

11



new approach, Inverse Remote Procedure Call (IRPC) [SB96].

IRPC is an integrated system with a compiler, a stub generator. and a runtime
system. The runtime system executes a user program, collects the profiling data,
builds an object call graph with a cost model, and applies the IRPC heuristic at
runtime. The IRPC cost model measures: parameter passing costs, method invoca-
tion/return costs, execution costs, loop costs, and conditional split costs. The IRPC
heuristic is based on the idea of “inverting” an RPC. That is, moving a procedure
module transparently to the site of the caller. The heuristic uses a combination of
execution and communication cost measurement with a finer granularity, by assigning

objects or procedures to processors rather than assigning entire processes.

The authors tested their system with 27,000 artificial programs, and claimed that
95% of the tested programs obtained a traffic reduction cost over 75%. They also
compared the results with the HEF, MC and KL algorithms. Overall speaking, IRPC
is the only algorithm that has the lowest complexity as well as highest performance

improvement for their class of tested programs.

The major advantage of IRPC is its consideration of objects. Many of the tra-
ditional parallelization algorithms employ a control flow analysis approach such as
loop restructuring. However, when it comes to the object paradigm, data/object flow
analysis plays a more important role. Moreover, IRPC illustrates the importance of
instrumenting parameter sizes to calculate parameter passing costs. Our system Revy
stresses the importance of objects and data sizes but it does not have any paralleliza-

tion algorithms implemented yet.

2.3.2 Parallelizing Compilers

A parallelizing compiler takes a sequential program and automatically generates a
parallel version while preserving the semantics of the original program. Parallelizing
compilers are being researched at several institutions, for instance, the High Perfor-

mance Java group from Indiana University is developing a tool called JAVAR [BGY7].
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JAVAR s a prototype Java restructuring compiler that can be used to make implicit
parallelism in Java programs explicit by means of multi-threading. In particular, their
research focuses on automatically exploiting implicit parallelism in loops and multi-
way recursive methods. Parallel loops are either detected automatically using data
dependence analysis, or are identified explicitly by the programmer’s annotations.
Because automatically detecting implicit parallelism in multi-way recursive methods
can be very hard, they simply assume that such parallelism is always identified ex-

plicitly by means of annotations.

There are two main advantages of their approach. First, it makes a compiler han-
dle the transformations that make implicit parallelism explicit, thereby simplifying
the task of the programmer. Moreover, because parallelism is expressed in Java it-
self, the transformed program remains portable, and speedup can be obtained on any
platform on which the Java Virtual Machine supports the true parallel execution of
threads (for instance, the Java Native Threads package [SS97] from Sun). However,
automatic parallelization is still a dream. Until it happens, we need tools like Revy

to help us parallelize our programs.

2.4 Summary

This chapter presents various visualization, profiling and program parallelization sys-
tems, and contrasts them with Revy. To the best of our knowledge, none of the
existing tools provides the integrated granularity computation and visualization en-

vironment that Revy supports.
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Chapter 3

Revy System

Revy is a software system that aids users in instrumenting their source code, logging

and collecting runtime traces of the execution results, and providing basic paralleliza-

tion hints. Users interact with Revy using a Graphical User Interface (GUI). In this

chapter, we give a brief discussion of the system requirements, its architecture and

its design. This chapter provides the reader with an overview of Revy that will be

elaborated in the following chapters.

3.1 Requirements

The prime requirement of Revy is to analyze the granularity of a user's application

and provide hints for parallelization. This is achieved by:

1.

™

[

parsing the user’s source code,

inserting method calls into the code to compute message and object granulari-

ties,

compiling and executing the annotated code to gather trace and granularity

information (such as instance size, message size and duration),

analyzing the traces and calculating runtime statistics to provide hints for par-

allelization, and

allowing the user to visualize the traces and statistics.
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Revy uses a modular approach that divides these responsibilities into subsystems.
The Parsing and Annotation Subsystem (PAS) is responsible for taking an object-
oriented source program, parsing it and generating an instrumented version. The
Runtime Modeling Subsystem (RMS) collects the runtime traces while the user's
program is running. In addition, it establishes the object call graph from the traces,
performs simple analysis and provides simple hints for program parallelization. The
Visualization and Interaction Subsystem (VIS) is used for visualizing the program
statistics, and providing an interface for users to interact with the other two sub-
systems and the operating system. The details of the requirements of each of these

subsystems are presented in the following chapters.

3.2 Architecture

This section discusses the architecture of the Revy System. As mentioned before,
Revy employs a modular approach. Such an approach allows users to interact with
the subsystems directly (through shell commands), or to interact through a GUI such
as VIS. The architecture is presented in the next two sections, and then the design is

discussed in the following section.

3.3 Architecture Qverview

Figure 3.1 presents the three subsystems and their interactions in brief. The left-
hand side of the diagram shows the interactions between different subsystems using
physical files, while the right-hand side shows the corresponding interactions using

logical objects.

Users place their project details in a Revy Project File (RVY)!. The project file
defines the source files, and the compilation and execution commands of the project.

VIS is not only a graphical interface to the Revy system and various subsystems, but

A user normally interacts with the Visualization and Interface Subsystem to create a project
file. However, the user can also create the file manually.
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Figure 3.1: System Architecture in Brief

also a system that allows users to visualize their programs. VIS communicates with
the Parsing and Annotation Subsystem (PAS) using a Static Artifacts File (SAF).
PAS is the only language dependent subsystem. Separate versions of PAS for Java
and C++ can easily be substituted. PAS is responsible for parsing and inserting
granularity-logging routines in the user’s program. The third component, the Run-
time Modeling Subsystem (RMS) interacts with VIS via a Dynamic Trace File (DTF).
RMS is used not only for collecting the granularity information of the program but

also for calculating the runtime statistics.

The right-hand side of Figure 3.1 presents the logical representation of the physical
files. The UserProject object, which represents the RVY file, contains the definitions
of source files as well as the command strings to compile and execute the user’s pro-
gram. However, this is just the first incarnation of the object. As soon as the system
parses the source files, the UserProject object also contains the classes and methods
declared in the user’s source files. This is the second incarnation of the UserPro ject
object, and it is in fact the logical representation of the SAF file. The ObjectGraph

instance is the call graph which represents the traces recorded in the DTF file.
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In brief, Revy uses a modular approach, with different subsystems targeted at
different requirements of the Revy system. In a physical sense, they interact with
each other through three files; in a logical sense, they interact via two ob jects. Such

an approach enhances the maintainability and extensibility of the system.

3.4 Architecture Details

Figure 3.2 shows the detailed architecture of the Revy system. The Visualization
and Interaction Subsystem serves as the interface gateway between the user and the
subsystems. VIS displays object call graphs to users and allows them to interact with
the graphs. In addition, VIS is responsible for executing simple operating system

commands, for instance, compiling and executing the user’s code.

The Parsing and Annotation Subsystem runs as a separate process. This is de-
sirable since it is a switchable component of the Revy system. If the user's target

language is not the default one?, Revy can communicate with a different PAS process

*The default working language of Revy is Java.
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for the specific source language. PAS receives commands (for example, to parse or to
annotate) from Revy through an Annotator object that resides inside the Revy pro-
cess. The Annotator object is in fact a wrapper object that hides the PAS subsystem
from Revy. The details of the commands (for instance, the source files to parse and
the classes to annotate) are stored in the RVY and SAF file, which are represented

by a UserProject object.

The Runtime Modeling Subsystem resides inside the Revy process. The RMS
contains a DTFReader object that is created by VIS. After parsing a DTF file, the
DTFReader creates an ObjectGraph instance for VIS to display and for RMS to an-
alyze. RMS can be started as a separate process. This is necessary when a GUI is
absent and the user needs a textual presentation of the call graph and statistics. The
RevyLogger object is considered as part of RMS, though it does not reside inside
RMS. RevyLogger does not need to interact with the main Revy as it is merely a
piece of code attached to the user’s program for logging runtime traces that are used
by RMS. The details of the architecture of the subsystems are presented in the next

three chapters.

3.5 Design

This section discusses the design of Revy in brief by presenting two high-level dia-
grams: the data flow diagram and the state diagram. The data flow diagram shows
how the input data is processed by the system until outputs are generated. The state
diagram views the system using an event-flow approach. Along with the architectural

figures, these diagrams provide a basic description of the Revy system.

3.5.1 The Data Flow Design

The data flow design describes the processing of inputs into outputs. In Revy, the
inputs are the user’s source files and the instrumentation directions for the code mod-

ules. Figure 3.3 shows the data flow design of Revy. Note that the large boxes denote
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the processing units and the small boxes are the data to be processed. F irst, the
user’s source code is passed to the Parsing and Annotation Subsystem for parsing.
PAS then analyzes the files and produces the static artifacts about the source code.
Based on the user’s instrumentation directions, PAS annotates the source code. The
modified source code is compiled and executed, thereby generating dynamic traces.
RMS takes the trace file, translates it and produces the outputs of the system: a

logical representation of the call graph and the runtime statistics.

3.5.2 The State Design

The state design in Figure 3.4 shows the four states of the Revy system, and the
edges are the events and user commands. The system starts in the “Empty Project”
state. In this state, the user can either define a new project or open an existing one.
As soon as the user has defined a new project, the system enters its second state:
“New Project Defined”, where it waits for the user’s commands to instrument the
code. When this command is given, the system proceeds to the third state: “Code
Instrumented”. In this state, the system waits for the compilation and execution
commands, which lead to the generation of runtime traces. After generating these
traces, the system enters the “Visualization of Object Call Graph” state. In this
state, users can either query the runtime statistics for parallelization hints or refine

their annotation directions so that the information gathered is more precise.
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Figure 3.4: State Diagram of Revy

3.6 Implementation

The implementation of the major components of Revy uses Java version 1.1, on a So-
laris 2.5 platform. Since Java is a “write-once-run-anywhere” programming language,
Revy also runs on other UNIX boxes, PCs, or MacIntoshes. The Parsing and Annota-
tion Subsystem for C++, called C++Sourcer, was implemented with the Solaris C++
compiler. The C++Sourcer requires that the Sage++ [ER95] library be installed. On
the other hand, PAS for Java (i.e. JavaSourcer) uses the JavaCC [ST97] library.

The Revy system does not have any specific hardware requirements.

3.7 Summary

This chapter states the core requirements of the Revy system - parsing, instrumen-
tation, collection of program granularity, computation of the runtime statistics, and
visualization. In addition, the architecture of the system is discussed. F inally, the
data flow and the state design diagrams are presented. This chapter provides the

overview needed to understand the following three chapters about the subsystems.
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Chapter 4

Visualization and Interaction
Subsystem

The Visualization and Interaction Subsystem (VIS) is the most important part of
Revy to the user. It is not only the GUI of Revy but also the subsystem in which pro-
gram visualization techniques are explored. In this chapter, we state the requirements
of VIS, describe the visualization techniques implemented, provide a walk-through of

its functionality, and suggest a few enhancements.

4.1 Requirements

VIS is responsible for providing a user-friendly interface for users to interact with the

other two subsystems and the operating system. The requirements of VIS are:

1. specifying the source files for PAS to parse,

o

. selecting the classes and methods for PAS to instrument,

3. compiling and executing the user’s program,

4. building an object call graph from the runtime traces,

5. calculating various trace statistics and parallelization hints, and

6. visualizing object relationships and call patterns.
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Figure 4.1: VIS Architecture

VIS employs some basic visualization techniques such as coloring, interactive drag-
ging, and animation. Advanced techniques such as filtering and highlighting are used
as well. Filtering of instances and messages is necessary since call graphs are often
cluttered and difficult to analyze by human eyes. Highlighting gives the user a more
noticeable view of an important object (for example, an object that should be paral-
lelized). Besides, VIS provides miscellaneous functions such as instance and message

inspections, a source file viewer, and so on.

4.2 Architecture

The detailed architecture of VIS in Figure 4.1 shows seven Abstract Window Type
(AWT) objects: one main window, one canvas and five dialog windows. RevyWindow
is the main window of the whole Revy system. The InteractionDisplay canvas dis-
plays the object call graph. Each of the five dialog windows (Commanders) deals with
one of the three Revy files or the operating system. For example, Proj ectCommander,
AnnotationCommander, and HighlightCommander manipulate RVY, SAF and DTF
files, respectively, and FilteringCommander deals with not only the SAF file but also
the DTF file. ShellCommander sends shell commands to the operating system.

(8]
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4.3 Design

This section covers the user interface (UI) design of VIS. Ul design is human-machine
interaction analysis/design. Before presenting the results of the analysis. we state the

standards that the Revy UI design follows:

o Top-left to bottom-right: widgets are placed according to the order that the
user will interact with them, from the top-left to the bottom-right corners of a
window. This will minimize the mouse and cursor movements. For example, an
Open Dialog has the directory list widget placed on the left, the file name list
widget on the right, and the 0K and the Cancel buttons at the bottom right.

o Proper use of colors: bright colors denote important objects. The user will
therefore be able to identify the important objects on the display easily. This

is especially helpful when the display is cluttered.

o Consistent widget placement: widgets are consistently placed on dialog win-
dows. For example, a Save Dialog looks the same as an Open Dialog, except
that the Save Dialog has an extra widget — the file name field. Therefore, the
common widgets (directory list, file name list and the buttons) are located at
the same positions on both dialogs. As a result of this standard, a reusable

template dialog window called “Commander” was implemented.

The process of Ul analysis/design follows the Task Analysis methodology [GH97).
Task Analysis describes a range of procedures, the aim of which is to document the
actions performed by a user when interacting with a computer system. For the Revy
UI design, the high level actions are documented. The documentation begins with a
“fresh” Revy where the user has a sequential program only, and ends when he or she

obtains the knowledge on how to parallelize the application.

The sequence of a Revy user’s tasks are as follows: (1) starting the Revy system,
(2) defining 2 new project, (3) directing the system to annotate the code, (4) com-~
piling and executing the program to obtain runtime traces of the program, and (5)

viewing the object call graph. After looking at the call graph, the user may want
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to: (6) inspect how the program runs (that is, the call sequence), (7) filter some of
the data if the call graph is too cluttered, (8) highlight the most active instances
and messages, or (9) investigate the runtime statistics of the application to obtain
clues for parallelization. All these steps together with the relevant screen shots are

presented in Section 4.4.

The UI design process resulted in several AWT classes. We present the Class,
Responsibility and Collaborator (CRC) cards in the appendices. Appendix G shows
the supporting classes for VIS. The supporting classes are the AWT classes and View
classes. Views are components of the Model-View-Controller (MVC) paradigm [KP89)].
In our case, the View classes are views on the message and instance models. The
Model classes will be discussed in Section 6. Readers may want to study the models
before investigating the View classes. Appendix H presents the major classes of VIS,

including RevyWindow and the dialog window classes.

4.4 Revy Graphical User Interface

In this section, a walk-through of the Revy user interface is presented. It begins by
discussing how to start the Revy system. It follows the normal steps of the user,

ending with parallelization suggestions for the user.

4.4.1 Revy Main Window

Before starting the Revy system, a user must define the REVY.HOME environment pa-
rameter in a “.revy” file. The file should be placed in the current working directory,
otherwise Revy assumes the user’s home directory has a subdirectory called “revy”
which is the default Revy home directory. The user can execute the command “revy”

to start the Revy system.

The Revy main window is composed of four sections: the Menu Bar, the Button

Panel, the Main Display and the Status Panel (F igure 4.2). The Menu Bar is self-
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Figure 4.2: Revy Window

explanatory. The Button Panel consists of nine icon buttons whose picture may not
seem obvious at first glance. However, users can find out the meaning (tooltips) of a
button by pointing at it and looking at the description in the Status Panel. Figure 4.3
lists the description of the buttons. The Main Display is used for displaying an object
call graph, or in the future, displaying the class diagram as well. The Status Panel
shows which project the system is dealing with, the messages of the system to the

user, and the number of instances and messages discovered in the runtime traces.

4.4.2 Defining a New Project

'To define a new project, users select the New Project menu item or the new project
icon button. The system will pop-up a dialog window (Figure 4.4) prompting the user
for various parameters of the new project, such as the project name and the home

directory of the project. The user can click on the arrow buttons to add or remove
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FMigure 4.4: Project Dialog Window

the source files of the project. At the bottom of the dialog are the compilation and
the execution command strings. These strings are automatically generated' for the
user. Extra flags, for example the “-O" flag {or optimization. can be added in the

command strings.

4.4.3 Annotating User’s Code

Revy will generate a project file (“.rvy”) immediately after the user has defined the
project. The file is human-readable, and it contains the names of all the source files

and the two command strings. Revy will then invoke the Parsing and Annotation

'The defaults are Java compile and execution commands.
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Figure 4.5: Annotation Dialog Window

Subsystem to parse the source files and generate a Static Artifacts File (*.saf”).
This file contains all the names of the classes and methods defined in the source files.
Revy will inform the user through the Status Panel of the number of classes and

methods which have been successfully identified?.

The user can then click on the annotate icon button or select the Annotate Code
menu item to direct the system to instrument. Figure 4.5 shows the dialog window
for annotation. The user first selects the class, and then picks the methods to in-
strument. The user can also click on the Select A1l button to choose all methods
of that particular class. Since different selection mechanisms are provided, the anno-
tation process is more flexible than other profiling tools. At first, users will want to
instrument all methods. Then, as they iterate through their analysis, they will likely

be more selective in what they want to profile.

After the class and method selections, the next step is to select either the Faster
or the Better instrumentation methods. The difference between these two instru-
mentation methods will be described in Section 5.5.3. Finally, the user can click on

the Finish button to initiate the instrumentation process.

2Only concrete (non-abstract) classes and public instance methods are reported.
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Figure 4.7: Execute Dialog Window

4.4.4 Compiling and Executing

Once PAS finishes instrumenting the program, Revy will notify the user about the
number of classes and methods that have been annotated. The user can then compile
and execute the program by clicking the compile and execute icon buttons. These two
buttons generate two dialog boxes, as shown in Figure 4.6 and Figure 4.7, respectively.
The boxes contain editing areas in which the user can modify the shell commands.
Note that Revy will display the results of the compilation and execution processes on
the Status Panel. Revy assumes a DTF file is generated once the execution completes
successfully. After that, it will read in the runtime traces and display the object call

graph on the Main Display.



4.4.5 Visualizing the Runtime Object Call Graph

The runtime object call graph is displayed on the Main Display. As we can see from
Figure 4.8, circles (nodes) represent instances and directed lines (edges) represent
messages. The numbers beside the names of instances and messages are the object
and message IDs, respectively. These IDs are system generated, and are used to dif-
ferentiate instances/messages of the same name. To reduce the cluttering problems,
three techniques are applied to produce a call graph with better visibility. First, in-
stance and message names are abbreviated to eight characters long. Second, message
names are placed randomly, but near the middle of each edge. Third, instances are
displayed in a circular pattern. In other words, the main (or root) instance starts
from the center, with instances of object IDs 1 to 4 surrounding it. The instances of
object IDs 5 to 12 surround the inner circle, and so on. This circular display is sim-
ilar to the Hyperbolic Display in [LR95]. The Hyperbolic Display, which “supports
a smooth blending between focus and context, as well as continuous redirection of
the focus”, arranges all the leaf nodes along the circumference of a circular display
region. It uses tiny circles for the nodes so that all of them can be displayed on one
plane. In our case, more information has to be displayed, such as the instance and
message names. Therefore, the nodes are drawn larger to fit in the names. In the fu-

ture, a true Hyperbolic Display could be implemented as a zoomed-out mode of Revy.

Before discussing the details of the display of the call graph, we define the active
time of an object. In Revy, the term object can refer either to an instance object
or a message object. Active time has a different meaning for each kind of object.
For messages, active time is the processing time, excluding overhead times such as
method invocation time and the time to return results. In contrast, the active time
of an instance object is its execution time; that is, the total of the active times of all
its messages. We define the activity level of a message to be its active time divided
by the system’s total message active time, while the activity level of an instance is

its active time divided by the system’s total instance active time.

The main display has four features which are not so obvious. First, the color of a
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Figure 4.8: Visualizing an Object Call Graph

node or an edge identifies its activity level. Red is used for any object with an activity
level over 60%. blue is used for levels over 30% but less than 60%, green is used for
levels less than 30% and over 10%. and black is used for levels less than 10%. Second,
the details about each object can be viewed by clicking the right mouse button on
the object. Revy then pops up an Inspector Window which shows the object’s name,
class, ID, active time, activity level, and so on. Third, message names can be hidden
by clicking the left mouse button. A click on an edge hides the name of the message;
a click on a node hides the names of all its messages. To hide all message names in
the graph, the user selects the Hide Message Names menu item. Fourth, the edge
names and the nodes are draggable. As a node is being dragged, the edges leading
to it are moved accordingly. These last two features help users unclutter their object

call graphs.
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Figure 4.10: Animation Dialog Window

4.4.6 Animating Execution

There are three steps to obtain a good visualization of the runtime behaviour of a
program. They are: (1) animating program execution, (2) filtering the less important

objects from the graph, and (3) highlighting the most important objects in the graph.

The Code Execution menu item allows users to view an animation of how the
program runs as recorded in the runtime trace file. With this feature, users can gain
a better understanding of the calling patterns and the sequence of messages. While
the animation is running, the name and the order of the active message is shown
in the top-left corner of the Main Display, and the message is highlighted to denote
that it is active (Figure 4.9). The speed of the animation can be adjusted with the
scroll-bar of the Animation Dialog (Figure 4.10). Note that a runtime trace records

only one instance of the execution. Programs may have a totally different execution
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pattern on another run, depending on the input and environmental parameters.

4.4.7 Filtering Instances and Messages

Filtering helps users unclutter the object call graph by hiding less important objects.
For example, the user may want to filter all the “get” and “set” messages, as well
as all basic instances (such as something simple like a PhoneNumber instance). With
the Filtering Dialog, as shown in Figure 4.11, users can filter a single message, all
messages sent and received by an instance, all invocations of a method, and all in-
stances of a class. Note that an instance will not be displayed if it does not have any
displayable messages. In other words, there are two scenarios in which an instance is
not shown: (1) an instance does not have any recorded messages sent or received, or
(2) the instance has all its messages filtered. The filtering function is accessible with

the Filtering menu item or the filter icon button.

4.4.8 Highlighting Instances and Messages

While filtering unclutters a call graph by hiding unimportant objects, highlighting
makes an important object more noticeable by displaying it with a bright color. A
user can access the highlight dialog window (Figure 4.12) with the Highlight menu
item or the highlight icon button. As shown in the figure, Revy can highlight any
instance or message whose active time, activity level or the rank of its activity level
fulfills the criteria set by the user. The final highlighted objects are based on the
“or” result of the criteria. For example, as shown in the figure, Revy will select any
instance whose rank is in the top three, and any message whose processing time is
greater than 5000 milliseconds or whose activity level is greater than 30%. Revy will
then draw those selected messages with a light yellow background and inform the

user of the number of highlighted instances and messages through the Status Panel.
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Figure 4.13: Displaying Runtime Statistics

4.4.9 Displaying Runtime Statistics

Users are often most interested in the runtime statistics of an application. They can
query the Revy system for various statistics from the Statistics menu. F igure 4.13
displays an example of the statistics a user can obtain. Revy processes and sorts the

data before presenting it to the user.

Before discussing the supported runtime statistics, we elaborate our definition of
message active time. Recall from Section 4.4.5 that the active time of a message is the
processing time, excluding any overheads. In fact, message active time refers to the
net processing time, and aggregate message active time refers to the total processing
time of a message. For example, assume there is a message transfer() which sends
two internal messages, namely withdraw() and deposit(). The aggregate message
active time of the transfer() message is the difference between the recorded start
and finish times of the message. Its (net) message active time is its aggregate active

time less the aggregate active times of the withdraw() and deposit() messages.

In the current implementation, users are able to view the following trace statistics:

® Sort Instances by Object ID - the IDs of all instance objects,
o Sort Instances by Size - the size® of all instance objects,

e Sort Instances by Activity - the activity level of all instance objects,

3Instance size is measured in bytes.



o Sort Instances by Average Activity - the average activity level of instance objects
grouped by class (in other words, instances are grouped by their classes first.

then the average activity level is calculated),

e Sort Instances by Adjacency - the number of neighbours (instances) of all in-

stance objects,
o Sort Messages by Message Order - the IDs of all messages®,
e Sort Messages by Size - the size of all messages®,
o Sort Messages by Activity - the activity level of all messages,

o Sort Messages by Average Activity - the average activity level of messages
grouped by methods (in other words, messages are grouped by their method

signatures first, then the average activity level is computed), and

o Sort Messages by Aggregate Activity - the aggregate activity level of all mes-

sages.

Average Activity is the average activity level of the instances/messages grouped
by the corresponding aspects. Averages are necessary because we have noticed, dur-
ing our research, that the performance of some methods varies drastically depending
on the states of the objects and the program. One good example to illustrate the
problem is the methods of a BinaryTree class. Suppose there is a method search()
defined for the class. Since trees are nested in nature, one can easily see that the
searching of the median number runs fast; but the searchings of the two extreme-

most numbers take longer times to run, depending on the height of the tree.

4.5 Further Enhancements

Visualization of call graphs plays a very important role in program understanding.

Users want to perceive more information at one time while maintaining a high read-

4Message IDs are in the order of the start times of the messages.
SMessage size is measured in bytes, and defined as the total size of all the parameters of the
message.
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ability of the display. The next evolution of the Visualization and Interaction Subsys-
tem should include some features such as grouping instances and messages. zooming
in/out, auto-filtering of basic instances and messages (such as PhoneNumber objects
and get/set messages), source code animation [AC96], and so on. We can also consider
implementing the Hyperbolic Display technique as described in (LR95] and [MB95).
In essence, the key problem in program visualization is to reduce the amount of
clutter in the display. Suggestions for better visualization of programs with large hi-
erarchies and complex topologies can be found in [KS93], [TU94], [LR95], and [MB93).

4.6 Summary

This chapter discusses the Visualization and Interaction Subsystem in depth: its re-
quirements, architecture and design. Moreover, it presents the different features of
the Revy GUI and provides a detailed walk-through on how a user can start from a
sequential program to the point where he or she acquires the knowledge on how to
turn it into a parallel application. Finally, this chapter suggests a few aspects for

further enhancing the visualization in VIS.
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Chapter 5

Parsing and Annotation Subsystem

The Parsing and Annotation Subsystem (PAS) of the Revy system instruments the
user’s source code so that information is gathered and saved to a trace file as the user’s
application is running. In this chapter, we list the requirements of PAS, present its
architecture, outline its design, describe its implementation, discuss some interesting

problems and list a few future enhancements.

5.1 Requirements

The Parsing and Annotation Subsystem takes an object-oriented source program
as input. The output of PAS is an instrumented version of the user code that is
semantically the same as the original. The user can direct PAS via the Visualization
and I[nteraction Subsystem (VIS) to instrument any classes and methods. To achieve
this, PAS generates an intermediate output which is the static artifacts of the user
code. As the user’s program is running, it generates runtime traces that can be used by
the Revy Runtime Modeling Subsystem (RMS) to analyze the object communication
patterns of the program. The trace file, which is written by the PAS-instrumented

code, contains the following information:
e creation of each object,

e destruction of each object !,

1Only for languages that have explicit destructors, like C++-.
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public void transfer(double amt, Account acct)
{ /* Original Code */

this.withdraw(amt) ;

acct.deposit(amt) ;

}

public void transfer(double amt, Account acct)
{ /* Instrumented Code */
int _sze = 0 ; /* size of the message */
Hashtable _vset = new Hashtable(32) ;
.sze += 8 ; /* double */
-sze += (acct==null)? _NULLSZE:acct..rvRuntimeSize(vset) ;
RvLogger. rvLogStart(this, "transfer",
"!double~0!Account~0!", _sze) ;
{

this.withdraw(amt) ;
acct.deposit(amt) ;

}

RvLogger. rvLogEnd(this, "transfer", "'double~0!Account~0!") ;

Figure 5.1: Method Annotation

e size of each object 2, and

e for each method invocation, the start and end times, the sender and receiver

objects, the message size and the method signature.

Suppose we have the method transfer which is a member of the class Account.

Figure 5.1 shows how the method is instrumented in order to collect the trace infor-

mation stated above. Note that the objects, messages and variables that start with

underscore (“.") are the code generated by PAS. The statement “_rvLogStart()”

directs the system to log the fact that the object this is executing the transfer

method (the first and second arguments of the statement). The timing of the mes-

sage is logged by PAS internally. The identifier of this object can be retrieved by

sending instance methods to the this object. The identifier of the transfer method

2Both static and runtime sizes are supported.

38



<Msg cls=Account 0id=6 mth=transfer sgn=!double~0!Account~0!
sze=24 tid=0 t=308>

</Msg cls=Account oid=6 mth=transfer sgn=!double"0!Account"0!
tid=0 t=313>

Figure 5.2: Trace Output

(that is, the method signature) is recorded by PAS as the third argument. The ar-
gument _sze tells the system the total message size - the size of the parameter amt
(double, 8 bytes) plus the runtime size of the object acct. Finally, the statement
“rvLogEnd()” informs PAS that the invocation of the message transfer upon this
object is now finished. The actual trace output of the above code, which consists of

one method start log and one method end log, is presented in Figure 5.2.

The PAS requirements are independent of any specific object-oriented language.
The primary goal of this project is to maintain this language independence as much
as possible throughout the instrumentation process. However, there are critical dif-
ferences between various QO languages, and these differences introduce interesting
design and implementation challenges. PAS has been implemented for two languages,
Java and C++, and can easily be extended for other OO languages. The secondary
goal is to produce a solution that is independent of the target machine. That is, Revy

should be portable across different OS platforms.

5.2 Architecture

This section presents the architecture of PAS, by describing its major components
and how they interact within PAS as well as with other parts of Revy. As pointed
out in [KS93], there are various ways of collecting program dynamics, such as special
hardware, software instrumentation, and alternative methods like monitoring tools.

Revy employs software instrumentation techniques for PAS.
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Figure 5.3: PAS Architecture

5.2.1 PAS Architecture

The major objects of PAS are the Annotator, JavaSourcer, and C++Sourcer. Figure
5.3 shows the software architecture that implements PAS. From the figure, we can see
that Annotator mainly operates as a service distributor 3 on behalf of JavaSourcer
and C++Sourcer. It receives requests from the main Revy system and routes the
request to one of the Sourcers depending on the source language. The Sourcers are
responsible for parsing, collecting static artifacts and inserting instrumentation code

into user’s source files.

Annotator is the only PAS object which interfaces with the rest of Revy, and
it is responsible for starting the Sourcers. The Sourcers produce outputs which are
read by the main Revy system. As shown in Figure 3.2, Sourcers run as separate
processes. In fact, they are executed in two passes. The first Sourcer process parses
and extracts static artifacts in response to the “-getSAF” flag. Then, in response to
the “-annotateBetter” or “-annotateFaster” flags, the second Sourcer process inserts

instrumentation code according to the user’s direction. The details about these two

3The design pattern [GH94] name is Strategy.
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flags are discussed in Section 5.5.3. There is a fourth flag understood by the Sourcers.
It is the “-restore” flag, which restores the user’s original source files. All these flags
are transparent to the users if they are using the GUI. However, they have to use the

flags if they start the Sourcers on command lines.

5.2.2 Architectural Strategies

During the analysis phase of PAS, we identified four different strategies for software

instrumentation of a user’s object-oriented program:

1. Write a source-to-source translator to insert instrumentation source code into

the user’s code.

2. Write an object-code-to-object-code translator to insert instrumentation object

code into the user’s byte code (Java) or machine code (C++).

3. In the case of Java, adapt the existing “-prof” flag of the Java Virtual Machine

(VM) for profiling a Java program.
4. Modify a Java byte code interpreter to produce a trace file.

Of the four options, the first was chosen. The second option was rejected for four
reasons. First of all, it is just as difficult to translate object code as it is to translate
source code. Moreover, it is more difficult to debug object code translators since nei-
ther the inputs nor the outputs are human readable. Furthermore, this solution is not
language independent since byte code translation retains portability, while machine
code translation does not. In other words, for Java, this option produces a solution
that is portable, while for C++ each target OS needs its own translator. Finally,
with regards to optimization, the modified object code may violate the optimizations

already introduced, and the inserted instrumentation code is not optimized at all.

The third and fourth options were rejected for a few reasons. The third one does
not meet the requirements stated earlier since the “-prof” flag does not give us enough
information (Section 2.2.1), unless we elaborate it by doing something like what the

fourth option does. The fourth option is poor as it is not language independent. It
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only works for Java, but in the case of C++. there is no interpreter to modify for
compiled C++ code. Besides. even for those OO languages like Java that use inter-
preted byte codes, each target platform needs its own version of interpreter, so the

interpreter modifications are not portable.

The result of implementing the first option is a source-to-source translator named
Sourcer. We have built two Sourcers: C++Sourcer and JavaSourcer. The C-++Sourcer
was written first, in C++ using Sun’s CC compiler and the Sage++ Compiler Toolkit
version 1.9 [ER95] from the Extreme Research Group of Indiana University. The Java-
Sourcer was written in JDK version 1.1 [JS97] and JavaCC version 0.6.1 [ST97] with
the standard Java language grammar [GJ96]. JavaCC, which stands for Java Com-

piler Compiler, is from SunTest (a spin-off from Sun Microsystems)*.

5.3 Design

This section describes the major objects of PAS, their interaction and the text files

that serve as the interfaces among them.

5.3.1 Interface Files

Two files are used to transfer information between the components of the main Revy
system and PAS: the Revy Project File (RVY) and the Static Artifacts File (SAF).
Both of these files are stored as text. There is one RVY file for each user project
(application). A RVY file can be specified by programmers via VIS or with any text
editor. The file contains the names of all source code files used in the project as well
as the compile and execute commands. A SAF file, which is produced by a Sourcer in
its first pass, contains the project name, source file names, type table, and the class,
field and method tables for the user’s source code. A programmer uses VIS to select
which classes and methods to annotate. These selections are stored in the SAF file.

Another Sourcer process, which reads in the SAF file in its second pass, annotates

4We could also use JavaCC to build the C++Sourcer since it comes with a C++ grammar
specification. This would reduce system maintenance since both Sourcers would be similar.



the user’s code. Note that a SAF file is in an HTML-like format which allows the file
to be easily viewed with a modified Web browser. Samples of the interface files are

given in Appendices D and E.

5.3.2 Class, Responsibility and Collaborators

This section describes all the PAS classes in detail by providing CRC cards for each
of them. Appendix I shows the supporting classes used to model the user’s classes,
fields, methods and types. Appendix J presents the major objects involved in the
instrumentation and logging processes. Note that the JavaSourcer class inherits the
template code of a Java parser from the JavaCC package. Since the template code
was written in a procedural way, the JavaSourcer also follows this convention. The

details of the C++Sourcer are omitted since they are similar.

5.3.3 Collaboration Diagrams

Two high-level collaboration diagrams outline the responsibilities of PAS. These two
diagrams constitute the two passes of the Sourcers. The first pass has two responsi-
bilities: parsing and extracting static artifacts. Figure 5.4 shows how static artifacts
are collected from the user’s source code. It first parses concrete classes, instance or
static fields, instance methods, and parameters of each method, and records them as
the corresponding UserCode objects. Each UserCode object is then directed to write
out the static artifacts into a SAF file. The second pass is to insert instrumentation
code. Figure 5.5 demonstrates how a user source method is annotated. It first reads
the SAF file which contains the user's directions on instrumentation. It then gets
the method signature and looks up the annotation direction for a method with that
signature. As it reads the tokens in the method body, it inserts the method-start and

method-end code and generates the output into a new source file.
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Figure 5.4: Parsing And Extracting Static Artifacts
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Figure 5.5: Annotating a User’s Method

5.4 Implementation

In this section we discuss some of the challenges experienced during the implemen-
tation of the subsystem and the solutions that were employed. Examples that show

the original code as well as the instrumented version are in Appendices A to C.

5.4.1 Type Table

Revy uses a table to store information about all of the types in the user’s source code.
It is called a type table rather than a class table because many object-oriented lan-
guages are hybrid and have different type/class concepts. For instance, in Smalltalk
everything is an object and inherits from the Object class. In C++, there are three
categories of types: 1) primitive types like int or £loat, 2) structures/classes, and, 3)
pointers to structures/classes. Java is somewhere between Smalltalk and C++ with:

1) primitive types, and 2) references to objects which inherit from the class Object.

Revy generalizes the type concept by representing each source program type as
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an object, namely UserType. Each type object is classified into one of the three cate-
gories: Primitive, System or User Types. In addition to the classification. a UserType
object stores the name of the type and its size in bytes. The size of a type refers to the
static size, not the runtime object size. The differences are discussed in Section 5.4.3.
All this information is needed to instrument the code as well as to analyze the object
granularity properly. For instance, parameter sizes, which is the total number of bytes
needed to represent all of the arguments in a message, are used in computing the size

of a message.

Instances of Primitive Type represent non-class types like int, char, long, and so
on. These types are pre-defined according to the language specification. For example,
in Java, there are nine primitive types, including void. Each Primitive Type object
stores the actual size of the data items of that type. For example, the size of a char

is 2 bytes in Java.

Instances of System Type are types that come with the language library, like
Frame and Vector in Java (or, to be exact, any type that is not found in the user
source code). Since the source code for a library type is not accessible, we have fixed
the byte size of a System Type instance. Note that all instances of library classes
are represented by pointers that are 4 bytes in size. Therefore, at first glance, it
appears that we should use this size. However, the actual object size is usually more
than 4 bytes. We are interested in method granularity for the purpose of remote
execution. We cannot actually pass a pointer as a parameter when a method is exe-
cuted remotely. Instead, we must serialize the object and pass the number of bytes
the object actually has. Currently, all system types have been arbitrarily assigned
the size of 32 bytes. Some statistical data is necessary to determine the best size
to use for library objects, nevertheless, this value serves as a starting point. Note
that we do not model each individual System Type separately. Instead, they are all

classified under the same umbrella of a unique type model, with the name “_system_".

Revy models each User Type® object individually. Since we have full access to

S5For system and user types, the term “type” is being used interchangeably with the term “class”.
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the source code, every instance of a User Type is given a name and static size. The
calculation of the static size of a User Type object is discussed in Section 5.4.3. The

static size of a User Type is the lower bound of the size of an instance of that type.

5.4.2 Annotating Classes

We use multiple inheritance ® to instrument classes. Every annotated user class inher-
its from the class RvObject in addition to its original superclass(es). Each of the user
classes has one additional object ID (OID) field and five additional instance methods.
They are rv0ID, .rvClassName(), _rvGet0ID(), rvSet0ID(), rvStaticSize()
and _rvRuntimeSize(). The method _rvSet0ID() is called only once by an instru-
mented constructor when an object is created. The unique object ID is provided by

the RevyLogger object.

There is always a tradeoff between using accessor methods or accessing the fields
directly. All the above methods except for rvRuntimeSize() can be replaced by
direct accesses to the corresponding public instance fields at runtime. However, stor-
ing the static size and the class name with each instance is wasteful of space. The
annotation therefore inserts additional methods rather than introducing extra fields.
Although methods cost code space, we assume users’ applications create enough in-
stances to offset extra code space. Nevertheless, the addition of instrumentation code
results in the well-known probe effect when the code is executed. That is, the instru-
mentation takes extra memory and time, and will change the runtime characteristics

of the application. The details of the probe effect are discussed in Section 5.5.3.

5.4.3 Object Size

Object size can be queried with the instance method _rvRuntimeSize () which com-
putes the number of bytes in the object at runtime. Similarly, the rvStaticSize()

method returns the static size of a UserType object as a lower bound of the size of

6Although Java does not support true multiple inheritance, its interface concept is sufficient to
create the desired effect.



an instance. The reason we have implemented two object size routines is to allow
users to fine-tune their instrumentation against the introduced probe effects (vefer
to Section 5.5.3 for details). Both calculations use a similar algorithm. The only
difference is that the static size algorithm generates the compile-time size and the

runtime size method calculates the size by executing the algorithm at runtime.

Figure 5.6 shows how the static size of an object is calculated. The algorithm
first collects the set of all instance and static” fields defined natively in the class, and
all instance and static fields inherited from the superclasses. (That is the statement
“this.getAllFields()”.) It is important to identify the static fields as well as the
instance fields since when an ob ject is passed as a parameter to a remote message, the
class information must be sent to the remote site along with the instance information,
By collecting the fields into a set, any duplicate fields are ignored. For example, there
will be only one count of the field id of Student if it derives from the class Person,

providing that both classes have defined their own field id.

Once all the fields are identified, PAS recursively queries the object referenced
by each field, asking for its runtime size. (In the case of static size, PAS recur-
sively queries the UserType object of each field, i.e. the statement in the while-loop:
“f.getType() - IvStaticSize(visitedSet)”.) Note that this recursive method is
called with a parameter - a visited-ob ject set (or a visited-class set, in the case of
static size) - so that cycles can be identified during this object traversal. (Refer to
»

the base case statement “if (visitedSet.contains (this)) ... return ... in

the figure.)

5.4.4 Annotating Methods

Revy allows users to choose which methods to instrument. From each instrumented
method call, we must identify five pieces of information: the method, the receiver ob-

Ject, the sender object, the duration of the call, and the total size of the parameters.

"In Java, final fields are not considered since we assume the compiler will optimize the code such
that an instance will not carry any final fields with jtsell.
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/* UserType method: calculate lower bound size of an instance */
public int _rvStaticSize(Set visitedSet)
{
/* base case */
if(visitedSet.contains(this)) { return(POINTERSIZE) ; }
visitedSet.add(this) ;
/* first collects all native and superclass’ fields */
e = this.getAllFields() ;
/* then recursive call on the type of each field */
while(e.hasMoreElements())
{
f = (UserField) e.nextElement() ;
statSze = statSze + f.getType() . rvStaticSize(visitedSet) ;

}

return(statSze) ;

Figure 5.6: An Example of Finding Static Object Size

The receiver object in a method is easy to identify since all object-oriented languages
provide a pseudo variable that is bound to it (the variable is called this in both Java

and C++). Identifying the other information is not quite so straightforward.

The method name and receiver class are sufficient to uniquely identify methods
in some languages like Smalltalk, but not enough in languages which support static
multi-methods. Static multi-methods exist in some languages that support static
typing. In those languages, methods can have the same name but have different
parameter types. Therefore, we generate a signature for each method based on its
name, static receiver type and static parameter types. We do not include the static

return type since method dispatch ignores return types.

We compute the duration of a message by inserting start-method and end-method
instrumentation code in the method. These two instrumentations will record the start
and end times of the message, and hence the duration of the message can be deter-

mined by the time difference. For a start-method instrumentation. we can simply
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insert the code at the beginning of the method body. However, the insertion of an
end-method is not as easy as it seems. A method may have no return. one return.
conditional return or exceptional return statements. Our Sourcer identifies all poten-

tial return points and inserts an end-method log before each of them.

In order for Revy to build the object call graph, we need to identify the sender
of a message. In Smalltalk, recording the sender object for each method invocation
is easy since there is a built-in method #sender which returns the caller of the ac-
tive method. In Java and C++, no such method is available. However, given two
sequential start-method log entries, we know that the sender of the second method is
the receiver of the first one. This simple observation is modified slightly in the case
of Java where the language supports multiple threads. In this case, we need another
piece of information, the thread ID, for each method. The details of how traces are

translated will be discussed in Section 6.4.2.

5.4.5 Message Size

The size of a message is the sum of the sizes of all of its parameters, since each of
these parameters must be serialized into a byte stream when a method is invoked
remotely. Message size is computed at runtime. Each parameter is asked for its
runtime type, and the size of the parameter is determined by the classification of
its type. The sizes of Primitive and System Types are fixed and pre-determined as
discussed in Section 5.4.1. The size of objects with UserType has been discussed in
Section 5.4.3. Since this calculation is performed at runtime, it can potentially create
a major probe effect, especially if a collection of objects is passed as a parameter. To
reduce the probe effect, we provide the user with an alternative solution. Instead of
computing the actual size of the collection of objects, we can sample the collection to
compute an estimated size. The sampling algorithm asks the size of the first element
of the collection, then multiplies that size by the length of the collection. The size
of an array can be correctly determined in Java by accessing its public field length.

However, this is not possible in C++ and hence we assume all arrays are of fixed
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method(int a, char b[], Frame c, Person d, Student e[][])

int _approxSize =

4 + /* a: int is primitive, so fixed */
2 * b.length + /#* b: char is primitive, so fixed */
/* b: array, so multiplied by length */

DFLT.SZE + /* c: frame is system type, so fixed */
((d == null)? _NULLSZE:d..rvStaticSize()) +
/* d: Person is user type, so query */
/* d: make sure not null first */
((e[0][0] == null)? _DFLT.SZE:e[0][0].rvStaticSize())
* e.length[0] * e.length ;
/* e: array & user type, so sampling */
/* e: make sure 1st element not null */
/* e: then multiplied by the length */

Figure 5.7: Finding Method Size by Sampling

length®, Figures 5.7 and 5.8 show how a method size is calculated approximately
and exactly (assuming Frame is a System Type, while Person and Student are User
Types). Note that both solutions - the accurate but expensive, and the fast but

approximate - are available to the user for fine-tuning the instrumented application.

5.5 Problems and Concerns

5.5.1 Problems with Tools

Both Sage++ and JavaCC have problems that needed to be worked around. This

section describes these problems in turn.

Sage++

Sage++ is a powerful source-to-source translator tool. It was used for our C++Sourcer.
Sage++ provides a fairly complete library of functions, and developers can use it to

parse files written in C, C++ or Fortran. The main problem with their library is its

8The default collection size is 8, and it is a user-configurable parameter.
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method(int a, char b[], Frame c, Person d, Student e[][])

int _exactSize =

4+ /* a: int is primitive , so fixed */

2 * b.length + /* b: char is primitive , so fixed */
/* b: array, so multiply by length */

DFLT SZE + /* c: frame is system type, so fixed */

((d == null)? _NULL.SZE:d._rvRuntimeSize()) ;
/* d: Person is user type, so query */
/* d: make sure not null first */

for(i=0 ; i < e.length ; i++)

for(j=0 ; j < e.length[i] ; j++)
-exactSize = _exactSize +
(Celil[j] == null)? NULL.SZE:e[i] [j].xrvRuntimeSize()) ;

/* e: array & user type,loop inside */
/* e: Student is user type, so query */
/* e: make sure not null first */

Figure 5.8: Finding the Exact Method Size

lack of object-orientation. Sage was first written in C, and the developers changed
to C++ by wrapping structures with classes. Hence, Sage++ is not really object-
oriented. Another limitation of Sage++ is that it fails to support many features in
C/C++. For example, the class iostream is not supported, and therefore, we have
to assume users do not write any cout or cin statements. This is a serious limitation
in practice. Similarly, Sage++ cannot resolve #include statements. Users have to
use a preprocessor like “CC -E” to merge the include files before feeding the source
into Sage++. However, the processed source is still not clear enough for Sage++
as it usually contains #pragma comments that have to removed. In essence, Sage++

is powerful yet it does not work well with code written by a typical C++ programmer.

JavaCC

JavaCC, which is essentially YACC in Java, is a basic parser generator tool. Our Java-
Sourcer was written with JavaCC. Being supplied with a language grammar. JavaCC

can parse a file written in that language. Unfortunately, it provides developers with
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just a few library functions, and forces users to build/rebuild a lot of routines. There
are pros and cons to YACC in Java. Programmers can write embedded Java code in
YACC-style JavaCC programs. Despite the fact that it is written in an OO language.
the design of JavaCC does not seem to be object-oriented. Users are forced to write
static methods which, in fact, are functions in non-OO languages. As Java is 20 times
slower than C [FL96], so are JavaCC programs since they are written in Java. Nev-
ertheless, JavaCC is an appropriate choice for two reasons. The main reason is that
JavaCC, written in Java, supports Unicode escapes. Therefore, we are guaranteed
to parse the user’s sources as well as to generate new sources correctly. Secondly,
our primary target language is Java, and JavaCC allows us to modify sources with

embedded Java code. In essence, JavaCC is powerful enough to be used in this project.

5.5.2 Language Problems

Different languages have different strengths and weaknesses. From the perspective of
Revy requirements, we will discuss them in the following categories: classes, methods

and parameters, and exceptions.

Classes

Some languages include a class reference or a class name in each of the instances cre-
ated, like Smalltalk and Java, while some do not, like C++. If this is supported
by the language itself, we do not have to attach a field/method with every ob-
ject/class, and thus the object overhead is not increased. However, Java gives us
more than we need - it gives the class name together with the package name. For
example, the aVector.getClass().getName() message returns not “Vector” but

“java.util.Vector”. We therefore keep our own class name copy for each class.

True multiple inheritance gives developers higher flexibility. However, it also
makes the analysis of a user’s code more complex. C++ supports true multiple
inheritance while Java simulates it, and Smalltalk supports none. From the Revy

system point of view, the inheritance model in Java is sufficient to create the desired
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effect. For example, an instance of the Thread class has two “hats” (two types),
namely, Thread and Runnable, because the definition of the class Thread implements
the interface Runnable. We call this type of inheritance model "multiple-typing”,
as it makes all instances belong to exactly one class and can be tagged with more
than one type. Multiple typing is just what is needed in Revy. All the Revy log
routines are invoked with the object this in the user’s code. However, it does not
make sense to define different log routines for each possible type of this. Hence,
we have made all user’s classes implement the interface _RvOb ject, and we have de-

fined only one single log routine which takes the this object as of the type RvObject.

Methods and Parameters

The major problems with a method are its signature and parameters. Since both Java
and C++ support static multi-methods, we have to uniquely identify a method by
generating a method signature. Fortunately, the generation of a method signature is
not expensive as it is a one-time process during the parsing phase. However, finding
the size of the passed parameters can be costly and it requires runtime calculation.
Furthermore, while we are able to calculate the exact parameter size in Java, it is
impossible in C++. The key difference is that in Java we can ask a parameter for its
class and the length, if it is an array. In C++, parameters can be pointers, structures
or even pass-by-reference types. We have no way to tell whether a pointer actually
represents an array or not. If so, what is the length of the array, and does it contain

pointers to other arrays? These questions are not answerable in C++.

Exceptions

One of the concerns about any programming language is its support for exceptions.
Exception handling mechanisms make applications more robust, but the control flow
can be hard to manage. Explicit exceptions in a method are similar to return state-
ments, and they need to be identified in Revy. However, implicit exceptions may not
be easy to handle. For example, Java has a well-defined list of implicit exceptions like

NullPointerException and IllegalArgumentException. Since Java is a statically
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typed language, the compiler is able to filter out some implicit exceptions such as
illegal-type or no-such-method exceptions. Users can also raise (or “throw” in Java
terminology) their own exceptions provided they have declared them in the method
header. Therefore, identifying implicit exceptions in Java is not difficult. In contrast.
Smalltalk has a large set of implicit exceptions, and no static typing. Hence. identi-

fying and trapping exceptions is not as easy in Smalltalk.

5.5.3 Probe Effects

Probe effects will occur in the Revy system due to the code inserted to collect run-
time traces. There are two sources for probe effects: object and method overheads.
Object overhead consists of the additional methods and data fields attached to each
object. This increases the compiled code size and the runtime memory requirements.
Our implementation adds one field and five methods to each instrumented class. In
fact, the two message size computation methods can be omitted if the class to be in-
strumented inherits from another instrumented class, provided that it does not define
additional native fields. Such cases are quite rare, and so we include the methods in

any case.

Method overhead mainly originates from three sources: computation of parameter
size, generation of a log string, and I/O access. To amortize the I/O cost, we use
buffers, i.e. the classes StringBuffer and BufferedOutputStream in Java. During
the generation of a log string, several costs accrue: system clock access, thread ac-
cess, and object and method details inquiries. These costs are almost un-avoidable
except to shorten the log strings. The computation of the parameter size involves
querying the size of each parameter dynamically. We also provide a tradeoff solution
as mentioned in Section 5.4.5: estimating the size of an array by sampling. Such a
tradeoff has justifications because a (potential) parallel application usually uses large
amount of numeric data which are passed back and forth as large arrays. Numeric
data is fixed in size, and we can always ask for the dimension and length of an array

in Java.
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To reduce these two probe effects, we can measure the compiled code size, runtime
memory requiremnents and speed of the instrumented program. and compare these as-
pects against those of the un-instrumented program. Users can always switch from
an exact but expensive instrumentation to a fast but approximate instrumentation.
The exact instrumentation, which can be selected by passing the “-annotateBetter”
flag on the command line, has calls to the .rvRuntimeSize () method; while the fast

one (that is, the “-annotateFaster” flag), has calls to the method rvStaticSize().

5.6 Further Enhancements

The Parsing and Annotation Subsystem can be enhanced in several ways. We can
be more accurate in the annotation of code when dealing with the language specific
issues, such as handling exceptions, and we can also be more exact in logging details,

such as method signatures.

Catching Exceptions. Currently, Revy does not handle the implicit exceptions of
standard Java and the user’s explicit exceptions. For instance, NullPointerException,
an implicit exception which is usually due to a runtime error, is not caught by Revy
and will force the user’s program as well as RevyLogger to terminate. Explicit ex-
ceptions which are declared in the method header are not handled by JavaSourcer
either. Explicit exceptions will not cause the user’s program or RevyLogger to fail,
but the current active method will abort. As a result, we will fail to log the end
of the method. For both situations we could implement a catch-all solution. For
each single method, including the main() function, we could catch all Java implicit
exceptions and all the user’s explicit exceptions defined in the method header. After
the catch, we could re-raise whatever exceptions we have caught. Figure 5.9 shows
the instrumented code. We can see that the resulting code looks very complex, and

is hard to read and understand. For C++, we do not handle any exceptions.

Generating Signatures. The current implementation of PAS identifies a method by

its method name, class and parameters’ types, but groups all system types together.
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/* Original Code */
public void method() throws FileNotFoundException

{

f = new FileInputStream("foo.java") ;

}

/* Instrumented Code */
public void method() throws FileNotFoundException

{

try

{

try

{
}

catch(FileNotFoundException e1) {rvLogEnd(...) ; throw el ;}
/* all user explicit exceptions go here */

}

catch(IllegalPointerException eN) {.rvLogEnd(...) ; throw eN ;}
/* all Java implicit exceptions go here */

}

f = new FilelnputStream("foo.java") ;

Figure 5.9: Catching All Exceptions

However, such simplification may confuse the logger. Figure 5.10 shows two methods
(the second and third methods) which have the same method name and same number
of arguments, but use different system types. These two methods end up with the
same method signature, because PAS does not distinguish between individual system
types and it collectively names them “_system”. A solution is to assign a separate

name for each system type.

5.7 Summary

In this chapter, we discussed one of the key components of the Revy system - the
Parsing and Annotation Subsystem. We analyzed its requirements, presented the

architecture and provided a design solution. Moreover, we discussed the challenges,
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Format of a method signature:
'type”arrayDimension!type~arrayDimension!. ..

1.public int hire(int i[], Employee e, Vector v)
signature: !.system."1!Employee~0! system.~0

2.public int hire(int i[], Student s, Vector v)
signature: !_system_"1!Student"0!.system."0

3.public int hire(int i[], Student s, Hashtable h)
signature: !_system_"1!Student~0! system."0

Figure 5.10: Method Signatures

problems and concerns we encountered during the development phase. Finally, we
suggested a few future enhancements for PAS. PAS was implemented for two different
object-oriented languages: C++ and Java. Although, PAS has not been implemented
for Smalltalk, its object model was considered. Therefore we were able to generalize
most concepts of typical OO languages. Being provided with the well-defined inter-
face files, PAS can be a stand-alone application. We believe that PAS can be extended
so that it will become a more powerful and generic source-to-source translation tool

for OO languages.
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Chapter 6
Runtime Modeling Subsystem

While PAS instruments a user’s object-oriented program, the Runtime Modeling Sub-
system (RMS) of Revy traces and interprets the dynamic behaviour of the program
for the user to visualize using VIS. This chapter lists the requirements of RMS, and
presents its architecture, design and implementation. In addition, we discuss some of

the outstanding issues and suggest a few further enhancements of RMS.

6.1 Requirements

The goal of the Runtime Modeling Subsystem is to collect the runtime statistics of an
OO program and construct the object communication patterns (an object call graph)
for the Visualization and Interaction Subsystem to present to the user. To achieve

this, RMS is required to:

o log the creations of instances and the invocations of methods instrumented by
the Parsing and Annotation Subsystem to a trace file while the user’s program

is running,
o translate the trace file to a logical object call graph for VIS, and

® process, calculate and sort the runtime statistical data of the instances and

messages for VIS to display.

The modular design of Revy implies a requirement that the subsystem should be

able to start and be tested even without a GUI. In addition, the Revy system imposes
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Figure 6.1: RMS Architecture

two interface requirements: (1) a physical file, Dynamic Trace File (DTF) in which
the runtime traces are saved, and (2) an ObjectGraph instance which is a logical
representation of the DTF file. These are the required interface between RMS and

the rest of the system.

6.2 Architecture

The Runtime Modeling Subsystem has two components: the majority of RMS be-
longs to the Revy process, and the rest is part of the user’s application process, as
shown in Figure 6.1. The RevyLogger! object is responsible for writing the runtime
traces to a DTF file. DTFReader reads the DTF file and creates an ObjectGraph
instance. ObjectGraph stores the object communication pattern, and computes and
processes the runtime statistics used by the Visualization and Interaction Subsys-
tem. Note that there exists a pipeline pattern in the RMS architecture diagram: the
RevyLogger object writes to a DTF file while the DTFReader object reads from the
file. Such a pattern is ideal for asynchronous processing. Nevertheless, the current

implementation of the Runtime Modeling Subsystem is a post-mortem analyzer.

1The actual class name of RevyLogger is RvLogger.
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Instance Creation Log
<Crt cls=CLASS 0id=O0BJ_ID sze=INSTANCE_STATIC_SIZE tid=THREAD_ID>

e.g.. <Crt cls=Account oid=6 sze=l6 tid=0>

Instance Destruction Log
<Dst cls=CLASS 0id=OBJ_ID tid=THREAD_ID>

€.8.. <Dst cls=Account oid=6 tid=0>

Method Invocation Log
<Msg cls=CLASS 0id=OBJ_ID mth=METHOD sgn=METHOD_SIGN Sze=METHOD_SIZE tid=THREAD_ID t=TIME_STAMP>

€.8.. <Msg cls=Account oid=6 mth=transfer sgn=!double~0!Account~0! sze=24 tid=0 t=293>

Method Return Log
</Msg cls=CLASS 0id=0BJECT.ID mth=METHOD 3gn=METHOD_SIGNATURE tid=THREAD_ID t=TIME_STAMP>

€.8.. </Msg clssAccount oid=6 mthswithdraw sgn=!double”0! tid=0 t=295>

Figure 6.2: Format of the Dynamic Trace File

6.3 Design

In this section, the design of the Dynamic Trace File (DTF) is presented, and the

software design of the classes of RMS and their interaction are also discussed.

6.3.1 Dynamic Trace File

The required physical interface between VIS and RMS is a Dynamic Trace File (DTF),
which can have four types of entries: (1) instance creation, (2) instance destruction?,
(3) method invocation, and (4) method return. Each entry in a DTF file occupies
one line. The format of a DTF file is shown in Figure 6.2. Note that a DTF file is
stored as text format with HTML conventions. The embedded HTML tags allow a
DTF file to be easily viewed with a modified Web browser. The text format allows
users to read and understand the context. Hence, users can inspect the log details in

the trace file manually. A sample of a DTF file is given in Appendix F.

Only exists for languages that have explicit destructors, like C++.
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Figure 6.3: Logging Runtime Traces

6.3.2 Class, Responsibility and Collaborators

The classes of RMS can be classified into two categories: supporting and major
classes. The supporting classes, InstanceModel and MessageModel, are responsible
for modeling the instances and messages, respectively, as recorded in the trace file.
These classes are used in conjunction with the supporting classes of the Parsing and
Annotation Subsystem (PAS): the UserClass and UserMethod classes. Appendix K
presents the RMS supporting classes. The major classes of RMS are the RevyLogger,
DTFReader and ObjectGraph classes. These classes are major in a sense that they
perform most of the processing tasks in the subsystem. Appendix L shows the major
classes of RMS.

6.3.3 Collaboration Diagrams

The collaboration diagrams of RMS are presented according to the three require-
ments stated in Section 6.1. Figure 6.3 shows how the RevyLogger object is invoked
to record the runtime behaviour of a user’s program. The tasks of the DTFReader
object are presented in Figure 6.4. Figure 6.5 demonstrates how the ObjectGraph

instance is queried for the runtime statistics.
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Figure 6.5: Querying Statistics
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6.4 Implementation

In this section, we discuss the challenges that arose during the implementation of the
three tasks of RMS: logging runtime traces, translating the trace file to a call graph,

and the collection of runtime statistics.

6.4.1 Logging Runtime Traces

The logging responsibility of RMS is to record the invocation of each instrumented
method, whether the method is a constructor or a regular method. The logging rou-
tines are attached to the user’s code, therefore the implementation depends on the
user’s programming language. The RevyLogger class implements the logging routines.
A natural OO design is to have all user class objects derive their logging behaviour
from RevyLogger, since each instance is responsible for logging its own messages.
However, some user’s classes already inherit from other classes. To preserve the se-
mantics of the user’s program, the natural OO design can only be implemented if the
programming language supports multiple inheritance. However, multiple inheritance
does not exist in all OO languages. Although C++ supports multiple inheritance,
Java does not. Therefore, a generic RevyLogger is implemented as a stand-alone
class. None of the user’s classes derive from RevyLogger, and therefore none of the
user’s objects inherit the logging methods. The user's objects can access the log-
ging routines directly since the routines are implemented as static functions. Static
functions are faster than instance methods and therefore the efficiency of the logging

process is increased.

6.4.2 Translating Traces

The translation process takes a DTF file as input, parses it and creates an 0b jectGraph
instance. Note that each entry in the DTF file is on a single line and corresponds
to one method call. A DTF file can therefore be perceived as a message stack. The
receiver of the current message is recorded in the object ID attribute of the line. The

sender of the current message is identified as the receiver of the outstanding message,
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The Code

acctA.transfer(100.0, acctB); . .
3. outstanding message is the

;(aublic void transfer(double amt, Account acct) top message of the stack
this.withdraw{amt); (stack grows downward)
acct.deposit(amt);

}

4. sender

finished message
The DTF File:

/

<Msg cls=Account oid=6 mth=transfer sgn=!double”0!Account*0! sze=24 tid=0
<Msg clssAccount oid=6 mth=withdraw sgn=!double~0! sze=8 tid=0 :=294>}
</Msg clssAccount o0id=6 mth=withdraw sgn=!double~0! tid=0 t©=295>

<Msg clssAccount o0id=2 mth=deposit sgn=!double”0! sze=8 tid=0 t=297>
A

1. current message 2. receiver

£=293>

Figure 6.6: Identifying Message Sender

which is the top message on the message stack. A snapshot of a DTF file together
with a brief explanation of the translation of the algorithm is presented in Figure 6.6.
This algorithm was modified slightly in the case of Java, where multiple threads are
supported. In this case, the message log entries from different threads may be inter-
leaved. However, logically there is one message stack for each thread. Therefore, we

store the thread ID for each thread, and the rest of the algorithm is same.

To resolve the timings, we record the time stamp of the last log entry for each
thread, and label it as the “last time stamp”. The net processing time of a message
is calculated by taking the last time stamp, subtracting it from the time stamp of the
current message, and accumulating the result as the net processing time of the out-
standing message. The execution time of an instance is the sum of the net processing
time of all its messages. To find out the aggregate processing time of a message, we
simply record the time stamp of its start-message log as the message start time, and
the time stamp of its end-message log as message end time. The aggregate time is

then the difference between these two time stamps.



6.4.3 Call Graph and Statistics

After the DTFReader has built an ObjectGraph instance and calculated individual
objects’ statistics, post-parsing routines can be executed. For example. the total
application execution time, the activity level of each message and instance, and the
adjacencies of instances can be computed. In the future, we can implement other

post-parsing routines such as the groupings of instances and messages.

The ObjectGraph instance is responsible for returning the results of the queries
from the Visualization and Interaction Subsystem. The current implementation in-
cludes: instance size, instance execution times, instance average execution times,
message size, message net and total processing times, and message average process-
ing times. In addition, other information is available, such as object IDs, message

orders, adjacencies of instances, and so on.

Our implementation includes a generic sorting routine, which sorts any one of
the above statistics before VIS presents it to the user. During the testing phase, we
noticed that users may sometimes re-query the system for the same statistics. Hence,
an ObjectGraph keeps a cached copy of the sort results to avoid repeated sortings

(see Figure 6.5).

6.5 Concerns and Further Enhancements

In this section, we discuss the problems and outstanding issues we have encountered
during the development of RMS. The problems are described according to the func-

tionality of each object.

6.5.1 RevyLogger

The main concern about the logging facility is the probe effect. Recall that probe
effects can occur when the code inserted to collect runtime traces is executed. Several

techniques are employed to reduce the effect, as described in Section 5.5.3. Despite
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these techniques, the size of the probe effect for Java as reported in Chapter 7 is
roughly 2 to 3 milliseconds per logging routine call. To further reduce this overhead,
the logger can be modified to write binary data instead of text data. That is, in the
case of Java, it can use the class ObjectOutputStream for logging. This technique
will save time in two ways: (1) no translation time of objects to text strings, and
(2) shorter I/O time due to the fact that the size of the binary representation of an
object is smaller than its textual representation. This will also reduce the execution
time of the DTFReader object as well. The disadvantage of this technique is that the

user will lose the ability to easily read the trace files.

Another concern is the robustness of the logger object. Robustness usually con-
flicts with efficiency. For example, RevyLogger uses a buffered I/0 stream of size 32
kilobytes. This large size was chosen because testing revealed that a trace file could
easily have a size over 10 or even 100 kilobytes. However, this simple buffering scheme
is subject to data loss. For instance, as pointed out in Section 5.6, an uncaught ex-
ception can cause the user’s program, as well as the logger object, to terminate. As
a result of such an unexpected termination, some of the trace data in the logger’s
buffer is lost. There is a tradeoff: either increase the robustness by using no buffer
(or a smaller buffer), or increase the efficiency by using a large buffer. This project
assumes that the user provides a sound program with valid inputs, and therefore the
program should execute until it terminates gracefully, and the trace file should be
complete as well. Hence, a larger buffer for RevyLogger is used to increase efficiency,

but with a chance of loss if abnormal termination occurs.

6.5.2 DTFReader

The current implementation of DTFReader is stable. The only concern is its efficiency,
as it usually handles large DTF files. There are various areas in which the DTFReader
can be further enhanced. First, as will be pointed out in Section 7.5.2, the DTFReader
can be optimized by using fewer classes with built-in synchronized methods. For ex-
ample, arrays should be used instead of the Vector and Hashtable classes, provided

the size of the collection is known beforehand. Second, the DTFReader object could
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be parallelized to improve the performance. Third, while the current implementation
is a post-mortem reader, the next implementation should be asynchronous with the
writing process of RevyLogger. In general, the DTFReader’s code is complete and
correct in the current implementation, and the next evolution is to fine-tune its per-

formance so that users will find it more responsive.

6.5.3 O0ObjectGraph

ObjectGraph has dual responsibilities: to store the call graph details, and to com-
pute the runtime statistics. The storage of the graph details is trivial and its code
is mature. The statistical calculation is the part that could be enhanced. There
exist other opportunities for gathering additional data, such as communication and
processing costs. However, we need the user’s aid for these types of calculations. For
instance, we could make use of the number of machines, communication cost per byte
between two machines, relative processing costs per unit of time, and so on. This
part of Revy would require future research efforts. Nevertheless, the result of our
current research is sufficient for multiprocessor machines with shared memory (SMP
machines), because the communication costs between two CPUs is negligible, and the

processing power of all CPUs are the same.

Other future research could focus on load balancing and graph partitioning al-
gorithms, such as those discussed in [CT92): Bin Packing, Randomization, Pressure
Model and the Manager-Worker scheme, and those discussed in [SB96): Heaviest-
Edge-First (HEF), Minimal Communication (MC), Kernighan-Lin (KL). By using
these algorithms, Revy would become a more complete parallelization advisor. Fi-
nally, if the future ObjectGraph is enriched in these ways, its computation responsi-
bility should be separated from its call graph storage responsibility by creating a new

class called GraphAnalyzer.



6.6 Summary

This chapter discusses the Runtime Modeling Subsystem (RMS) of Revy. The three
requirements of the subsystem: logging traces, parsing traces, and computing runtime
statistics were presented. In addition, its architecture, design and implementation de-
tails were provided. Moreover, we discussed the problems and concerns encountered
during the development phase, and suggested some further enhancements for RMS.
Although, there exist many opportunities for improvement, RMS provides an ob-
ject call graph as a basic framework for the application of parallelization algorithms,
Further enhancements would transform Revy into a better program parallelization

advising tool.
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Chapter 7

Experimental Results

The Revy System is a parallelization advisor which provides runtime statistics to
users. The usefulness of the statistics cannot be justified unless we perform experi-
ments on some applications using Revy. This chapter outlines the results from the
testing of three applications. Other issues and problems that arose during the course
of the experiments are also discussed here. Although these issues are not related to the
main research goals, they are noteworthy, and further demonstrate some precautions
in implementing and parallelizing an Object-Oriented system. The experimental re-
sults show that the stated requirements of Revy have been met, and justify that users

can have a better understanding of any parallelization bottleneck in their programs.

7.1 Test Bed

The testing employed three applications, namely the DTF file reader component of
Revy, an HTML file parser and a zip program. All of the applications were written
in Java. The DTF file reader is the one discussed in Chapter 6. Hence, we tested
Revy on Revy itself. The HTML file parser and the zip program were obtained from
the Internet, and they can be found at [KO96] and [LE96], respectively. On all the
applications, we applied Revy to obtain runtime statistics, parallelized the code man-
ually based on the hints gained from examining the Revy output, and compared the
sequential and the parallel performance. In addition, we also measured the probe

effects due to instrumentation.
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The testing used two Java version 1.1.3 Virtual Machines. One is the regular
version with the Java Green Threads (JGT) package, and the other VM is packaged
with a beta release of Java Native Threads (JNT). The JGT package implements a
coarse time-slicing technique to execute many VM threads which map to only one
kernel thread on a single processor. The JNT package uses the many-to-many multi-
threading model [SS97] on a multi-processor machine. JNT allows a program to have
as many threads as appropriate, and each thread is mapped to exactly one kernel
thread. For all experiments, we used Java's default start-up parameters, such as 16
megabyte maximum heap size, 1 MB initial heap size, and so on. The experiments
were performed on a Sun UltraSparc station with two 200 MHz SuperSparc proces-
sors, 128 MB of main memory, and running Solaris 2.5.1. The testings were timed
using the UNIX C-Shell built-in command “time”. For each application, we com-
pared its execution time in three settings: (1) the sequential version running with
JGT, (2) a parallel version of the same program with JGT, and (3) the same parallel

version running with JNT.

7.2 DTFReader

7.2.1 Program Description

DTFReader is an object-oriented program which reads in a DTF file and constructs
an object graph in memory without the GUI. It consists of 16 classes and 174 public
instance methods. Given a small DTF file, it can generate a huge runtime trace file
if full instrumentation is requested. The following sections discuss the analysis and

experimental results of the DTFReader.

7.2.2 Runtime Heuristics

The OO nature of the DTFReader causes the program to have a very fine gran-
ularity. With a 1.7 KB input file, the DTFReader produces a 181 KB trace file.
The original object call graph generated from the trace file was too cluttered, so we

had to re-arrange the objects, and apply the filtering function to hide all simple in-
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stances and “get”/“set” messages. Figure 7.1 shows a screen shot of the resulting
call graph. The graph, which originally consisted of 131 instances and 1028 messages
before filtering, had 19 instances and 51 messages after filtering. We highlighted a
few instances and messages which were the most active in the system, and thus were
the potential objects to be parallelized. We then inspected their actual active times.
Figure 7.2 shows the active times of all instances and the aggregate (total) active
times of all messages. The runtime statistics show that the most active instance
was DTFReader:36', with an active time of over 7000 milliseconds. The second most
active instance, ObjectGraph:33, had an active time of 528 milliseconds. For this
example, it would not be beneficial to create Obj ectGraph on a separate thread, since
it was active only for a few hundred milliseconds and constituted only 4.6% of the
total active time of the application. We estimate that an object has to be active for

over 1000 milliseconds in order to justify the overhead of spawning a new thread.

The messages that executed for about 1000 milliseconds or more are 5:run()?,
6:read(), 8:readLines(), 870:doStatistics() and 927:doMessageStats() (see
Figure 7.2). They were the candidate messages to be executed remotely. However, all
of them were circular messages of DTFReader. That is, they were sent and received
by the same DTFReader instance. If a DTFReader instance is spawned remotely, all
its circular messages will execute on the remote thread as well. Therefore, either the
messages or the instance could be executed remotely, but not both. At this point, we
have examined all instances and messages that executed over 1000 milliseconds, and
DTFReader is the final candidate for parallelization. The test results of distributing

the instances of DTFReader are presented in the next section.

7.2.3 Parallelization Results

The application was parallelized by making the class DTFReader a subclass of Thread.
The test program was run for three different times with an input of: one, two and four

180-kilobyte DTF files. The program created one, two and four threads, respectively.

The number following the class name of an object is the object ID.
>The number preceding the method name of a message is the message [D.

=3
(3]



Figure 7.2: Runtime Statistics of the DTFReader Application
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DTFReader

Sequential w/ JGT Parallel w/ JGT Parallel w/ JNT

#of | user sys. wall cpu | user sys. wall cpu | user sys. wall cpu

files | time time clk, usg. | time time «clk. usg. | time time clk. usg.

L 90s 0.0s 0:10 91% | 90s 0.0s 0:09 94% | 9.0s 00s 0:10 93%
2| 180s 0.0s 0:18 94% | 180s 00s 0:18 97% | 19.0s 0.0s 0:16 117%
4]1360s 00s 0:36 97% [36.0s 0.0s 0:36 97% | 45.0s 3.0s 0:31 154%

Table 7.1: Performance of the Paralle]l DTFReader

Table 7.1 presents the performance of a sequential DTFReader, a parallel version with
JGT, and a parallel version with JNT. There are four observations that are worthy of
discussion. First, the parallel version with JGT could not outperform the sequential
version since only one processor could be used. Second, the performance is faster by
about 11% for 2 files (18 seconds vs. 16 seconds) and 14% for 4 files (36 seconds
vs. 31 seconds) in the parallel version with JNT. Third, the CPU utilization rates
were over 100% in the 2- and 4-thread versions, which suggests that the threads were
keeping the two CPUs busy at the same time. Fourth, in the case of four threads, the
system time was greater than zero. This implies that the threads were competing for
the two CPUs, and therefore time was spent on system calls, context switches, thread
interrupts, and so on. For this example, Revy successfully helped us parallelize the

application and obtain performance gains.

7.2.4 Probe Effects

The probe effects due to the annotation of the DTFReader were analyzed with differ-
ent combinations of class and method instrumentation. Each of these combinations
logged different numbers of instances and messages, which were plotted against the
execution times (CPU time) of the program. For DTFReader, we had four different
instrumentations: (1) Max - instrumented all classes and methods, (2) Half M - half
of the methods in each class, (3) Half C - all the methods in half of the classes, and
(4) Quarter - half of the methods in half of the classes. The performance of the
better annotation was compared to that of the faster annotation (see Section 5.5.3).
We present the timings of the DTFReader for a 26-kilobyte file in Table 7.2, and the
data is plotted in Figure 7.3.



DTFReader
None | Quarter | Half C | Half M | Max
instances 628 628 2712 2713
messages 4941 11603 | 6592 | 15906
1.35 s
faster 150s | 31.0s | 21.0s | 45.0 s
better 150s | 32.0s | 22.0s | 45.0s

Table 7.2: Timings of the Probe Effects of DTFReader
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Figure 7.3: Plottings of the DTFReader Probe Effects

One can observe that the DTFReader application always generates many mes-
sages and instances, and instrumentation can slow down the program by a factor of
30. In general, this is too high. Hence, users should be more selective in the instru-
mentation of classes and methods in order to minimize the probe effects and obtain
more accurate timings. Moreover, we observed that the better instrumentation did
not slow down the application by much, as compared to the performance of the cor-
responding faster instrumentation. Therefore, users do not have to trade off accuracy

with performance by using a faster instrumentation.



7.3 HTML File Parser

7.3.1 Program Description

The HTML file parser [K096], code named HTMLParser, is an OO program based on
a version written by one of the authors of the Java language. It takes multiple HTML
files as input and checks whether or not the HTML syntax is correct. The application
contains 16 classes and 141 public instance methods. We modified the source code
slightly so that it initializes everything before looping to parse each input file. One
can predict that there exists a high potential for the program to be parallelized. For
instance, each call to the parse() method in the loop can be executed on a separate
thread. Nevertheless, we employed Revy to carry out the analysis for us, to see if it

could find this simple parallelization strategy.

7.3.2 Runtime Heuristics

We first applied full instrumentation to the HTMLParser program. Input was a 78-
byte HTML file. However, the execution with these settings and input generated a
huge runtime trace (3.5 megabyte in size, 777 instances and 23608 messages) which
is too large to analyze using Revy. A brief investigation of the log files showed that
the HTMLParser program created one object not only for each HTML tag, but also
for each attribute list, each attribute value, and for the complete set of Document
Type Definitions (DTDs). Hence, we instrumented only those classes and methods
that are non-trivial and directly related to HTML parsing. The final instrumentation
included 5 classes and 46 methods. Re-executing the code with a 4.3 KB HTML
file generated a trace file of a reasonable size (234 KB). The trace file recorded 198
instances and 1443 messages. Figure 7.4 shows the call graph represented in the trace
file. As before, we filtered out some objects, highlighted the most active ones and

queried Revy about the statistics.

The statistics in Figure 7.5 show that the instance Parser and the messages
parse() and parseContent() were the only good candidates for parallelization,

as they were at the top of their lists and had active times over 1000 milliseconds.
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However, by inspecting the message order numbers, we noticed that the message
4:parseContent() followed the message 3:parse() immediately. and in fact. the
former was called within the latter. In addition, the time spent in 3:parse() that
was not spent in 4:parseContent () was much smaller than 1000 milliseconds. There-
fore, it is not efficient to execute the two methods on different threads. By spawning
the message parse() on another thread, all the following method calls will be exe-

cuted on the new threads.

The next step was to decide which one to make concurrent: should we parallelize
the instance Parser or just its method parse()? The difference is, by creating a
Parser() on a different thread, we would have all the called methods of this new ob-
Ject run on the new thread; whereas by spawning the method on a new thread only,
all its following method calls would be executed on the new thread. By inspecting
the un-filtered call graph of HTMLParser, we noticed that Parser was a relatively
independent object, and most of its method calls were circular messages. Therefore,
as suggested by the Revy system, we parallelized the application by creating each
Parser object on a new thread. This observation fulfills our prediction stated before.

The parallelization results are presented in the next section.

7.3.3 Parallelization Results

We parallelized the H-TMLParser by making the class Parser a subclass of the Thread
class in Java. Hence, each Parser instance created for each HTML file should be
spawned on and mapped to a different processor, and thus it could parse the HTML
file on its own. The performance was timed using 1, 2 and 4 HTML files of size 1
megabyte. Table 7.3 shows the performance results of the experiments. Once again,
the performance of the parallel version using JGT is the same as that of the sequential
with JGT. Unfortunately, no performance gain was achieved with either the two- or
the four-thread version using JNT. There are three observations that are noteworthy.
First, the one-thread version which used JNT had unexpectedly poor performance.
It should be comparable to the performance of the sequential version using JGT.

Second, the performance tends to decrease in an over-linear fashion as the number

L dond
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Figure 7.5: Runtime Statistics of the HTMLParser Application
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| HTMLParser

Sequential w/ JGT Parallel w/ JGT Parallel w/ JNT

#of | user sys. wall cpu | user sys. wall cpu user sys. wall cpu

files | time time clk. wusg. | time time clk. wusg. | time time clk. usg.
111150s 00s 0:16 90% | 150s 0.0s 0:16 92% | 29.0s 00s 0:29 97%
2]300s 0.0s 030 97% |300s 00s 0:31 96% | 51.0s 00s 0:51 98%
4[600s 00s 1:01 97% |59.0s 0.0s 1:00 97% | 150.0s 59.0s 2:13 156%

Table 7.3: Performance of the Parallel HTMLParser

of threads increased. Third, the timings of the four-thread version show that the
parallel HTMLParser utilized both CPUs. One can see this from the fact that the
CPU usage was over 100%, and the wall clock time was shorter than the total process

time (the sum of the user time and system time).

The poor performance of the JNT version required some investigations. Using
the mpstat® command showed that the application spent a large amount of time on
thread interrupts, context switches and system calls. Hence, the nature of this ap-
plication induced a great number of hidden system calls in the Java runtime library.
Moreover, we noticed that the HTMLParser created a large number of instances even
with a small HTML file. For example, the application created 777 instances with
a 78-byte HTML file. Therefore, we argue that the poor performance was due to
two reasons: (1) hidden system calls in the Java library, and (2) excessive numbers
of created instances. These hypotheses were tested, and the results are presented in

Section 3.5.

7.3.4 Probe Effects

The HTMLParser’s probe effects were measured with four different combinations of
class and method instrumentation, including: (1) Max - only non-trivial and HTML-
parsing related classes and methods (i.e. the 5 classes and 46 methods mentioned in
Section 7.3.2), (2) Half M - half of the methods in each class in Max, (3) Half C - all

3The mpstat command is a Solaris utility program which reports per-processor statistics, such
as number of interrupts, context switches, spins on mutexes, system calls, and I/O wait, user time
and processor idle percentages.



HTMULParser j
None | Quarter | Half C | Half M | Max
instances 334 334 1887 1887
messages 3677 13029 | 5970 | 14888
0.90 s
faster 10.0 320s | 18.0s |39.05s
better 10.0 33.0s | 18.0s | 40.0s

Table 7.4: Timings of the Probe Effects of HTMLParser
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Figure 7.6: Plottings of the HTMLParser Probe Effects

the methods in half of the classes in Max, and (4) Quarter - half of the methods in
half of the classes in Max. We applied the instrumented application to a 11-kilobyte
HTML file. The timing results are presented in Table 7.4, and the performance data
is plotted in Figure 7.6. Similar to DTFReader, an HTMLParser instance always
generates many messages and instances, and instrumentation can slow down the ap-
plication by a factor of 45. Users therefore have to carefully select the classes and
methods they want to instrument in order to obtain more accurate timings. More-
over, we observed that the better instrumentation was almost as efficient as the faster

one. Therefore, users do not have to trade off accuracy with performance by using a

faster instrumentation.
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7.4 A Zip Application
7.4.1 Program Description

The third application tested was a zip program, called JHLZip [LE96]. The program
creates a .zip file without any compression. Hence it is similar to the UNIX tar
utility program. The only difference is that it conforms to the zip standard proposed
by PKWARE Incorporated. The standard requires any zip program to implement a
checksum algorithm which guarantees that the zip file is intact. The JHLZip program
is composed of 7 classes and 27 public instance methods. The application takes a text
file as input which names the files to be zipped, and produces a .zip file. Since it
is a zip program, one can expect that it is computationally intensive as compared to

the previous two applications.

7.4.2 Runtime Heuristics

We instrumented all the classes and methods of the JHLZip package, and compiled
and executed it with four 1-megabyte text files. The execution produced a small
trace file of 8 kilobytes. This is because this program is less “object-oriented” than
the previous two, so it creates fewer instances and invokes less messages. The object
call graph represented by the trace file is shown in Figure 7.7. It has 16 instances
and 43 messages recorded during runtime. The graph was re-arranged, and the four
most active instances and messages were highlighted. The runtime statistics of the

objects and messages are shown in Figure 7.8.

The statistics show that the most active instances are ZipFile and the four
CyclicRedundancyCheck instances, and write() and update32() are the most ac-
tive messages. We noticed from the graph that the update32() messages (message
IDs: 29, 32, 35 and 38) always follow write() messages (message IDs: 28, 31, 34 and
37). However, the inspector windows on the messages revealed that the two methods
belong to two different classes ZipFileHeader and CyclicRedundancyCheck, respec-
tively. Therefore in this case, spawning a ZipFileHeader instance remotely while

keeping the CyclicRedundancyCheck instance local will lead to two remote mes-
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Figure 7.8: Runtime Statistics of the JHLZip Application
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write()
/_\\

ZipFileHeader
CyclicRedun-
dancyCheck \_//

local update32() remote

Figure 7.9: Parallelizing ZipFileHeader

Figure 7.10: Net and Average Active Times of the Messages of J HLZip

sages: one write() and one update32() (see Figure 7.9). In addition, we observed
that the ZipFileHeader objects were not very active (less than 400 milliseconds)
and thus it is unnecessary to create it remotely. Moreover, the net and the aver-
age active times of the write() messages were short as compared to those of the
update32() messages (Figure 7.10). As a result, we can deduce that, out of the two

methods write() and update32(), only the latter one needs to be executed remotely.

For the most active instances, ZipFile and CyclicRedundancyCheck, we decided
not to spawn the ZipFile instance remotely. This is because the object graph shows
that the ZipFile instance was the central object and thus we would have introduced
too many remote calls if the instance was created remotely while the rest of the
instances remained local. As a result, we decided to put CyclicRedundancyCheck in-
stances on new threads as each of them had only one incoming message, update32(),

which was expensive enough to be parallelized.
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JHLZip

Sequential w/ JGT Parallel w/ JGT Parallel w/ JNT
user  sys. wall cpu [ user sys. wall cpu | user sys. wall cpu
# of files | time time clk. usg. | time time clk. wusg. | time time clk. usg.
1(140s 1.0s 0:16 8% | 140s 1.0s 0:16 88% | 140s 1.0s 0:15 94%
21270s 2.0s 031 91% | 27.0s 20s 0:31 91% [27.0s 2.0s 0:18 154%
41540s 3.0s 1:01 91% |54.0s 3.0s 1:01 93% [ 54.0s 3.0s 0:35 158%

Table 7.5: Performance of the Parallel JHLZip

7.4.3 Parallelization Results

The CyclicRedundancyCheck instances were parallelized by subclassing them under
the Thread class in Java. We tested the application with one, two and four 7.5 MB
input files and compared the results with the same settings running sequentially. The
experimental results are presented in Table 7.5. As before, the performance of the
sequential and parallel versions with JGT are the same. However, there is an obvious
performance gain when two or more files were zipped concurrently using JNT. For
instance, in the case of four files, the application obtained a reduction in execution
time of 26 seconds on the wall clock measurements (from 61 seconds with JGT to
35 seconds with JNT). Moreover, we noticed that the utilization rate of the CPUs
was over 100%. This implies that all the virtual threads were mapped to both CPUs,
which were being kept busy during the course of execution. The performance gains
are 41.9% and 42.6% in the 2-thread and 4-thread versions, respectively. The gains
are less than 50% because there were overheads spent on the Java Virtual Machine
with JNT. The performance gain is larger than that of the parallel DTFReader with
JNT. The reason is that DTFReader contains more object manipulation method calls,
while JHLZip is a computationally intensive application. As a result a thread can run
more efficiently in the latter case. In fact, these are exactly the type of applications

which we want to parallelize.

In addition, we implemented another parallel version which executed the method
update32() remotely. We used the MethodThread package [MA97] from Steve Mac-
Donald. The MethodThread package uses the Java reflection capabilities to cre-

ate threads that execute an arbitrary method on an object. By providing method
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JHLZip w/ MethodThread

Parallel w/ JGT Parallel w/ JNT

#of || user sys. wall cpu | user sys. wall cpu

files | time time clk. wusg. | time time clk. usg.
11 140s 10s 0:16 89% | 14.0s 1.0s 0:15 68%
2127.0s 2.0s 031 88% |27.0s 20s O0:18 150%
41540s 3.0s 1:01 92% [ 54.0s 3.0s 0:35 158%

Table 7.6: Performance of the JHLZip Parallelized with Method Thread

spawning®, it enriches Java’s multithreading protocol which only allows objects to be
threaded. However, despite the fact that the package provides us with many proto-
cols (constructors) to create a method thread, the programming in our case was not
as easy as subclassing the CyclicRedundancyCheck class. For instance, we had to
introduce a new class and write four lines of code with try-catch statement (versus
two lines in the previous case) in order to spawn one single method. Nevertheless, we
were able to obtain performance gains. The results are presented in Table 7.6. One
can see that this version has roughly the same performance as the previous parallel

version.

7.4.4 Probe Effects

The probe effects of JHLZip were similarly measured with four combinations of class
and method instrumentation. They are: (1) Max - all classes and methods, (2)
Half M - half of the methods in each class, (3) Half C - all the methods in half of
the classes, and (4) Quarter - half of the methods in half of the classes. Since the
application runs very fast with small files, we used a much larger data input. We
applied the instrumented application with 32 one-megabyte text files. The timings
are presented in Table 7.7, and the data is plotted in Figure 7.11. The degrada-
tion in performance is negligible compared to the original code. This clearly shows
that: (1) this program is computationally intensive, and (2) very few instances were
created and few messages were invoked. Therefore, J HLZip is not a “true” OO appli-

cation, so users can always apply full or better instrumentation without consequences.

1As a matter of fact, method spawning is not new in OO languages. Smalltalk provides a user-
friendly syntax to “fork” off as many blocks of code as the user wants.
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JHLZip
None | Quarter | Half C | Half M | Max
instances 36 36 101 101
messages 130 227 162 324
69.0 s
faster 69.0 70.0s | 700s [ 71.0s
better 69.0 700s | 700s [71.0s

Table 7.7: Timings of the Probe Effects of JHLZip

Figure 7.11: Plottings of the JHLZip Probe Effects

7.5 An Object Adder

The poor performance observed for the parallel HTMLParser with JNT requires a
more detailed explanation. The reasons suggested in Section 7.3.3 are: (1) hidden
system calls in the Java library, and (2) excessive number of instances created. We
developed a test program, ObjectAdder, to measure the effects of method synchro-

nization and instance creation in Java.

7.5.1 Program Description

ObjectAdder is a simple adding program, which adds the numbers from 1 to 3,000,000.
Figure 7.12 shows a partial listing of the code. This program does not simply loop

and add, but it calls one of four adding methods in each iteration of the loop. The
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switch(whatToRun)
{
case NOSYNC_INT:
for(i=0 ; i<MAX ; i++) this.syncAddInt(i) ;
break ;
case SYNC_INT:
for(i=0 ; i<MAX ; i++) this.nosyncAddInt(i) ;
break ;
case NOSYNC_INTEGER:
for(i=0 ; i<MAX ; i++) this.syncAddInteger(new Integer(i)) ;
break ;
case SYNC_INTEGER:
for(i=0 ; i<MAX ; i++) this.nosyncAddInteger(new Integer(i)) ;
break ;

}

public void nosyncAddInt(int i)
{ this.sum += i ; }
public synchronized void syncAddInt(int i)
{ this.sum += i ; }
public void nosyncAddInteger(Integer i)
{ this.sum += i.intValue() ; }
public synchronized void syncAddInteger(Integer i)
{ this.sum += i.intValue() ; }

Figure 7.12: The ObjectAdder Program

four adding methods are critical to the outcomes. They are:
¢ regular, non-synchronized, int adder,
¢ synchronized int adder,
¢ regular, non-synchronized, Integer object adder, and
¢ synchronized Integer object adder.

We believe that having a large number of instances has a high impact on the
performance of an OO program. In addition, the use of synchronization also slows
down a program because further analysis of the HTMLParser application showed that

the application had many system calls and thread interrupts. As a matter of fact,
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it uses many Vector and Hashtable objects whose member functions are mostly
synchronized. There are 36 test cases - four methods versus three different numbers
of threads versus three versions of code. The experimental results and analysis are

presented in the following section.

7.5.2 Performance Analysis

The 36 test results are organized into 3 tables, according to the number of threads
spawned. They are presented in Table 7.8, Table 7.9 and Table 7.10. Note that all
the tests had the memory effects eliminated since we pre-allocated a memory pool
of 32 megabytes to the heap and disabled the asynchronous garbage collector. As
before, the parallel performance using JGT is roughly the same as the sequential

performance using JNT. In addition, the 36 tests led to 10 observations:

1. JNT can outperform JGT on the synchronized int adders only.

o

For each version of the number of threads, the synchronized int adders with

JNT always have the highest CPU utilization rate and the best performance.
3. Increasing the number of threads degrades the JNT performance.

4. With JNT, more threads lead to longer system time, which includes the I/0,

system wait, system call, thread interrupt times, and so on.
5. More threads lead to a higher system-user time ratio on JNT.

6. Increasing the number of threads increases the CPU utilization rate on both

JNT and JGT.

7. The synchronized adders always have a slower performance than non-synchronized

adders.
8. The Integer adders always run longer.

9. The Integer adders always have a higher impact on the performance than the

synchronized adders do.



10. The synchronized adders always have a higher impact on the performance with

JNT than JGT.

All the above observations can be traced to one root cause: synchronization with
the internal object table in a Java Virtual Machine (VM). The invocation of a syn-
chronized method will put a lock on the receiver object. In other words. the Java
Virtual Machine will look up the entry corresponding to the receiver object from the
object table and lock it. Moreover, an instance creation may slow down the system
by allocating memory and performing garbage collection. However, we avoided these
effects in the settings of our experiments. Thus, the problem occurring behind the
scene of an instance creation can again be explained by the synchronization with the
internal object table. When an instance is being created, the Java VM has to lock the
whole object table before inserting an entry of the new object in the table. Hence,

the object table is synchronized as well.

We also observed that the Integer adders always have a higher impact on the
performance than the synchronized adders do. The performance table in [HA97] also
confirms this observation. This can be explained by the fact that the process invoked
by a synchronized message obtains a read lock only on the object table, while an
instance creation will lead to an exclusive write lock on the object table. As a result,
an application will perform slower in the case of instance creation in general. In addi-
tion, the performance is further degraded with the use of INT. This is due to the fact
that the kernel threads, which reside on different processors, share one global object
table. Therefore, it involves a more complex system-level synchronization mechanism

to lock or unlock the object table.

Several articles {LA96, YO96, BE97, HA97, SS97] proposed various ways to opti-
mize a Java application. Some of the optimization techniques for Java programming
are summarized below. First, Vector and Hashtable objects are inefficient. Arrays
should be used instead if the structure size is known beforehand. Second, unnecessary
instance creation should be avoided. For example, primitive numeric data should be

used instead of Number objects if possible. In addition, as mentioned in [SS97], the
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One Thread

Sequential w/ JGT Parallel w/ JGT Parallel w/ JNT
user  sys. wall cpu | user sys. wall cpu | user sys. wall cpu
time time clk. usg. [ time time «clk. usg. | time time clk. usg.

ni) 40s 0.0s 0:05 71% [ 4.0s 00s 005 74% | 4.0s 00s 0:.05 3%
s,i || 80s 00s 0:09 87% | 80s 0.0s 0:09 88% |300s 00s 031 95%
n, I 140s 0.0s 0:14 93% | 13.0s 00s 0:14 93% | 27.0s 00s 0:28 96%
s;111160s 00s 0:17 92% | 17.0s 0.0s 0:18 90% | 58.0s 00s 0:59 98%
n - no sync., s - sync., i - int, [ - Integer
Table 7.8: Performance of the ObjectAdder with One Thread
Two Threads
Sequential w/ JGT Parallel w/ JGT Parallel w/ JNT
user  sys. wall cpu | user sys. wall cpu user Sys. wall  cpu
time time clk. wusg. | time time «clk. usg. | time time clk. usg.

nill 90s 0.0s 0:09 93% | 9.0s 0.0s 0:09 90% | 9.0s 00s 0:05 171% |

s,i[160s 0.0s 0:16 95% | 16.0s 0.0s 0:16 93% | 57.0s 1.0s 0:57 100%

n,[]128.0s 00s 0:28 97% | 27.0s 0.0s 027 97% | 96.0s 71.0s 2:09 128%

s, [)1320s 00s 0:33 95% | 34.0s 00s 0:35 95% | 197.0s 136.0s 4:26 124%
R - no sync., s —sync., i — int, [ - Integer

Table 7.9: Performance of the ObjectAdder with Two Threads

statement s = new String(‘‘Hello’’) is redundant, as it creates two String in-

stances. It should simply be written as s = ¢ ‘Hello’ 5,

In summary, we experimented and studied the performance hits in Java due to
synchronized messages and instance creation. In addition, the Java optimization
techniques are presented. The above problems in Java also exist in DTFReader. As
a result, we suggest a re-design and re-implementation of the module with the above

guidelines in mind.

7.6 Guidelines for Parallelization

In this section, we describe some guidelines for 00 program parallelization, based
on the experience of using Revy. Before applying any parallelization, programmers

should understand the architecture and the cost of communication. Since shared

SThis redundancy is suggested in the white paper from Sun Microsystems. It makes no sense
that they do not remove it from their Java programming interface.
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[ Four Threads

Sequential w/ JGT Parallel w/ JGT Parallel w/ JNT
user sys. wall cpu | user sys. wall cpu user sys. wall  cpu
time time clk. usg. | time time clk. usg. | time time clk.  usg.
n,ill17.0s 00s 0:18 92% | 17.0s 0.0s 0:18 92% | 17.0s 0.0s 0:09 174%
s,i(320s 0.0s 0:32 97% | 32.0s 0.0s 032 95% | 158.0s 51.0s 2:38 131%
n, 1| 55.0s 0.0s 056 97% (55.0s 0.0s 0:55 98% | 237.0s 223.0s 5:09 148%
s, []640s 00s 1.05 98% |66.0s 0.0s 1.07 98% |570.0s 567.0s 12:33 150%

n - nosync., s ~ sync., i - int, [ - Integer

Table 7.10: Performance of the Object Adder with Four Threads

memory machines incur no (or minimal) communication cost, multiprocessor ma-
chines require different parallelization analysis than networks of workstations where
the cost of communication can be very high. In both cases, parallel programimers

should at least know the number of CPUs their applications will use.

For non-shared memory machines, there are two guidelines that do not depend on
the Revy statistics. First, the user should identify the environment-dependent objects
(for example, I/O objects). These objects are hardware dependent and may have to
reside on specific workstations. Second, any object that has only one neighbour can

be assigned to the same workstation to avoid unnecessary communication costs.

The first general guideline is that only those instances/messages that have an ac-
tive time over a specific threshold should be considered for parallelization. For shared
memory machines, there is virtually no communication cost, and a programmer can
spawn as many threads as the system supports. However, threads still have a cre-
ation cost, and incur system costs such as context switches and thread interrupts.
Based on the applications studied in this thesis, the threshold for the shared memory
machine used is about 1000 milliseconds. This threshold may be different on other
hardware or when using a different Java interpreter or other language. The threshold

for networks of workstations depends on the communication costs of the network.

The second general guideline is to start with the top instances/messages and work

down until the minimum granularity is reached or until there is enough parallelism in
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the application. Clearly, if there are N processors. we want at least N tasks running
in parallel (and usually. there will be additional performance gains by having multiple

threads/processes per processor).

The third general guideline is based on the difference between average and ag-
gregate activity. Aggregate activity describes the performance of an individual in-
stance/message. Average activity represents the overall performance. By examining
aggregate activity a programmer can tell whether to parallelize all the instances of

that class/method, or just an individual instance/message.

The fourth general guideline is based on successive message sends. In the case of
method parallelization, a programmer should inspect the net activity and the message
order, and study the call sequence by means of object call graph animation to decide
where to split a message chain. For example, assume the two most active messages
listed in the statistics involve one message as an internal message sent by the other.
In this case, a programmer must study the net message times to decide whether it is
worthwhile to spawn each message on a new separate thread, or to only spawn one

additional new thread that executes both messages.

The fifth and final general guideline is that objects with many cyclic messages
are good candidates for parallelization. Such objects are likely to have high activity
level. They are also less dependent objects that are loosely connected to the rest
of the system. By spawning them on new threads, programmers will obtain higher

utilization rates and less communication costs.

In conclusion, finding a good parallel decomposition of a program is often a matter
of experience. Although guidelines are useful as a starting point, the variety of appli-
cations gives rise to numerous exceptions to any program parallelization methodology.
Unfortunately, the state of the art of automating this aspect is still a long way off

into the future.



7.7 Summary

This chapter shows how Revy has been applied to different applications. discusses the
suggestions given in the runtime heuristics, and analyzes the performance gain (or
loss) for each application after parallelization. Moreover, the probe effects due to the
extra code added by instrumentation and the performance on synchronized methods
and instance creation in Java are studied. In summary, this chapter shows that Revy

is useful in identifying the parallelization bottleneck of Object-Oriented programs.
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Chapter 8

Conclusion

This chapter concludes the thesis with a review of some improvements and future
research identified for the three subsystems of Revy. The current implementation

should provide a framework for this work.

8.1 Future Work
8.1.1 Visualization and Interaction Subsystem

The Visualization and Interaction Subsystem needs a few research improvements.
Future work should focus on designing and implementing techniques to reduce the
cluttering problems of object call graphs. In Chapter 4, we suggested a few approaches
such as grouping instances and messages, zooming in/out, auto-filtering and source
code animation. Moreover, we should also consider implementing the graph visualiza-
tion technique, Hyperbolic Display, which smoothes the blending between the focus

and the context of a complex call graph.

8.1.2 Parsing and Annotation Subsystem

The Parsing and Annotation Subsystem is the most mature component of Revy.
There are not many areas that need to be improved. We could store complete infor-
mation about the user and system classes during the parsing phase. We could also add
instrumentation code for handling exceptions. As well, the C++Sourcer, which parses

and annotates C++ programs, could be modified to support some requirements that
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were added after the first implementation. Such modifications would provide more
evidence of the language neutrality of Revy. Revy would also benefit from replacing

the source-to-source translator Sage++ by a more mature and robust tool. such as

SUIF [SU97).

8.1.3 Runtime Modeling Subsystem

In RMS, there are two major areas that future research could focus on. F irst, in
order to fulfill the goal of being a parallelization advisor, Revy could implement the
parallelization algorithms suggested in Section 6.5.3. Since there are conceptual dif-
ferences between parallelizing object-oriented systems and parallelizing procedural
ones, we should research on heuristics which optimally map objects and methods to
processors. Second, Revy could include an auto parallelization feature. After PAS has
identified the high-granularity objects/methods, it could automatically insert threads
into the user’s code by using either regular Thread class for high granularity objects

or MethodThread class for high granularity methods.

A few optimizations could be applied to the current Runtime Modeling Subsys-
tem. DTFReader is the bottleneck of the system, and it should be re-designed and
re-implemented to read a DTF file asynchronously. In addition, more arrays and
primitive data types should be used instead of inefficient objects such as Vector and
Integer. Moreover, we could enhance the runtime statistics, such as communication
and processing costs. We could also enrich the cost model by considering the number
of machines, communication cost per byte between two machines, relative processing

costs per unit of time, and so on.

8.2 Summary

This thesis showed how visualization and granularity can be combined together to
help program parallelization. It argued that, in addition to function-based profil-

ing data, instance-based statistics and runtime interaction diagrams are essential for
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programmers to transform their sequential object-oriented programs to parallel ones.
The result of the thesis is a platform-neutral, easy-to-use. object/method granularity
visualization system called Revy. There are three subsystems in Revy: Visualization
and Interaction, Parsing and Annotation, and Runtime Modeling. The thesis defined
the requirements of Revy as well as its subsystems. Moreover, it presented Revy’s
modular architecture, OO design and implementation, and discussed the outstanding
issues of the subsystems. The usefulness of the tool was justified by performing a
few experiments to aid program parallelization. Finally, we identified some future

research areas and improvements for enhancing Revy.
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/e

APPENDIX A: Original User’s Code

ssessssssssssssssess Nain. java sssescessesssssssens o/

public class Main

/e

public static void main(String argv(])
{
Person will, duane, jonathan ;
Account willAcct, duaneAcct, jonathanAcct ;

9ill = new Person("'Will") ;
willAcct = new Account{1000.0) ;
will.setAccount(willAcct) ;

duane = new Person(“Duane") ;
duaneAcct = new Account(1000.0) ;
duane.setAccount(duaneAcct) ;

jonathan = new Person('Jonathan") ;
jonathanAcct = new Account(1000.0) ;
jonathan.setAccount(jonathanAcct) ;

duaneAcct.transfer(100.0, willAcct) ;
jonathanAcct.transfer(100.0, willAcct) ;

System.out.println(will) ;

System.out.println(duane) ;
System.out.println(jonathan) ;

SEBNENEENISNISISONY P.taon.java S80S0 00000800 8/

public class Person extends Object

{

/e

public static int SIN = 123456789 ;
public int sin ;

public String name ;

public Account account ;

public Person(String n)

this.sin = SIk++ ;
this.name = n ;

}

public String toString()
{
return("<Person sin=" + this.sin + " names" + this.name + "> /n"
+ account.toString()) ;
}

public int getSIN(Q) { return(this.sin) ; }

public String getBame() { return(this.name) ; }

public Account getAccount() { return(this.account) ; }

public void setAccount(Account acct) { this.account = acct ; } }

Account.java s» .8/

public class Account extends Object

{



public static int ACCOUNTBUMBER = 654321 ;
public int accountBumber ;
public double balance ;

public Account(double amt)

{

this.accountWumber = ACCOUNTEBUMBER++ ;
this.balance = amt ;

}
public String toString()

return(“<Account AccoutBumber=" + this.accountBumber +
" balance=" + this.balance + '">") ;

}

public int getAccountBumber() { return(this.accountBumber) ; }
public double getBalance() { return(this.balance) ;
public void deposit{double amt)

this.balance += amt ;

public boolean withdraw(double amt)
if(this.balance ¢ amt)

System.err.println("Sorry, not enough money for withdrawal") ;
return(false) ;

}

this.balance == amt ;
return(true) ;

}

public boolean transfer(double amt, Account acct)
if(this.vithdraw(amt))

acct.deposit(amt) ;
return(true) ;

return(false) ;
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APPENDIX B: User’s Code with Exact Instrumentation

/® seessanenssssssssene Main. java sssesesesssessesnsss o/

// REVY imported classes

import java.util.Hashtable ;
import whui.revy.util. RvObject ;
import whui.revy.util. RvLogger ;

public class Main implements _RvObject

public static void main ( String argv [ ] )

{

-RvLogger..rvLogInit(".”, "Nain") ;

Person will , duane , jonathan ;
Account willAcct , duaneAcct , jonathanAcct ;
will = new Person ( "Will" ) ;
willAcct = new Account ( 1000.0 ) ;
will.setAccount ( willAcct ) ;
duane = new Person ( "Duane" ) ;
duaneAcct = new Account ( 1000.0 ) ;
duane.setAccount ( duaneAcct ) ;
jonathan = new Person ( "Jonathan" ) ;
jonathanAcct = new Account ( 1000.0 ) ;
jonathan.setAccount ( jonathanAcct ) ;
duaneAcct.transfer ( 100.0 , willAcct ) ;
jonathanAcct.transfer ( 100.0 , willAcct ) H
System.out.println ( will ) ;
System.out.println ( duane ) ;
System.out.println ( jonathan ) ;

}

-RvLogger..rvLogDone(* Main") ;

// REVY added 1 field and 5§ methods

private int xv0ID = 0 ;

public String .rvClassBame() { return(“Main") ; }
public int .rvGetOID() { return(xv0ID) ; }
public void rvSet0ID(int .i) { xvOID = i ; }
public int .rvStaticSize() { return(0) ; }
public int .rvRuntimeSize(Hashtable .vset)

int acc =0 ;
if(.vset.contains(this)) { return(4) ; }
-vset.put(this, this) ;
return(acc) ;
}
}

/s ses Person. java s/

// REVY imported classes

import java.util.Hashtable ;
import whui.revy.util.RvObject ;
import whui.revy.util.RvLogger ;

public class Person extends Object implements RvObject
public static int SIN = 123456789 ;

public int sin ;
public String name ;

99



public Account account ;

public Person ( String n )

{
this.sin = SIN ++ ;
this.name = n ;
-RvLogger..rvLogCreate(this) ;

public String toString ()

{

return ( "<Person sin=" + this.sin + " name=" + this.name + ">/n" + account.toString ( ) ) ;
public int getSIN ( ) { return ( this.sin ) ; }
public String getWame ( ) { return ( this.name ) ; }
public Account getAccount ( ) { return ( this.account ) ; }
Public void setAccount ( Account acct ) { this.account = acct ; }

// REVY added 1 field and 5§ methods

private int rv0ID = 0 ;

public String .rvClassBame() { return(“Person") ; }
public int _rvGet0ID() { return(.rv0ID) ; }

public void .rvSet0ID(int .i) { rvOID = .i ; }
public int _rvStaticSize() { return(S6) ; }

public int .rvRuntimeSize(Hashtable .vset)

int Lacc =0 ;
if(_vset.contains(this)) { return(4) ; }

-vset.put(this, this) ;

ace +x 4 ; // SIy

.acc += 4 ; // sin

-acc += 32 ; // name

-acc += ((account == null)? _NULL.SZE:account..rvRuntimeSize(wvset)) ; // account
return(.ace) ;

/o ssesesenssensesssens Account. java ssesssssssssssssssss o/

// REVY imported classes

import java.util.Hashtable ;
import whui.revy.util. RvObject ;
import ghui.revy.util.RvLogger ;

public class Account extends Object implements Rvlbject

{
pudblic static int ACCOUNTBUMBER = 654321 ;

public int accountBumber ;
public double balance ;
public Account ( double amt )

this.accountBumber = ACCOUNTBUMBER ++ ;
this.balance = amt ;
RvLogger..rvLogCreate(this) ;
public String toString ( )
{
return ( "<Account AccoutBumber=" + this.accountBumber + " balance=" + this.balance + ">" ) H
public int getAccountBumber ( ) { return ( this.accountfumber ) ; }
public double getBalance ( ) { return ( this.balance ) ; }

public void deposit ( double amt )
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int sze =0 ;

Hashtable _vset = new Hashtable(32) ;

sze += 8 ; // amt

RvLogger. rvLogStart(this, "deposit”, "!double~0!", _sze) ;

this.balance += amt ;

}

-RvLogger. rvLogEnd(this, "deposit", *!{double~0!") ;
public boolean withdraw ( double amt )

int sze =0 ;

Hashtable .vset = new Hashtable(32) ;

sze += 8 ; // amt

-RvLogger..rvLogStart(this, "withdras”, "!double~0!", _sze) ;

if ( this.balance < amt )

{
System.err.println ( "Sorry, not enough money for withdrawal"” ) ;
-RvLogger. rvLogEnd(this, "withdras", *!double~0!") ;
return ( false ) ;

this.balance -= amt ;
RvLogger. rvLogEnd(this, "vithdraw", "!double-0!") ;
return ( true ) ;

}

public boolean transfer ( double amt , Account acct )

int s2e =0 ;

Hashtable .vset = new Hashtable(32) ;

sze += 8 ; // amt

-sze += ((acct == null)? _BULLSZE:acct..rvRuntimeSize(wset)) ; // acct
-RvLogger. rvLogStart(this, "transfer”, "!double“O!Account™0!", .sze) ;

if ( this.withdraw ( amt ) )
{
acct.deposit ( amt ) ;
-RvLogger..rvLogEnd(this, "transfer", "!double~OtAccount~0!") ;
return ( true ) ;
}
RvLogger. rvLogEnd(this, "transfer”, "tdouble~0!Account~0!") ;
return ( false ) ;

}
}

// REVY added 1 field and 5 methods
private int _rv0ID = 0 ;
public String .rvClassName() { return(“Account”) ; }
public int _rvGet0ID() { return(rvOID) ; }
public void _rvSetOID(int i) { xvOID = i ; }
public int _rvStaticSize() { return(16) ; }
public int _rvRuntimeSize(Hashtable .vset)
{

int acc =0 ;

if(.vset.contains(this)) { return(4) ; }

-vset.put(this, this) ;

-acc += 4 ; // ACCOUNTEUMBER

-acc += 4 ; // accountBumber

.acc += 8 ; // balance

return(ace) ;
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APPENDIX C: User’s Code with Fast Instrumentation

/% sesesssessssasensens Main. java sesseesessssssssesse o/

// REVY imported classes

import java.util.Hashtable ;
import shui.revy.util.RvObject ;
import whui.revy.util. RvLogger ;

public class Main implements RvObject

public static void main ( String argv [ ] )

{
RvLogger. rvLogInit("Nain") ;

Person will , duane , jonathan ;

Account willAcct , duaneAcct , jonathanAcct ;
will = new Person ( "Will" ) ;

willAcct = new Account ( 1000.0 ) ;
vill.setAccount ( willAcct ) ;

duane = new Person ( "Duane" ) ;

duaneAcct = new Account ( 1000.0 ) ;
duane.setAccount ( duaneAcct ) ;

jonathan = new Person ( "Jonathan" ) ;
jonathanAcct = new Account ( 1000.0 ) ;
jonathan.setAccount ( jonathanAcct ) ;
duaneAcct.transfer ( 100.0 , willAcct ) ;
jonathanAcct.transfer ( 100.0 , willAcct ) ;
System.out.println ( will ) ;
System.out.println ( duane ) ;
System.out.println ( jonathan ) ;

}

RvLogger..rvLogDone("Main") ;

// REVY added 1 field and 5 methods
private int _rv0ID = 0 ;
public String rvClassBame() { return("fain") ; }
public int .rvGet0ID() { return(xvOID) ; }
public void .rvSetOID(int 4) { rv0ID = 4 ; }
public int _rvStaticSize() { retura(o) ; }
public int .rvRuntimeSize(Hashtable .vset)
{
int .acc =0 ;
if(.vset.contains(this)) { return(4) ; }
-vset.put(this, this) ;
return(.acc) ;
}
}

IR Person. java ssee ./

// REVY imported classes

import java.util.Hashtable ;
import whui.revy.util. RvObject ;
import whui.revy.util. RvLogger ;

public class Person extends Object implements RvObject

{

public static int SIN = 123456789 ;
public int sin ;
pudblic String name ;
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public Account account ;
public Person ( String n )

{

this.sin = SIE ++ ;
this.name = n ;
RvLogger..rvLogCreate(this) ;

public String toString ( )

return ( "<Person sin=" + this.sin + " name=" + this.name + ">/n" + account.toString ( ) ) ;

}

public int getSIN ( ) { return ( this.sin) ; }

public String getMame ( ) { return ( this.name ) ; }

public Account getAccount ( ) { return ( this.account ) ; }
public void setAccount ( Account acct ) { this.account = acct ; }

// REVY added 1 field and 5 methods
private int xv0ID =0 ;
public String .rvClassName() { return("Person”) ; }
public int _rvGet0ID() { return(xvOID) ; }
public void _rvSet0ID(int i) { xvOID = i ; }
public int _rvStaticSize() { return(S6) ; }
public int .rvRuntimeSize(Hashtable .vset)
{
int Lacc =0 ;
if(.vset.contains(this)) { return(4) ; }
.vset.put(this, this) ;
.acc +s 4 ; // SIR
.acc += 4 ; // sin
.acc += 32 ; // name
-acc += ((account == null)? _BULLSZE:account..rvRuntimeSize(vset)) ; // account
return(.ace) ;

/% sssssssssesssssceses Account.java SESES00088000008000¢ »/

// REVY imported classes

import java.util.Hashtable ;
import whui.revy.util. RvObject ;
import whui.revy.util.RvLogger ;

public class Account extends Object implements _RvObject

{
pupibitististcainouhCHOMBTPUNBER = 654321 ;

public double balance ;
public Account ( double amt )

{

this.accountBumber = ACCOUNTNUMBER ++ ;
this.balance = amt ;
RvLogger. rvLogCreate(this) ;
public String toString ( )
return { "<Account AccoutBumbers" + this.accountBumber + " balance=" + this.balance + ">" ) H
public int getAccountBumber ( ) { return ( this.accountBumber ) ; }
public double getBalance ( ) { return ( this.balance ) ; }
public void deposit ( double amt )

{

int sze =0 ;
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Bize += 8 ;
-RvLogger..rvLogStart(this, "deposit", "!double“0!", _sze) ;

this.balance += amt ;
}

-RvLogger . rvLogEnd(this, “deposit”, "tdouble~0t") ;

}

public boolean withdraw ( double amt )

int sze =0 ;
s8ize += 8 ;
-RvLogger. rvLogStart(this, "githdras", "!double~0!", _sze) ;

it ( this.balance < amt )

{
System.err.println ( "Sorry, not enough money for withdrawal" ) ;
RvLogger..rvLogEnd(this, "vithdras"”, “tdouble~0!") H
return ( false ) ;

this.balance -= amt ;
-RvLogger. rvLogEnd(this, "withdraw", "!double-0!") ;
return ( true ) ;

}

Public boolean transfer ( double amt , Account acct )

{

int sze =0 ;

-8ize += 8 ;

8ize += ((acct == nyll1)? JNULLSZE:acct..rvStaticSize()) ;
-RvLogger..rvLogStart(this, "transfer", "!double~0!Account=0!", _sze) ;

if ( this.withdraw ( amt ) )
{
acct.deposit ( amt ) ;
RvLogger. rvLogEnd(this, “transfer”, "!double~O!Account~0!") ;
return ( true ) ;
}
ARvLogger..rvLogEnd(this, "transfer”, "!double~0!Account~0!") H
return ( false ) ;

}

// REVY added 1 field and 5 methods
private int _rvOID = 0 ;
public String .rvClassBame() { return(“Account") ; }
public int .rvGet0ID() { return(rvOID) ; }
public void .rvSet0ID(int i) { rv0ID = i ; }
public int _rvStaticSize() { return(i6) ; }
public int _rvRuntimeSize(Hashtable _vset)
{

int acc =0 ;

if(.vset.contains(this)) { return(4) ; }

-vset.put(this, this) ;

-acc += 4 ; // ACCOUNTNUMBER

-acc += 4 ; // accountBumber

-acc += 8 ; // balance

return{acc) ;
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APPENDIX D: Revy Project File (RVY)

/usr/maligne2/grad/whui/java/classes/whui/revy/eg/account/Main. java
/usr/maligne2/grad/ehui/java/classes/whui/revy/eg/account/Person. java
/usr/maligne2/grad/whui/java/classes/whui/revy/eg/account/Account . java

project.compileajavac /usr/maligne2/grad/whui/ java/classes/whui/revy/eg/account/Main. java
project.execute=java -0 -classpath /usr/maligne2/grad/whui/java/classes/whui/revy/eg/account Main



APPENDIX C: Static Artifacts File (SAF)

<Project name=Main>

<Source nanel/usr/maligne2/grad/whui/java/classes/vhui/revy/eg/account/lain.java)
<Source namol/usr/maligno2/grad/vhui/java/classes/whui/revy/eg/account/Person.java>
<Source namel/usr/maligneZ/grad/nhui/java/classes/whui/revy/eg/account/Accoun:.java)

<Type name=Account classification=2 byteSize=16>
<Type name=int classifications0 byteSize=4>
<Type name=byte classifications0 byteSize=1>
<Type name=float classifications0 byteSize=4>
<Type name=Main classification=2 byteSize=0>
<Type name=double classification=0 byteSizeas>
<Type name=long classification=0 byteSizes8>
<Type name=boolean classification=0 byteSizez0>
<Type name=char classification=0 byteSize=2>
<Type name=short classification=0 byteSize=2>
<Type name=void classification=0 byteSize=0>
<Type name=Person classification=2 byteSize=56>

<Class name=Account superClasses=!0bject! annotatedsyes>

<Field name=ACCOUNTNUNBER class=Account type=int dimensiona0>

<Field name=accountNumber class=Account type=int dimension=0>

<Field name=balance class®Account type=double dimension=0>

<Method name=toString class=Account type=_system. dimension=0 annotated=no>

</Rethod>

<Method name=getAccountBumber classsAccount type=int dimension=0 annotated=no>

</Method>

<Method namesgetBalance class=Account type=double dimension=0 annotated=no>

</Method>

<Method nameadeposit classsAccount type=void dimension=0 annotated=yes>
<Parameter name=amt method=deposit typesdouble dimension=0>

</Rethod>

<Method name=withdraw class=Account typesboolean dimension=0 annotated=yes>
<Parameter namesamt method=withdraw type=double dimension=0>

</Method>

<Method name=transfer class=Account type=boolean dimension=0 annotated=yes>
<Parameter name=amt methodstransfer typesdouble dimension=0>
<Parameter name=acct methodstransfer typezAccount dimension=0>

</Rethod>

</Class>

<Class name=Nain superClassess! annotated=no>
</Class>

<Class name=Parson superClasses=!Object! annotated=yes>
<Field nameaSIN class=Person type=int dimension=0>
<Field name=sin class=Person type=int dimension=0>
<Field name=name class=Person type=_system. dimension=0>
<Field name=account class=Person typesAccount dimension=0>
<Method name=toString class=Person type=system_. dimension=0 annotated=no>
</Method>
<Method name=getSIN class=Person type=int dimension=0 annotated=no>
</Method>
<Method name=getName class=Person type=.system. dimension=0 annotated=no>
</Method>
<Method namesgetAccount class=Person type=sAccount dimension=0 annotated=no>
</Mathod>
<Method name=setAccount class=Person type=void dimension=0 annotated=no>

<Parameter name=acct method=setAccount type=Account dimension=z0>

</Method>

</Class>

</Project>
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APPENDIX F: Dynamic Trace File (DTF)

#8888 Revy-Logger: starts @ Wed Nov 19 12:03:58 PDT 1997

<Crt cls=Person oid=1 tid=0 t=289>

<Crt cls=Account 0ids2 tid=0 t=295>

<Crt cls=Person 0id=3 tid=0 t=296>

<Crt cls=Account oid=4 tid=0 t=297>

<Crt cls=Person oid=5 tid=0 t=298>

<Crt cls=Account oid=6 tid=0 t=299>

<Msg cls=Account oid=4 mthstransfer sgn=!double"0!Account”0! sze=s24 tid=0 t3301>
<Msg cls=Account oid=4 mthawithdraw sgn=!double“0! sze=8 tid=0 t=302>

</Msg cls=Account oid=4 mthavithdrav sgn=!double~0! tid=0 t=303>

<Msg cls=Account oid=2 mth=deposit sgn=!double~0! sze=8 tid=0 t=304>

</Msg cls=Account oid=2 mthadeposit sgn=!double*0! tid=0 t=305>

</Msg cls=Account oid=4 mth=transfer sgn=!double~0'Account”0! tid=0 t=306>

<Msg cls=Account oid=6 mthstransfer sgn=!double"O!Account 0! sze=24 tid=0 t=308>
<Nsg cls=Account 0id=6 mth=withdraw sgnmstdouble-0! sze=8 tid=0 t=309>

</Msg cls=Account 0id=6 mth=withdraw sgn=!double~0! tid=0 t=310>

<Msg cls=Account oid=2 mthsdeposit sgn=!double~0! sze=8 tid=0 t=311>

</Msg cls=Account 0id=2 mthadeposit sgn=!double“0! tid=0 t=312>

</Msg cls=Account oid=6 mth=transfer sgn=!double~0!Account~0! tid=0 t=313>
#8888 Revy-Logger: done @ Wed Bov 19 12:03:58 PDT 1997
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APPENDIX G: CRC Cards for VIS Supporting Classes

Class: AWTULI Class: CustomerWidget
superclass: Object

Responsibilities: superclass: Panel

- provides various global functions for GUI objects Responsibilities:

Collaborators: none - as an abstract class for custom widgets

- implements Java 1.1's delegate model for events listening
- notifies the listeners of this widget
Collaborators: GridBagLayout, Panel and EventListener

Class: Commander

superclass:Dialog N
Reggonsibililics: Class: DualList

- as a template window for all input dialogs

Collaborators: none superclass; CustomerWidget
Responsibilities:
Class: ParagraphDialog - displays two related lists together
superclass: Dialog - allows single or multiple selection on the lists

Responsibilities: Collaborators: Button, List and DualListListener

- dipslay a dialog window on a given text

superclass: RevyView

Responsibilities:

- as a superclass of the Trival and Cyclic MessageViews
- handles mouse click and drag events

Collaborators: MessageModel

superclass: Frame

Responsibilities:

- shows a separate window on a given source file
Collaborators: FileInputStream, TextArea and Bution

Collaborators: TextArea and Button Class:FolderChooser
wn
Class: YesNoDialog a superclass: CustomWidget
_, 6 Responsibilities:
:'gp':;:f;"?::"g ; - dipslay a Win95-like folder selector
ities: Collaborators: Choi d FolderCh List
- a dialog window with the Yes, No and Cancel buttons = 0" aborators: Lhoice and FolderChooserL.istener
Collaborators; Button L
‘]
Class: SourceViewer § Class: MessageView
:
]
|
i
]
!

v
................................... I 8
8 | Class: TrivalMessageView
. : ]
Class: RevyView z | superclass: MessageView
superclass: Object >9 Responsiblities:
Responsibilities: - draws a line between the sender & receiver InstanceViews
- as the abstract superclass of Instance & Message Views 2 | . handles mouse click and drag events
- handles mouse click and drag events & | Collaborators: TrivalMessageModel
Collaborators: RevyModel, ColorScheme & ParagraphDialo
- Class: CyclicMessage View
Class: InstanceView
superclass: MessageView
;uwclas;;l!!gvyvl'ew Responsiblities:
esponsibilities: R N . "
- draws a circle which represents the InstanceModel draws a cicular h?e an the Instance View
- handles mouse click and drag events - handles mouse click and drag events
Collaborators: InstanceModel Collaborators: CyclicMessageModel
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APPENDIX H: CRC Cards for VIS Major Classes

Class: RevyWindow

superclass: Frame

Responsibilities:

- main GUI between the user and the Revy system

- communicates between the user, PAS and RMS

- pops up dialog, draws buttons, handies menu items, etc

Collaborators: UserProject, ObjectGraph, InteractionDisplay.
Annotator, DTFReader and the 5 Commanders

Class: InteractionDisplay

superclass: Canvas

Responsibilities:

- draws the instance and message views

- receives windows events and relays to corresponding views

- calls for animation and adjust the animation settings

Cotlaborators: ObjectGraph, RevyModel, RevyView and
MessageAnimator

Class: ProjectCommander

superclass: Commander

Responsibilities:

- allows users to define the project paramelers
Collaborators: FolderChooser and UserProject

Class: AnnotationCommander

superclass: Commander

Responsibilities:

- allows users to select the classes & methods to instrument
Collaborators: DualList and UserProject

Class: ShellCommander

superclass: Commander

Responsibilities:

- allows users to edit the compile and execute commands
Collaborators: TextArea and UserProject

Class: MessageAnimator

superclass: Thread

Responsibilities:

- draws the animation on a MessageView object
- allows the setting of animation speed
Collaborators: MessageView

Class: ColorScheme

superclass: Object

Responsibilities:

- defines the color based on the activity %
Collaborators: RevyMode! and Color

Class: AnimationCommander

superclass: Commander

Responsibilities:

- allows users to adjust the animation settings
Collaborators: Scrollbar and InteractionDisplay

Class: FilteringCommander

superclass: Commander

Responsibilities:

- allows users to select the instances & methods to filter out
Collaborators: DualList, UserProject and ObjectGraph
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APPENDIX I: CRC Cards for PAS Supporting Classes

Class: UserCode Class: UserClass
superclass: Object superclass: UserCode, implements: UserAnnotatable
Responsibilities: Responsibilities:

~ acts as an abstract class for its subclasses

- all its subclasses store the static antifacts
of the user’s code

Collaborators: none

- stores user’s superclasses, methods and fields
- provides annotation interfaces on methods

- provides annotation routines on the class
- computes the static size (i.e. lower bound size)
* generates code for computing runtime object size

Collaborators: UserType, UserMethod and UserField

Class: UserFile

Class: UserEvaluable

superciass: UserCode

Responsibilities:

- superclass for objects that directly manipulates files
- provides standard file manipulation routines
Collaborators: File, {OStream

Class: UserProject

superciass: UserCode

Responsibilites:

- as an abstract superclass for any evaluable object, e.g.
method, parameter

- stores the static type and the declaring module
of the evaluable object

Collaborators: UserType & UserClass

superclass: UserFile

Responsibilities:

- manipulates the RVY project file

- generates and reads SAF file

- stores all user source files, types and classes

- provides annotation interfaces on classes and methods
Collaborators: UserSource, UserType & UserClass

Class: UsertMember

superclass: UserEvaluable

Responsibilities:

- a UserMember is 2 member object of a class;
it can be either a field or method

Collaborators: UserType & UserClass

Class: UserSource

Class: UserField

superciass: UserFile
Responsibilities:

- stores the user source file names
- backups user original sources
Collaborators: System & Runtime

superclass: UserMember
Responsibilities:

- stores the detils of a ficld of a class
- generates field size code

Collaborators: UserType & UserClass

Class: UserMethod

Class: UserType

superclass: UserCode
Responsibilities:

- predefines the primitive types

- stores the user’s type name and size
Collaberators: none

superclass: UserMember, implements: UserAnnotatable
Responsibilities:

- stores the details, like parameters, of a method

- provides annotation routines on the method

- generates method signature

- generates code for computing size of parameters

Collaborators: UserType, UserClass & UserParameter

Interface: UserAnnotatable

Class: UserParameter

superclass: UserEvaluable
superclass: none Responsibilities:
Responsibilities: - stores the details of a parameter
- defines the annotation interface routines - generates parameter size code
Collaborators: none Collaborators: UserType
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APPENDIX J: CRC Cards for PAS Major Classes

Class: Annotator

Class: JavaSourcer

superclass: Object

Responsibilities:

- receives requests from the main Revy system

- distributes services to either JavaSourcer or C++Sourcer
Collaborators: JavaSourcer, C++Sourcer, and UserProject

Class: C++Sourcer

superclass: none
Responsibilities:
- same as JavaSourcer exccpt it works for C++ sources

superclass: Object
Responsinbilities:
- reads the RVY project file
- parses the user's Java source files
- creates SAF file based on the type, class, fields and
methods declared in the user's sources
- instruments the code according to the directions given in
the user modified SAF file
- can be invoked with two options:
1) -getSAF or -annotate: parsing or instrumenting
2) -annotateBetter or -annotateFaster: accurate or faster

Collaborations: ali User* objects
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APPENDIX K: CRC Cards for RMS Supporting Classes

Class: RevyModel

Class: MessageModel

superclass: Object

Responsibilities:

- serves as the abstract user’s runtime entities
Collaborators: none

superclass: RevyModel
Responsibilities:

- records a runtime message object
Collaborators: InstanceModel

Interface: FilterableModel Class: SingleModel
superclass: none superclass: MessageModel
Responsibilities: Responsibilities:

- declares the filtering methods
Collaborators: none

- records a single runtime instance object
Collaborators: FilterableModel and HighlightableMode!

Interface: HighlightableModel

superclass: none

Responsibilities:

- declares the highlighting methods
Collaborators: none

Class: CyclicMessageModel

superclass: SingleMessageModel
Responsibilities:

- records a runtime cyclic message object
Collaborators: none

Class: InstanceModel

superclass: RevyModel

Responsibilities:

- records a runtime instance object

Collaborators: FilterableModel, HighlightableModel and
MessageModel

Class: TrivialMessageModel

superclass: SingleMessageModel

Responsibilities:

- records a runtime single direction message object
Collaborators: none




APPENDIX L: CRC Cards for RMS Major Classes

Interface: _RvObject

Class: ObjectGraph

superclass: Object

Responsibilities:

- acts as a superclass for user’s annotated classes
- declares the interface methods

Coilaborators: none

superclass: Object

Responsibilities:

- stores the runtime call graph details

- reports the runtime statistics

Collaborators: InstanceModel and MessageMode!

Class: _RvLogger Class: DTFReader
superclass: Object superclass: Object
Responsibilities: Responsibilities:

- keeps track of the OID counter

- assigns OID upon the creation of an object

- logs the creation, destruction, method start and end
toa DTF file

- parses a Dynamic Trace File
- computes the runtime statistics

Collaborators: InstanceModel, MessageModel and
ObjectGraph
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