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Abstract

Online trajectory prediction is central to the function of air traffic control of im-

proving the flow of air traffic and preventing collisions, particularly considering

the ever-increasing number of air travellers. In this thesis, we propose an approach

to predict the mid-flight trajectory of an aircra� using models learned from histor-

ical trajectories. �e main idea is based on Markov Models with transition prob-

abilities for multiple timesteps, representing the location of aircra� as states and

movement of aircra� over a certain number of minutes (i.e. timestep) as transition

probabilities between states. Using our approach, one is able to make predictions

of future positions of mid-flight aircra� for each minute up to twenty minutes into

the future, and concatenate them to form the predicted trajectory of the aircra� for

the next twenty minutes. We evaluated the effectiveness of the proposed approach

using a dataset of historical trajectories over the USA. Using prediction accuracy

metrics from the aviation domain, we demonstrated that our approach was able

to make accurate predictions of future trajectories of mid-flight aircra�, achieving

an improvement of 24.6% in horizontal error and 34.2% in vertical error over base-

line models from conventional approaches, with each prediction requiring mere

milliseconds to compute.
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Chapter 1

Introduction

�is chapter introduces the problemwe are a�empting to solve, and highlights the

key contributions that we have achieved. A brief outline of the remaining chapters

of this thesis is also provided.

1.1 Motivation

�e International Air Transport Association (IATA) reported that worldwide an-

nual air passenger numbers reached a new height of 4.1 billion passengers in

2017, representing an increase of 7.3% from 2016, and an additional 280 million

flights [17]. Based on growth projection, the IATA predicts that air passenger

numbers could double to 8.2 billion by 2037 [16]. �is could lead to a potential in-

frastructure crisis: airports and infrastructure operators will not be able to handle

the demand based on the current rate of growth, hence governments and operators

need to plan for infrastructure upgrades well in advance.

In order to mitigate this crisis, civil aviation authorities, air navigation ser-

vice providers, and commercial airlines are participating in ongoing moderniza-

tion projects that aim to improve computer systems and infrastructure used for air

transportation. In the United States, a multi-decade effort called the Next Gener-

ation Air Transportation System (NextGen) project is led by the Federal Aviation

Administration (FAA) in improving the overall capacity, performance, efficiency,

and predictability throughout the National Airspace System (NAS) [10]. In Eu-

rope, parallel to the NextGen project, a trans-national initiative of the European
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Commission called the Single European Sky ATM Research (SESAR) has the goal

of improving Air Traffic Management (ATM) for the European airspace [39].

Air Traffic Management (ATM) encompasses a wide range of operational sys-

tems that assist aircra� to take-off from a departure airport, fly through an airspace,

and land at an arrival airport, in a safe and efficient manner. ATM systems can

be sub-divided into many areas, such as Airspace Management (ASM), Air Traf-

fic Services (ATS), Air Traffic Flow Management (ATFM), and Air Traffic Control

(ATC) [18]. In particular, Air TrafficControl (ATC) is a service provided by ground-

based air traffic controllers to direct aircra� through an airspace while maintaining

safe separation from other aircra� or obstacles and ensuring the safe and orderly

flow of air traffic [28]. As the increase in global air traffic brings aboutmore aircra�

flying in the air at any point in time, air traffic controllers around the world face

the challenge of having to direct them to safely navigate an increasingly congested

airspace.

Trajectory Prediction (TP) systems are used by ATC to calculate the likely

paths of aircra� currently flying in the air (i.e. mid-flight aircra�) over a time

horizon into the future (i.e. look-ahead time), which aids air traffic controllers

in identifying potential bo�lenecks in the airspace or potential breaches in the

safe separation of aircra�. Traditionally, TP systems use the current state – such

as position, velocity and acceleration parameters – and intent – according to the

filed flight plan – of an aircra� to extrapolate its trajectory over the next 10 to

20 minutes [15]. �e prediction accuracy of such approaches may be affected by

unexpected changes in aircra� intent (such as a temporary change in altitude to

maintain safe separation from another aircra�), unknown aircra� specifications

(based on the cargo load on the aircra�), or external factors (such as strong winds

or congestion, in the airspace or at the destination airport) [15].

Recent advancements in computing research have made it possible to learn

probabilisticmodels fromhistorical data to be used for prediction. In this thesis, we

explore this approach by buildingMarkovModels from historical trajectory data to

be used for the online prediction of mid-flight aircra� trajectories, with the aim of

improving prediction accuracy in real-time TP systems. By providing timely pre-

2



dictions of mid-flight aircra� trajectories that are more accurate than predictions

made using the traditional approach particularly over longer look-ahead times,

our models can reduce the chances for errors made by air traffic controllers due

to heavy workload or fatigue when directing a high volume of air traffic through

a congested airspace. �e output predictions of our models can also be used by

downstream ATC applications to pin-point areas within the airspace that may be-

come congested, or to automatically detect and resolve conflicts in the predicted

trajectories that may result in mid-air collisions [2].

1.2 Contributions of this �esis

In order to use Hidden Markov Models (HMMs) for Trajectory Prediction (TP), we

need to map aircra� positions and weather observations into discrete states of the

model. First, we divide the geographical volume of interest into discrete, evenly

spaced grid cubes. Each hidden state represents the presence of the aircra� of

interest in a corresponding grid cube, and each observation produced at a hidden

state represents the aircra� experiencing a particular weather condition in the

corresponding grid cube. �en, we train models from historical trajectories, based

on utilizing transition probabilities of multiple timesteps from 1 to 20 minutes.

�e current position of the aircra� is used as the input start state for each model to

predict the most likely positions of the aircra� for each one of the next 20 minutes,

and the concatenation of the predicted positions form the predicted trajectory of

the aircra�, in the air, for the next 20 minutes.

�e contributions of this thesis to the area of Online Aircra� Trajectory Pre-

diction can be summarized as follows:

• We mapped basic concepts for the Trajectory Prediction problem onto Hid-

den Markov Models that are able to incorporate local weather information,

and proposed the use of Multi-Timestep Markov Models to overcome the

inherent limitation of Markov Models in that there is no explicit represen-

tation of time duration in each state.

• We used more than 16,000 historical trajectories over a continuous time

3



span of 2 years for experimental evaluation, consisting of flights between

LaGuardia Airport and Chicago O’Hare Airport (which is among the top

20 busiest domestic routes in 2017 [31]), as well as flights between Boston

Logan Airport and Chicago O’Hare Airport.

• We applied relevant prediction metrics from the aviation domain [15] for

a comprehensive experimental evaluation of multiple prediction models of

various configurations. Our best-performing model, called the Constrained

Multi-TimestepMarkovModel, achieved highly accurate predictions of mid-

flight aircra� trajectories, with an improvement of 24.6% in horizontal error

and 34.2% in vertical error over the best-performing baseline model at the

look-ahead time of 20 minutes for the busiest flight route.

1.3 Outline of this �esis

�e rest of this thesis is organized as follows. Chapter 2 gives an overview of re-

lated work, followed by some basic concept definitions and the problem definition

in Chapter 3. Chapter 4 provides the theoretical basis of our proposed models,

while the experimental evaluation of their effectiveness is presented in Chapter 5.

Chapter 6 concludes this thesis with a brief summary and discussion of future

work.

4



Chapter 2

Related Work

�is chapter summarizes the research that has been done on aircra� trajectory

data, specifically in the analysis of aircra� trajectories through clustering, and in

the prediction of aircra� trajectories.

2.1 Background

�edeployment of Global Navigation Satellite Systems (GNSSs), such as the Global

Positioning System (GPS) and Galileo (by the European Union), has enabled the

use of geo-location data for a wide variety of purposes, including navigation and

orientation (e.g. in transportation, sports, and recreation), surveying and mapping

(e.g. in construction, geology, and archaelogy), military operations, and even social

network services [35, 42]. Furthermore, the rapid proliferation of GNSS-enabled

devices, coupled with advancements in computer storage and processing capabili-

ties, have made it possible to collect large amounts of geo-location data generated

by moving objects – such as people, vehicles, animals, and natural phenomena –

to be stored for further analysis. In particular, trajectory data, formed by concate-

nating recorded positions of a moving object in chronological order, represents the

path travelled by the moving object over time, and contains important informa-

tion that can provide valuable insights into the behavior and habits of a moving

object [45].

Trajectory data can be broadly classified into two categories: objects moving

within a land transportation network, such as cars, buses, and trains, and objects
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moving in a free and open space (usually in the sky or at sea), such as aircra�,

ships, and animals. �e first category, trajectory data of land transport vehicles,

has been widely explored in recent years because of the wide-spread adoption of

map navigation applications (e.g. Google Maps, Waze) and ride-share services (e.g.

Uber, Ly�). In this category, the road (or rail) network is typically represented

as a graph, in which road intersections correspond to nodes and road segments

correspond to edges [46]; alternatively, some approaches may use a graph where

points or areas of interest correspond to nodes, while the commutes between these

points or areas correspond to edges [46]. �e trajectories of vehicles are then

matched with nodes and edges in the graph in order to identify travel pa�erns,

assess traffic conditions, or detect traffic anomalies [46].

�e second category, trajectory data of objects moving in open spaces, can also

make use of a graph-matching approachwhen the semantics of certain locations or

regions in the open space can be exploited, such as through the use of way-points,

intersections, or areas of activity in the open space. However, such semantics may

not always be available, and it is subject to changes due to the dynamic nature

of navigation in open spaces: unlike land transportation where the entire road or

rail network that vehicles travel on have to be constructed, the path of travel in

an open space is not strictly restricted to fixed paths within a network. Indeed,

flight paths and procedures used to be limited by and planned according to the

physical locations of ground-based navigation aids, but with the implementation

of Performance-Based Navigation (PBN) and Trajectory-Based Operations (TBO)

enabling point-to-point travel (in order to increase airspace capacity and fuel effi-

ciency, in the context of NextGen and SESAR) [11, 19], aircra� are now travelling

on more flexible and varied paths than ever before. �us, the challenge that this

category of trajectory data presents, is that techniques are required to process

positional data drawn from a much larger, three-dimensional geographical space

with li�le or evolving semantics, as compared to up to two dimensions for most

applications for land transportation. We focus on the literature for moving object

trajectory data in open spaces in the following sections.
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2.2 Trajectory Data Analysis

Literature on the analysis of trajectory data typically follow a discriminative ap-

proach by identifying clusters of trajectories [6, 13, 32], sub-trajectories [3], or

significant positions along trajectories [13, 32].

Gariel, Srivastava, & Feron [13] proposed two methods for finding clusters of

trajectories to be used in airspace monitoring. �e first method was based on

clustering trajectories that have turning points at the same locations (i.e. way-

points), while the second method was based on clustering trajectories that have

similar principal components a�er undergoing re-sampling, dimensionality aug-

mentation, and PCA (Principal Component Analysis). Clustering results were

validated by showing the cluster centroids (i.e. average trajectories) to air traf-

fic controllers, who were able to identify all the STARs (Standard Terminal Arrival

Routes) among the clusters. �e clusters were then applied to real-time airspace

monitoring, where the distance of the position of an aircra� to the nearest trajec-

tory cluster was used as the anomaly score, and those with the highest anomaly

scores were deemed to be deviating from typical flight paths. It was reported that

for the first method, many trajectories were considered outliers as they do not fly

over the discovered way-points, while for the second method, 19.5% of the trajec-

tories were considered outliers as their principal components do not belong in a

cluster. �ere was neither a measure for, nor an analysis of the effectiveness of

using the centroids of trajectory clusters for airspace monitoring.

Basora, Morio, &Mailhot [6] and Olive &Morio [32] presented trajectory clus-

tering methods for the analysis of air traffic flows around airports. Both meth-

ods used the Ramus-Douglas-Peucker algorithm to simplify trajectories, remov-

ing redundant positions (typically along straight parts of a trajectory) while keep-

ing only significant positions (typically along curved parts of a trajectory). �e

method proposed by Basora, Morio, & Mailhot [6] for clustering trajectories was

based on HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applica-

tions with Noise) and two distance functions between trajectories: Euclidean Dis-

tance and Symmetrized Segment-Path Distance. A centroid for each trajectory
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cluster was determined by choosing the trajectory that had the minimal sum of

distances to other trajectories within the cluster. For evaluation, the cluster cen-

troids were compared qualitatively to existing flight routes, though it was re-

ported that 32% and 25% of the trajectories (for each distance function used, re-

spectively) were outliers, and would require further analysis. �e method pro-

posed by Olive & Morio [32] for clustering trajectories was based on clustering

and sequencing their significant positions. Using the clusters of significant posi-

tions, each trajectorywas converted into a sequence of significant positions. A tree

was formed where each node represents a cluster of significant positions, while

a parent-child relationship in the tree represents the trajectory segments flying

over the child node, followed by the parent node. Each sequence of nodes from a

leaf node (i.e. the first position of detection) in the tree to the root node (i.e. the

airport) was considered a pa�ern, and the trajectories that fly over the sequence

of nodes denoted by a pa�ern were considered one cluster. It was reported that

30% of the trajectories were outliers, consisting mostly of incomplete trajectories

and trajectories with holding pa�erns (e.g. aircra� flying in a circular path due to

congestion at the destination airport).

�e use of trajectory clusters (and their cluster representatives) for predict-

ing the future trajectory of a moving object can be done as follows. Based on the

past trajectory of the moving object until the current point in time, first find the

cluster that the moving object belongs in. �en, retrieve the cluster representa-

tive, and find the position on the representative that is nearest to the most recent

position of the moving object. �e trajectory of the representative from this posi-

tion onwards can be considered a prediction of the future trajectory of the moving

object. However, the large proportions of outliers reported in the literature afore-

mentioned, as well as the dynamic nature of trajectory data as explained earlier,

seem to suggest that clustering may not be the best approach for grouping tra-

jectories together, because the well-separation of clusters is not guaranteed and

trajectories do not fall squarely within a single cluster. Ayhan & Samet [3] took a

different approach to trajectory data analysis: instead of using all trajectories of

aircra� flying through a region of interest, only the trajectories of aircra� flying a
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specific flight route (i.e. from a particular departure airport to a particular arrival

airport) were used for clustering. �is approach of selecting a sub-population of

trajectories that fly a specific flight route removes the need to cluster trajectories

of all aircra� flying in the airspace (and having most of them flying on different

routes), and thus changes the approach for data analysis from a region-specific one

to a route-specific one that focuses on finding the representative trajectory for a

particular flight route. Positions along the input trajectories were first divided into

three phases of flight: climb, en-route, and descent. k-means clustering was per-

formed for each of the phases to obtain clusters of positions along the trajectories.

�e centroids of the clusters were then joined together to find the representative

trajectory for the flight route. Although using only the trajectories for a specific

flight route was a good approach for the problem, only one representative trajec-

tory was generated, and the fact that different flights may take different paths from

the departure airport to the arrival airport was ignored.

2.3 Trajectory Prediction (TP)

Research into the accurate prediction of aircra� trajectories has been active for

at least 50 years [8]. Benoit, Storey, & Swierstra (1975) [8] outlined a family of 3

approaches for predicting the vertical component (i.e. altitude) during the climb-

ing and descending phases of flight. �e most basic approach assumes that the

rate of climb/descent of the aircra� will remain constant, and makes the predic-

tion by extrapolating the current position of the aircra� linearly into the future

based on the recorded rate of change of altitude over time between the two latest

positions of the aircra�. On top of radar positional data, the second approach in-

corporates the climb/descent performance data of each individual aircra�, while

the third approach also includes air temperature and take-offmass into calculating

the trajectory of an aircra�. �ough the experimental evaluation was conducted

on a wide range of 13 aircra� (most of which have now been replaced by newer

models/variants), it was limited to the climb phase from 10,000 up to 30,000 feet,

and ignored the horizontal dimension.
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Trajectory prediction methods can be divided into nominal, worst-case, and

probabilistic techniques [24, 44]. Nominal techniques, such as those described

in the previous paragraph, project a single trajectory (i.e. a nominal trajectory)

of an aircra� into the future based on its current state information (e.g. veloc-

ity) without considering uncertainties, but only work for very short predictions

and for trajectories that are very predictable [24]. Worst-case techniques consider

multiple possible maneuvers that an aircra� can make based on its capabilities,

but cause a high false alarm rate in conflict detection, making them difficult to

use [24]. Probabilistic techniques seek to strike a balance between the simplistic

nominal approach and the conservative worst-case approach by modeling uncer-

tainties so that the probabilities of possible future trajectories can be calculated

and ranked [24]. �e probabilistic approach is thus the most general one: using

a probabilistic model, the nominal approach corresponds to the case in which the

aircra� is predicted to follow a (maximum likelihood) trajectory with probabil-

ity of one, while the worse-case approach corresponds to the case in which the

aircra� will follow a set of predicted trajectories with equal likelihood. Recent

literature has been focused on probabilistic techniques. Particularly, models that

are learned from historical data – such as Markov Models (MMs) [4, 12, 25] and

Recurrent Neural Networks (RNNs) [38] – have gained considerable interest be-

cause of their effectiveness in modeling sequences for language processing [22,

23]. Moreover, the rapid development of sensor systems (such as GNSSs) used

to provide geo-location data is making it more feasible to build such models, as

they o�en require large amounts of training data. For example, the recent deploy-

ment of space-based Automatic Dependent Surveillance-Broadcast (ADS-B) [29]

extends the coverage of air traffic information to the remaining 70% of the world’s

airspace (remote, polar and oceanic regions) that traditional ground-based ADS-B

receivers are unable to cover [1]. In this thesis, we focus on the use of Markov

Models for Trajectory Prediction, and leave Recurrent Neural Networks for future

exploration and comparison a�er we are able to gather more training data.

Ayhan & Samet [4] proposed the use of Hidden Markov Models (HMMs) for

Trajectory Prediction by considering the airspace as a 3D grid network, where
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each point in the grid is the location of a weather observation (i.e. a vector of

weather parameter values for temperature, wind speed, and wind direction). By

building hypothetical cubes around these grid points, the airspace becomes a set

of spatio-temporal data cubes. Each historical trajectory was aligned with the grid

to be converted into a sequence of spatio-temporal data cubes, and each weather

parameter value for each cube – temperature, wind speed, and wind direction –

was assigned a bucket based on pre-defined intervals for each parameter, with 6, 5,

and 8 possible buckets respectively. AnHMMwas built where states correspond to

grid points, a transition probability represents the probability of an aircra� transi-

tioning from one state to another along its aligned trajectory, an emission proba-

bility represents the probability of a set of weather parameters being observed at a

particular state, and an initial probability represents the probability of an aligned

trajectory beginning at a particular state. Experimental evaluation was performed

by drawing 23 test trajectories with replacement from the 474 historical trajec-

tories. Using the date of a test trajectory and the median flight duration of 78

minutes, each historical trajectory was treated as if it was flown on the same day

as the test trajectory, to obtain a total of 474 sequences of 78 weather observations.

Centroid weather observations for each of the 78 time instances were joined to-

gether [5] to form a single input observation sequence for the HMM, and were

then passed through the Viterbi algorithm [22] to find the most likely sequence of

hidden states, representing the sequence of spatio-temporal data cubes that form

the prediction of the test trajectory.

As the approach proposed by Ayhan & Samet [4] was intended to be used for a

pre-flight prediction of the complete aircra� trajectory from take-off to landing, it

has the following weaknesses when applied for the online prediction ofmid-flight

aircra� trajectories:

• Predicted trajectories always follow the median flight path

Based on the median flight duration of 78 minutes, the input to the HMM

was a sequence of 78 weather observations, and the output was a sequence

of 78 spatio-temporal data cubes representing the locations that the aircra�

should be in for each minute of the flight. �e flights for the same route
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typically follow the same flight plan, detailing the most direct path from

the departure airport to the arrival airport. Because of this, there is an over-

representation of trajectories in the spatio-temporal data cubes that lie along

this median flight path, resulting in large transition probabilities for state

transitions along this path in the HMM. Also, the emission probabilities for

each state are learned according to the historical distribution of weather pa-

rameter buckets in its corresponding spatio-temporal data cube. As the dis-

tributions of weather parameter buckets are specific to each data cube (espe-

cially for temperature parameter), the weather observations chosen for the

input observation sequence are likely to have large emission probabilities

for the states corresponding to the data cubes in which they are observed,

and smaller or zero emission probabilities for other states. �e proposed

approach of joining the centroid weather observations of the 474 sequences

of 78 weather observations will almost always generate the sequence of 78

weather observations that is observed along the median flight path, and be-

cause of the large transition and emission probabilities pertaining to this

sequence of weather observations, the predicted trajectory will almost al-

ways be a sequence of 78 spatio-temporal data cubes along the same median

flight path, which is not useful at all as it has already been described in the

flight plan. Moreover, the assumption that the predicted trajectory is a se-

quence of 78 spatio-temporal data cubes contradicts the authors’ claim that

the proposed approach is able to providing accurate arrival metering: what

it actually does is to make a prediction of the flight duration based on the

median duration of all historical flights, without considering any environ-

mental factors that could result in a delay of the flight.

• Predicted trajectories do not improve offline flight planning

�e approach was proposed with the aim of improving flight planning by

calculating the optimal path for a flight trajectory, taking into account the

weather parameters along possible flight trajectories for the current day of

the flight. However, finding the optimal flight path of a single aircra�, with-

out taking into consideration the other aircra� flying in the vicinity or pos-
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sible congestion at the arrival airport, is akin to performing optimization

without constraints: during its flight, the aircra� is bound to end up in con-

flict with another aircra� or face a congested airport at the destination, and

be subjected to adjustment or re-routing by ATC. �is is why the flight plan

only provides a brief description of the flight path for the aircra�, and leaves

it to the pilot to follow the instructions issued by ATC during the actual

flight. Moreover, the output is a spatial trajectory that does not provide any

suggestion of air-speed or heading: it does not provide instructions to the

pilot on what speed or flight level to fly the aircra� at, and when or where

to turn.

• Predicted trajectories cannot be used for online monitoring

�e proposed approach predicts the trajectory of an aircra� only once, be-

fore it takes off from the departure airport. �is is different from online

trajectory prediction, where predictions are made at regular intervals for as

long as the aircra� is in the air. Even though the authors claimed that “the

proposed solution can be adapted for both tactical and strategic trajectory

prediction” [4], the adaptation to an online solution (i.e. tactical/online tra-

jectory prediction) is not straight-forward. For adaptation, the HMM could

be extended such that a set of initial probabilities is learned for each minute

into the flight, then, the trajectory of an aircra� that has been flying for e.g.

15 minutes can be predicted by starting at the initial probabilities for the 15th

minute. However, without incorporating the current position of the aircra�

into the modeling of the HMM, the predicted trajectory may not necessarily

begin from the current position of the aircra�.
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Chapter 3

Basic Definitions

�is chapter defines the basic concepts that are used for the rest of this paper, and

introduces the problem definition. Because of the shared application domain, the

definitions contain some similarities with those in Ayhan & Samet [4].

3.1 Geospatial Concepts

�eWorld Geodetic System 84 (WGS84) defines a standard coordinate system for

the Earth, serving as a reference for the Global Positioning System (GPS), a global

navigation satellite system that provides accurate positional and time information

to people or objects equipped with GPS receivers anywhere near the surface of the

Earth.

Definition 3.1. Based on the WGS84 standard, a geographical position gp near

the surface of the Earth can be represented using 3 coordinates,

gp = (latitude, longitude, altitude).

Definition 3.2. A positional update pos, provided by a GPS receiver, represents

the geographical position gp of a particular aircra� at a particular timestamp ts,

pos = (gp, ts).

Definition 3.3. �e continuous sequence of positions that form the exact path of

travel of an aircra� can be called an original trajectory. As the original trajectory

can be infinitely long and immeasurable, we use an approximate representation
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of it, called a raw trajectory. A raw trajectory Trjac is a finite sequence of posi-

tional updates of a particular aircra� ac, captured over a sequence of timestamps

in increasing order,

Trjac = (pos1, . . . , posn), n ∈ Z
+, n ≥ 2,

where each position is

posi = (gpi, tsi), ∀i ∈ [1, n].

3.2 Reference Grid Concepts

�ere is an infinite number of possible representations of geographical positions

over the continuous geographical coordinates latitude, longitude and altitude. In

order to simplify the space of possible representations to a discrete and finite set,

we perform a mapping of geographical positions to standard reference points in a

reference grid. Further to this, to enable the use of weather data in our work, we

use the 2-dimensional reference grid of the Rapid Refresh (RAP) weather forecast-

ing system by the National Oceanic and Atmospheric Administration (NOAA) [7].

Under this mapping, geographical positions over the whole continental United

States (CONUS) are first projected to local coordinates using the Lambert Con-

formal Conic Projection [40], before being mapped to a 2-dimensional reference

point in the planar reference grid. For the vertical dimension, RAP uses 50 verti-

cal levels following a sigma coordinate system [7], which is problematic for our

purposes as the vertical levels are not uniformly separated and the values for all

50 levels vary depending on the current surface pressure at the reference point

in the grid. �erefore, we use the standard in aviation [9] to divide the vertical

dimension into uniformly spaced intervals based on pressure altitude1. Weather

parameters for each altitude interval follow that of the RAP vertical level closest

to the center of the interval.

1Pressure altitude, though expressed in feet, is a measurement of atmospheric pressure at a
certain height, and conversion of units between millibars and feet can be done using a formula
published by NOAA [27].
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Our 3-dimensional reference grid is consequently a 3-dimensional array of ge-

ographical positions,

rp = (rp latitude, rp longitude, rp altitude),

spaced 13.545 km apart in a 451 × 337 configuration in the horizontal plane and

spaced 2000 � apart over 22 levels in the vertical dimension. �e geographical

volume of interest has thus been divided into discrete, evenly spaced volumes.

Each volume, called a grid cube gc, is represented by a corresponding reference

point rp at its center.

Given the reference grid, a raw trajectory Trj can be transformed into an aligned

trajectory Trj, by replacing the geographical position of each positional update in

the raw trajectory with the reference point closest to it.

In what follows, we refer to the reference point rp representing a grid cube gc

as rp = ref (gc). We also refer to the set of all grid cubes as G.

3.3 Weather Concepts

RAP is an hourly updated weather forecasting system that provides a location-

specific forecast of hourly weather conditions up to the next 19 hours2 [7]. Due to

the accumulation of errors in numerically computing the interactions of environ-

mental variables over time, the accuracy of weather forecasting decreases as the

forecast hour into the future increases [43]. As the aim of our work is to examine

the effect of current weather conditions on the trajectory of an aircra�, we will be

using only the forecast of weather conditions for the current hour.

Definition 3.4. Aweather vectorwvdy,hr,gc, describing theweather condition in a

particular grid cube gc at a particular hour hr of a day3 dy, consists of 4 weather pa-

rameters, namely specific humidity shdy,hr,gc, temperature (Kelvins) tkdy,hr,gc, wind

2For the current hour and 18 hours into the future.
3We use the terms day and date interchangeably.
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speed wsdy,hr,gc and wind direction wddy,hr,gc,

wvdy,hr,gc =




shdy,hr,gc
tkdy,hr,gc
wsdy,hr,gc
wddy,hr,gc


 .

Given a timestamp ts, we also write wvts,gc as a shortcut for wvdate (ts),hour (ts),gc.

3.4 Weather Binning Concepts

We adopt a binning approach for discretizing weather vectors, such that each con-

tinuousweather vectorwv can bemapped to a corresponding vector of discrete bin

values wb to be represented in a Markov Model. Because of the varying distribu-

tions of the weather parameters over different grid cubes, each grid cube requires

a different set of bin intervals for each of the weather parameters. �e wind direc-

tion parameter has a circular distribution, and is best divided using the 4 cardinal

directions (north, south, east, west), giving a total of 4 bin intervals of 90 degrees

each, as shown in Table 3.1. As for the parameters specific humidity, tempera-

ture, and wind speed, we bin them such that values representing extreme weather

conditions fall into different bins from values representing common weather con-

ditions. We first obtain mean and standard deviation values for each parameter in

each grid cube gc ∈ G, which we then use to determine 3 bin intervals by spli�ing

the range of values at the first standard deviation from their means, as shown in

Table 3.2.

In what follows, we refer to the bin vector wb mapped from a weather vector

wv as wb = bin (wv). We also refer to the set of all possible bin vectors asW .

Table 3.1: Bin intervals for wind direction
Bin intervals for wind direction (wd), in degrees

Bin no. Interval

1 315(= −45) < wd ≤ 45
2 45 < wd ≤ 135
3 135 < wd ≤ 225
4 225 < wd ≤ 315(= −45)
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Table 3.2: Bin intervals for specific humidity, temperature and wind speed
Bin intervals for specific humidity (sh) in each grid cube gc ∈ G,
same calculations apply for temperature (tk) and wind speed (ws)

Bin no. Interval

1
(
µsh,gc − σsh,gc

)
< sh <

(
µsh,gc + σsh,gc

)

2 sh ≥
(
µsh,gc + σsh,gc

)

3 sh ≤
(
µsh,gc − σsh,gc

)

3.5 Problem Definition

�e Online Trajectory Prediction (TP) Problem. Given a set of D histori-

cal trajectories {Trj1, ..., TrjD} of flights between two airports, as well as the tra-

jectory of an aircra� currently on its journey since its departure timestamp tsdep

until the current timestamp tsnow, i.e. (postsdep , ..., postsnow), our goal is to predict

the most probable trajectory of the aircra� for the next L minutes, i.e.

(p̂ostsnow+1
, ..., p̂ostsnow+L

). �e time L is called the look-ahead time4. Also, we note

that this is for mid-flight, online predictions, which are bound to be more useful

in ATC applications than pre-flight predictions.

4Most conflict detection applications are interested in a look-ahead time of ten to twenty min-
utes [15].
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Chapter 4

Prediction Models

�is chapter provides the theoretical foundation of the prediction models. It gives

an overview of Hidden Markov Models (HMMs), followed by the mapping of the

TP problem to an HMM. It then presents the formulae for the estimation of proba-

bilities in the HMM, followed by four proposed approaches for HMM decoding to

obtain the predicted trajectory. It concludes with an illustration of how the four

proposed approaches work, using a single example.

4.1 Hidden Markov Models (HMMs)

An HMM is specified by the following components:

• A set of N possible states, S = {s1, . . . , sN}.

• A transition probability matrix,

A =



a(s1, s1) . . . a(s1, sN)

...
. . .

...
a(sN , s1) . . . a(sN , sN)


,

where each value a(si, sj) represents the probability of state si transitioning

to state sj , such that
∑

sj∈S
a(si, sj) = 1, ∀si ∈ S.

• A set ofM possible observations, U = {u1, . . . , uM}.

• An emission probability matrix,

B =



b(s1, u1) . . . b(s1, uM)

...
. . .

...
b(sN , u1) . . . b(sN , uM)


,
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where each value b(sj, uk) represents the probability of state sj producing

observation uk, such that
∑

uk∈U
b(sj, uk) = 1, ∀sj ∈ S.

• Special start and end states, s0 and sE , respectively, that are not associ-

ated with observations, with transition probabilities out of the start state

a(s0, s1), . . . , a(s0, sN), as well as transition probabilities into the end state

a(s1, sE), . . . , a(sN , sE).

HMMs have to address three fundamental problems: Likelihood Computation,

Decoding, and Learning [22]. For these problems, the input to the model is an ob-

servation sequence O = (o1, . . . , oT ), i.e. a sample sequence of T observations,

such that ot ∈ U, ∀t ∈ [1, T ].

In the HMM Decoding Problem, the Viterbi algorithm [22] is commonly used

to find the most probable hidden state sequence Q̂ = (q̂1, . . . , q̂T ) for a given

input observation sequence, i.e. the most probable sequence of T hidden states

based on an input observation sequence O, such that q̂t ∈ S, ∀t ∈ [1, T ].

4.2 Mapping the TP Problem to an HMM

We canmodel a particular flight route by probabilities of state changes in aMarkov

Model, based on historical trajectories of the flight route across the geographical

space. We can then predict the most probable trajectory of the flight by finding

the most probable state sequence, using the Markov Model, through the following

mapping:

• �e set of possible states S corresponds to the set of grid cubes G, each of

which is represented by a reference point. Since there are 451× 337× 22 =

3, 343, 714 reference points, we have a total of N = 3, 343, 714 possible

states. A state si ∈ S is said to be true for a particular aircra� at a particular

time, when the aircra� is in the corresponding grid cube gci ∈ G at that

time.

• �e transition probability at(si, sj) represents the probability of the air-

cra� moving from grid cube gci, corresponding to si, to grid cube gcj , cor-

responding to sj , a�er t minutes.
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We have extended our model from a simple Markov Model by adding the sub-

script t in the transition probability, which we call a timestep. For example, t = 3

means a timestep of 3 minutes. �is is intended as a work-around for an inherent

limitation of HMMs in that there is no explicit representation of the time duration

in each state [20], to allow us to utilize the temporal dimension in trajectory data

for building our prediction models.

Also, by extending to a Hidden Markov Model consisting of states which are

partially observable through observations, we can incorporate the influence of

weather conditions on the trajectory of the aircra� by treating weather vectors as

observations produced as the aircra� transitions through the hidden states:

• �e set of possible observationsU corresponds to the set of bin vectorsW ,

each representing an interval of possible weather vectors. Since there are 4×

3× 3× 3 = 108 bins, we have a total ofM = 108 possible observations. An

observation uk ∈ U is said to be true for a particular aircra� in a particular

state sj at a particular time, when the aircra� is in the corresponding grid

cube gcj at that time, and is experiencing the weather condition represented

by wv that falls into the corresponding bin vector bin (wv) = wbk ∈ W .

• �e emission probability b(sj, uk) represents the probability of an aircra�

experiencing a weather condition that falls into bin vector wbk, correspond-

ing to uk, when the aircra� is in grid cube gcj , corresponding to sj .

We also need to determine the start and end states in the HMM for the TP prob-

lem. Based on the problem definition, predictions shall be made anytime during

the flight of the aircra�, with the implication that the start state should represent

the current location of the aircra�. Because of this, the start state in our model

is not a special state, but rather, a state belonging to the set of possible states,

si ∈ S, i ∈ [1, N ]. We write qtsnow = si, to indicate and “select” the start state as the

state at the current timestamp tsnow. For a given timestep t, transition probabilities

out of the start state follow those for state si, i.e. at(si, s1), . . . , at(si, sN). �e end

state in our model is a special state sE that is not in the set of possible states S.

Since there is no reason to prefer any particular state to be the last state in the

predicted hidden state sequence (i.e. the state before the special end state sE), we
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omit transition probabilities into the end state, and also the end state itself, from

our model.

In summary, given look-ahead time L, and assuming we have learned (see the

following section) the emission probability matrix and the transition probability

matrices for each minute t into the future up to the look-ahead time (i.e. ∀t ∈

[1, L]), we have the following input and output to our model:

• Input: start state qtsnow and observation matrix O of size N × L. Instead

of taking an observation sequence, our model takes as input the start state

qtsnow ∈ S at the current timestamp tsnow, its corresponding grid cube gctsnow , as

well as the weather conditions observed in allN grid cubes for the following

Lminutes,O = [oj,t], j ∈ [1, N ], t ∈ [1, L], such that each observation oj,t =

uk ∈ U corresponds to a bin vector wbk = bin (wvtsnow+t,gcj
) ∈ W, gcj ∈

G, t ∈ [1, L], where we assume timestamps to be whole minutes.

• Output: most probable hidden states q̂tsnow+1, . . . , q̂tsnow+L. We find the most

probable state q̂tsnow+t for each minute t into the future up to the look-ahead

time of L = 20 minutes, t ∈ [1, L], and concatenate them in ascending

temporal order to form the sequence of most probable hidden states, Q̂ =

(q̂tsnow+1, . . . , q̂tsnow+L), which can be mapped into a predicted trajectory for

the next L minutes, by assigning as positions the reference points of grid

cubes corresponding to the predicted states, i.e. T̂rj = (p̂ostsnow+1, . . . , p̂ostsnow+L)

= (ref (ĝctsnow+1), . . . , ref (ĝctsnow+L)).

4.3 Estimating Probabilities for the HMM

Our estimation of transition probabilities follows the usual approach of counting

occurrences, using a training dataset consisting ofD aligned historical trajectories

{Trj1, . . . , TrjD}.

For a timestep of t minutes, t ∈ [1, L], at(si, sj) represents the probability of

state si ∈ S transitioning to state sj ∈ S a�er t minutes, and can be estimated

by counting, how many times aircra�s on historical flights were in grid cube gcj ,

corresponding to state sj , when they were in grid cube gci, corresponding to state
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sj , t minutes earlier, i.e.,

at(si, sj) = P ((ref (gcj), ts) ∈ Trj | (ref (gci), ts− t) ∈ Trj )

=
| {Trj | (ref (gcj), ts) ∈ Trj ∧ (ref (gci), ts− t) ∈ Trj } |

| {Trj | (ref (gci), ts− t) ∈ Trj } |
,

(4.1)

where (ref (gcj), ts) ∈ Trj denotes that an aligned trajectory Trj contains a position

ref (gcj) (i.e. the reference point of grid cube gcj , corresponding to state sj) with

timestamp ts.

As for the estimation of emission probabilities, we follow a similar approach.

However, given a total of M = 108 bins where each weather vector can fall into,

a huge amount of data would be required to estimate the emission probabilities

without obtaining zero probability values. To mitigate this situation, we perform

Laplace Smoothing in our estimation by adding a pseudo-count of 1 for each bin

(i.e. Add-One Smoothing) [26].

b(sj, uk) represents the probability of state sj ∈ S producing observation uk ∈

U , and can be estimated by counting (with Add-One Smoothing), howmany times

aircra�s on historical flights experienced a weather condition that falls into bin

vector wbk, corresponding to observation uk, when they were in grid cube gcj ,

corresponding to state sj , i.e.,

b(sj, uk) = P (bin (wvts,gcj) = wbk | (ref (gcj), ts) ∈ Trj )

≈
| {Trj | bin (wvts,gcj) = wbk ∧ (ref (gcj), ts) ∈ Trj } |+ 1

| {Trj | (ref (gcj), ts) ∈ Trj } |+ 108
,

(4.2)

where (ref (gcj), ts) ∈ Trj denotes that an aligned trajectory Trj contains a position

ref (gcj) (i.e. the reference point of grid cube gcj , corresponding to state sj) with

timestamp ts, and bin (wvts,gcj) = wbk denotes that the weather condition wvts,gcj

in grid cube gcj at timestamp ts falls into the bin vector wbk.

4.4 Decoding the HMM: Four Approaches

We propose four approaches for decoding the HMM we have built for Trajectory

Prediction, based on utilizing the multi-timestep transition probabilities learned

fromhistorical trajectories. Essentially, when propagating probabilities from states
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at timestamp tsnow + t − 1 to states at timestamp tsnow + t, where t ∈ [1, L], the

four approaches use different combinations of two transition probabilities:

• 1-minute transition probability from a state si at timestamp tsnow + t− 1 to

a state sj at timestamp tsnow + t, i.e. a1(si, sj).

• t-minute transition probability from the start state qtsnow at timestamp tsnow

to a state sj at timestamp tsnow + t, i.e. at(qtsnow , sj).

4.4.1 �e Viterbi Approach

�e first approach applies the Viterbi algorithm [21], using dynamic program-

ming based on only 1-minute transitions to find the most likely hidden state

sequence. �is is done through finding the Viterbi probabilities for all possible

states, recursively in increasing order of minutes from the current timestamp.

�e Viterbi probability vtt(sj) for a state sj at timestamp tsnow+ t, t ∈ [1, L],

can be computed by finding the maximum, among all states si ∈ S, the product

of the Viterbi probability vtt−1(si) of state si at timestamp tsnow + t − 1, the 1-

minute transition probability a1(si, sj) from state si to state sj , and the emission

probability b(sj, oj,t) of observation oj,t in state sj at timestamp tsnow + t, i.e.,

vtt(sj) = b(sj, oj,t)×max
si∈S

(
vtt−1(si)× a1(si, sj)

)
. (4.3)

�e Viterbi algorithm uses a backtrace pointer btt(sj) for each state sj at

each timestamp tsnow + t, t ∈ [2, L], to keep track of the best state si in the previ-

ous timestamp tsnow + t − 1 that led to the current state sj , and by following the

backtrace pointer all the way to the beginning, and then concatenating the states

along this path, the most likely hidden state sequence can be obtained.

Based on the description of our HMM presented so far, we give a formal defi-

nition of the Viterbi recursion as follows:

Initialization:

vt1(sj) = b(sj, oj,t)× a1(qtsnow , sj), ∀sj ∈ S,

bt1(sj) = ∅, ∀sj ∈ S,
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Recursion:

vtt(sj) = b(sj, oj,t)×max
si∈S

(
vtt−1(si)× a1(si, sj)

)
, ∀sj ∈ S, ∀t ∈ [2, L],

btt(sj) = b(sj, oj,t)× argmax
si∈S

(
vtt−1(si)× a1(si, sj)

)
, ∀sj ∈ S, ∀t ∈ [2, L],

Termination:
best probability: max

si∈S

(
vtL(si)

)
,

start of backtrace: argmax
si∈S

(
btL(si)

)
.

4.4.2 �e Multi-Timestep Approach

�e second approach, as presented in Pan, Nascimento, & Sander [34], uses only

t-minute transitions to find the most likely hidden state at each minute given

the start state, and thus does not require dynamic programming like the Viterbi

approach.

For this approach, the most probable state q̂tsnow+t at timestamp tsnow + t is

the state sj ∈ S that maximizes the product of the t-minute transition probabil-

ity at(qtsnow , sj) from the start state qtsnow to state sj , and the emission probability

b(sj, oj,t) of observation oj,t in state sj at timestamp tsnow + t, i.e.,

q̂tsnow+t = argmax
sj∈S

(
b(sj, oj,t)× at(qtsnow , sj)

)
. (4.4)

As compared to the O(N2L) complexity of the Viterbi algorithm, the advan-

tage of the Multi-Timestep approach is that it has a complexity of O(NL).

4.4.3 �e Constrained Viterbi Approach

�e third approach is based on applying the Viterbi algorithm as described pre-

viously. It uses 1-minute transition probabilities in calculating the Viterbi

probabilities, and also uses t-minute transition probabilities as a constraint

to limit the number of possible states being considered for each minute.

�is is achieved by adding the term sgn(at(qtsnow , sj)) to the Viterbi probability

in Equation 4.3. �is term uses the sign function to set the Viterbi probability of

the state sj at timestamp tsnow+ t to zero when the t-minute transition probability

at(qtsnow , sj) from the start state is zero, and to multiply the Viterbi probability by 1
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(essentially doing nothing to it) when the t-minute transition probability is more

than zero, i.e.,

vtt(sj) = b(sj, oj,t)× sgn
(
at(qtsnow , sj)

)
×max

si∈S

(
vtt−1(si)× a1(si, sj)

)
. (4.5)

�e same modification is made to the Viterbi backtrace, while the Initialization

and Termination clauses in the Viterbi recursion remain unchanged.

4.4.4 �e Constrained Multi-Timestep Approach

�e fourth approach, inspired by the Multi-Timestep approach, is also based on

applying the Viterbi algorithm, but switches the roles of the two transition prob-

abilities. It uses t-minute transition probabilities in calculating the Viterbi

probabilities, and also uses 1-minute transition probabilities as a constraint

to ensure that there is a path through the hidden state sequence found by the al-

gorithm.

�e sign function sgn
(
a1(si, sj)

)
is now applied to the 1-minute transition

probability fromEquation 4.3, while the t-minute transition probability at(qtsnow , sj)

is now used to calculate the magnitude of the Viterbi probability. With this mod-

ification, the equation follows closely that of Equation 4.4 for the Multi-Timestep

approach, but in calculating the Viterbi probability of the state sj at timestamp

tsnow + t, only considers states si ∈ S in the previous timestamp tsnow + t− 1 that

have a positive 1-minute transition probability a1(si, sj) to state sj , i.e.,

vtt(sj) = b(sj, oj,t)× at(qtsnow , sj)×max
si∈S

(
vtt−1(si)× sgn

(
a1(si, sj)

))
. (4.6)

�e same modification is made to the Viterbi backtrace, while the Initialization

and Termination clauses in the Viterbi recursion remain unchanged.

4.5 Working through an Example

We illustrate how the four proposed approaches work, using a single example

comprising 11 states over 3 minutes as shown in Figure 4.1, where 1-minute, 2-

minute, and 3-minute transition probabilities are represented by red dashed lines,

blue do�ed lines, and green solid lines respectively. Emission probabilities have
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been omi�ed from this example for the sake of simplicity. �e prediction starts

from s1 = qtsnow , with the following transition probabilities:

a1(s1, s2) = 0.3, a1(s1, s3) = 0.3, a1(s1, s4) = 0.4,

a1(s2, s5) = 1.0,

a1(s3, s5) = 0.33, a1(s3, s6) = 0.66,

a1(s4, s6) = 0.5, a1(s4, s7) = 0.5,

a1(s5, s8) = 0.25, a1(s5, s11) = 0.75,

a1(s6, s9) = 0.5, a1(s6, s10) = 0.5,

a1(s7, s10) = 1.0,

a2(s1, s5) = 0.4, a2(s1, s6) = 0.4, a2(s1, s7) = 0.2,

a3(s1, s8) = 0.14, a3(s1, s9) = 0.29, a3(s1, s10) = 0.57.

Note that there is a state s11 that does not have a transition probability from the

start state within 3 minutes.

Figure 4.1: An example with 11 states and their transition probabilities
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4.5.1 Using the Viterbi Approach

Based on the Viterbi approach, the following Viterbi probabilities are calculated:

vt1(s2) = a1(s1, s2) = 0.3,

vt1(s3) = a1(s1, s3) = 0.3,

vt1(s4) = a1(s1, s4) = 0.4,

vt2(s5) = max(vt1(s2)× a1(s2, s5), vt1(s3)× a1(s3, s5)) = 0.3,

vt2(s6) = max(vt1(s3)× a1(s3, s6), vt1(s4)× a1(s4, s6)) = 0.2,

vt2(s7) = vt1(s4)× a1(s4, s7) = 0.2,

vt3(s8) = vt2(s5)× a1(s5, s8) = 0.075,

vt3(s9) = vt2(s6)× a1(s6, s9) = 0.1,

vt3(s10) = max(vt2(s6)× a1(s6, s10), vt2(s7)× a1(s7, s10)) = 0.2,

vt3(s11) = vt2(s5)× a1(s5, s11) = 0.225.

�e most probable hidden state sequence found using the backtrace is s2, s5, s11.

4.5.2 Using the Multi-Timestep Approach

�eMulti-Timestep approach can sometimes result in state sequences that do not

make sense when mapped to predicted trajectories. For example, if the transition

probabilities are processed in the order they were presented above, the output

sequence would be s4, s5, s10. �e trajectory represented by this sequence consists

of very sharp turns, which is o�en unrealistic for civilian aircra�. �e output

sequence s4, s6, s10 is also possible, if the transition probabilities are processed in

a different order.

4.5.3 Using the Constrained Viterbi Approach

�e Constrained Viterbi approach will have the same Viterbi probabilities as the

Viterbi approach above, except that since state s11 has a zero 3-minute transition

probability from the start state, i.e. a3(s1, s11) = 0, the Viterbi probability at tsnow+

3 for state s11 is now zero, i.e. vt3(s11) = 0. �e most probable hidden state

sequence found using the backtrace will be s4, s7, s10 instead.
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4.5.4 Using the Constrained Multi-Timestep Approach

�eContrainedMulti-Timestep approach is an improvement from theMulti-Timestep

approach in that it ensures that consecutive states in the output state sequence are

joined together by non-zero 1-minute transitions. Based on the Contrained Multi-

Timestep approach, the following Viterbi probabilities are calculated:

vt1(s2) = a1(s1, s2) = 0.3,

vt1(s3) = a1(s1, s3) = 0.3,

vt1(s4) = a1(s1, s4) = 0.4,

vt2(s5) = a2(s1, s5)×max(vt1(s2), vt1(s3)) = 0.12,

vt2(s6) = a2(s1, s6)×max(vt1(s3), vt1(s4)) = 0.16,

vt2(s7) = a2(s1, s7)× vt1(s4) = 0.08,

vt3(s8) = a3(s1, s8)× vt2(s5) = 0.0168

vt3(s9) = a3(s1, s9)× vt2(s6) = 0.0464

vt3(s10) = a3(s1, s10)×max(vt2(s6), vt2(s7)) = 0.0912

�e most probable hidden state sequence found using the backtrace is s4, s6, s10.

4.5.5 �e Intuition Behind the Four Approaches

From the example, it can be seen that the Viterbi approach behaves like a greedy

search that aims to maximize the product of the 1-minute transition probabilities

along the output state sequence. �e weakness of this approach is that it ignores

the start state, i.e. the current position of the aircra�, a�er the states for the first

minute into the future have been considered. �eMulti-Timestep approach, on the

other hand, selects the most probable state at t minutes into the future by finding

the state that has the greatest t-minute transition probability from the start state.

As it ignores the possibility that consecutive states along the output hidden state

sequence might not be located geographically close to each other, it can result in

predicted trajectories that do not make physical sense, such as having sharp turns

or simply ‘teleporting’ from one position to the next.

�e Constrained Viterbi approach is an improvement from the Viterbi ap-

proach in that when considering a state at t minutes into the future, it enforces
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the constraint that this state must have a positive t-minute transition probability

from the start state. �is ensures that states that are not ‘reachable’ from the start

state in t minutes will not be considered as the predicted state for that minute.

Similarly, the Constrained Mulit-Timestep approach is an improvement from the

Multi-Timestep approach in that when considering a state at t minutes into the

future, it enforces the constraint that this state must have a positive 1-minute

transition probability from a state in the previous minute (and uses the Viterbi

probability of that state in the previous minute in calculating the Viterbi prob-

ability of this state). �is ensures that consecutive states along the output state

sequence are ‘reachable’ from the previous state in 1 minute.

We also illustrate how the four proposed approaches calculate the probability

of a state sequence differently, using an example shown in Figure 4.2, where the

state and observation symbols in the notations have been omi�ed for simplicity.

Figure 4.2: An example of the probability calculation for a state sequence
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Chapter 5

Experimental Evaluation

�is chapter describes the experimental evaluation of the prediction models. It

gives an overview of the data and models used for comparison, followed by the ac-

curacy metrics used and the process flow for building the models. It then presents

an analysis of prediction time taken by the models, followed by an analysis of pre-

diction accuracy. It concludes with two additional experiments for improving the

models, which were conducted retrospectively.

5.1 Description of Data

�e weather data used for our work comes from the Rapid Refresh (RAP) weather

forecasting system developed by the National Oceanic and Atmospheric Admin-

istration (NOAA) [7, 36]. �e website for the RAP system provides a link to an

archive of data generated since May 01, 2012. A single file, recording the weather

conditions over the whole of the continental United States, is archived for each

hour of a day.

�e trajectory data used for our work is based on the Automatic Dependent

Surveillance Broadcast (ADS-B) technology, and comes from historical ADS-B data

archived by the OpenSky Network [37, 41]. �e data is stored in the form of posi-

tional updates, which are concatenated together based on flight number stored in

the ‘callsign’ field. Trajectories for a particular flight route are found by checking

if the start and end positions of a trajectory is near to the origin and destination
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airports for the flight route5.

We downloaded trajectory and weather data over a total of 25 months, from

2017-Jan to 2019-Jan (inclusive). �e size of the trajectory data collected for each

flight route, together with median flight times, are shown in Table 5.1 (LGA, ORD,

and BOS are the IATA codes for LaGuardia Airport, Chicago O’Hare Airport, and

Boston Logan Airport, respectively), while the break-down of the number of tra-

jectories by month is shown in Figure 5.1. �e small number (≤ 50) of trajectories

in certain months, especially for the first few months of the dataset, can be at-

tributed to poor sensor coverage, resulting in trajectories having large ‘gaps’ being

dropped during data pre-processing. We present most of our comparisons based

on the busiest flight route R1, as it has the largest number of trajectories.

Table 5.1: Meta-data of flight routes used in the experiments
Route Origin / Mean flight Number of Number of
code Destination time (minutes) trajectories positions

R1 LGA-ORD 116 8036 917299
R2 ORD-LGA 97 4020 389777
R3 BOS-ORD 133 2876 379938
R4 ORD-BOS 108 2049 221820

Finally, all experiments were run on a computer with Intel Core i7-6700HQ

2.6GHzCPU and 8GBDDR4Memory, using the Java so�ware libraries GeoTools [14]

for geospatial calculations and NetCDF [30] for reading RAP weather data.

5.2 Description of Models

We implemented two baselinemodels for comparison. �e first, called Kinematics-

Based Model (KBM), predicts the future trajectory of the aircra� based on its cur-

rent track angle, ground speed and vertical rate. Using GeoTools [14], we make

a prediction by projecting the current position of the aircra� L minutes into the

future based on these kinematic parameters.

We also implemented a Median Trajectory Model (MTM) that was inspired

by Ayhan & Samet [4], though our work is not directly comparable because of

5Flight numbers cannot serve as primary keys for flight routes, as airlines may re-use the same
flight number for a different flight route.
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Figure 5.1: Number of trajectories for each month

the different intended application (mid-flight vs. pre-flight) and prediction time

horizon (up to twenty minutes into the future vs. time since departure). For each

trajectory in the training set ofD historical trajectories, we first calculate the sum

of its Dynamic Time Warping6 (DTW) distances to all other trajectories. We then

select the trajectory that has the smallest sum of DTW distances as the median

trajectory. To make a prediction of the future trajectory of an aircra� based on

its current position, we find the positional update on the median trajectory that

is nearest to the current position of the aircra�. Based on a look-ahead time of L

minutes, we then select the positional updates of the median trajectory that are

up to L minutes a�er, and concatenate them to form the trajectory predicted by

the MTM model.

In choosing the train-test split of the data, we tried two approaches. For the

first approach, (i.e.month-based training approach) we a�empt to capture pos-

sible seasonal differences in weather pa�erns. For each month in the second year

(e.g. 2018-Jun), we train a prediction model using the same month in the previous

year and its immediate neighbouring months (e.g. 2017-May, 2017-Jun, & 2017-

Jul). �us, we start our testing from the month of 2018-Feb (requiring 2017-Jan,

6Preliminary experiments have shown that Dynamic Time Warping provides a good distance
measure between two trajectories for this use.
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2017-Feb, & 2017-Mar for training) instead of 2018-Jan, and finish our testing on

the final month of 2019-Jan (requiring 2017-Dec, 2018-Jan, & 2018-Feb for train-

ing) instead of 2018-Dec, spanning a total of 25 months of data. For the second

approach, (i.e. year-based training approach) we train a prediction model using

data for the first year (i.e. 2017-Feb to 2018-Jan), which we use for testing for each

month in the second year (i.e. 2018-Feb, 2018-Mar, etc. until 2019-Jan).

Also, we seek to analyze the effect of incorporating weather information in our

prediction models. We do this by using the HMMs we have presented, as well as

their Observed Markov Model (OMM) equivalents, which are obtained by remov-

ing all emission probability terms b(sj, oj,t) from Equations 4.3, 4.4, 4.5, & 4.6. We

present all the discussed models in Table 5.2.

Table 5.2: List of prediction models used in the experiments
Model

Name of model Training approach
code

KBM Kinematics-Based Model Training not required

MTM-1Y Median Trajectory Model Year-based
MTM-3M Median Trajectory Model Month-based

OMVB-1Y Viterbi OMM Year-based
OMVB-3M Viterbi OMM Month-based
OMVC-1Y Contrained Viterbi OMM Year-based
OMVC-3M Contrained Viterbi OMM Month-based
OMMB-1Y Multi-Timestep OMM Year-based
OMMB-3M Multi-Timestep OMM Month-based
OMMC-1Y Contrained Multi-Timestep OMM Year-based
OMMC-3M Contrained Multi-Timestep OMM Month-based

HMVB-1Y Viterbi HMM Year-based
HMVB-3M Viterbi HMM Month-based
HMVC-1Y Contrained Viterbi HMM Year-based
HMVC-3M Contrained Viterbi HMM Month-based
HMMB-1Y Multi-Timestep HMM Year-based
HMMB-3M Multi-Timestep HMM Month-based
HMMC-1Y Contrained Multi-Timestep HMM Year-based
HMMC-3M Contrained Multi-Timestep HMM Month-based

We note that our proposed approaches are unable tomake predictions for some

positions in the test set. �is happens in cases when a test position falls into a grid

cube that no position from a trajectory in the training set had fallen into. In order
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to have a fair comparison with the baseline models, we cannot simply ignore these

occurrences; we thus fall back on the KBM model to make predictions in these

cases. We suggest an improvement to deal with this issue in the final section of

this chapter.

5.3 Accuracy Metrics

We use the metrics presented by Paglione & Oaks [33] to evaluate the accuracy

of our TP models by comparing predicted aircra� positions against actual aircra�

positions.

We measure the error between a predicted position p̂ostsnow+t and the actual

aircra� position postsnow+t for each minute t into the future, t ∈ [1, L], up to the

look-ahead time of L = 20 minutes. �ere are two types of errors that can be

measured: horizontal error and vertical error. Horizontal error is the horizontal

distance between the two positions postsnow+t and p̂ostsnow+t, and is always posi-

tive. Vertical error is the difference in pressure altitude between the two positions

postsnow+t and p̂ostsnow+t, and is positive (negative) when the actual position postsnow+t

is above (below) the predicted position p̂ostsnow+t. We omit the sign when calculat-

ing statistics for vertical error, i.e. only the absolute value of the vertical error is

considered.

We compute the mean and the standard deviation of the errors for all predic-

tions within a test trajectory to obtain the intra-trajectory horizontal and vertical

errors.

A�er that, we compute themean and the standard deviation of all intra-trajectory

horizontal and vertical errors within each test month (giving each trajectory an

equal weight despite unequal number of predictions in each trajectory due to dif-

ferent flight times) to obtain the intra-month horizontal and vertical errors.

Finally, we compute the mean and the standard deviation of all intra-month

horizontal and vertical errors (giving each month an equal weight despite unequal

number of trajectories in each month) to obtain the overall mean and standard

deviation of errors for the whole test set.
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5.4 Process Flow

�e processes for building our prediction models include data pre-processing, data

discretization, and model training, as shown in Figure 5.2.

Figure 5.2: Overview of the process flow

�e use of weather data by the HMM involves loading and computing a large

amount of weather data computed hourly by the RAP system [7, 36] over the con-

tinental US for a period of 2 years. �rough pre-binning of weather data, we can

speed up the training and evaluation of models such that each weather vector is

binned only once, and can be used bymultiple models being evaluated on the same

dataset. �e size of the data that is loaded into memory during model training is

also reduced, from about 26–30 MB (compressed) to 3 MB to store all bin vectors

of a single hour. To do so, we first determine the mean and standard deviation

values of each weather parameter for each grid cube over the whole training set.

We then use these values to bin the weather vectors for each hour of the whole 2

years’ weather dataset.

Aircra� movement data is collected and stored by the OpenSky Network [37,

41] in the form of positional updates, which we download in hourly portions for

a period of 2 years. We join positional updates in chronological order to form tra-
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jectories based on their callsign. As positions along a trajectory may be unevenly

spaced due to poor sensor coverage, we discard trajectories that have ‘gaps’ in

positional updates of longer than 5 minutes. Also, since positional updates along

a trajectory can be within a few seconds apart from each other, we form a raw

trajectory by keeping only positional updates that are spaced 1 minute apart. In

cases where there is no positional update that is exactly 1 minute a�er a previous

positional update, we select the one that is closest in either the positive and neg-

ative direction, i.e. in this order: 61 seconds, 59 seconds, 62 seconds, 58 seconds,

etc. We also check the start and end positions of each raw trajectory, keeping only

those that start and end at the origin and destination airports of the flight routes

that we are interested in. Lastly, for each position on a raw trajectory, we select a

list of t positions occuring t = 1, . . . , L minutes a�er, each allowing for a differ-

ence of no more than 15 seconds. �is gives us a list of positions for each position

along a raw trajectory to be used for counting the transition probability matrices

during model training.

For data discretization, wemap each positional update in a raw trajectory to the

reference point nearest to it, giving us an aligned trajectory containing discretized

positions (i.e. reference points with timestamps). For each discretized position, we

also load its bin vector using its corresponding grid cube and timestamp, to be

used for counting the emission probability matrix during model training.

Training the model involves counting of occurrences, using the list of posi-

tions and bin vector for each position along an aligned trajectory for estimating

the transition probability matrices and emission probability matrix, according to

Equations 4.1 & 4.2. Using the matrices, each position along a trajectory in the test

set is treated as the current position, and used as input to the prediction model to

find the most likely trajectory of the aircra�, based on Equation 4.3, 4.4, 4.5, or 4.6

(depending on which approach is being evaluated). Each predicted position along

this predicted trajectory is compared to the actual position to measure the predic-

tion error for each minute t into the future up to the look-ahead time L, t ∈ [1, L],

according to the accuracy metrics presented earlier.
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5.5 Comparison of Prediction Time

�e average time per prediction taken by each model is shown in Figure 5.3. �e

time for each model is calculated by taking the average of the running times for all

test positions in the whole test set for all flight routes. Aided by the effectiveness of

our data-preprocessing, all of the prediction models were able to make extremely

fast predictions in the order of milliseconds, with the worst-performing model, the

Viterbi-based HMM with 1-year training data (i.e. model HMVB-1Y) requiring an

average of no more than 11.5 milliseconds per prediction.

�e prediction times presented demonstrated large improvements from that

presented in Pan, Nascimento, & Sander [34], where the model HMMB-3M took

an average of 39.8 milliseconds compared to the improved 2.2 milliseconds. �e

Viterbi-based approaches were also infeasible, requiring prediction time in the or-

der of minutes, compared to the improved 11.5milliseconds by worst-performing

model HMVB-1Y. �ere are two explanations to this.

In Pan, Nascimento, & Sander [34], the operations for reading and writing of

test positions and predicted trajectories were included as part of the running time

of a model. As all of the models presented [34] (i.e. KBM, MTM, and HMMB-3M)

were able to make predictions efficiently, the average prediction time was inflated

by the inclusion of running time for input and output. �is was why all models

presented [34] had average prediction times in the order of 30 to 50 milliseconds.

For the average prediction times measured for this thesis, the running time for

input and output has been excluded. �is is not an improvement in prediction

time, but rather a change in how prediction time is measured.

Secondly but more importantly, substantial improvements have been made

through using more efficient data structures. With a total of N = 3, 343, 714

possible states, a transition probability matrix at(si, sj) for a particular timestep t

would require a total ofN×N ≈ 1.1 trillion elements. If each element is a floating

point number taking up 4 bytes, it would require 4.4 TB of computer memory to

store the matrix. In Pan, Nascimento, & Sander [34], this was handled by reduc-

ing the number of possible states N through pre-calculating the actual minimum
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and maximum indices of grid cubes that are actually used in the data. �is ap-

proach is no longer feasible as there is now many more models to evaluate. For

this thesis, since the transition probability matrices are all sparse matrices, their

adjacency matrix representations have all been converted to adjacency list rep-

resentations. �e same improvement was also made to the representation of the

emission probability matrix, with the Add-One Smoothing coming into effect only

during runtime.
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Figure 5.3: Average time per prediction taken by each model

5.6 Comparison of Prediction Accuracy

As we have considered multiple approaches in the design and training of the pre-

diction models, we have to make the following comparisons through our experi-

ments in order to draw useful conclusions on the decisions:

• Among the four decoding approaches (i.e. Viterbi, Constrained Viterbi,

Multi-Timestep, Constrained Multi-Timestep) presented, which one is the

best?

• Between the two training approaches (i.e. Year-based, Month-based) pre-

sented, which one is the best?
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• Between the two types of Markov Models (i.e. Observed Markov Model,

Hidden Markov Model), which one is the best?

• Among our best-performing Markov Model and the baseline models

(i.e. Kinematics-Based Model, Median Trajectory Model), which one is the

best?

�ese comparisons shall be discussed in the following sub-sections.

5.6.1 Best Decoding Approach: Constrained Multi-Timestep

Because of the large number of prediction models we have to consider, we first

compare the four decoding approaches while keeping the Markov Model type and

the training approach constant. �emean overall horizontal and vertical errors for

each minute into the future up to the look-ahead time and for all routes are shown

in Figures 5.4, 5.5, 5.6, & 5.7. From the figures, it is clear that the Multi-Timestep-

based approaches are superior to the Viterbi-based approaches, regardless of the

Markov Model type or the training approach, as they have consistently lower er-

rors over all minutes into the future for all routes. �e Multi-Timestep approach

has slightly lower errors than the Constrained Multi-Timestep approach despite

the slightly shorter prediction time it requires. However, the Constrained Multi-

Timestep approach is an improvement over the Multi-Timestep approach, in that

it is able to predict a trajectory where consecutive predicted positions are joined

together by 1-minute transitions without incurring a considerably larger compu-

tational cost. �e conclusion is that the Constrained Multi-Timestep approach is

the best decoding approach to use for all four flight routes.
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Figure 5.4: OMMs with Month-based Training for All Decoding Approaches
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Figure 5.5: OMMs with Year-based Training for All Decoding Approaches
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Figure 5.6: HMMs with Month-based Training for All Decoding Approaches
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Figure 5.7: HMMs with Year-based Training for All Decoding Approaches
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5.6.2 Best Training Approach: Year-based

Having decided on the Constrained Multi-Timestep decoding approach, we then

consider the Markov Model type and training approach. �e prediction errors

for both Markov Model types and both training approaches are shown in Fig-

ure 5.8. �e figure shows that regardless of the type of Markov Model, the two

models trained with the Year-based approach have lower errors than the twomod-

els trained with the Month-based approach, especially for increasing minutes into

the future, for routes R2, R3, & R4. �is could be a�ributed to the amount of train-

ing data available: the Year-based approach makes use one whole year of training

data, while the Month-based approach makes use of three months of training data.

It also explainwhy their performances are closer for route R1 than the other routes:

being the largest dataset, R1 provides sufficient training data for the Month-based

approach. �e conclusion we can draw here is that the Year-based training ap-

proach is the best training approach to use.

We are unable to obtain a be�er prediction accuracy for the HMMs over the

OMMs despite the comparatively larger amount of effort spent on designing the

HMMs and on pre-processing weather data. As the extra effort put into the HMMs

have not resulted in be�er prediction accuracy over the OMMs, it seems that

OMMs are sufficient for Trajectory Prediction for the four flight routes we have

used. Nevertheless, this only shows that weather has not been a big factor in in-

fluencing the pilot’s decision on where to fly for the flight routes we have used,

and calls for more experiments to be conducted on other flight routes when data

becomes available.
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Figure 5.8: OMMs vs. HMMs of the Constrained Multi-Timestep Approach for Both Training Approaches
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5.6.3 Comparison with Baseline Models: Markov Models are

Effective

Based on the comparisons so far, the best-performingmodel is theObservedMarkov

Model with Constrained Multi-Timestep decoding and Year-based training (i.e.

OMMC-1Y), which we shall use to understand how well our Markov Models can

perform when compared with traditional approaches. �e prediction accuracy of

this model and of the baseline models (i.e. KBM, MTM-1Y, MTM-3M) are shown

in Figure 5.9. It can be seen that model OMMC-1Y is able to make more accurate

predictions than the baseline models for both horizontal and vertical dimensions,

especially for the 10th minute onwards. While the baseline model KBM is able to

make highly accurate predictions for up the 3rd minute, its prediction accuracy

drops rapidly with increasing time from prediction due to the increasing uncer-

tainty in kinematics parameters.

�e errors for baseline models MTM-1Y & MTM-3M are generally larger than

model OMMC-1Y, with no clear winner among the two training approaches for the

MTM. It seems that they are able to perform equally well with the model OMMC-

1Y near the look-ahead time of 20 minutes, as seen from their errors converging

for the vertical dimension of route R2 and both horizontal and vertical dimensions

of route R4. To verify whether this is correct, we study the mean and standard

deviation of intra-month errors at the look-ahead time of 20 minutes, as shown

in Figures 5.10 & 5.11. Contrary to what we might conclude from looking at Fig-

ure 5.9 alone, Figures 5.10 & 5.11 show that the models MTM-1Y & MTM-3M have

larger standard deviations for intra-month errors than model OMMC-1Y most of

the time, which indicate inconsistent performance. �is inconsistency is due to

the tendency of a MTM model to select the trajectory that represents the short-

est and most direct route between the origin and destination airports, resulting in

very accurate predictions for the bulk of test trajectories, but extremely bad pre-

dictions for some trajectories that take a longer route due to external factors, such

as congestion at the destination airport.

We also present the mean and standard deviation of overall errors at the look-

ahead time of 20 minutes in Figure 5.12. �e baseline model KBM has the best
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performance for route R3 and the worst for route R2, which is because route R3

has the longest mean flight time among all routes, while route R2 has the shortest

mean flight time, as seen in Table 5.1. Flights on a longer route spend a larger pro-

portion of the flight time cruising in a straight line towards the destination airport,

allowing the KBM to make accurate predictions because there is li�le change in

speed of the flight trajectory for these large portions of the flights. �e baseline

models MTM-1Y & MTM-3M have the best performance for route R4 compared

to other routes, as seen from the low means and low standard deviations of both

horizontal and vertical errors for route R4. �is is due to route R4 having the

smallest set of trajectories among all routes, as seen in Table 5.1, and thus having

less variability among trajectories compared to other routes, as having more var-

ied trajectories causes a MTM model to be unable to make accurate predictions.

�e model OMMC-1Y, on the contrary, is able to perform well on all flight routes,

especially when a large amount of training data is available.

We can thus conclude that our proposed model OMMC-1Y outperforms, in

general, the baseline models significantly, except when making predictions for up

to the first few minutes, for which the KBM approach seems more appropriate.

A KBM approach, however, is in general not appropriate for look-ahead times

larger than a few minutes, giving predictions with rapidly increasing errors as

the look-ahead time increases, even though the average prediction accuracy of

KBM improves with increasing mean flight time because longer flights cruise for

a longer time on a straight trajectory with more or less constant speed. �e MTM

approach also performs overall significantly worse than our proposed model, and

is typically even outperformed by the KBM approach for up to intermediate look-

ahead times. It is clear that the larger the training set, the be�er the performance

of our proposed Markov Model approach, and we therefore expect that the per-

formance gap between our proposed model and the baseline models to increase as

more and more historical flight data becomes available.

As demonstrated for the look-ahead time of 20minutes for route R1, which has

the largest dataset available for training, our proposed model OMMC-1Y achieved

a mean overall horizontal error of 23.0 km and mean overall vertical error of
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2060 �. In the horizontal dimension, the error of 23.0 km is approximately 1.70

times of a grid cube away (having width of 13.545 km), but is small when com-

pared to an aircra� being able to travel 219 km in most cases (i.e. median) and

264 km in extreme cases (i.e. 90th percentile) within 20 minutes. Looking at the

vertical dimension, the error of 2060 � is approximately 1.03 times of a vertical

interval away (having a separation of 2000 �), but is small when compared to an

aircra� being able to ascend or descend 15500 � in most cases (i.e. median) and

26800 � in extreme cases (i.e. 90th percentile) within 20 minutes. �e errors rep-

resent an improvement of 24.6% in horizontal error and 34.2% in vertical error for

route R1 over MTM-3M, the best-performing baseline model.
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Figure 5.9: �e Best-Performing Model vs. the Baseline Models
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Figure 5.10: Mean and standard deviation of intra-month horizontal error at look-ahead time of 20 minutes
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Figure 5.11: Mean and standard deviation of intra-month vertical error at look-ahead time of 20 minutes
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53



5.7 Using Different Weather Bin Intervals

One conclusion we have drawn from the previous section is that the HMMs we

have presented were unable to make more accurate predictions that their OMM

equivalents. �is prompted us to re-think our approach for incorporating weather

information, and in particular, the way we have discretized weather vectors. �e

conjecture that we based our decision on is that even though a flight plan has

been filed before the actual flight takes place, there are sometimes unexpected

changes in local weather that warrant a change in the flight path. Because of this,

it is important that we discretize weather vectors representing extreme weather

conditions into different bin vectors from those representing common weather

conditions. We perform additional experiments by using the 2nd and 3rd standard

deviations from the mean in determining the bin ‘split’, and compare them with

that using the 1st standard deviation in Table 5.2, and with the OMM equivalents.

Based on the four decoding approaches and two training approaches, we have

a total of eight comparisons, as shown in Figures 5.13 to 5.20, where a particular

HMM (e.g. HMVB-3M) is compared with its OMM equivalent (e.g. OMVB-3M) and

the additional HMM models (e.g. H2VB-3M and H3VB-3M, representing models

having the bin ‘split’ at the 2nd and 3rd standard deviations, respectively).

From Figures 5.13 & 5.14, it seems that for the Viterbi approach, the HMM

models achieved mixed results, but all three HMM models performed worse than

the OMM model on route R1, the largest dataset among the four routes. As for

each of the other six, Figures 5.15, 5.16, 5.17, 5.18, 5.19, & 5.20, the four models

being compared in each figure have almost the same prediction accuracies. In

particular, for the Constrained Multi-Timestep approach in Figures 5.19 & 5.20,

the four models are almost non-distinguishable from one another. �is shows

the effectiveness of using multi-timestep transition probabilities in the Markov

Model, as it is able to limit the number of states being considered at each minute

to only those that have occurred in historical trajectories. Given how effective this

approach has been, we were unable to improve the prediction accuracy further by

incorporating local weather information through the use of HMMs.
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Figure 5.13: OMM vs. HMMs of Different Bin Splits of the Viterbi Approach with Month-based Training
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Figure 5.14: OMM vs. HMMs of Different Bin Splits of the Viterbi Approach with Year-based Training
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Figure 5.15: OMM vs. HMMs of Different Bin Splits of the Constrained Viterbi Approach with Month-based Training
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Figure 5.16: OMM vs. HMMs of Different Bin Splits of the Constrained Viterbi Approach with Year-based Training
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Figure 5.17: OMM vs. HMMs of Different Bin Splits of the Multi-Timestep Approach with Month-based Training
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Figure 5.18: OMM vs. HMMs of Different Bin Splits of the Multi-Timestep Approach with Year-based Training
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Figure 5.19: OMM vs. HMMs of Different Bin Splits of the Constrained Multi-Timestep Approach with Month-based Training
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Figure 5.20: OMM vs. HMMs of Different Bin Splits of the Constrained Multi-Timestep Approach with Year-based Training
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5.8 Reducing Unsuccessful Predictions

Our proposed Markov Models are unable to make predictions for some test po-

sitions, and we deal with such cases by falling back on the KBM model to make

predictions so that a fair comparison can be made across all proposed and baseline

models. Specifically, this happens when given a test position postsnow that maps to

start state qtsnow , a Markov Model might have a zero transition probability out of

the start state qtsnow = si ∈ S for a particular timestep t, i.e.
∑

sj∈S
at(qtsnow , sj) =∑

sj∈S
at(si, sj) = 0. �is happens when none of the historical trajectories in the

training set has ever flown into grid cube gci corresponding to state si, resulting in

at(si, sj) = 0 when Equation 4.1 is applied (actually it results in an error because

the denominator is zero, but because such cases occurs very o�en, for practical

purposes they are ignored by assuming zero probability). When we analyze the

Constrained Multi-Timestep models (i.e. models based on the best decoding ap-

proach), we found that there is a large number of such occurrences, which we call

unsuccessful predictions, as shown in Table 5.3. �ey happen because of the

strict constaints imposed by Equation 4.6 requiring non-zero transition probabil-

ities for all timesteps t ∈ [1, L] out of the start state, and requiring the states for

each minute to have non-zero 1-minute transition probabilities into states for the

next minute.

To mitigate this problem, we tried to do the following for unsuccessful predic-

tions:

• We run the prediction again, this time replacing the start state with a set

of states formed by the neighbours of the start state, where we define two

states to be neighbours when their corresponding grid cube indices in our

3-dimensional reference grid have a difference of 1 or less along all 3 dimen-

sions. �us, each state has 33 = 27 neighbouring states, including itself, and

we use Γ(si) to denote the set of states that are neighbours of state si.

• We replace the initialization clause of the Viterbi algorithmwith Equation 5.1,

such that in the first minute into the future, we assign a Viterbi probability

to each state by taking the maximum of the 1-minute transition probabilities
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from all neighbouring states of the start state.

• We do the same for the recursion clause in Equation 4.6 (for the Hidden

Markov Model based on the Constrained Multi-Timestep Approach), replac-

ing it with Equation 5.2.

vt1(sj) = b(sj, oj,t)× max
sl∈Γ(qtsnow )

(
a1(sl, sj)

)
, ∀sj ∈ S. (5.1)

vtt(sj) = b(sj, oj,t)× max
sl∈Γ(qtsnow )

(
at(sl, sj)

)
×max

si∈S

(
vtt−1(si)× sgn

(
a1(si, sj)

))
,

∀sj ∈ S, ∀t ∈ [2, L].
(5.2)

As a result of this change (which we call start state expansion), we were able

to greatly reduce the number of unsuccesful predictions, as shown in Table 5.3,

such that the best performingmodel, OMMC-1Y, only has 10% of predictions being

unsuccessful for route R3, and 3.8% or less for the other routes R1, R2, & R3.

We also examined the prediction accuracy resulting from this change, as shown

in Figures 5.21 & 5.22, where the code of a model that has gone through start state

expansion is appended with a ‘+’ suffix, i.e. the modified version of OMMC-1Y

is OMMC-1Y+. From the figures, it is obvious that the prediction accuracy of the

models has been improved for larger look-ahead times, though prediction accuracy

for the first few minutes has dropped due to the uncertainty introduced through

start state expansion. �e models with a Month-based training approach have

seen the greatest improvement, because they have had the largest proportions of

unsucessful predictions being reduced (by as much as 20% for Route R3). Also, the

prediction accuracy for Route R1 has had the least improvement. �is is because

Route R1 is the largest dataset, and already has a sufficient amount of training data

available even when the Month-based training approach is used. Based on these

findings, we believe that this is a reasonable approach in handling unsuccessful

predictions by the proposed Markov Models, and is worth exploring further in

future experiments.
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Table 5.3: Number of unsuccessful predictions before and a�er the change

Model
Number of predictions Number of predictions
by KBM (before change) by KBM (a�er change)

Total number of predictions for Route R1: 514,116

OMMC-3M / HMMC-3M 120,200 (23.4%) 37,501 ( 7.3%)
OMMC-1Y / HMMC-1Y 69,166 (13.5%) 11,803 ( 2.3%)

Total number of predictions for Route R2: 223,055

OMMC-3M / HMMC-3M 75,631 (33.9%) 33,214 (14.9%)
OMMC-1Y / HMMC-1Y 39,389 (17.7%) 5,353 ( 2.4%)

Total number of predictions for Route R3: 271,291

OMMC-3M / HMMC-3M 105,815 (39.0%) 51,503 (19.0%)
OMMC-1Y / HMMC-1Y 61,681 (22.7%) 27,001 (10.0%)

Total number of predictions for Route R4: 132,047

OMMC-3M / HMMC-3M 32,618 (24.7%) 13,785 (10.4%)
OMMC-1Y / HMMC-1Y 22,295 (16.9%) 5,041 ( 3.8%)
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Figure 5.21: OMM vs. OMM+ of the Constrained Multi-Timestep Approach for Both Training Approaches
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Figure 5.22: HMM vs. HMM+ of the Constrained Multi-Timestep Approach for Both Training Approaches
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Chapter 6

Conclusion

In this thesis, we have presented a statistical learning approach to the online pre-

diction of mid-flight aircra� trajectories. �rough the mapping of the problem

onto Hidden Markov Models, we were able to incorporate local weather infor-

mation for trajectory prediction. We used a rich dataset of historical trajectories

and performed extensive experiments for comparing multiple prediction models

of various configurations. Using prediction accuracy metrics for both horizontal

and vertical errors, we demonstrated that wewere able to achieve be�er prediction

accuracy when compared to conventional approaches, especially when we need to

predict trajectories further into the future, while not requiring more time to make

predictions (all of the work was done on an off-the-shelf laptop computer).

6.1 Future Work

Firstly, for our models following the Constrained Multi-Timestep decoding ap-

proach, wewere unable to achieve a be�er prediction accuracy by aHiddenMarkov

Model (HMM) over an Observed Markov Model (OMM) equivalent. We believe

this is because we have already achieved a very level of accuracy through the use

of multi-timestep transition probabilities, though it is also important to perform

experiments on flight routes that go over large bodies of water, such as the North

Atlantic Tracks, when data for such flight routes becomes available. It will also be

interesting to explore other ways of incorporating weather information, or ways

of incorporating other information about the flight in the future.
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Secondly, we pointed out that there is a large number of unsuccessful predic-

tions for our proposed Constrained Multi-Timestep Markov Model. �is is due to

test positions falling into grid cubes that have not been ‘seen’ in historical trajec-

tories, and thus there is a lack of training data for the transition probabilities out of

states corresponding to these grid cubes. We a�empted to solve this using the start

state expansion method that we have discussed, and were able to greatly reduce

the number of unsuccessful predictions. We believe this idea is worth exploring

further, such as through using multiple layers of reference grids, each containing

grid cubes of a larger size from the grid cubes of the layer below, such that when

a prediction is unsuccessful for the bo�om-most layer, another prediction a�empt

will be triggered using the grid cubes for the layer above.

�irdly, we designed our Markov Models based on the first-order Markov as-

sumption in order to keep the models computationally simple and fast. �is as-

sumption means that the future states (i.e. future positions) of the model depends

only on the current state (i.e. current position), and not on the states that preceded

the current state (i.e. past positions), and is obviously untrue for aircra� trajecto-

ries as they have inertia (i.e. a certain speed and direction of motion). We believe

that prediction accuracy can be improved further through the use of higher-order

or variable order Markov Models for the TP problem.

Lastly, we have used very simple ideas for our baseline models based on con-

ventional approaches, so that through comparisons we can have a be�er under-

standing of their characteristics. �emedian trajectory approach is certainlyworth

exploring further, such as through finding a median trajectory for each grid cube.

We could also investigate the use of efficient index structures such that sub-trajectories

of historical trajectories that are similar to the past trajectory (e.g. up to 5minutes

before) of the aircra� can be retrieved quickly and be used for trajectory predic-

tion.
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