
Understanding and Improving Merge-and-Shrink
Abstraction for Cost Optimal Planning

by

Gaojian Fan

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Gaojian Fan, 2019

Abstract

In this thesis, we study merge-and-shrink (M&S), a flexible abstraction tech-

nique for generating heuristics for cost optimal planning. We first propose

three novel merging strategies for M&S, namely, Undirected Min-Cut (UMC),

Maximum Intermediate Abstraction Size Minimizing (MIASM), and Dynamic

MIASM with Heuristic Quality (DM-HQ) that improve the quality of M&S

heuristics for problems in International Planning Competition (IPC) domains.

We also introduce a lightweight M&S method MS-lite for constructing M&S

heuristics in an extremely efficient way, which can complement other, rela-

tively expensive M&S methods. We show that the combination of MS-lite and

DM-HQ substantially outperforms the previous state of the art M&S method.

We then focus on how to improve search with M&S heuristics when there

are diverse action costs. We first study how diverse action cost affects search

without heuristics. We prove a No Free Lunch theorem showing that, under

mild assumptions, when no heuristic is used the positive and negative effects

of diverse costs on search are perfectly balanced. We then show that cost di-

versity has negative effects on M&S heuristics for IPC problems. Finally, we

propose a M&S method called Merge-and-Shrink with Delta Cost Partitioning

(DCP-MS) that largely reduces the negative effects of cost diversity on the

impacted IPC domains.

ii

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisors,

Robert Holte and Martin Müller for their support and mentorship. I feel so

lucky to have both of them as my supervisors. They always gave me the

freedom to pursue my research interests, while were also available to help me

out whenever I stumbled. Their enthusiasm, patience and guidance were of

paramount importance to the success of this research. I will always be very

grateful for how much I have learned from them during my years as a doctoral

student.

I would also like to thank my committee members Ryan Hayward, Zachary

Friggstad and Christopher Beck for their insightful comments and encourage-

ments. During my PhD studies, I have visited a few research groups and

met many great researchers. They made the visits valuable and memorable

experiences for me. Among many others, I would like to thank Silvan Siev-

ers, Martin Wehrle, Álvaro Torralba, Peter Kissmann and Roni Stern for the

helpful discussions related to my work during my visits to their groups.

I am also very grateful to my friends in the AI lab of the Department of

Computing Science at the University of Alberta. In particular, I wish to thank

Fan Xie, Levi Lelis and Rick Valenzano. I would also like to acknowledge the

financial support of NSERC and the Department of Computing Science at the

University of Alberta.

Many other friends have also been there for me over the years of my PhD

studies. They include Jundong Li, Ping Jin, Wanxin Gao, Yuchen Wang, Jiuyu

Sun, Yeqin Zhang, Zhaoxing Bu, Baoliang Wang, Lei Yao, Jingwei Chen, Chao

Gao, Xuebin Qin, and many others. I will always appreciate the friendship

and the great time we shared together over the years. I would like to especially

iii

thank Yang Gao and Qingna Jin whose friendship help me endure my loneliest

times in Edmonton. I am also very grateful to all my rock climbing friends,

specially Yongxu Chen, with whom I spent hours bouldering and lead climbing.

Last, but not least, I want to thank my parents for their unconditional

love, understanding and support during my whole life.

iv

Contents

1 Introduction 1
1.1 Planning . 1
1.2 Heuristic Search . 3
1.3 Merge-and-Shrink . 3
1.4 Contributions of this Thesis 4

2 Basic Concepts 7
2.1 Planning . 7

2.1.1 Planning Task . 7
2.1.2 Transition System . 8

2.2 Heuristic Search . 10
2.3 Abstraction . 13

2.3.1 Abstraction Mapping 14
2.3.2 Abstraction Heuristic 15
2.3.3 Projection . 15

2.4 Merge-and-Shrink . 16
2.4.1 Transformation Operations 16
2.4.2 Merge-and-Shrink Abstraction 18
2.4.3 The Merge-and-Shrink Algorithm 20
2.4.4 Merging Strategy . 21
2.4.5 Shrinking Strategy . 26
2.4.6 Free Pruning . 28
2.4.7 Exact Label Reduction 28

2.5 Benchmark and Evaluation . 29

3 Non-Linear Merging Strategies 30
3.1 Introduction . 30
3.2 UMC: Merging Using the Minimum Cuts of Causal Graphs . . . 32

3.2.1 Example of UMC in Action 34
3.2.2 Experiments . 36

3.3 Minimizing the Maximum Intermediate Abstraction Size . . . 39
3.3.1 Motivation . 39
3.3.2 Merging Strategy MIASM 45
3.3.3 Experiments . 51

3.4 Heuristic Quality Guided Merging 54
3.4.1 Related Work . 55
3.4.2 Scoring Heuristic Quality Improvement 56
3.4.3 Integration with DYN-MIASM 58

3.5 Conclusions . 60

v

4 MS-lite: A Lightweight, Complementary Merge-and-Shrink
Method 62
4.1 Introduction . 62
4.2 A Lightweight Merge-and-Shrink Method 64
4.3 Efficient Construction . 66

4.3.1 Construction Efficiency 67
4.3.2 Complex but Easy Tasks 68

4.4 Better Heuristics on Some Domains 70
4.4.1 An Example of Beneficial Active Shrinking 71

4.5 MS-Lite Enhancement . 75
4.6 Experiments . 75

4.6.1 Low Variance of Lite-Enhancement 76
4.6.2 Small Performance Degeneration 76
4.6.3 Stronger Complementarity with DM-HQ 77
4.6.4 Detailed Per-Domain Analysis 79

4.7 Other Fallback Heuristics . 81
4.7.1 Blind Heuristic . 82
4.7.2 Partial Merge-and-Shrink Heuristic 82

4.8 Conclusions . 83

5 The Two-edged Nature of Diverse Action Costs 84
5.1 Introduction . 84
5.2 Related Work . 86
5.3 Motivating Examples . 87

5.3.1 Example 1: IPC PARCPrinter Problem 88
5.3.2 Example 2: 15-Puzzle 89
5.3.3 Example 3: Heuristics as Diverse Action Costs 90

5.4 Diverse Costs in IPC Domains 90
5.4.1 Effects on A* with Heuristics 92
5.4.2 Effects on A* Without Heuristics 93

5.5 No Free Lunch Theorem . 94
5.5.1 Theoretical Setting . 95
5.5.2 The NFL Theorem . 96
5.5.3 Example: ε-Cost Cycle Traps 99

5.6 Goal-Preference Tie-Breaking 101
5.6.1 Hazardous Logistics . 104

5.7 Conclusions . 105

6 Additive Merge-and-Shrink Heuristics for Diverse Action
Costs 107
6.1 Introduction . 107
6.2 Background . 108
6.3 Action Cost Diversity and M&S 109

6.3.1 Experimental Inspection 109
6.3.2 Action Cost in M&S Construction 113

6.4 Cost Partitioning for Diverse Action Costs 115
6.5 Experiments . 117

6.5.1 Performance of Delta Cost Partitioning 118
6.5.2 Computational Overhead 119

6.6 DCP-MS for Gripper . 122
6.6.1 Perfect Heuristic with Polynomial Size M&S Abstractions122
6.6.2 Experiment Results . 126

6.7 Conclusions . 127

vi

7 Conclusions 128
7.1 Contributions . 128
7.2 Limitations . 129
7.3 Future Work . 131

References 133

vii

List of Tables

3.1 Coverage for DFP, RL, CGGL and UMC with non-greedy bisimula-
tion shrinking and f -preserving shrinking. 36

3.2 Coverage for DFP, RL, CGGL and MIASM with non-greedy bisimu-
lation shrinking and f -preserving shrinking. 51

4.1 The M&S construction time (in seconds) for SCC-DFP and MS-
lite on a series of tasks with increasing numbers of variables. . 63

4.2 Numbers of nodes expanded by A* using M&S heuristics con-
structed with different size limits. 64

4.3 Coverages of MS-lite, DM-HQ (DH), SCC-DFP (SD), DYN-MIASM
(DM), CGGL, LVL, RL and the blind heuristic (blind). The do-
mains shown are those on which MS-lite’s coverage is at least
as good as the best (bold numbers) of all others. Numbers in
brackets after each domain name indicate the total number of
tasks in the domain. 66

4.4 Total coverage of the base M&S heuristics (row “Original”),
and their lite-enhanced variants (row “Lite-Enhanced”) and the
coverage difference between lite-enhanced and base M&S. . . . 76

4.5 Coverage of SCC-DFP and the increases/decreases of DM-HQ
over SCC-DFP (column “DM-HQ”), lite-enhanced SCC-DFP over
SCC-DFP (column “Lite-SD”) and of lite-enhanced DM-HQ over
SCC-DFP (column “Lite-DH”). “Others” summarizes the 13 do-
mains for which all four systems have the same coverage. . . . 80

5.1 Number of nodes expanded by A* for each cost function on two
different problems. 89

5.2 The numbers of tasks in different regions in plots in Figure 5.3
and Figure 5.4. “unso.” indicates the task is unsolved within
the time and memory limits. 93

5.3 Total number of nodes expanded with cost functions U and C
and their difference for cycle traps of various sizes. 100

5.4 The actual average performance of the search and the prediction
based on Equation (5.4) on the 8-puzzle. 103

6.1 The numbers of tasks in specific regions in Figure 6.1 111
6.2 Comparing the M&S construction time (in seconds) for DCP-

MS and single M&S. 121
6.3 Coverages of Gripper with increasing cost diversity for DCP-

MS and single M&S using two different M&S configurations. . 127

viii

List of Figures

1.1 A simple logistics task. 1
1.2 A plan for the logistics task shown in Figure 1.1 2

2.1 Two transition systems Θ1 and Θ2 and the synchronizted prod-
uct Θ1,2 = Θ1 ⊗ Θ2. In each tranistion system, the inital state
is marked with an unlabeled incoming edge not from any other
states and the goal states are marked as double circles. The pair
(s1, s2) of two states s1 and s2 is shown as s1s2 for simplicity. 17

2.2 (a) The M&S transformation process that converts 5 atomic
projections π1, π2, π3, π4 and π5 to one M&S abstraction; (b)
The M&S tree representing the transformation process. 19

2.3 Linear and non-linear merge trees for 5 variables. 22

3.1 Example of UMC merge. (a) The causal graph GUMC; (b) The
variable set V ; (c) The min-cut of GUMC; (d) UMC merge splits V
into two subsets U = {v5, v6} and V = {v1, v2, v3, v4} accord-
ing to the min-cut of GUMC; (e) The min-cut of GUMC〈V 〉; (f) UMC

merge splits V to subsets {v1, v3} and {v2, v4}; (g) Merge deci-
sions for all variables are defined; (h) The complete merge tree
constructed by UMC. 35

3.2 Comparison of UMC with CGGL, RL and DFP in terms of number
of A* node expansions. The left three plots use f -preserving
shrinking and the right three plots use bisimulation shrinking. 37

3.3 The atomic projections of variables O, P , L and S of a commod-
ity for the simplified TPP domain. The abstract inital state is
marked with an incoming edge not from any other states and
abstract goal states are marked as double ovals. 40

3.4 Synchronized products (a) Θ2 = πS⊗πL, (b) Θ3 = πS⊗πL⊗πP
and (c) Θ4 = πS ⊗ πL⊗ πP ⊗ πO. The dead states are drawn in
dashed ovals. 42

3.5 The merge-and-prune trees of the merging orders: (a) πS⊗πL⊗
πP ⊗ πO⊗Θ′; (b) Θ′⊗ πS ⊗ πL⊗ πP ⊗ πO. The number next to
a node indicates the size of the associated M&S abstraction. . 43

3.6 Illustration of how shrinking reduces free pruning. (a) Shrinking
α that combines -100 and -000 in Θ3; (b) α(Θ3)⊗πO has only
five dead states. 44

3.7 The lattice space of four variables v1, v2, v3, v4. 47
3.8 Comparison of MIASM with CGGL, RL and DFP in terms of num-

ber of node expansions. The left three plots use f -preserving
shrinking and the right three plots use bisimulation shrinking. 52

3.9 Comparison of MIASM with CGGL and DFP in total running time,
when bisimulation shrinking is used. 53

ix

3.10 Comparing numbers of expansions by A* using different M&S
heuristic: (a) I+

Q0
(y-axis) vs. DYN-MIASM (x-axis); (b) I+

Q0
(y-

axis) vs. SCC-DFP (x-axis); 58
3.11 Comparison of numbers of expansions using different M&S

heuristics: (a) DM-HQ (y-axis) vs. DYN-MIASM (x-axis); (b) DM-HQ
(y-axis) vs. SCC-DFP (x-axis); 60

4.1 The percentages of tasks (y-axis) for which M&S construction
of MS-lite, SCC-DFP, DM-HQ and DYN-MIASM are finished respec-
tively within a certain amount of time (x-axis, in seconds) and
within the 2GB memory limit. 67

4.2 Comparing numbers of expansions by A* using different heuris-
tics: (a) MS-lite (y-axis) vs. SCC-DFP (x-axis); (b) The blind
heuristic (y-axis) vs. SCC-DFP (x-axis). 68

4.3 Comparing the heuristic value of the initial state of MS-lite
heuristic (y-axis) vs. SCC-DFP (x-axis). 70

4.4 (a) π1 and its minimal h-preserving abstraction; (b) π2; (c) π3

and its minimal h-preserving abstraction; (d) The minimal h-
preserving abstraction of π2; (e) The synchronized product Θact

of merging the atomic projections in order (π1 ⊗ π2)⊗ π3 with
active shrinking. 72

4.5 Active shrinking and passive shrinking with size limit µ = 8 for
the same merging order (π1 ⊗ π2)⊗ π3. 73

4.6 (a) The product Θ1,2 of merging π1 and π2; (b) The h-preserving
abstraction Θσ

1,2 of Θ1,2 with 4 states; (c) The product Θpas of
merging the atomic projections in order (π1 ⊗ π2) ⊗ π3 using
passive shrinking with size limit µ = 8. 74

4.7 Comparing numbers of expansions by A* using different M&S
heuristics: (a) lite-enhanced SCC-DFP heuristic (y-axis) vs.
SCC-DFP (x-axis); (b) lite-enhanced DM-HQ heuristic (y-axis) vs.
DM-HQ (x-axis). 77

4.8 Comparing numbers of expansions by A* using different M&S
heuristics: (a) DM-HQ (y-axis) vs. SCC-DFP (x-axis); (b) lite-
enhanced DM-HQ (y-axis) vs. lite-enhanced SCC-DFP (x-axis);.
. 78

4.9 Comparing numbers of expansions by A* using different M&S
heuristics: (a) lite-DM-HQ (y-axis) vs. SCC-DFP (x-axis); (b) lite-
enhanced DM-HQ (y-axis) vs. blind-enhanced DM-HQ (x-axis). . 81

5.1 Histograms for f -value (x-axis) and optimal solution cost (in-
dicated by the red vertical line) for problem p08 of IPC domain
PARCPrinter with (a) the original non-unit cost function C
and (b) the unit cost function U 88

5.2 (a) tiles 14 and 15 in each other’s goal positions as are tiles
12 and 13; (b) state (a) “reversed”; (c) standard goal state
“reversed”. 89

5.3 Comparisons of numbers of A* node expansions for solving non-
unit cost tasks with their original IPC costs and the unit cost
using heuristics: (a) hmax, (b) PDB, (c) LM-cut, (d) iPDB, (e)
M&S, and (f) CEGAR. 91

x

5.4 Comparing the number of nodes expanded by A* with no heuris-
tic for solving non-unit cost tasks with their original IPC costs
and the unit cost. 94

5.5 (a) The cycle trap for k = 3; (b) Histogram for ∆t(U , C), for
the cycle trap with k = 6. 100

5.6 An illustration for hazardous logistics. Thicker circles represent
industrial locations and thinner circles represent residential lo-
cations. The gray area indicates locations that a residential
mode truck can visit. A truck starts at location T. 104

5.7 For the example of Figure 5.6, distance distribution induced by
unit cost function (a) is less concentrated than that of non-unit
cost function (b). 104

6.1 RDij vs. RM&S on tasks solved by both A* with M&S and Dijk-
stra’s algorithm . 110

6.2 NU vs. NC on instances that can only be solved by A* with M&S
within the time and memory limit. 112

6.3 (a) The cost mapping of delta cost partitioning; (b) DCP of a
cost function C that has three different costs 1, 3 and 10. . . 116

6.4 Comparing DCP-MS (x-axes) and single M&S (y-axes) on:
(a) Numbers of node expansions; (b) The final f -value before
time/memory limit is reached for unsolved instances by both
methods, but with M&S abstractions built successfully. . . . 117

6.5 Comparing DCP-MS (x-axes) and single M&S (y-axes) on: (a)
Memory (in KB) used for M&S construction; (b) Search time
(in seconds) of instances with successful M&S abstraction con-
struction. Search time less than 1 second is plotted as 1 second.
. 119

xi

Chapter 1

Introduction

1.1 Planning

Planning is an area of Artificial Intelligence (AI) that concerns the task of

finding a sequence of actions that leads from an initial state to a goal state.

Planning problems include finding a path between two places on a map, con-

trolling multiple elevators to move passengers, changing a multi-joint robotic

arm from one configuration to another without causing collisions, or logistics

problems such as delivering packages using vehicles.

A

B

C

Figure 1.1: A simple logistics task.

Figure 1.1 illustrates a simple planning problem, a logistics task where a

truck needs to deliver a package. The package can be loaded into the truck

if they are at the same location. If the package is on the truck, it can be

unloaded at the current location of the truck. There are three locations A, B

and C, and the truck can move among them. Initially, the truck is at location

B and the package is at location A. The goal is to deliver the package to its

destination location C (marked by a star).

1

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C
move load move unload

Figure 1.2: A plan for the logistics task shown in Figure 1.1

To achieve the goal, we can first move the truck to A—the location of

the package. Next, we load the package into the truck. We then move them

together to location C. Finally, we unload the package off the truck. This

multi-step process is shown Figure 1.2. Each step between two states is called

an action. The whole process forms a 4-action plan for this logistics task.

Each action can also have a cost. The cost of a plan is the sum of the costs

of its actions. In this thesis, we study optimal planning that finds a plan of

minimum cost. Such a plan is called an optimal plan. If costs of all actions

are equal, then optimal planning is to find a plan of the minimum number of

actions. In our logistics example, the 4-action plan in Figure 1.2 is an optimal

plan if all action costs are the same. If moving the truck between A and C

costs 3 but moving the truck between A and B and between B and C both

cost 1, an optimal plan would use a detour through B to move the truck from

A to C after picking up the package, instead of the direct move from A to C.

For k locations, n trucks and m packages, there are kn(k + 1)m states,

i.e., combinations of locations of the truck and the package. Figuring out a

plan for our example task is not difficult, because there are only 12 states.

However, if a few more trucks/packages/locations are considered, there will be

more states. For example, for a task of 10 locations, 10 packages and 2 trucks,

there are 2,593,742,460,100 states. This exponential difference between the

number of states of a planning task and the complexity for describing the task

is known as the state explosion problem. For many planning problems, this is

a main challenge a planning algorithm needs to address in order to solve the

problem.

2

1.2 Heuristic Search

Heuristic search is a powerful method for solving difficult planning tasks. A

search algorithm provides a systematic way to find a desired plan through ex-

plorations in the state space, i.e., the collection of all possible states. Because of

the state explosion problem such explorations may need to check prohibitively

many states before finding a plan. Heuristic functions are used to reduce the

amount of exploration that needs to be done in a search. For any state, a

heuristic function provides an estimation of the future cost for reaching a goal

state from the state. For example, for our logistics tasks we can estimate the

future cost of a state based on the location of the package. If the package is in

the truck, we use the cost of unloading as the estimate. If the package is at a

location different from the goal location, we use the sum of costs of loading and

unloading as the estimate. If the package is in its goal location, the estimate is

zero. Such estimates can improve the efficiency of search algorithm by avoid-

ing the exploration of some “unpromising” states—states that are less likely

to appear in desired plans. In general, the more accurate heuristic functions

are, the more unnecessary exploration can be avoided.

Although the word “heuristic” often appears in the context of algorithms

that obtain sub-optimal solutions to a problem, in AI planning and heuristic

search, the use of heuristic functions does not necessarily sacrifice the optimal-

ity. If the heuristic estimations are underestimations of the true future costs,

then we can guarantee the optimality of the plan found. Such heuristics are

called admissible heuristics. The package-location-based heuristic mentioned

above is an admissible heuristic function for logistics tasks because for any

state the loading and/or unloading actions considered in its estimations must

appear at least once in any valid plan for the state.

1.3 Merge-and-Shrink

Abstraction is an important technique for creating admissible heuristics for

planning. It creates mappings that combine multiple states into one abstract

3

state. The costs of the optimal plans that change abstract states to an abstract

goal states are then used as the heuristic estimations.

Traditional abstraction methods have limited flexibility in how to combine

states in an abstract mapping, which make it hard to create heuristic functions

of high quality when computational resources are constrained. Merge-and-

shrink (M&S) is an abstraction method that converts a set of small abstrac-

tions to one abstraction by an iterative process of multiple M&S operations,

namely merging, shrinking, pruning and label reduction, that are performed

on the explicit representations of the state spaces. These operations and the

M&S framework are defined in detail in Chapter 2.

1.4 Contributions of this Thesis

M&S has greater flexibility of what abstraction mappings can be computed

than traditional abstraction methods. How to construct and use M&S heuris-

tics to improve the efficiency of optimal planning is an interesting research topic

and is also the focus of this research. In this thesis, we propose new meth-

ods for building M&S heuristics and explore new ways to use multiple M&S

heuristics to improve the efficiency of planning. In addition, we also present

theoretical and practical analyses of the effects of action costs on search and

M&S heuristics.

Chapter 3 introduces three new merging strategies for M&S: UMC, MIASM

and DM-HQ. The merging strategy of M&S defines in what order the merging

operations are performed in the iterative process of M&S. Each of these merg-

ing strategies explores a unique idea for constructing better M&S abstractions.

UMC stands for “Undirected Minimum Cut” because it uses the minimum cuts

in a modified causal graph GUMC to develop a merging order. The edge weights

in GUMC can be viewed as a measurement of how strongly variables, or equiv-

alently the intermediate abstractions processed by M&S, interact with each

other. The idea behind UMC is to merge abstractions with stronger interaction

earlier to avoid information loss, and thus to produce a more informative M&S

heuristic. MIASM stands for “Maximal Intermediate Abstraction Size Minimiz-

4

ing” whose goal is to find merging orders that exploit free pruning—an lossless

M&S operation—to avoid harmful shrinking as much as possible. MIASM was

a strong merging strategy that outperformed all existing merging strategies at

the time it was published. Building on MIASM’s principle, a simplified version

of MIASM called dynamic MIASM was later developed. Our third merging strat-

egy DM-HQ was developed on top of dynamic MIASM with an additional merge

scoring function fHQ
ms which utilizes information about heuristic quality to help

make merging decisions. This additional function improves the performance

of M&S on several domains, and makes DM-HQ the currently best performing

merging strategy when used alone.

Many M&S methods, like the ones proposed in Chapter 3, are trying to

build a heuristic that is as accurate as possible. This often requires an ex-

pensive construction process in terms of time and memory consumption. In

Chapter 4, we present a lossy but extremely fast M&S method called MS-lite

that can be used to enhance other M&S methods to achieve superior perfor-

mance. It can produce decent heuristics on tasks for which other M&S methods

cannot even finish the heuristic construction within the resource limits. We

also observe that MS-lite produces better heuristics on some benchmark do-

mains despite its lossy construction process. We exploit the complementary

strength of MS-lite to enhance other M&S methods by a method called lite-

enhancement. We show that lite-enhancement works best for DM-HQ and it

dramatically outperforms the state-of-the-art M&S on the benchmark set.

Many benchmark planning tasks use the same unit costs for all of their

actions. However, in realistic planning problems diverse non-unit action costs,

i.e., different costs for different actions, are often used. In addition to proposing

new general M&S methods, this thesis also studies how action cost diversity

affect the two components of M&S heuristic search planner, namely, the search

algorithms and the domain-independent M&S heuristic construction methods.

In Chapter 5, we provide experimental evidence and theoretical analysis

showing that search can also benefit from action cost diversity, despite previous

studies demonstrating that cost diversity makes search more difficult. The

main contribution of this chapter is a “No Free Lunch” (NFL) theorem for the

5

effects of cost diversity on Dijkstra’s algorithm. The NFL theorem shows that,

when ignoring the states that are the same distance from the start state as the

goal state, the negative effects of cost diversity are perfectly counterbalanced

by the positive effects. The states ignored by the NFL theorem are called

the TIE states. We further show that when the influence of TIE states is

considered it is advantageous to have a strongly concentrated distribution of

solution costs. In many domains, unit costs give rise to a more concentrated

distribution than diverse costs, but we give an example typifying domains in

which the opposite is the case.

Chapter 6 shifts the focus to the effects of non-unit action costs on M&S

heuristics. In this chapter, we first experimentally demonstrate that there are

negative impacts of action cost diversity on M&S heuristics. We then propose

a new cost partitioning scheme called delta cost partitioning (DCP) to address

the negative effects of diverse costs on M&S. Our experiments show that M&S

using DCP produces a set of additive M&S heuristics whose combination is

much more informative than a single M&S heuristic that directly encodes the

original diverse costs.

In Chapter 7, we summarize the contributions of this thesis and discuss

some limitations and future research directions of this study.

6

Chapter 2

Basic Concepts

In this chapter, we first define the basic concepts of planning in Section 2.1

and heuristic search in Section 2.2. We then recap abstraction and abstrac-

tion heuristics in Section 2.3, followed by a detailed introduction of merge-

and-shrink—a flexible abstraction method for planning—in Section 2.4. In

Section 2.5, we briefly talk about the benchmark problems and the basic eval-

uation measurements used in this thesis. Most concepts introduced in this

chapter are standard, but some are not formally defined in the literature but

derived from the implementation details of related techniques.

2.1 Planning

In this thesis, we study so-called classical planning problems. Each classical

planning task consists of a fully specified initial state, a desired goal condition,

and a set of deterministic actions that define the transitions from one state to

another.

2.1.1 Planning Task

There are a few formalisms for representing classical planning tasks. We use

the SAS+ formalism [BN95] with action costs to represent classical planning

tasks:

Definition 1 (SAS+ Formalism). A SAS+ planning task with action costs,

or simply planning task is a 5-tuple Π = 〈V ,A, C, sinit, s∗〉.

7

• V is a set of state variables. Each variable v ∈ V is associated with a

finite domain Dv.

• A function s is a partial variable assignment over V if s is defined on

Vs ⊆ V such that s(v) ∈ Dv for v ∈ Vs. If Vs = V , s is called a state. sinit

is a state called the initial state, and s∗ is a partial variable assignment

called the goal. The variables in Vs∗ are called the goal variables.

• A is a set of actions in which each action is a pair of partial variable

assignments 〈pre, eff〉, the precondition and the effect.

• C is an action cost function that assigns a non-negative cost C(a) ∈ R+
0

to each action a ∈ A.

A state s satisfies a partial variable assignment p if s(v) = p(v) for all

v ∈ Vp. We say an action a = 〈pre, eff〉 is applicable to a state s if s satisfies

pre. If a is applicable to s, applying a to s will result in a state s′ such that

s′(v) = eff(v) for all v ∈ Veff and s′(v) = s(v) for all v ∈ V \ Veff.

For a planning task Π = 〈V ,A, C, sinit, s∗〉, we call a sequence of n ∈ N0

actions (a1, a2, ..., an) a plan of length n for Π if ai ∈ A and there is a sequence

of states (s0, s1, ..., sn) such that ai is applicable to state si−1 and the applica-

tion results in state si for i ∈ {1, 2, ..., n}, and s0 is the initial state sinit and

sn satisfies the goal s∗.

The cost of the plan (a1, a2, ..., an) is the sum of the costs of its actions
∑n

i=1 C(ai). A plan is cost-optimal or optimal for short if its cost is minimal

among all plans for the task. Planning is to find a plan for a given planning

task, and optimal planning is to find an optimal plan for a task.

2.1.2 Transition System

A transition system is a directed graph with labelled transitions, an initial state

and a set of goal states. Formally,

Definition 2 (Transition System). A transition system is a 6-tuple Θ =

〈S, L, C, T , sinit, S∗〉 where

8

• S is a finite set of states called the state space.

• L is a finite set of transition labels.

• C is the cost function that maps each label l ∈ L to a non-negative cost

C(l) ∈ R+
0 .

• T ⊆ S × L × S is a set of labelled transitions or transitions for short.

The cost of the transition 〈s, l, s′〉 ∈ T is C(l). We use s
l−→ s′ to denote

the transition 〈s, l, s′〉.

• sinit is the initial state.

• S∗ is a set of goal states.

The number of transitions of a transition system is not considered by most

techniques in this thesis, while the number of states is an important quantity

for many of these techniques. We define the size of a transition system Θ as

the number of states in its state space, denoted as |Θ|.
Each planning task Π = 〈V ,A, C, sinit, s∗〉 is associated with a transition

system Θ(Π) = 〈S, L, C, T , sinit, S∗〉 where

• S is the set of states over V .

• L = A and s
a−→ s′ ∈ T if and only if a is applicable to s and applying a

to s results in s′. The cost of the transition s
a−→ s′ is C(a).

• the initial state of Θ(Π) is the initial state of Π.

• s ∈ S∗ if and only if s satisfies s∗.

For any s and t such that s
l−→ t ∈ T , we say t is a successor of s and s

is a predecessor of t. A path of length n ∈ N0 from s0 to sn is a sequence

(s0, l1, s1, l2, s2, l3, ..., ln, sn) such that si−1
li−→ si ∈ T for i ∈ {1, 2, ..., n}. We

use s0
l1−→ s1

l2−→ s2
l3−→ · · · ln−→ sn to denote the path (s0, l1, s1, l2, s2, l3, ..., ln, sn).

We say a state t is reachable from a state s if there exists a path from s to t.

9

Definition 3 (Live and Dead State [Sie17]). A state in a transition system is

live if it is reachable from the initial state and there is a goal state reachable

from it. A state is dead if it is not live.

We call the percentage of live states in a transition system the R-value

of the transition system. R-value is used in the definition of one of our new

methods called MIASM in Chapter 3.

Definition 4 (R-value). Let Θ be a transition system with state space S. We

call the ratio of the number of live states of Θ to the total number of states,

the R-value, denoted as R(Θ). Formally,

R(Θ) =
|{s | s is a live state in Θ}|

|S|

There is a one-to-one correspondence between paths in Θ(Π) and action

sequences in Π. We call a path from the initial state to a goal state in Θ(Π) a

solution path. Each plan for Π corresponds to a solution path of the same cost

in Θ(Π), and each optimal plan for Π is a least-cost solution path in Θ(Π).

We say a transition system is solvable if it contains a solution path.

2.2 Heuristic Search

The representation size of a planning task Π can be exponentially smaller than

that of its associated transition system Θ(Π). This exponential difference in

the representation sizes of a planning task and its associated transition system

is known as the “state explosion” problem, which is the central challenge

of classical planning: how to find a plan for a planning task that has an

exponentially large state space.

Heuristic search is a method for finding paths in large transition systems.

Because planning for Π can be cast as a path finding problem in Θ(Π), heuristic

search can be used for planning. Planning as heuristic search [BG01] is one of

the most powerful planning methods.

We denote the cost-from-start of a state, i.e., how far away a state is from

the initial state, as the g-value of the state, and the cost-to-go of a state, i.e.,

10

how close the current state is to the nearest goal state, as the h-value of the

state:

Definition 5 (g-value and gΘ). Let Θ be a transition system and s be a state

in Θ. If s is reachable from the initial state, then the g-value of s in Θ is the

cost of a least-cost path from sinit to s. If s is not reachable from sinit, the

g-value of s in Θ is ∞. gΘ(s) : S 7→ R+
0 ∪ {∞} is the function that maps a

state to its g-value.

Definition 6 (h-value and hΘ). Let Θ be a transition system and s be a state

in Θ. If there are any goal states reachable from s, the h-value of s in Θ is

the cost of a least-cost path from s to the nearest goal state. If no goal state

is reachable from s, then the h-value of s in Θ is ∞. hΘ(s) : S 7→ R+
0 ∪ {∞}

is the function of Θ that maps a state to its h-value.

A heuristic function or a heuristic for short estimates h-values of states.

Definition 7 (Heuristic Function). For a state space S, a heuristic function

h : S 7→ R+
0 ∪ {∞} estimates the h-value of each state.

For a planning task Π, we wish to search for a solution path of Θ(Π)

without generating the whole transition system. We only generate a set of

states that are necessary to find a solution path. A heuristic search algorithm

keeps such a set as small as possible.

A* [HNR68] is a heuristic search algorithm that can be used for planning.

It maintains two mutually exclusive sets of states, OPEN and CLOSED, and

an evaluation function f(s) = g(s) + h(s) for s ∈ OPEN ∪ CLOSED where

g(s) is the cost of the currently known least-cost path from the initial state

to s and h is the heuristic function used by A*. Functions g and f are only

defined for states in OPEN∪CLOSED, and they are updated during A* search

when a new state is added to OPEN ∪ CLOSED or a cheaper path to a state

in OPEN ∪ CLOSED is found. In our study, the heuristic function h stays

unchanged throughout the search.

For a planning task Π = 〈V ,A, C, sinit, s∗〉 and a heuristic h for the state

space of Θ(Π), the pseudocode of A* on Π is shown in Algorithm 1. The goal

11

checking (Line 6) and successor generation (Line 10 - 11) can be performed

in polynomial time in the representation size of the planning task. pred(s)

records the previous state and action on the currently best known path to s,

so that a solution path can be reconstructed (Line 7). The computation carried

out in the else-branch between Line 9 and Line 21 is called node expansion.

The number of node expansions is an important measurement of the efficiency

of A*.

Definition 8 (Number of Node Expansions). The number of node expansions

performed by A* is the number of times the else-branch between Line 9 and

Line 21 in Algorithm 1 is executed.

Algorithm 1 A* Search for Planning

Input: Π = 〈V ,A, C, sinit, s∗〉 and a heuristic h for Π
Output: a solution for Π or a signal that Π has no solution

1: OPEN← {sinit}, CLOSED← ∅
2: g(sinit)← 0
3: pred(sinit)← 〈〉
4: while OPEN 6= ∅ do
5: s← a state from OPEN with the minimal f(s)
6: if s satisfies s∗ then
7: return ReconstructSolution(s, pred)
8: else
9: OPEN← OPEN \ {s} and CLOSED← CLOSED ∪ {s}

10: for all a = 〈pre, eff〉 ∈ A such that s satisfies pre do
11: t← apply a to s
12: if t /∈ OPEN ∪ CLOSED or g(s) + C(a) < g(t) then
13: if t /∈ OPEN ∪ CLOSED then
14: OPEN← OPEN ∪ {t}
15: else if t ∈ CLOSED then
16: CLOSED← CLOSED \ {t} and OPEN← OPEN ∪ {t}
17: end if
18: g(t)← g(s) + C(a)
19: pred(t)← 〈s, a〉
20: end if
21: end for
22: end if
23: end while
24: return Π has no solution

A state may be expanded multiple times if it is “re-opened” in Line 16,

12

i.e., moved back to OPEN after being moved to CLOSED. The number of

expansions by A* is highly related to the quality of the heuristic it uses.

Definition 9 (Admissible Heuristic). A heuristic h for a transition system Θ

with state space S is admissible if h(s) ≤ hΘ(s) for all s ∈ S.

When A* uses an admissible heuristic, the solution path found is guaran-

teed to be optimal, i.e., a least-cost path from the initial state to the nearest

goal state.

Definition 10 (Consistent Heuristic). A heuristic h for a transition system

Θ = 〈S, L, C, T , sinit, S∗〉 is consistent if h(s) ≤ C(l) + h(t) for all s
l−→ t ∈ T

and h(s) = 0 for s ∈ S∗.

Consistency implies admissibility, i.e., a consistent heuristic is also an ad-

missible heuristic, but not vice versa. When A* uses a consistent heuristic,

states never move back from CLOSED to OPEN (Line 16 in Algorithm 1),

and thus there are no re-expansions of states.

In general, the closer a heuristic approximates hΘ, the fewer A* node ex-

pansions are needed to find a solution [DP85] (but note [Hol10]). We call a

heuristic h perfect if h(s) = hΘ(s) for all s ∈ S. Throughout this thesis, we

use A* as our search algorithm. All heuristics studied are consistent and some

of them are perfect.

2.3 Abstraction

There is a large body of research for heuristic search planning on how to

automatically generate heuristic functions. A variety of heuristic generation

methods have been proposed for planning, e.g., [BG01; Ede01; Has+07; HG00;

HD09; HHH07; HN01; SH13]. These methods are domain-independent, mean-

ing they are not designed to generate heuristics for a specific planning domain,

e.g., logistics problems, by exploiting some domain knowledge, but can create

heuristic functions for any planning tasks that can be described in a planning

formalism such as SAS+.

13

Abstraction is a fundamental domain-independent method for generating

consistent and admissible heuristics. In this section we recap the basic concepts

of abstraction.

2.3.1 Abstraction Mapping

The central concept of abstraction is abstraction mapping :

Definition 11 (Abstraction Mapping). An abstraction mapping α for a tran-

sition system Θ with state space S is a mapping from S to a set Sα of abstract

states called the abstract state space.

An abstraction mapping for Θ induces an abstract transition system of Θ:

Definition 12 (Abstract Transition System). Let Θ = 〈S, L, C, T , sinit, S∗〉,
and let α : S 7→ Sα be an abstraction mapping for Θ. The abstract transition

system, or abstraction for short, induced by α is a transition system α(Θ) =

〈Sα, L, C, T α, sαinit, S
α
∗ 〉 where

• Sα is the abstract state space, i.e., the set of abstract states.

• T α = {α(s)
l−→ α(s′) | s l−→ s′ ∈ T} is the set of abstract transitions.

• sαinit = α(sinit) is the abstract initial state.

• Sα∗ = {α(s) | s ∈ S∗} is the set of abstract goal states.

We call paths in α(Θ) abstract paths. We call Θ the concrete transition system,

and states, transitions and paths in Θ the concrete states, transitions and

paths.

For any transition system Θ and any abstraction mapping α for Θ, each

concrete path s0
l1−→ s1

l2−→ s2
l3−→ · · · ln−→ sn in Θ corresponds to an abstract

path α(s0)
l1−→ α(s1)

l2−→ α(s2)
l3−→ · · · ln−→ α(sn). Thus, if α(t) is not reachable

from α(s) in α(Θ) then t is not reachable from s in Θ. This has two useful

implications:

Proposition 1. Let Θ be a transition system, α be an abstraction mapping

for Θ, and α(Θ) be the abstract transition system induced by α.

14

(a) If an abstract state sα is dead in α(Θ), then all s such that α(s) = sα

are dead in Θ.

(b) If α(Θ) is not solvable, then Θ is not solvable.

2.3.2 Abstraction Heuristic

The h-values in the abstract transition system can be used as a consistent and

admissible heuristic.

Definition 13 (Abstraction Heuristic). Let α be an abstraction mapping for

Θ with state space S, and let α(Θ) be the induced abstract transition system.

The abstraction heuristic hα : S 7→ R+
0 ∪ {∞} defined by α is a function such

that hα(s) = hα(Θ)(α(s)) for s ∈ S.

While every concrete path is mapped to an abstract one, there may be

abstract paths that are spurious, i.e., there are no concrete paths mapped

to the abstract paths [FH15]. This is the reason that abstraction heuristics

are underestimates of the perfect heuristic values. The underestimations can

be even lower when there are a wide range of costs, because when there are

multiple labelled transitions between the same pair of states, only the smallest

label cost is used and all higher costs are ignored.

2.3.3 Projection

A projection is an abstraction mapping that produces an abstract transition

system by ignoring some variables in the planning task. The pattern database

(PDB) approach in planning is based on projections [Ede01].

Definition 14 (Projection). Let Π be a planning task with variable set V , and

Θ(Π) be the transition system of Π with state set S. For any variable subset

V ⊆ V , a projection on V , denoted by πV , is an abstraction of Θ(Π) with

abstraction mapping α such that α(s) = α(s′) if and only if s(v) = s′(v) for

all v ∈ V . The projection on a singleton set {v} is called an atomic projection,

denoted by πv.

15

Projection preserves all of the information about the variables in V but

has no information about other variables. An abstraction mapping in such a

restricted form may not provide an informative heuristic. Some high-quality

heuristics based on projection use sophisticated methods for generating a col-

lection of complementary projections [Ede06; Fra+17; Has+07].

2.4 Merge-and-Shrink

Merge-and-shrink [HHH07; Hel+14] is an algorithm that transforms the set of

atomic projections of a planning task into a single transition system through

four transformation operations, namely, merging, shrinking, pruning and label

reduction.

2.4.1 Transformation Operations

We introduce the four transformation operations used in merge-and-shrink.

Merging Operation

The merging operation combines information from two transition systems by

computing their synchronized product.

Definition 15 (Merging and Synchronized Product). Let Θ1 =

〈S1, L, C, T 1, s1
init, S

1
∗〉 and Θ2 = 〈S2, L, C, T 2, s2

init, S
2
∗〉 be two transition sys-

tems. Merging Θ1 and Θ2, denoted by Θ1 ⊗Θ2, produces a transition system

Θ1,2 = 〈S1,2, L, C, T 1,2, s1,2
init, S

1,2
∗ 〉 where

• S1,2 = S1 × S2.

• T 1,2 = {(s1, s2)
l−→ (t1, t2) | s1 l−→ t1 ∈ T 1 and s2 l−→ t2 ∈ T 2}.

• s1,2
init = (s1

init, s
2
init).

• S1,2
∗ = S1

∗ × S2
∗ .

We call Θ1,2 the synchronized product of Θ1 and Θ2, and Θ1 and Θ2 the

factor transition systems of Θ1,2. An example of merging is shown in Fig-

ure 2.1.

16

x y
M1

M2

L1, U1 L2, U2

(a) Θ1

a b c
L1

U1

U2

L2

M1,M2 M1,M2 M1,M2

(b) Θ2

xa ya

xb yb

xc yc

M1

M2

M1

M2

M1

M2

L1U1

U2L2

(c) Θ1,2 = Θ1 ⊗Θ2

Figure 2.1: Two transition systems Θ1 and Θ2 and the synchronizted product
Θ1,2 = Θ1 ⊗ Θ2. In each tranistion system, the inital state is marked with
an unlabeled incoming edge not from any other states and the goal states are
marked as double circles. The pair (s1, s2) of two states s1 and s2 is shown as
s1s2 for simplicity.

We consider transition systems equal if there is an isomorphism between

their graphs that preserves the initial state, the goal states and the transition

labels. Under this definition of equality of transition systems, the merging

operation is associative and commutative. Different ways of merging a set of

transition systems in any order yield equal synchronized products [Hel+14].

For a set P of transition systems, let
⊗P denote the synchronized product

of merging all transition systems in P .

Shrinking Operation

A shrinking operation is used to reduce the size of a transition system by

applying abstraction to it.

Definition 16 (Shrinking). Let Θ be a transition system. A shrinking α of

Θ is an abstraction mapping for Θ that induces the abstract transition system

α(Θ).

Pruning Operation

Pruning of a transition system removes some states and their incident transi-

tions from the transition system.

17

Definition 17 (Pruning). Let Θ = 〈S, L, C, T , sinit, S∗〉 be a transition system.

A pruning β for Θ induces its pruned transition system β(Θ) = 〈Sβ, L, {s l−→
t ∈ T | s, t ∈ Sβ}, sinit, S

β ∩ S∗〉 where Sβ ⊆ S is the state space associated

with β such that Sβ must contain sinit.

Label Reduction

Both merging and shrinking depend on how the transitions are labeled. Label

reduction reduces the number of labels of a transition system.

Definition 18 (Label Reduction). Let Θ = 〈S, L, C, T , sinit, S∗〉 be a transition

system with cost function C. A label reduction for L is a non-injective mapping

τ : L 7→ Lτ such that Cτ (τ(l)) ≤ C(l) for all l ∈ L where Cτ : Lτ 7→ R+
0 is the

cost function associated with τ . Applying τ to Θ induces a transition system

τ(Θ) = 〈S, τ(L), {s τ(l)−−→ t | s l−→ t ∈ T}, sinit, S∗〉 with cost function Cτ .

2.4.2 Merge-and-Shrink Abstraction

The transition systems produced by applying the above-mentioned transfor-

mation operations on atomic projections of a planning task are called merge-

and-shrink abstractions.

Definition 19 (Merge-and-Shrink Abstraction). Let Θ be a transition system

with variables V . A merge-and-shrink abstraction over V ⊆ V of Θ is defined

inductively with the operations (A), (S), (P), (L) and (M) as follows.

• (A). For each v ∈ V , the atomic projection πv is a merge-and-shrink

abstraction over {v} of Θ.

• (S), (P) and (L). For any merge-and-shrink abstraction Θ′ over V of Θ,

and for any shrinking (S), any pruning (P), or any label reduction (L) χ

for Θ′, χ(Θ′) is also a merge-and-shrink abstraction over V of Θ.

• (M). For two merge-and-shrink abstractions Θ1 and Θ2 over V1 and V2

of Θ respectively such that V1 ∩ V2 = ∅, and both abstractions share the

same label set and the same cost function, Θ1⊗Θ2 is a merge-and-shrink

abstraction over V1 ∪ V2 for Θ.

18

1. Merging operation that produces Θ1 = π1 ⊗ π2

2. Apply label reduction τ to Θ1, π3, π4 and π5

3. Merging operation that produces Θ2 = τ(Θ1) ⊗ τ(π3)

4. Merging operation that produces Θ3 = τ(π4) ⊗ τ(π5)

5. Apply shrinking α to Θ2

6. Apply pruning β to Θ3

7. Merge α(Θ2) and β(Θ3)

(a)

Θ2

Θ1

π1 π2

π3

Θ3

π4 π5

α

τ τ

β

τ τ

⊗

⊗

⊗

⊗

(b)

Figure 2.2: (a) The M&S transformation process that converts 5 atomic pro-
jections π1, π2, π3, π4 and π5 to one M&S abstraction; (b) The M&S tree
representing the transformation process.

The transformation process producing merge-and-shrink abstractions can

be represented as a binary tree called a merge-and-shrink tree in which the

nodes are M&S abstractions and edges correspond to M&S transformation

operations. In particular, the leaf nodes are the atomic projections, the root

is the final M&S abstraction produced by the transformation process, and all

internal nodes are the intermediate results of the transformation process. For

nodes with only one child, the edge between them corresponds to an operation

of shrinking, pruning, or label reduction, which is applied to the abstraction

of the child node and produces the abstraction of the parent node. Each node

with two children is the synchronized product of the abstractions of the child

nodes. The two edges connecting the children to the parent node correspond to

the merging operation producing the synchronized product. Figure 2.2 shows

an example of a M&S transformation process and its corresponding M&S tree.

We call the size of the largest M&S abstraction in a M&S tree the maximum

intermediate abstraction size of the M&S tree.

Definition 20 (Maximum Intermediate Abstraction Size). For any M&S tree

T , the maximum intermediate abstraction size of T , denoted as |T |max, is the

size of the largest abstraction in T .

19

Algorithm 2 Merge-and-Shrink Initialization: InitMAS

Input: task Π with variables V
Output: set P of all atomic projections of Π

1: P ← ∅
2: for v ∈ V do
3: πv ← CheckSolvabilityAndPruning(πv)
4: P ← P ∪ {πv}
5: end for
6: return P

2.4.3 The Merge-and-Shrink Algorithm

The general merge-and-shrink framework maintains a set P of M&S abstrac-

tions which is initialized as the set of all atomic projections. The general

merge-and-shrink algorithm is an iterative process in which each iteration re-

places two M&S abstractions with their synchronized product. This is inter-

leaved with possible shrinking, label reduction and/or pruning operations.

The initialization process InitMAS is shown in Algorithm 2.

For any M&S abstraction Θ′ = 〈S ′ , L, C, T ′ , s′init, S
′
∗〉, the function

CheckSolvabilityAndPruning(Θ′) first computes the g-values and h-values of

Θ′ using Dijkstra’s algorithm. If hΘ′(s
′
init) = ∞, we know Θ′ is not solvable

which implies that the given planning task has no solution because Θ′ is an

abstraction of the transition system of the task (Proposition 1(b)). In this

case, we terminate the merge-and-shrink algorithm and output a signal that

the given planning task has no solution. Otherwise, the function prunes the

dead states, i.e., the states s′ ∈ S ′ with hΘ′(s
′) = ∞ or gΘ′(s

′) = ∞, and

returns the pruned transition system. By Proposition 1(a), this pruning only

removes dead states in the transition system of the task.

The general framework does not specify in each iteration what transforma-

tions are to be applied or in what order they are applied. Algorithm 3 shows

the merge-and-shrink algorithm used in FastDownward [Hel06; Sie18]. In this

implementation, in each iteration two transition systems Θ1,Θ2 ∈ P are first

selected as the systems to be merged next. Then, a possible label reduction

is computed based on Θ1,Θ2 and other transition systems in P and applied

to the label set associated with P . Possible shrinking may then be applied

20

Algorithm 3 The Merge-and-Shrink Algorithm in FastDownard [Hel06]

Input: task Π
Output: M&S abstraction ΘM&S

1: P ← InitMAS(Π)
2: while |P| > 1 do
3: Θ1,Θ2 ← ChooseNextMerge(P)
4: P ← LabelReduction(Θ1,Θ2,P)
5: (Θ1,Θ2)← Shrinking(Θ1,Θ2)
6: Θ1,2 ← Θ1 ⊗Θ2

7: Θ1,2 ← CheckSolvabilityAndPruning(Θ1,2)
8: P ← P ∪ {Θ1,2} \ {Θ1,Θ2}
9: end while

10: return ΘM&S ∈ P

to Θ1 and/or Θ2. The synchronized product Θ1,2 of the two factor transition

systems is produced after the possible label reduction and shrinking. Then,

CheckSolvabilityAndPruning is called to check the solvability of the new tran-

sition system Θ1,2 and prune dead states in Θ1,2 if it is solvable. Finally, P is

updated to P \{Θ1,Θ2}∪{Θ1,2}. The iterative process ends when P becomes

a singleton set containing one final transition system ΘM&S.

For a task Π with variables V , Algorithm 3 either produces a M&S abstrac-

tion ΘM&S over V of Θ(Π) or terminates if it detects that Θ(Π) is unsolvable

(by the CheckSolvabilityAndPruning function). On each iteration, P is called

the current abstraction pool of M&S.

In the following, we give an overview of merging strategies, i.e., how to

select the two transition systems to merge next, shrinking strategies, i.e., when

and how to shrink transition systems, the free pruning that is used to remove

dead states, and exact label reduction, which is a way to reduce labels without

information loss.

2.4.4 Merging Strategy

Without shrinking and label reduction, merging a set of transition systems

in any order yields the equal synchronized product. However, when merging

is interleaved with shrinking, pruning and label reduction, as in the M&S

process, different merging orders can produce different results. A merging

21

π1 π2

π3

π4

π5

(a) A linear merge tree

π1 π2

π3 π4 π5

(b) A non-linear merge tree

Figure 2.3: Linear and non-linear merge trees for 5 variables.

strategy determines, at each M&S iteration, which two transition systems in

the current abstraction pool should be merged next. The sequence of merge

choices form a merging order that can be represented by a merge tree.

Definition 21 (Merge Tree). Let Θ be a transition system with variables V ,

and let V ⊆ V . A merge tree T over V is a merge-and-shrink tree using only

operations (A) and (M) defined in Definition 19.

A merge tree is linear if it corresponds to a merging order in which at most

one non-atomic abstraction exists in P at any time during the M&S process.

This happens if we only merge an atomic projection with the non-atomic

abstraction, after merging two atomic projections in the first iterative step of

M&S. A non-linear merge tree is a tree that is not linear. Figure 2.3 shows

both a linear merge true and a non-linear merge tree. A merging strategy is

linear if it only produces linear merge trees, and is non-linear otherwise.

Linear Merging Strategies

All published linear merging strategies [HHH07; NHH11] and some non-linear

merging strategies use information from the causal graph [Hel04; Kno94] of

a planning task to help derive a merging order. The causal graph reveals

dependencies between variables.

Definition 22 (Variable Dependency). Let Π be a planning task with variable

set V and action set A. Let u, v ∈ V . The causal dependency of v on u, denoted

22

as wcausal(u, v), is the number of actions 〈pre, eff〉 ∈ A such that u ∈ Vpre and

v ∈ Veff. The effect dependency of v on u, denoted as weffect(u, v), is the number

of actions 〈pre, eff〉 ∈ A such that u ∈ Veff and v ∈ Veff.

Definition 23 (Causal Graph). Let Π be a planning task with variable set V
and action set A. Let w(u, v) = wcausal(u, v) + weffect(u, v) for u, v ∈ V . The

causal graph of Π is a directed graph 〈V , E〉 such that (u, v) ∈ E if and only

if u 6= v and w(u, v) > 0. The weight of a causal graph edge (u, v) ∈ E is

w(u, v).

A total order on n variables determines a unique sequence (v1, v2, v3, ..., vn)

of the variables, which in turn gives a linear merging order πv1 ⊗ πv2 ⊗ πv3 ⊗
· · · ⊗ πvn . The level order of variables [Hel06] is a total order on the variables

based on the causal graph.

Definition 24 (Level Order of Variables). Let Π be a planning task with vari-

able set V . Let m ∈ N and (〈V1, E1〉, 〈V2, E2〉, ..., 〈Vm, Em〉) be the topologically

sorted strongly connected components of the causal graph of Π. We compute

a total order ≺LVL on V such that

• For 0 ≤ i < j ≤ m, u ≺LVL v if u ∈ Vi and v ∈ Vj.

• For each 0 ≤ i ≤ m, we specify ≺LVL on variables in Vi. Set V ′ := Vi and

E ′ := Ei. Then, iteratively apply the following steps until V ′ and E ′ are

empty:

1. Pick a variable v with the minimal total weight of incoming edges

in 〈V ′, E ′〉, i.e., v ∈ arg minv∈V ′
∑

(u,v)∈E′ w(u, v). Set v ≺LVL u

for all u ∈ V ′ \ {v}.

2. Remove v from V ′ and all incident edges of v from E ′, i.e., V ′ :=

V ′ \ {v} and E ′ := E ′ \ {(u, v) ∈ E ′} \ {(v, u) ∈ E ′}.

For v ∈ V , level(v) = |{u | v �LVL u}| is called the level of v. The level order of

variables in Π is the ordering of variables from the highest level to the lowest

level.

23

Variable level is used in all existing linear merging strategies:

• The strategy LVL [HHH07] derives the linear merging order from the

level order of variables.

• The strategy ReverseLevel or RL for short [NHH11] derives the linear

merging order from the reversed level order of variables.

• The strategy CausalGraph/Goal-Level or CGGL for short [HHH07] iter-

atively selects variables using information about goal variables and the

causal graph, and variable level for tie-breaking. For each iteration, let

U be the set of unselected variables and P be the predecessors of selected

variables in the causal graph.

1. If U ∩ P 6= ∅, select the variable in U ∩ P with the highest level

(the CausalGraph rule).

2. Otherwise, select the goal variable in U with the highest level (the

Goal rule).

Non-Linear Merging Strategies

A natural way to derive a non-linear merging order is to select a pair of abstrac-

tions from the abstraction pool at each M&S iteration. Such approaches often

use a sequence of merge scoring functions to select the pair of abstractions

with the minimal score. Each scoring function is used to break ties among the

best candidates selected by the previous scoring function. All scoring func-

tions assume that smaller scores are better. We call such a merging strategy

scoring-based.

Definition 25 (Merge Scoring Function). Let T S denote the set of transition

systems that share a label set and a cost function. A merge scoring function

is a mapping fms : T S × T S 7→ R.

All existing scoring-based merging strategies follow a sequence in which the

first scoring function is a function called the goal-relevance function, and the

last scoring function is a function that defines a total order of merge candidates

24

for tie-breaking, and between them are the main scoring functions that make

the scoring-based merging strategies different from each other.

The goal-relevance function considers a transition system better if the sys-

tem contains both goal and non-goal states.

Definition 26 (Goal-Relevance Merge Score). Let Θ be a transition system

with states S and goal states S∗. We say Θ is goal-relevant if S \ S∗ 6= ∅. Let

Θ1 and Θ2 be two transition systems. The goal-relevance merge score of Θ1

and Θ2 is

fGR
ms (Θ1,Θ2) =

{
0, if either Θ1 or Θ2 is goal-relevant

1, otherwise

The last scoring function is based on a total order CNRL to eliminate any

ties of previous scores. CNRL is short for “Composite”, “New”, and “Reverse

Level”, the three preference rules shown to perform best for tie-breaking in

practice [SWH16].

Definition 27 (Total Order CNRL). CNRL is a total order ≺CNRL on a set of

M&S abstractions derived using the following three preference rules:

• “Composite” Preference: for any non-atomic (composite) abstraction Θ

and any atomic projections πv, Θ ≺CNRL πv.

• “New” Preference: for two non-atomic abstractions Θ and Θ′, Θ ≺CNRL Θ′

if Θ is produced later than Θ′ in M&S.

• “Reverse Level” Preference: for two atomic projections πu and πv,

πu ≺CNRL πv if the level of u is lower than the level of v.

As merging is commutative, we only need to consider the ordered pairs

of abstractions (Θ,Θ′) such that Θ ≺CNRL Θ′. The total order ≺CNRL on M&S

abstractions induces a total order ≺ on the ordered pairs: (Θ1,Θ2) ≺ (Θ3,Θ4)

if Θ1 ≺CNRL Θ3, or Θ1 = Θ3 and Θ2 ≺CNRL Θ4. The pairs of abstractions are

sorted by ≺ and their indexes after sorting are used as scores for them.

Other than the goal-relevance function and the total-order function, we call

the merge scoring functions the main merge scoring functions. DFP [DFP06;

25

DFP09] is a scoring-based non-linear merging strategy used for M&S. Its main

merge scoring function fDFP
ms is based on a ranking of the labels of a transition

system.

Definition 28 (DFP Label Ranking [DFP06]). Let Θ be a transition system

with transitions T and labels L. The ranking of a label l ∈ L is

r(l,Θ) = min{hΘ(s) | ∃ t such that t
l−→ s ∈ T} (2.1)

Lower label ranking indicates there is a transition with this label which

appears closer to a goal state.

Definition 29 (DFP Merge Score [DFP06]). Let Θ1 and Θ2 be two transition

systems with label set L. The DFP merge score of Θ1 and Θ2 is

fDFP
ms (Θ1,Θ2) = min{max{r(l,Θ1), r(l,Θ2)} | l ∈ L}

2.4.5 Shrinking Strategy

A shrinking strategy determines when and how to shrink a transition system.

Definition 30-32 introduce some desired properties of an abstraction produced

by shrinking.

Definition 30 (h-preserving Abstraction [HHH07]). Let α be an abstraction

mapping for Θ with state space S. We say α is h-preserving if hΘ(s) = hΘ(t)

for any s, t ∈ S such that α(s) = α(t). The transition system induced by α is

an h-preserving abstraction of Θ.

An f -preserving abstraction [HHH07] is an h-preserving abstraction that

additionally preserves g-values.

Definition 31 (f -preserving Abstraction [HHH07]). Let α be an abstraction

mapping for Θ with state space S. We say α is f -preserving if hΘ(s) = hΘ(t)

and gΘ(s) = gΘ(t) for any s, t ∈ S such that α(s) = α(t). The transition

system induced by α is an f -preserving abstraction of Θ.

f -preserving shrinking is targeted at an f -preserving abstraction of the

transition system. Note that h-preserving shrinking and f -preserving shrinking

26

do not necessarily produce the perfect heuristic because they only preserve

the h-values of the transition system to be shrunk (not the original transition

system of the planning task). Bisimulation abstraction, however, can produce

the perfect heuristic.

Definition 32 (Bisimulation Abstraction [NHH11]). Let α be an abstraction

mapping for Θ = 〈S, L, C, T , sinit, S∗〉. We say α is a bisimulation abstraction

if for s, t ∈ S such that α(s) = α(t),

• either s, t ∈ S∗ or s, t /∈ S∗, and

• for any l ∈ L, if s
l−→ s′ ∈ T then there exists t′ such that t

l−→ t′ ∈ T and

α(s′) = α(t′).

There exists a unique coarsest bisimulation abstraction [Mil90], i.e., the

bisimulation abstraction with the fewest states. The coarsest bisimulation

abstraction can be computed by an iterative process of refinements of the

abstraction with a single abstract state1 [NHH11]. Each refinement “splits”

abstract states that violate the bisimulation criterion in Definition 32 so that

the violation is resolved, i.e., if α is the current abstraction mapping and state

s and t such that α(s) = α(t) do not satisfy the bisimulation criterion, then

we refine α to α′ such that α′(s) 6= α′(t).

Shrinking strategies can be passive or active regarding whether the shrink-

ing is triggered by a size limit µ. Passive shrinking strategies shrink one or both

of the two factor transition systems Θ1,Θ2 until |Θ1| · |Θ2| ≤ µ. f -preserving

shrinking [HHH07] and the non-greedy bisimulation shrinking [NHH11] are

passive shrinking strategies. If |Θ1| · |Θ2| > µ, passive shrinking strategies

first shrink Θ1 and/or Θ2 to their desired abstractions α(Θ1) and/or α(Θ2). If

|α(Θ1)| · |α(Θ2)| > µ, additional more aggressive shrinking will be applied to

ensure µ is not exceeded. h-preserving shrinking is often a choice at this time.

Active shrinking strategies shrink a transition system to an abstraction

with desired properties without considering the size of the transition system.

1In FastDownward’s implementation, the bisimulation refinement process actually starts
with the minimal h-preserving abstraction.

27

Greedy bisimulation shrinking [NHH11] is an active shrinking strategy that

shrinks a transition system to its coarsest bisimulation abstraction. No fur-

ther shrinking is applied even if the coarsest bisimulation abstraction is too

large. The greedy bisiumulation shrinking continues as long as there is enough

memory and time.

2.4.6 Free Pruning

In M&S, the pruning method called free pruning is applied whenever the al-

gorithm is about to add a new (solvable) M&S abstraction to the pool. Free

pruning removes dead states of a transition system and thus does not affect

the accuracy of the M&S heuristic.

Definition 33 (Free Pruning [Hel+14]). Let Θ be a solvable M&S abstraction

with state space S. The free pruning β for Θ induces a transition system

β(Θ) = 〈Sβ, L, {s l−→ t ∈ T | s, t ∈ Sβ}, sinit, S
β ∩ S∗〉 where Sβ = {s | s ∈ S

and s is live in Θ}.

2.4.7 Exact Label Reduction

Label reduction maps a label set to another (smaller) label set. Such reductions

can make a transition system more compact and are extremely important for

bisimulation shrinking. In particular, label reduction is critical for obtaining

polynomial size bisimulation abstractions in some planning domains [NHH11;

SWH14]. All existing M&S methods use “exact” label reduction, which means

that the label reduction does not compromise heuristic quality.

Definition 34 (Cost-Exact Label Reduction). Let L be a label set and C be

a cost function on L. Let τ be a label reduction for L and C, and Cτ be the

cost function associated with τ . We say τ is cost-exact if Cτ (τ(l)) = C(l) for

all l ∈ L.

Definition 35 (Transition-Exact Label Reduction). Let P be a set of transi-

tion systems which all share a label set L. Let τ : L 7→ Lτ be a label reduction

for L, and Pτ = {τ(Θ) | Θ ∈ P}. Let T be the transitions of
⊗P and T τ

28

be transitions of
⊗Pτ . We say τ is transition-exact if s

l′−→ t ∈ T τ implies

s
l−→ t ∈ T for some l such that τ(l) = l′.

A label reduction is exact if it is cost-exact and transition-exact.

2.5 Benchmark and Evaluation

In this thesis, we use International Planning Competition (IPC) domains for

our experimental evaluations. IPC is a series of competitions that are held to

empirically evaluate state of the art planning systems on a number of bench-

mark domains. The domains used in IPC form a large variety of planning

tasks that can be used to test planning techniques.

We use A* as the search algorithm for the optimal planners in this thesis.

There are two important measurements for evaluating the performance of an

optimal planner. The first one is the coverage which is the number of planning

tasks solved by a planner within certain time and memory limits. For optimal

planning, it is hard to achieve even a small improvement in coverage. The

second performance measurement is the number of nodes expanded by A*.

Improvements of planning techniques can result in reduction of the number

of node expansions by orders of magnitude. For this reason, we compare the

numbers of node expansions of two planners in a log scale.

29

Chapter 3

Non-Linear Merging Strategies

In this chapter, we present three novel non-linear merging strategies: UMC,

MIASM and DM-HQ. Each strategy has a unique motivation behind its design.

UMC is a simple non-linear merging strategy that uses causal graph infor-

mation to derive a merging order. UMC stands for Undirected Minimum Cut.

It uses minimum cuts in a modified causal graph to generate a merging order.

MIASM stands for Maximal Intermediate Abstraction Size Minimizing. The

goal of MIASM is to find merging orders that exploit free pruning to avoid

harmful shrinking as much as possible. Based on the pricinple of MIASM, a

scoring-based merging strategy called dynamic MIASM (DYN-MIASM) was later

developed by Sievers, Wehrle, and Helmert [SWH16].

Our third non-linear merging strategy DM-HQ is a scoring-based merging

method DM-HQ that uses both DYN-MIASM’s scoring function and a new function

fHQ
ms as the main scoring functions. This function utilizes information about

heuristic quality to help make merging decisions.

The sections on UMC and MIASM are based on [FMH14], and the section on

fHQ
ms and DM-HQ is based on [FHM18].

3.1 Introduction

In early work on M&S [HHH07; KHH12; NHH11], merging strategies are re-

stricted to be linear because of their simplicity and the focus on shrinking

strategies. In this chapter, we explore the potential of non-linear merging

strategies.

30

We first introduce two novel non-linear merging strategies, UMC and MIASM.

The only non-linear merging strategy that existed before UMC and MIASM was

the DFP merging strategy, originally proposed by Dräger, Finkbeiner, and

Podelski in the model checking community [DFP06; DFP09]. DFP is a scoring-

based non-linear merging strategy. An advantage of scoring-based strategies is

that they can be computed in O(n3) time if there are n variables, but it comes

at a price: such strategies can only compare local merge candidates, i.e., the

pairs of abstractions in the current abstraction pool of M&S. Our new merging

strategies UMC and MIASM break this limitation to seek good merge candidates

in a larger set of non-local candidates.

UMC derives a merging order using a top-down hierarchical clustering of vari-

ables, which has a better global view than the scoring-based merging strate-

gies. The hierarchical clustering is developed by recursively using a minimum

cut in the causal graph to split variable sets. Such cuts can be computed in

polynomial time in n.

MIASM performs a guided global search before the start of M&S to find

subsets of variables which, if merged, yield a large number of dead states—

those not on any solution path of a transition system. Such states can be

pruned freely, without compromising the quality of the heuristic. The global

search in MIASM takes many more merging candidates into consideration than

the scoring-based methods.

The exploitation of free pruning makes MIASM a strong merging strategy.

It lays the foundation for a competitive scoring-based merging strategy called

DYN-MIASM [SWH16] and our third new merging strategy DM-HQ developed

on top of DYN-MIASM. The novel idea behind DM-HQ is a new merge scoring

function fHQ
ms that evaluates the heuristic quality improvement of current merge

candidates. Because the ultimate goal of M&S is to build a heuristic of high

quality, the addition of fHQ
ms to DYN-MIASM improves the number of tasks that

can be solved on several standard test domains, and makes it the currently

best performing merging strategy when used alone [FHM18].

We introduce UMC, MIASM and DM-HQ and show their experimental results

in Sections 3.2, 3.3, and 3.4 respectively.

31

3.2 UMC: Merging Using the Minimum Cuts of

Causal Graphs

The motivation of UMC is to develop a merge order that prioritizes the merge of

strongly dependent variables. This dependency information can be obtained

from the causal graphs. Unlike some previous usage of causal graphs, for UMC

we do not care about the direction of the dependency, so we use undirected

causal graphs:

Definition 36 (Undirected Causal Graph). Let Π be a planning task with

variable set V . Let w(u, v) = wcausal(u, v) + wcausal(v, u) + weffect(u, v) for

u, v ∈ V . The undirected causal graph of Π is an undirected graph 〈V , E〉 such

that (u, v) ∈ E if and only if u 6= v and w(u, v) > 0. The weight of the edge

(u, v) ∈ E is w(u, v).

Since an undirected causal graph edge weight only measures the depen-

dency between two variables connected by the edge, we do not have a direct

measurement on the dependency among more than two variables or between

two variables that are not connected by an edge. Thus, instead of looking for

collections of most intra-dependent variables, we look for partitioning of vari-

ables into least inter-dependent subsets. As the merging operation is binary,

a two-way partitioning fits our purpose of developing a merging order, which

relates naturally to cuts of a graph.

Definition 37 (Graph Cut). Let G = 〈V,E〉 be an undirected graph. A cut

of G is a partition 〈V1, V2〉 of V such that V1 ∩ V2 = ∅, V1 6= ∅, V2 6= ∅ and

V1 ∪ V2 = V . The cut edges are those (v1, v2) ∈ E such that v1 ∈ V1 and

v2 ∈ V2.

Since we want the least inter-dependent subsets and smaller edge weights

in the undirected causal graph mean weaker dependency, we are interested in

the minimum cut of a graph.

Definition 38 (Minimum Cut). The weight of a cut is the sum of the weight

of its edges. A minimum cut, or min-cut for short, is a cut with the minimum

weight among all cuts.

32

Algorithm 4 Recursive M&S Procedure of UMC: UMC

Input: variable set V ⊆ V , induced subgraph G of GUMC on V , and P
Output: transition system Θ1,2 over V

1: if |V | = 1 then
2: return πv ∈ P for the v ∈ V
3: end if
4: 〈V1, V2〉 ← ComputeMinCut(G)
5: Θ1 ← UMC(V1, GUMC〈V1〉, P)

6: Θ2 ← UMC(V2, GUMC〈V2〉, P)

7: P ←LabelReduction(Θ1,Θ2,P)
8: (Θ1,Θ2)←Shrinking(Θ1,Θ2)
9: Θ1,2 ← Θ1 ⊗Θ2

10: Θ1,2 ←CheckSolvabilityAndPruning(Θ1,2)
11: P ← P ∪ {Θ1,2} \ {Θ1,Θ2}
12: return Θ1,2

With a min-cut 〈V1, V2〉, a reasonable merging decision is to construct M&S

abstractions ΘV1 and ΘV2 separately first and then merge ΘV1 and ΘV2 , because

the dependency between variables in V1 and variables in V1 is the weakest

among all possible ways to separate V1 ∪ V2. The min-cut for a variable set

corresponds to the last merging operation for producing the M&S abstraction

over the variable set. We can further split V1 (and V2) using a min-cut of the

subgraph of the undirected causal graph induced by V1 (and V2). UMC obtains

a complete merging order by recursively using min-cut partitioning until a

variable set contains only one variable.

UMC considers goal variables more important and prefers a cut whose edges

connect non-goal variables. In UMC, we add an artificial large constant c to

(v1, v2) if v1 or v2 is a goal variable. Here, c is equal to the total weight of all

edges in the undirected causal graph. This penalty ensures that a cut whose

edges connect only non-goal variables always has a smaller weight than a cut

whose edges are incident to goal variables. We denote this modified undirected

causal graph used by UMC as GUMC, and the induced subgraph of GUMC on variable

set V as GUMC〈V 〉.
Because UMC uses only the causal graph information, the complete merge

tree can be computed without performing any M&S operations. The merge

33

Algorithm 5 Merge-and-Shrink Using Merging Strategy UMC

Input: task Π with variables V
Output: M&S abstraction ΘUMC

M&S

1: GUMC ← BuildCausalGraphUMC(Π)
2: P ←InitMAS(Π)
3: ΘUMC

M&S ←UMC(V , GUMC, P)
4: return ΘUMC

M&S

tree then controls the merge decisions of M&S. However, a natural and simple

way to implement a top-down merging strategy is to use a recursive function.

Such a function UMC is shown in Algorithm 4. The complete M&S algorithm

for UMC is shown in Algorithm 5. For a task with variable set V , GUMC is

constructed and P is initialized first, then the call to UMC with V , GUMC and

P returns the M&S abstraction produced by using the UMC merging strategy.

Note that in Algorithm 4, the steps of label reduction, shrinking, pruning and

updating P (Lines 7-11) are exactly the same as in the bottom-up merge-and-

shrink Algorithm 3.

The ComputeMinCut function implements a simple undirected min-cut

algorithm developed by Stoer and Wagner (1997). The worst-case run-time

complexity of the algorithm on a graph with n vertices and m edges is O(nm+

n2 log n). If there exist multiple min-cuts, ComputeMinCut returns the first

min-cut found.

3.2.1 Example of UMC in Action

Now we show how UMC produces a merge tree in the example of Figure 3.1.

In the example, the variable set V consists of 6 variables v1, v2, v3, v4, v5, v6.

Variables v1 and v2 are goal variables, shown in double circles in the graphs

in Figure 3.1. Figure 3.1(a) shows the original UMC causal graph GUMC in which

c = 16. Starting with the whole set V (Figure 3.1(b)), we find the min-

cut of GUMC (highlighted in gray in Figure 3.1(c)). UMC uses this min-cut to

separate V into two subsets U = {v5, v6} and V = {v1, v2, v3, v4}. This split

corresponds to the last merge step of the merge tree that UMC is constructing

(Figure 3.1(d)). Next, UMC needs to construct the merge trees for U and V

34

v 5
v 6

v 3
v 4

v 1
v 2

4

1
2

1

4

2+
c

2+
c

(a
)

v 5
v 6

v 1
v 3

v 2
v 4

v 1
,v

2
,v

3

v 4
,v

5
,v

6

(b
)

v 5
v 6

v 3
v 4

v 1
v 2

4

1
2

1

4

2+
c

2+
c

(c
)

v 5
v 6

v 1
v 3

v 2
v 4

v 5
,v

6
v 1
,v

2

v 3
,v

4

(d
)

v 5
v 6

v 3
v 4

v 1
v 2

4

1
2

1

4

2+
c

2+
c

(e
)

v 5
v 6

v 1
v 3

v 2
v 4

v 5
v 6

v 1
,v

3
v 2
,v

4

(f
)

v 5
v 6

v 3
v 4

v 1
v 2

4

1
2

1

4

2+
c

2+
c

(g
)

v 5
v 6

v 1
v 3

v 2
v 4

(h
)

F
ig

u
re

3.
1:

E
x
am

p
le

of
U
M
C

m
er

ge
.

(a
)

T
h
e

ca
u
sa

l
gr

ap
h
GU

M
C
;

(b
)

T
h
e

va
ri

ab
le

se
t
V;

(c
)

T
h
e

m
in

-c
u
t

of
GU

M
C
;

(d
)
U
M
C

m
er

ge
sp

li
ts
V

in
to

tw
o

su
b
se

ts
U

=
{v

5
,v

6
}

an
d
V

=
{v

1
,v

2
,v

3
,v

4
}

ac
co

rd
in

g
to

th
e

m
in

-c
u
t

of
GU

M
C
;

(e
)

T
h
e

m
in

-c
u
t

of
GU

M
C

〈V
〉;

(f
)
U
M
C

m
er

ge
sp

li
ts
V

to
su

b
se

ts
{v

1
,v

3
}

an
d
{v

2
,v

4
};

(g
)

M
er

ge
d
ec

is
io

n
s

fo
r

al
l

va
ri

ab
le

s
ar

e
d
efi

n
ed

;
(h

)
T

h
e

co
m

p
le

te
m

er
ge

tr
ee

co
n
st

ru
ct

ed
b
y
U
M
C
.

35

Shrinking Strategy Bisimulation f -preserving
Merging Strategy DFP RL CGGL UMC DFP RL CGGL UMC

Total Coverage 449 449 419 438 346 318 330 336
Minimum Expansions 182 183 179 206 167 166 195 196

Table 3.1: Coverage for DFP, RL, CGGL and UMC with non-greedy bisimulation
shrinking and f -preserving shrinking.

respectively. U contains only two variables, so there is only one possible cut

〈{v5}, {v6}〉. The min-cut of GUMC〈V 〉, highlighted in grey in Figure 3.1(e), splits

V into {v1, v3} and {v2, v4}, shown in Figure 3.1(f). Both {v1, v3} and {v2, v4}
contain only two variables, so there is only one cut for each set. Combining

these steps, we obtain the complete merge tree in Figure 3.1(h).

3.2.2 Experiments

We compare UMC with previous merging strategies RL, CGGL and DFP. We evalu-

ate the merging methods in combination with non-greedy bisimulation shrink-

ing [NHH11] and with f -preserving shrinking [HHH07]. The M&S size limit µ

is 50,000 states. Generalized label reduction [SWH14] is used. All algorithms

related to UMC are implemented on the top of Fast Downward [Hel06].

We ran experiments on all domains from IPC 1998 to IPC 2011 except

four domains: Movie, MPrime, Storage and Trucks. For domains that

appear in both IPC 2008 and IPC 2011, we only use the IPC 2011 problems.

This benchmark set has 33 domains and 1051 tasks. The experiments were

performed on an AMD Opteron 6134 CPU with a clock speed of 2.3 GHz. The

memory and the total CPU time for a planner to solve a task are limited to 2

GB and 15 minutes respectively.

Coverage

The coverage for UMC and previous merging strategies are shown in Table 3.1.

Row “Total Coverage” shows the total coverage. UMC solves 18 more tasks than

RL when using f -preserving shrinking, but solves 11 fewer tasks than RL when

non-greedy bisimulation shrinking is used. For both shrinking strategies, UMC

outperforms CGGL but solves fewer tasks than DFP.

36

101 103 105 107

101

103

105

107

CGGL (f -preserving)

U
M
C
(f
-p
re
se
rv
in
g
)

(a)

101 103 105 107

101

103

105

107

CGGL (bisimulation)

U
M
C
(b
is
im

u
la
ti
on

)

(b)

101 103 105 107

101

103

105

107

RL (f -preserving)

U
M
C
(f
-p
re
se
rv
in
g
)

(c)

101 103 105 107

101

103

105

107

RL (bisimulation)

U
M
C
(b
is
im

u
la
ti
o
n
)

(d)

101 103 105 107

101

103

105

107

DFP (f -preserving)

U
M
C
(f
-p
re
se
rv
in
g)

(e)

101 103 105 107

101

103

105

107

DFP (bisimulation)

U
M
C
(b
is
im

u
la
ti
o
n
)

(f)

Figure 3.2: Comparison of UMC with CGGL, RL and DFP in terms of number of
A* node expansions. The left three plots use f -preserving shrinking and the
right three plots use bisimulation shrinking.

37

Row “Minimum Expansions” in Table 3.1 shows the total number of tasks

that are solved with the minimum number of expansions, i.e., the number

of expansions is the same as the length of the optimal solution path. This

quantity indicates the number of tasks for which the heuristic constructed has

a high quality in terms of reducing the search effort to the minimum. For both

shrinking strategies, UMC solves the most tasks with the minimum number of

expansions.

Number of Node Expansions

The plots in Figure 3.2 compare UMC with CGGL, RL and DFP in the number of

node expansions. Each plot uses two log-scale axes to compare the numbers

of node expansions of two methods. We call the method labeled below the

x-axis, the “x method”, and the method labeled to the left of the y-axis, the

“y method”. Each point in the plot corresponds to one planning task. The x

value of the point is the number of nodes expanded to solve the corresponding

task using “x method”, and the y value of the point is the number of nodes

expanded to solve the corresponding task using “y method”. In Figure 3.2, UMC

is the “y method”. Points below the y = x line represent tasks that required

more nodes to be expanded using “x method” than using “y method”, and

points above the y = x line represent tasks for which “x method” does a fewer

node expansions than “y method”. Points on the right-most (respectively,

top-most) edge of the plot are tasks that were not solved using method label

with x-axis (respectively, y-axis) within the resource limits.

In these plots, we see that no system dominates in general. In Figure 3.2(a)

and Figure 3.2(d), the point distributions are almost symmetric about the di-

agonal y = x. In other plots, we see more points below the diagonal than above

it, indicating that, overall, UMC expands fewer nodes than previous systems.

For all the merging methods, the number of expansions is reduced when bisim-

ulation is used instead of f -preserving shrinking, but some methods benefit

more than others, with RL benefiting most.

38

3.3 Minimizing the Maximum Intermediate

Abstraction Size

In this section, we introduce another new non-linear merging strategy: the

maximum intermediate abstraction size minimizing, or MIASM merging strat-

egy. MIASM is based on the motivation that it is more important to do free

pruning, i.e., reveal and prune the dead states, in smaller abstractions than in

larger ones. In particular, the merging orders developed by MIASM prioritize

the merge of the smallest sets of variables that induce the most free pruning,

so that smaller but equally informative M&S abstractions can be constructed

early on. This results in less shrinking later, and thus can produce better

heuristics.

In Section 3.3.1, we illustrate this motivation behind MIASM with a sim-

plified example from IPC domain TPP. Then, we present the MIASM merging

algorithm in Section 3.3.2, followed by experimental results in Section 3.3.3.

3.3.1 Motivation

Shrinking is used to control abstraction sizes and larger abstractions can in-

voke more shrinking. If we produce smaller but equally informative M&S

abstractions during a M&S process, we may avoid more lossy shrinking and

produce a better heuristic. Free pruning is a way to produce “smaller but

equally informative” M&S abstractions. In this section, we use an example to

demonstrate this motivation behind MIASM, namely, using merging to trigger

more free pruning and less shrinking, and finally produce better heuristics.

A TPP Example

The example is from the IPC domain TPP, short for Travelling Purchase

Problem. This domain models purchasing different commodities from markets,

transporting them to depots and storing them in the depots. Each commodity

is associated with four binary variables O,P, L and S, indicating the four

conditions of the commodity:

• whether it is on-sale at a market (O = 1) or not (O = 0),

39

1---

0---

B

L,U

L,U

(a) πO

-1--

-0--

BL

U

U

(b) πP

--1-

--0-

LU

B

B

(c) πL

---1

---0

U

B,L

B,L

(d) πS

Figure 3.3: The atomic projections of variables O, P , L and S of a commodity
for the simplified TPP domain. The abstract inital state is marked with an
incoming edge not from any other states and abstract goal states are marked
as double ovals.

• whether it is purchased at a market (P = 1) or not (P = 0),

• whether it is loaded in a truck (L = 1) or not (L = 0), and

• whether it is stored in the depot (S = 1) or not (S = 0).

There are three actions buy, load and unload that change the conditions

of a commodity. For illustration purposes, we simplify the task so that there is

only one market, one depot and one truck, which are all at the same location.

With this simplification, the actions that change the conditions of a commodity

only depend on the current condition of the commodity.

• If a commodity is on-sale but not purchased (O = 1, P = 0), buy changes

it to purchased but not on-sale (O = 0, P = 1).

• If a commodity is purchased but not loaded (P = 1, L = 0), load

changes it to loaded but not purchased (P = 0, L = 1).

• If a commodity is loaded but not stored (L = 1, S = 0), unload changes

it to stored but not loaded (L = 0, S = 1).

In a tpp task, each commodity is initially on-sale (O = 1, P = 0, L =

0, S = 0) and the goal is to store it (S = 1). We use a bit vector of length

4 to represent the values of O,P, L and S. For example, 0100 means O = 0,

P = 1, L = 0 and S = 0. For each commodity, we represent abstract states

40

in a projection over a subset of {O,P, L, S} in the same format but with “-”

replacing the variables projected out. For example, -1-0 is an abstract state

in the projection over {P, S} with P = 1, S = 0, and O and L projected out.

Figure 3.3 shows the atomic projections on O,P, L and S of one commodity.

Merge and Prune

We now illustrate in this simplified TPP example that merging can affect free

pruning and sizes of intermediate abstractions. We ignore shrinking and label

reduction, and call a merge-and-shrink tree constructed using only merging

and free pruning a merge-and-prune (M&P) tree. Since there is no shrinking,

different merge-and-prune trees over the same variables have the same final

abstractions. However, as we will demonstrate, different merge-and-prune

trees can produce different intermediate abstractions and can have different

maximum intermediate abstraction sizes.

Figure 3.3 shows that the atomic projections have no dead states. Consider

merging the atomic projections in the linear order (((πS ⊗ πL) ⊗ πP) ⊗ πO).

Let Θ1 = πS, Θ2 = πS ⊗ πL, Θ3 = πS ⊗ πL⊗ πP , and Θ4 = πS ⊗ πL⊗ πP ⊗ πO.

The synchronized products Θ2, Θ3 and Θ4 are shown in Figure 3.4. Because

a commodity always is in exactly one of the four conditions, any state in Θ4

whose bit vector does not have exactly one 1 is a dead state. However, all

states in Θ2 and Θ3 are live due to the abstractions. Let β denote the function

that maps a transition system to its pruned transition system induced by free

pruning.

Let Vothers be a set of variables that are independent of O,P, L and S, e.g., a

set of variables representing another commodity. Let Θ′ be a M&S abstraction

over Vothers with n states and no dead states. We consider two orders for

merging Θ′ with the atomic projections over O,P, L and S : πS⊗πL⊗πP⊗πO⊗
Θ′ and Θ′⊗πS⊗πL⊗πP⊗πO. In both orders, free pruning is applied whenever

possible. In the first order, atomic projections over O,P, L and S are merged

first, then their product after free pruning β(Θ4) is merged with Θ′. The

merge-and-prune tree T1 of this merging order is shown in Figure 3.5(a). The

number next to a node indicates the size of the associated M&S abstraction.

41

--10

--00

--11

--01

L LU

B B

B B

(a) Θ2 = πS ⊗ πL

-100

-000

-110

-010

-101

-001

-111

-011

B BB BL L

U

U

B

-001

(b) Θ3 = πS ⊗ πL ⊗ πP

1100

1000

0100

0000

1110

1010

0110

0010

1101

1001

0101

0001

1111

1011

0111

0011

B B B B

L

L

L

L

U

U

U

U

(c) Θ4 = πS ⊗ πL ⊗ πP ⊗ πO
Figure 3.4: Synchronized products (a) Θ2 = πS ⊗ πL, (b) Θ3 = πS ⊗ πL ⊗ πP
and (c) Θ4 = πS ⊗ πL ⊗ πP ⊗ πO. The dead states are drawn in dashed ovals.

42

4n

4

Θ416

Θ38

Θ24

πS2 πL 2

πP 2

πO 2

Θ′ n

β

(a) T1 : β(πS⊗πL⊗πP ⊗πO)⊗Θ′

4n

Θ′
416n

Θ′
38n

Θ′
24n

Θ′
12n

Θ′n πS 2

πL 2

πP 2

πO 2

β

(b) T2 : β(Θ′⊗πS⊗πL⊗πP⊗πO)

Figure 3.5: The merge-and-prune trees of the merging orders: (a) πS ⊗ πL ⊗
πP ⊗πO⊗Θ′; (b) Θ′⊗πS⊗πL⊗πP ⊗πO. The number next to a node indicates
the size of the associated M&S abstraction.

We see |T1|max = max(16, 4n).

The second order differs from the first one in that Θ′ is moved to the front

to merge with πS first, then πL, πP and πO in the same order as in the first

order. Let Θ′1 = Θ′ ⊗ πS, Θ′2 = Θ′ ⊗ πS ⊗ πL, Θ′3 = Θ′ ⊗ πS ⊗ πL ⊗ πP and

Θ′4 = Θ′ ⊗ πS ⊗ πL ⊗ πP ⊗ πO. Since variables in Vothers are independent of

O,P, L and S, abstractions Θ′1, Θ′2 and Θ′3 do not contain dead states. Because

of the associative property of merging, Θ′4 is equal to Θ4 ⊗Θ′ which contains

12n dead states that are “copies” of the 12 dead states in Θ4. Those dead

states can only be detected after Θ′4 is produced. The merge-and-prune tree

T2 of this merging order is shown in Figure 3.5(b). Both orders generate the

same final M&P abstraction with the 4n states, but the second order must

generate Θ′4 with its 16n states. As a result, |T2|max = 16n.

For any n > 3, |T2|max−|T1|max = 12n. A typical size limit of M&S abstrac-

tions is 50, 000 states, so there could be a large difference in the abstraction

sizes of the merging orders if n reaches this size limit.

Lossy Shrinking

So far, we have restricted merge-and-shrink to use only merging and free prun-

ing. In practice, there are memory and time limits and/or passive shrinking.

43

-100

-000

-110

-010

-101

-001

-111

-011

BB B
L

L

U

U
B

(a) α(Θ3)

1100

1000

1110

1010

0110

0010

0100

0000

1101

1001

0101

0001

1111

1011

0111

0011

B
B B B

L

L

L

L

U

U

U

U

(b) α(Θ3)⊗ πO

Figure 3.6: Illustration of how shrinking reduces free pruning. (a) Shrinking α
that combines -100 and -000 in Θ3; (b) α(Θ3)⊗ πO has only five dead states.

If no shrinking or only an active shrinking strategy is used, a merging order

producing larger abstractions may run out of computational resources quickly

while a merging order that produces smaller abstractions may succeed.

When passive shrinking is used, larger abstraction sizes can trigger more

shrinking to keep the size under control. There are two detrimental effects of

shrinking. First, unlike free pruning, shrinking can be lossy and often result in

lower accuracy of heuristics1. A huge difference in abstraction sizes, as in our

example, can induce a significant difference in M&S heuristic quality. Second,

shrinking can result in combinations of dead states with live states. For ex-

ample, consider the shrinking operation α that combines -100 and -000 in Θ3

(Figure 3.4(b)), that induces the abstraction α(Θ3), shown in Figure 3.6(a).

The combination of -100 and -000 in Θ3 induces the combinations of 1100

with 1000 and of 0100 with 0000 in α(Θ3) ⊗ πO, shown in Figure 3.6(b).

These combinations cause many dead states in Θ3 ⊗ πO to become live in

α(Θ3) ⊗ πO. Only 5 states can be pruned freely in α(Θ3) ⊗ πO after Θ3 is

shrunk by α. What is worse, the lossy shrinking and pruning forms a negative

1Sometimes smaller abstractions can produce more accurate heuristics. See Chapter 4.

44

Algorithm 6 Merge-and-Shrink Using Merging Strategy MIASM

Input: task Π with variables V
Output: M&S abstraction

1: F ← SubsetSearch(Π)
2: Singletons← {{v} | v ∈ V}
3: F ← F ∪ Singletons
4: Fpartition ← MaxSetPacking(F)
5: return MS-Partition(Π, Fpartition, Internal, External)

feedback loop in which lossy shrinking reduces the amount of free pruning that

can be done, which in turn produces larger abstractions and thus triggers more

lossy shrinking.

3.3.2 Merging Strategy MIASM

The motivating example shows that if there is a subset of variables over which

the M&S abstraction contains many dead states, it can be beneficial to merge

their atomic projections first before merging them with other M&S abstrac-

tions.

The MIASM merging strategy is designed to find such variable subsets and

use them for developing merging orders. The algorithm of MIASM is shown in

Algorithm 6. Unlike other merging strategies, MIASM has a preprocessing step

before starting a M&S construction. This preprocessing first finds a family of

variable subsets over which the M&P abstractions reveal dead states (Line 1)

and then computes a partition of the variables that contains subsets that

enable most free pruning overall (Line 4). At last, a merging order is developed

based on this partition (Line 5). In the following, we describe each of these

three steps of MIASM.

Subset Search

If the projection over a variable subset V contains dead states, it does not

necessarily mean that it is the smallest abstraction in which the dead states

can be pruned. In the TPP example shown in Section 3.3.1, the projection

Θ′4 over Vothers ∪ {O,P, L, S} does contain dead states, but these dead states

45

are just refinements of dead states in the projection Θ4 over {O,P, L, S}, i.e.,

dead states in Θ4 are abstract states of the dead states in Θ′4.

We denote the R-value of the projection over V as RV . We want to find a

variable subset V such that not only is RV < 1 but also RV < RU ·RV \U for

all non-empty proper subsets U of V . We call a variable subset such as V one

that reveals dead states.

Definition 39 (Revealing Dead States). Let V be the variables of a planning

task and let V ⊆ V and V 6= ∅.

P∗V =





RV if |V | = 1

min
U⊂V, U 6=∅

RU ·RV \U −RV otherwise

We say V reveals dead states if P∗V > 0, and we call P∗V the P∗-value of V .

While (1 − RV) measures the amount of free pruning that can be done

on the projection over V , P∗V measures the minimum amount of free pruning

that can be done on a M&P abstraction over V considering all possible ways

for building the M&P abstraction. P∗-values take the pruning before building

a M&P abstraction over V into consideration.

If P∗V = 0, it means that all dead states in πV can be pruned in the

abstractions over some subsets of V . To see this, let |V | > 1 and P∗V = 0,

and let U be a non-empty proper subset of V such that RU ·RV \U = RV (by

definition, there must exist such a subset U if P∗V = 0). Let ΘV = β(πV),

ΘU = β(πU) and ΘV \U = β(πV \U) where β is the free pruning operator. The

synchronized product ΘU⊗ΘV \U is an abstraction over V . Since |ΘU⊗ΘV \U | =
|πU | ·RU · |πV \U | ·RV \U = |πU | · |πV \U | ·RV = |πV | ·RV = |ΘV |, ΘU ⊗ ΘV \U

does not contain any dead states. If we first build ΘU and ΘV \U and then

merge them, we produce a M&P abstraction over V that is isomorphic to ΘV

and all dead states in πV have been pruned as soon as we have built ΘU and

ΘV \U .

There are exponentially many variable subsets, and checking whether a

subset reveals dead states requires construction of M&P abstractions. There-

fore, we use a best-first search to look for subsets that reveal dead states. We

46

{v1, v2} {v1, v3} {v1, v4} {v2, v3} {v2, v4} {v3, v4}

{v1} {v2} {v3} {v4}

{v1, v2, v3} {v1, v2, v4} {v1, v3, v4} {v2, v3, v4}

{v1, v2, v3, v4}

∅
Figure 3.7: The lattice space of four variables v1, v2, v3, v4.

carry out the search in the lattice space of subsets—a state space in which

states are subsets and the successors of a set are the supersets of the set with

exactly one more variable. The lattice space of four variables is shown in

Figure 3.7.

Algorithm 7 shows the SubsetSearch algorithm. In the following, we

explain some important design choices of this search algorithm.

Quick Start (Line 1). The search starts with singleton sets of variables of

the task. Since we expand subsets by adding only one variable at a time, it

may take a long time to reach subsets that reveal dead states. We add two

groups of “promising” subsets to the initial priority queue:

• The sets of variables that form a strongly connected component in the

causal graph.

• The sets of variables whose atoms form mutex groups detected in the

translation process from PDDL to SAS+ [Hel06].

Expansion Priority (Line 5). The best-first search uses a priority queue

PQ in which subsets with larger P∗-value or equal P∗-value but smaller size

47

Algorithm 7 SubsetSearch

Input: task Π with variables V
Output: a family of subsets that reveal dead states

1: PQ← PromisingSubset(Π) ∪ {{v} | v ∈ V}
2: Checked← ∅
3: F ← ∅
4: while PQ 6= ∅ do
5: U ← GetBestSubset(PQ)
6: PQ← PQ \ U
7: for v ∈ V \ U do
8: V ← U ∪ {v}
9: if V /∈ Checked then

10: Checked← Checked ∪ {V }
11: ComputeAndCacheValues(V)
12: if SizeLimitsNotViolated then
13: PQ← PQ ∪ {V }
14: end if
15: if P∗V > 0 then
16: F ← F ∪ {V }
17: end if
18: end if
19: end for
20: end while
21: return F

(number of variables) have higher priority. We use the P∗-value, instead of the

R-value, to guide the search because the R-value can mislead the search to

subsets that do not reveal dead states. For example, let R{v1} = R{v2} = 2/3,

R{v3} = 5/9 and R{v1,v2} = 4/9. When both {v1, v2} and {v3} are in the

priority queue, if we use the R-value to prioritize expansions, {v1, v2} will be

expanded before {v3} since R{v1,v2} < R{v3}. However, {v1, v2} does not reveal

dead states because R{v1,v2} = R{v1} ·R{v2} and P∗{v1,v2} = 0, but {v3} reveals

dead states because P∗{v3} = R{v3} = 5/9.

Subset Caching (Line 11). In order to compute P∗V , we need to compute

their RV and RU for all non-empty sets U ⊂ V . We using merging strategy LVL

to build the M&P abstraction on a new variable subset. To avoid re-building

of M&P abstractions, after we get the R-value and P∗-value of a subset, we

cache the values for later use. We do not cache the actual abstractions built

48

because there is a large number of them, so we would run out of memory

quickly during the subset search.

Bounding and Termination (Line 12). We want to find as many subsets

V with P∗V > 0 as possible, so the search does not terminate with some goal

condition. To avoid exhaustively searching the lattice space, we do not add a

subset V to the queue if

1. the M&P abstraction over V is larger than an abstraction size limit µ,

or

2. the total number of states in abstractions constructed during the subset

search has exceeded a bound parameter µtotal.

We use condition 1 because for abstractions larger than µ it is uncertain

whether it is beneficial to prioritize their construction. In the actual merge-

and-shrink process, there could be shrinking in constructing these abstractions,

so the dead states are not guaranteed to be pruned. We use Condition 2 to

indirectly control the amount of exploration of the subset search. The search

terminates when the priority queue is empty, and outputs a family F of variable

subsets that reveal dead states.

Max Set Packing

Because merge-and-shrink needs to merge all variables and can merge a vari-

able only once, we want to find a partition of the variable set V of the task,

i.e., disjoint subsets whose union is V . F consists only of subsets that reveal

dead states, so it is possible that some variable does not appear in any subset

in F . We add all singleton sets to F to ensure that every variable is in at least

one subset in F (Line 3 in Algorithm 6).

Since a variable can appear in multiple subsets in F , we need to choose

which subset to use for it. In particular, we want to find a partition Fpartition ⊆
F of V that suggests the most amount of free pruning overall, i.e., minimizing
∏

V ∈Fpartition
RV . Note that the product only indicates an upper bound of the

percentage of live states (i.e., a lower bound of free pruning) because “new”

49

dead states may appear after merging two abstractions that are free of dead

states.

Since RV ≤ 1 for any subset V , − log(RV) is a non-negative real number.

Minimizing
∏

V ∈Fpartition
RV is equal to maximizing

∑
V ∈Fpartition

(− log(RV)).

If we use − log(RV) as the weight of V , this is exactly the maximum weighted

set packing problem: given a family of sets, each of which is a subset of a

universe and has an associated real weight, find a subfamily of disjoint sets

of maximum total weight. The problem is NP-hard [GJ79]. The standard

approach is a simple greedy algorithm:

1. Choose a V ∈ F with maximum weight and add it to Fpartition.

2. Remove all subsets that intersect with V from F .

3. Repeat 1 and 2 until F is empty.

The greedy algorithm approximates the optimal solution within a factor of k

for arbitary weights, where k is the maximum size of subsets in the family

[CH01]. MaxSetPacking at Line 4 of Algorithm 6 implements this algo-

rithm, which takes F as input and outputs a partition Fpartition ⊆ F of V that

minimizes
∏

V ∈Fpartition
RV . Other approximate algorithms for this problem

can be found in [AH97; CH01].

Partition Based Merging Strategy

With the partition Fpartition of V , we can develop a partition based merging

strategy. This merging strategy first merges atomic projections of variables

within V for each V ∈ Fpartition, which produces a merge-and-shrink abstrac-

tion ΘV over V for each V ∈ Fpartition. Then, ΘV for V ∈ Fpartition are

merged. We call the merging strategy for merging the atomic projections

for each variable subset the Internal strategy, and the merging strategy for

merging M&S abstractions over subsets in the partition the External strategy.

Merge-and-shrink using this partition based merging strategy is implemented

as MS-Partition (Line 5 in Algorithm 6).

50

Shrinking Strategy Bisimulation f -preserving
Merging Strategy DFP RL CGGL MIASM DFP RL CGGL MIASM

Total Coverage 449 449 419 446 346 318 330 357
Min Expansion 182 183 179 217 167 166 195 225

Table 3.2: Coverage for DFP, RL, CGGL and MIASM with non-greedy bisimulation
shrinking and f -preserving shrinking.

In our study, we use LVL for the Internal strategy, the same simple merg-

ing strategy used in constructing abstractions during subset search. For the

External merging strategy, we use CGGL+, a variant of the CGGL merging strat-

egy generalized to work on variable subsets. We define the level of a variable

set V as maxv∈V level(v). For each selection iteration of CGGL+, let FU be

the family of unselected variable subsets and FP be the family of subsets that

contains causal graph predecessors of variables in selected variable sets.

1. If FU ∩ FP 6= ∅, select the smallest variable set in FU ∩ FP with the

highest level.

2. Otherwise, select the smallest variable set in FU that contains a goal

variable and has the highest level.

3.3.3 Experiments

The experimental setting for MIASM is the same as for UMC in the previous

section. The bound µtotal on the total number of states of the constructed

abstractions in the subset search is set to 1,000,000. The total time of MIASM

includes the time for the subset search, maximum set packing and for building

a M&S abstraction heuristic based on the partition Fpartition computed, and

running A* search on the task.

A special case for Fpartition is that it contains only the singleton sets. This

happens when the subset search did not find any subsets revealing dead states.

In this case, the merging strategy is the same as the External merging strategy,

which is CGGL+ in our study and is equivalent to CGGL because all sets are

singleton. We define “singleton” tasks as tasks for which MIASM finishes subset

search and maximum set packing but produces such a singleton set Fpartition.

51

101 103 105 107

101

103

105

107

CGGL (f -preserving)

M
I
A
S
M
(f
-p
re
se
rv
in
g)

(a)

101 103 105 107

101

103

105

107

CGGL (bisimulation)

M
I
A
S
M
(b
is
im

u
la
ti
on

)

(b)

101 103 105 107

101

103

105

107

RL (f -preserving)

M
I
A
S
M
(f
-p
re
se
rv
in
g)

(c)

101 103 105 107

101

103

105

107

RL (bisimulation)

M
I
A
S
M
(b
is
im

u
la
ti
on

)

(d)

101 103 105 107

101

103

105

107

RL (f -preserving)

M
I
A
S
M
(f
-p
re
se
rv
in
g
)

(e)

101 103 105 107

101

103

105

107

DFP (bisimulation)

M
I
A
S
M
(b
is
im

u
la
ti
on

)

(f)

Figure 3.8: Comparison of MIASM with CGGL, RL and DFP in terms of number
of node expansions. The left three plots use f -preserving shrinking and the
right three plots use bisimulation shrinking.

52

100 101 102
100

101

102

CGGL

M
I
A
S
M

(a)

100 101 102
100

101

102

DFP

M
I
A
S
M

(b)

Figure 3.9: Comparison of MIASM with CGGL and DFP in total running time,
when bisimulation shrinking is used.

Coverage

The coverage data are shown in Table 3.2. For f -preserving shrinking, MIASM

outperforms all other methods in total coverage. For bisimulation shrinking,

MIASM solves 446 tasks in total, only 3 fewer than DFP and RL. There are 184

“singleton” tasks in our experiments. For these tasks, our MIASM specification

falls back to CGGL. Alternatively, we can switch from MIASM to another merging

strategy for these tasks. If we switch from MIASM to either DFP or RL for

“singleton” tasks, the coverage increases to 451.

Row “Min Expansions” in Table 3.2 shows that in terms of the number of

tasks that are solved with the minimum number of expansions, MIASM outper-

forms other methods by a large margin of more than 30 more tasks.

Number of Expansions

Figure 3.8 is the same as Figure 3.2 except with MIASM as the “y method”. In

Figure 3.8(b)-(c) and Figure 3.8(e), the clusters of points with y values between

101 and 102 but x values range from 103 to the right edge represent tasks that

are solved by MIASM expanding fewer than 100 nodes but require orders of

magnitude more node expansions by the previous methods. In Figure 3.8(d)

and Figure 3.8(f), we see that when bisimulation shrinking is used, MIASM is

53

complementary to DFP and RL in terms of which tasks each solves, as there are

a great number of tasks one method solves that the other does not (19 and

16 points on top and right edges of Figure 3.8(d) respectively and 18 and 15

points on top and right edges of Figure 3.8(f) respectively).

Total Time

MIASM’s subset search can be slow as it involves building a large number of M&S

abstractions, computing h-values and g-values, and applying free pruning. The

plots in Figure 3.9 compare MIASM with CGGL and DFP in total running time

when bisimulation shrinking is used. In these plots, we see that for the most

commonly solved tasks, MIASM’s total running time is higher than the previous

methods, even though the number of node expansions for MIASM is lower as

shown in Figure 3.8.

UMC and MIASM

We have presented two novel non-linear merging strategy UMC and MIASM. UMC

builds a merge tree using a top-down clustering based causal graph informa-

tion, and MIASM extracts the information about the amount of free pruning

that can be done when merging a set of variables and uses that information

to make merging decisions. Both algorithms have superior strength over pre-

vious methods. MIASM outperforms UMC in terms of total coverage, making it

the state-of-the-art (at the time of its publication). In the following section,

we will introduce another new non-linear merging strategy developed based

on the central idea of MIASM.

3.4 Heuristic Quality Guided Merging

The goal of M&S is to construct a final heuristic of high quality. Merging

strategies in the current literature work towards this goal indirectly using

information derived from transition systems and task descriptions. In this

section, we present a merge scoring function fHQ
ms that is aimed at achieving

this goal directly.

54

In Section 3.4.1, we give the background of two non-linear merging strate-

gies SCC-DFP and DYN-MIASM published after UMC and MIASM. In Section 3.4.2,

we present the generic form of our new scoring function fDM
ms and three instan-

tiations. Experiments show that these instantiations alone do not outperform

DYN-MIASM or SCC-DFP. In Section 3.4.3, we integrate fHQ
ms with DYN-MIASM,

and show that in this combination, one of the variants of DM-HQ achieves better

performance than the start of the art merging strategy SCC-DFP.

3.4.1 Related Work

SCC-DFP [SWH16] is a variant of DFP which uses strongly connected compo-

nents (SCC’s) of the causal graph as a general guideline before applying the

DFP strategy. It can be viewed as a partition based merging strategy in which

the variable partition is the set of SCC’s of the causal graph and both the

Internal and External merging strategies use DFP.

Another competitive non-linear merging strategy is DYN-MIASM which is

a scoring-based variant of the MIASM merging strategy [SWH16]. It uses the

R-value of the product of a merge candidate as the score of the candidate:

Definition 40 (Dynamic MIASM Merge Score). Let Θ1 and Θ2 be two tran-

sition systems, and let Θ1,2 be the synchronized product of possibly shrunk

abstractions of Θ1 and Θ2. The Dynamic MIASM merge score of (Θ1,Θ2) is

fDM
ms (Θ1,Θ2) = R(Θ1,2)

DYN-MIASM and SCC-DFP as well as previous merging strategies CGGL, LVL,

RL, DFP and MIASM were evaluated on a benchmark set including all domains

for optimal planning from IPC-1998 to IPC-2014 [SWH16]. The time limit

was 30 minutes. Other experiment settings are the same as in Section 3.3. In

this experimental setting, MIASM was shown to have better performance than

all other merging strategies except SCC-DFP. There are tasks which appear in

more than one IPC set. For example, all IPC-2011 WoodWorking tasks are

included in IPC-2008, and 10 TidyBot tasks appear in both the IPC 2011

and 2014. There are also 7 unsolvable tasks from domain mystery. In this

55

section, we use the same benchmark domains as in [SWH16], but exclude

duplicate tasks and unsolvable tasks. Our benchmark contains a total of 1499

tasks from 39 domains.

We use the same limits as in [SWH16]: 30 minutes time and 2 GB mem-

ory in total for heuristic construction and search, and 50,000 states limit for

abstraction size. Experiments are performed on Intel Xeon X5670 CPUs at

2.93GHz. In this section, we compare our methods with SCC-DFP, the current

state of the art merging strategy at the time of publication.

3.4.2 Scoring Heuristic Quality Improvement

The generic form of our new merge score function is:

fHQ
ms (Θ1,Θ2) = −IQ(Θ1,2,Θ1,Θ2)

where Θ1 and Θ2 are the two transition systems of a merge candidate and

Θ1,2 is the synchronized product of Θ1 and Θ2, after possibly shrinking them

first. Q is a heuristic quality evaluator and I is an improvement evaluator.

The negative sign before the improvement evaluator is to ensure that larger

improvements get smaller scores, just to follow the convention that smaller

scores mean better candidates. We now discuss why we design our scoring

function in this form and what evaluation functions we can choose for Q and

I.

How to Evaluate Heuristics?

There are many ways to evaluate a heuristic. For example, one could use the

average heuristic values of a set of sampled states, or an estimation of the

search effort when using the heuristic. Like DYN-MIASM, our scoring function

depends on the product transition system Θ1,2 produced by merging and pos-

sibly shrinking Θ1 and Θ2 for each candidate. This makes the whole M&S

process very time-consuming. To avoid additional computational overhead,

we simply use the heuristic value of the initial state as the heuristic quality

evaluator. The initial state’s heuristic value is often a reasonable indicator

of the number of A* node expansions, although it may not be as accurate

56

as other evaluators. For a transition system Θ, the initial heuristic evaluator

Q0 uses the h-value of the initial state to evaluate the heuristic quality, i.e.,

Q0(Θ) = hΘ(sinit) where sinit is the initial state in Θ.

Why Evaluate Improvements?

Our evaluator fHQ
ms (Θ1,Θ2) aims to measure an “improvement of heuristic

quality”, rather than measuring heuristic quality of the synchronized prod-

uct alone, i.e., fHQ
ms (Θ1,Θ2) is not defined to be just Q(Θ1,2). If we use an

evaluation of heuristic quality of the synchronized product only, we may end

up with a merge strategy that always prefers to merge large transition sys-

tems, whose product gives a high-quality heuristic simply due to its large size.

This tendency to merge large transition systems may result in a linear merge

strategy where a dominant transition system keeps drawing other transition

systems in. It seems an unfair bias to directly compare small and large transi-

tion systems produced in an M&S process. Instead of evaluating the heuristic

quality of synchronized products directly, we evaluate the improvements of

heuristic quality that result from merging two transition systems.

How to Evaluate Improvement?

Since we evaluate heuristic quality by heuristic Q0 scores, we can evalu-

ate the heuristic quality improvement by how much the heuristic values in-

crease after merging. Note that before computing Θ1,2, shrinking Θ1 and

Θ2 may be needed. Since this shrinking is always h-preserving, Q0(Θ1,2) ≥
max(Q0(Θ1),Q0(Θ2)). There are several ways to define how much of an in-

crease Q0(Θ1,2) represents over Q0(Θ1) and Q0(Θ2).

We considered three evaluators:

1. I+
Q0

(Θ1,2,Θ1,Θ2) = Q0(Θ1,2)− (Q0(Θ1) + Q0(Θ2)).

2. Imax
Q0

(Θ1,2,Θ1,Θ2) = Q0(Θ1,2)−max (Q0(Θ1),Q0(Θ2)).

3. Imin
Q0

(Θ1,2,Θ1,Θ2) = Q0(Θ1,2)−min (Q0(Θ1),Q0(Θ2)).

57

101 103 105 107

101

103

105

107

DYN-MIASM

I+ Q
0

(a)

101 103 105 107

101

103

105

107

SCC-DFP

I+ Q
0

(b)

Figure 3.10: Comparing numbers of expansions by A* using different M&S
heuristic: (a) I+

Q0
(y-axis) vs. DYN-MIASM (x-axis); (b) I+

Q0
(y-axis) vs. SCC-DFP

(x-axis);

We run experiments of M&S methods with scoring-based merging strategies

that use the three evaluators I+
Q0

, Imax
Q0

and Imin
Q0

respectively (as their main

scoring functions). The total coverages are 661, 618 and 648 for I+
Q0

, Imax
Q0

and Imin
Q0

respectively. The best performing evaluator I+
Q0

is slightly worse

than DYN-MIASM and SCC-DFP. The plots in Figure 3.10 compare the numbers

of A* node expansions of I+
Q0

with that of DYN-MIASM and SCC-DFP. Despite

the smaller coverage, I+
Q0

still shows some advantage over DYN-MIASM and

SCC-DFP. There are 34 and 48 points on the top edges in Figure 3.10(a) and

Figure 3.10(b) respectively, but there are also 29 and 48 points on the rightmost

edges in Figure 3.10(a) and Figure 3.10(b) respectively. In both plots, we see

many points on both sides of the diagonal line.

3.4.3 Integration with DYN-MIASM

We now consider the integration of fHQ
ms and fDM

ms . There are two motivations

for combining the two. First, the two functions measure complementary infor-

mation about a merging candidate. fHQ
ms focuses on information about heuristic

quality, whereas fDM
ms only evaluates the R-value of a synchronized product,

which measures only the percentage of live states, but says nothing about the

quality of the heuristic. Second, both scoring functions are product-dependent,

58

which means they require computing synchronized products of merge candi-

dates before making merging decisions. This process can be very expensive.

However, since we only need to compute synchronized products once to ob-

tain both fHQ
ms and fDM

ms scores, combining the two functions introduces little

computational overhead.

A natural way to integrate two merge scoring functions is to use one

function as tie-breaker for the other. We use fHQ
ms as tie-breaker for fDM

ms

in DYN-MIASM. The reason we use fHQ
ms as tie-breaker for fDM

ms rather than the

other way around is that fDM
ms seems superior than fHQ

ms in the greedy process of

scoring-based merging. Although fHQ
ms is aimed at improving heuristic quality,

the merging strategy is still a hill-climbing process and may end up with local

optima. It turns out that fHQ
ms can be more myopic than fDM

ms (i.e., DYN-MIASM)

on a number of tasks, even though the R-value used by fDM
ms contains no in-

formation about heuristic quality. The advantage of fDM
ms over fHQ

ms when used

in the local greedy process of scoring-based merging is that the R-values seem

to have long-term effects while the heuristic improvement measured by fHQ
ms

is purely local. This is due to the negative feedback between shrinking and

pruning (discussed in “Lossy Shrinking” of Section 3.3.1), which implies that

less pruning can trigger more harmful shrinking in subsequent iterations, so

even if a merge choice is only locally optimal it has benefits for future itera-

tions. The heuristic improvement measured by fHQ
ms does not imply good or

bad effects in the long term.

With three specifications of fHQ
ms , we now have three variants of DYN-MIASM:

DYN-MIASM with tiebreaker I+
Q0

, Imax
Q0

and Imin
Q0

. The total coverage for the

three are 681, 636 and 674 for DYN-MIASM with I+
Q0

, Imax
Q0

and Imin
Q0

as tie-

breakers respectively. DYN-MIASM with tie-breakers I+
Q0

and Imin
Q0

improve the

coverage of DYN-MIASM, and the I+
Q0

tie-breaker has the highest coverage among

the three variants. We call DYN-MIASM with I+
Q0

tiebreaker DM-HQ (short for

Dynamic MIASM and Heuristic Quality). Figure 3.11(a) compares the number

of expansions by A* using DM-HQ and DYN-MIASM. The grey zone indicates the

difference is within a factor of 10. We see there are many tasks where DM-HQ

expands one or more magnitudes fewer nodes than SCC-DFP (points below the

59

101 103 105 107

101

103

105

107

DYN-MIASM

D
M

-H
Q

(a)

101 103 105 107

101

103

105

107

SCC-DFP

D
M

-H
Q

(b)

Figure 3.11: Comparison of numbers of expansions using different M&S heuris-
tics: (a) DM-HQ (y-axis) vs. DYN-MIASM (x-axis); (b) DM-HQ (y-axis) vs. SCC-DFP
(x-axis);

grey zone). On only a few tasks, DM-HQ expands at least 10 times more nodes

than SCC-DFP (points above the grey zone). For the coverage difference, there

are 9 points on the top edge and 24 points on the rightmost edge of the plots.

Figure 3.11(b) is same as Figure 3.11(a) but compares DM-HQ with SCC-DFP.

On a large number of tasks DM-HQ expands one or more magnitudes fewer

nodes than SCC-DFP, while on many fewer tasks, SCC-DFP expands one or

more magnitudes fewer nodes than DM-HQ. DM-HQ solves 36 tasks on which

SCC-DFP fails, but it also fails on 26 tasks that SCC-DFP solves. In balance,

DM-HQ solves 10 more tasks than SCC-DFP.

3.5 Conclusions

In this chapter, we have presented three novel non-linear merging strategies,

UMC, MIASM and DM-HQ based on different motivations. Experiments show that

UMC and MIASM are superior to previous methods in terms of the number of

expansions and the number of tasks solved with minimum numbers of expan-

sions. The idea of MIASM of exploiting free pruning is shown to be effective

in improving M&S heuristics. The new merging strategy DM-HQ adds a new

merge scoring function to the scoring-based variant of MIASM, making it the

60

new state of the art standalone M&S method.

61

Chapter 4

MS-lite: A Lightweight,
Complementary
Merge-and-Shrink Method

In this chapter, we present MS-lite, an extremely fast merge-and-shrink

method that always shrinks transition systems to their smallest h-preserving

abstractions. MS-lite has complementary strength compared to other merge-

and-shrink methods due to its construction efficiency. In addition, we observe

that its simple shrinking strategy can lead to better heuristics for some plan-

ning tasks.

We exploit the complementary strength of MS-lite to enhance other merge-

and-shrink methods. Our experiments show that MS-lite complements DM-HQ

very well: their combination dramatically outperforms the current (2018)

state-of-the-art merge-and-shrink method by solving 75 more tasks on an IPC

benchmark set of 1499 tasks. This chapter is based on [FHM18].

4.1 Introduction

Transformations in merge-and-shrink process transition systems in their ex-

plicit representations. It can be very expensive to build an M&S heuristic

for a large planning task. For example, Table 4.1 shows the M&S construc-

tion time of the state-of-the-art M&S method SCC-DFP1 [SWH16] and our new

1 DM-HQ was published in the same paper of MS-lite [FHM18]. SCC-DFP was the best
M&S method in the literature before their publication. In this chapter, we refer to SCC-DFP

as the current state of the art.

62

No. Var. 126 169 212 255 298

SCC-DFP 157 304 666 1059 (timeout)

MS-lite 0.1 0.2 0.5 0.6 0.9

Table 4.1: The M&S construction time (in seconds) for SCC-DFP and MS-lite
on a series of tasks with increasing numbers of variables.

M&S method called MS-lite on a series of planning tasks from IPC domain

Airport with increasing numbers of variables. In the row for SCC-DFP, we see

that with each constant increase in the number of variables, M&S construction

time roughly doubles, until the last task fails due to a 30 minute limit timeout

for construction.

Previous improvements to M&S such as ours (Chapter 3) and others

[HHH07; NHH11; SWH14; SWH16] focus on how to create more informa-

tive M&S heuristics. In the first part of this chapter, we shift our focus onto

how to efficiently construct an M&S heuristic of reasonable quality. We pro-

pose MS-lite, a fast M&S method that shrinks every transition system to its

smallest h-preserving abstraction. Such extreme shrinking gives MS-lite super

efficiency. The row “MS-lite” in Table 4.1 shows the M&S construction time

for this method. For all the Airport tasks, MS-lite takes less than 1 second

for this construction. In addition, MS-lite can even create better heuristics

on some tasks. Table 4.2 shows the numbers of nodes expanded by A* to

solve a small task from the IPC domain Blocks using heuristics created by

SCC-DFP under different abstraction size limits. The right half of Table 4.2,

from column 104 to column 106, shows the expected behavior. With a larger

size limit, M&S can store more information in an abstraction and produce

a better heuristic. As the size limit increases from 104 to 106, the number

of node expansions decreases as expected. However, for size limits less than

or equal to 104, we see an unexpected trend where the number of A* node

expansions increases as the size limit increases. The extreme case is column

“MS-lite”, where only the minimum h-preserving abstractions are used. In

this case, the maximum abstraction size is the number of distinct h-values

in each abstract transition system, which is at most 15 for this Blocks task.

63

Size Limit MS-lite 102 103 104 105 106

No. Expan. 396 9,670 21,058 44,643 14,065 9,230

Table 4.2: Numbers of nodes expanded by A* using M&S heuristics con-
structed with different size limits.

This heuristic, which is created by our new algorithm MS-lite, is far better

here than heuristics created with much larger abstractions.

Our experiments on IPC domains show that MS-lite solves many planning

tasks that other M&S methods fail to solve. This strength is due to both

factors: faster construction in many cases, and better heuristics in some cases.

More importantly, as MS-lite is very quick to compute, it can be combined

with other M&S heuristics with little computational overhead. We show that

such combinations greatly enhance the coverage over previous M&S methods.

4.2 A Lightweight Merge-and-Shrink Method

MS-lite is a M&S method that actively shrinks every transition system to the

minimal h-preserving abstraction. All states with the same h-value are com-

bined into a single state, and the size of the abstraction is equal to the number

of distinct h-values. MS-lite uses no label reduction and chooses transition

systems for merging at random. The algorithm of MS-lite is shown in Algo-

rithm 8. What distinguishes MS-lite from other M&S methods is its “counter-

intuitive” shrinking strategy, which shrinks transition systems as early and as

much as possible, as long as the h-values are preserved. In contrast, existing

M&S methods with non-greedy bisimulation shrinking tend to shrink as late

and as little as possible. They retain as much information as possible for later

and larger transition systems.

Since MS-lite does not construct a bisimulation abstraction, there is little

advantage to using label reduction.2 The observation that MS-lite’s perfor-

mance is largely independent of its merging strategy emerged from a small

2In our experiments, label reduction has a large run time overhead that is only worthwhile
when bisimulations are used. For MS-lite, turning on label reduction does not help it solve
any more tasks, but reduces the total coverage by 33 tasks.

64

Algorithm 8 Merge-and-Shrink Algorithm of MS-Lite

1: P ← InitMAS
2: while |P| ≥ 1 do
3: Θ1,Θ2 ← ChooseRandom(P)
4: Θ1 ← Minimal-h-preserving-Abstraction(Θ1)
5: Θ2 ← Minimal-h-preserving-Abstraction(Θ2)
6: Θ1,2 ← Θ1 ⊗Θ2

7: CheckSolvabilityAndPruning(Θ1,2)
8: P ← P ∪ {Θ1,2} \ {Θ1,Θ2}
9: end while

10: return the transition system in P

experiment we undertook during its development. We ran MS-lite 10 times

per task, with a different randomly chosen merging order on each run. On 35

of 39 test domains, MS-lite solved exactly the same number of tasks in all 10

random runs, and among these 35 domains there are 28 domains on which the

number of A* node expansions and heuristic values on the initial states are

exactly the same for all 10 random runs for all the tasks solved by MS-lite.

In the remaining 4 domains, the coverage difference between the best and the

worst of 10 MS-lite runs is only 1. In the coverage and node expansion results

reported for MS-lite in this section, we use the average over 10 runs of MS-lite

with the merging order chosen at random. For the coverage data shown in

this chapter, an integer indicates that the coverage of all random runs are the

same, and a fractional number indicates that there is variance.

MS-lite is extremely efficient by design: it maintains only minimal h-

preserving abstractions and does not spend time exploring merge choices or

reducing labels. In exchange for efficiency, it gives up a lot of information

during shrinking. The question is: can MS-lite, with such aggressive shrink-

ing, possibly compete with M&S methods equipped with shrinking, merging

and label reduction techniques? The short answer is no. Table 4.3 shows the

coverages of MS-lite and other M&S heuristics as well as the blind heuristic,

which sets the heuristic value to the cost of the cheapest action for non-goal

states and to zero for goal states. As expected, MS-lite has a smaller total

coverage than most existing M&S methods. It solves 625.5 tasks in total, 45.5

fewer than SCC-DFP and 55.5 fewer than DM-HQ.

65

MS-lite DH SD DM CGGL LVL RL blind

Total (1499) 625.5 681 671 666 622 605 636 537

airport (50) 23 18 18 18 15 15 18 21
parking (40) 13 1 6 1 6 0 6 0
tidybot (30) 18 0 1 0 1 1 1 16
blocks (35) 28 21 26 25 24 28 25 18
tetris (17) 8 1 2 1 0 0 2 8
mystery (23) 17 15 16 15 17 17 16 15
pipesworld (100) 31 25 31 28 30 30 31 25
visitall (33) 21 13 12 12 12 21 12 11

Table 4.3: Coverages of MS-lite, DM-HQ (DH), SCC-DFP (SD), DYN-MIASM (DM),
CGGL, LVL, RL and the blind heuristic (blind). The domains shown are those
on which MS-lite’s coverage is at least as good as the best (bold numbers)
of all others. Numbers in brackets after each domain name indicate the total
number of tasks in the domain.

However, considering the tiny abstractions that MS-lite constructs, it is

surprising that MS-lite can solve this many tasks, which is actually more than

methods CGGL and LVL—the M&S methods that can use abstractions with up

to 50,000 states, bisimulation shrinking and label reduction. Our per-domain

coverage investigation reveals where the strength of MS-lite is. In Table 4.3, we

list all 8 domains (the rows below row “Total”) where the coverage of MS-lite

is larger than or equal to the best of the other heuristics.

In the following, we first discuss two reasons why MS-lite excels on domains

such as those shown in Table 4.3, namely, (1) its efficient construction of simple

heuristics for easy-but-complex tasks in Section 4.3 and (2) its ability to create

better heuristics in some situations in Section 4.4. Then, in Section 4.5, we

present lite-enhancement—a method that exploits MS-lite’s complementary

strength to enhance another M&S heuristic by taking the maximum of both

heuristic values. We then evaluate lite-enhancement and discuss the results in

Section 4.6.

4.3 Efficient Construction

In this section, we demonstrate that MS-lite can construct M&S heuristics very

efficiently, and that there exist IPC tasks that are easy enough to be solved

66

100 101 102 103
0

20

40

60

80

100
(194s)

97.6%

88.2%

(77.5%)

construction time (seconds)

su
c
c
e
ss
fu
l
c
o
n
st
ru

c
ti
o
n

(%
)

MS-lite

SCC-DFP

DM-HQ

DYN-MIASM

Figure 4.1: The percentages of tasks (y-axis) for which M&S construction
of MS-lite, SCC-DFP, DM-HQ and DYN-MIASM are finished respectively within a
certain amount of time (x-axis, in seconds) and within the 2GB memory limit.

with simple heuristics such as those created by MS-lite but are too complex

to allow a normal M&S heuristic to be constructed within standard time and

memory limits.

4.3.1 Construction Efficiency

Figure 4.1 shows the percentages of tasks for which MS-lite, SCC-DFP, DM-HQ

and DYN-MIASM finish constructing their heuristic (within the 2GB memory

limit) as a function of time. For any given time limit between 1 and 1800 sec-

onds, MS-lite can construct many more M&S heuristics than SCC-DFP, DM-HQ

and DYN-MIASM. The latter two are slower than SCC-DFP due to their product-

dependent merge scoring function.

We now focus on comparing the construction efficiency of MS-lite and

SCC-DFP when the time limit is 1800 seconds. MS-lite constructs M&S heuris-

tics successfully for 97.6% (1463/1499) of all tasks. It fails on the remaining

36 tasks because it exceeds the 2 GB memory limit during M&S construction.

There are no timeout failures. By comparison, SCC-DFP finishes constructing

a heuristic for 88.2% (1322/1499) of tasks. It runs out of memory during con-

struction for 42 tasks, including all 36 tasks where MS-lite fails. It runs out of

67

101 103 105 107

101

103

105

107

SCC-DFP

M
S
-l
it
e

(a)

101 103 105 107

101

103

105

107

SCC-DFP

b
li
n
d

(b)

Figure 4.2: Comparing numbers of expansions by A* using different heuristics:
(a) MS-lite (y-axis) vs. SCC-DFP (x-axis); (b) The blind heuristic (y-axis) vs.
SCC-DFP (x-axis).

time during construction on an additional 135 tasks. With a 2GB limit, the

main limitation of SCC-DFP construction is the running time. MS-lite finishes

within 1 second for 1162 tasks (77.5% of all tasks), indicated by the horizontal

dashed line in the figure. It requires a 194 second time limit, indicated by

the vertical dashed line in the figure, for SCC-DFP to complete construction on

the same number of tasks. On the 88.2% of tasks for which both MS-lite and

SCC-DFP finish the heuristic construction, MS-lite uses at most 26 seconds per

task while SCC-DFP can use up to 1716 seconds.

4.3.2 Complex but Easy Tasks

The advantage of MS-lite’s efficient heuristic construction is that there is more

time and memory left for A* to solve the task. We now show that this advan-

tage does contribute to the coverage excellence of MS-lite on some domains in

which tasks are easy enough to be solved with simple heuristics but are too

complex for normal M&S construction.

To see this, we show the performance difference of MS-lite and SCC-DFP

in an expansion comparison plot that separates the failures during M&S con-

struction and the failures during A* search for cases where M&S construction

succeeds. The plot is shown in Figure 4.2(a) in which each planning task is

68

shown as an asterisk, whose x and y values represent the numbers of A* node

expansions using the SCC-DFP and MS-lite heuristics respectively. Failures in

the M&S construction of SCC-DFP are shown on the rightmost edge of the

plot, and those of MS-lite are shown on the top edge of the plot. Cases where

the heuristic construction finishes successfully but A* fails to solve the task

with the constructed heuristic are shown on the inset dashed lines, vertical for

SCC-DFP and horizontal for MS-lite. Tasks on which both methods fail, for

either reason, are not shown in the plot.

First of all, the fact that the majority of points are above the diagonal

confirms that MS-lite’s heuristic is less informative than SCC-DFP’s overall.

The concentrated distribution of points close to the leftmost edge, indicated

by the shaded area, shows an exponentially growing number of A* node ex-

pansions with the MS-lite heuristic on a series of tasks3 that are solved easily

by SCC-DFP.

However, Figure 4.2(a) also demonstrates the complementary strength of

MS-lite over SCC-DFP, on the rightmost edge and the vertical dashed line.

For now, we focus on the 30 tasks that appear on the rightmost edge of the

plot, which MS-lite solves while SCC-DFP fails during the heuristic construc-

tion phase. These tasks are from the domains TidyBot, Tetris, Airport

and PipesWorld where complex tasks have hundreds or even thousands of

variables. It is expensive to build an M&S heuristic with so many variables as

the number of abstractions to construct is linear in the number of variables.

Most of these abstractions contain tens of thousands of states. By keeping all

abstractions small, MS-lite greatly reduces the computational burden. Con-

structing M&S heuristics for these complex tasks becomes feasible, and some

of them are easy enough to be solved with MS-lite heuristics.

Many of these complex tasks are so easy that they can be solved even with

the blind heuristic. Figure 4.2(b) is in the same format as Figure 4.2(a) but

shows the blind heuristic on the y-axis. In this plot, there are 24 tasks on

3 Tasks following the whole trend are mainly from Gripper, Miconic, NoMystery,
PARCPrinter, Satellite and WoodWorking. Tasks from DriverLog, Hiking,
Logistics, PSR-Small, Rovers, Transport and Trucks follow the trend but only
up to the lower half (end at around y = 104).

69

20 40 60 80 100

20

40

60

80

100

SCC-DFP

M
S
-l
it
e

Solved by Neither:

Mystery

Parking

Blocks

VisitAll

Solved by MS-lite Only:

Mystery

Parking

Blocks

VisitAll

Figure 4.3: Comparing the heuristic value of the initial state of MS-lite heuris-
tic (y-axis) vs. SCC-DFP (x-axis).

the rightmost edge from domains TidyBot, Tetris and Airport which are

exactly the three domains where the blind heuristic has the highest coverage

among the M&S heuristics excluding MS-lite, as shown in Table 4.3.

4.4 Better Heuristics on Some Domains

MS-lite’s efficient construction and the existence of easy-but-complex tasks

explain the points on the rightmost edge of Figure 4.2(a). We now look at

points below the diagonal and on the inset vertical dashed line, which are an

unexpected bonus for MS-lite. For points below the diagonal, in one case from

domain VisitAll, indicated by a red arrow in Figure 4.2(a), A* expands only

25 nodes with MS-lite’s heuristic, but almost 300,000 with SCC-DFP’s. The

majority of tasks for which MS-lite has fewer expansions than SCC-DFP come

from three domains: Depot, Mprime and Mystery.

There are also 19 points on the vertical dashed line of Figure 4.2(a) rep-

resenting tasks for which both methods construct their heuristics but only

MS-lite solves the problem. Did SCC-DFP spend too many resources for con-

structing its heuristic, leaving too few resources for A* to find a solution? A

look at the heuristic values of the initial states shows that it is more likely

that MS-lite creates better heuristics than SCC-DFP here. The points on the

70

vertical dashed line in Figure 4.2(a) consist of tasks from 4 domains: Visi-

tAll, Parking, Blocks and Mystery. In Figure 4.3, we compare the initial

heuristic values on all tasks from these 4 domains. We highlight the 19 tasks

that are only solved by MS-lite as filled markers while the tasks unsolved by

both are shown as hollow markers. For clarity, we scale the heuristic values

to fit in the range [0, 100]. Heuristic values from the same domain are scaled

by the same factor. In Figure 4.3, many more points lie above the diagonal

line, indicating that MS-lite creates better initial heuristics for most of the

tasks from these 4 domains. On the 19 tasks solved only by MS-lite, its initial

heuristic values are at least 33% larger, indicated by being above the dashed

line, than those of SCC-DFP. On tasks from VisitAll (points in the shaded

gray strip), the initial heuristic values of MS-lite grow about 30 times faster

than those of SCC-DFP as the tasks scale up.

4.4.1 An Example of Beneficial Active Shrinking

MS-lite actively shrinks an abstraction whenever possible, while the passive

shrinking of other M&S systems is applied only when abstractions become

too large to merge. How can MS-lite with its active shrinking produce bet-

ter heuristics than SCC-DFP, which uses passive shrinking? In the following,

we show an example where active h-preserving shrinking produces a better

heuristic than passive h-preserving shrinking. The example is abstracted from

a task in IPC domain Blocks.

In this example, we need to merge three atomic transition systems π1, π2,

and π3, shown in Figure 4.4(a), (b) and (c) respectively. Let σ be the function

that maps a transition system to its minimal h-preserving abstraction. In

other words, σ(Θ) is the transition system produced by applying minimal h-

preserving shrinking on transition system Θ. Because all the states in π1 and

π3 have different h-values, σ(π1) = π1 and σ(π3) = π3. Figure 4.4(d) shows

σ(π2), the minimal h-preserving abstraction of π2, which contains a single

state with a self-loop labelled by all actions. We use the notation
(

s
t

)
to label

the abstract state that is the combination of two states s and t. For example,

the single state
(

d
e

)
in σ(π2) is the abstract state produced by the h-preserving

71

c

b

a

B

A

C,D,X

C,D,X

C,D,X

(a) π1 = σ(π1)

d e
X

D

A,B,C

(b) π2

f g
C,D,X

A,BA,B

(c) π3 = σ(π3)

(d
e
)

A,B,C,D,X

(d) πσ2 = σ(π2)

a
(d
e
)
g

a
(d
e
)
f

b
(d
e
)
g

b
(d
e
)
f

c
(d
e
)
g

c
(d
e
)
f

B

B

A

A

C,D,XC,D,XC,D,X

(e) Θact = (π1 ⊗ σ(π2))⊗ π3

Figure 4.4: (a) π1 and its minimal h-preserving abstraction; (b) π2; (c) π3 and
its minimal h-preserving abstraction; (d) The minimal h-preserving abstrac-
tion of π2; (e) The synchronized product Θact of merging the atomic projections
in order (π1 ⊗ π2)⊗ π3 with active shrinking.

shrinking that combines states d and e in π2.

We consider a fixed merging order (π1⊗π2)⊗π3 but two alternatives for the

shrinking strategy. The first alternative is MS-lite’s active h-preserving shrink-

ing. The second alternative is the passive and late h-preserving shrinking that

occurs when using non-greedy bisimulation shrinking, and the size limit is

smaller than the bisimulation size, as in the best M&S methods SCC-DFP,

DYN-MIASM and DM-HQ. In this small example, we set the size limit µ to 8 to

force a late h-preserving shrinking. We will see that a larger heuristic value

for the initial state is produced by the first alternative than by the second

alternative.

Alternative 1: Figure 4.5(a) shows the M&S tree with MS-lite’s ac-

tive shrinking, which applies the minimal h-preserving shrinking before ev-

ery merge. Because π3 = σ(π3) and π1 = σ(π1), the final product is

σ(π1 ⊗ σ(π2)) ⊗ π3. Since σ(π2) is a single state with a self-loop labelled

by all the actions, the synchronized product π1 ⊗ σ(π2) and its abstraction

σ(π1⊗σ(π2)) are isomorphic to π1 itself. Figure 4.4(e) shows the synchronized

product Θact = (π1 ⊗ σ(π2))⊗ π3 which is equal to σ(σ(π1)⊗ σ(π2))⊗ σ(π3).

72

Θact

π1

π1

πσ
2

π2

π3

π3

σ

σ σ

σ

(a) M&S tree of active shrinking

Θpas

Θσ
1,2

Θ1,2

π1 π2

π3

π3

σ σ

(b) M&S tree of passive shrinking

Figure 4.5: Active shrinking and passive shrinking with size limit µ = 8 for
the same merging order (π1 ⊗ π2)⊗ π3.

The shortest path from the initial state to a goal state in Θact is of length 3.

Alternative 2: Figure 4.5(b) shows the M&S tree using the same merging

order as in Alternative 1 but with a passive shrinking strategy with size limit

µ = 8. Since the size of Θ1,2 = π1 ⊗ π2 is less than µ = 8, no shrinking

is done. Their synchronized product Θ1,2 is shown in Figure 4.6(a). Since

Θ1,2 has 6 states and π3 has 2 states, the size of their synchronized product is

12 which is larger than 8. h-preserving shrinking has to be applied to either

Θ1,2 or π3 or both. Because σ(π3) = π3, we can only shrink Θ1,2 and the

transition system after shrinking can have at most 4 states. The h-preserving

shrinking that reduces Θ1,2 to 4 states is the minimal h-preserving shrinking.

The resulting transition system, denoted as Θσ
1,2, is shown in Figure 4.6(b).

The key difference between this and Figure 4.6(a) is the transition from the

initial state to state “be” using action X. This transition was not possible

before the shrinking occurred and was introduced into the transition system

by combining state “bd” with the initial state “ce”. This does no immediate

harm, since the mapping is h-preserving, but it has ramifications when this

transition system is merged with π3, where action X plays a crucial role. The

final result, the synchronized product Θpas = σ(π1 ⊗ π2) ⊗ π3, is shown in

Figure 4.6(c). In this transition system, the shortest path from the initial

state to the goal is only length 2.

73

ae

ad

be

bd

ce

cd

BA

D XD XD X

C C C

(a) Θ1,2 = π1 ⊗ π2

(ae
ad

)
be

(ce
bd

)
cd

A
B,X

D

X

D

C,D,X C C

(b) Θσ
1,2 = σ(Θ1,2)

(ae
ad

)
g beg

(ce
bd

)
g cdg

(ae
ad

)
f bef

(ce
bd

)
f cdf

A

A

B

B

X D X D
C,D,X C C

(c) Θpas = σ(Θ1,2)⊗ π3

Figure 4.6: (a) The product Θ1,2 of merging π1 and π2; (b) The h-preserving
abstraction Θσ

1,2 of Θ1,2 with 4 states; (c) The product Θpas of merging the
atomic projections in order (π1 ⊗ π2) ⊗ π3 using passive shrinking with size
limit µ = 8.

The key observation here is that the late h-preserving shrinking σ(π1 ⊗
π2), which combines “bd” with “ce”, can be more harmful than the early h-

preserving shrinking σ(π2), which essentially combines state “be” with state

“bd” and state “ce” with state “cd” but keeps states “bd” and “ce” separate

in π1 ⊗ σ(π2). Of course, if size limits are large enough to allow a complete

bisimulation refinement, the problem would be avoided. However, in practice

partial bisimulation refinements are common and they are not guaranteed to

reverse every harmful combination induced by shrinking. For this example,

even with size limit of 10, the bisimulation refinement process will refine the

combined goal state in Θσ
1,2 but still fail to split the combined initial state,

since states closer to the goal typically have higher priority.

74

4.5 MS-Lite Enhancement

Although the MS-lite heuristic alone is not competitive with other M&S heuris-

tics, its complementary strength can be used to enhance another M&S heuristic

by taking the maximum of both. We call the other M&S method enhanced by

MS-lite the base M&S method. By taking the maximum of the MS-lite and

base heuristics, we exploit the superiority of the MS-lite heuristic on some IPC

domains.

We primarily want to exploit MS-lite’s fast construction. We build the

MS-lite heuristic first and then limit the time and memory given to the base

M&S heuristic as follows: if MS-lite finishes building its heuristic within the

standard 30min/2GB limits, then we attempt to build the base heuristic within

15min/1.5GB4 limits. If this attempt fails, we simply use the MS-lite heuristic

by itself for the A* search. Setting tighter limits for the base M&S reduces

the coverage if there are hard tasks that are only solvable with a high quality

heuristic produced by the base M&S method, but improves the coverage if

there are tasks that are too complex to build a base M&S heuristic but are

solvable with MS-lite. We have seen such tasks in Section 4.3. We call this

method lite-enhanced M&S, and denote the lite-enhanced base M&S method

X as lite-X, e.g., lite-SCC-DFP for lite-enhanced SCC-DFP.

4.6 Experiments

We test lite-enhanced M&S with the two best-performing M&S methods,

SCC-DFP and DM-HQ, as the base methods. We run each lite-enhanced M&S

5 times per task on the 1499 tasks in our benchmark using the standard

30min/2GB limits on the computing resources.

In the following, we first show that lite-enhancement for both SCC-DFP and

DM-HQ have low variance (Section 4.6.1) and infrequent, small performance

degeneration (Section 4.6.2). Then we show that the improvement of lite-

4In theory, we can use any memory limit smaller than 2GB, but in our implementation,
we can only check the peak memory usage periodically and need to keep a margin of reserve
memory to avoid termination of the planner during the base M&S construction.

75

Coverage SCC-DFP DM-HQ

Original 671 681

Lite-Enhanced 718.8 746.2

Changes +47.8 +65.2

Table 4.4: Total coverage of the base M&S heuristics (row “Original”), and
their lite-enhanced variants (row “Lite-Enhanced”) and the coverage difference
between lite-enhanced and base M&S.

DM-HQ over lite-SCC-DFP is much better than the improvement of DM-HQ over

SCC-DFP in Section 4.6.3. This indicates the stronger complementarity between

MS-lite and DM-HQ compared to MS-lite and SCC-DFP. Finally, in Section 4.6.4,

we give a detailed per-domain analysis of the improvement of lite-DM-HQ over

SCC-DFP.

4.6.1 Low Variance of Lite-Enhancement

As with standalone MS-lite, the performance of lite-enhanced M&S varies lit-

tle for random merging orders. Over 39 domains, there is only 1 domain

(Airport) where the coverages of random runs of lite-enhanced SCC-DFP vary.

For lite-enhanced DM-HQ, there are 4 such domains (Airport, Mystery, Sc-

analyzer and TidyBot). The coverage difference between the best and worst

random runs for these enhanced M&S is only 1.

In the results shown, the coverage of lite-enhanced M&S is the average of

5 random runs. In plots comparing numbers of expansions, if all runs solve

the task then we use the average number of expansions of the runs. If there is

any run that fails to solve the task we consider it as a failure for lite-enhanced

M&S on that task. The total coverages of lite-enhanced SCC-DFP and DM-HQ

are shown in row “Lite-Enhanced” in Table 4.4.

4.6.2 Small Performance Degeneration

Lite-enhancement may cause performance degeneration due to the overhead

of building and using the MS-lite heuristic, as well as the earlier termination

of the base M&S method. However, the results suggest that neither situation

occurs frequently. For both base M&S methods, we see only 1 task that is

76

101 103 105 107

101

103

105

107

SCC-DFP

li
te
-S

C
C
-D

F
P

(a)

101 103 105 107

101

103

105

107

DM-HQ

li
te
-D

M
-H

Q

(b)

Figure 4.7: Comparing numbers of expansions by A* using different M&S
heuristics: (a) lite-enhanced SCC-DFP heuristic (y-axis) vs. SCC-DFP (x-axis);
(b) lite-enhanced DM-HQ heuristic (y-axis) vs. DM-HQ (x-axis).

solved by the base M&S method alone but not by their lite-enhanced variant.

For SCC-DFP, it is a task from Hiking, and for DM-HQ, it is a task from NoMys-

tery. These tasks are indicated by the single points on the horizontal dashed

lines in the plots of Figure 4.7(a) and of Figure 4.7(b) respectively.

The plots in Figure 4.7 show points on both the vertical dashed line and

the rightmost edge. There are more points below the diagonal than above

the diagonal in the plots. This suggests that lite-enhancement improves the

coverage not only due to the faster heuristic construction, but also due to the

better heuristics created on some tasks.

4.6.3 Stronger Complementarity with DM-HQ

The most important observation in our experiments is that MS-lite comple-

ments DM-HQ much better than SCC-DFP. The row “Changes” in Table 4.4

shows that the total coverage improvement of lite-enhancement is much greater

for DM-HQ than for SCC-DFP. In the previous chapter, we have seen that DM-HQ

solves 36 tasks on which SCC-DFP fails but it also fails on 26 tasks that SCC-DFP

solves. The following analysis shows that lite-enhancement is more helpful for

DM-HQ in solving the 26 tasks on which it fails but SCC-DFP succeeds than for

SCC-DFP in solving the 36 tasks on which it fails but DM-HQ succeeds.

77

101 103 105 107

101

103

105

107

SCC-DFP

D
M

-H
Q

(a)

101 103 105 107

101

103

105

107

lite-SCC-DFP

li
te
-D

M
-H

Q

(b)

Figure 4.8: Comparing numbers of expansions by A* using different M&S
heuristics: (a) DM-HQ (y-axis) vs. SCC-DFP (x-axis); (b) lite-enhanced DM-HQ

(y-axis) vs. lite-enhanced SCC-DFP (x-axis);.

To show this, we compare DM-HQ against SCC-DFP with and without lite-

enhancements. Figure 4.8(a) compares the number of A* node expansions

using M&S heuristics produced by DM-HQ and SCC-DFP. This plot is the same

as Figure 3.11(b) in Chapter 3, except that Figure 4.8(a) additionally dis-

tinguishes search failures and M&S construction failures. Figure 4.8(b)

compares the number of A* node expansions when lite-enhancement is used

for these two M&S methods. While both methods benefit a lot from the lite-

enhancement, there are fewer points on the top edge and horizontal dashed

line in Figure 4.8(b) than in Figure 4.8(a) whereas the numbers of points on

the right edges and vertical dashed lines in the two plots are very similar. This

observation, combined with the previous observation in Section 4.6.2 that al-

most all tasks solved with DM-HQ and SCC-DFP alone are solved with their

lite-enhancements, implies that many of the 36 tasks on the horizontal dashed

line in Figure 4.8(a) become solved when DM-HQ is enhanced with MS-lite,

but many of the 26 tasks on which SCC-DFP fails but DM-HQ succeeds remain

unsolved with the lite-enhancement for SCC-DFP. All these results show that

MS-lite has a much stronger complementarity with DM-HQ than with SCC-DFP.

78

4.6.4 Detailed Per-Domain Analysis

In this section, we compare the performance of all four methods SCC-DFP,

DM-HQ, lite-enhanced SCC-DFP and lite-enhanced DM-HQ on each IPC domain

from our test set.

Table 4.5 shows the coverage of SCC-DFP, and increases/decreases of cover-

age of DM-HQ, lite-enhanced SCC-DFP and lite-enhanced DM-HQ with respect to

SCC-DFP. The table lists all domains where DM-HQ, lite-SCC-DFP or lite-DM-HQ

solve a different number of tasks than SCC-DFP. To illustrate the strengths of

lite-DM-HQ over SCC-DFP, we divided these domains into 3 groups (a), (b) and

(c):

(a) Domains where lite-enhanced DM-HQ has better coverage than DM-HQ.

(b) Domains where DM-HQ gains no coverage improvement from lite-

enhancement but outperforms SCC-DFP.

(c) Domains where SCC-DFP solves more tasks than DM-HQ, and lite-

enhancement does not improve DM-HQ.

Within each group, domains are sorted in decreasing order of the respective

coverage improvement, i.e., lite-DM-HQ coverage minus DM-HQ coverage for (a),

and DM-HQ coverage minus SCC-DFP coverage, which are the numbers in column

“DM-HQ”, for (b) and (c). For example, on Parking in (a), DM-HQ solves 5 fewer

tasks than SCC-DFP, but enhanced DM-HQ solves 7 more than SCC-DFP, so the

total improvement is +12 which is larger than the corresponding value +10

for VisitAll.

Group (a) contains most of the domains where DM-HQ performs worse than

SCC-DFP. 19 tasks from those domains are solved by SCC-DFP but not DM-HQ.

However, lite-DM-HQ solves many more tasks than SCC-DFP. Group (b) contains

most domains where DM-HQ outperforms SCC-DFP by itself, and we see no im-

provement from lite-enhancement on DM-HQ. The total coverage improvement

of DM-HQ over SCC-DFP from those domains is 35 tasks. Group (c) contains 5

of the 7 domains that lite-DM-HQ solves fewer tasks than SCC-DFP (the other 2

79

Domains SCC-DFP DM-HQ Lite-SD Lite-DH

(a)

tidybot (30) 1 -1 +16 +16.4
parking (40) 6 -5 +7 +7
visitall (33) 12 +1 +9 +11
tetris (17) 2 -1 +6 +6
blocks (35) 26 -5 +2 +2
pipesworld (100) 31 -6 +2 +1
airport (50) 18 0 +4.8 +4.8
mystery (23) 16 -1 +1 -0.2
scanalyzer (30) 13 -1 0 -0.8

Subtotal (358) 125 -19 +47.8 +47.2

(b)

floortile (40) 6 +9 0 +9
elevators (30) 13 +7 0 +7
sokoban (30) 26 +4 0 +4
woodworking (30) 19 +3 0 +3
hiking (20) 13 +2 -1 +2
rovers (40) 6 +2 0 +2
transport (60) 17 +2 0 +2
nomystery (20) 18 +2 0 +1
logistics (63) 25 +1 0 +1
openstacks (80) 30 +1 0 +1
trucks (30) 7 +1 0 +1
depot (22) 6 +1 +1 +1

Subtotal (465) 186 +35 0 +34

(c)

gripper (20) 20 -1 0 -1
miconic (150) 78 -1 0 -1
parcprinter (30) 26 -1 0 -1
tpp (30) 8 -1 0 -1
pegsol (35) 35 -2 0 -2

Subtotal (245) 147 -6 0 -6

Changes (1089) 478 +10 +47.8 +75.2

Others (410) 193 0 0 0

Total (1499) 671 681 718.8 746.2

Table 4.5: Coverage of SCC-DFP and the increases/decreases of DM-HQ over
SCC-DFP (column “DM-HQ”), lite-enhanced SCC-DFP over SCC-DFP (column
“Lite-SD”) and of lite-enhanced DM-HQ over SCC-DFP (column “Lite-DH”).
“Others” summarizes the 13 domains for which all four systems have the same
coverage.

80

101 103 105 107

101

103

105

107

SCC-DFP

li
te
-D

M
-H

Q

(a)

101 103 105 107

101

103

105

107

blind-enhanced DM-HQ

li
te
-e
n
h
a
n
c
e
d

D
M

-H
Q

(b)

Figure 4.9: Comparing numbers of expansions by A* using different M&S
heuristics: (a) lite-DM-HQ (y-axis) vs. SCC-DFP (x-axis); (b) lite-enhanced
DM-HQ (y-axis) vs. blind-enhanced DM-HQ (x-axis).

domains are included in group (a)). The coverage decrease is only 6 tasks for

group (c) and 7.0 tasks in total.

Figure 4.9(a) compares the number of A* node expansions of lite-DM-HQ and

SCC-DFP. The distribution of points for tasks solved by both methods are sim-

ilar to that in Figure 4.8(a) showing the superior heuristics created by DM-HQ.

The weaknesses of DM-HQ largely disappear with the help of lite-enhancement,

as shown by fewer points on the top edge and the horizontal dashed line in

Figure 4.9(a) compared to Figure 4.8(a). These points correspond to tasks in

domains of group (a) in Table 4.5. Many points on the right edge and vertical

dashed line correspond to tasks that are not solved by SCC-DFP but solved

by lite-DM-HQ because of DM-HQ’s own strength and the additional power from

lite-enhancement.

4.7 Other Fallback Heuristics

Before we conclude this chapter, we look at two other fallback heuristics that

can be used to enhance a merge-and-shrink heuristic.

81

4.7.1 Blind Heuristic

Table 4.3 shows that the blind heuristic also has some complementary strength

over normal M&S heuristics. We now consider blind-enhancement, i.e., enhanc-

ing a base M&S heuristic with the blind heuristic in the same way as MS-lite

is used in the lite-enhancement.

We use SCC-DFP and DM-HQ as the base methods for blind-enhancement.

The total coverage of blind-enhanced SCC-DFP and DM-HQ is 693 and 711 re-

spectively. Both numbers are larger than the base M&S methods (by 22 for

SCC-DFP and 30 for DM-HQ), but smaller than the lite-enhanced variants. Fig-

ure 4.9(b) compares the numbers of A* node expansions of lite-enhanced and

blind-enhanced DM-HQ. Since both MS-lite and blind heuristics are relatively

weaker than the base M&S heuristic DM-HQ, most points appear very close to

the diagonal line. The great number of points below the diagonal line and

on the vertical dashed line are due to the better heuristic created by MS-lite.

Points on the top edge and the horizontal dashed line indicate there are the

tasks that can be solved by blind-enhanced DM-HQ but lite-enhancement DM-HQ

spend too much memory or time in M&S construction and thus either fails

the M&S construction or leaves insufficient resource for the A* search.

4.7.2 Partial Merge-and-Shrink Heuristic

In lite-enhancement and blind-enhancement, when M&S is terminated all the

intermediate abstractions are abandoned. However, these abstractions can

still be used to generate a heuristic. Sievers [Sie18] proposed a partial merge-

and-shrink heuristic: a generalization of the standard M&S that extracts a

heuristic from multiple M&S abstractions by either taking the maximum of all

abstraction heuristics or chooses one abstraction heuristic according to some

criterion.

Similar to MS-lite in lite-enhancement, a partial M&S heuristic is used as

a fallback heuristic if it takes too long or too many resources to construct

the final M&S abstraction. Two types of termination conditions were tested:

limiting time and limiting the number of transitions. Sievers’ experiments

82

show that termination by limiting the number of transitions do not improve

the performance, but terminating M&S construction when time exceeds 15

minutes and then using the max of the abstraction heuristics of all interme-

diate abstractions at the time of termination can improve the performance of

SCC-DFP and DYN-MIASM: on their benchmark of 1667 tasks5 and with a total

time limit of 30 minutes and a higher memory limit of 3.5 GB, the coverage

improvements are 32 for SCC-DFP and 34 for DYN-MIASM.

4.8 Conclusions

In this chapter, we have presented MS-lite, a M&S method that maintains

only the smallest h-preserving abstractions. The minimalism of MS-lite avoids

expensive shrinking, merging and label reduction operations, allowing very

efficient construction of heuristics even for complex tasks. MS-lite’s strengths

are complementary to other M&S methods: not only its superior construction

efficiency, but also its better heuristics on some tasks. We demonstrate in an

example that the active shrinking of MS-lite can result in better heuristics than

normal passive shrinking. More importantly, the efficiency of MS-lite makes

it perfect for enhancing other M&S heuristics by using the maximum of both

heuristics for search because there is little overhead for constructing the MS-lite

heuristic. Such MS-lite enhancement improves the coverage of M&S methods

SCC-DFP and DM-HQ by a large number of tasks. Our experiments on IPC

domains show that MS-lite complements DM-HQ much better than SCC-DFP,

and lite-enhanced DM-HQ dramatically outperforms the previous state of the

art method SCC-DFP.

5Their benchmark does not remove duplicate tasks and unsolvable tasks like ours.

83

Chapter 5

The Two-edged Nature of
Diverse Action Costs

In the previous chapters, we have presented methods for creating high quality

merge-and-shrink heuristics in general. Most of the planning tasks used in the

studies use unit costs, i.e., all actions have the same cost. However, many real-

world planning applications use non-unit costs where different actions may

have different costs. In the following two chapters, we study how action cost

affects the two components of a heuristic search planner, namely, the search

algorithm and the domain-independent heuristic construction method. In this

chapter, our study focuses on the general effects of action cost on search without

using heuristics, and in the next chapter (Chapter 6), we shift our focus to the

effects of non-unit action costs on merge-and-shrink heuristics. This chapter

is based on the publication [FMH17b].

5.1 Introduction

Diverse action costs occur naturally in many planning problems. For example,

in the IPC domain Transport, loading and unloading a package is much

cheaper than moving a vehicle, and the cost of moving a vehicle varies widely

with the distance between locations.

In recognition of its importance, planning with action costs has been stud-

ied in both the optimal and satisficing settings in recent years. One notable

trend is a focus on the negative impact of non-unit costs on planning. Sev-

84

eral studies demonstrate cases where planning with non-unit action costs is

more difficult than planning in the same problems with unit costs, where ev-

ery action has the same cost [Ben+10; CBK11; WR11; WR14]. Other studies

showed that some search algorithms perform better on domains with non-unit

action costs when they use heuristics based on unit costs instead of relying en-

tirely on heuristics based on the given non-unit costs [RW10; TBH12; TR09;

TR11].

One clear disadvantage of non-unit costs is a kind of “horizon effect”. If a

search space has huge regions reachable with low-cost actions, but the solution

requires a high-cost action a, the low-cost regions will be exhaustively searched

before the state s reached by a is expanded. In the unit cost model, state s

would be expanded much earlier, allowing the solution to be found much more

quickly.

Thus there is considerable evidence that action cost diversity is harmful

for search. Is it true that this is generally the case? This is the question

we address in this chapter. We provide both theoretical and experimental

investigations of the effects of changing action costs on the number of nodes

expanded. Our experiments give a variety of examples, including problems

from the IPC domains, where diversity of action costs is beneficial, i.e., the

number of nodes expanded when using non-unit action costs is substantially

lower than the number using unit costs.

Our main theoretical result is a “No Free Lunch” (NFL) theorem about

the impact, on the number of nodes expanded by Dijkstra’s algorithm [Dij59],

of changing from any cost function C to any other C ′. We prove that, when the

TIE states (the states that are the same distance from the start state as the

goal state) are ignored, the advantage of C over C ′ are exactly counterbalanced

by the advantage of C ′ over C when all problem instances in the state space

are taken into consideration.

The NFL theorem applies to all state spaces, including the “ε-cost traps”

that Cushing et al. [CBK10; CBK11] designed to illustrate that search with

non-unit action costs can expand exponentially more states than search with

unit costs. For a type of ε-cost trap called the cycle trap, we show experimen-

85

tally that the total number of nodes expanded over all possible goal states is

almost identical whether one uses unit costs or the alternative non-unit cost

function defined by Cushing et al.

The reason the totals in the cycle trap experiment are not exactly equal is

that the NFL theorem does not take the TIE states into account. Our second

theoretical contribution is to analyze the impact of TIE states. We show that

unit costs will often have an advantage over non-unit costs because of TIE

states (as is the case for cycle traps) but we also describe a new planning

domain—Hazardous Logistics—in which TIE states work to the advantage of

non-unit costs.

The remainder of the chapter is organized as follows. In Section 5.2 we re-

view previous work on the impact of diverse action costs on search. Section 5.3

gives three motivating examples in which diverse action costs are beneficial.

Section 5.4 experimentally shows that many of the IPC problems from domains

with non-unit costs are more easily solved with non-unit costs than with unit

costs. Section 5.5 describes the setting for our theoretical analysis and presents

the NFL theorem and the cycle trap experiments. Section 5.6 contains our the-

oretical study related to tie-breaking and introduces the Hazardous Logistics

domain.

5.2 Related Work

Some domains with non-unit action cost functions have been used in the IPC

since 2008. Many recent planners contain a search or evaluation component

where the true action cost function C is replaced by the unit cost function U .

We will call such a component either C-based or U -based, depending on which

cost function it uses. For example, a U -based heuristic, h(s), estimates the

number of actions that must be applied to state s to reach a goal state.

The use of U -based heuristics was empirically shown to improve the per-

formance of many planners on IPC problems. For example, the first stage

of LAMA [RW10; RWH11], the winner of the IPC 2008 sequential satisficing

track, uses U -based FF [HN01] and landmark heuristics [RW10]. Later stages

86

use C-based heuristics. Explicit Estimation Search [TR11] uses both C-based

and U -based heuristics to determine the next node to expand in bounded sub-

optimal search. Wilt and Ruml [WR11] give examples where U -based search

algorithms outperform C-based ones. They also demonstrate cases where U -

based Greedy Best First Search (GBFS) expands fewer nodes than C-based

GBFS [WR14]. The A* algorithm sometimes performs better with U than

with C for the state spaces studied in [Wil14; WR11].

Along with these empirical observations, the following explanations for

why U -based search is easier than C-based search were proposed. Wilt and

Ruml [WR11; WR14] argue that the difficulty of C-based search is due to large

heuristic errors and large local minima caused by action costs with high vari-

ance. Cushing, Benton and Kambhampati [CBK11] give a theoretical analysis

of Dijkstra’s algorithm and provide examples where C-based search expands

exponentially many more nodes than U -based search .

All these studies seem to indicate that diverse action costs are harmful for

best-first search in planning. While there is evidence to support this belief, it

is not the full story. The parameterized complexity analysis by Aghighi and

Bäckström [AB15; AB16] shows that optimal planning with positive integer

costs is no harder than planning with unit costs, and the difference between

maximal and minimal costs is irrelevant to the inherent computational com-

plexity of planning. The literature also contains some evidence that diverse

action costs can speed up search. In Wilt’s study of the effect of costs on A*

[Wil14], in two out of the five domains, A* expands fewer nodes for higher

variance action costs. In two of four domains used by Wilt and Ruml [WR14]

GBFS expands fewer nodes with non-unit action costs. In the IPC domains

Floortile and Woodworking, GBFS using a C-based FF heuristic solves

more problems than GBFS using a U -based FF [Nak13].

5.3 Motivating Examples

The following examples give evidence that diverse action costs can be beneficial

for search. Example 1 also foreshadows the use of surely expanded nodes in our

87

0 0.5 1 1.5 2
·106

0

0.5

1

1.5

2

2.5
·104

(a) Non-Unit Cost C
0 10 20 30 40 50

0

0.5

1

1.5

·106

(b) Unit Cost U

Figure 5.1: Histograms for f -value (x-axis) and optimal solution cost (indi-
cated by the red vertical line) for problem p08 of IPC domain PARCPrinter

with (a) the original non-unit cost function C and (b) the unit cost function
U .

analysis in Section 5.5 and Example 2 provides the gist of the NFL theorem

showing that the existence of a previously published example in which diverse

costs are harmful implies the existence of examples showing the opposite.

5.3.1 Example 1: IPC PARCPrinter Problem

To illustrate that diverse costs can result in faster search than unit cost, con-

sider the behavior of A* with FastDownward’s pattern database heuristic1

[Ede01] on problem p08 from the IPC domain PARCPrinter. The original

IPC cost function C assigns a variety of costs to actions, ranging from 0 to

more than 200,000. Using C, A* expands 61,458 states in solving this problem,

while A* with unit cost function U requires 2,453,418 node expansions, more

than 39 times as many.

The additional state expansions are not due to unlucky tie-breaking with

U . There is a more fundamental reason. With a consistent heuristic, A* must

expand every state s for which f(s) < C∗, the optimal solution cost (Theorem

12 [Pea84]). Such states are called “surely expanded” by A*, or SE for short.

In this problem task, there are 61,456 SE states under cost function C (to the

1In the default configuration of the pattern database heuristic (www.fast-downward.
org/Doc/Heuristic#Pattern_database_heuristic)

88

www.fast-downward.org/Doc/Heuristic#Pattern_database_heuristic
www.fast-downward.org/Doc/Heuristic#Pattern_database_heuristic

0 1 2 3

4 5 6 7

8 9 10 11

13121514

0 15 14 13

12 11 10 9

8 7 6 5

3 4 1 2

0 15 14 13

12 11 10 9

8 7 6 5

4 3 2 1

(a) (b) (c)

Figure 5.2: (a) tiles 14 and 15 in each other’s goal positions as are tiles 12 and
13; (b) state (a) “reversed”; (c) standard goal state “reversed”.

Standard Reversed
U 33,798 33,798
L 1,841,122 3,660
L2 not solved 1,274

Table 5.1: Number of nodes expanded by A* for each cost function on two
different problems.

left of the red vertical line in Figure 5.1(a)), but 2,453,415 under U (to the left

of the red vertical line in Figure 5.1(b)), so A* using U must expand millions

of states more than it does using C.

5.3.2 Example 2: 15-Puzzle

Consider the following successively more diverse cost functions for the 15-

puzzle: unit cost U , “linear” cost L, and “square” cost L2, where an action

a that moves tile T has L(a) = T and L2(a) = T 2. Wilt and Ruml [WR11]

gave a 15-puzzle task for which the number of nodes expanded by A*, with a

suitably adjusted definition of Manhattan Distance (MD), increased dramati-

cally when changing from U to L and from L to L2. This is illustrated in the

column “Standard” of Table 5.1, which shows the number of nodes expanded

using each of the cost functions when the initial state is the state shown in

Figure 5.2(a) and the goal state is the standard 15-puzzle goal. A* ran out of

memory (2GB limit) before it solved this problem using L2.

In their example, tiles 14 and 15 occupy each other’s goal locations in the

initial state so each of these tiles must be moved at least once, which requires

using the most expensive actions under L and L2. For problems whose solution

path does not necessarily use the expensive actions, we observe the opposite

trend. For example, “reversing” the tile numbers (i.e., each tile T is replaced

89

with 16 − T) maps the state in Figure 5.2(a) to the state in Figure 5.2(b)

and maps the standard goal state to the state in Figure 5.2(c). The number

of nodes expanded by A* to solve this problem is shown in the “Reversed”

column of Table 5.1 and here we see the opposite trend: the number decreases

as the cost diversity increases.

5.3.3 Example 3: Heuristics as Diverse Action Costs

As our final motivating example, the very idea of using a heuristic to guide

search can be viewed as taking advantage of action cost diversity, in the follow-

ing sense. It is well known [ES12; Ike+94; Mar77] that A* using a consistent

heuristic h in combination with the original action costs behaves the same as

Dijkstra’s algorithm using no heuristic but with action costs adjusted as fol-

lows. If C(a) is the original cost of the transition s
a−→ t then the adjusted cost

c(s
a−→ t) of the transition is C(a) − h(s) + h(t). In this view, the guidance a

heuristic provides towards the goal is converted to guidance towards the goal

by diversified cost : the cost of actions moving towards the goal (as estimated

by the heuristic) is reduced, while the cost of actions leading away from the

goal is increased.

As an illustration, consider the sliding tile puzzle with unit cost and the

Manhattan Distance (MD) heuristic. Any action that moves a tile towards

its goal position decreases MD by 1, so the adjusted cost of this action is 0.

In contrast, any action that moves a tile away from its goal position increases

MD by 1 and has an adjusted cost of 2. A* solves problems much faster with

MD than with no heuristic, and Dijkstra’s algorithm with the corresponding

adjusted action costs (but no heuristic) will see the same speedup compared

to searching with unit costs. The adjusted cost function has costs of 0 and 2

and is therefore more diverse than the unit cost.

5.4 Diverse Costs in IPC Domains

The motivating examples are not accidental. In this section, we experimen-

tally demonstrate that action costs can have positive effects on several IPC

90

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

(a) hmax

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

(b) PDB

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

(c) LM-cut

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

(d) iPDB

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

(e) M&S

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

(f) CEGAR

Figure 5.3: Comparisons of numbers of A* node expansions for solving non-
unit cost tasks with their original IPC costs and the unit cost using heuristics:
(a) hmax, (b) PDB, (c) LM-cut, (d) iPDB, (e) M&S, and (f) CEGAR.

91

domains. Our experiments use all 13 IPC domains that have non-unit ac-

tion costs: Barman, CaveDiving, CityCar, Elevators, FloorTile, Open-

Stacks, PARCPrinter, Pegsol, Scanalyzer, Sokoban, Tetris, Transport

and WoodWorking. We call these domains NUC (stands for “non-unit cost”)

domains and the tasks in these domains the NUC tasks. The action cost dis-

tinctiveness in these domains varies. For example, Tetris tasks use only action

costs 1, 2 and 3 while in PARCPrinter tasks the action costs can range from

0 to more than 200,000. An action cost of 0 appears in 6 domains: CityCar,

Elevators, OpenStacks, PARCPrinter, Pegsol and Sokoban.

To study the effects of action costs, we create a unit cost version of each

task in these IPC domains. We then run A* on the tasks using both unit and

non-unit costs and on the same tasks using the unit cost.

5.4.1 Effects on A* with Heuristics

We use admissible heuristics hmax [BG01], PDB [Ede01], LM-cut [HD09], iPDB

[Has+07], M&S [Hel+14] and Additive CEGAR [SH14]. For a NUC task and

a heuristic, we denote the number of nodes A* expanded to solve the instance

using the original IPC action cost function C by NC and the number of nodes

expanded to solve it using the unit cost function U by NU . Each plot in

Figure 5.3 corresponds to one heuristic. Each point in a plot represents a task

whose x value is NU and y value is NC. Both the x-axis and y-axis use a log

scale. A task not solved within 30 minutes and 2 GB memory is plotted on

the top border if an original non-unit cost is used and on the right border if

the unit cost is used. Tasks below the y = x line represent tasks that required

more A* node expansions using U than using C, i.e., NU > NC. Tasks in

the shaded zone have 1
10
NC ≤ NU ≤ 10NC, i.e., solving them with U requires

expanding at most 10 times as many nodes as solving them with C and at least

one tenth as many nodes as solving them with C.
For each heuristic used in our experiments, there are tasks on both sides

of the diagonal line and of the shaded zone. The numbers of tasks in different

regions of the plots in Figure 5.3 are shown in Table 5.2. We first look at

the tasks solved with both cost functions, ignoring the tasks on “unso.” lines.

92

Regions hmax PDB LM-cut iPDB M&S CEGAR
no

heuristic

NC = unso.
NU 6= unso.

2 13 9 23 22 22 2

NC > 10NU 2 19 5 31 22 29 0

NC > NU 41 84 33 85 68 84 44

NU > NC 123 40 115 45 57 82 99

NU > 10NC 17 11 26 6 7 13 16

NU = unso.
NC 6= unso.

32 24 38 28 27 6 22

NU = unso.
NC = unso.

205 193 166 169 165 177 245

Table 5.2: The numbers of tasks in different regions in plots in Figure 5.3
and Figure 5.4. “unso.” indicates the task is unsolved within the time and
memory limits.

There are more tasks with NU > NC than with NC > NU when A* uses the hmax

(Figure 5.3(a)) and LM-cut heuristics (Figure 5.3(c)). For these two heuristics,

there are also more tasks with NU > 10NC than with NC > 10NU . When using

the PDB (Figure 5.3(b)) and iPDB (Figure 5.3(d)) heuristics, however, there

are more tasks solved by fewer expansions with the unit cost than with the

non-unit costs. For CEGAR (Figure 5.3(f)) and M&S (Figure 5.3(e)), tasks

distribute mostly evenly on both sides of the diagonal, but with more above

the shaded zone than below.

In terms of the number of tasks solved with one cost function but not the

other, all heuristics except additive CEGAR favor non-unit costs over unit

costs. In Figure 5.3(a)-(e), a large number of tasks are solved with the IPC

costs but not with the unit costs.

5.4.2 Effects on A* Without Heuristics

Since A* uses g(s) + h(s) to prioritize the expansion of states and both g(s)

and heuristic generation methods are dependent of action costs, the observed

effect of action costs on A* in Figure 5.3 is the combination of effects of action

93

101 103 105 107

101

103

105

107

unso.

unso.

Unit Cost

O
ri
g
in
a
l
N
o
n
-U

n
it

C
o
st

Figure 5.4: Comparing the number of nodes expanded by A* with no heuristic
for solving non-unit cost tasks with their original IPC costs and the unit cost.

costs on g(s) and h(s). We now analyze how action costs affect A* through

g(s) alone by running A* without using any heuristics.

Figure 5.4 compares NU and NC for A* using no heuristic. Overall, in

solving these tasks more nodes need to be expanded using U than using C.
The last column of Table 5.2 shows many more tasks with NU > NC (99 tasks)

than NC > NU (44 tasks). There are 22 tasks solved with the non-unit costs

but not with unit costs. In contrast, only 2 tasks are solved only with unit

cost. In general, Figure 5.4 shows that NUC tasks become harder to solve

with unit cost when no heuristics are used. This may be one reason why there

are many tasks below the diagonal lines in Figure 5.3.

5.5 No Free Lunch Theorem

The previous experiments on the NUC domains have shown that cost diversity

can have both positive and negative impacts on planning. In this section, we

provide some theoretical foundation for this observation. Our main result is a

No Free Lunch (NFL) theorem for A* without heuristics showing that, when

excluding the states that have the same cost-from-start (g-value) as the goal,

the advantage one cost function enjoys over another cost function on some

problem instances is exactly counterbalanced by the disadvantage it suffers on

other problem instances.

94

In the following, we first give the formal theoretical setting for our theorem.

We then present the proof of the NFL theorem. Finally, we use concrete

examples to illustrate the theorem.

5.5.1 Theoretical Setting

Our theoretical analysis does not take the effects of a heuristic function into

account. Its application is restricted to Dijkstra’s shortest path algorithm,

which is equivalent to A* (Algorithm 1) with no heuristic. In addition, our

analysis considers only transition systems of the form 〈S, L, C, T, sinit, {sgoal}〉,
which have only one goal state sgoal. For a fixed state space S, a problem

instance in S is a pair (sinit, sgoal) where sinit ∈ S is the initial state and

sgoal ∈ S is the goal state.

We analyze the overall effects of cost functions on the set of all problem

instances with a fixed initial state in a state space. In the definition of transi-

tion system (Definition 2), the cost function and the goal states are fixed and

given. Therefore, for our analysis, we use a slightly different formulation in

which we fix everything in a transition system except the cost function C and

the goal state sgoal, which are considered as variables.

Let g(C, s) denote the cost of a least-cost path from the initial state to

state s using the cost function C. The optimal solution cost is g(C, sgoal).

Let SE(C, sgoal) denote the set of states that are “surely expanded” by Di-

jkstra’s algorithm, which are the states that are strictly closer to sinit than

sgoal, i.e., {s | g(C, s) < g(C, sgoal)}. NE(C, sgoal) (stands for “never ex-

panded”) denotes the set of states strictly further from sinit than sgoal, i.e.,

{s | g(C, s) > g(C, sgoal)}. Under no conditions will Dijkstra’s algorithm ex-

pand states in NE(C, sgoal). We call the states with g(C, s) = g(C, sgoal) the

TIE states. Dijkstra’s algorithm might expand some (or all) of the TIE states

or it might expand none. We begin our analysis ignoring the TIE states in

this section. Section 5.6 studies the effects of TIE states specifically.

95

5.5.2 The NFL Theorem

We compare the sets SE(C, sgoal) and NE(C, sgoal) for two different cost func-

tions, C and C ′, considering all possible goal states sgoal in the state space. We

say that the pair of states (s, t) favors C over C ′ if, when the goal state is t, s

is surely expanded when the cost function is C ′ but never expanded when it is

C (Definition 41). We then show that the number of pairs that favor C over C ′

is exactly the same as the number of pairs that favor C ′ over C (Theorem 1).

This immediately implies a No Free Lunch theorem (Theorem 2), which can

be paraphrased thus: for a given start state, no cost function is any “easier”

for Dijkstra’s algorithm than any other cost function when all possible goal

states are taken into consideration and TIE states are ignored.

Note that we consider all possible goal states but fix the initial state because

the key to our NFL theorem is to take an average of the performance difference

between C and C ′ over a set of problem instances, and the minimal set we could

find that had an average of 0 was the set defined by any one fixed initial state

paired with all possible goal states. This set of instances having an average

of 0 immediately implies that an average of 0 will also be obtained by taking

any set of initial states (for example, all possible initial states) as long as each

is paired with all possible goal states.

The key fact underpinning our analysis is the following simple observation:

Lemma 1. For any cost function C and any states s and t, s ∈ SE(C, t) if and

only if t ∈ NE(C, s).

Proof.

s ∈ SE(C, t) ⇐⇒ g(C, s) < g(C, t)

⇐⇒ g(C, t) > g(C, s)

⇐⇒ t ∈ NE(C, s) .

Definition 41. A pair of states (s, t) favors C over C ′ if s ∈ NE(C, t) and

s ∈ SE(C ′, t). favor(C, C ′) is the set of state pairs that favor C over C ′.
96

Applying Lemma 1 to the definitions of favor(C, C ′) and favor(C ′, C) gives

the following:

Theorem 1. For any two cost functions C and C ′ there is a one-to-one corre-

spondence between the elements of favor(C, C ′) and favor(C ′, C).

Proof. For any (s, t) ∈ favor(C, C ′), s ∈ NE(C, t) and s ∈ SE(C ′, t). This

implies, by Lemma 1, that t ∈ SE(C, s) and t ∈ NE(C ′, s), i.e., that

(t, s) ∈ favor(C ′, C). Therefore the mapping φ(s, t) = (t, s) is a one-to-one

correspondence between favor(C, C ′) and favor(C ′, C).

Definition 42. For a goal state t, and two cost functions C and C ′, δt(C, C ′)
is the number of states s such that (s, t) favors C over C ′.

By definition, we have

|favor(C, C ′)| =
∣∣∣∣
⋃

t∈S

{(s, t) | (s, t) ∈ favor(C, C ′)}
∣∣∣∣

=
∑

t∈S

δt(C, C ′) .
(5.1)

Let ∆t(C, C ′) = δt(C, C ′) − δt(C ′, C) whose absolute value |∆t(C, C ′)| indi-

cates how many more (if ∆t(C, C ′) > 0) or fewer (if ∆t(C, C ′) < 0) states are

expanded when solving the problem with C ′ than with C when the goal is t.

By definition, ∆t(C, C ′) = −∆t(C ′, C).

Definition 43. For cost functions C and C ′ we say state t is a goal state that

favors C over C ′ if ∆t(C, C ′) > 0. goals-favor(C, C ′) is the set of goal states that

favor C over C ′.

The following theorem shows that the advantage that C enjoys over C ′ on

the goal states that favor C over C ′ is exactly counterbalanced by the disad-

vantage it suffers on the goal states that favors C ′ over C.

Theorem 2 (No Free Lunch Theorem). For any two cost functions C and C ′,
∑

t∈goals-favor(C,C′)

∆t(C, C ′) =
∑

t∈goals-favor(C′,C)

∆t(C ′, C) .

97

Proof.

|favor(C, C ′)| = |favor(C ′, C)| (by Theorem 1)

⇐⇒
∑

t∈S

δt(C, C ′) =
∑

t∈S

δt(C ′, C) (by Equation (5.1))

⇐⇒ 0 =
∑

t∈S

δt(C, C ′)− δt(C ′, C) =
∑

t∈S

∆t(C, C ′) . (5.2)

Let G+ = goals-favor(C, C ′) = {t | ∆t(C, C ′) > 0}, G− = goals-favor(C ′, C) =

{t | ∆t(C, C ′) < 0} and G0 = {t | ∆t(C, C ′) = 0}. Since S = G+ ∪G− ∪G0, we

have

Equation (5.2)

⇐⇒ 0 =
∑

t∈G+∪G−∪G0

∆t(C, C ′) =
∑

t∈G+∪G−
∆t(C, C ′)

⇐⇒ 0 =
∑

t∈G+

∆t(C, C ′) +
∑

t∈G−
∆t(C, C ′)

⇐⇒ 0 =
∑

t∈goals-favor(C,C′)

∆t(C, C ′) +
∑

t∈goals-favor(C′,C)

∆t(C, C ′)

⇐⇒ 0 =
∑

t∈goals-favor(C,C′)

∆t(C, C ′) −
∑

t∈goals-favor(C′,C)

∆t(C ′, C)

⇐⇒
∑

t∈goals-favor(C,C′)

∆t(C, C ′) =
∑

t∈goals-favor(C′,C)

∆t(C ′, C) .

From a probabilistic point of view, Theorem 1 also implies that the ex-

pected performance difference between two cost functions is zero when goal

states are drawn uniformly at random and TIE states are ignored.

Theorem 3. Let D be the random variable for ∆t(C, C ′) when the goal state

t is drawn uniformly at random from the state space S. Let Gd = {t |
∆t(C, C ′) = d} and let P (D = d) = |Gd|/|S| be the probability that D = d.

The expected value of D is zero, i.e.,

E[D] =
∑

d

(d · P (D = d)) = 0 .

98

Proof. For any d,

d · P (D = d) =
d · |Gd|
|S| =

∑
t∈Gd

∆t(C, C ′)
|S| .

Because
∑

t∈S

∆t(C, C ′) = 0 (Equation (5.2)) and S =
⋃

d

Gd,

∑

d

d · P (D = d) =

∑
t∈S ∆t(C, C ′)
|S| = 0 .

5.5.3 Example: ε-Cost Cycle Traps

The No Free Lunch theorem applies to all state spaces, including the “ε-

cost traps” that Cushing et al. [CBK10; CBK11] designed to illustrate that

search with a non-unit cost function C can expand exponentially more states

than search with the unit cost function U . In their discussion of these traps,

Cushing et al. focused on the specific goal states that revealed this exponential

difference. Our NFL theorem says that these differences in favor of U will be

exactly counterbalanced by performance on other goal states in favor of C.
We will illustrate this with one of the traps Cushing et al. defined, the

cycle trap. The states in a cycle trap are the integers from 0 to 2k − 1 for

some k. Actions increment or decrement an integer modulo 2k, including the

overflow increment (increase 2k−1 to 0), and the overflow decrement (decrease

0 to 2k − 1). In the non-unit cost function C defined by Cushing et al. the

normal increment/decrement actions cost 1 and the overflow actions cost 2k−1.

Figure 5.5(a) shows the cycle trap for k = 3, where the numbers in the circles

identify the states and the numbers next to the edges are the costs of actions.

For the initial state sinit = 0, if the goal state t is close to 2k−1 many fewer

nodes will be expanded using U than using C. For example, when t = 2k − 2,

Dijkstra’s algorithm using U expands 3 states while the search using C has

to expand 2k−1 + 2 states. The NFL theorem says that the advantage for U
on goal states such as 2k − 2 is exactly counterbalanced by the disadvantage

for U on other goal states. Figure 5.5(b) illustrates this for the cycle trap for

k = 6. It shows how many states t have a given value of ∆t(U , C) (x-axis).

99

k NU(k) NC(k) NC(k)−NU(k)
2 5 6 1
3 25 26 1
4 113 116 3
5 481 488 7
6 1985 2000 15
7 8065 8096 31
8 32513 32576 63
9 130561 130688 127
10 523265 523520 255
11 2095105 2095616 511
12 8384513 8385536 1023
13 33546241 33548288 2047
14 134201345 134205440 4095
15 536838145 536846336 8191
16 2147418113 2147434496 16383

Table 5.3: Total number of nodes expanded with cost functions U and C and
their difference for cycle traps of various sizes.

0
1

2

3
4

5

6

7
1

4 1

1

1

11

1

(a)

−30 −20 −10 0 10 20 30
0

5

10

15

∆t(U , C)

co
u

n
t

(b)

Figure 5.5: (a) The cycle trap for k = 3; (b) Histogram for ∆t(U , C), for the
cycle trap with k = 6.

100

There are 64 states in this space, and a quarter of them have a large positive

∆t(U , C) value (the spike at the right edge of the figure). However, the benefit

of U over C on these and the other states having ∆t(U , C) > 0 are exactly

counterbalanced by the benefit of C over U on the states having ∆t(U , C) < 0.

Table 5.3 shows NC and NU , the total number of nodes Dijkstra’s algorithm

expanded with all possible goal states on cycle traps of sizes k = 2 to k = 16

using C and U respectively.

As can be seen, NC is not exactly equal to NU , it is always slightly larger.

This can also be seen in the following formulas, which give the exact number

of nodes expanded for any k:

NU(k) = 22k−1 − 2k + 1 ,

NC(k) = 22k−1 − 3 · 2k−2 .

The difference, NC(k)−NU(k), is 2k−2 − 1.

This difference is tiny relative to the total number of states expanded, but

not zero, because all cycle trap state spaces contain slightly more TIE states

with U than they do with C. The NFL theorem assures us that NC and NU

would be exactly equal if the effect of the TIE states was removed. In the next

section we show that often (but not always) the TIE states work in favor of

the unit cost distribution, as they did in this example.

5.6 Goal-Preference Tie-Breaking

The NFL theorem holds as long as there is no bias2 to a particular problem

taken into consideration. Such problem-specific biases include the tie-breaking

strategy of best-first search, which breaks ties in favor of a goal state of a

particular problem (i.e., goal states are expanded before non-goal states in

tie-breaking). When this tie-breaking strategy is used, the expansion order

of TIE states would be different for different goals, and thus the one-to-one

correspondence in Theorem 1 is not guaranteed to exist between those states.

2 Excluding problem bias is also required for NFL theorems for general search and opti-
mization [Dav95; Dav97].

101

For any cost function, let n ∈ N be the number of distances from the initial

state to all states in the state space and Ai for i ∈ {1, 2, ..., n} be the set of

states that have the i-th smallest distance, and let ai = |Ai| for i ∈ {1, 2, ..., n}.
If the goal state is in Ai, the states in Aj for all j < i are surely expanded

regardless of the tie-breaking strategy. The total number of surely expanded

states for all goal states in Ai is SE(Ai) = ai
∑i−1

j=1 aj. States in Ai are the TIE

states whose expansion depends on the tie-breaking strategy. Let a bias-free

search be Dijkstra’s search algorithm that does not break ties in favor of a

goal state and expands TIE states in a goal-independent fixed order, such as a

lexicographic order of states. For a bias-free search, the total number of states

expanded when the goal state is from Ai is SE(Ai) + 0 + 1 + 2 + · · ·+ ai− 1 =

SE(Ai)+ ai·(ai−1)
2

, where ai·(ai−1)
2

is the cumulative number of extra expansions

in addition to the sure expansions for all goal states in Ai by the bias-free

search.

By contrast, if Dijkstra’s algorithm breaks ties in favor of a goal state and

there are no zero cost actions, none of these extra expansions by the bias-free

search are needed before the goal from Ai is found, which means the first state

to be checked after all sure expansions is the goal state. In this best case, the

total number of expansions saved by tie-breaking over all goal states from all

Ai is thus
n∑

i=1

ai · (ai − 1)

2
=

1

2

n∑

i=1

a2
i −
|S|
2
, (5.3)

and the total number of expansions by Dijkstra’s algorithm is equal to

n∑

i=1

SE(Ai) =
n∑

i=1

(
ai ·

i−1∑

j=1

aj

)

= (a1a2) + (a1a3 + a2a3) + · · ·+ (a1an + a2an + a3an + · · ·+ an−1an)

=
(a1 + a2 + · · ·+ an)2 − (a2

1 + a2
2 + · · ·+ a2

n)

2

=
1

2
(|S|2 −

n∑

i=1

a2
i) (5.4)

The savings due to the best-case tie-breaking depend on the sum-of-squares
∑n

i=1 a
2
i . The larger this sum is, the more expansions are saved by tie-breaking

(Equation (5.3)) and the fewer number of states are expanded by Dijkstra’s

102

unit linear square inverse sqrt

Predict 82, 676 88, 966 90, 426 90, 501 90, 663

Actual 82, 185 88, 318 89, 714 90, 026 90, 021

Table 5.4: The actual average performance of the search and the prediction
based on Equation (5.4) on the 8-puzzle.

algorithm with tie-breaking (Equation (5.4)). This sum-of-squares is smaller

when the distribution of ai is more spread out and the minimum value is

achieved when ai = 1 for all i. It is larger when the distribution is more

concentrated, and the maximum value of |S|2 is achieved when n = 1 and

a1 = |S|. However, this extreme case requires all action costs to be 0 which

means the best case tie-breaking is not guaranteed, i.e., additional expansions

may be needed to reach the goal state after all surely expanded states are

expanded. In practice, the sum-of-squares is much smaller than |S|2.

Our experiments on the 8-puzzle show that the actual average performance

of the search matches the prediction of Equation (5.4). We tested the five cost

functions for the 8-puzzle used previously [Wil14; WR11]. In Table 5.4, the

entry “Predict” contains the average of (|S|2 −∑n
i=1 a

2
i)/2 of 1,500 random

initial states, from which the exhaustive search runs and computes ai values.

The row “Actual” contains the average performance of search over 10, 000

random pairs of initial states and goal states.

The benefit of the tie-breaking is linked to how concentrated the distance

distribution is. On one hand, cost functions that provide diverse action costs

but no 0 cost seem to naturally induce a more spread out distribution than

the unit cost function, which means that unit action cost can benefit more

from tie-breaking. On the other hand, cost functions that contain 0 cost may

induce a distance distribution that is even more concentrated than that of the

unit cost function, suggesting actions with 0 cost may bring some advantages

through tie-breaking. Nevertheless, 0 cost actions means additional TIE states

may be expanded before reaching the goal state, and they may cause “g-value

plateaus” which increase the number of nodes expanded [Ben+10].

103

industrial area residential area

T

Figure 5.6: An illustration for hazardous logistics. Thicker circles represent
industrial locations and thinner circles represent residential locations. The
gray area indicates locations that a residential mode truck can visit. A truck
starts at location T.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

(a
)
u
n
it
co
st

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

(b
)
n
on

-u
n
it
co
st

Figure 5.7: For the example of Figure 5.6, distance distribution induced by
unit cost function (a) is less concentrated than that of non-unit cost function
(b).

5.6.1 Hazardous Logistics

While unit action costs often produce a more concentrated distance distribu-

tion than non-unit action cost, this is not always the case. In this section,

we construct a transition system where the non-unit cost function induces the

more concentrated distribution.

Consider a logistics-like problem where the locations are grouped into res-

idential and industrial regions. In industrial regions, hazardous products may

be transported. Each truck can be in one of three modes: unassigned, resi-

dential and industrial. An unassigned truck cannot move, but can be assigned

to residential or industrial mode at most once (to avoid the risk of mixing

hazardous and safe products). An industrial mode truck is restricted to move

104

within the industrial region. A residential mode truck can only visit a corri-

dor subset of industrial locations. For simplicity, we consider only moving a

truck, without transporting any product. See Figure 5.6 for an illustration.

In the initial state, the truck is at the leftmost location T on the map, in

the unassigned mode. The first step for using this truck is to make a choice

between industrial and residential mode. If the truck is changed to industrial

mode, then it can move only in the industrial area. If the truck is changed

to residential mode, then it first moves across the industrial region and then

in the residential area. In different modes, the truck generates different sets

of states. With unit cost, the reachable states correspond to two peaks in

a bimodal distribution since the residential area is further away (Figure 5.7

(a)). However, if we assign a cost of 6 for changing the truck into industrial

mode, then we get a more concentrated distribution as the two peaks in unit

cost become a single peak in a unimodal distribution (Figure 5.7 (b)). The

sum-of-squares is 62 for the unit cost function, and 82 for non-unit cost.

5.7 Conclusions

In this chapter, we have studied how action costs affect search. We started

with examples and experimental results showing that diverse cost functions

can be beneficial for search and planning. Increasing the cost of an action

can have either a positive or a negative effect on a given problem instance: it

can lead to additional search by delaying the application of an expensive but

necessary action, but it can also accelerate the search by blocking irrelevant

actions and making a path to a goal more attractive to search.

We then focused on a theoretical analysis of effects of action costs on search

without heuristics. While analyzing single instances can be useful in practice,

we have shown that the advantage of one cost function over another largely

disappears when averaging over problem instances within the same state space.

Our No Free Lunch theorem makes this claim precise. Furthermore, we have

analyzed the effect of tie-breaking, and shown that its effect on search efficiency

is controlled by the concentration of the distribution of path costs. Unit costs

105

often have better concentration than non-unit costs but we have introduced a

new planning domain, Hazardous Logistics, in which the opposite is true.

106

Chapter 6

Additive Merge-and-Shrink
Heuristics for Diverse Action
Costs

In this chapter, we study the effects of diverse action costs on merge-and-

shrink algorithms. We first demonstrate that action cost diversity has neg-

ative impacts on M&S heuristics on IPC domains. We then propose a new

cost partitioning scheme called delta cost partitioning (DCP) to address these

negative effects. Our experiments show that M&S using DCP produces a set

of additive M&S heuristics whose combination is much more informative than

a single M&S heuristic that directly encodes the original diverse costs. This

is chapter is based on publication [FMH17a].

6.1 Introduction

There have been several studies on the effects of action cost diversity on heuris-

tic search [AB15; AB16; CBK10], Chapter 5, and on improved search algo-

rithms designed to address diverse action costs [TR11; WR11; WR14]. How-

ever, to the best of our knowledge, there is no study on the influence of di-

verse action costs on the construction and performance of domain-independent

heuristics in the planning literature.

While merge-and-shrink heuristics can be computed for general non-unit

action costs, little is known about how action cost diversity affects this ab-

straction method. In this chapter, we first experimentally analyze the impact

107

of action cost diversity on merge-and-shrink, and then develop an improved al-

gorithm, called DCP-MS, which computes additive M&S heuristics for diverse

action costs.

After a brief discussion of background in Section 6.2, we show in Section 6.3

that the M&S heuristic suffers from diverse action costs on several domains

from IPC, compared to their unit cost counterparts. The section includes an

in-depth analysis of the experimental results. Motivated by these results, in

Section 6.4 we propose a new cost partitioning method, delta cost partitioning,

which limits the cost diversity of partitioned cost functions to only two distinct

costs so that M&S can produce better heuristics.

The cost partitioning exploits the power of M&S for unit costs to help

improve the quality of the heuristic for the non-unit cost case. Our experiments

in Section 6.5 show that an additive set of M&S abstractions using delta cost

partitioning can produce much more informed heuristics than a single M&S

heuristic that uses the diverse action costs directly. The benefits are most

pronounced in domains where action cost diversity has extremely negative

effects on M&S. Our results show a significant improvement to M&S’s handling

of diverse action costs. At last, we prove that for IPC domain Gripper with

non-unit costs, DCP-MS produces perfect heuristics with polynomial size M&S

abstractions.

6.2 Background

Let Θ be a transition system with state space S. A set of heuristic functions

h1, h2, ..., hn is additive for Θ if hsum(s) =
∑n

i=1 hi(s) for any s ∈ S is an

admissible heuristic for Θ. Cost partitioning is a way to distributes the cost

of an action to a set of costs.

Definition 44 (Cost Partitioning). Let L be a transition label set and C a

cost function on L. A cost partitioning of C is a set of cost functions C1, C2,

..., Cn on L, such that
∑n

i=1 Ci(l) = C(l) for any l ∈ L.

For any cost function C for Θ and any abstraction mapping α for Θ, we

use hCα to denote the abstraction heuristic induced by α with cost function C.
108

A cost partitioning can be used to produce additive heuristics. Let C be the

cost function for transition system Θ. For any n ∈ N, any cost partitioning

C1, C2, ..., Cn of C and any abstraction mapping α1, α2, ..., αn for Θ, the set

of heuristics hC1α1
, hC2α2

, ..., hCnαn
is additive for Θ [Yan+08].

For the M&S configuration in this chapter, we use the DFP merging strategy,

bisimulation shrinking with a maximum of 50,000 states per abstraction and

label reduction before shrinking unless stated otherwise. Each run, which

consists of the M&S construction and the A* search, has a 30 minute time

limit and 2 GB memory limit.

6.3 Action Cost Diversity and M&S

In this section, we first inspect the effects of diverse action costs on M&S

heuristics and show that cost diversity has a negative impact. We then discuss

how diverse action costs can affect the M&S construction process.

6.3.1 Experimental Inspection

An accurate way to inspect the effects of diverse costs on a heuristic is to check

how A* using the heuristic performs differently with unit and non-unit cost. In

order to do that, one has to run A* with these heuristics. We have such results

for M&S in Chapter 5. However, as we have also seen that cost diversity affects

A* even without heuristics. To analyze the influence of costs on heuristics, we

need to separate the influence on search without heuristics and on the heuristic

function itself. Thus, in the following, we use the experimental results both

with and without M&S heuristics for our analysis.

Our test set contains the same 12 IPC non-unit action cost domains used

in Chapter 5 with an additional domain of Gripper whose IPC cost is unit

cost. In a Gripper task, the objects are a robot, a set of balls and two rooms.

The robot needs to transport the balls from one room to the other. The robot

has two “gripper” hands. Each hand can carry one ball at a time. We include

Gripper because it is a domain for which M&S can produce bisimulations with

polynomial size which result in perfect heuristics [NHH11] when unit costs are

109

10−3 10−1 101 103

10−3

10−1

101

103

unso.
unit

1 unso.
non-
unit

unso.
unit

1

unso.
non-
unit CaveDiving

CityCar

Elevators

FloorTile

Gripper

OpenStacks

PARCPrinter

PegSol

Scanalyzer

Sokoban

Tetris

Transport

WoodWorking

RDij

R
M

&
S

Figure 6.1: RDij vs. RM&S on tasks solved by both A* with M&S and Dijkstra’s
algorithm

used. We build a non-unit action cost version of Gripper tasks as follows: the

move action still costs 1, but pick-up and drop actions for ball b now have

cost (b mod nc) + 1, where nc = 4 in this experiment.

Commonly Solved Tasks

For any planning task, let U and C denote the unit cost function and the non-

unit cost function respectively. We compute the ratio RM&S = NCM&S/N
U
M&S

for each task, where NCM&S and NUM&S are the numbers of node expansions by

A* with M&S heuristics using C and U respectively. RM&S is the y-axis of

Figure 6.1 (the x-axis is defined below, for now we only consider RM&S, the

height of each point in Figure 6.1). The plot uses a log scale and RM&S = 1 is

the horizontal line in the middle of the plot. Points above this line represent

tasks for which RM&S > 1, i.e. A* with M&S expands more nodes (performs

worse) with C than it does with U . Points below the line are tasks on which

A* with M&S performs better with C than with U . If a task is solved using

C but not U it is placed at the bottom of the plot (on the line labelled unso.

unit). There are no tasks solved using U but not C in this plot. Tasks that

110

Ranges of RDij No. Tasks

[0, 1) 61

[0, 0.1) 17

(1,∞) 36

(10,∞) 0

(a)

Ranges of
RM&S

RDij

No. Tasks

[0, 1) 41

[0, 0.1) 3

(1,∞) 53

(10,∞) 19

(b)

Table 6.1: The numbers of tasks in specific regions in Figure 6.1

are unsolved with both U and C are not shown in the plot.

Because changing the action costs can affect search performance even with-

out using any heuristic, points with RM&S > 1 may have nothing to do with

M&S’s performance with C. It may be that these tasks are simply harder to

solve with C than with U . In order to separate the effect of diverse costs on

M&S from their effect on overall search performance we solve all the tasks

again, with both cost functions, but without a heuristic. Analogous to RM&S

we define RDij to be the ratio of the number of nodes Dijkstra’s algorithm

expands using C to the number of nodes it expands using U . This is the x-axis

in Figure 6.1. Like the y-axis it is a log-scale. RDij = 1 is the vertical line in

the middle of the plot, and tasks solved using C but not U are placed on the

left edge of the plot on the line labelled unso. unit. The vertical gray zone

indicates 10−1 ≤ RDij ≤ 10. Note that Dijkstra’s algorithm performs better

with C: there are more tasks with RDij < 1 than RDij > 1 and more with

RDij < 10−1 than RDij > 10. This has been observed in Chapter 5.

The points above the diagonal line y = x are tasks for which RM&S >

RDij, meaning that compared to Dijkstra’s algorithm, A* with M&S heuristic

performs worse with C than with U . For such tasks, the M&S heuristic may

reduce the number of node expansions for both C and U , but the reduction

is proportionally less for C than for U . For tasks below the line y = x, M&S

performs worse using U than C compared to Dijkstra’s algorithm. For a point

close to the diagonal line, the M&S heuristic shows no obvious advantage for

either C or U relative to Dijkstra’s algorithm. Within the diagonal gray zone,

111

100 102 104 106
100

102

104

106

unso.

unso.

17
12

CaveDiving

CityCar

Elevators

FloorTile

Gripper

OpenStacks

PARCPrinter

PegSol

Scanalyzer

Sokoban

Tetris

Transport

WoodWorking

NU
M&S

N
C M
&
S

Figure 6.2: NU vs. NC on instances that can only be solved by A* with M&S
within the time and memory limit.

the difference is within a factor of 10.

Table 6.1 gives the number of tasks in specific regions of Figure 6.1. Di-

jkstra’s algorithm expands more nodes using U than C on more tasks (61

tasks for RDij < 1 vs. 36 for RDij > 1 in Table 6.1(a). In contrast, the M&S

heuristic shows inferior performance when using C instead of U compared to

Dijkstra’s algorithm (41 tasks for RM&S < RDij but 53 for RM&S > RDij in

Table 6.1(b). 19 tasks have a more than 10-fold increase in the ratio of node

expansions from using C compared to using U , while only 3 tasks have a more

than 10-fold decrease.

Tasks Solved Only by M&S

A handful of tasks that cannot be solved with either U or C by Dijkstra’s

algorithm can be solved by A* with M&S heuristics. These tasks are omitted

from Figure 6.1 as they do not have a meaningful value of RDij. We show this

in Figure 6.2, which compares their NUM&S (x-axis) and NCM&S (y-axis). Thus,

Figure 6.2 gives information which is complementary to Figure 6.1 about the

cost effects on M&S on these tasks.

112

The figure shows many more tasks above the diagonal line than below.

The tasks above the gray zone (NCM&S > 10NUM&S) or on the top unso. line

are those solved by A* with M&S using U but requiring orders of magnitude

more node expansions or being unsolvable within memory/time limits using C.
There are 46 such tasks in total, from 5 domains: WoodWorking, Gripper,

Elevators, PARCprinter and Transport. There are only 6 tasks for which

A* with M&S performs much better using C than using U . These are shown

on the unso. line on the right edge of Figure 6.2.

Overall Effects

The results in Figure 6.1, Figure 6.2 and Table 6.1 show that negative effects

outweigh positive ones for action cost diversity in A* with M&S heuristics. Di-

verse action costs have an extreme negative effect on domains WoodWorking

and Gripper, while Elevators, PARCprinter and Transport are affected

negatively to a more moderate degree. We do not see U or C has a clear advan-

tage in domains CaveDiving, Scanalyzer, Tetris1 and OpenStacks. Non-

unit cost C beats unit cost U in domains PegSol, FloorTile and Sokoban

by a small margin. CityCar is a special domain because its tasks are eas-

ier to solve with C than with U , both with and without M&S, but the M&S

heuristics reduce the search effort more for U than for C.

6.3.2 Action Cost in M&S Construction

We now discuss how action cost can affect the M&S construction process. In

particular, we analyze the effects of action cost on transformation operations

of M&S.

Free Pruning

The reachability in a state space is independent of action cost, so free

pruning—the operation that removes dead states—is not affected by action

1There are 5 Tetris tasks not solved by the M&S method with either C or U , but solved
by Dijkstra’s algorithm. This is because M&S cannot build the abstraction within the time
limit for these tasks. Since this is not a cost-related issue, we omit these tasks.

113

cost.

Merging Strategy

MIASM’s subset search is designed to find variable sets that maximize free prun-

ing, so these variable sets are not influenced by action cost. All linear merging

strategies and UMC are not affected by action costs either, because their merg-

ing decisions are determined by the causal graph and by whether a variable is

a goal variable. Neither the goal relevance scoring function fGR
ms nor the total

order function fTO
ms use information related to action costs. Thus, whether a

scoring-based merging strategy is affected by action costs depends on the main

scoring functions it uses. Therefore, DYN-MIASM, the scoring-based variant of

MIASM, is also independent of action costs.

Changes of action costs can result in changes of the costs of paths in the

transition system, so g-values and h-values of M&S abstractions can be af-

fected. DFP depends on action costs because the label rank (Equation (2.1))

in the DFP’s scoring function fDFP
ms (Definition 29) depends on h-values. Simi-

larly, SCC-DFP depends on action costs but less so because the general merging

guideline is determined by strongly connected components of the causal graph.

DM-HQ, the variant of DYN-MIASM with an additional tie-breaking merge scoring

function fHQ
ms , can be affected by action costs as fHQ

ms depends on h-values.

Non-unit cost and unit cost induce different distributions of states regard-

ing h-values (or g-values) in M&S abstractions. Unit cost is more likely to

induce more concentrated distributions while non-unit cost with wider cost

ranges is more likely to induce less concentrated distributions. In our experi-

ments, we use the DFP merging strategy. Its main scoring function fDFP
ms that

is based on label ranking get more ties for unit cost and fewer ties for non-unit

cost. As a result, it is more likely the last tie-breaking function fTO
ms of DFP

is used with unit cost than with a non-unit cost. This implies that fDFP
ms is

more likely to be more effective with a non-unit cost function than a unit cost

function.

114

Shrinking Strategy

Greedy bisimulation shrinking only relies on action labels but not on the cost

of the labels, so it will not be affected by action costs. Both h-preserving

and f -preserving shrinking can produce different abstractions for different cost

functions because both g-values and h-values depend on action cost. Non-

greedy bisimulation shrinking becomes a h-preserving shrinking when the size

limit is smaller than the largest bisimulation size and thus can be affected by

action costs. The h-preserving shrinking in bisimulation shrinking tends to

prioritize refinement of regions close to the goal. Less concentrated h-value

distribution, which is more likely induced by non-unit action cost, implies a

smaller refinement difference between regions close to the goal and elsewhere,

than the more concentrated h-value distribution usually induced by unit action

cost.

Exact Label Reduction

Exact label reduction facilitates bisimulation shrinking by reducing the bisim-

ulation abstraction sizes without information loss. It is a critical, often neces-

sary (e.g., for Gripper), technique for M&S to create compact bisimulation

abstractions. Because exact label reduction only maps labels with the same

cost to a single label to avoid information loss, action costs have direct and

clear impact on exact label reduction (unlike merging and shrinking strate-

gies): with unit costs, cost-exactness is guaranteed trivially, and with non-unit

costs, exact label reductions are much more limited. As a result, with more

distinct labels in a transition system, bisimulation abstractions become larger

and more harmful shrinking operations are required to reduce the abstraction

size.

6.4 Cost Partitioning for Diverse Action

Costs

Cost partitioning is a technique often used to improve the quality of admissible

heuristics [KD08; Pom+15; SH14; Yan+08]. In this section, we propose a cost

115

C c1 c2 c3 · · · cn−1 cn

C1 ∆1 ∆1 ∆1 · · · ∆1 ∆1

C2 0 ∆2 ∆2 · · · ∆2 ∆2

C3 0 0 ∆3 · · · ∆3 ∆3

...
...

Cn 0 0 0 · · · 0 ∆n

(a)

C 1 3 10

C1 1 1 1
C2 0 2 2
C3 0 0 7

(b)

Figure 6.3: (a) The cost mapping of delta cost partitioning; (b) DCP of a cost
function C that has three different costs 1, 3 and 10.

partitioning method, called delta cost partitioning (DCP), that is aimed at

reducing cost diversity. As M&S benefits from unit cost in many cases, we

partition action costs so that each cost function in the partitioning is simplified

and resembles the unit cost function in a certain way.

Let L be the label set of a planning task, and C be any cost function on

L. Let c0 = 0 and 0 < c1 < c2 < · · · < cn be the n ∈ N different positive cost

values to which the labels in L are mapped by C, and let ∆i = ci − ci−1 for

i ∈ {1, 2, ..., n}. Let Li = {l | C(l) = ci} be the set of labels that have cost

ci for i ∈ {0, 1, ..., n}. DCP divides the costs c1, c2, · · · , cn among n delta cost

functions C1, C2, · · · , Cn as follows. For i ∈ {1, 2, ..., n},

Ci(l) =

{
0, l ∈ ⋃i−1

j=0 Lj ,

∆i, l ∈ ⋃n
j=i Lj .

DCP maps a label to a new cost in a delta cost function depending on the

label’s original cost and the delta cost function. This mapping is illustrated

in Figure 6.3(a), and an example is shown in Figure 6.3(b).

Since each delta cost function Ci maps a label to either cost 0 or ∆i, it has

at most two different costs. With the limited number of distinct costs in a

delta cost function, label reduction becomes much less restricted. This could

be extremely beneficial if label reduction is essential for constructing a high

quality M&S heuristic for the planning task.

After the cost partitioning, we then run M&S on each delta cost function

and obtain an additive set of M&S heuristics. In the rest of the chapter, we call

this method DCP-MS and use the term “single M&S” to refer to the classical

use of a single M&S heuristic.

116

CaveDiving CityCar Elevators FloorTile Gripper

PARCPrinter Scanalyzer Tetris Transport WoodWorking

100 102 104 106
100

102

104

106

unso.

unso.

12

DCP-MS

si
n
g
le

M
&
S

(a)

0 20 40 60 80 100
0

20

40

60

80

100

DCP-MS

si
n
g
le

M
&
S

(b)

Figure 6.4: Comparing DCP-MS (x-axes) and single M&S (y-axes) on: (a)
Numbers of node expansions; (b) The final f -value before time/memory limit
is reached for unsolved instances by both methods, but with M&S abstractions
built successfully.

6.5 Experiments

There could be complex interactions between action costs and M&S’s be-

haviour. While cost functions with limited cost diversity seem beneficial for

label reduction, we do not know how shrinking and merging strategies are

affected, so the effects of delta cost partitioning on M&S need to be tested

experimentally.

In addition, DCP-MS has obvious computational overhead due to multiple

M&S construction, and multiple heuristic look-ups for the additive heuristic.

We need to evaluate the overhead to see whether DCP-MS becomes inferior

to the single M&S even if the new system produces better heuristics.

Each run of DCP-MS, which includes cost partitioning, M&S construc-

tions and A* search, has the same time and memory limit as a single M&S

run regardless of the number of delta cost functions it produces. Each M&S

construction of DCP-MS also uses the same M&S configuration as the single

M&S. Domains PegSol, Sokoban and OpenStacks are excluded here, since

these domains use only action costs 0 and 1. Therefore, delta cost partition-

117

ing only reproduces the single original cost function. In addition, from the

results in Section 6.3.1, these three domains are not affected negatively by the

action cost diversity in their non-unit cost function, so they are not the target

domains for our method.

6.5.1 Performance of Delta Cost Partitioning

Figure 6.4(a) compares the numbers of nodes expanded by single M&S (y-axis)

and DCP-MS (x-axis). In the gray zone, the difference is within a factor of 10.

Points above that zone are strongly favourable for DCP-MS, while for points

below it is much worse.

Overall, DCP-MS outperforms single M&S on many more instances, with

24 instances above the gray zone, of which 15 are solved only by DCP-MS.

These instances are from the three domains Gripper, WoodWorking and

PARCprinter, which are the domains that are most affected by action cost

diversity, according to the results in Section 6.3.1. In particular, the 12 Grip-

per instances solved only by DCP-MS are solved with minimal search effort,

i.e., only states along the optimal solution are expanded. The performance

of DCP-MS on the non-unit cost version of Gripper matches that of single

M&S on the unit cost version of Gripper. Single M&S outperforms DCP-MS

on only 4 instances. Among them, two are unsolved by DCP-MS because it

times out while building its multiple abstractions.

Final f-value on Unsolved Instances

A* expands an open node with smallest f -value. This f -value, which increases

as A* search progresses for consistent heuristics, indicates how much progress

A* has made towards finding an optimal path to goal. For instances that are

unsolved by A* with either DCP-MS or single M&S, but with M&S abstrac-

tions built successfully and A* search started, we compare their final f -values

when the time/memory limit is reached.

Let fsingle and fDCP denote the largest f -value of states A* has expanded

when the time/memory limit is reached, using single M&S and DCP-MS re-

spectively. We scale the f -values for each domain so that their values are

118

CaveDiving CityCar Elevators FloorTile Gripper

PARCPrinter Scanalyzer Tetris Transport WoodWorking

102 103 104 105
102

103

104

105

106

106 fail

fail

DCP-MS

si
n
g
le

M
&
S

(a)

100 101 102
100

101

102

103

103 unso.

unso.

12

DCP-MS

si
n
g
le

M
&
S

(b)

Figure 6.5: Comparing DCP-MS (x-axes) and single M&S (y-axes) on: (a)
Memory (in KB) used for M&S construction; (b) Search time (in seconds) of
instances with successful M&S abstraction construction. Search time less than
1 second is plotted as 1 second.

within [0,100]. A small difference between fsingle and fDCP could mean an ex-

ponential difference in numbers of node expansions, so Figure 6.4(b) compares

fDCP (x-axis) and fsingle (y-axis) in a linear scale plot. The gray zone lies be-

tween the lines fsingle = 11
10
fDCP and fsingle = 10

11
fDCP. The dashed line is defined

by fDCP = 3
2
fsingle. In Figure 6.4(b), there is only one instance above the gray

zone where fsingle is at least 10% larger than fDCP. In contrast, there are 21

instances below the gray zone where fDCP is at least 10% larger than fsingle,

and 7 of them are even below the dashed line indicating fDCP > 3/2×fsingle.

6.5.2 Computational Overhead

For the IPC domains in our experiments, a delta cost partitioning produces be-

tween 2 and 27 delta cost functions depending on the planning task. DCP-MS

may have heavy computational overhead due to multiple M&S construction

and multiple heuristic look-ups.

119

M&S Construction in DCP-MS

Building a M&S abstraction can be an expensive process. However, our results

show that both DCP-MS and single M&S finish the M&S construction on most

of the tasks. Among the 237 planning tasks tested in our experiments, there

are 9 tasks where DCP-MS fails during the M&S construction phase due to

timeout but single M&S succeeds, and 5 (PARCPrinter) tasks where single

M&S fails to build the M&S abstraction due to running out of memory but

DCP-MS builds multiple M&S abstractions successfully. These 5 tasks have

highly diverse action costs which induces a large number of different h-values.

The current implementation of M&S in FastDownward must keep at least one

state for each h-value, thus single M&S runs out of memory when there are

too many different h-values, while cost partitioning of DCP-MS reduces the

cost diversity and thus the number of different h-values of these tasks, making

it feasible to build multiple M&S abstractions.

Figure 6.5(a) compares the maximum memory allocated during M&S con-

struction phases of DCP-MS (x-axis) vs. single M&S (y-axis). The memory

usage of M&S construction for DCP-MS does not increase linearly with the

number of delta cost functions. Most points are located within the gray zone,

with a difference within a factor of 4, and clustered approximately evenly on

both sides of the diagonal line, meaning the neither single M&S nor DCP-MS

has a clear advantage in peak memory usage. On 5 PARCPrinter tasks, sin-

gle M&S runs out of memory during the M&S construction, while DCP-MS

successfully builds multiple abstractions.

The key to the lower memory consumption of DCP-MS in such cases, and

its good memory performance overall, is that M&S requires much less memory

for the heuristic lookup tables than for abstract transition systems. Because

only the heuristic lookup tables are needed in search and DCP-MS constructs

one M&S abstraction at a time for each cost function, the memory for the M&S

abstract transition graphs can be released and reused after each construction.

DCP-MS fails to build abstractions while single M&S succeeds for 9 tasks

(right “fail” line) due to timeout. These 9 tasks are from the domains Cave-

120

Domain N ratio DCP-MS single

CaveDiving 4.44 4.08 597.66 146.31
CityCar 3.00 3.40 502.47 147.71
Elevators 8.38 3.21 15.15 4.72
FloorTile 4.00 4.50 70.27 15.61
Gripper 4.00 2.46 15.97 6.50

PARCPrinter 11.92 1.23 125.80 102.35
Scanalyzer 2.00 1.59 147.53 92.62

Tetris 3.00 1.60 1,281.99 802.71
Transport 19.55 13.48 44.65 3.31

WoodWorking 5.80 4.04 202.39 50.12

Table 6.2: Comparing the M&S construction time (in seconds) for DCP-MS
and single M&S.

diving, Citycar and Tetris where building a M&S abstraction takes a rel-

atively long time. Table 6.2 compares the M&S construction time used by

DCP-MS and single M&S for tasks where both methods build M&S abstrac-

tions successfully. In Table 6.2, column “N” shows the average number of

M&S abstractions that DCP-MS has to build for each domain. The M&S

construction time of DCP-MS is expected to be N times larger than that of

single M&S. Column “ratio” gives the ratios of the average construction time

of DCP-MS (shown in columns “DCP-MS”) to that of single M&S (shown in

columns “single”). The ratio of actual time of M&S construction for DCP-MS

to that of single M&S is often less than N (the ratio is larger than N in only

two domains). Note that in domain PARCprinter, the ratio of construction

time for DCP-MS to single M&S is much less than N , which means building

a M&S abstraction with the original cost function takes much more time than

building one with a delta cost function of reduced cost diversity.

Search Time

To evaluate the overhead of multiple heuristic look-ups, we compare the search

time of DCP-MS and single M&S on tasks with successful M&S construction.

Figure 6.5(b) shows the results. DCP-MS reduces the search time for several

tasks from Gripper, Woodworking and PARCprinter, because the reduc-

tion in node expansions outweighs the overhead of multiple heuristic look-ups

121

for the three domains, whose average numbers of heuristic look-ups per state

are 4.00, 3.30 and 12.13 respectively (tasks that fail during M&S construction

are excluded). There are also tasks where search with a single M&S heuristic

takes less time than with the additive heuristics of DCP-MS. However, for all

these tasks, the increase of search time of DCP-MS compared to single M&S

is within a factor of 4 (the gray zone in Figure 6.5(b)). Among these tasks,

Transport and Elevators tasks have the two highest average numbers of

heuristic look-ups for each state evaluation, 13.86 and 8.25 respectively. The

search time of DCP-MS on tasks from these two domains certainly does not

grow linearly in the number of heuristic look-ups per state, as the number of

node expansions of DCP-MS on these tasks is very close to that of single M&S

(see Figure 6.4(a)).

There are 105 tasks where both methods finish building M&S abstractions

but fail during search. On only 8 of these tasks DCP-MS fails due to timeout

during search while single M&S fails due to the memory limit. On the other

97 tasks, both methods fail due to the memory limit.

Overall, there is only a small computational overhead in the M&S con-

struction and search of DCP-MS.

6.6 DCP-MS for Gripper

Gripper is a domain in which label reduction is essential but the tasks suffer

from cost diversity. In this section, we first prove that DCP-MS can produce

perfect heuristics for Gripper with diverse costs for pick-up and drop actions

through exponentially smaller M&S abstractions than single M&S. Then, we

perform experiments on Gripper with diverse costs to see how DCP-MS ame-

liorates the negative effects of cost diversity on this domain in practice.

6.6.1 Perfect Heuristic with Polynomial Size M&S Ab-
stractions

Without label reduction, bisimulations for Gripper are exponentially large

[NHH11]. Thus, single M&S cannot produce polynomial bisimulation for Grip-

122

per with diverse action costs because the different costs prohibit exact label

reduction. We show that DCP-MS produces perfect heuristics with polynomial

size bisimulation. The proof has two parts. We first show that the additive

heuristics of the bisimulation abstractions based on any cost partitioning pro-

duces a perfect heuristic for Gripper for any original cost function that has

no zero cost. We then show that DCP can ensure the bisimulation size is

only polynomial in the representation size of a Gripper task, based on how

bisimulation abstraction aggregates states for these tasks [NHH11].

Perfect Heuristics with DCP

A Gripper task contains two rooms A and B. All balls are initially in one

room A and the goal is to move all balls to room B. For any Gripper task

with m balls, there are the following variables.

• R indicates the location of the robot. Its domain contains two values A

and B meaning the robot is in room A and in room B respectively.

• Gl and Gr are variables for the left and right gripper of the robot.

The domain of each gripper variable has m + 1 values E and Bi for

i ∈ {1, 2, ...,m}. E indicates that the gripper is empty and available

for picking up a ball, and Bi indicates that the gripper holds ball i.

• Bi is the variable for ball i and can have 3 values H, A and B which

means the ball is being held by a gripper, is in room A and is in room

B respectively.

Let P be a path and let s
a−→ P denote the concatenation of s and action

a at the beginning of P . P (s) denotes a path starting with s. For a state s,

s(v) denotes the value of variable v of s.

Definition 45 (Necessary Solution Path for Gripper). The necessary solution

path P (s) for a Gripper state s are defined as follows.

P (s) =

{
(s) if s is a goal state

s
a−→ P (s′) otherwise

where s
a−→ s′ is a transition and a is an action defined as follows.

123

• if s(R) = B

– if s(Gl) = E and s(Gr) = E, then a is the move action that changes

the location of the robot from B to A.

– if s(Gl) = Bi (or s(Gr) = Bi) then a is the drop action that drops

ball i from the left (or right) gripper

• if s(R) = A

– if s(Gl) 6= E and s(Gr) 6= E, or s(Bi) 6= A for all i ∈ {1, 2, ..., n},
then a is the move action that changes the location of the robot

from A to B.

– if s(Bi) = A for some i ∈ {1, 2, ..., n} and s(Gl) = E (or s(Gr) = E),

then a is the pick-up action that pick up the ball i by the left (or

right) gripper.

In the necessary solution path, each ball in room A is picked up and

dropped exactly once, and the robot carries two balls whenever possible and

moves from room A to room B only when carrying balls and moves from room

B to room A only with empty grippers and only when there are still balls in

room A. We have the following observation.

Proposition 2. Let Θ be the transition system for a Gripper task and let s

be a state in Θ. The necessary solution path P (s) for s is optimal for any cost

function C, i.e., C(P (s)) = hCΘ(s).

Proof. Let mA be the number of balls in room A in s. In any path from s to

a goal state, each ball in room A is picked up and dropped at least once, so

there are at least mA pick-up actions and at least mA drop actions. The robot

has to move from room A to room B at least dmA/2e times. If the robot is

currently in room B, it has to move from room B to room A dmA/2e times.

If the robot is currently in room A, it has to move from room B to room A

dmA/2e − 1 times. The number of actions in the necessary path of s reaches

these lower-bounds, so it is optimal for any action cost.

124

Proposition 3. Let Θ be the transition system for a Gripper task and let s

be a state in Θ. Let C be a cost function for Θ. Let n ∈ N and C1, C2, ..., Cn
be any cost partitioning for C Then hCΘ(s) =

∑n
i=1 hCiΘ (s).

Proof. By Proposition 2, hCΘ(s) = C(P (s)) and hCiΘ (s) = Ci(P (s)) for any

i ∈ {1, 2, ..., n}. Thus hCΘ(s) = C(P (s)) =
∑n

i=1 Ci(P (s)) =
∑n

i=1 hCiΘ (s).

Since M&S with bisimulation shrinking can produce heuristic hi(s) =

hCiΘ (s) for all Ci [NHH11], we can get the perfect heuristic for the original

cost function.

Bisimulation with Polynomial Size

Now we show that when greedy bisimulation shrinking and exact label reduc-

tion are used, there exists a merging order such that the size of the maximum

intermediate abstraction is polynomial in the number of balls and exponential

in the number of different costs for pick-up and drop actions. The following

known fact is used for our proof.

Proposition 4 ([NHH11]). For any Gripper task, the bisimulation shrinking

aggregates the states that have the same number of balls in each room and

the same condition for the robot (values for R, Gl and Gr) which results in a

bisimulation abstraction of polynomial size in the number of balls.

By Proposition 4, for any variable set V of a Gripper task, the bisimula-

tion of πV can be produced through a merge-and-shrink process in which the

maximum intermediate abstraction size is polynomial in the number of balls

considered in V .

Proposition 5. Let Π be a Gripper task of m balls and n different costs for

pick-up and drop actions. We can obtain a bisimulation of Θ(Π) through

a merge-and-shrink process in which the maximum intermediate abstraction

size is polynomial in m and exponential in n.

Proof. Let V0, V1, V2, ..., Vn be a partitioning of V in which V0 = {R,Gl, Gr}
and Vi for i ∈ {1, 2, ..., n} is a set of mi ball variables for which their pickup

125

costs are the same and drop costs are also the same. We use greedy bisimula-

tion shrinking and exact label reduction. We merge variables in each Vi first,

then merge the n+1 produced M&S abstractions of Vi for i ∈ {0, 1, ..., n} which

are bisimulations of πVi . The size of the projection πV0 is 2 ∗ (m+ 1) ∗ (m+ 1),

a polynomial in m. For any i ∈ {1, 2, ..., n}, the bisimulation of πVi can be

produced through a merge-and-shrink process in which the maximum inter-

mediate abstraction size is polynomial in mi and thus polynomial in m. Since

we have n + 1 bisimulations, all with sizes polynomial in m, the size of their

product is also polynomial in m but exponential in n.

n can be as large as m, so the maximum intermediate abstraction size can

be exponential in m if we use the above strategy. However, DCP produces n

delta cost functions with at most 2 different costs each, so for each delta cost

function, we can obtain the bisimulation of the transition system of a Gripper

task with size polynomial in m (in particular, O(m6)) and thus the sum of the

sizes of these bisimulations is also polynomial in m.

6.6.2 Experiment Results

The non-unit cost function in the modified Gripper domain from Section 6.3.1

has nc = 4 different costs. Our earlier experiments showed that single M&S

has trouble dealing with such diversity, while DCP-MS works very well. We

now further test how well DCP-MS performs as the cost diversity increases.

The pick-up/drop action costs for ball b are (b mod nc)+1. The parameter

nc gives an upper bound on the number of different costs for pick-up/drop

actions. The number of balls in IPC Gripper tasks ranges from 4 to 42.

We compare the number of tasks solved by single M&S and DCP-MS as nc

increases. In addition to the default M&S configuration, we also test the

variant that does not limit abstraction size, which has the best performance

on the unit cost Gripper.

Table 6.3 shows the coverage of DCP-MS and single M&S for different nc.

For the last row of nc = “#balls”, each ball has a different pick-up/drop

cost. There are 20 Gripper tasks. The columns under “50K” and “no limit”

126

nc
50K no limit

DCP-MS single DCP-MS single

1 19 19 (19) 20 20
2 19 12 (12) 20 20
4 19 7 (6) 20 20
8 16 7 (4) 20 11
16 14 7 (4) 20 7

#balls 13 7 (4) 18 7

Table 6.3: Coverages of Gripper with increasing cost diversity for DCP-MS
and single M&S using two different M&S configurations.

show the coverage of DCP-MS and single M&S using M&S configurations with

a size limit of 50,000 states (non-greedy bisimulation shrinking) and without

any size limit (greedy bisimulation shrinking) respectively. For single M&S

with 50K size limit, the number of tasks solved with the minimal search effort

is shown in brackets. For all other methods, all solved tasks are solved with

minimal search effort. With either M&S configuration, the coverage of single

M&S decreases faster than DCP-MS as nc increases. When every ball has a

different cost, DCP-MS with no size limit can solve 18 tasks, with minimal

search effort, while single M&S solves only the 7 smallest tasks.

6.7 Conclusions

We have studied the effects of diverse action costs on M&S. We have shown

that action cost diversity can affect M&S negatively and have proposed a new

method, DCP-MS, additive M&S with delta cost partitioning, to address this

issue. The experiments show that DCP-MS produces much more informa-

tive heuristics than the standard M&S on several IPC domains, especially on

those affected negatively by action cost diversity. Our case study on Gripper

demonstrates the power of DCP-MS for this IPC domain in theory and in

practice.

127

Chapter 7

Conclusions

In this chapter, we summarize the contributions of this thesis. We also discuss

the limitations and some future directions of this thesis research.

7.1 Contributions

In this thesis, we studied how to effectively create and use merge-and-shrink

heuristics for cost-optimal planning. In the following, we describe the contri-

butions of this thesis.

In Chapter 3, we proposed three non-linear merging strategies UMC, MIASM

and DM-HQ. Each of the proposed merging strategies explores a unique idea

for constructing more informative M&S heuristics. UMC is the first non-linear

merging strategies proposed in planning community, which is based on the

idea that more closely related variable should be merged earlier. MIASM is a

sophisticated merging strategies that improves the M&S heuristic by trying

to maximize the amount of free-pruning to reduce harmful shrinking during

the construction. This idea has been proved to be an important criterion for

a successful merging strategy. Unlike MIASM and UMC which use an indirect

criteria for constructing better M&S heuristics, DM-HQ uses a scoring function

that seeks high-quality M&S heuristics directly through an estimation of the

heuristic quality. Experiments show that DM-HQ currently outperforms other

M&S method when used alone.

In Chapter 4, we proposed an extreme efficient M&S method called MS-lite,

and explored the potential of combining two complementary M&S heuristics.

128

Our experiments show that MS-lite complements other M&S methods very

well, and the complementarity between MS-lite and DM-HQ is the strongest.

The combination of the two outperforms the state-of-the-art M&S method

dramatically by solving 75 more tasks on an IPC benchmark set of 1499 tasks,

making it the current best performing M&S method.

In Chapter 5, we showed that non-unit action costs can have both positive

and negative effects on heuristic search planning and provide the foundation for

our studies on how action costs affect M&S heuristic in Chapter 6. Prior to our

study, planning with non-unit action costs was considered more difficult than

with the unit cost. Our research provided experimental evidence that diverse

action costs can make planning easier. The main contribution of this study is a

No Free Lunch theorem showing that, when heuristics and TIE states are not

considered, the overall negative effect of cost diversity are counterbalanced

by the overall positive effects. We also showed that it is advantageous to

have a strongly concentrated distribution of solution costs when taking the

goal-preference tie-breaking into consideration. Unit costs often give rise to a

more concentrated distribution than non-unit costs, but we also provided an

example domain in which the opposite is the case.

In Chapter 6, we first showed that there are the negative effects of diverse

action costs on M&S heuristics on IPC domains with diverse action costs. We

then proposed an additive M&S method DCP-MS to handle such negative

effects. The study in this chapter is the first to analyze effects of action cost

diversity on a domain-independent heuristic. Our experiments demonstrate

that DCP-MS produces more informative heuristics than a single M&S for the

impacted IPC domains. We also proved that for IPC domain Gripper with

non-unit costs, DCP-MS produces perfect heuristics with polynomial size M&S

abstractions.

7.2 Limitations

We now discuss some of the limitations of the current research.

129

Free Pruning Dependency of MIASM. The main limitation of MIASM is

that it works only when there are states that can be removed by free pruning.

If a state space has no dead states, MIASM cannot provide any suggestion for

merging.

Construction of Merging Products for Evaluations. MIASM and many

scoring functions require construction of synchronized products of potential

merges. These synchronized products only exist for evaluating the merging

decisions and may require a lot of time and memory for their construction.

Heuristic Quality Guided Greedy Search. A scoring-based merging

strategy is a greedy process. Heuristic quality scoring functions fHQ
ms seem

to suffer from the greediness of this process. This is the reason why using

fHQ
ms alone does not provide an outstanding performance even though its score

measures the heuristic quality directly. In DM-HQ, fHQ
ms is used as a secondary

function to avoid this problem.

Heuristic Evaluation on Initial States. In fHQ
ms functions, we use only the

initial states to evaluate heuristics. This choice may make a merging strategy

concentrate the refinement on the region around the solution paths but leave

other regions under refined. This could result in poor heuristics with smaller

heuristic values on states further away from the solution paths and mislead

the search into the regions consist of these states.

The Limitation of the NFL Theorem. The theoretical setting of the

NFL theorem is limited. It does not extend to the cases where heuristics are

used or multiple goal states are considered, which is standard for heuristic

search planning. It is unclear whether there exist similar theorems for a more

relaxed setting.

Complexity of DCP. The number of cost functions of DCP is the number

of different action costs of the original cost function. Although experiments

130

show that DCP has small overhead for most non-unit cost IPC domains, there

can be domains with too many different costs for DCP to handle.

7.3 Future Work

In this section, we discuss interesting directions for future research. Some of

the directions are directly inspired by the limitations mentioned above.

Generalizing MIASM. The subset search of MIASM is a global search for good

merging decisions. It is more expensive than the local search of scoring-based

merging strategy, but reveals long-term effects of merging decisions. One po-

tential direction for improving its merging strategy is to generalize the subset

search of MIASM by using other optimization criteria such as heuristic quality

estimation in fHQ
ms .

Synchronized Search on Factor Systems. Many successful merging

strategies need to temporarily construct the product transition systems of po-

tential merges to evaluate the merging decisions, e.g., finding the dead states

for MIASM, or computing the heuristic value for fHQ
ms . They construct a tempo-

rary product so that they can perform searches (Dijkstra’s algorithm that does

not terminate with goal states) on the transition system to get information

for the merging decision evaluations. However, in theory, search can still be

performed without doing the actual merging operation. This is possible with

a synchronized search that can verify conditions in multiple factor systems for

applicability of actions and goal checking, and apply actions in these factor

systems simultaneously. Such a synchronized search is not limited to only two

factor systems of a merging operation but can be applied to multiple factor

systems, i.e., for evaluating merging more than two systems. Using this kind

of search can reduce the time and memory for merging decision evaluations.

Deeper Search of Scoring-Based Merging. The scoring-based merging

strategies only evaluate one merging step ahead. We could also do the evalu-

ations on more than one merging step. This increases the complexity dramat-

131

ically, so some pruning is probably needed. One way to reduce the evaluation

complexity is to do the lookahead of the next step only with the few optimal or

near-optimal candidates (according to a scoring function) of the current step.

Again, this is a research direction that would explore improvements of merging

strategies by looking more into the long-term effects of merging decisions.

Fundamental Causes for Smaller M&S Abstractions Producing Bet-

ter Heuristics. Our experiments show that there are problems where

smaller h-preserving abstraction can product better heuristics. When it comes

to M&S abstraction it is not simply that “the larger the better”. Although

we constructed an example to demonstrate how this counter-intuitive situation

can happen, we do not know if there is a fundamental cause for this. Investigat-

ing this phenomenon would be an interesting research direction for improving

our understanding of M&S and may lead to better shrinking strategies.

DCP for Other Heuristics. DCP improves M&S heuristic by reducing the

number of distinct action costs, which is helpful for the exact label reduction

of M&S. It is possible other domain-independent heuristics are also negatively

affected by the distinctiveness of action costs. It is worth further research to

study whether DCP can help other planning heuristics to handle diverse action

costs better.

132

References

[AB15] Meysam Aghighi and Christer Bäckström. “Cost-Optimal and
Net-Benefit Planning - A Parameterised Complexity View.” In:
Proceedings of the 24th International Joint Conference on Artifi-
cial Intelligence. 2015, pp. 1487–1493.

[AB16] Meysam Aghighi and Christer Bäckström. “A Multi-Parameter
Complexity Analysis of Cost-Optimal and Net-Benefit Planning.”
In: Proceedings of the 26th International Conference on Auto-
mated Planning and Scheduling. 2016, pp. 2–10.

[AH97] Esther M. Arkin and Refael Hassin. “On Local Search for
Weighted k-Set Packing.” In: Algorithms - ESA ’97, 5th Euro-
pean Symposium on Algorithms. 1997, pp. 13–22.

[BN95] Christer Bäckström and Bernhard Nebel. “Complexity Results
for SAS+ Planning.” In: Computational Intelligence 11 (1995),
pp. 625–656.

[Ben+10] J. Benton, Kartik Talamadupula, Patrick Eyerich, Robert
Mattmüller, and Subbarao Kambhampati. “G-Value Plateaus:
A Challenge for Planning.” In: Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling. 2010,
pp. 259–262.

[BG01] Blai Bonet and Hector Geffner. “Planning as Heuristic Search.”
In: Artificial Intelligence 129.1-2 (2001), pp. 5–33.

[CH01] Barun Chandra and Magnús Halldórsson. “Greedy Local Improve-
ment and Weighted Set Packing Approximation.” In: Journal of
Algorithms 39.2 (2001), pp. 223–240. issn: 0196-6774.

[CBK10] William Cushing, J. Benton, and Subbarao Kambhampati. “Cost
Based Search Considered Harmful.” In: Proceedings of the 3rd
Annual Symposium on Combinatorial Search. 2010, pp. 140–141.

[CBK11] William Cushing, J. Benton, and Subbarao Kambhampati.
“Cost Based Satisficing Search Considered Harmful.” In: CoRR
abs/1103.3687 (2011).

[Dav95] William G. Macready David H. Wolpert. No Free Lunch Theorems
for Search. Tech. rep. Santa Fe Institute, 1995.

133

[Dav97] William G. Macready David H. Wolpert. “No Free Lunch Theo-
rems for Optimization.” In: IEEE Transactions on Evolutionary
Computation 1.1 (1997), pp. 67–82.

[DP85] Rina Dechter and Judea Pearl. “Generalized Best-First Search
Strategies and the Optimality of A*.” In: Journal of the ACM
32.3 (1985), pp. 505–536.

[Dij59] Edsger W. Dijkstra. “A Note on Two Problems in Connexion with
Graphs.” In: Numerische Mathematik 1.1 (1959), pp. 269–271.

[DFP06] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. “Directed
Model Checking with Distance-Preserving Abstractions.” In: Pro-
ceedings of Model Checking Software, 13th International SPIN
Workshop. Vol. 3925. 2006, pp. 19–34.

[DFP09] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. “Di-
rected Model Checking with Distance-Preserving Abstractions.”
In: STTT, International Journal on Software Tools for Technology
Transfer (2009), pp. 27–37.

[Ede01] Stefan Edelkamp. “Planning with Pattern Databases.” In: Pro-
ceedings of the 6th European Conference on Planning. 2001,
pp. 84–90.

[Ede06] Stefan Edelkamp. “Automated Creation of Pattern Database
Search Heuristics.” In: Model Checking and Artificial Intelligence.
2006, pp. 35–50.

[ES12] Stefan Edelkamp and Stefan Schrödl. Heuristic Search - Theory
and Applications. Academic Press, 2012.

[FH15] Gaojian Fan and Robert C. Holte. “The Spurious Path Problem
in Abstraction.” In: Proceedings of the 8th Annual Symposium on
Combinatorial Search. 2015, pp. 18–27.

[FHM18] Gaojian Fan, Robert Holte, and Martin Müller. “MS-Lite: A
Lightweight, Complementary Merge-and-Shrink Method.” In:
Proceedings of the 28th International Conference on Automated
Planning and Scheduling. 2018, pp. 74–82.

[FMH14] Gaojian Fan, Martin Müller, and Robert Holte. “Non-Linear
Merging Strategies for Merge-and-Shrink Based on Variable Inter-
actions.” In: Proceedings of the 7th Annual Symposium on Com-
binatorial Search. 2014, pp. 53–61.

[FMH17a] Gaojian Fan, Martin Müller, and Robert Holte. “Additive Merge-
and-Shrink Heuristics for Diverse Action Costs.” In: Proceedings
of the 26th International Joint Conference on Artificial Intelli-
gence. 2017, pp. 4287–4293.

134

[FMH17b] Gaojian Fan, Martin Müller, and Robert Holte. “The Two-Edged
Nature of Diverse Action Costs.” In: Proceedings of the 27th In-
ternational Conference on Automated Planning and Scheduling.
To appear. 2017.

[Fra+17] Santiago Franco, Álvaro Torralba, Levi H. S. Lelis, and Mike Bar-
ley. “On Creating Complementary Pattern Databases.” In: Pro-
ceedings of the 26th International Joint Conference on Artificial
Intelligence. 2017, pp. 4302–4309.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths.” In: IEEE Transactions on Systems Science and Cyber-
netics (1968), pp. 100–107.

[Has+07] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven
Koenig. “Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning.” In: Proceedings of the
22nd AAAI Conference on Artificial Intelligence. 2007, pp. 1007–
1012.

[HG00] Patrik Haslum and Hector Geffner. “Admissible Heuristics for Op-
timal Planning.” In: Proceedings of the 5th International Confer-
ence on Artificial Intelligence Planning Systems. 2000, pp. 140–
149.

[Hel04] Malte Helmert. “A Planning Heuristic Based on Causal Graph
Analysis.” In: Proceedings of the 14th International Conference
on Automated Planning and Scheduling. 2004, pp. 161–170.

[Hel06] Malte Helmert. “The Fast Downward Planning System.” In: Jour-
nal of Artificial Intelligence Research 26 (2006), pp. 191–246.

[HD09] Malte Helmert and Carmel Domshlak. “Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway?” In: Pro-
ceedings of the 19th International Conference on Automated Plan-
ning and Scheduling. 2009.

[HHH07] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. “Flexible Ab-
straction Heuristics for Optimal Sequential Planning.” In: Pro-
ceedings of the 17th International Conference on Automated Plan-
ning and Scheduling. 2007, pp. 176–183.

[Hel+14] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim.
“Merge-and-Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces.” In: Journal of the ACM (2014),
16:1–16:63.

135

[HN01] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System:
Fast Plan Generation Through Heuristic Search.” In: Journal of
Artificial Intelligence Research (2001), pp. 253–302.

[Hol10] Robert C. Holte. “Common Misconceptions Concerning Heuristic
Search.” In: Proceedings of the 3rd Annual Symposium on Com-
binatorial Search. 2010, pp. 46–51.

[Ike+94] T. Ikeda, Min-Yao Hsu, H. Imai, S. Nishimura, H. Shimoura, T.
Hashimoto, K. Tenmoku, and K. Mitoh. “A Fast Algorithm for
Finding Better Routes by AI Search Techniques.” In: Proceedings
of Vehicle Navigation and Information Systems Conference. 1994,
pp. 291–296.

[KD08] Michael Katz and Carmel Domshlak. “Optimal Additive Compo-
sition of Abstraction-based Admissible Heuristics.” In: Proceed-
ings of the 18th International Conference on Automated Planning
and Scheduling. 2008, pp. 174–181.

[KHH12] Michael Katz, Jörg Hoffmann, and Malte Helmert. “How to Relax
a Bisimulation?” In: Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling. 2012.

[Kno94] Craig A. Knoblock. “Automatically Generating Abstractions for
Planning.” In: Artificial Intelligence 68.2 (1994), pp. 243–302.

[Mar77] Alberto Martelli. “On the Complexity of Admissible Search Algo-
rithms.” In: Artificial Intelligence 8.1 (1977), pp. 1–13.

[Mil90] Robin Milner. “Operational and Algebraic Semantics of Concur-
rent Processes.” In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B). 1990, pp. 1201–1242.

[Nak13] Hootan Nakhost. “Random Walk Planning: Theory, Practice, and
Application.” PhD thesis. University of Alberta, 2013.

[NHH11] Raz Nissim, Jörg Hoffmann, and Malte Helmert. “Computing Per-
fect Heuristics in Polynomial Time: On Bisimulation and Merge-
and-Shrink Abstraction in Optimal Planning.” In: Proceedings of
the 22nd International Joint Conference on Artificial Intelligence.
2011, pp. 1983–1990.

[Pea84] Judea Pearl. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley, 1984. isbn: 978-0-201-
05594-8.

[Pom+15] Florian Pommerening, Malte Helmert, Gabriele Röger, and Jen-
drik Seipp. “From Non-negative to General Operator Cost Parti-
tioning.” In: Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence. AAAI’15. 2015.

136

[RW10] Silvia Richter and Matthias Westphal. “The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.” In:
Journal of Artificial Intelligence Research 39 (2010), pp. 127–177.

[RWH11] Silvia Richter, Matthias Westphal, and Malte Helmert. “LAMA
2008 and 2011.” In: International Planning Competition. 2011,
pp. 117–124.

[SH13] Jendrik Seipp and Malte Helmert. “Counterexample-Guided
Cartesian Abstraction Refinement.” In: Proceedings of the 23rd
International Conference on Automated Planning and Scheduling.
2013.

[SH14] Jendrik Seipp and Malte Helmert. “Diverse and Additive Carte-
sian Abstraction Heuristics.” In: Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling. 2014,
pp. 289–297.

[Sie17] Silvan Sievers. “Merge-and-shrink Abstractions for Classical Plan-
ning: Theory, Strategies, and Implementation.” PhD thesis. Uni-
versity of Basel, 2017.

[Sie18] Silvan Sievers. “Merge-and-Shrink Heuristics for Classical Plan-
ning: Efficient Implementation and Partial Abstractions.” In: Pro-
ceedings of the 7th International Symposium on Combinatorial
Search. 2018, p. 99.

[SWH14] Silvan Sievers, Martin Wehrle, and Malte Helmert. “Generalized
Label Reduction for Merge-and-Shrink Heuristics.” In: Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence. 2014,
pp. 2358–2366.

[SWH16] Silvan Sievers, Martin Wehrle, and Malte Helmert. “An Analysis
of Merge Strategies for Merge-and-Shrink Heuristics.” In: Proceed-
ings of the 26th International Conference on Automated Planning
and Scheduling. 2016, pp. 294–298.

[SW97] Mechthild Stoer and Frank Wagner. “A simple min-cut algo-
rithm.” In: Jouranal of the ACM 44.4 (1997), pp. 585–591.

[TBH12] Jordan T. Thayer, J. Benton, and Malte Helmert. “Better
Parameter-Free Anytime Search by Minimizing Time Between So-
lutions.” In: Proceedings of the 5th Annual Symposium on Com-
binatorial Search. 2012, pp. 120–128.

[TR09] Jordan T. Thayer and Wheeler Ruml. “Using Distance Esti-
mates in Heuristic Search.” In: Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling. 2009,
pp. 382–385.

137

[TR11] Jordan T. Thayer and Wheeler Ruml. “Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.” In:
Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence. 2011, pp. 674–679.

[Wil14] Christopher Wilt. “Steps Towards a Science of Heuristic Search.”
PhD thesis. University of New Hampshire, 2014.

[WR11] Christopher Wilt and Wheeler Ruml. “Cost-Based Heuristic
Search Is Sensitive to the Ratio of Operator Costs.” In: Proceed-
ings of the 4th Annual Symposium on Combinatorial Search. 2011,
pp. 172–179.

[WR14] Christopher Wilt and Wheeler Ruml. “Speedy Versus Greedy
Search.” In: Proceedings of the 7th Annual Symposium on Com-
binatorial Search. 2014, pp. 184–192.

[Yan+08] Fan Yang, Joseph C. Culberson, Robert Holte, Uzi Zahavi, and
Ariel Felner. “A General Theory of Additive State Space Abstrac-
tions.” In: Journal of Artificial Intelligence Research 32 (2008),
pp. 631–662.

138

	Introduction
	Planning
	Heuristic Search
	Merge-and-Shrink
	Contributions of this Thesis

	Basic Concepts
	Planning
	Planning Task
	Transition System

	Heuristic Search
	Abstraction
	Abstraction Mapping
	Abstraction Heuristic
	Projection

	Merge-and-Shrink
	Transformation Operations
	Merge-and-Shrink Abstraction
	The Merge-and-Shrink Algorithm
	Merging Strategy
	Shrinking Strategy
	Free Pruning
	Exact Label Reduction

	Benchmark and Evaluation

	Non-Linear Merging Strategies
	Introduction
	UMC: Merging Using the Minimum Cuts of Causal Graphs
	Example of UMC in Action
	Experiments

	Minimizing the Maximum Intermediate Abstraction Size
	Motivation
	Merging Strategy MIASM
	Experiments

	Heuristic Quality Guided Merging
	Related Work
	Scoring Heuristic Quality Improvement
	Integration with DYN-MIASM

	Conclusions

	MS-lite: A Lightweight, Complementary Merge-and-Shrink Method
	Introduction
	A Lightweight Merge-and-Shrink Method
	Efficient Construction
	Construction Efficiency
	Complex but Easy Tasks

	Better Heuristics on Some Domains
	An Example of Beneficial Active Shrinking

	MS-Lite Enhancement
	Experiments
	Low Variance of Lite-Enhancement
	Small Performance Degeneration
	Stronger Complementarity with DM-HQ
	Detailed Per-Domain Analysis

	Other Fallback Heuristics
	Blind Heuristic
	Partial Merge-and-Shrink Heuristic

	Conclusions

	The Two-edged Nature of Diverse Action Costs
	Introduction
	Related Work
	Motivating Examples
	Example 1: IPC PARCPrinter Problem
	Example 2: 15-Puzzle
	Example 3: Heuristics as Diverse Action Costs

	Diverse Costs in IPC Domains
	Effects on A* with Heuristics
	Effects on A* Without Heuristics

	No Free Lunch Theorem
	Theoretical Setting
	The NFL Theorem
	Example: -Cost Cycle Traps

	Goal-Preference Tie-Breaking
	Hazardous Logistics

	Conclusions

	Additive Merge-and-Shrink Heuristics for Diverse Action Costs
	Introduction
	Background
	Action Cost Diversity and M&S
	Experimental Inspection
	Action Cost in M&S Construction

	Cost Partitioning for Diverse Action Costs
	Experiments
	Performance of Delta Cost Partitioning
	Computational Overhead

	DCP-MS for Gripper
	Perfect Heuristic with Polynomial Size M&S Abstractions
	Experiment Results

	Conclusions

	Conclusions
	Contributions
	Limitations
	Future Work

	References

