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ABSTRACT

2 An accurate, hxgh order beam shaft f1n1te element 1s_ e

1 . . \

;_developed for unlform and non Uniform cross sectlons The

’geometry and dynamlc character, is to 1nclude ’he dlsks

*A'f.

and rotatory 1nert1a effects of the beam are 1ncluded The

g

-ithe gyroscoplc effects oféshaft and dlSk elther in. a.

“

forward or a backward c1rcular whlrl '“f'fffaw_ :

e

o leferent klnds of‘wheels(dlsks) are mounted on. the

turblne span In a f1n1te element model these 1nterm1ttent

dlSkS are usually placed at éﬁe element nodes, forclng the

vneed for a node at every dlsk locatxon.\An equ1valent

ry

BN

w1th1n a 51ngle element Such an element is developed whlchkfff,f

-

successfully compares w1th 51mple shaft dlsk sysgéﬁsmand

'contlnuous dlSk systems.,A repeatlng system can be modelled
- at a reduced cost u51ng the per1od1c type shalt dlsk

Telement

The turblne rotor 1tself 1s not unlform in

‘cross- sectlon but 1s, usually, stepped at a number of

pos1tlons. Representlng each of these steps by an element

leads to a\largg system matrix, The shaft dlSCOhtanltleS

iv

':

ﬁbendlng deformat1on, shear deformatlon translatory 1nert1a .

R

-element 1s chosen from a set of constralned'elements tested .

in the the51s. The beam f1n1te element is altered to- 1nclude ;1«4

’contlnuous Raylelgh shaft,‘utlllzed by Green,‘1s modlfled toﬂjgfﬂ}
) . . ﬂ) TR S
anclude the,shear effects. Yet dlfflCUltleS have been nOtedQ'”:“
‘in using th15 equ1valent model A more accurate and ngﬁyfﬁ!ff7f

- eff1c1ent way to model wlthout destrOylng the system ‘ f;:5f5“7




LTy
o 4.)
. DR

are usually approxlmated u51ng{a l1near‘or h1gher order.
.vrtapered element In the present case,‘the steps are retalned
. as- they are hy represent1ng them 1n51de a’ 51nglewadaptor or 1,
d[hstepped element ) a':?lfﬁf.?'ﬂhfthy} -_txﬁ;’ | |

o The flu1d bear1ngs have anlsotroplc propertles whlch

0y

affect the shaft motlon. Holmes short bearlng dYnamlc ;; fh
coeff1c1ents have been con51dered <I‘Z)pac1ty number 1s used

g J_ ) e
'as an 1ndependent varlable to ease the de51gner s work The Lo

vllnear varlatlon of the coeff1c1ents, obtalned by this

x"d

1ﬁfmethod helps domputer modelllng._Utlllzatlon of the root '

"{'seawch method to f1nd the threshold of - stablllty of a

R

l'flex1ble totor supported on flu1d fllm bearlngs, has been
if;ﬂrepotted as, a costly procedure. In thlS study, a modal

freduct1on method 1s developed for a shafq w1th dynamlc
) , . TN

'Tftfchanges at thé bear1ngs, to make the root search method

vo v

"*ffv ffea51ble. A dynamlc condensatxon 1s also‘formulated to

:supprees the undesired nodal varlables.jﬁ

0 B H ‘ : f C

A typlcal turbo~generator un1t _w1th multlple flexlble

Ulispans and multlple bearlngs 1s modelled w1th a reduced

.?{fsystem matr1x(19 degrees of freedom) ThlS matr1x s used t° i

‘ffcalculate the dynamlc characterlstlcs of the rotor as,>
”e;deflned by the crltical speeds, mode shapes and unbalance

”;Zresponse. The efflciency of the trlm balance planes located
.ﬁeon the turb1ne shafts,hls dlscussed | |
. . ; : ¢ . N

ST L



" typing the equa 1ons.‘

S~ .

Acknowledgements »(

e
The author extends his deepest gratltude to Dr. A,

Craggs, hlS superv1sor, for-his %cademlc,'moral and

3 -

financial .5upport during the cbd}se of the thesis work.

'is'also'tﬁankful to:Dr. F;‘Ellvin and‘Dr“J; Colbourne for -

thelr suggest!ons as commlttee members. The author ’

acknowlegaes the f1nanc1al support offered by the Department

of Mechanlcal Engl—neerlng,n U.of A ‘and from the N R C A7431

’ . U - - . 3 v

grant.

e

~He is ‘indebted to hlS famlly members for thelr ‘constant

‘.support from afar. He w1ll mlss his fellow graduate students

wltn whom he qad many 1nterest1ng moments. Flnally he is

\

.'thankful to vr.‘\. Pelot and Mr. G Stevenson for carefully

901ng througﬁ»the manuscrlpt and to. Ms. Galr Anderson for -

“vi

o



Variables

CN -

Q o v

SN

"Radlus of gyratlon’
.Shape fattor _

: Length‘of t evelementﬂ
i'Length of Ehe beamv'

‘Bendlng moment

_5Un1t,load on a bearlng

"-Non—dimensional'Criticar speed I

*Non dlmen51onal frequency

,011 v1sc051ty

Nomeng%atur‘v ca ‘;

‘,A
" .
“ ,
-.CrossxsectionalAarea o b
CapacitY‘humber ’
Young's modulus
Shear modulus - * .
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1. INTRODUCTION y

Industrlal rotors are usually complex systems, w1th

'multlple non- unlform spans and anlsotroplc fluid bearlng

supports. A greatly 51mpllf1ed model of the large_rotors is

necessary before analytical techn1ques can be applied. Yet,

4analyt1cal results of the simple models are very useful in

testlng new numerical methods and. comparlng dlfferent.

.

models. o

'
The controlled experlments conducted on a small scale

_ laboratory-model maynnot'be directly extended to. the large-

;>)er plant units. Response measurements are easily made on

small rotors 1n the. laboratorles whereas a‘turbo-generator

un1t 'will have contrlbutlons at each sectlon due to the

bear1ngsﬂhpedestal and- flex1ble foundatlon. To get a”

reasonable estimate of the contr1butlon of each of these

components in the system amplltude and phase, exten51ve and

[+

"accurate 1nstrumentatlon along with rellable measurements_;

are necessary An ea51er method»for~such preliminary

analy51s is to obta1n an. accurate computer model of the S_
system.

o Another example where experlmental methods mlght be

dlfflCUlt on a real turbo rotor 1s the stablllty analy51s.

To.study the rotor 1nstab111ty due to. the bearlngs it is

necessary to- operate the rotcr;system at speeds above the -

J;

,de51gned speed whlch could be Catastrophlc. However, a
'computer modeI of the turbo rotor can easily do thlS task

ew1thout cau51ng any damage to .the machine.

L ¥
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Thus anerlcal methods evolved for rotor dynamlc
analysis. The transfer matrix method of Prohl[SO] was the
first to be applied. Because of its limitations it‘gave way
to the finite element,method.‘Gasch[52] and Ruhl[53] used
beam finite elements to represent rotors, Immediately, many
advantages surfaced: fewer number of elements are necessary

to model a rotor; branches and fluid.film bearings can be

easily prescribed; numerical stability is assured for steady

'state problems; extra degrees of freedom‘corresponding to
the foundatlon can ea51ly be addedq |

| Despite the almost unlimited memory and calculatlon
power of large computers, the system matrlces of large rotor
) models were~found to exceed the computer capacity, in memory
'space and‘cost of\calculations, A familiar technique'of
structural dynamicsv,Guyan'reduction was~used bY‘Rouch[SB]
to reduce the. system size, while retalnlng most of the .
accuracy of the orlglnalflargevmodel. This method uses the
‘static modes'to'condense the system size and is not as
'effect1ve in the dynamic condition when the 1nert1a effects
kof the rotor alter the mode shapes., | | |

o In,the present study a large rotor, as‘found7at a‘pomer
generatlonstation[iisimodelled by a system matrix |
adaptable, in size, to a-micro—computer.'The increasing-
.vavailability‘of these machines at'redUCed costs and their'
'_‘portablllty would encourage the power plants to own them.
hThe operators at these stations. would thus be equlpped to

conduct thelr own rotor dynamlc analy51s.
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The reduction in the system size is.achieved in the
- following three étages: o
1. By having an efficient andpacCUrate beam finlte element,
2. During the.mOdelling of .the rotor, bytdeveloping
a. a higher order taperedvelement, to'incorporate &

non-uniform sections,

b, an element to include disks within itself
c. and a stepped element or éﬁ%elementpwhichfcan have

QP

sectional discontinuities.

3. In the third stage the excéss degrees of freedom are
suppressed by a’dynamic;reduction method usingﬁthe
undamped system modes. The loss of accuracy at this
Stage is negllglble for the elgenvalue problem.

A brief outline of the layout of the the51s foklows. o L
In the second Chapter and Appendlx A accurate hlgh
order Tlmoshenko beam f1n1te elemen%s are formulated A
Vgeneral1zat1on 1s-shown-for'obtalnlngysuch'elements by
‘ choosing theuconstraint'conditions, nodal variables-and
polynom1a1 functlons. Aqmelement called TM5&4 is selected}
for the present study because of 1ts w1desp{ead advantages.

Its accuracy, convergence and rate of convérgencewpnoves it

f to be more eff1c1ent than the exlstlng elementé ‘The elementh--
R is used for non- unlform sect1ons, second spectrum analy51s
and stat1c response of 51ngle and multlple‘span'beams.

Analytlcal solutlons are obtalned for the Tlmoshenko shaft ' {n, o
statlc response (Appendlx B) and 51mp1y supported beam _i}f;if/ii(f?

- cr1t1cal speeds.
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The beam element is applied to a whirling shaft by

properly includlng'the gyroscopic effects. The moment actlhg

on the shaft 1n a circular whirl is. der1ved

/

u51ng the Euler equatlons of. motlon. The simply suppor_ed
N ,
beam S analytlcal solut1on 1s readlly extended to the.

wh1rllng shaft Comparlson of the present element hlth '/ ;‘
{Rouch[SS] showed 1mpovement "in accuracy per degree of//// )
: freedom A R1tz method 1s developed 1n Append1x C to shoﬁ

the effects of shaft & per and 1s used to compare w1th the i
‘finite element resulgi\\ , / A

- ln Chapter. 4, Den‘Hartog S[RS] analyt1cal solutlon for -

| a shaft dlsk system is extended to 1nclude the shaft s shear‘

ydeformat1on A method to 1nclude the dlSkS w1th1n an element
is formulated and . tested exten51vely, comparlng w1th 51mple‘

“
'Aanalytlcal cases of Green[59] and also wlth the lumped

: results. aumplng at nodes and dlsks placed 1nside\the
N (/helement gave very close.results ThlS method of 1nclud1ng

the dlSkS 1n51de the element is successfully used for a.

'ishaft w1th contlnuous dlSkS and a. shaft w1th taperlng dlr'

as. in a.turblne stage A perlodlc type of /hafffdtsk element

/

"eloped wh1ch can be used for repeatlng structures,'to'f

reduce computatlonal costs

';i”lz o l An adapter type stepped ele}__' 1s‘formulated 1n

: ‘fd,Chapter 5. ThlS element/is/de;eloped toy 1nclude shaft
vt. }d15cont1nu1t1es and performs better than an: equ1valent S
FA;tapered element Comparlsons are made w1th the ba51c methods o

N

fof Rayle1gh transfer matr1x and equ1valent tapered element



'The'fluid film bearingsrﬁave an important role'in the
dynamlcs of rotor. The oil film acts llke a sprlng damper
system to support the rotor The dynamlc effects are
nonllnear in nature, both llnear and nonl1near models of o
these coeff1c1ents are avallable. Llnear bear1ng
‘“coeff1c1ents are used‘ln the present analy51s. Nonllnear
jeffects/dan/be easily added wh%n a partlcular need arlses.'
Foundat1on flexibility affects the rotor performance, |
.iespec1ally w1th the modern flex1ble supports.j f',;"‘,f:“

In Chapter 6 the stlffness and damp1ng coeff1c1ents of

' ;'Holmes [64] short bear1ngs are presented Capac1ty number 1s-

endent parameter 1nstead of the usual

'used ‘as. the L

r1c1ty ratlo. Slnce Capac1ty number descrlbes any

7

/,.yshort bearlng completely, these charts can be used by a

deslgn englneer dlrectly w1thout conver51on. The bearlng

anlsotroplc effects are also dlscussed w1th respect to the

*shaft motlon

The rotor element 1s developed 1n Chapter 7 taklng tﬁ,;;vr

fhelements in perpend1cular planes. ThlS element represents

',any asymmetrlc shaft and can accomodate asymmetrlc bearlngs. o

yFor the case of an axlsymmetrlc shaft bearlng system a

'f51ngle plane 1s representatlve of the total shaft motlon.,‘f

"*,For a bi- symmetrlc shaft bearlng system motlon in two planesf_'fu.';

’”Q-has to be con51dered but decoupllng allows the treatment of.r[;

‘;the motlon in each plane separately f-{i

Ruhl[53] has p01nted out the d1ff1culty 1nvolved in thehf:

root search'method for f1nd1ng the stablllty‘zones of the
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system At each runnlngjbpeed the stablllty 1s. checked by

calculatlng the elgenvalues. For a flex1ble shaft w1th many R

degrees of feedom thlS method becomes 1mpossxble. In thlS

- Chapterrreductlon 1n the system 51ze is obtalned by’

approx1mat1ng the system with the lowest modes Stability _-:

and free whlrl cr1t1cal speeds are calculated us1ng the

: reduced system matrlces ‘A successful comparlsoﬂ”ls obtalned

.elements and technlques developed L dynamlc reductlon

N
w1th the Lund[72] model C

The f1nal Chapter deals w1th the appl1cat1on of the"

- method 15 1ntroduced to reta1n the de51red degrees of o

@

freedom A 3600 rpm 286 MW capaclty turbo generator unit is

y* analyzed

An accurate beam element and the 1nclu51on of dlSkS _t‘

_allowed the rotor to be modelled by an 18 element 76"

: degrees of freedom system 1n a representatlve vertlcal plane_r

‘whlch otherw1se would have resulted in a 400 to 500 degrees

. /

of freedom model Usually reductlon is achleved by obtalnlng

"1a geometrlcally equ1valent shaft reduc1ng the number of

elements by suppre551ng the details such as steps and dlsks

yv1n the system Whereas, in the present case the rotor 1s
'7modelled retalnlng geometrlc accprac as much as p0551ble

~The system 51ze was further reduced from 7 19_}\s"

!
degrees of freedom by dynamlc condensetlon. The/crltlcal
speeds ué?ng full system matrlx are compared w1th those
obtalned by the cla551cal Guyan reductlon- dynamlc reductlon'

showed no loss of accuracy 1n the/elgenvalue calculatlon

~ g L

B
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'}The correspondlng dlsplacement mode shapes are also shown

To 1llustrate the present model s PraCtlcal value’xthei:,_,

7

-effectlveness of the exlstlng turblne tr1m balahge planes 1swf}
"ustudled The- bearlng condltlons, runnlng speed and the mode"

'shapes near the runnlng speed d1rectly or 1nd1rectly affect

.the response due to unbalance. The balance planes are fﬂh

"*eff1c1ent when they are at the p01nts of max1mum amplltudes't;'
- for all runnlng speeds for any type, locat1on and

hfdlstrlbutlon of unbalance.

The appl1cat10ns of such a rotor model are many For

'3 1nstawce, bearlng nonl1near1t1es and 1nternal damplng

- effects can be studled 1n detall B%}anc1ng methods can be

1mproved The number of trlals can be reduced 1n the tr1m

) balanc1ng procedure, often performed 1n 51tu.;g,'

. »
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2. AN ACCURATE TEMOSHENKO.BEAM ELEMENT

Abstract

Higher order Timoshenko beam finite elements are
formulated using constraint conditions. The element chosen
has’better accuracy,{lonvergence and rate of convergence

than the existing elements. It has total centroidal

‘dfsplacement, bending slope, shear §lope and bending moment

as nodal variables enabling direct repr?sentation of all the
boundary conditions. These nodal paramegers completely
describe fhe beam when it is in either a static mode or a
dynamic modé. Use of trigonometric functions in representing

. LN . .
the beam variables is’'shown. Static response for Timoshenko

beams is obtained analyticaily and used for comparison with

the finite element results, which, along with the (standard)

-eigenvalue tests, confirm the improvements achieved with the

present element. The second spectrum associated with
Tiﬁoshengp beams is also cohsidéreﬁ; the zero shear mode is
discussed. The beam element is extended for higher order
non-uniform sections, for which Jggigit boundary conditions
are,p:esented. bomparison with the -results of other linearly

tapered elemeénts again shows improvement in accuracy and
- . o

‘convergence..



2.1 Inf¥roduction

2.1.1 Beam theory \

The flexural deformation of structural members in which
one dimension is greater than the other two can be treated
theoretically u51ng elementary beam theory provided the
basic assumptlons are met. The Euler-Bernoulli beam theory

&,
provides results to many practical problems. Thus, for

longer slender beams, therie;er modes of vibration are
predicted very accurately. However, when the depth of the
sei}ion becomes ef*the same order as the span ehe results
are unreliable.

Lord Raylelgh[1] in 1887 modified the beam theory to
include the rotatory inertia effect which adds to the
kinetic ehergy. This effect was tested on beams with end
disks whose natural freguencies were considerably lowered.

Yet, no serioue effort was made to moaify the
Euler-Bernoulli beam until the shear effect was considered
by Timoshenko[2,3] in 1920. He introduced the concept of’
shear deformation and shear slope which together with the
bending effects gives total defiection and slope. Equations
of motion were developed including shear deformation and
JrotatOry iner%ia} the solution for the eimplybsupported beam
was giveﬁ. Timoshenko concluded'that:‘

1] the cor;eé%ion for shear invthe calculation of the

natural frequncies, for the case considered, was four

times greater than the correction for rotatory inertia;
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2. the corrections are unimportant if the wavelength of the
transverse vibrations is large when compared with the
dimensions of the cross-section as in the éase of
slender peams{

3.n the value of the correction increases with

al decrease in wavelength,

b. "increase in the shape factor,

c. \increase in the waveinumber or mode number,

d. increase in,thé slende;ness fatio of the beam.

It was a quarter centur¥ béfore further interest was
shown when Anderson[4], Dolph[5] and Trail-Nash and
Collar[6] simyltaheously reformulated the equatichs; gave
solutibns and identified the second speétrum due to shear
which had gone unnoticed by Timo;henko.

Trail-Nash and Collar emphasized the effects of shear

- &

flex1b111ty and rotatory 1nert1a for the common rigid

boundary conditions and gave SOlUthﬂS:

~

1. for the Timoshenko beam;
2. negleéting rotatory inertia;
3. with infinite shear stiffness;
4. neglecting both shear effect and rotatory inertia
effect.
Huang was the next tobgive analyticai solutions;ﬂUSing
Ritz and Galerkin methods[7] and iater assuming solution of -
the type harmonic in time and harmonic and‘hyperbolic in

space[8].
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The shear coefficienﬁ is described by Timoshenko as the
averagé éhear strain on a cross-section divided by the shear
strain at.the centroid. The sheér coefficiént accounts for
the fact that the shear stress andkéhear strain are‘not
uniformly distributed over the cross-section. While
accomodating elements with differentvcroéstections,,the
appropriate value of shear?coefficient has to be used.

Cowper[9].gave a more exact definition following the
three dimensiohal elasticity approach. This definition of -
" shear coefficient 1s most satisfactofybfor static and long
wavelength yibrations or low frequency deformations of the
beams. Preséott(10]’gavevvalues for high freguency modes of )
vibrations. More recently, Victor and Ellyin[90]) solved a
Timoshenk@'beam'subjected to an accelerating transient
fofcé.

2.1.2 Finite élémeﬂt~

The appearance of computérs‘left'tge anélytfbal
éoluﬁions as foundation blocks in underStanding, developing |
and testing numerical models. The vast mémory sﬁorage and |
the quick calculating powef resulted ih new technigues to
" model hitherto insufaountable,<probl§ms. | _ .

Finite elément methods overtobk the conventional finitev
difference and transfer mgtrix methodé. Méﬁy good ﬁextg Sn
finite element method are availabie: Zienkiewicz[11],

Huebner[12] -and Cook[13] among others;fCook has a detailed.

list of references. .

@
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Direct stiffness and flexibility methods gave way to

b

the methods based onAthe principal of virtual work, energy

thedrems, Lagrange's equations and weighted residuals.

- Though all of them lead to the same matrlcessand equatlons

of motion, the energy methods are the most popular.

The stiffness matrix.for the Euler beam was derived by
Archer[14] based on the unit displacement method and lately
it is derived from the strain enetrgy. The mass matrix was
originally considered as a diagonal matrir representing the
lumped masses at‘the nodes. Archer[lS] was the first to

7
'

develop a con51stent mass matrix. Now it is commonly derived-
QA

‘from the kinetic energy. Internal damplng can be achleved as

a proportional matrix based on Rayleigh's theory. ,-, %
Archer's conclusions on the distributed mass matrixp

were: | |

1. it is consistent with theltrue mass dietribution;and
hence‘impro&es the results; .

2. the réguired'fineness of the struetural subdivisions to =

~obtain a.given accuracy. is greatly reduced;

3. the frequencies obtazned'by the approximate methods are
known to be the upper bounds to the exact solution
whereas.lumping techniduee yield-frequenciee that can be

higher or lower than the -exact sblution;

-

LY

4. 'mass. coeff1c1ents are computed for 1nd1v1dual elements

of the structure and comblned by simple- superp051tlon.
' Durlng the last twenty years there have been many

finite. element models proposed for. the ‘Timoshenko beam whlch

N
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" include the effects oflshear deformation and rotatory
inertia in addition to the bending displacementland the.
1ateral-inertia terms. Thomas, Wilson and w;lson[22] gave a°
review of these elements. Table 2.1‘gdves a list of the |
elements‘and their important features. The simple elements
havelfour_degrees of freedom per element: shear_is included
indirectly as coefficients, McCalleyI16],lArcher[14], Davis
et al[i?] developed simple elements based on the static
rsoiution of a beam subjected»to forces and moments.applredj
at the ends? This-means that the shear force within thee
element is constrained to be a constant Comoiete
‘compatlblllty of the end nodal variables 15 true for
unlform,}non—unlform, coll:near and nonjcolllnear |
structures. Hence‘it is highly favoured in the analysis of
frames. | |

\ Moment and shear force boundary conditions cannot be
applied nith these elements. As the-depthfto ;ength ratio of
the beam increases the application.of‘this element with the
’restrlcted assumptlon of constant shear force 1n51de the
element leads to a poor representatlon of the shear
deformatlon and affects the accuracy and convergence of the
‘higher order frequenc1es and results of" deep beams. The
’complex elements, with more than two nodes and/or more than
four degrees of freedom per element are de51gned to overcome
the dlfflCUltlES\Whlch‘OCCUI with' Lhe 51mple elements.

LR

Narayanswaml and- Adelman[18] demonstrated that a

j

stralghtforward energy m1n1m1zat10n does in. fact y1eld the
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v

correct finite element behavior whenvtransverse shear

effects are included. They also_pointed out'that the bending

slope, ¢, he retained as a nodal variable and not the total

slope, W'. Since, | o

1.‘ total slope is continuous only in the absence of the
transverse shear deformation,

2. built-in-edge has the condltlon ¢ and not W"as zero.
The earllest complex.element was by Kapur[19] who |
allowed a cubic variation for each of the bend1ng and shear

deflectlons resultlng in an eight degrees of freedom
element. 'The four nodal varlables ‘used, shear and bending
deflections and their spatial derivatives, could not satisfy
some of the commonﬁboundary conditions, This element
'perfbrmed'hetter than the McCalley'saelement.”Existence‘of
theﬂsecond spectrum was alsdlnoted;

An‘eight}degrees of'ﬁreedom elementnwas alsotproposed
by,Carnegie etbal[2oifWho_used two lnternal nodes and cubic
functions fdr both total displacement w; and bend1ng slope,
é. Nlckell and Secor[21] obtalned the same order of accuracy

as the earller two u51ng only seven degrees of freedom ThlS

§1mp11es that there was a redundant degree of freedom 1n the
‘ Kapur element Nlckell and Secor 5 TIM7 has a cubic

]dlsplacement functlon for W and a quadratlc for ¢ The
degrees of freedom at the ends are W, W"and ¢ the seventh g
was w at the m1d po;nt of the element | ;

Thomas, W1lson and wllson[22] 1ntroduced for'the firstf‘

'tlme, shear slope as a nodal varlable. U51ng CUblC functlons_-'

Y



16

'for»displacement and bending slope they developed a Six

,
degrees of freedom element. A tapered element with both

cross sectional area and second moment varying linearly was
obtained. For low k/L ratios the Thomas élement was inferior

»

to the Archer and the McCalley elements but gave better &
results for shorter stubby beams. The disadvantage with thlS'
element is that the shear variable is ndt continuous across
stepped sectiones and bending moment cannot be prescribed. as

a constraint. | | |

Thomas and Abbas[23] presented an element with total
~deflection and bending slope and>their derivatives as the
nodal variables with cubic variation for W and ¢. They could
incorpecrate all the forced and"natural boundary conditions,
though notvdirectly. Their claim that their element was the
best model for dynamic analysis of Timoshenko beamsrwas
contested by Thomas[24] in a very informative letter.

Dawe s element[25] uses a constralnt condition to
evaluateaflye extra constants. The three node, six degreesv
of freedom element has a quintic polynomial for Ww and a
quartlc polynémlal for ¢. HlS element performed better than
the ex1st1ng elements, yet shear force and bending moment_
cannot be prescr1bed d1rectl§/ ‘He concludes that 1f
1ndependent 1nterpolatlon functlons are used for W and ¢, an
increase in eff1c1ency would. result. -

An accurate f1n1te element was developed by Craggs‘and
,HOng[26] A constralnt condltlon was used to obta1n an

.

1mprovement by Akella and Craggs[27]
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2.1.3 Continuously varying elements

These are also called tapered elements where tgper can
be of any order. It is rare, ln practice, to have beams with
uniform cross- sectlons. Idealizing non uniform sectlons by
uniform elements would require a large number of elements
increasing the:computational cost and time. To overcome this
difficulty tapered elements are used. Though their
formulation and evaluation‘is more tedious, good results can
be obtained w1th a fewer number of elements.

L1ndberg[28] presented a general formulation for a
tapered element. USing a linearly tapered element he
evaluated the non- dlmen51onal frequenc1es omitting the
-4effect of shear deformation and rotatory 1nert1a ‘v
Carnegiel29] studied the vibration characterlstlcslof
.Slender'tapered elements'Suchnas those of'the.tUrbineIand
compressor'blades; using'the“Euler beam -model. His |
bexperimentsvandA alculations wereiin good agreement-asbthe
vdbeam crossésec ons were Smallbcompared to the length.

Thomas[3 developed'three elements to represent the
tapered Euler'beams and obtained the natural frequencies for
dxfferent boundary conditions. He concludes that having an
1nternal node 1s advantageous as 1t 1mproves the Sk
convergence. Thls is because the taper parameters are better
e*represented yet. ma1nta1n the external cont1nu1ty |
'condltlons Increa51ng the external nodal varlables from two
to'three d1d¢not11mprove the»accuracy‘per degree'of freedomnf

whic¢h means that the better nodal continuity is outweighed .



by the coarser subdivision.

Thomas et, alLZé] developed a T}moshenko’beam tapered
element. Explicit stiffness and\mass matricewaere ohtained
for an element with both cross—sectional area and moment of
inertra'varying linearly. This is-a crude-approximation for
any real variation °in the_section: Yet he obtained a good
¢omparison for a chimney type structure.

To[31] modified the Thomas[30] element using.a fifth
order polynomial for displacement and including shear and
nrotatory‘inertia terms. Later he improved it to. a four
degrees of freedom per node tapered element, with a seventh
" order poiynomiai for displacement. He evaluated ‘the effect
of'taper.ratios and‘depth.to length ratiOS of the beams- His
results and formulatlon ‘were for a llnearly tapered element
as given by Llndberg The representatlon of the shear force
~and bending momentvboundary'condlt;ons-was rnaccuratet1h

To[32] aiso formulated.an element using thehThomas’{
element[22] uSing'a cubic'poynomial for'displacement and a
~linear variation for shear varlable. However bendlng moment

could. not be prescrlbed as a boundary condltlon.

A .

t‘z 1.4 Second spectrum Shear domlnated modes
| In thelr analytlcal work Anderson[4] Dolph[5] and{'

Trall Nash and Collar[ﬁJ all predlcted the ex1stence of a

double spectrum of frequenc1es for the Tlmcshenko beam, one

due ‘to the bendlng modes and tng other for the shear modes.’ i

‘This phenomenon waS'exp11c1tly obtalned'for the case’ of the

. ' N

8

2
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/h{noed:hlﬁQEQ beam, which has the simple trigonometric and
_hyperbOliclsqution{ | |
’Andersoh showed that for a hinged- hlnged beam with
small N k/L) correspondlng to - Qhe lower modes of slenderh,
vbeams,:the frequenc1es approach'asymptotlcally the'Euler
beam,solution. For large N(k/Ll corresponding to the higherd
modes of deep beams, the freguencies approach the. |
frequencies of pure'shear vibrations.
Trail-Nash'and Collar’reasoned that‘thekseCOnd'spectrum
is the resonant 1nteractlon between the rotatory 1nert1a
~forces and the shear st1ffness reactlons The.relatlve_
contrlbutlons were chsfked by looklng at the ratlo of
"bendl g slope and shear slope wh1ch are: p051t1ve for the.h_

_;flrst spectrum the bendlng and shear slopes belng 1n phase, ’

jve with the slopis out’ of phase for the second ;

pm , ~ .

{n-the'first spectrum the pcoportion of'bending

_fases steadlly for the hlgher modes and the contrlbutlon'i'

\

{shear 1ncreases Whereas, 1n the second spectrum the
ftrlbutlons of bendlng and shear are roughly the same but

G .); - o o . S v ,\
t of phase. T L RN ;~‘._';.* o e

~.

In the f1n1te element analys1s,,Kapur[19] noted the |

,cond spectrum but made llttle ce mmene Abbas and

ﬂ#omas(33] devoted a detalled paper on thls 1ssue and
oncluded that except for Ehe case of a hlnged h1nged beam"'
ythere is no separate second spectrum leferent modes were‘

'17expla1ned as the coupled 1ndependent modes of the
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Bernoulli-Euler beam, simple shear beam and pure shear beam.

. Each of .these beams could be obtained from.a-Timoshenko beam,_”

’ either by neglecting certain terms or equating certain

dlsplacements to zero.
Bhashyam and Prathap [34] used a 51mple llnear shear

flexible beam element w1th 1ndependent linear funct1ons for .

d1 placement W, -and bend1ng slope, \¢. Reduced 1ntegr tlon (

4

“a one p01nt Gau551an scheme) was: used ‘to ellmlnate. hear
locklng They reported two separate spectra, one dom1 ted
by the Euler Bernou111 modes and the second by the shear
modes

Downs[35] experlmentally found the .shear coeff1c1ent of

'a rectangular beam in pure shear to. be 1,04, The c?éfflcrent

varled from 0. 85 for a bendlng mode to about 1.0 1n,the¢u
shear domlnated hlgher modes., |

Stephen[36] compared the Tlmoshenko beam theory w1th

the exact theory of Pochhammer Chree and falled to f1nd an

'vagreement for the secqu spectrum Lev1nson and Cook[37]
‘ also 1nferred the same from Dolph 5[5] results’ They polnt

out the d1ff1culty of a beam changlng from a fgrst spectrum.'

mode (w1th bend1ng and shear slopes 1n phase) to-a

nelghbourrng second spectrum mode (w1th a change in the

number of nodes and bendlné and shear slopes opp051ng)

B Prathap[38] 1n a letter, p01nted out that the d1v151on ?

) in the frequency spectrum 1s due to the occurance of two

dlStlnCt ordered sets of the computed elgenvalues, and not

because of a’ pr10r1 a551gnment
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‘The controversies-in the 11terature on* the’ second

~ -
\

spectrum seem to arise due to the lack of a unlform
def1n1t1on. Each author appears to agree w1th the results of

the'others but 1s objectlng to the termlnology and

cla551f1catlon.

®
e

2.2 Theory
< . ‘ o . N
F1n1te element methods are approx1mat10ns, so one - type
of elément cannot be the best. for all c1rcumstances. The
‘ch01ce of the element must depend on the requ1red accuracy,
convergence rate, cont1nu1ty of the nodal varlables w1th1n,_>
,_and at the element 1ntersectlons, ablllty to satlsfy the

'common boundary condltlons and the type of structure 1t 1s

3 .

happlled to. . '.' . j_d{‘ f'rﬂ_{ o '»,‘Ag-f
The rev1ew of: the ex1st1ng elements prOJects the‘
follow1ng requlrements for a new element.

'l.- a- hlgher order element to accelerate convergence and

. -

1mprove accuracy per node and per element yet not over

'constralnlng the element to evaluate the extra

/ polynomlal coeff1c1ents, \ i

>'2t5'appropr1ate ch01ce of the nodal varlables SO that

va,h _ the functlonal can be represented
ll:b:,filall the natural and forced boundary condltlons canv
. be. met, - o | |
fc;‘hththey represent some phy51cal parameters,z,_;-:
’rhd;. | complete cont1nu1ty at element 1ntersectlons for ?idfw

L3

‘fﬁ~~_"‘_ both unlform and stepped sectlons 1s achleved :J-,

u“
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3. shear deformation is given a higher order representation
to attain greater accuracy in the natural frequencies of
deeb beams of of higher modes'and to analyze the second
spectrum. As the depth to length rétio of .the beam
increases the shear dominated modes move closer to the
lower bending mode range. The higher order eiements are
expected to give more accurate results in this range. It
is suggested here that while é low order eleméht can
give good results for faig}y long beams, the more
stringent test for a Timoghenko beam is when k/L is
high(k/L>0.05).

2:?.1 Development of the element

As there is no rigorous way of obfaining the best
element some numerical teéts'usiné different poiynomials are
done to get to the fighf modelr Aibrief discussion, of the
elemenfs tried.ig présented followéd by the details of the
element choseﬁ.

Appendix A gives the variational proéedure fqr
obﬁaining the eqhations of motion and givﬁs;ﬁ}e natural
boundary conditions as a consequence, The‘app;gximate
‘ fﬁnctional and the der}vationzbf the stiffness and mass
matrices for thé four elements tried are also given.

Simple mathematical relatioﬂs‘ekLst for the number of
nodal variables required for a given constraint condition
and given order of polyromials for the variables.

ey g

Let disglqgemfnt, W, be represented by an N:h order
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polynomial ana bending slope, ¢, by an Mth order %olynomial.
Thus N+ 1+M+1 polynomial coefficients have to be évaluated.
I'f the shear sl&pe, Y, 1s constrained to a (K-1)th order
polynomial then the Kth detivative Yy =0 becomés the
constrainf condition.

As;ume tﬁat N>M>K. The geometric equation of

deformation, shown in Figure 2.2, is:

A kth order differentiation of the above equation along with

the' constraint condition gives:

’ whelt o= gk,
This differentiation of the assumed»functions gives an \\v
,aigebraic equation which is of the form:

(N-K-1)th or%er function = (M—K)th‘order function. |

. | . \ S

Equating coéfficients.of éqﬁal po&ers we get (N-K)
equations, (N-M—1) of which make.the coefficié:%S of higher
powers of thé polynomial of W zero and the resf(M—K+1)Aof
the_eqﬁaﬁions relate the coeffiéien£s of W and ¢;ﬁ‘
Theréfo:e} the number of nodal var;ablés tb-be’prescribedr

are equal to: the total pclynomiai.cpeﬁficients\*'number of

relations from ‘the.constraint condition."
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le., (N+M+2)-(N-K)=M+K+2

e
Example: ' J

. '/y."
B

Given N=8,M=6 and k=3. The following equations can be

v

written:
W=a + a,x‘+é x2'+ a. X"+ a, X +a.x> + ax '
] 2 3 4 5 X Fasx 4 ag
o =b +bx+bxl+ box® + b x4 4 bex® + b, x0
0 1 2 °3 4 5 b6X
w1]]= 0+ Hence, wIV.= ¢]]] e

- 243+ 120a5x + 360agx" + 840ax’ + 1680a,x*

§ 8
= 6by+ 24bx + 60bx” + bg*°

Equating coefficients of like powers we gét (N-M~1;8-6—1=1)
one coefficient of thg.highést power of W as zero (ie, |
ag=0). Four (M-K+1=6-3+1=4) relations between the
coefficients of W and'¢ exisﬁ éiving a., as, 8¢, a; in terms
of bs, by, bs and bs. |

Eleven (M+K+2=6+%+2=11) nodal vafiabieé have to be
specigied to determine the rest of the consténté}hAs it is
not an even number we canno? spe;ify eqhal’humber of -

variables on both end nodes. A solution is to specify one
. [y N - b .

. variable, say W, at an internal node and five variables\
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(say,W, W', W'' ¢ and ¢') at each end node. Another approach
is to specify the displacement W at three internal nodes and
(W, W', ¢ and ¢') at each end node.

Thus, a lot of dexferity is involved in choosing the
constraint condition, polynomial orders'and nodal variables.
The requirements listed previously do not uniquely narrow
down the best‘poésible elements but would help us select
from a smaller subset.

Mathematical and physical understanding of the
requirements helps us narrow down the subset. A few such
observations aré listed bele: |
1. for the constraint condition used, the displacement

polynomial need oniy be one order highef than the
rotationai slope; \

2. for a massless beam withAfbrces¢and_moments acting only
at thé nodés, shear force and benaing moment vary
linearly inside the element, bending slope has a
quadfatic variation and displacement has' a cubic

1kvariation;

3. ‘When the mass of a uniform béam is considered the ofderv
of these variations increases.by‘one. A further incréaséA'
occurs when variétion of the mass of the element is
considered as 'in a tapered element;

4. Whéh‘disks or stiffnessés are incluaed in the élemenf-.
(dispussed'in later Chaptééé)_or when mass or elastic
unbaiancé‘gécurs at,discréte or continuous points, a

higher order representation is necessary.
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Finally, a balance has to be struck between having
fewer elements with higher ofder polynomials and more
elements with lower order polynomials: The ootimum element
gives'the reqoired accuracy with minimum elements and’

minimum global degrees of freedom.

2.2.2 Basis for choosing the nodal variables
The beam in flexure is represented by the?end

displacement, W, the bending slope, ¢, the shear force, Ay,
and the bending moment, I¢'. Dolph[5], wrote the Timoshenko
kbeam equations using the same variables. It is shown in
Appendlx A, that all the dlsplacement (forced) and force
(natural) boundary conditions can be represented with this
choioe of nodal variables; also, the eneréy functional cah
be completely expressed by them All the varlables are
contlnuous:alongAunlform, non- uniform and dlscontlnuous
sections. However, ah external force makes the shear force
diecontinuous end an externel moment makes the bending
moment discontinuous. | |

. Complete compatibility of the variables at a node
aliows the use of seme'set of variables for both the
elemenes at the joint they share. For the;preSent'element at
‘each internal ﬁoint f0ur‘degrees of freedom are;aliowed‘in
 the coupled condltlon compared to the elght degrees of
freedom in the uncoupled condltlon ‘Thus, -a reductlonllo the
| g;obal degrees of freedom occurs. Assuming the material

parameters G, K and E as constants, the nodal variables

-
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chosen are displacement, W, bending slope,b¢, shear force,

Ay, and bending moment, Ig¢'.

2.2.3 Element formulatibn

| Th details of'formulation of different eiements is
given in Appéndix_A. Element matrices in Appendix A are .
obtained in terms of the selected nodal variables'by a
transformation. These matfices can'also be obtained‘directly
by modifying the functional, as ;hown below for the element
TM544 , Thé energy functional for a Timoshenko beam can be

written as:

As given in Appéndix A

£ -
]

X0 {?a }

°
Y

Y0 { a L

Ay = A(x) 20 { a }

1(x) T { a .

. 1ot

The variables can:be written as:



=
it

xR 000 Kl

©
i

Woo 0 1 x X 2@

2

Ay =*A(¢) - W')‘= ALO =1 - 2Xx - 3x2.'|r X X OJ {0.}

|

If the vectors of nodal variables { W } and the polynomial

coefficients { ‘a } are given as:

B
)
L S

' s AL, T ow. Ao ' I. wl
S RS TR DG R A R R A RS kA A

{a} ='La0 a, a, a
then we obtain:

Wo} = [Clual

and { a } [ c 1" § Qe}.

Where: -

28
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qc1= o0 o 0o 0 0 I, .0 0
1 g 02 23 0 0 0 ot
0 0 0 0 1 2 o2 03
) ] L2 p
0 Ag 2R, WAL AL AL AR 0
. | )
0 0 0 0 0 L o 2L2 3L 1

Note that [ C ], like the trénsﬁofmation matrix [ T ],
.. ‘ . , .
temains unaltered for unlform and non-uniform elements. The
varlatlon is taken care of while eva‘uatlng the varxables

and the 1ntegrals The approx1mate funct;onal can,be wrltten.

as:

= l-{W»}T[KBj{w } o+ i~{w?}T[kS Wt T
2 e el TZ WL ]{We} - 5 Wy} [MT]{we}

W T
- 5 tng) DRI G )

where the component matrices are obtained by four point

Gaussian integration: -

. R
[KB] f x)[C” ]] LYU LYU[C ] dx

0
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N |
[Ks] = j skAG)Le 3T 20f T 20] [e7'T ax
i \
| P
(48] j oA(x) [ x0T xoj ey ax
0 .
Q -«
R] = [ p10ateT I ol "o ey ax,

The stiffness and mass matrices are now obtained directly in
tefms of { Wy} without any transformation:
.

‘[K]=[KB]+'[KS]

[ M]=10[MB ]+ [ MRI.

'2.2.4 Numerical integration

The complex eleﬁent formulation depends on the accuracy

\
and efficiency of the nmmerical integration: Gaussian

quadrature is found to be the mést useful. In t%is method
L S ~
the integral l " Fx)ds ~ is transformed to:

. d

s(b -’a)f-Fb +a 2‘
- f - dt
2. z 9

wheré, X _ (b - a)t +b+a




31

o 1

Iac£ua1'= [_1 Cif(Y) dy . ‘ . ;

The integral I can be approximated by using the weighted

functional values at n selected points:
I
approx.

The error is defined by: - Iactua]"lapproi
The sampling points 'y and the weighting"factors W,
corstitute the vector of unknowns { U }, which are evaluated

‘by minimizing the error,&ﬁgpt{;;”?.g%trz o‘; The sampling
pants_are located symmetrically with respect to the centre
of the’interval_with the same wéightage givén for
symmetrically paired.points.

Gaussian quadrature ﬁsing N points 1is exact if the

integrand is a ‘polynomial of degree 2N-1 or less, which

‘means that the'givenifunction is feplaced'by'a polynomial of

degree 2N-1. A non-uniform element with four gaussian points

is shown below.

—

g

. g
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o= X
o of
A{x) I(x)
| i 2 3 4

For integration,‘the.area A, cross-sectional moment of
inertia I and shape functions are evaluatéd.at the Gaussian
p01ntsg&Four p01n* Gau551an Quadrature is used for all cases
of unlform and non- unlform elements thus 1ntegrals of
tunctlons up to seventh degree polynomlal are evaluated

exactly.

2.2. 5 General non unxform element
| ‘The advantage of Uang numerlcal 1ntegratlon over e
, analytlcal 1ntegratlon is that a hlgher order | |
icross sectional varlatlon can be more ea51ly 1ncorporated
'}1nto the elemiat For a c1rcular sectlon wlth .an Nth order

jvarlatlon of the radlus, r) in x, the followlng relatlons

can be written:
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i
bi X ,a 2Nth order polynomial

"

.‘ 4
moment of inertia-I(x) E~£~iﬁl
1%{ C.x ya-4N"" order polynomial

eCdns, Cs’b and ¢, are evaluated in terms of ai by equatlng

\thef '“ic1ents of llke powers of the: polynomlals
) Slmllarly for a rectangular cross sectlon w1th an Nth ‘
order varlatlon of the breadth b, and an Mth order for the

depth, d, the. ro‘lowxng relat1ons are cbtalned

4.Area,'A(x); qillfhavgdanr(N+M)th drder'p01Ynomial{f.“
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N+M . °
Alx) = = e

i=0 !

9
and an.fﬁ+3M)thvfor the moment of inertia: ©

N+3M

I(Y) =- Z f 1
. 1=0 1

Again'eg and f; can be evaluated from a; and c;,"

/
/

| 2.2.6 L1near1y tapered element

This partlcular varlatlon of the element appllesyto a
set of-cross sectrons Hence, the same descrlptlon holds
good for all of them Thls is advantageous when a program
vhas to be developed for a structure with- dlfferent |

cross—sectlons It 1s the most: common case 1n the

llte;ature, L1ndberg[28] and To[31 32]; A few of the

possible cross- “ectlons are.shown below._f
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-For the’hollow c&rcularecross—sectton,‘h/o<1 or o ;Q

. h/d= constant is a necessary condltlon for-the analy51s to be
correct. For all these elements the area A= K hd and
t""‘c:.'r'os.s-‘sectlonavl-moment ofvlnertla I=K hd H where d and h

4

“have a llnear varlatlo{‘ The follow1ng relatlons can be

S written:
N _ l ‘. -)i ‘.
h(x) = h; (1= (1-H) 90 ,
withH = by s
P A = (- (150) ) b
witml)= d*ﬂ/Qj“{{l’ o
) » | ")(; . X2 . J
Alx) = A0 *‘“’1}5“&2;2*}‘-‘_ L
: « ,-"xz' : 3. x4
= I(x) = Ii{] +_b]w§ifv§20;) bB(L) + b4( ) :
':For a. c1rcular cross sectlon K, = n/4 and Kz et n/64 -
'for a rectangular cross sectlon h1 =1 and Kz -1/12-
for a trlangular cross sectlon K, 1/2- and for a. hollow.

}hc1rcular cross sectlon K, =7 and Kz = r/8[ 1 + (h/d)2 ]2

. RN
- .

"-'»2 2. 7 Assembl;ng thenelements ~§_:?  f-r:‘ “ 1

Y R L S . T T

The major dlfference between the,ﬁaylelgh thz method _

nfand the f1n1te element method 1s that the tter makes the o

'approxlmate functlonal of each element statlonary 1nstead of}

fcon51der1ng the whole structure The equ111br1um'equat1ons

"”f*‘are satlsf1ed at the nodal p01nts. The compat1b111ty

fcondltlons glve a7blecew1se approx1matlon. ThlS means that
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3 o
¢

o .
* the element matrices can be added into a global matrix with
compaﬁible end nodal variablés occupying the same global

position. Figure 2.1 shows an assembled unconstrained beam

&
structure.

As discussed before, an.external force at\a‘join£ makes
" the shear force discontinuous and an external moment makes
the bending moment discontinuods.'These aﬁscontinuitiés do
not alter.the homogeneous solution but they must be properly’
assembled for forced regponse studies, |
One way to get around this problem is to use a
reducﬁion technique, discussed later, to suppress the

variables with discontinuities.

1.2.8 Static'response
Theﬂeigenvalu&,test is a common method of evaluating

the dYnamic performance of the element. The static response

~ n

which uses' only the stiffness matrix can also rate the
performance of the element; testing the choice of the nodal

variables, polynomials, integration and assembly. In

r

Appendix B, following an elementary strength of materials
procédure; the Timoshenko beam differential equations are Qi;?
solvedltogether,with the boundary conditions and continuity
conditions for simple beam structﬁres to obtain the values

of displacemént, bending slope, shear force and bending
moment under static loading. Other t;pes_og’boundary
conditions and loadings can sihilarly’be evaluated for

uniform and non-uniform sections. Using the law of

N
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sﬁperpésition more complicated loadings, continuous beams
and indeterminate beams can be solved. In effect, the Euler
beam can be replaced, especially for deep beams, to include
the shear effects in statlc response studies. |

| Static response by finite.element analysis is obtalned
by solving a set of linear equations, [ K 1{ x }§¥ { F }.
The free free beam stiffness matrgk is singular aé the rigid
body modes corresponding to franslation and rotati?n' )
prevail. Thése ques are cu;taiied by prescribing.

displacement at two points on the beam; or a displacement

and a rotation. In elementary analysis static indeterminacy”

resths when the number of unknown reactions are more than
the static equations of eQUilibrium:‘three for a planar
motion.

.Ih a-finite element quel the beém is subdivided;
continuity and equiligrium at the nodes prdvide extra
equations. A statically indeterminate system in a linear
equation solver occurs when the number of equatlons are less
than the number of unknowns. Solving contlnuously supported
systems is easier with bhe finite element method as the
problem is‘represented by a set of linear equationé. |

There are many ways of spec{fying displécements and

[y

support stiffnesses:

S[Kshaft] L% 0T ) 3

2 | o o § xf

o kKb,
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Where { x,} are thevnodal variables with constraint and
{ x,} without. { Fa} aﬁd { F,} are the éorresponding
external forces and [ Kyg] the support stiffnesses.
[ Kshaft ] is the beam/shaft stiffness matrix. For a rigid
support the corresponding stiffness tends to a very large
valﬁe (infinity), resulting in a small(zero) displacement.
The prduct of the stiffness and the displécement will still
be finite giving the corresponding reaction force.

To specify values for the displaceméntsﬁ{ Xg}, the '

stiffness matrix ‘and the force vector are augmented by

[ KB]' ' \

{ (Fg) + [ kg 1 01
¢ Fro

The error, { ¢ } = { Xg} - { X;}; is small as loading { F,}
is far less than [ Kgl{ X4} and [ Kg] is far greater than
[ Kshaft ], forcing a deflection of { Xz} = { X;}.
-

2.2.9 Analytical solution for a simply supported beam

The exact solution, satisfying the differential
equation of motion of a Timoshenko beam with hinged end
conditions is obtained.'Though such a solution is available
from the general results of Huang[8] the simple,appro&ch

taken is enough to evaluate the bending and shear modes.
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The forces acting on a differential Timoshenko'elemént
in harmonic transverse vibrations are shown iﬁ Figure 2.2,
The internal forces and the inertial forces deform the
element. The kinematic relationship of deformation is g;ven

°

as:

X
1l

¢ - ¥

where W'*'is the total slope, ¢ the bending slope and V¥ the
shear slope. ,The constitutive relationship between the shear

stress and strain gives the force equation:

V=GKAY

where V 1is the shear force, G the shear modulus, K ‘the shape

\
b

factor and A the cross-sectional area. The relation{between

the bending moment, M, and the ben%ing slope, ¢, isi| R

M= EI ¢'

~where E is the modulus of elasticity and I is the area

moment ofvinertia, The force equilibfium gives the equation

&

of lateral mqtiOn:




¥

Q

Figure 2.2 Forces and Ro‘tations on a Beam Element

F + dF

41

M+ dM
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where W is the centroidal displacement, p is the mass
~density, w is the vibrational frequency.

Finally, tbe,equatioh cf motion in rotation is given as

EI ¢" + GKA (W' - o) +w p 1 ¢ =0

These equations have been derived by other investigators and
can also be obtained from the variational principle.

Assume that the variables 4in the Nth mode are:

W= lwosin( l{}li)edwT
= (?,COS(NEx)erT '

where, the functions in x satisfy the boundary conditions.
- Substituting in the gquations‘of motion we get the algébraic
equation:

3

4 (6 (¥ Vo ‘k222 4.4
A {—iPiJ fk2{1+ &K+]) &) Nﬁ] + N'm=¢

RO
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:\/pL&a"’

where non-dimensional frequency is A . 'Ekz and N 'is
. the mode number. This is a bi-gquadratic equat:.u: which can

be reduced to a quadratic with two roots for each value of N
and for given values of k/L and E/GK. The lower root
correspénds to the Bending mode and the higher to the shear

mode.
2.3 Results and discussion

2.3.1 Performance of TM544 elemenf

Table 2.2 giQee the comparison of the three elements
derived in Appendix A. A thick beam with a k/L value of
O.bé;_E/G=2.6 ahd shape factor k=0,85 is used. The three
elements are tested with a beam modelled by eight and four
elements. The degrees of freedom for these two models are:h
thirty six and twenty. Thus, the comparison tests the
accuracy of the polynomials chosen and the constraint
conditions used per degree of freedom ahd per element. It is
seen that TM544 converges to the exact value faster than the
other two, even a four element twenty degree model glves the

first four elgenvalues accurately. |

It is interesting to note that the leﬁen shear modes(0
_an§h1) are accufately obtained in allithree elements, even
.thoubh the global mode number is high(5 and 7). In the case
of TM654 and TM624 some of the higher sheer modes converged

before the 1ower_bendihg modes.



Table 2.2. Comparison of TM544,TM654 and TM624
° for a 5.5 beam: E/G=2.6, K#L=0.08,.K=0.85.

S T T ittt il T R N B I it

Usgng'eight.elements

1 8.8398 8.8398 8.8416 . 8.8398
2 28.461 28.461 28.467 28.464
3 51.497 51.497 51.549 51.546
4 75.364 : 75.369 75.696 - 75.693
5% 89.339* 89.339 89.339 | 89.339
6 99.301 99. 341 99, T¥8=* 99,748
7* 99.748% 99.748 } 100.73 100.73
8 123.09 123,21 123.94% 123.94x%
9% 123.92% 123.92 127.55 - 127.55

Using four elements

8.8398 8.8398 8.8416 ' 8.8406

1

2 28.461 28.465 28.535 28.534
3 51.497 51.547 ' 52.891 52.890
4 75.364 75.712 75.712. ¢ 78.712
5x 89.339=* 89.339 89.339 89.339
6 - 99.301 - 99. 805 ' 99.764=* 99.764x%
WES 99.748x* 99.748 : 123.98%* 123.98x*

‘

* shear modes.

o A i ks
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If thé shear variable is given enough representati®on, ;ﬁen
the lower modes Eorresponding to bendiﬁg.and shear converge
at least equally well irrespective of their global nodal
pésition.'This is a definite indication of the indepehdence
of the bending and shear modes for a simply supported cai%.

| TM654( with constraint y'' = 0) implies a. linear sh;;r
varigble and can ke expected to perform equally with TM624
for the pure shear modes: if sheér mode 1is independeht of
the representation of;ghe bending slope. The Shear‘modg
frequencies are the same for both—four‘and eight eiement
_comparison. The bending modes also, surprisingly; perform
equally well: the higher order polynomial representation of
T§6§4 1s sdperfluous.

TM544 with lowér order polYnomials than TM654 and.
higher thén TM624(with a linear shear variablé)'has an
impiied quadratic representation of the shear variable and
performs better than the other two elements. The performance
gets better at the higher modes where shear has an
increasing_;ffect. |

| Compariéon'of these three elementé‘is made with
_different k/L.fatios, end conditions and elements. TM544 is
found to perform better and is the oﬁe selected.for,the‘rest
‘of the text. |

f Ih Appendix A, an element is presented which uses
trigonomeiric functions instead of the‘customary algebréic

N

functions. -
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Table 2.3 gives the exact naturel frequencies’of a
simply supported bean with E/G=2.6 and K=0.85 Eor’%ifferent
k/L ratios and mode numbers( n=0 to 4 for shear and 1 to 5
fof bending). An eiéht element model results are co&pared‘
wKth the exact results to test convergence 226 accuracy. It
can’ ,pe seen that for slender beams with low k/L values, the
higher order polynomlals are superfluous. For Qow k/L values
the shear modes,occupy very high global p351t10n, yet they

. ¥ Y ¢
are accurately obtained. )

| ‘The results match closely Qith the exéq¢ solution,
especiaily for k/L greater then or equal te 0.04. %hefhigher
order Timoehenko beam representation now'becomes effective
and the accuracy of ﬁhe elenent is'maintained even for large
k/L values and mode numbers.

The close prediction of.the shear modes, even the
fourth mode, using just eight elements, is very encouraéing.
It is a ;eSult of allowing a quadratic representetion.for
,the;sheer'variable instead of the usual constant or iinear
variation,

Singlenprecision is used En'all the calcnlations:of the
finite eiement analysis and mighf be responsible for the
dlsc;epanc1es in the last few digits.

qunvergence and rate of conveggence are impertant
aspecfs'dfba.finite element. Cpnveféence assures'that_the
ekpected‘accp:aCY'eanube obtained and ratevof.cpnvergence
'decides how few.elenenﬁg are needed to do so. In Table %;4

‘we have the results of a simply supported beam with E/G=2.6,
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‘k/L=0.08 and K=0.85 using 1 to-8 elements. The~shear‘mode
frequencies converge fast: the zero order mode is obtained °
with just one element as it has a constant value. The
bending modes also have a healthy convefgence; '{h‘ B
N Rate of convergence of the first few natural
‘frequencies iszshovn in Figure 2.3;‘percentage error is.
" . given agains% number Gf elements used.'Efficiency'of o
programming and use of single precisgon account fQF’§aft3bfg..
\the_error. As the number of elementsﬂincreases the relative
percentage error drops tO»zero asymptoticallvriwhich.isla : of
_good sign for the element ’; | o .
Dawe's 1s the most efficient of the elements’present
Conparlson of the rate of convergence ofvthe.presentvelement"
with Dawe's and exact values rs shown in. Table 2.5. For a |
.slender beam, k/L —0 008 Dawe s element converges faster
| For thlcker beams, k/L -0 04 and O 08 TM544 is more s
accurate and converges faster"reqU1r1ng only elght elements
to converge to the exact values. Whereas, Dawe s element“ ﬂ
4Vdoesn t qu1te converge for h1gher modes, even with 51xteen v
'elements. PR . o | |
ThlS is- yet another example of how the constralnt »
~ cond1t1on used can offset‘thevadvantages of h1gher orde;>
' polynomlal representatlon. Dawe uses a qulntlc polynomlal
for - the dlsplacement and a quartlc for the bendlng slope..A i
constralnt condltlonkls used to evaluate flve constants, g
: rwhlch maﬁes'the element stlffer than expected from the

) -1nterpolat10n functlons used The present element whlch
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Figure 2.3 Rate of convergence of TM544
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obtains only:one constant from the constraint condition
~
appgarg to be léss restrained. i\f‘

Dawe has not ven higher order frequencies, therefore
comparison of the shear frequencies was not possible. Dawe
had a constant shear along the element and may not obtain
the higher order shear "frequencies accurately.

Fepresentation of the boundary conditioné was a major
problem with the earlier élements. Thomas-xAbba; developed
their element to represent all the rigid boundary ~
conditions. They could do so only for a uniform beam, with a
linear combination of the nodal variables used. The |
Timoshenko beam end conditions for non—uniform‘bedm are
developed 1in Appendia A. In our element all these end
conditions can be directly applied. Thomas Wilson's element

doesn't have ¢' as a nodal variable and can’

t represent
bending moment.

Table.;.6 givés a comparison of the pre;gnt eiementt
with Davis(17), Thomas Abbas[22] and Kapdr[19]. Simply
supported and clamped free cases are considered with E/G=2.6
and k/L=0.08. In all the cases TM544‘is seen to be more
accurate pef degree of freedom. It is also seen that the

error is negligible, though only four elements are

considered.
x

i
i

2.3.2 Sécond spectrum
Following Trail-Nash and Collar, Thomas-Abbas and

Bhashy#m—?ratap classified the Timoshenko beam frequencies

14 |
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Table 2.6 Comparison with Kapur, Davis, ‘Thomas-Abhas

elements; % variation

a)

b)

c)

d)

.S, E/G = 2.6, K =0.85, k/L* 0.08, 16 Degrees of Freedom
Mode 1 2 3 4
Exact 8.8397 28.461 51.498 75.364
IM544 0.00 0.01 0.09 ®0.45
Davis 0.09 0.98 .19 6.81
4
Thomas -Abbas 0.00 0.04 0.17 0.86
$.5, E/G=2.6, K=0.68, WL =0.08 16 Degrees of Freedom
Exact 8.6450 26.960 47.680 68.726
T™M544 0.00 0.01 0.09 0.50
Kapur 0.0 0.23 0.74 8.12
Thomas-Abbas 0.00 0.03 0.17 0.82
' N
C-F, E/G=2.6, K=0.8, k/L=0.08, 16'Degrees of Freedom
Mode - 1 2 3 4
Exict 3.3281 16.289 36.708 58.279
TM544 0.00 0.00 - 0.03 0.15
Davis 0.01 0.31- 1.54 3.69
Thomas -Abbas 0.00 0.00 0.05 0.22
C-Ff, E/G=2.6, K=0.65 k/L=0.08 16 Degrees of Freedom
Mode 1 2 3 4
Exact 3.3241 16.289 " 36.708 58.279
TM544 0.00 © 0.00 0.03 0.14
Kapur 0.00 0.06 0.30 0.66
Thomas-Abbas 0.00 0.01 0.05 0.20 .

53
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into coupled component modes: Thomas-Abbas denied the
existence of two separate spectra while Bhashyam used a
reduce@ one point %ntegration'to claim otherwiﬁ:. The
present higher order element is used to obtain the results
of Bhaéhyam. Bhashyam;classified the. spectrum into two
bands: W mode and the § mode. The first spectrﬁm W mode 1is
bounded by C (natural freguency of the Euler—Bérnoulli beam
for low k/L anqkof'the simple shear beam for high k/L). The

second spectrum 8§ mode has shear component frequencies C as

the lower bound. C, and C, are the results obtained by

Bhashyam for the 1st and 2nd spectrum. Table 2.7 compares

the present element results with Bhasbyam's forrghe shear
mode. Tﬁough his results are confirmed by present analysis,
division of the‘frequehcies into two spectra is still a
classification to be settled. |

The zeroth pure shear mode as obtained in a

hinged-hinged beam ( from exact and finite element

9

_analysis ) has interesting physical implications:

1. It is a rigid or zero mode vibration. Unlike the rigid
body translation and rotation it occurs at a non-zero
f{ggﬁéncy. The zero frequency modes are prevented by

prescribing a displacement and a rotation at some point

on the beam. Similarly thzejiig;/ffgid mode can be
prevented by prescribing befidind®slope which happens: for

1
a fixed end or by prescribing the shear slope which
i.occurs at a free end (In the zero mode, bending and

shear slopes are equal prescribing one of them is
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sufficient). Thus zeroth shear mode can only occur for
the hinged-hinged beam. |

2. In the zeroth mode, bending slope and shear slope are

| equal resultiﬁg in zero displacément. Detection of this
mode will be difficult though strong rotations occur in
the beam. |

3. Constant bending slope gives a zero bending moment,
hence strain energy in bending is zero. Strain energy is
stored in shear alone and kinetic energy is due to
rotation. Translation is completely absent. The
resulting natural frequency is - ) = /ﬁi;;;? .

From the eigenvalue results of a beam with different
end conditions, we can get the shear dominant and bending
dominant spectra. The effect of the beam thickness on these
two spectra is shown for a hinged-hinged (Q-H) beam in
'Figure 2.4 and fbr.a clambed free (C-F) beam in Figure 2.5.
The separatidn of the modes can be guantitatively visualized
from the global modal position (global mode numbers are the
" mode numbers ob;ained,by atfanging the eigenvalues in tﬁe

7
ascending order), To illustrate, for both H-H and C-F cases,

the first ten giobai modes cqnéist of bending modes/only,'
when k/L=0.01; whenjk/L=Q.12, there are four shear ahd six’
bending modes. ' . ) o .

For low k/L value, a slender beam, the resisténce'to
behding is low while resisténce to.shear;is high; hence aii
lower modes are ‘bending dominant, As fhe'thicknegs of the .

beam increases the shear stiffrness drops, strain energy
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Figu;e/2.4,First and second spectra of a H-H béam.
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— — — Shear Dominant, Second Spectrum

Bending Dominant, First Spectrum
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Figure 2.5 First and second spectra of C-F beam
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_st&?ed ip shear increases and the shear dominant frequencies
are lowered. For large k)L values shear modes are
encountered even for low global modes and a good
representation of éhear in the finite element becomes
necessary.

For large k/L ratios begding and shear modes ére
interloéked. When k/L = .12 three shear modesvinte;space th:a
five bending modes of a H-H beam; one shear mode overlaps
the lower fﬁve bending modes of a C-F beam. The shear
frequenciés, in the case of a H-H beam, decrease more
steeply with increase 1in k/L, compared £o the C-F case,
indicatihg thatiit has less shear resistance.

Mcde shapes for different end conditions and ‘global
mode numberé are'obtained. For the case of a simply
supported beam the diQisibn;is distinct .and can be compared
to-the analytical solution. The bending dominant and .shear
dominant modes are shown ingFiéures 2.6 aﬁd 2.7.

Ih-each case the displécement, W, benging slope, ¢, and
shear. force, AY, are drawn. The parameteré used arg
k/L=0.12,'5=0.85-and E=2.6. Shear slope ié amplified by the
area apé”heﬂée appears to dqminate over the bending slope.
For a uniform beam, the variable y can be -used instead of Ay
to obtainsthe mode shapes to thé:same-Scale.

The zeroth Sheaf‘mode is shoﬁh,'with equal beﬁding and
shear slopes andizqu displacement.rlnythe first spéctrdm,
bending*;gd éhear.slopes are oQt of phase: ¢-and ¢ amplify
‘the ‘disp'_lacément amplitude. théreaS",é"'in,a:he | second spectrum

B



Shear Slope A ¥ Bending Slope ¢
_——\_\,_
Ist-Mode

Q'

2nd Mode

. 3rd"Mode

4th Mode

s k = 0.85, E/G = 2.5, %/ =7 0.12

Displacement W

, ;Figure‘ 2.6 Be'ndiné dominant, first spectrum, .mo‘des,
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Shear Slope A v Bending Slope ¢ Displacement W

Oth

Mode

w

’ 3rd

Mode k_
k=085, €/6 = 2.6, k/z = .12

’

éfguré‘2_7,Shea:'domdnant,‘sgc0nd spectrum, modes
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- the bending and shear rotations.
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they nullify each other deereasing the displacement

amplitude.

- The mode shapes obtained also conform to the.exact

‘trigonometric solution used, giving a sine curve for

. displacement and a cosine curve (in and out of phase) for

o~

W N

2.3.3 Tapered beam

Table 2.8 shows the comparlson of the natural

'h

frequenc1es for a chlmney type - structure,'wlth Thomas[22]

vt

‘and a shell type element given in Thomas. Thomas used’ a 10

'element, 30 degree-of freedomrmodel.'A’4 element, 16vdegree

of freedom model of the present element is used Good»
agreement is shown for the flrst six modes even w1th the few
elements used and convergence seems to be faster.

Table 2.9 g1ves the e1genvalues for double tapered

delements with both dimensions h and bvhaV1ng,a 11near tape;.
“along.the length., Compatison with To[3l]‘is“not possible_as.f
he has not given the cross- section type and k/L values,
,wh1ch are 1mportant for a Tlmoshenko beam Earller'

fauthors[28] [29] dld not con51der these factors as their

model was based on. the Euler beam theory

In Table 2.10 comparlson 1s obtalned w1th To's element &

. To[32] modlfled the Thomas[22] element for a llnearly

'varylng beam and called it TB31. It has 6 degrees "of treedom

per element as does h1s next element TBS whlch is also used

for comparlson..
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‘Table 2 8. Comparison of the natural frequenc1es(Hz) of the beam‘e
type modes of vibration of a chimney. with Thomas. '

- o o e = M e e e e e T em e = e e > e e e o e = e e e M e S Gm e e e e e e e e o e e = e

~ Mode # Thomas TM544 Shell: element
# of elements 10 4 . 20
‘ A
# of d.o.f 30 16 | 80
1 0.5096 10.4988 0.5105 ‘
2 2.6920 2.6402 2.6955
3 6.5090 6.4046 6.5119 . L
4 11.073 110.927 11.045 R
5 16.070 16.000 15.910 o
6 21.338 21,418 ¥ 20.822
g
) &ff“ . ,“‘f' , ’e{;§f
g LW 0y
o | R
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. . - -
Tablel2.9. Natural frequenc1e4§L /PA07EIaOf linear double
tapered beams; k/L=0.025, @lar c.s, E/G=2.6, K=0.85,
4 elements, taper is same. .
Mode# Tépehq=B:.1 Tapera=f=.2 Tapera=f=.4 Tapera=f=1
1. 3.4264 - 3.8785 3.4739
8.6417 14.203 ¢ 21.205
- .3 | 19.908 '34.101 . 56.670
' 65.170 104.80 .
98. 330 '162.57
\
........ S S RREELEL AL
€
4 ..\ i
3 N 1 r
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Table 2.10. Comparison of eigenvalues, wL? /pAo/Elo:a double
tapered circular thin walled cantilever .beam. 1/3,=10, with To.

- e e o W w am e v T Ee TR o e MR M e W e e o e ER A o T T R W M e TR m PO M o R W oer T e W S

TB31 10 3.6818 3.5511 _  3.9692
1 TB5 10 3.7370 3.6082 4.0699
TMS44 4 3.3495 3.3960 < 3.4584
TB31 4 10 17.717 18,811 22.133
2 TB5 10 19.113 20,621 05,443
TM544 4 16.573 <;8.307 19.811
TB31 10 42.928 46.426 54,062
3 TB5 10 50.353 56,192 71.241
TM544 4 40.612 45.444 49.589
TB31 10 75.117 80.776 91.624
4 TB5 10 96.995 108. 31 139.60
TM544 4 72.0973 79,530 85.855
TB3#¢ 10 111.93° 119. 30 132.30
5 TBS 10 158,17 180. 16 230.77
TM544 4 108. 42 118.63 126.21

/
-~
ARG NI o iV ]




The shape factor used in the present case is K=0.531
for a thin annular cross-section, The eigenvalues obtained
by;ﬁﬁeﬁpresent element are lower than To's for a lesser \
number of elements, indicating faster convérgence: the‘

higher order element having a better performance. To[31,32]
claimed that he could repfesent all the boundaryncOnditiOns
with his element. Table 2.11 shows how he was wrong in
representing bending slope, bending moment and khear force.
j
2.3.4 Stat1c response

In Appendix B, analytical solutlons of & Timoshenko
'‘beam are given for dlfferent end conditions Qnd»loadlngs
| Comparlson with a ¥our element model is glven in Table 2,12,
A beam with length L=50.0", E/G=2.6, K=0.85 and load P=16ZO
1bs is used. Only half the beam length is considered for /
symmetrical structures.‘

The analytical(;esuits.given in Appendix B can be used
to find the response oﬁAa statically indéterminate beam
using a superpobition(techniqué. Table 2.13 shows the
analysis of a 60" long, 2.4" radius beam with hinges at the
vends and in the middle. The beam weight is lumped at the
node points which is.the onlyvstatic force considered. The
shear force is uncoupled at the node pdints where eQ\sipal
load is present since shear d1scont1nu1ty occurs. The
“discontinuity is d15t1ngu1shed by GKAY and GKAw referring

to the shear force on the left and rlght sides of the node

i. The six element resul;s.cqmpare well with the analytlcal



Table 2.11 Boundary conditions: Tapered beam

Boundary

Constraint

Fixed

Free

Bending slope = 0

Moment = 0

Shear force = 0

o¢ 0

I(X)~5-£=

A(x)-w=o"
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Table 2.13. Continhqus steel beam; static analysis due to

its own weight. L=60", r=2.4", K=0.85, E/G=2.6.
Response “xact results
Disp]acemeht
W, 0.0
W, .2898E-04
W, .2176E-04
W, 0.0 :
Rotationﬁ
é. . 3441E-05 .3443E-05
¢a . 1226E-05 .1227E-05
“da -.2119E- 05 .2118E-05
0 0.09% .4876E-20
Bending moment | :
; ET¢ - . 0.0 . " -.4963E-04
Elt - .3464E+03 -.3464E+03,
El & -. 1769E+03 -.1769E+03
Elé +.5084E+03 +.5084E+03
Shear Force |
GKAY - . 34B4E+02 .. 3464E+02
- GKAYu "-.3464E+02 - -.3464E+02 - .
GKA e -+, 1694E+02. ;\?ii_ _ +,1694E+02 .
GKA Yar +.1694E+02 N g +,1694E+02 ~
GKA v +.BB54E+02 N +.6854E+02
GKA®. +.6854E+02 +.6854E+02
_-.6851E+02 -

GKA Yo

Bearing reactions

3
R2

" 60.4405(1bs)

188.677(lbs)

.6854E+02

' 60.4407 (1bs)

188,676 (1bs)..

U SO0 A S T T T S




solution.
/

2.4 Conclusions

General‘development of higher order elements usiné?a o
constraint condition*is shown.uéppendixjA gives the
formulation for four elements, one of which uses
.trlgonometric functionsf A particular element, TM544, was
chosen. It 'uses a constraintlcondition; y''' = 0, and has
eight deérees of.freedom; four-at'each node, to represent
the'beam‘parameters: dlsplacement, W, bendlng slope ¢,
.Shear-forCe,‘Aw, andvbending moment( I¢'.
The'new'element presented'conuerges\rapidly to the

&

exact solution It is found to be more accurate per degree

g

} .;;x« . N\
of freedom and penvelement compared to the ex1st1ng

‘ielements. The nodal variables chosen allow complete
Acompatlbll;ty at uniform and non-un;form‘cross-sections and
_direetﬁrepresentation,pflall the rigidiboundary.conditions.
| uAppendlx A gives. the correct,boundary'condition;'for a
nonrunlform beaml Higher order taper is~achleved using
ﬁnumerlcal 1ntegrat10n. Comparlsons are made w1th some

standard results.

In the case of a 51mply supported beam exact solutlons

L

o for the two separate spectra ar6 obtalned and f1n1te element

‘.results match well w1th these. The zeroth natural frequency

's

‘correspondlng to- the pure shear mode 1s 1dent1f1ed The hlghﬁ'

, order shear representatlon helps in the accurate and easy

‘convergence of{the-shear domlnated“natural‘frequenc1es.,
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Appendix B gi?es the analytical resﬁlts for a
Timoshenko beam in static equilibrium for some standard:
cases of loading and bouﬁdafy cohdiﬁiohs. The Euler beam caﬂ
be replaced by'the‘Timoshénko beam‘wherever deep-béams are
present. Superposition can be.uSed to evaluate other .loading
conditioné and indeterminate Beams. The stiffness matrix of
“the finite elemeht is.testeé for statically determinate and

indeterminate structures.



3. APPLICATION OF BEAM ELEMENT TO A WHIRLING SHAFT

sztract

In continuous shaft whirling with nonparallel whirl and
spin axes, an elemental length undergoes a gyroscopic
moment. The moment has been calculated for a oeneral"

asymmetric shaft with an arbitrary spin to whirl ratio by

7 applying the Euler equations of motion. With a proper

representation of the gyrosgopic moment, the: beam element is

extended to represent a whirling shaft. The finite element

‘results are compared with the analytical solutlons for

simple supports‘;\th,those of Rouch and finally with the
: 4
Ritz method.

3.1 Introduction

Rank1ne[40] in 1869 was the first to study rotors,
i .
con51der1ng the centrifugal forces and the shaft stlffness
\

Jeffcot's mode1[41] of a symmetrical rotor with a massive

‘dlSk in the middle is Stlll ‘used in_the experlmental StUdleS

L

on bearlngs‘and rotor. He was the first to con51der viscous
D

damping to explaln the. phase between the plane of bendlng

iand ghe plane contalnlng unbalance. Klmball[42] studied the N
ﬂ'effect of 1nternal damplng due to hystere51s 1n the rotor.

Blshop[43] rev1ewed the rotatlng shaft theory and exposed
the mechanlcal analogy that exists bqnﬁeen a 51mple conlcal

.pendulum whose centre of support is glven a c1rcular motlon,

72
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and a whirling shaft. Bishop, with his associates[44,45,46]
developed the receptance method and modal summation method
for shafts. |

Lowey and Piarulli[47] gave definitions and a detailed
list of references concerning:different aspects of rotor-
dynamics. They mentioned that critical speed shou%ggbe‘the
term used for rotors 1nstead of natural frequency, critical
speed is the running speed of the shaft at which the
whirling orbit becomes unbounded.

Eshleman andvEubanks[48] gave_an analyticalnsolution
for the ctitical speeds of a continuous rotor including the
effects of transverse%shear, rotatory inertia and'gyroscopic
moments, and #ted upon by an ax1al torque —

- The results show that the change in crltlcal speeds.
depends on the slenderness ratio k/L. 1€ k/L is below
0.0025, a constant ax1al torque tends to decrease the‘
effectlve stlffness of the rotor andglowers its critical ;
speed, other effects hav1ng llttle fﬁportance. If the ‘
slenderness ratip is above O 0025, gyroscoplc moment'-
rotatory 1nert1a and transverse shear effects become";v}‘
~1mportant and‘two,grlu@pal speeds( backward whlrl fofééfd-
_whlrl) :

'jzlcally allowable(strength tosques

‘have ‘a negl1glble effect on the cr1t1ca1 speeds for shaft

T

' ~,ratlos greater than 0 0025. \§,'

o

Myklestad[49] 1ntroduced the transfer matrlx method forrf

e,«&’

flndlng the natural frequenc1§s of beam type structures t&' f'

_}flexural v1brat10ns. In thlS method the structure r§
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subdivided into regions con51st1ng of nodes and flelds in

between. Every node has a state vector consisting of the
displacements and internal forces at that point. A point
matrix relates the state vectors across a node and a field
matrix relates across affield. The application of proper
boundary condltlons result in the necéessary equatlons for a
homogeneous solutlon or a response study The Holzer method
is the cla551cal transfer matrix method used in determlnlng

the.tor51onal critical speeds of shafts. In th1s_method,

incorporation of the boundary conditions needs intuitive'

o . , .
vma@ipulatﬁ%ns. Calculation of the higher order criticals

: demand,accuracy up to 8 decimal places or more as -small

dlfferences of large numbers are 1nvolved

Prohl[SO] applled the transfer matrlx method- to rotors.
" The' ex1st1ng energy methods of Rayle1gh Ritz involved the

selection of approprlate functions and tedious calculatlons.

-

‘ﬂ Whereas, with the transfer matrix method higher critiCal

speeds, can be calculated for a rotor with varylng ‘span

lengths, cross-sections and multlple elastlc supports. ThlS I

approxlmate method is ea51ly adaptééle to cémputers and -,
ga1ned ready pOpularlty Lund[51], among many others has.

used this. method exten51vely.~’

Gasch[52] stated that . Numerzcal experlence eVen wlth

‘the 1mproved transfer matrlx methods Sths that they are: not f'

Y : N

sophlstlcated enough to guarantee numer1cal stablllty The

more popular numerlcal method of“flnlte elements was

:’1ntroduced for rotor analy51s..W1th a beam element wh1ch

»v\)\»’_ :
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neglected the shear ef ect but included the translatory and ’
rotatory 1nert1a effects; he analyzed a large rotor system"
including internal and external damping, f1u1d f1lm bear1ngs
and foundation effects.

Ruhl[53] studied the comparative merits of transfer l
‘matrix and finlte;element methods in detail. He used an
. Euler beam element, based on Archer's consistent mass.
formulation which possessed the following advantaées over.
Prohl's method: .=~ | | |
1. xconverées‘quicklyfeven for higher modes with'fewer

number of elements; o - :f.L/ |

2. mass _ean, be coni.stently represented ~'

e
3. branchlng and boundary condltlons are eas1ly accounted',

¥

'~for;.ﬁ 'p Y ; '9. |
;4.n the transfer matrix:algorithm.of'Prohlvtendsttngeg:.i
La‘ensitive'to\system size; higher modes and rigid-“‘*
"supports causing. 111 condltlonlng of matrlces

One advantage in- favour of the transfer matﬁlx methodll

is that 1t requires less computer memory storage than the
' NG
finite element method but even th1s is offset by" the

*

present day computer capac1t1es.- s }“E ; "l . }7 Th

.

D)

e

Nelson[54] develo ed a rotatlng shaft element u51ng a’

Lol

,51mple Tlmoshenko beam element 1n two planes. H1s element

;fhas two nodes and two degrees of freedom a each node,;:”’A

'“resultlng 1n an EI:ht degrees of freedom r tor element._For
) . 4 i . r\_" -
s of motlon in the

' '\‘ '. T

a un1form shaft he dev"_oped the equatl'

-



76

Rouch and Kao[55], used the Thomas element[22] to
obtain a linearly tapered shaft element- Shear deformation,
'and rotatory inertia terms ‘were 1ncluded Shear condensatlon
by statlo-rednct1on was tr1ed..Gyroscop1c ffects® were found
from the Lagrangian equations of motion for’the‘whirling.“
element. . E
A brief outllne of a rotor system will be dlscussed
before proceedlng to the theory. A pract1cal industrial
rotor is usually a compllcated sysﬁem in phy51ca1 structure
A‘jand in 1ts performance. S;mpllfldatlon/oiinrs/by 1dent1fy1ng é'

the major subsystems which can be. individually modelled

,‘studled and_then assembled. Thezroéor'system,can Qe, ) L e
claSSified as: '»}-7 L .”ﬂil;._"‘ {dv.ﬂ;. ”ﬁzﬁ

ﬁi} ‘the shaft o o R

a. can be unlform tapered or stepped

R

b.. can be axlsymmetrlc or asymmetrlc 1n cross sectson(
SR R IR -
w1th ross sectlonal changes along the length (e947.‘

hollow c1rcu1ar to SOlld c1rcular)

Cy v contrlbmtes to the rotatory 1nert1a/gyroscop1c
’ . Y R . i . iﬂ“ . &
matrlces,
";d;d_ has bendlng and shear stlffness 1n flexural ‘
motlon-“ ( B b b;a :ul‘,' f-“”' S PR ;;ff
_f-‘,e;g has 1nternal damplng _ i
fa.';v'can be th1n whose effects are functlons of a p01nt T

on the" shaft ax1s. They contr1bute to thewrotatory

';'1nert1a and gyroscop1c matrlces but are rlgld in

el
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bendlng and shear deformat1on- ‘\‘
b, ¢ can he. thick whose effects are functlons of a. ;}f, ‘J;u"
‘ portion of the shaft Apart fgem the 1nert1a _-;'g -
effects ‘they can also contrlbute te the stlffness
o : . B e L L,

and can, be con51dered as steps on- the shaft.v,_ﬂff;ff %W

( . ‘ \b'>
3. bearings: - ¥
. . " ﬂ' ,0 s s - : ; .

a. rlgld or 1deal bearlngs wh1ch°are 1n8¥pable of g
“storlng energy (eg. b1 symmetrlc SUpports wlth two o
knlfe edges 1n two perpendlcular planes or 'hi.féligj

i ax1 symmetrlc supports w1th ball bearxngs% Tff '
} : -~ .
“b. flexlble bear1ngs whlchqcan store potentral ?h
’energy( these can be b1 symmetrlc, ax1 symmetrlc
R or asymmetr1c) N L }*, S :"?l('e”ffh”
o g e i e ”kf""

c. ma551ve bearlngs where the 1nert1a of - the bearlngs S

- contr1butes to thefk netlc energyuh L | -

d. .. 4f1u;d bearlngs wh1ch?contr1bute asymmetrlc ;_«ji'

"stlff gss and damplng matrzces. D1551pat1we and\§>>
. LT { , . hd Y;.'
';non conservat1ve forces arlse coupllng the shaﬁt :

motlon and cau51ng stablllty problems.i““'

v'.

i

Found?tlon st1ffness acts 1n serzes 1th fhe bear1ng

3An be alﬁoted to ihfflﬁ f,“fQ

1

'* ‘\st1ffness,7separate deg&ees of freedom
| represent/a flexlble foundatlon.:.3“”

Forc1ng functxons can be i
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shaft stiffness;

4. 'loadiné due to misalignment of the rigid couplings;

5. extérnal 10adihg due to steam pressure variations, geaf
meshing etc.

The mass and stiffness:métriCes developed to represent
the beam element can be podified for the rotor element.
;tructural.damping can,Be addedltq';he rotor éLément; ofteny
called material or hystereéis dampiﬁg, it is rglated to |
energy dissipation in solids due to various forms of
fnternal friction at a macroscopic scale.

For heavy damping, phase‘digference between force and
response oécurs-and éispicouples the motion ofkd}fferent
modes and planes;'if damping is light and uﬁifdrmh_the‘rear
‘mcdes of the ﬁndamped system are appropriate for tge damped
system, diagonalizing the system matrix.‘If { x } represents

t?é system degrees of freédom, the homogeneous equations of

motion for the damped case are:

[M1Ex} + [C]{x} + [K]x) = {0)

{X}‘ = {Xt} eSt

In general fhe\eigenvalue{“s, is tompiex and so is the

eigenvectdr.'The undamped system of equations are given as:



-

!' : ?y\' ' .

MM+ [K]i<) = 0,

i

\ |
A solution of the type:  °

o= 1x°;e\]wt

can be\assumed. Thg\eigenvalue 1s w; énd the eigenvector is
{ xo }; for the ith hbde,nThe modal matrix [ ¢ ] can be
obtained with the ‘eigenvectors forming iis columns. The mass
and'Stiffness maf;ices can be diagonalized with this modal
matrix.

also be diagonalized if it is linear:

The damping matrix can

p1Tclel = DEid

Y

Rayleigh damping is one such type;'given as a linear

combination of the mass and stiffness matrices:

. ;:] = LIEMJ - Qz[ﬁj

The modes of the undamped system diagonalizes the damping

»

. matrix:

¥
!

L



[C/ ] = C1[‘ M. ]+ Czt[ K, J. ; | .

From the definition of dampihé ratjo, for the ith mode we

»
\

get:

In each of the i1 modes we cén“obtain the damping ratios for
selected values of C, and C.. The deodupled equations of

motion give the damped critical speeds eé:

In this Chapter we concentrate on the gyroscopic
effects of a shaft whirling in a circular orbit. An
'axi—SYmmetric shaft,with no ihterhalfdampiné but having
bending and shear stlffness and a con51stent mass 1is
- assumed. The’ hlgher order element developed in Chapter 2 is

@
used to obtaln an accurate shaft element.

3.2’Theory

‘A beam elehent vibrates'in' pianebwheh‘the resulting
\*mo\ent due to the rotatory inertia tends to deflect ‘the beam;
and the natural frequenc1es are: reduced due to the 1ncreased

effectlve mass.
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A shaft spins about its«longitudinal axis and whirls

about the undeformed axis resulting in a moment about a

" perpendicular axis called the gyroscOpic coUple. In general

& . : .
this moment links the motion in two perpend&%plar planes,‘as

the moment in one plane depends on the}bending’slope in a

different plane. For small deflections‘andia circular whirl

the’ motlon can be decoupled 1n each of the planes.

The axi-symmetric wh1r11ng shaft element w1ll have ,,f'

]

similar express1ons for the strain energy due. to bendlng and

shear deformatlon and k1net1c energy 1n translatory motlon

as that of a beam allow1ng for the dlfferent 1nterpretatlon
put on dlsplacement w._However, the rotatlonal k1net1cA> |
energy ls dlfferent ) ” |
Consider the- force, F,‘and'thevmoment, M, acting at.the
centre7of an'elemental shaft while whirling.bThe centrifugal

force, F, is given as:

where p is the mass density,‘w-thefwhirling speed, A: the

cross sectlonal area and W the dlsplacement in the plane
cons1dered from the undeformed central axis. To find the_‘
gerSCOPIC moment of the elemental shaft Rouch[55] defined*

.
the k1net1c energy of the element in rotatlon and obta1ned

“the eguatlons of motion from the Lagrange s method
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‘n

: moments of 1nert1a are constant with. tlme. The resultlng

82
¢ «
-.h‘ ‘ * » S .
 Here, we will start from the basic definition: the\
‘Qexternal moment acting on the shaft to sustaln the}- |
_prescrlbed motlon is equal to the t1me rate of change of the e

'resultlng angular momentum. Fxgure 3 2 shows the undeformed w0

flxed axes OX Y424 and the body centred rotatlng axes OXYZ. ("’jﬁf,
‘As the shatt rotates ‘the element s moment of 1nert1a and the_-':fgé
'product of 1nert1a about the f1xed axes change contlnuously ”jiﬁV

-

’and it will be necessary to f1nd these values as funct1ons
'of time, Instead the rotatlng pr1nc1pal axes are chosen.;z'l o
Hence,,the products of 1nert1a vanlsh and. the pr1nc1pal ef'r§%'

¥

inertia tensor is dlagonal‘of,the_form: N ﬂ 'f‘;‘ﬁf

«

- o 0 0
11=p| 0 1, 0

elll=e 01, 0 |
0 O_Iiz

Where'I;;,»I,y and Izz are the pr1nc1pal momentSaof 1nert1a’
. AN

of the asymmetrlc shaft element about the respectlve axes.;.

Let the spatlal vector H be. the angular momentum vector and

._w be the angular veloc1ty vector of the elemental shaft and

hence that of the rotat1ng axes flxed to the body as. shown

The components of these vectors are:



T o »
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The angular momentum vector components are obtained as

. - . "1,

s Hx S w.‘ . )
H ' | 3 A o B N , -
Hy = ordu b 0 e
. H L A y - | o : ) T -t\:q!’\? : B S
vzl o e o e T

73 2.1 Euler angle5° transformat1 o of aiésfsi.vi R
Any orthogonal transformatlon of a.veetor 1n a threeg .
ldlnen51onal space needs three 1ndependent varlables,. '
dGoldste1n[56] Euler angles are the common varlables used:to7d'
,obta1n the transformatlon matrlx. ' | N | :

A rotat1ng system of axes is obtalned from the flxed;«f
system bY three succe551ve rotatlons. The cholce of these‘fd"
Jdrotatlons is arbltrary glv1ng twelve comblnatlons for the;
‘hrlght ‘handed system The rule that need be observed 1s that
.the flrst angle can: be about any one of the three axes but
,‘the next two rotatlons cannot be about the same axls.* .
l'Flgure 3 1 shows the p051t1ve d1rect1ons for angu&ar |

‘rotatlons and veloc1t1es. Flgure 3 2 shows the rotatlons and

the correspondlng Euler angleS[and the angular veloc1t1es._'



DT |
x E"Ai"g'ure_ll3.2, Po_s_’if-_ibn?ofj pri'nc'i'pa‘l ~§_;i‘e"s during

rotation

ang

wlar
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The order of fotations oheerbed'isé 1st‘%y an angle ¢J*about'
oY, to get Osz Zz axes, ‘then by ‘an angle (. 38 about ozz to

get Ong Z, axes; and flnally by bn angle Gx about ox, to»

get to. the pr1nc1pal axes OXYZ. 5 . a:'.?*¢*"
The angular veloc;tles about the pr1nc1pal axes are"_?f7
[5) | [t sne 07 f4)
‘ mz = —51n ¢ cos ?Z”.u29§;¢xyi,0 ‘f:’ ?zv
1 ;jn ¢ 3._f’f'}ﬁw0ai’;]lﬂ}‘ P )

. »...
&

, nghe angular veloc1t1es about the 1ntermed1ate axes and the
1nert1a tensor p[ I ] are &nown. Hence, we can calculate

- the angular momentum about the prlnc1pal axes 1n the flnal
'P051t10n."'=»,' gwf"‘wtk, SRR ST ‘;“ R -ﬁ; e
. The moment, M actlng at the centre of the elemental

PR

1\

B T A

"ishaft shown 1n Flgure 3 3, is equal to tne{rate ofuchange._c{f

of angular momentum-*w

Il
§ M= ()Xyz'fu)x H | : ,
» Y . e _ \! S 1
f}where the oate of change of the angular momentum wlth

o

*:respect to the rotat1ng axes is glven as.f]
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.:-1Fi§ufe 3.3 Forces -on a shaft element

= ta’ngen;t t‘qiﬁc

X-axis
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.
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”mV‘“»angular ve$OC1ty of the sh ft and the rotatlng axes WIll be

the Same. Tﬁ% other term wa 1s due to the rotatloﬁ’ST\the I o

Substlfutlng for angular momentum components and

equa 1ng moments along each ax1s .we get

The ahgular acceleratlons abouﬁxthe f1na1 posxtlon qf the;f

pr1nc1gal axes can be obtalned a5°'_ “

EREEAN

Assumlng the shaft to be‘r1gxd in the deflecteq p051tlon the .i g



e ‘{iu}~ [ang]{b} angj{;_’

i

*3Where { Tang 1,is the trans1ent transformatlon matrlx for.“.jv I
n | _ R /
'1angular veloc1t1es c) N

h3 2. 2 ercular wh1rl

‘1;1 Con51der the shaft inva c1rcular wh1rl Small angles of}v
| endlng slopes (¢z and ¢ ) 51mp11fy the transformatlon |

fmat:xx.to:;>v

~ cos b sind . 0°
(cos:y, sino . 0

_asin<¢* ' ¢05\¢x- 0

"Where’Cos¢Z-1 and Sm¢z ¢, are used Note that the n

-;‘transformatlon matrlx is tlme dependent.-
‘ E ’ - Lo . ) - .
i R . L . . . C _V T ‘”‘,_' S
'Case 1 Forward whlrl -spin velocity = whirl velocity.

.
. A Y o i

Vector representatlon of small angles, measurlhg ot
from the OXZ plane, as shown in Flgure 3 4 The component

fslopes, veloc1t1es and aoceleratlons are°
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' Figure 3:4 Shaft in a circular whirl
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1 : /
¢y = ¢ cos wt " | . ‘. ;f'r
- ¢Z'=  sin wt . " 4/
o $y = -¢Q Sih m£ o VW | 4
%; = -¢92 cos wt ‘[

¢, = ¢Q"cos wt-
?, = —4)322 sin wt \

;

150 9 = 4t, where @ is the spin velpcity

X {
¢X =0 oo \
and ¢x =0

6o N
Assume the spin velocity to be a con%tant, the shaft to be
) . . : v
circular in cross-section with I,, = I, the polar moment of
inertia and I,,=I,, =I,, the ‘transverse moment” Qf inertia.

The moment écting on the shaft can be found at any instant:

choosing, Qt = wt = m/2 the instant when the shaft is in the

R
s

‘OXY plane. We obtain the angular velocity components:

o .
|

*y 0%+ o A=W C )
wZ = ‘\ =] 0 0 | 0 - o
wx ¢ 0 ] ) 9) - 0

%,

where the nonlinear terms in ¢ are neglected. The angular

acceleration components are: <
' &

B AL s s D o i e i s O BN e a0t
>
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Qy -0 0 -pw 0o 1 0 0 o) ¥
d)z' = O -Q O + "] O O _(;bwz - 0
b 0 0 0 ¢ 0 0 0

, where the relation w = © is used. We now obtain the external

moment components: ‘ Vs
Mx=_o ~
i y -1
¢
M, =10

Following the above procedure, stbstituting the
relation between w and @, the'moment acting’onwtbe shéft for
any spin to whirl ratio h can be obtained.

Though, the method used here in deriving the externél.
moment on the shaft, from the'Euler equatigns, is very
general its use for other complicated whirl orbits may not
be as s%faight forward. Relation between slopes ¢, and q>y
will be complicated, resulting in highly non-linear
equations even for the case of elliptical orbits, Lund(51).

;
3.2.3 Equations of motion

‘Having found the centrifugal force and moment of a

rotating shaft element, tHe equations of motion for an

. 0 N .
elemental shaft as shown Figqure 3.3, can now be written. The.
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'assumptfbn of a circular orbit (relation of angles ¢, and

¢,) helps in decoupling: vibrations in a plane representing
the shaft motion. Let OXY plane be the:rep:esentatgmé*plane.'
Neglecting gravity forces, the shaft eqguations of m@;idn‘are

obtained.

From the geometry of deformation we get:

dw—t
dx ¢~ VY y
where W' is the fotal centroidal slope, ¢ the bending slope

and ¢ the shear slope.. The shear sforce, V, can be expressed

in terms of shear strain by the equation:

©

V=GKAvY

v

2

Where G is the modulus of rigidity, A is the cross-sectional
_area and K is the shear coefficient. From the element in
equilibrium the equation of motion in translation is:

dv = - w2 A W dx ,

GKA"(WH"¢')+‘”‘ZOAW=O 7>(3.1)

where W is the;centroidél displacement of the element. The
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equations of translatory motion for the beam and the shaft
are the same, as the whirling action is ineffective. The
moment equation, neglecting second order terms is: ' .

@
dM + Vdx = o o2 I, (2h - 1) ¢ d

!

)

From the pure begding theory we get:

=EI¢D

The resulting equation in rotation is: - o

EI¢"+GKA(W"¢)‘pw210(2h‘])¢ -0 (3.2)

where h is the ratio of spin to whirl; h=1 for forward

whirl, h=0 for a'beam and h=-1 fo% a backward‘Whirl These

&

equat1ons ‘of motion can be obtalned from the ;;r1at10nal

approach using the functlonal

' L o - |
J = ;—j E T (o) ?dx s H KA ()% - 2w'e + o7} ax o

0 ‘ . 7

2 2 2 [ ‘ ' /

- %’J p A w dx + —--(Zh - 1) J IdA¢2dx
0o 0

~




N

The four terms in the functional are the bending
strain, the shear strain, the translationalland the

rotational kinetic energies. This functional is true for the

element ‘with varylng cross-section( with the area A and the

~moment of inertia I as functlons of the axlal length X).

3.2.4 Approx1mate equat1ons o '
The method shown in Appendlx A for the beam is dlrectly

appllcable here. The component stlffness and mass matrices

T are the same but the 1nert1a matrlx in rotat1on is altered

to suit the beam as well as- ‘the shaft problem The whirl
affects only the rotatlonal k1net1c energy term and is
included by the magn‘tude and S1gn of h The approxlmate

funpt1onal is:

I (YRS s L :
J =5 (W)} [KA] )+ 3 30 }T (k8] '}»-\l M ' kel W)
+-{w} [KD]{N}-—~{N} [Ke]{w}-z{w\ 1] G

2 IR
+g (2h-1 ) (W, }T [1A] i) RPN

Where {‘Vg}-is the nodal variable VeCtor.

" The homogeneous equations of motion are given as:

- 9d T"'Tf o._ gives %D:KA] '+'[KB] - [Kc] - [KE] +[KD]]

e . ‘ o
| RRRTS [LVRC RN [IA]}:




96

¥

The symmetry of the mass matrix. 1s retalned even o

!

speeds, w.
after the inclusion of the gyroscoprg effects..The-resultlng .

eigenvalues are all real and positiveNfOr;a beam or a shaft
in backward whirl. However, the_shaftfin'a.forwardjwhirl‘has

.

some negatlve elgenvalues..

'3.2.5 Analyt1ca1 solutron for a sxmply supported shaft

’ Equatlons (3.1) and (3 2) govern the motlon of a
For a simply, suppofted shaft the boundary

wh1r11ng shaft
= O at the two ends. The

condltlons are W= 0 and Ig'
' 'solutlon -

M =M sin. 2 e and ¢ ¢ cos l - SRR A

satisfies both thelboundaryhconditions at x=0. and £=L.and -
_»also satlsfles the: dlfferentlal equatlons of motlon. L
. Subst1tut1ng the solut1on in-the d1fferent1a1 equatlons and
-‘51mp11fy1ng glves the characterlstlc equatlon.‘,’ RN

a {E-,E( (—)4(h-1)}-x {-1+(%<.- (2,,-1)} & a2

L it -0

o r;./ -2 ”f’ ‘ R e o
Where MAV" P L /Ek"'“ k is the radlus of gyratlon of the .
shaft cross- sectlon, n the mode number and L the length of '

the shaft

L
3
i
ok
N
‘3
b
V]
o]

The standard e1genvaer routine gives the whlrllng crltxcal ‘

A e A e, e P e

" ey

o
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3.2.6 Non-uniform shafts: Ritz method
The Ritz”method allows approximate\critical speeds to

. \
be calculated if approprlate solutlons aie assumed ThlS

L]

method is used for a non- uniform Tlmoshe ko shaft in

'Appendlx C,‘Varrables haye to be assumedj eparately for thev
dlsplacemen f 'and the bending'slopef‘¢f;which satisfy the
neces ary b:uhdaky condltlons. This dlffers from the
cl 551cal Euler beam where only the dlsplacément varlable is
assumed. The select1bn of the trlgonometrlc functxons gave
the exact f1rst crltlcal for a unlform Tlmoshenko shaft

For the case’ of a llnearly tapered shaft algebralc
"functlons are éasier to 1ntegrate and at the same tlme
‘satlsfy the necessary boundary condltlons The approx;mate»/
.SOlUthﬂS used are very crude but can be helpful in
verlfylng the f1n1te element results. More terms can be
o 1ncluded 1n the assumed solutlon for greater accuracy Th1s'

method can be extended for other boundary condltlons and

';shafts with hlgher_order cross-sectlonal varlat;onsi‘v“

"3;3;Results'and discussion'

' Rouch and Kao used Thomas, wllson and Wllson S

a B

element[22] w1th three degrees of freedom per node w 9, W

'_jTo reduce the number of degrees of freedom the shear

"varlable was, suppressed 'assumlng that shear cannot be

coupled at d1scont1nuous Jo1nts.“In the present element ;

'TM544 the ch01ce of the var1ables Aw and I¢ enables total :::

"coupllng at dlSCOﬂtanOUS jolnts. Table 3 1 compares
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Critical speeds pf a two element and eight degrees of
.freedothM54§ madel and Rouchfs ten element model- (shear
suppressedl possessing 20 degrees of freedom. Percentage
errors are calculated by using the exact results obtained.
The percentage errors}Tor different k/h values for the~shaft‘
using TM544 elements vary'from 0.003% to 0.06% compared to a
.variation of 0 006% to 0.046% uslng Rouch's elements for the
hflrst forward whlrl For the second mode the variation is
ng 042% to 0.216% using the present elements and .042% to
0;498% u51ng Rouch's elements. o g
The performance of the present element is an
improvement over "Rouch's element. The behav1or is better for
larger‘values of k/L and higher modes.'Thls is not S
surpr151ng as the basic beam element used is superlor as )
shown in’ the previous Chapter Figure 3 5 and Figure. 3.6
show the varlatlon in the st and 2nd mode critical speeds
for dlfferent k/L ratios; k/L ratio is not. only the
"slenderness ratlo for- a shaft but also represents the disk
'effect (the relatlve importance of moment of inertia to the
h‘mass of the shaft) ‘The- present f1n1te element results agree
- well w1th the analytlcal results for the f1rst as well as
the" second cr1t1cal speeds._ C T
Table 3 2 compares the tWo elements for k/L=0. ;'withn);

;ethe shaft 1n forward (h +1) and backward whlrls (h=-1l.:Thel”‘
'irate of convergence 1s better for TM544 1n alikthe cases.

Rouch s 10 elements regular (unsuppressed) modie 1 and the 3

'elements model u51ng the preSent element converge to the st



LS

100

nuzom suﬁk

comﬂquEou :spsads Hmuﬂuﬁuu uumnm jo wucwmum>:ou N m wHQmB

o
B

.pw

. : E -
) ”.t wﬁ i .
o > v“ ) . . < - k v. . Q , . - Q : . c
| a L°0 13/ ) L
L o M . Ly T
L UL 0ge8'p AGJSPS S5¥8°2 N 2820t | ea13kLeuy
" 2668° Y - S15%°S 551872 - 2820°€ oL
68y 8251°S - | - | osve-z £820°€ L
. Vi68 b 215Y°S I5¥8°2 y820°¢: G
AU E TR | B EE s : ,
2€68° 0 - | " 9lShS - §5¥8°2 2820°¢ b
068" b . 62€6"Y 625b°S 1E16°S 551872 15¥8°2 2820°€ . G620°¢ €
£868"Y ' €E9%°§ ‘ 1582 ¥820°€ Kl
(%0179 98/7°G 0189°G 8gLL"8 6L¥8°2 2516°2 9LE0€E OVmﬁqm. 1
_bYSWL |~ uonoy PHSWL yonoy PHGHL yonoy by SHL yonoy
_, ‘ — S N | s3uaie 3
|- = Y LdLum paemydRg [ L+ = Y [JLUM PABMIO4 | |- = Y [ALym pdempoeg | 1+ = y LALUM paemios 10 -oN
@ { 2 3pOM . L opoy o



3.2

C43.1

8/ ad% e

3.1

=

A.Nonfﬂimensional Frequency p -
S~

2.9

2.8

E/Gk = 24

Analytical  TM544

“Eu1er~beam

T 0.02 _0.04  0.06

~ Disc Effect k/L

Flgure 3. 5 Pomparlson of 1st cr1t1cal speeds for H-H shaft
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 Figure 3.6 Comparison of 2nd critical speeds for H-H shaft
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,‘critical’speed‘given by the analytical method.

beam cannot see thls effect.p

Gprlae

' characterlstlc equatlon Wlll no 1onger be quadratlc and root

e

Table 3.3 compares the results of the exact solutlon

: and the results obtalned u51ng R1tz s method for a 51mply

supported uniform beam. Trigonometrlc functlons glvecthe

: exact SOlUthh whereas,vthe one. term algebraic functions

yleld crude results. The effect of k/L can be obtalned 51nce

a T1moshenko shaft 1s used for the thz [ method @Eé Euler

o
e

. The- 51ngle term approx1matlon used has the dlsadvantage

of hav1ng a lower order dlsplacement (qbadrat1c) comparedwto‘

the bend1ng slope(cublc) An extra-termxln W,
)2

V

,or C2 2(2 -x),r--_can be 1ncluded but the

o

search methods have to be used to f1nd the cr1t1cal speed

The effect of the slenderness ratlo, k/L and the taper,.-“

rat1o, a, on the shaft cr1t1cal speeds is shown 1n

Flgure 3 7 for}a shaft 1n forward whlrl As the bearlng

condltlons are symmetrlc the d1rectlon of the taper 1s

1mmater1al as far as: the cr1t1cal speeds are’ concerned but
parameters are non dlmen51onallzed with respect tb the root‘
'1vvalues whlch wlll be altered 1f taper is reversed Thus, the

ce

g slenderness ratlo is k /L and the non dlﬁen51onal crltrcal

A - SE _ B s
speed 1s deflned as~' uf ;_fp-f» R

>
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The effect of k./L is greéter for a uniform shaft than for
kthe tapered. Effect of lowering the taper ratiol(from.1.0 to
0.2) is to decrease the critical speeds. The Bitz method
tendg towards the Lniform Euler beam for low k;/L values.
Euler‘beam values are expected for smqll Kﬁ/L and uniform
shafts(a=1). For higher values of k;/L and taper ratios (a
=1.0 and 0.8), the comparison gets befter.

F i
3.4 Conclusions

The moment acting on an elemental shaft in a circular
whirl is derived from the Euler equations of motion using a
rotatifig co-ordinate system. For the circular drbiE it is
shown ﬁhat the equations of motion can be uncoupled.

The beam element developed in @hapter 2 is modified to
represent the axisymmetric shaft in a circular whirl. The
present shaft element proves to be better than Rouch's.
Retaininé the shear variable allows more accurate results
per degrée of freedom and fas;er convérgence;fThe present
element is superior for higher modes and for thick shafts
implying its usefulness in representing large rotors. Exact
solutions are obtained for the simply supported shaft and
the critical speeds thus.obtaiﬁed are.used‘to evaluate the
finite elements.

In Appéndzx C. Ritz's method is developed for a tapered
shaft with shga;,orotatory inertia and gyroscopic effects
included. Resdlts are given for uniform and non-uniform

shafts. These results are used to analyze the effect of

“
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taper ratios and slenderness ratios of simply supported

shafts. The Ritz method shown can be used for other boundary

conditions using appropriate solutions.



4, SHAFT-DISK SYSTEMS

Abstract | : o T

A fiﬁite element is developed with the disks included
iithin the element at any given points along its length.
kThis element is tested exfensiyely forbshafts with §ingle,,
double and multiple disks} Comparison is made with
analytical solutions and with the finite.elemént resnits
obtained by lumping the diské at nodal points. This méthod

helps in reducing the size of the system matrix, retaining

the accuracy of the results.

4.1 Introduction L
Den Hartog([58] analyzed-the whirling'shaft;s.critical
-speeds with a rlg1d thin dlSk located on an elastlc massless
shaft. The flex1b111ty approach used gave the equatlons of
defleCtlon and slope from which the characterlst1c'equathn
was obtéined. The shaft mass and shear étiffness were |
. neglected. An axialiy symmetrié shaft-diék sysfem was
assumed and the- disk effect 1n translatlon and rotation waé
lumped For a cantllever shaft w1th an end disk he obtalned
the cr1t1ca1,5peed% for the ;ases of forward~and backward
whirl. o - S
Green[59] gxﬁended £h§ analysis'to-a_shéﬁf bn:sihple
suppofts with one,stwoAénd multiplé.diskssvThgimass and

shear effects of the shaft were neglected as;befdref

*108
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Eshelman and Eubanks[60] investigated the shaftrdisk
system including the mass of the shaft, lumping the disk
effects and neglecting the shear deformatlon of the shaft.

Craggs and Akella[61] used shaft finite elements whlch
1ncluded continuous mass, bend1ng and shear deformations and
rotatory 1nert1a and gyroscoplc effects.’ Slmple shaft-disks
systems were evaluated by lumping the dlLk effects at the
element nodes. Craggs and Akellal62] also reported the
finite element results‘of a shaft with continuous:disks; thej
model lumped the dlSkS at the nodal p01nts

In the present Chapter Den Hartog's analytlcal approach
:15 extended to include the shear deformatlon of the shaft
which was neglected by Den Hartog, Green and Eshelman

The shaft element‘is allowed to include one or .more
disks insidelitselﬁ. Thus;:a'shaftfdisk'System can be -
|representedvby just one element.:A great reduction.ln the
'nomber of'elements.and-degreesbof freedom_occurvahile
modelling‘large rotors- This is‘of'immediate use considering

the size of modern turbo generator sets with each of 1ts-

r"turblne stages mounted w1th blade carrylng dlSkS

The alternate shaft disk system of each stage can be
’_modelled wlth an. element for each sectlon wh1ch requmres 20
-to. 40 elementsr | | |
| Alternately, the 1nert1a effects of the th1n and rzgld
- disks can be lumped at the approprlate nodal pOIHtS A node

i's 1nev1table at every disk locatlon w1th thls method and

‘gives a 10 to~20 elements representation of each stage and a -

N
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40 to 100 elements model for the whole rotor system.
A large model requires more memory space, extensive

-calculations and increased cost. For an N degrees of freedom-_
system, a linear equation solver performs N2 calculations;
and N* calculations are made for obtaining_the eigenvalues
'and the;eigenvectors By 1nc1ud1ng the disks 1n51de the
element a 3 to 5 elements model for eachlstage'and a 12 to
20 elements model for the whole-System isvobtainedy which_(
: w1ll be compatlble even with a micro computer. |

| ThlS method is evaluated by comparlng it with the'
lumped finite element model and the analytlcal results of
'Green A few simple shaft- disk systems are tested A
repeated system with four dlSkS is modelled u51ng a perlodlc"
tyéf element The model is also used for a contlnuous

. shaft- dlSkS system

-4.2.Theory.'v

~Consider an’axl-symmetrie cantileyer7type“shaft—disk?-
system For a beam, the end can be flxed as’ the beam does'
not sp1n For-a shaft the flxed end cond1t1on 1s obtalned
‘by a long sleeve bearlng whlch restrlcts the dlsplacement
and bendlng slope to be zero but enables rotation about the
shaft axlsf | o | |

Iftthe dlsk isia‘concentrated masslor’the‘dlsk'is
-“perpendlcular to the shaft axis. and 1s placed at a po1nt

where the bendlng slope 1s zero (eg.,centre p01nt of a

;51mply-supported,shaft) then such a non- rotatlng system
e IR _ : J

-



will vibrate in a plane at its natural frequency and a
“rotating shaft-disk system will haye'no rotatory
inertia/gyroscopic effects due to the disk. Figure 4.1 shqws

the type of motion occurring when the end of the beam is

subjected to a force, m;w?*W, and to a. moment due to rotatory

inertia,_IdQ?¢. Where mg‘and 1, are the mas and the
transverse moment of inertia of the disk,
-end.defiection and thevbending,slope amplitud s.
When.the disk isﬁnot a concentratedh S and/or-placed
where,bending;slope,is nonQZero or is tilted though located"
- at a‘zerolsloperpoint4'the shaft will then'whirl around
with the dlsk not remalnlng in a 51ngle plane, cau51ng

: gyroscoplc moment (as the whlrl and spin axes will no longer‘h
“be parallel)

When the sp1n and wh1rl rotatlons arerlnuthe same
dlrectlon a forward whlrl is obta1ned and a backward whlrl
.occurs when they are in. opp051te dlrectlons 'In both the
cases centrlfugal force and.moment due~to rotatory~1nert1a'
occur due to the dlSk the same. ‘as 1n the case. of a Yo
1‘ beam dlsk system. In addltlon, the whlrllng of the dlsk
causes a gyroscoplc moment of —ZIde¢ in the flrst forward 3
'whlrl and I,w9¢ in the flrst backward wh1rl | |

» At the cr1t1cal speed for a rotatlng overhung
~:cant11ever shaft Den HartogrgiVes'the eQUations~o£',f
dlsplacement -and rotatlon, conelderlng the stat1c7~'

egu111br1um at any 1nstant'do
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Beam vibration

| ﬁ ' | - Q,spin velocity

L\_—,-x. S W

@,whirl velocity -

Y-

VR 'V ’ Q,spin vélocity o

\
|
L

,.;;w,whirl velocity

© Backward whirl

~"Figufe 4.1 whirling,qf'shaftiaisk system

I



where a,,, a,z, @z, and a,, are the flexibility

113

‘ coefficienté{ Den Hartdg used the flexibility coefficients

of the EulerAbeam. Taking the flexibility coefficients of a

Timoshedko beam given'in.Appendix B, we can account for the

| shear stiffness of the shaft. Substituting:

L

L L

“n TRt 3T

2

. L

M2 T %91 T ZET
"__L__
%22 % E1

I,' = 1,(20-1),

:'whefe hé spin‘Qe1oCity/ whirl velocity. The equilibrium

~equations are:

“

»
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For non—zerdyvalues of w, the determinant of the
roeff1c1ent matrlx correspond1ng to the variables w and ¢

should be zero. The resultlng characterlstlc equatlon is:

| . |
oom, L& o ’
S s 12y 2 ) LS LA 1262 12|
GKAL ! m mylg L 6kA 1, L3
1262 12
—z =0
dejL

The critical speeds for the eases.cf‘forward whirl
bachward whirl and beam are obtained by substltutlng h-1
~h=-1 and h=0 in descrlblng Id . Results of Append1x B can be
used toilnclude'the-effects ‘of shear in the other cases

considered by Green.

4. 2 1 Inclus1on of dlSkS w1th1n .an element

The dlSkS are assumed to be th1n (can be related to'a

51ngle p01nt on the shaft) and - rlgld (no deformatlon )

p0551ble) and that they contrlbute only to the inertia
L : * .

terms. S e
. e



s
The dlSk effects are usually lumped at the nodal points
by adding 'disk inertia terms to the approprlate dlagonal
termg_of the shaft translatory and rotatory inertia
: matrlces Here, we ebtain the disk effects as consistent
disk matrices and add to the shaft mass matrix,

£y

Addition of the centrlfugal force and the moment due to
the dlsks introduces dlSCODtanltles in the dlstr;butron of .
the shear force, AV and»bendine‘moment,jl¢', thougﬁ »
displacement, W and’slope, ¢; remain‘continnous.'The order
of the 1nterpolatlon functions used in the ba51c shaft
| element determines the accuracy to Wthh these
g d1scont1nu1t1es are represented
| Thus a hlgher order element becomes efFectlve, and the .
B representatlon of the shear force and the bendlng moment by
quadratic functions (Appendlx A), 1nstead of the normallx
giVen,linear or~constant-variation~ is»justified. .
U51ng the notatlon of Appendlx A and Flgure 4.2, tne>

translatory 1nert1a matrlx f0(3$he dlsks is:

=

oM = x o {c ][_xo ) on<xu[c“1

.
~

~;and'the rotatdry inertia matrix for-tne'diske is:
o S e e
A LIl T Lv6s) 1T Lvt) ety

) R , ‘ e
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Where Mdi_is‘the»mass and 1,; is the diametric moment.
of 1nert1a of the ith disk, N is the number of dlSkS in the
K_\lement and [ C ] 1s the transformatlon matrlx to change the
generallzed co- ordlnates from the polynomlal coeff1c1ents to
the nodal varxables LXO X, J[Cf‘]{w } and[yo X J[C“]{W }
,are\\he dlsplacement w and bendlng slope, ¢,vat dlstance,‘

from the element root The resultlng matrlces [DM] a .
[DI], obtained by dlscrete 1ntegrat10n “are in terms of the
element nodal varlables and can be added dlrectly to the , |

-'element 1nert1a matrlces
The dlsk 1nert1a matrlces are 1n general non- dlagonal
except when the disks are 1ncluded only at the element nodes
in-which. case the effect is the same as the lumped dls?/
isystem. | |
4.2.2 éontinudUs disksjen shaft.
In the case of‘axial turbines.and:cpmpressorsiafnumber i;'

of blade carry1ng dlsks aﬂe mounted on a shaft The discrete

',a,shaft d1sk system was approx1mated by an equ1valent

ifﬁQ'

’3cont1nuous shaft by Green, u51ng a. Raylelgh shaft ’A ‘more

accurate representatlon is obtalned by con51der1ng a .

fluTlmoshenko shaft wh1ch 1ncludes the shear effect

R

'> In the prev1ous Chapter the characterlstlc equatlbn for

-a 51mply supported shaft was glven as:
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. - e 2
2 (")4(h-1)} R RYC RN RN LY

-n4‘n'4=0 ; B o '

1f we take \ = p? and k/L=r we will get- the same equatipn

" for the critical speeds as obtained by Eshelman[60]:

‘where h'iS‘the’spin'to-nhirl ratio and N the mode number
From a- Tlmoshenko shaft Shear can te ellmlnated by
spec1fy1ng a large shear stlffness (GKA = 1nf1n1ty) wh1ch
g1ves E/GK 0. Neglectlng the shear term we get the crltlcalvl[’

‘-speeds of a Raylelgh shaft. f

/ 2 2 2 (2h ”; . . . “

Sy

'_H'Green gave the cr1t1cal speeds for the flrst mode,’when N 1

RS

For a very slender shaft k/L«r 0 ‘50 that the rotatory
' 1nert1a term and the shear deformat1on effects are zero, and

'_the Euler beam representatlon can, be used w1th the crltlcal o

peeds glven as..



p = Nu
\
In this case, a vibrating beam and a rotating shaft have the
same critical spé%?s.
For describing\a shéft with continuous disks by an
‘equivalent shaft; Gfeen.introduced the following par%méters:
m = mass per unit length=mass of §h§ft:+ mass of disks/shaft

length; i; = diametric moment of inertia per unit length =
. [ 3

diametric moment of inertia of shé&t‘and all disks/shaft
length. The radius of the equivalent shaft is‘fognd by
eduating the disk effect of the two syétems. |

Q Thé critical speeds of the discrete shaft-disks sYstem
can be obtained by the finite ‘element method: éithef by
lumping the disks or plécing them internally. The eqguivalent
shaft's critical speeds can.be obtéined from the formplae

given or from the finite element method. It is to be noted

¢

that though the disk effect is the same for the actual and

the equivalent systems, the cross-sectional QOméR& of
N ’ : EJ

inertia is not.

4.3 Results and discussion

A few parameters are introduced which appear in the
tﬂdiscussi‘on: f . -

1. Disk effect is u, = ky4/L#, where k, 1% the disk radius

of gyratioﬁ. This term compares the effect of the disk
w ;JQM""‘”""“'“{ | ‘



flrst crltlcal speeds with the present results which

includes the shaft's shgar effect for a Cantxlever disk

in rotationtto.its‘effect‘in translation. éor a ,
concentrated mass, disk effect is zero and for airfng
type disk with all the mass located at a large radius
from the centre, the ratio is very large (infinity). It
is shown in the g;aphs that the disk effect has a
monotonic® influence on the critical speeds both in the
forward as well as in the backward whirl.

Mass effect, u,, is the ratio of the mass of the disk to
the mass of the shaft. This term:gives an idea of the
importance df the mass of the shaft in comparison to
that of the disk.

Slenderness ratio is k/L, where k is the shaft radius of

- gyration. This term shows the importance of shear

deformation and rotatory inertia effects of the shaft,

appli¢able for thick shafts and higher modes.

In Table 4.1, comparison is made between Den Hartog's

system. For the cantlﬁever chosen, k/L=0. 04 The effect of

the shear 1s not much hence the second mode cr1t1cal speeds

are shown. Though the effect is more than in the 1st mode it

- is still negl1glble, the disk effect belng dominanjm Foq

" different values of disk effect, uz = (k4/L)?, the

non-dimensioral critical speed is given as:



Table 4.1. Cantilever-Disk system; k/L=.04, L=6", t=.5"
Comparison of Den Hartog’'s and present analytical solutions.

Disk " Beam (h=0) " Backward whirl(h=-1)

Effect: Den Hartog Present Den Hartog Present

- - - - ——— o C et e e e e v e ,E e e e e, e, m e e e s e mE s S S s s ss oS - -
.01 5.4030 5.3403 4.1511 4.1016
.02° 3.8418 3.7966 2.9832 2.9464
.04 2.7465 2.7134 2.1755 2.1472
.06 2.2667 2.2388 1.8278 1.8031
.08 1.9839 1.9588 1.6254 1.6028
.10 1.7927 1.7697 1.4897 1.4686
.20 1.3295" 1.3114 1.1623 S 1.1451
.40 1.0170 1.0022 0.9346 0.9204
.60 0.8832 0.8701 0.8310 .0.8183"
.80 0.8042 0.7921 0.7670 0.7552
1.0 0.7503 0.7389 0.7217 0.7107
2.0 0.6130 0.6036 . 0.6008 0.5915
3.0 0.5484 0.5400 05410 0.5327
4.0 0.5078 0.5000 0.5026 0.4948

_.--.._-——-—-—-__-_-_._--__-_—_..——-_._...-.-~_-_-_..___—,_——~—__-...__.-—____

kS
e

I
\4'
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The finite element results with the disks included
within the element and lumping at the nodes gave very close

values; identical to the third decimal place. Thus,

internally placed disk results are shown in the graphs. The
abscissa for Figures 4.3 to 4.8 is £he disk effect given by
(ky/L)* and thé‘ordinate by the non-dimensional frequency,
p. For Figures 4.11 and 4.12 fhe abscissa is the disk effect
i,/mL?, where i, is the diametric mass moment of inertia per
unit shaft length and m is the mass per unit'shaff iength.

The ordinate is the non-dimensional frequency,

o mL'a/"rr4 EI -

Figqure 4.3 shows the critical speedsféf‘a
cantileQer—disk systém, using a 4 elements shaﬁt model to
study the disk effect. The gyroscopic effétt raiéés‘the
freduency in the forward whirl and lowers it in the backward
whirl as compared to that of a beam. The internal
rebresentation and lumping of the disk at the node are
identigal as~expected; As the disk effect incfeases;the
rotatory inertia/gyroscopic effect dominates the mass effect
and the shear effeét; thus, the results coincide with
Green's.] |

Figure 4.4 gives the comparison for,thé second ;rifical‘
Spéed. Results of forward whirl are not sh§wnvas thgf are

complex for Green's case.

e 7]

!
ot

\'" In Figure 4.5, the first critical of a simply supported
double disk system is shown. Two elements are. used for the

internal disk§ model and four for the lumbgd‘model. The disk
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effect is‘not asgdominant here as in a cantilever type'
system du%;tobthe double supports and the symmetry in the
disk location. | |

'Figure 4.6 shows the second critical speeds. With the
fdlSkS placed a’ quarter of the way from the ends they will be
at antinodes in the second mode and hence the gyroscoplc
effect is absent and the three types of motion; beam,
forward and backward whirl have the same criticals as seen
at low disk effects. As the dfsk'effect.inCreases, the mode
,shapes along w1th the aptlnode p01nts change and the
critical speeds of the three cases. separate."

Figure 4.7 compares Green s,»Eubank.s ana the finite
element mcdeisr.The disk is placed atba‘point one quarter of |
the length from the bear ng, E=0;25/and mass effect,-u,,;is
_22 2 t1mes the dlsk effect, uzf Green's values are generally'
higher as he'neglects the shaftfs'mass_and shear effects. As
' the disk effect'becomes zero, Green'S'theory gives infinity,'
since the shaft is a55umed to be massless. Whereas, w1th the
flnhte element and the Eubank models, the: cr1t1cal speeds
‘approach that of‘a unlformvshaft for,zero dlsk‘effect, FOrf
'1ncrea51ng dlsk effect all.three(methods give decreasfng
'crltlcal speeds compared to that of a unlform shaft For
large- dlsk effect 'all three values converge as the disk
.effect 1s domlnant and other effects become secondarj
'Table 4.2 glves;the_:esults'for a. four disk shaft h
_syatem:7Thepcrfticalfspeed5‘are ngehfin rpm; perfoaicftype'

elements are used to reduce computation. Four elements of
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Table 4.2. Comparison of 1st critical speed(R.P.M) using
lumped and internally placed disk methods for
uniform disks and taper]ng diskKs.

_..—_.---....-—_-—_-—-—_---—-—-----—-——_____—--.-_-_-r_-___-—---_.._--—

Method # of disks # of Beam Forward Backward
per element Elements ‘ whirl whirl
No Disks
Analytngl 0o 7828.06 7874.73 7781.78
e b T ,5---. ------ ity St Sttt il '

4 Uniform Disks

. o e = e e e et ma m ma e e e e e m e e e e e m == == - =

Internal 1 4 6327.69 6654.75  6033.16

Internal 2 2 6321.70 6652.36  6028.03

Internal 4 1 6315.73  6652.29  6028.03

Lumped 8 6317.63 6650.19  6028.06

4 Taperi?g Disks

_________________ S
Internal 1 4 - §935.20 - 7159.0.  6728.91

Lumed .8 6934.87 7158.84  6727.52

R >
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Figure 4.7 1st forward whirl of a H-H shaft-disk system
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the tYpe shown in Flgure 4.9 are assembled to form the

Shaft?dﬁ rlkk’<em. Even one element with all the four dlsks”'J

/

,includ{ '-ually accurate results compared to the 8
3del Results are also given for a unlform
v:rlng dlsksj shown in Flgure 4.10.‘The disks -
7§n‘siZe (compared to uniform'disks)/ hencelthe'

\;15 less: and cr1t1cal speeds are hlgher compared

ff the shaft w1th unlform dlSkS

kresentatlon of continuous d1sks on shaft

<

Lre 4. 11 plctures the three methods of anlus1on of .
5 dlSkS on a shaft..lump1ng at nodes, plac1ng
_insidera%’haft element and an equ1valent cont1nuous shaft
vFlgurQ 4 8 compares analyt1cal solutlon of Euler,
hGreen(Ra: ;gh) and the Tlmoshenko shafts For the Raylelgh

shaftr ) ory 1nert1a effect is 1ncluded and the crltlcal'

4
re lowered compared to the Euler beam for the the'

speeds’
backward whlrl and ralsed for the forward whlrl The
‘Tlmoshenko shaft 1nclude5fthe shear effect 1n addition tox:
the rotatory 1nert1a effect whlch further lowers the =

cr1t1cal speed The f1n1te element results of Chapter 3

c01nc1de w1th those of a: Tlmoshenko shaft, when shearlf;

flgldlty GKA is taken as 1nf1n1te the results c01nc1ded wlthﬂ-:”"

:Raylelgh S, as expected

A 15 dlsk 16 element 64 degrees of freedom model fort

the lumped case and a 5 element,v3 dlsks per element and 20~””’f

}degrees of freedom 1nternal dlSk model are. used for o
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1) Representation with disks at element nodes:

o

Pre;
P

(]

2)vRepresentatioh with disks within an element:

— | |
4
+ it pisc 2
. —>
X
3) Representation as a contingqus element:
— .
prde
(2h - 1)dx
/'/ \, \M+dM
V+dv,

o - Y ,
figure 4.11 Representation of a shaft with continuous disks
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comparison. Results of the two models matched closely.
Figﬁre 4.12 compares the first criﬁical spéed of the finite
element methoé Qith Green's and the second critical is
rcompared in‘Figure 4.13, Discrepancy in the forwérd'yhirl is

because Green neglects the shear effect. Inclusion_of the

4
¢

‘shear effect will reduce the criticéi speeds of the
.equivalent shaft. |

Forward whirl.in the second mode for Green's model is
not considered as it gives a negative root even for small

@ { . §

\
disk effect(.003).

4.4 Conclusions

Inclusion of disks inside a shaft elementAié usefuliin
modelling ;haft-disk systehs. No“ioss of accuracy is found
compared to thé lumped method which uses more elehentsg.The
reduction in degrees of freedom exponentially decfehses the
computational cost. A system with tapering disks on a . :
uniform shaft, found in turbine stages of thé turbo-rotor

system, is modelled.

For repeated sttuctureswthe use of a periodic, type
element;.with one or more disks, reauces the computation
‘time. 1
| The éoncept of\inclusibh of tﬁe disk effects within ah
element can be extended.tovother local effects such as
bearings, to avoid nodes at those pdinis._ln'the next

Chaptéf this method is extended to represent steps inside an

element,
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The Den Hartog‘é basic shaft-disk model is extended to

include the shaft shear deformation and is illustrated for a

cantilevér-disk system.’For'other-éases of Green, a similar
analysis can be made using the Timoshenko beam flexibility
coefficients from Appendix é.

For a shaft with continuous disks, thd lumped disk
‘model and the disks included model gave Eheysame results.
Not maﬁy elements are.reqUiréd 1f the disks are included
inside the element. Thus, design and usage of equivalent
continuous shaft can be avoided. If'a designer %nsists
otherwise (doesn't want to‘usevthé finite elehent method),
then it is suggested that he should use the more accurate
Timosheﬁko shaft to represent the shaft—éiskslSYStem,

instead of Green's,




5. MODELLING DISCONTINUITIES IN A ROTOR

O N
Abstract | '

Optimization of the weight‘and strength of an actual
rotor often results in-a shaft with many;steps. In a finite
element model, representing each of these steps by
1nd1v1dual elements leads to an unmanageable system size.
The de51gner normally overcomes th1sﬁproblem by thalnlng an
averaged cross-sectional variation.: A ’

In this'ChapterL/a stepced element is formulated which

pertorms better than the‘linearly tapered element in

representing shaft discontinuities.

5.1 Introduction'
Rotors'of.industrial‘machinery.haVe discontrnUities.en'
stepped sections. Some of the disks are not thin and can
store strain energy. They cannot he lumped at a point, their
effects being functions ef a portion of the length of the
shaft and nCt‘just of a point. . |
Whlle modelling such rotors for finite element analysis
these 1ntersect10ns have to be represented accurately, yet
the number of elements and the nodal degrees of freedom have
to be minimized. The most accurate model con51ders each
1nterm1ttent portlon as a sect1on, each sectlon d1V1ded iato
" one or more elements-as shown in F1gure 5.1. Typ1cally, the

rotor of each stage of a turbo generator has ten to twenty

138
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sectional‘changes. An accurate;répresenpgtion@is again
limited by the computing costs and storéée capacityiv

An economical model can be achieved by combining two br
mo}e éections into a lineé} or higher order tapered section
‘as shown in Figure 5.2: The easiest model will be-to join
the end crbss—sections with a linear taperkinbetween. For
sections with unequal lengths some weighting.facﬁors may be
introduced to Obtain a tapered. model with equivalent kinetic
and potential energies. However, a more useful element will
be a coupling element which can include one or more
‘discontinuities ins;de. The rotor of Figure 5.1 éan‘be
modelled, as it is, with just one . such elemeﬁt;

‘ , ;
5.2 Modeliing

A stepped element c¢an be 6bta?nedlas fbllows:
1. wusing a Gaussian intégration_schemg to have 'integration

points on each side of thé step as shown in.Figure'5.3;"

2. using piecewise~integration as shown in Figure 5.4;
3. _édding the éffect‘of the ektré materiél‘to'a uhifbrm
base elément,‘Figure 5.5. J >_ . |
In ‘the firsﬁ methpd, a single'GaUSéianvfourvpoint
.integrétion‘givesjthe mass and étiffnesé mat;ides. qu.a J
single étep with equal ;engths‘dn'either side éf the_éfep-i
‘there‘will,be two Gaussiaﬁ points on each side. Théf
disadvéntagg with this model is that~the maximﬁm ndmber’qff
steps that it can acéomodaté*is}limited g; ﬁhe hﬁmber 6f\A

Gaussian integration-points-used. Also, oneAhas'td;bé

B



.\ ' 141

- ﬁ
/ »
ﬂ: ! :
¢‘| A, 1, AZ'IZ ¢2
A, | d ® . .
o 3 Lo -
11 ¢
: . N 272
: ‘ N - : ' . 4
" Fiqure 5.3 Step element:®Mour point Gaussian integration
(.
) 2" ® & o+ | o o o o
s . L

. Fi§uré;5;4;Stép element: piecewise integration’



1. & G

Uy
! )
2 ",
4 ¢
AT .
I ¢' o | i ¢|
s Base element ¥
| 1. : _
- _ =
Wy o o
X . l L As 1 s | ‘wz
% {‘ - - — § I
A ‘ ' \
ka B | Avy .
Iy B T

. Step added

Figure 5.5 Steﬁ'elemént: added to axbase‘elemeht

s




‘ 3 7 C 143
_ s
| R
careful to have at least a Gaussian p01nt in each sectlon as
these points occur at specified dlstances in the element and
some sections might get neglected.
. A second scheme can be used to overcome these'drawbacks
by introducing piecewise integration as shown in Figure 5.4,

Each section is individually integrated and its“mass and

stiffness matrices are obtained in terms of the ingermediate
0 . /’ .

/

variable values. All the seotional matrices are then
transformed to the stepped shaft end nodal vjriablesjand
summed to glve the element matrices. The computat10nal
| effort involved in getting the mass and stlffness matrlces
is the same as the case with 1nd1V1dual elementS'for each
side of the step. Bnt,*the number of degrees of freedom is
greatly reduced which eases further calculations (as in
eigenvalue evaluation);'Thisdmethod oan theoretically
v . ‘ < '
'accomodate'unlimited steps in a single element as does‘the'
next method. v o | E
The third method has a base elemenﬁlstgure SFS,_which

can be either uniform or tapered. To' the mass and stiffness

‘
BN

matrices of the base element are-added_the mass and
stiffness matrices of each step, Figure"S-S fto form the
element matrlces These matrices are 1n terms of the base
element nodal varlables and have to be transformed to
'conform to the actual end nodal varlables.'

“The three methods performed equally well when tested

w1th unlform shafts, and for a shaft w1th a 51ngle step
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5;3 Theory
‘The direct formulation of the element shown in

nChapfer 2'is uSed; Fer the first method of inc1QSion df:the
step inside an element a single integration Qiil give the

g : - - o . o
'maSS and stiffness matrices. For the second method,.
1ntegrat10n of the 1th section between the 11m1ts X and
X,.1, Figure 5.1, gives the mass and stlffness matrices of
the section in terms of the intermediate variables. Let
[ M, ] and [ K; ] be the mase and Stiffness_matrices of the-
ieh seqtiqn transformed to the step elementfnedal variab;eag

Summation of all the°N sectional matrices gives the element

9'; matrix: o o B N ‘,. o .‘.'v \\ |
[ k1= -_Z]t.-xi ] N
S 1= -’ . N
: ' SIMl= o TUM ]
: \- | o A=l

i

i - . asu N =
| [K*=0)l+  Tixk,1 @
S T i1 : B
[ M¥] = [ M1+ T lM ]
- =1

. Where [ Kyl and [ My) are tle base element matrices and
SR 1 and [ oMy ]eare matrices'for the ith step.
-.fCorrepondlnv cross- sectlonal areas and second moments (A,,vn

f~}Land{(A., 1, ) are. used as shown 1n Fxgure 5.5, 1nreach_'

falculatlng the step matrlces 1ntegra;10n is

S
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done for the step length, say x to L. Interpolation
functions of the base elements are used. ﬁence, the stépped
element matrices are obtained in terms of the base element

nodal variables. The transformation to the end nodal

" variables of ‘the stepped shaft i's given as:

g} = (Tlow) o

)

where { Wal is the base element nodal variable veé&tor, { Wa}
the étepped-shaft nodal variable vector and [ T.] the

transformation matrix. Ig‘the:expanded=form:

1 1 000000 0 W)
o lot1oo0o000 0 9
Aoy 001ooooA 0o '_AM} ;
Q I, _ |0 o‘ 0°1 000 0 : Loj [
IR 70_0 00100 0o W,
&o, | 0000010 0 |4
| ‘- A, 0 o 0 _‘ ‘o ,,A'/AZ o. ’,  /-\21£‘)2 |
IR $ 2T 00 'o 0.0 00 /1, | -12%) ’

The transformation of the mass and stiffness matrices is as -

lfoilows;‘; | - | , R | Ji B

2 [K]= [TT][K*][T] S o 79_ .‘

\
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R [M] [T m«*lﬁ 1

5.3.1 Transfer matr1x method
The ‘mass of each sectlon is d1v1ded equally between the

‘?nodes,wa three ngde, 1 umped mass system is obtalned An.

Euler beam model is shown below :

mi/2 0 myo+mg)/2 T ma/2

R BEI, .2 . Bla . 3

 'Tﬁe~inn¢ matrix at theﬁithjnode is:

o O ‘.._.‘ o
o —- o o

2

0
0
W

the state veétof is: =

7,{we}ﬂ=‘
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the field matrix for the ith span is:

: 2
2. 0.°
F] 4. N 1
i 26T BET;
) 2 21.2
i i
n 0 0 1 2.
1
0 0 o0 1 t

N /
where, { Wy} is the nodal variable vector, [ P, ] the point

e
matrix and [ F; ] the field matrix. This method is discussed
in detail by Pestel and ;eékie[63]; The system equation

relating the extreme state vectors is:

\
(

-

gl = 00,006, 00F, 00,1 W™t

which can be written as:

=[U] 't

3

‘where [ U ] is the system transfer matrix relating
~variables at one end to the other. Application of the simply
supported boundary con?&}ions W =M= 0 at both ends gives

the characteristic equation:

U,, U
[: 12714 | _
U32 U34

" o ) |
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/

each element of this matrix is a function of the rotational
speed, w. Hence, a root search method is used to obtain the

actual critical speeds of the system.

5.3.2 Rayleigh quotient
In this method, for an Eulef beam, the ratio of maximum

potential and kinetic ehergies é@ves:

\ &
2 0

o L ¥
2 2
EI](w“) dx + fg EIZ(w”) dx
1
w =
(Y L
p A]w dx + j o) A2W dx

0 2

S . o TX s g
Assuming a solution W= Wy sin —— , which satisfies the

':simply supported boundary conditions at both ends, we get:

>

4 FI.+1 |

2 _Er 1 2 - .

e [T—FA_] > When 4, = /2.
oL 1 2 .

5.4 Results and-discﬁssion

A complex Timoshenko beam finite element can have more
than two variables per node. Coi:inuify of all the variables
to bgvcoﬁpléd is established, for the element TM544,

‘especially at the points of discontinuities. In Table 5.1
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Table 5.1. Coubling a stepped beam using 2 elements.
- Critical speeds(in rpm) ofk?jrst three modes.

- e e e e e ke e e e e M e e e e e e e e e e T o e o e e e o e e e e o =

Using Nodal Variables
(W, W, A, 1e")

R e e e e e S M d e e T M R T R e e e e e e e e e e e W o e e e o e e e e e et e m e

Using Nodal Variables
(W, W, ¢,0")

Coupling W, Total Coupling
14 d.o.f 12 d.o.f

Total. Coupling
» 12 d.o.f

5595.7
34667. 4
71045.3

5595.76
34668.7
71301.27

R e e e e E M e e e m e e Em e T em e Em T e e e e e e Y e e e e ke e e e e e e e e =

5595.70 6376.44
34667.4 41650. 2
71045.3 95063.8 4
1
A .
2/\” '
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Table 5.2. Comparison of 1st critical speed(in rpm) of a
stepped beam. K=0.85, E/G=2.6.

e e e e e P e e e e e e e m e e e e e e e YR e e e SR M e e am e e e e e e e M e R R M M e ke e e = e e e

DI Finite Element Transfer Mat Step inc- Tapered Rayleigh

D -rix luded Quotient

l‘ | 5——-—0————5 » . .. . x .

m ) ]L' Z) . /

2 Elements 3 Nodes - 1Element 1 Element 1 Elem

» o ' .

1.0 5919.82 5896.69 . 53923.4 5824.77 5942.
.95 6057.21 6030.38 : 6088.1 _  6407.47 6108.
0.9 6171.63 6125.87 -+ 6292.8 6987.70 6315.
.85 6257.43 6192.71 . . 6545.6 76985.25  6571.
0.8 6308.77 6202.26 . 6856 .2 8572.36  6886.
0.7 6285.15 6068.57 7699.4 11110.2 7744,
0.6 6058.44 - 5705.70 8948.5 15540. 1 9025.
0.5

5595 .76  5113.64 10799. 1 22089.7 10957

o e n w m s M me e mm e e am s e e A S h e e W G M mm PR M e e Mm mm A = o e da M ch de e N e e - e MR o R M o em e = e e m e e =

% errors with 2 element finite elément model as the standard.

____________________________________________________ fahtulnnibal
170 0.0 39 .06 .08 .37
.95 0.0 44 51 5,78 85
.9 0.0 74 1.96 13.22 2.33
.85 0.0 1.03 4.60 22.97 5.01
8 0.0 .68 8.67 35.88 9,15
7 0.0 3.44 22.5 76.76 23.2
.6 0.0 5.82 47.70 156.5 48.98
5 0.0 8.61 92.98 294,75  95.80

e e ke o e M e e e M e e TR e M e e ek G tm M e W MR e e T T G M Ak mm e me G e S mm ae G e MR M e M e 4m M e e W e e o e e e

R
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two sets of nodal variables aré compared. The first set has
centroidal displacement, W, itsvderivative, W', bending
slope, ¢ and its derivative.¢' as the nodal variables and
thé{éecond set has W, ¢, Ay and 1¢' as the nodal gériables.
| Fof a uniform beam both these sets.of variablgs give
the same results as totga coupling can be used at the
element interphases. However, for a stepped‘beam only the
éecohd set can bave total coupling , Table S.1, as bending
momenﬁiand shear forces are continuous even at points where
sectional change occurs. If externalbforcés or momenté are
applied, then even -the second set becomes discontinuous as
discussed in Chapter 2, Thus, one has to check the.
. )
compatibﬁlity‘of the nodal variables .when a stép is included
in an element to avoid discontinuity of the variables inSiae

the element. The second set is used in the preéent analysis,

Table 5.2 has a comparison of the 1st-critical speed,

Ebr a stepped beam. The two element model; one on each side

of the step, can be considered as a standard for comparison

of other methods(transfer matrix; Rayleigh, tapered and
stepped element). |

Only one.meﬁhod of inclusion .of Step kpiecewisa
integration) is presented as the other tﬁo‘methods pefformed

equally well.

For increasing step ratio the stamard two element

models ( finite,element and ‘transfer matrix) havé\decreasing'

2

critical speeds; whereas, the one_élement'models(Réyleigh,

taperéd and stepped element) have increasing critical
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speeds.vf/~ |

The transfer matrix method, using the Eu%sr beam, is
closest to the standard model, as it also représenfs the
step with an elemen£ on each‘side. Amdng the one element
models} the Rayleigh's méthod using the Euler beam and the
finite step elementbperform equally well, The linearly
tapered‘element has an error double that of a stepped

element for all step ratios. The error in critical speed

becomes prohibitive; greater than 5% for a step ratio of .8

using a stepped element and 9.5% using a linearly tapergd
element, L )

Comparison shows that with small steps (step;ratid
between .8 and 1) accurate resu}zs are_obtqined ﬁsing a’
stepped element and it perfofms better th#h the tapered\
element., - | | ; ) \

For large steps (step ratio 1éss than .8) use of one
~element, éitﬂér tépered or stepped, is inadvisable. A‘twd.
element modei, oné.on each sidé of the step, is required to

| represent shafts with large steps.

]
>

K

5.5 Cphclﬁsibns. '

An adéptor‘elemeht is déveloped; ﬁseful to connect
shaft sections of different diameters. Thfee,qgthOds-of_
including éectional'discontinuities withﬁnaan element are
,présénfed.~A stepped elemént performs-béﬁter than a tapered

element in representing a shaft with steps.
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Cauﬁion is reqﬁired while reducing the degfees of
freedom during ﬁhe modelling of & sﬁaft with a large stepped
5oint. The effect of incorrect modelling may not surface
during the study of a large turbo-generator, as this effect
is lost in the size of the rotor involved; but, it will for
a smaller size shaft system.

A curve of revoiutioﬁ fitted through the small steps of
_an axi-symmetric shaft gives a higher order tapered shaft

"element which might be comparable. to the element with the

discontinuities included within.
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6. SHORT BEARINGS

‘Abstract | ‘ _ ‘bﬁ*gf\

Heavy rotors, operating at medium speeds are usually
supported by fluid film bearings. Short journal bearlngs are.
the most commonly fQund rotor supports Ln turbo generator'
systems. The bearlng fluid fllm proV1des sprrng andudamplng‘
effects which greatly influence the dynamic character and.'l
performance of the rotor. Capac1ty number completely ‘
descrlbes a short bearlng and can be readily calculated for. .
“a glven bearlng, runnlng speed, 0il v1sc051ty and load The -
bearing non- dlmen51onal stlffness and damplng coeff1c1entsr
have been plotted w1th~thls parameter}as the 1ndependent
co~ordinate, using'Holmes' equations. The a5ymmetrlc bearingp
coefficients are discusSed‘andlhave heen‘incluoed in,thean‘

equations'of the shaft. motion.

6.1 Introduction'ul : . SR
Rotor _supports of the rlgld or 1deal type increase the :
cr1t1cal speeds as shown in F1gure 6 1 T‘iﬁr use 1s
»restrlcted to analytlcal}calculatxons and 1nterpretatlons.}¢
Rarely do such end condltlons appear 1n practlce as. the |
dynamlc forces ' transmltted w1ll be large and the relatlve
"motlon wlll wear off the. supports qulckly | | |

The 51mplest alteratlon that cdn be suggested is the |

use of 1sotrop1c flex1ble supports. representatlve beam 1n'

@
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flexuie’on such mountings has support stiffness dependent
dynamic chafacte:istics: effect on the shaft critical speeds
is shown in Figure 6.1. Very low enpport stiffness
cbrresponds to a free-free beam with rigid’boay motion in
ﬁ\the first two modes. The third and higher modes are always
afiexible, with the shaft bending due to-?ts elastic
dpfOperties; | S
2 The SUppdrt stiffness ef a praetical‘rotor occupies éhe
" “m1ddle reglon, representatlve of fluid/rolling element
bearlngs The dotsted line separates this as the elastic
" shaft regldn_calling for a flexiblé balancing procedure. The
lower leét end has'tne'shafﬁ in'rigid body motion where
dynamlc balanc1ng of the first two modes w1ll suffice.
The flu1d f11m reg1on of Flgure g 1 accounts for the

" reactions due to the supports that are displacement
o proportional. The bearlng stiffness can be obta1ned by
.dlfrerentlatlng the static load- dlsplacement curve for a
Jﬂ;glven eccentrlclty ratlo. However ‘the load, in general, is
zdynamlc in nature._The fluid endures a squeeze film action
- giving rlse to.veloc1ty dependent forces or the damping
‘;eaeéiods, Also, the forces need not be dne to the inplane
'“&iepleeemenés‘end yeloeitjes alone: the quadratppe
"-e;édmponen£e p;ovide the cross-coupling dynamic coefficients.

* The fiﬁf&;filh dynanic coefficienfs are frequency dependent.
The turblne generator rotors are mounted on flu1d film

"_bearlngs. Recently, wlth the knowledge from the extensive

sstndyeon Stab;l;ty of rotors many types of bearings are

. L . .
N , . . .
- ) . / ‘
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suggested and used: elliptical, tilted pad and partial
journal bearings to mention a few. Yet, the most common type
- of bearing used in power plants is the shd}t bearing with
the length to diameter ratio less.than one.

vDuboisLG.B and Ocvirk[63] have given the equations
governing ‘the pressure distribution of a.short. sleeve
bearing and the parameters involved. Their theory was =
supplemented by experimental-eQidence, leading to further
research on the‘§ubjéct. _

Holmes[64], obtained thé stiffness and dampihg
‘cdefficients of short bearings; and used them to obtain the‘
response and stability of a rigid rotorigupported at the
ends in short bearings. Recently in anN.R.C. report, Kim
and Lowe[65], the'bearing'éamping and stiffness .coefficients
have been p}otted against the Somherfeld number instead of
the usual independent paramngf of eccehtficity ratio; full
and'parﬁial bearings were COnSiaered for finite bearings.

Padovan and AdamstBS] have given a vefy good account of
the treatment of'fotor dynamics} Among ‘other factors,
inclusion of the bearing effects was discussed éﬁhancing the
understandiﬁg and computer modelling of the fotof'systemé.

| In‘ghe preéent Chapter, a\§hpr£ beéring is uSgd”to.

N

review the dynamic coefficients of Holmes', These
- coefficients are plotted with respect to the capacity
number’, - _ _ -

vSommérfgid-number is a useful parameter which includes

all the other parameters affeqting a finite bearing, excépt
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1

L/D ratio.JCapacity number 1is a more appropriate independent
variable for short bearings as it includes variations in

load, v1sc051ty, speed\\L/D and C/R values of the bearlng

6.2 Theory ‘
The basic assumption of a short bearing, apart from
| -, those used for finite_bearings, is that the pressure
) gtadient.in'the axial direction is much more than_in,the
circumferential, which leads to the assumption of tétal flow
of the‘lubricant ftom the ends. This assumption is true for
‘bearings with short ahiai lengths (L/D less than-1.)v
Figure 6.2‘shews the bearing-joutnal contiguratfon.
Undenistaticfload theojournal rests on the bearing, acted
upon by the vertical gravitatibnal load. As the journal |
rotational speed and/or the load varies the shaft centre
follows the locus shown by the dotted lines. C,,tis%the
shaft.steady state position..Due to disturbaneesTSUeh,as
mass ;nbalance the journal assumes a whlrl path about the |
steady state position.. The dynamlc jougﬁga»géntre C;q4 causes
‘a change in the attitude angle~by a. The 11near treatment by
- Holmes 1mp11es that the angle a is small and the dlstance
C,,CSfals small compared to the steady state eccentr1c1ty,
€o. Thus the dynamlc eccentr1c1ty, e, and the att1tude ..//%
langle, ¢,.can be expanded about the steady state values eéh’h
and ¢, by u51ng the Taylor serles- reta1n1ng the llnear

. *
'fterms.

&
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"Holmes obtained the fluid pressure forces, linear in terms
of the distances and the velocities r, s, r and s, which
give the dyhahic coefficients about the steady state*axes,

-C,.rs. The coeff1c1ents are glven exp11c1t1y by Holmes as

N

functlons of the steady state eccentricity ratio, e: arr'
ap,, a,.and a,‘ are the stlffness coeff1c1ents and-hrr1 bF"

b:;

.» and b,, are, the damping coefficients. These coefficients

are implicit functions of the rotational speed and load.as .

o

,the;eCCentricity ratio is dependent on these values. This

‘dependence has to be borne in mind as the dynahic

;

_coefficients have to be_evaluated afresh at each runming .

“speed.

[

As the dynamlc axes, C{,rs, change w1th the steady
" state condltlon, it w1ll b§¥conven1ent to obtaln these

'lcoeff1c1ents about a ﬁlxed system of axes say the Cj,yz _

axes. L ‘ _(/V

B ¢

‘Smith.D. M[67] Hahn[6&] and others have glven exp¢1c1t -
functions' for the coeff1c1ents. Table 6 1 glves he exp11c1t

I

'Holmes axes. These values

values of Sm1th transformed %

I3

are alii for’ the short bearlngs w1th tneallnear assumptlons.

Two mlsprlnts in Smlth s equatlons have been corrected

here. - f-v;‘; i"_,.?‘; 7“L'-1_ i«. L
In our study the coeff1c1en!s are obtalned numerlcaIIy
‘ " a L . )

u51ng a llneap'transformat1on°

i




161

explicit values

Table 6.1 Dynamic Coefficients:
' .

)

t

. 4112 (2-€%) + 1662}
YY [TTZ(]"EZ) + ]652]3/2

w{r’(1-2)2 - 16e? 3

e(1- 2)”Z[n (1-%) + 1662777

ay =

i[

a;y= - ﬂ{ﬂAﬁl 82)2(1+2e ) + 32¢ (1+€ )}
e(]+) " 2[nf(1-c) + 1662172

_ 4 (1 e )(1+2€ ) + 3262(1+e9)}

‘a,, o

‘ ;ff | (] e)['n( )+]W2 - ’ o -

. Smith,.has a mispriﬁt; 3262(1-€2) in the numerator
1Y - : €\.‘

. b, - Zﬂl‘ 62)1/2{n2(]+2€2) 162y
”[Tr (1-%), + 16273/2

2)2

b,, c2mirt (1-2)% + 4ge

e(1-¢%)1/2 [r7(1-62) + 1671772 R o

€,

A

S 2 3
by,eb,, = 817 (1#2¢%) - 1664
A A = N 243/2
T (1-€) + 16e°]
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where ¢, is the steady state attitude angle relafed to the.

steady state eccentricity ratio, e, as:

2.1/2
tan ¢o = l(]T;_E_l_

The resulting fluid film forces on the journal due to the

&

weight of the shaft, F, and the steady state running speed,

Q, are:
, LI
° (By(2) o - '
) =C£[T]T[”’ sl )Y ¢
(B2(2) G al Lz
CE T [:- b.. ..brsj [Tj % 2 - ‘

\

Where B, the vertical and B, is the horizontal‘bearing.film

force component ana C is the:radial learance. The component.

‘Journal dlsplacements, y and z, are harmonic- in t1me- w1th a

A

frequency 9 for the synchronous wh1r1 and w dur1ng the
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asynchronous whirl (eg. gyroscopic or bearing effects). We

can rewrite the bearng forces as:

For given rotor mass, [ M ], stiffness, [, K ] and

/

damping, [ C ], matrices the equations of mqtfon under

dynamic force conditions are:

(K] {i } +-[M]'{¥ 3+ [€] {g } =

¥

where F is the étatic.ﬁeight of the rotor,wa(t)‘anduF;};)'
are the components of external forces which can be'.
synchronous.with running speed (fotating unbalance) or
asynchronous (misal%ghment fofces, gear mesh forces). The‘
hombéeneous equations of motion witﬁ the bearing supports

included as end conditlons are:

zy.

BRI

. m]g{g:{o}» | | N - | (6,.4).
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Figure 6.3 shows the variation of the non-dimensional
stiffness coefficients and Figure 6.4 the non-dimensional
, .

damping coefficients with variation in the capacity number

CN. Capacity number, introduced by Ocvirk, isbgiven as:

SR T T (Y &

. F i e[ﬂ?(]-ez) + 16¢

2]1/2

«

where SN is the Senmerfeld number. L, D and C are the

bearing length, diameter and radial clearance respectively
and R is the'journal radius. A single,cnrve of eccentricity
vereus capacity'nnmber exists, valid fpr any L/D ratio of a

short bearing. The reciprocal of the capacity number is

called the load number. The usual range of the capacity

number'is below 1, For'each value of.the capacity number, in
this range, the dynamic coefflc1ents are calguﬂated and

plotted in Flgures 6.3 and .6.4.

6:3‘Di§cuesion N

'”Q The bearlng dynam1c coeff1c1ents are obtalned about the .

—

\’ -

f1xed set of axes, The stiffness, damping and 1nert1a of the/

pllla:box, foundatlon, soil and other_support1ng.system5>‘

' obtainei about these axes will act ‘in series with the

E

.‘,' i ! ) N
. ,Y' . . /
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bearing effects.

The bearing 1oad in this analysis is the static load
due to theé shaft and time dependent unbalance forces are
“heglected.vHolmesE69] considered the nonlinear bearings _ é$

including the unbalance forces and the’nonlinear ¢’§;E el
terms.‘He found that for turbo—rotors‘with typical
eccentticity rat*os of 7 and .4 linearity may_be assumed
- for peak to peak v1brat10n values of about one third of the
radial clearance and full radial clearance respectively.
| For a turbo-generator mounted on multiple bearings, the
kﬂsupports The steady state load depends on the éccentr1c1ty
at-a glven speed and oll v1sc051ty An iterative scheme has
to be used to f1nd thése dynamic reactlons. Assum1ng that
the steady state load 1s equal to the static load we can
calculate the capaC1ty numbeg, for a glven«Speed and oil
v1sc051ty Tbe correspondlng stlffness and damplng
coeff1c1ents can be read from Flgures 6.3 and 6.4.
From the graphs, we obserye"that the variation of alll

the -dynamic coefficients is either linear or constant with

vthe;variation'in the capacity number. Simple eguations,can

belobtained_by curve fitting. These relations can be used to .

“build computer models‘of the bearing coefficients, reducing ,

1.
_the calculatlons occurlng w1th the change in capac1ty number

due to a’ change 1n speed v1sc051ty, load or bearlng

;gtatic load on each bearing-can-be calculated assuming rigid
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6.3.1 Asymmetry of beariné dynamic'COefficients."

Pure flexible»support in the vertical and the

horlzontal dlrectlons makes the damplng terms and the

"Cross- st1ffness terms zero, 051ng a Koenlg model for the

: support in-the two dlrectlons makes the cross- coupllng term

of stlffness and damp1ng matrlces zero. For these two cases
the deCOUpllng allows the oxz and oYX planes ‘to be
con51dered separately u51ng beam elements, analy51s in one

plane belng suff1c1ent for the 1sotrop1c case w1th ayy = a;;
e o . S

and byy ='bzz.> ST

¥

- For the short bearlng, the stlffness matrix 1s

asymmetrlc and the damplng matrlx is symmetrlc, w1th nonzen

, coupllng terms. - ThlS asymmetry leads to rotor dynamlc_v\,

instability and a- spllt 1n the critlcal speeds (Separatlng
the horrzontal aA! the vertlcal Crltlcal speeds) Use of on
representatlve plane is no lon'er val;d two orthogonal

AN Ed

lete descrlptlon of the

planes are con51dered for 5'90

_rotor motlon., o -i\QJ
Asymmetry of the system matrlces‘can also occur due.to

other factors. In Chapter 3 the QYEOSCOPIC moment 1s glven

as:

where: RN - . o L lp _-ju-f;l‘“'.f}éf .
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o o

[ngr]_a, [? ':)] Aszqu‘-

: The.generator.rotor;_with‘s%i:s,for the coils, might

‘introddce asymmetry‘in ﬁhe shaft stiffness matrix. Thus, the

overall rotor stlffness and damplng matr1ces can be

‘/

asymmetrlc. Adams and Padovan[66] explaln the decomposed

symmetrlc and skew symmetrlc perts as!

CS‘;\\_\‘_ Ci s

. ‘C.

K* + K**

1}

:.where C“'and K‘ are'the-COhsenvative terms and C* and K*®

-

are non- conservatlve. The- C“ matrlx, due to gyroscoplc

'“3 effect, 1s called the GYROSCOPIC MATRIX The K matrlx is "

called the CIRCULATORY MATRIX ‘as it. produces a c1rculatory

.

»forCe 1nstead of a_restorang force.

6 4 Conclus1ons' o

fluld f11m bearlngs 1ntroduce asymmetrlc stiffness

%ﬁd’damplng coeff1C1ents. The results obtaxned by Holmes

have been rev1ewed - The dynamlc coeff1c1ents are plotted
w1th capac1ty number as the 1adependent parameter, whlch
¢

eases the de51gnef s work“ Effect of theﬂbearlng asymmetry

1s also empha51zed as 1t plays a major role in the dynamlc



analysis of the rotor system,

S
ey




‘7 1 Introductlon

”threshold speed The bearlng

‘a p051t1ve damplng It cannot

7. STABILITY OF ROTORS IN SHORT BEARINGS

Abstract \

Short bearings have asymgstrlc stiffness coeff1c1ents
which can cause 1nstab111ty to the rotor operation. The
complex eigenvalues of the rotor-bearingﬁsyStem can péﬁugea
to describe thensotor stability. Use of the eigenvalues to
find the threshold of instability by a'toot search method,

: x.
has been accepted as a costly endeavor ‘by the earlier

Lauthdes. In tlis Chapter a modal reduction method is

.presented which includes the influence of the dynapic

bearingst The reduced system matrix, approximated.by the
first few~modes has been successfully dSed to flnd the
th"eshold of instability of a flex1ble rotor. This method:

can be ‘applied to find the systemlstablllty of large rotors.

P4

Newk1rk[69] was the flrst to f1nd van uppé?’bound for
the safe operatlonal speed of a- turbo*@otor since the

capablllty of susta1ned operatlon above the rotor's lowest

‘ crlylcal speed was achleved by Gustave De Lavel in 1895, They

i y\xrunnlng speed at whlch 1nstab111ty is 1mm1nent is calléd the

.amplng capac:ty is lost at

¢

this p01nt and a'further'lncr ase 1n‘the robor'speed 1nduce51'

thusp be "passed through" by

gO1ng to hlgher speeds 1n}contr st to cr1t1cal speeds Thls f

I
AN

171
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(

lead‘to the development of ‘the tilted pad bearing which

gives a stable rotor operation under all dynamic‘conditions
and bearings with greater stable regions such as the

O partial, grooyed, elliptical, multllobed bear1ngs etc.

s . More recently Holmes[70], among others, found that the

) nonlinear'bearing representation will in fact stablllze the

R

rotor operation beyond the threshold speed. Adams and
PadOvan[66] have shown theoretlcally that destablllzlng
occurs only in the co- notatlonal (forward) journal orbits.

‘, S Energy is 1mparted to the rotor by the non- conservatlve
ka2

’

bearlng forces, arlslng due to the symmetrlc damplng terms

/s

C* and. the skew symmetric stlffness terms K**, durlng thev
rotor harmonic.motion. If the net.énergyvtransmitted,to.the

e " rotor is negative then damping has a dissipative‘action,

otherwise it causes rotor instability. agﬂ\\§\$ . ‘{», h//”..'
At increasihg rotor -speed, fthe K** " Derms ‘become \ A

ol /” Ty

Y

7

”

progre551vely stronger in comparlson to the p‘ terms . due - to
,the 1nherent 1nf1uence¢{f/the journal speed on the beaflng

dynamlc coeff1c1ents. At the threshold speed wo, the two

N , ‘ o 8 ! i
effects exactly cancel A _,f;_ S .ﬂv‘d: E \,.,g
At the threshold of 1nstab111ty, damplng becomes

[

“ineffectlve~cau51ng a free whlrl Adams and Padovan have
ﬁ‘; _ ‘»,shown that the asymmetr;c pa rt of the bearlng stlffness‘d‘
'-v(-contrlbutes to damplng So, at the threshold of 1nstab111tyq E

“jthe cr1t1cal speed shouid be the‘same as that of a support

S :frfcon51st1ng of the symme ric stlffness terms of the bearlng;ff

\
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stability analysis of the rotor is affected by theiskew
symmetric stlffness matrix and theisymmetric dampinghmatrix'
only. k ‘

Hofmes[641”usedvhis'short bearing theory to evaluateﬂ
the stability of a rigid rotor with half ofits weigheq_’-fff.
lumped at?each’bearing,lstability condition was obtaineda
using ‘Routh's criteria.

It can be mentioned here that knowledge of the:

unbalance of the rotor 1s not necessary to find regions of

?

instability, as the homogeneous solution is sought. Thus,

'the external forc1ng functlons are omltted//Bear:n;/dynamlc 1

coefficients alone being respons1ble for Lhe rotor '

1nstab111ty Durlng operatlon; unbalanCe acts as a dr ver or

i
1n1t1ator, promotlng v1brat1ons at the threshold speed

Routh's cr1ter1a glves the lowest speed(threshold) of

t

'the unstable reglon and can be’ calcuhgted for various loads

. -

'to obtain the stab1l1ty reglons. Yet, the amount of damplng

=

and the damped crltlcal speeds above and below the threshold

'speed cannot be obtalned by’&hls method ThlS 1nformat1on is

"

‘onset speed the growth rate’ dependlng on the amount of

",damplng present The wh1rl to sp1n ratlo remalns fractlonal

(

-\0:.

‘J{ A%

dlmportant since the reg1on of 1nstab111ty extends beyond thewA

and the . exact ratlo %gn be 1mportant in v1bratlon monltorlng:

'and detectlon.d ' -f' ';;_3n, f._"_ e

Ruhl[53] u5ed an. Euler beam f1n1te element model to ;.
P

,jstudf the stabxllty of a rotor mounted on Holmes bearingsl

) S

“He\ﬁound that £or a shaft w1th a ratlo of the central R

/A SR

\ o i ST B

&
4
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. response study alone is not suff1c1en“
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\
.

‘deflection to the radial,clearance less than 0.1, the_shaft
flexibility does fot change the threshold speed; a<rigid
rotor model is appllcable. For the case of a flex1ble rotor
Ruhl p01nted out that the elgenvalue search method to flnd
the threshold speed 1s exorb1tant in cost |

uund[72] used the transfer @atrlx method of
Prohl Myklestad to represent a unlform shaft dlszgardlng
shear deformatlons, rotatory 1nert1a and gyroscoplc effects
to calculate. the threshold speed of 1nstab111ty and the l

damped cr1t1cal speeds u51ng Lund s[73] llnear cyllndrlcal
tbearlng coeff1c1ents. ‘ '_Ta ."‘1; . RN ot

v_v . Do . BN - . . _"‘.e'r L

He shoued, ‘”th his. mOdel that At the threshold of

1nstab111ty,.the rotor: whlrls in 1ts flé%é mode q}th
1 : \

forward prece551on) but not at the flrst crltlcal speed

i s

is generally accepted For hls exarple nptor,*the flrst two

cr1t1cals are always subsynchronous and well not get exczted
4.
by a. synchronous (fo c1ng speed ste as shaft s) force such T~

C
l

|
as due to a rotatlng unbalance.,The cr1t1cal speeds remaln
/ °
below the synchronous exc1tatlon for all runnlng speeds (due

to the dynamlc bearlng effects) But the rot r becomes

cr1t1cal for subsynchronous,bearlng exc1tat1 n. Hencp,

ot

dynamlc behav1our evaluat1on, elgenvgzmwy”

- . »_/ ,' . B e / ]

calculated. _;ry*ﬁgﬁ 'gréit'_»y /;_

descrlbed us1ng the hlgher order T1mo§henko element

L ——.\ ) e ,,-..A L

developed 1n Chapter 2 The nodal degrees of freedom“have o



-

"been rearranged to allow chain assembly, yhich'will not b
- required if a general assembly~procedure is used. The‘
eigenvalue problem for the rotor bearingfsystem is viewef'in
depth to get a better understanding oftthe‘stability

method is introduced to

k3

criteria involved. A modal reduction

<
reduce the system size. As the lo

modes are the first to

be subjected to 1nstab111ty, it is suff1c1ent to retaln ‘the
¥

first three or four lower modes for modal approximation. Theh

bearing asymmetric coefficients have to be'properly treated

during this.reduction,

I

7.2 Theory and discussion

7.2.1 Rotor Element

.

In Chapter 3, a shaft in a circular whirl, uydder the

gyroscopic action, is analyzed by a beam element in a 

°

representative plane. However, the bearing dynamic

coeff1c1ents do not permit decoupllng of the motlon. We are x\\\

forced to use two’ beam elements, to study the shaft motion
in two representative perpend;cular planes, to completely

describe the rotor motion. A beam element in the XZ plane is

LY

the XY plane it forms a:rotor element. The double beam rotor

element is shown in Figure 7.2. It has .16 degrees of freedom.

/

per element, 5 at each node. All~the nodal variables are
comgatlble at the joints as explained earlier for the case .

of a beam, S Y.

shown in Figure 7.1, together with a similar beam element inyn"'
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‘Figure 7.1 Beam element in X2 plane
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Figure 7.2 Rotor element
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The beam element gives the Stiffness matrix; [ K 1, the

mass matrix, [ M ], and a propo tional damping matr1x, "

is given as:

]
\

[ C ). The' beam dynamlc system matrix, [ A ],

~

[A(@)] = [K] +j @ [c]»-'az[M]t - ‘ _ S 7a)

where @ is the running speed. The system matrix of a rotor

element is obtained by combining two beam elements and is

[TA ' 0;] wxz]
W
ol al wsz
: Xyl
w

xyZ

given as:

For chain assembly it is more con&enient to have the nodal

variables transformed as follows:

£ .

Ca) I 00 o .

. /3‘ ‘ wxy] . ’ 0 0 . I . 0 wX22
- [Yxz2 O I 0 of - Wyl

o .’..I .wxyZ

_xy2

The»transformed matrix is still uncoupled. However, the

gerSCOplc moment 1in a non- circular whlrl, asymmetrlc shaft

stlffness and the bearlng dyna ic coeff1c1ents induce

- )
coupling into the system‘matrlce . The system matrix is also

f

time/speed indepéndent it is again the bearing and

gyroscoplc terms that make it speed dependent.
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7.2,2 E1genva1ues for rotor établllty study

-

The rotor ehuatlon of ‘motion is of the type:

[K(2) J{w} + [C(2) 1w} + [MIGW} = (F(t)} . (1.2
. _ . g |
AWhere { w} is the globel'nodal variéble vector of%;?é
rotor. Matrices [ K ] and- [ C ] include the bearing’and
gyroscoplc effects and are asymmetric and speed dependentQ
| For the homogeneous solutlon, When the forc1ng gunctlon
vector is zero, we can assume a solutlon of the type

)

{wl = {W}er
'ﬁﬁere s is a'coﬁplex eigenvalue cf the type:
=N+ iy

:@ The rea; part X 1nd1cates the amount of damplng present
“and affects the motlon for any: sllght dlsturbance from the

~ steady runnlng Sbgte ‘ S

Paae
1. when k is negatlve the v1brat10n dles out exponentlally

~with tlme, ensurlng stable motlon'
2. }when k is p051t1ve the v1bratlon amplltude bu1lds up
'_exponentlally w1th time. Energy is added to the rotor
1nstead of belng d1351pated ThlS 1s an unfavourable _
- state denotlng 1nstab111ty, : | |
f"3."yhen A is zero, System damping'is inefﬁectiVej no net

e 2



K3

A‘>2. when'bwd 1s negatlve the shaft is 1n backwa%d prece551onj

energy is 1mparted to the system and the vibration
3 amplltude is neither ampl1f1ed nor attenuatedK\
At the threshold of 1nstab111ty, the motion 1s purely

W ) N

zero.

I

R

,llghtly damped or under damped systems only.

1. when wy is p051t1Ve the shaft is in forward precess1on,

’

with the whirl dlrectlon co1nc1d1ng w1th the spln" R

The 1maglnary part denotes the damped crltlcal speed of"

.the system in a harmon1c motlon"whlch is p0551ble for f: nﬁ_'

~harmonic and undamped as the real part of the elgenvalue gs"fg“

‘
Lo

LW

S
v

5 '».,- B

LA
.ﬂm

Ayt
w1th the whlrl opp051ng the sp1n dlrectlon-
3. - when w, is zero the shaft centre 1s statlonary or the nf
‘ L

whlrl path is a p01nt Thas condltlon can occur for
| hlghly damped or over damped modes. |

The complex conjugate elgenvalues mean that 1n every

mode a forward and a backward whirl is p0551ble. For a

mult1 degree of freedom system each mode can’ have a ,*

AN

"dlfferent degree of damp1ng reSultlng in a stable, unstable

~ or neutral operatlon when a partlcular mode 1s exclted‘

A rotor in the flu1d bearlngs 1s known to be unstable»

"~ in the forward whlrl when the 1mag1nary part of the

delgenvalue, wdn, is greater than zero. The stablllty

condltlons can’be’ spec1f1ed as:

4 3

for neutral . Stablllty of the nth’ mode sn is such that,

A, is equal to zero, and Wy is greater than zer0° and- for

Rhil

strict stablllty_of the nth_mode'sﬂbis such that An 1s‘1ess .

LN

,/

7

e
il

&



than zero and Wan i8S greater than zero. The system is

unstable'in the nth mode-when M\, is greater than zero and-

Wygn 1S greater than zero

The second degree characterlstlc equatlon in s can be

C¢ransformed to the flrst degree in s by addlng and

subtractlng M 1 { W, } to the homogeneous equation, whlch

Js-now wrltten ds; . __?H",
) [ y; B ) LT

.

. [?‘ C(n)] M o k@7 i) o]
Lo J (s I:M 0 ] wl (o] "

elgenvalues, s, and modes,,{ q 3. It is to be noted here

that each of the rotor matrlces are double the 51ze of the f

v* cor;espondlng beam element matrlx and the reductlon of the

z-damped problem to a standard e1genvalue problem redoubles -

~_the beam matr1x size. Moreover, the stlffness and damplng

Jmatrlces are runnlng speed Q dependent and have fo be

/

evaluated at each speed and added to the constant rotor

7 - BEE L
e . .
Y

RO ..'M"-c(n L R

ThlS is a standard e1genvalue problem and g1ves complex

T



matrix.

- The threshold speed of,the“rotor ls obtained byk '
starting at a low.running'speed, calculating‘the bearing
_matrices and solving the resultlng‘efgenyalue problem. The
root search is madeiby increasing the running speed and'
calculatlng the eigenvalues,\manually controlling'the-step |
size. Common schemes to reduce the 1terat1ons, such"as the
b1;sect1on.method are not recomm;nded as the bearlng ”
‘characterlstlcs are hlghly nonllnear w1th respect to the
-,changes 1n the runnlng speed. )

Holmes rlg1d rotor, detalled in Table 7 1, is analyzed

for stablllty The threshold speeds calculated from the S

AP . :
eigenvalues match wlthbthose from Routh s condlt;ons glven o

bnyolmeS' The system matrix forﬁthe eigenualuefsolution’is

of order four. The hug;rcalculatlons 1nvolved, even: for the A v;
hsmall system, espec1ally with the costly elgenvalue solver;

».iprompted a reductlon in the global degrees of freedom to d

>

;flnd the flex1ble rotor s stablllty
From Table 7. 1 we see that for low eccentr1c1ty ratlos’..
-and capac1ty numbers(1 0 to 0. 1) the wh1rl to spln ratlo 1s -
‘about 0 5 That 1s, the shaft whlrllng Speed w1ll be about
“half the rotatlonal speed at the threshold For smaller
r values of capac1ty number the ratlo gets smaller For a
vlcapac1ty number of 048; the whlrl to runn1ng speed ratlollq
'}about .343 For values of capac1ty number smallir than 0 04

(or eccentr1c1ty ratlo greater than 75) the shaft remalns B

"stable under anv load1ng The load1ng on the shaft is g1ven



(RS We

a}able 7.1. Comparison of Routh’s criterion with éigen&élues
for a rigid shaft. - . :
G}, . ) 1“ : .
Rotor details: ‘ .
-~ length = 10" - . S
D diameter=3.2" - S f‘,
v . _ L g .
AR Bearing details: L
. width,z 2"01: '
. .~ _diameter = 3:2" . C -
v radial clearance= 0.004" -
.~ viscosity=10 centipoise
chentricity’ Capacity# static force Eigenvalue Routh criterion
' ‘ ’ ~{ dynamic force . method (from graph)
132 - .502 ) 2.5
.46 .. .518 .52
150 - .508 _ - .51
135 . 4T DR
075 343 34



substructuring approach, -,

' of motxon are glven as:.

183

‘as the non dlmen51onal rat1o ot<statip to dynam1c t’;ces.

From the definition of the capac1ty number we can

’deduce that stab111ty of the r%gld rotor 1mproves w1th an.

'1ncrease in the unit load or a decrease pm_speed 011

v1sc051ty, L/D ratxo or R/C rat1o' all of whlch reduce the.

. value of ‘the capac1ty number, leadlng to‘a more stable |

. L
s

reglon of operatlon.r.

7.2.3 Modallreduction T BRI . |

Dynamlc behav1or of ‘the rotor in 1ts lower modes can be

_approx1mated by a reduced set of degrees of freedom Such

',reductlon technlques are commonly applled in structural

dyhamlcs to reduce elgenvalue extractlon tlme, condense

1nternal element degrees of freedom or as a part of the

.‘ a
v The Guyan method( dlscussed 1n\Chapter 8) uses the

'statlc modes to suppress the degrees of freedom wh1ch are

not externally loaded Thls reductlon works well for;low’

runnlng speeds, below the frrst cr1t1ca1 speed

/

A more costly but accurate method uses the undamped

normallzed modes to reduce the system matrlx 51ze. The

_global degrees of freedom are expressed in terms of a few-nf

generallzed ‘or. normal co ordlnates. The undamped equatlons-“”

i
' L3

| [M]{W}fl'[K]{ﬁ}= {6}:.:pr__i
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:ASSuming a harmonic‘motion, of'frequency w, we obtain N -
elgenvalues, wn,ﬂand N elgenvectars, { W }n. The flrﬁf M
modes, enough to, obtaln the requ1red accuracy, form the

columns of the modal - *ransformatlon matrlx, [ ¢,]. The .

:vreduced damped equatﬁons of motlon are. i : 4‘f\ :
(Lo} [K(w)I001 + sLe1TC(wd0] + SPLo1TIMILST) (a) = (0} -

. which can be written as:’ .

CIK*(u]] + STex(@)] + SP0 M 1) (g} = ), ~
where’ : ” _
‘ [K* w)] =:I¢]ftx(o1[¢];' S
, ToeR)] = el Rl § .
RCUERONGIGE

hv The reduced matrlcet are of size M 1nstead of N. The fl»h
'usuai ruie {gato con51der up to at least one mode hlgher o
:[ than the operatlng speed From the orthogonallty pr1nc1p1e"}
?;1 we expect that the transformatlon dlagonallzes the M and K
; matrlces and also the C matrlx 1f 1t 15 a proportlonal type Vﬁfh

-‘fj ‘damplng



(2

]

‘ the correspondlng damped iomplex elgenvalue for a

’ non tr1v1al solutlon ps

/'-7 2.4 Boundary Cond1t1ons i‘"'bt‘_;f'a;;~,i“

Wlth the flu1d bear1ggs used the exlstence of the fa

cross coupllng terms make the modes ‘non- orthogonal Further ﬂi7

approxlmatlon, apart from that due- to the reduct1on, occursf;"

- due to*the use of the undamped modes for reduc1ng the damped =

¢ ‘ s A . g - 9 B . 4 : ) o : N -
matrlces - .j3.,j ,.“f LT T ‘_.‘.;__:{p'j"-, ;‘
. S - . ') . L ,‘ . e . . o S

'If all the, matrlces are dlagonallzed the damped

\

elgenva{pes can be found\from the 1nd1v1dua1 decoupled*’f

equatlons\ For the Nth mode the decoupled equatlon ;s-.
SR A o

ARG S0 S\ 9y = 0

e = B Tl e Co J

v A o - L ) Y =

-

J AN oGt /c; - AKE M2 R
oo e .2\. S

oy

Whlle solv1ng the undamped homogeneous equatlons, toT'"

Al ‘

E3
o i,

: ":vobtaln the modal matr1x, 1ntroduct16n of the fuli bearlng_y' A

‘._stlﬁfness matrlx causes complex exgeng?ﬂues and elgenvectors

ﬁhwhlch are tedlous to deal w1th The f1u1d bearlng stlffness :

”-_:'matr1x is decomposed as.,
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Ay

r K5]br§'= [yxy ]avdae.[ug(ﬂ)p]remaindet
The bearlng stlffness, LlK ]brg and the damplng,
‘ y‘[ C ]brg, matrlces change w1th the runnlng Speed A

'.,representatlve symmetr1c abe?age stlffness matrlx, [ K‘ ]evg

\ L

| J~r‘1s us\d 1n the ‘u ed rotor equatlon to obta1n modes close

-

'f'to those of the ag}ual system, 1n the range of speeds

I

. Qtested

- Thus, the rotor mass and stlffness matrlces and the

‘1 matr1x need be calculated only once The bearlng

'f_stlffness and damp1ng matrlces are calculated at’ each ,jd
o runnlng speed u51ng Holmes bear1ngs. The [ K(Q) ]remalnder

-

,fand the [ C ]brg matrlces are appl1ed to the damped
'feqlatlons of motlon before reductlon.’The reduced matrlces
,-are solved for the f1rst M approx1mated, elged%alues of the |
, system to study 1ts stablllty. BRI | -
sThe reduced matrlces can also be used for response: :

";analy51s, by u51ng the generallzed forces, [ ¢ ]’ { F(t } ‘f

'TVThe,general1zed response, { q }, can be calculated and

fthereby the actual response,_u51ng the relatlon | .;f~;“V7*f;]'"
7. 2 5 Case study _' L o e e S Ty 1

Lund s rotor[72] 1s used to study the stablllty and

fdamped cr1t1cal speeds. Instead of u51ng Lund"



d'bearlngs{73], short bear1ngs of Holmes are used Lund

. . . - . ‘. o ‘

.&f',‘:‘

.

u'd1sregarded the shear deﬁormatlons, rotatory 1nert1a and the

‘i.gyroscoplc effects. A un1form shaft mounted on 1dent1ca1 ;'f,Q_vfp

“bearlngs was consldered In the present case, shear

r:fdeformatlon of the;rotor is 1nc1uded The wotor and bearlng

~'detalls along w1th the capac1ty number@for each speed are fjg;?iﬂ

g1ven in Table 7. 2 Comparxson 1s obtalned between Lund 5 Vﬂ'dh

‘“'results and the elgenvalues from the f1n1te element method "1{'

:t.results,&:;“ _zfs -'Tf? | ;gﬁ“f

g;ufplane and at each end Thls results 1n a b1 symmetrlc system Fxgke,,

tw1th modal reductlon° Table 7 3 and Flgure 7. 4 show these T.

e

>V

’\ ! Hn
The real part of the elgenvalue called the damped

o g L T
e exponent 1s non*dlmen51onallzed to g1ve the log decrement S

e

i.lss.ényfk/¢a?E7,il"hd”f' -;Lgvfj :;1f~h ,{~~ .

cve.

l\

The rotor 1s f1rst put on plnned supports,.1n each
T

2:_*w1th double frequenc1es, one for/each plane. These rlgld

%:i

s whlrl

‘»modes and frequenc1es are the same as of a ‘beam' element 1n
l‘one of these planes. Decoupl1ng and symmetry of the system'."".

-fh»allows motlon of a beam to represent the rotor s dlrcular,}h}f,'

:‘»,

Fr'“..>c. Sy T S

The rotor crltlcal speed on rzg1d bearlngs 1s found to L

be 125 cps xnstead of 127 cps, es calculated by Lund The

\
,‘xrr

dlfference 1s due to the 1nclu51on of the shear effect\&n

- ~»~ 4-,

the f1n1te element model

[N
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Table 7;2._Det§iléfof Lund’ s qotorf
K . - ‘l‘.
Rotor: ‘ A
length 50" : o
diameter= 4" o
material is stgel
N - ’ t /
Bearing:
length= 1/ g
diameter=4"
radial clearance=0.002"
viscosity=6.9 cen¢1po1se
stat1c load = 89.9 1b
Criti;al speed on rigid support:
; “Lund: 127 cps | . -
finite element: 125 §ps s
rotational Speed +" eccentricity _ ~ capacity #
R.P.M, ~ ' e/c Cn.
2000 . : .5259 " 093
4000 J .3808 . ' . 1861
6000 .2945 .2783 -
8000 2379 .3723 X
9000 ©.2165 S .4189
9160 .2134 E .4263
|
/ |
‘
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Holmes' short bearings are_ndﬁ prescribed at both rotor
ends, including all stiffness and damping terms. The aversge
- modal matrix is used to reduce the sYstem'matrix andytﬁes
the eigenvalues are calculateé at different ruhhihgvspeeds.
Calculations are continued till the threshold speed is‘ |
reached. o

The whirl‘frequencyoat'the onset of instability, w,, is
obtained'as 78.25 inbclose agreement with Lund's 78 cps. It
%s to be noted that the second forward thrl critical’speed
attains instability before the fifst forﬁard whirl, though -
it whirls in the first mode. ) | |

~The.damped critical speeds are more appropriate to
identify the vulnerable-pdints in the rotor operation.,The
log decrement gives an estimate of the damping ﬁherebylthe
response amplification factor in each of the modes at each
_runﬁing speed., |

The lowest log decrement in Lps operating range also
"~ determines the closeness to the threshold.speed, suggésting
system or bearlng changes, when necessary

The model chosen is supported on two 1ds5t1cal
bearings, extension to multi- bearlng systems is direct.
However, for the multi-bearing system identification of/}ﬁes"
bearing which is responsible for ‘the ﬁﬁstabilfty_is noﬁ)_‘v'
possible from the elgenvalue study. A response study at eachin

R

of the bearlngs, at the threshold speed, 1s*necessary.



o

‘ mlcrocomputer.

.stlffness and damping cross- coupllng terms are domlnant for

‘of the cr1t1cal speed(.+ and-S%.)

’ avallable in that mode’ rs calculated and checked w1th the

operataon.

192

7.2.6 Possible application

'The cross—Coupling terms of the bearings are
responsible for the double “beam element rotor model, instead
of a single beam model. ThlS doubles the matrlx 51ze,

increases the calculating time and limits the use of the

When the cross-coupling is feeble, rotor motion in the

[N

two planes can be treated separately. From the graphs of the -

dynamic coefficients in Chapter 6, we observe that both S S &

all values of the capac1ty number ;w1th respect to the

d1 ect terms This fact should discourage any attempts of

deooupllnga However, .we observe that'the direct terms remain ..
fairly constant while the Crosskterms decay linearly with a
reductlon in the capac1ty number. Also, the turbo generators

operate at low capacity numbers (about 0 “to 0.3). : .

Cross coupllng effect may be tested in thlS range and

Ny
~

neglected if found to be ‘weak.

[ I

~

Ramsden[87] proposed a method of descrlblng the dynamlc

N [
~

character of the rotor by calculat1ng the damped elgenvalues
and e1genvectors in the range of run up and run down speeds.

The damplng llmlts have to be set f1rst based on practlcal

experlence, experlments and theory For a fixed percentage

the amount of damplng

L

prescrlbed 11m1ts to ensure stablllty of the rotor

\ . . o . L \
: N . i
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With our present method of modal reduction, the reduced
system matrix can be used to obtain the qritfcal speeds at
different running speeds at a reasonable cost. Thus,

" stability of large turbo-generators can;bedchecked‘

7.3 Conc1u51ons

Holmes bearlng is" used to obtaln the threshold of
1nstab111ty of a rlgld and a flexlble rotor. A modal
reductlon method for rotors supported on flu1d bearlngs is .
'1ntroduced with succeSs ~to obbaln the damped crltlcal
values of flexlble rotors. The system matrlx 51ze is reduced
to fac111tate the study of large rotor systems. The modal
reductlon method used is also a popular tool for response )
‘studies. | ) | REEL L

Appllcatlon of the stablllty analy51s to determlne
’large rotor performance is suggested Iflweak cross-coupl?ng
| bearlngvcoeff1c1ent5~are recognlzed thelrotor motiqn;can'be_-

deooUpled;‘f

\eii



8. APPLICATION: A TURBO‘GENERATOR UNIT - \»)

S - ' R \
'Abstract . - - a
A large rotor of a power plant gi Selected for dynamic

analysis. A dynamic condensatjon method is preSented’uhich

system size, r taining"only the’necessary’

-~

grees. of'freedom The{system 1 odelled u51ng unlform and

ay \
disks within the elements. Support condltlons are

L 4

representednby the dynamlc coeff1c1ents of\the short

bearln S. Motlon 1n a representatlve uertlcal plane is
g

cons1dered for the axi- symmetrlc rotor dlsk system. Crltlcal‘

4

'speeds, mode shapes -and unbalance response are obtalned
'Effect1veness of the avallable tr1m balance planes,}located

"-on the turblne rotors, is dlscussed

: 58,1’Introduction

Turbo machlnery are a regular 51ght in 1ndustry.
tturbo generators for power productlon, turbo pumps and
compressors as flu1d drlvers in 1ndustr1al plants The

- common feature of allnthese machlnes is the presence of the

rotatlng shaft w1th varlous bearlngs and supports. The 51ze'

' and speed of the rotatlng machlnes has been contlnuously
_1ncrea51ng, to meet the mountlng demand for power However

‘centr1fugal stresses put llmlts on the dlameter of the

'ip_shafts resultlng in a rotor’of‘1ncreasedklength_w1th more'

194

1nearly tapered Tlmoshenko shaft elements and 1nc1ud1ng the;-
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. \ \ . » ke
stages and wheels. An increase in length makes the system
more flexible and hence leads to dynamic problems. o
The~practical importance'of the.subject prompted many-
Y .

researchers from industries and acadamic institutions to

| develop, apply and evaluate_experimental, theoretical and

numerical“methods of analyiing:large rotor systems.
.Blshop, Gladwell and Parklnson[44 75, 76] developed: the

modal method where the flrst few modes are superposed to

~obtain the response‘at running yot any off,cr;t1cal‘speed.

Balancing is done mode by.mode, Thefcondition to be obsServed

is that the correction weight balances the present hode

without disturbing the balance of any of the previous modes.'

v

Federn[77] and Kellenberger[78] also used the modal

'balanc1ng‘method, w1th the two rlgld modes balanced

£y

‘initially. Hence, thelr method 1s-known as the4N+2 method as
"Zagainst the N method:(at least N'nodes are to be balanced;

for operatlon between N and N-T modes) of Blshopo,:

Goodman[79] developed the 1nfluence coeff1c1ent method

wh1ch balances the rotor at spec1f1ed Speeds (runnlng or

: ;soaklng speeds of rotor) by a least- squares method
' mlnlmlzlng the response at spec1f1ed p01nts on the rotor by L

,plac1ng correctlon welghts 1n a glven number of balance

planes.d

These two ba51c methods (modal and 1nfluence .

dcoeff1c1ents) have been modlfled and advanced for better

balanc1ng Eund[74] Park1nson[80] Tessar21c et al[81]

nShlrakl and Kank1[82] Gn1elka;83l All these methods depend,

) .
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on the turbo-rotor in- 51tu measurements to obtain the mode
shapes, 1nfl£ence coeff1c1ents and polar plots of the
reSponse. |

The experimental procedure is tedious, often the
measurements have L0 be taken very qu1ckly, especially when
'the rotor is at the critical speeds, leading to
inaccuracies. It_15‘costl¥ and cumbersome, if not
unthinkable, to repeat the measurements. The modal matrices
‘and the influence coefficient matrices, thus obtained, are
limlted by the accuracy of the’instfbments used.

f. A design engineer is often uncertain of the rotor
dynamics, until tests are-conducted on the actual system.
Modifications'become sécessarjwto accommodate the system
- dynamics: changing“the dimensions to allow dynamic stresses
and alterlng the system to Shlft the criticals off the
’runnlng speed |

R Balancing planes are usually located‘by deéigners at
pointS‘which'ease'the desidn and the production prQCesses:
However,'a kndwledge of the rotor dynamiCS'allows.the
selectlon of optlmal points for the balance planes. A good
ﬁlocatlon for a balance plane is near an antlnode where the
correct1on welghts can. be m1n1mal The bearlngs mlght be
‘.wrongly pos1t10ned closer to the antlnodes, due to lack of

-mode shape 1nformat10n, resultlng in 1ncreased transmltted
aforces. | | | |

Y

The foundatlon hltherto has been the }ﬁgld type, made

of concrete walls, with - 1ts cr1t1cal speed above the runnlngf‘

-
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speed (high tuned). A smoother operat1on is expected if a
bflexible foundation (low tuned), ‘such as a steel structure,
is prouidedf Ellyin[80]
. The dynam;c unbalance forces, transmatted through the
| bearing oil film have to be evaluated beforehand to prov1de¢
‘safe operat1on. An unstable rotor(1n oil wh1rl) can have a
‘dynamic magnification factor of more than one, Gunter[85]
increasing the foundatlon loads by two to three-tlmes._
Morton([86] has nlcely comblned the theoretical and
pract1cal aspects of large turbo-generators, hany |
recommendat1ons are . ;available hereé todihose condud ng
either laboratorj or in-situ exper1ments. o

Ramsden[&?], has proposed a way to descrlbe the dynam1c

character of rotatlng machlnery, to lndlcate the system

stability due to dlsturbances in the balance by cons1der1ng' :._~

/
‘the effectlveness of damplng in each mode. Hey also

formulated the mlxed rotatlng(rotor and n\/ rotatlng

| “(flexlble foundatlon) system.4 |

| Mlsallgnment of the shafts at the coupllng polntsfs

‘causes shear forces and moments whxch tend to dlslocate the

Arotor ax1s from 1ts cont1nu1ty Bearengs a!e mounted,on a kh
: ‘.f{ :

”7curve (catenary) to av01d thlS unwanted loadLng Sometlmes k

the catenary is set by a tr1al and error procedune u51ng

'}“_“hshlms under the bearlngs, or it may be specffied by the

,de51gner.
: It 1s not uncommon for the des1gn condltlons to change

'under contlnuous operat1on' Llndley Blshop[BB] and Last[ag]=_w

ARt
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’
-

10 Insbiteéof‘thermal soaking at low speeds, the rotors
distort due to uneven heatlng or coollng durlng runup;.
rundown or operatlon.

2. Ventllataon gases used in cooling the'rotor (the -

‘ generator is cooled by hydrogen gas) might not have beenby
,”accounted for whlle balanc1ng, and can change the o

. - running operatlon. . L |

3. fBearlng dimensions, loads.and:operatingftemperaturesfﬁ»"
vary ‘~ | ‘ o s

4. Movement of - components, generator COllS g1ve rlse to_

’t1nternal frlctlon due to the relatlve motion of the

: ,parts. VV:'.5‘ - dh ’ -'_'l ":a" : ,‘;:t 'tk
'5}_;Ch1pped blades and loose components affect the normal
d ] ; hoperatlon.,f’ | | e
| «_ The bearlng%parameter5° 011 vlsc051ty,load and bear1ng“=
)k1men51ons change W1th the runnlng speed and w1th prolongedf'
B steady state operatlon..The de51gned capac1ty number and |

dynamlc coeff1c1ents .are- altered and stab111ty of operatlon.frg*

-;ffhas to be ensured for any such var1at10ns.

The ma1nta1nance crew are equ1pped w1th a contlnuous

mO“ltOflng SYStem and are usually warned 1mmed1ately, at thejff

{occurance of any rough operatlon above 4mlls ( OO]H'_ 1m11)‘f*

1‘cof peak to peak V1bratlon level of absolute amplltude
V'ﬂ;(relatlve to the ground) A f1ne rebalanc1ng, called the

i,_ﬂtrlm balanc1ng,.becomes necessary for further rotorj,f.*

-

"_,operatlon. The r°t°r need “Ot be Stflpped of 1ts cas1ng but 3,;:bf

?fﬁls stopped to Shlft the correctlon welghts 1n the acce551ble,f' &

P

N CE

-
-
,,,,,,

.......
et




199
balancing planes. The’pradticing engineer findsdit'a
'frustratlng ordeal Wlth nothlng more than 1ntu1t10n to gu1de
him. In each such trial, the rotor is run up to thek

operatlng speed and the v1brat10n level 1s checked for ":

smoothness in runnlng In all large rotor systems

'operatlonal changes can be made at a’ low cost if the dynamlc '

analy51s is. constantly updated o
The eff1c1ent .and accurate f1n1te rotor elemenw

/:

developed with its® ab111ty to 1ncorporate shehr e
deformatlon, rotatory 1nert1a and gyroscoplc effects theh
d’_dlsk effects, non= unlform cross sectlons and flUld bearlngs

'-1s useful 1n modelllng large rotors. We note’ here that the

~use, of the present f1n1te element because of the ch01ce of

~the nodal varlabl. Aw and I¢'» d1rectly g1ves the dynamlc

_shear force and bend1ng moment at every sectlon of the rotor s

lat any speed and load cond1tlons. ThlS 1s not p0551ble w1th
;;the other elements.-' R | | | B
Though any type of rotor and flu1d beanlngs can be
:clncorporated w1th thlS model the structural damplng andp

foundatlon st1tfness have £6 be guessed Whereas 1n the_“

5exper1mental methods in- 51tu measurements ellmlnate the need o

- to guess. Spes e

For the present ana1y51s data from an Assoc1ated

[~
. QL\u

1,Electr1cal Industrles turbo generator rotor was made

?avallable.kIt 1s presently located at the Lake Wabamun power

‘;piant Installed 1n 1968 1t operates at 360& rpm w1th a‘:

N vcapac1ty of 286 MW o

e



‘,“ ’

: glven unbalance response - as proposed\by Craggs[61]

nece551tat%3g an overspeed balanc1ng For the second un1t
- the ax1al movement of the end c01l reta1n1ng rlngs were the

'source of the v1brat10n problem Thdse rlngs were replaced 5"

a - | S 200

A dynamlc reductlon method is developed in thlS Chapter

‘to, reduce the system matrlx‘51ze u51ng the normallzed modal

' vectors. With th1s reductlon a set of de51red nodal

varlables can be reta1ned w1th a greater accuracy than w1th

s

the commonly used Rouch[55] Guyan reductlon.
The reduced system matr1ces are solved for the crltlcal
speeds dlsplacement mode shapes, and unbalance ggpponse

<« . ,
Any of the balanc1ng methods can now be used w1th thlS RN

'model- w1thout any t&lal runs, to balance the rotor‘ “for a

8 2 Problems w1th the generator rotor
Two sister un1ts of the selected.tu bo generator
located at. the Sundance power plant of. the Trans Alta

Company have recorded hastorles OL generator unbalance,,

transm1tt1ng v1bratlons to other parts of the rotor and

"forces to the foundatlon and surroundlngs.'These un1ts have.

been forced to shut down (one 1n 1975 and another 1n 1976)

) The generator collector rotors were sh1pped to experts fori*lz

balanc1ng and repalr. The flrst un1t encountered
d \

- overheatlng, burnlng the generator COllS. Rew1nd1ng of the

copper c01ls destroyed the exlstlng ba ance. The c01ls and;
the 1nsulatlon consol1date at overspe d; thus a low speedv“

balanc1mg w1ll not be effect1ve.at hlgher operatlonal speed

f




- along with‘an overall.generator balanc1ng

slots are located in the c1cumferent1al portlons

j,wh1ch is doneq\hen a total balanc1ng is. requ1red Balanclng

:'“3600 rpm. y;l;";, .‘,?-i_--&j,ﬂ
i ellmlnate V1brat1ons at the flrst four cr1t1cal speeds.
i thls process. Yet about 25 planes were used 1n the f1rst

‘ erotor and about 15 in the second For a very flexlble rotor

':the correctlon welght has to be 1n the plane of unbalance,-s'

201

' The generator rotor is prov1ded with 10 to 20 balanc1ng

planes along its length Each of these planes 1s§prov1ded \gp_h

“WIth four slots for plugglng in the correctlon welghts; The Lt

correspondlng to the poles of the rotor. These planes are |
acce551ble only when the rotor is taken out of the stator,
planes are also prov1ded at elther ends of the rotor )

correspondlng to the planes of small fans, turblne wheel

for speed meaSurement Sllp rlngs of collector and sometzmes_ e

.the maln Lp1 Generator coupllng The follow1ng 1nformat10n
" on generator balanc1ng is from the. reports made by the
: generator balanc1ng company The generator cgﬂlector rotor
'gshown in Flgure 8 1 was mounted on. three bearlngs durlng {;T"
hbalanc1ng, two of them support the generator and the thlrd
.h(called the steady bearlng) is at the collector end The o
'flrst four cr1t1cals were found to be 880 2300 2700 and v;lfzv-

o 3400 rpm all’ of them occurlng below the operat1ona1 speed ofb:

A flex1ble modal balanc1ng scheme was adopted to

il

”f;fTheoretlcally speaklng,;four balanc1ng planes shauld sufflce o

»';'lto be effectlve. The generator belng falrly flexlble, the

AN
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use of the extra plahes is‘probably necessary to ease the
balancind process.

Severe vibration standards were imposed. The
fundamental, symRchronous component of the bearing peak to
peak amplitudes were limited to below .003"(3 mils) for the
gengrator bearings and below .004" (4 mils) for the steady
bearing. These amplitudes were checked at the critical |
speeds, at the 6perating speed and }n the range of 3300-3900
rpm,

Trim balancing of the generator is often essential
during the rotor operation. This is done maiﬁly using the
ogﬁyr balancing planes of the generator fotor.,Frequently .
these planes are overloaded, with the correction w?ights
occupying most of the available s}ot space.

£
The rotor considered in this Chapter has also been

'showing‘i;convenient‘levels of vibrations causing execessive
noise and vibration pollution in thevshop.

As the generator is the most probable'cause of trouble,
the effect of an unbalance in the genefatqr 6n the total
turbo;generator rotor length, at ﬁifferent speeds, is .
studied. = ‘ ©

This study helps in obtaining the effective coupling
between the spans as indicated by the response at a span due

‘to an imbalanée in another. This will also help.us decide
the possibility of using the aQailable trim_balance‘planes

L4 . Q@ . .
on the turbine rotors to correct unbalance in the generator.
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Imbalances are also placed in the otner rotor spans,
one at a time, to obtain.the response at fhe running speed.
This test will help us judge the effectiveness of the

~available trim balancing planes to correct‘imbelances in
their own and other spans.

8.3 Details and modelling of the Turbo-generator unit

\

Theytnrbo—generator unit is made up of six\shafts. One
each for the high pressure(Hp), intermediate pressure(Ip)
and two for the low preigure (Lp1 and Lp2) turbine stages
and one each for the generator and the collector. These
rotors form a tandem connected flexible rotor, shown in
Figure 8.2. The Hp and Ip fotors-are.hollnw in
cross-section. The turbine rofors;are pfovided with blede

- carrying diaphragms called wheels or disks. The blades are
twlsted in space and occur lneermittently around the
circumference. The blade.effectﬁ are included in the model
by appropriately increasing the blade.carryinb disk
dimensions. The disks of each stage are assumed to be of
uniform size to ease data input, though the flnlte element
program allows dlsks of d1fferent 51zes to be 1ncluded
inside an element. The couplings and gears are also included
inside the corresponding elements. Balancing planes are
provided along'the rotor, con51st1ng of 3/4 inch grooves at
a radius of 6.25 inch radius in whlch the correctlon weights

‘are positioned and welded. The Hp and Ip have a balance

plane each and’ the low pressure turbines have two balancing
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planes éach. The Hp-Ip, Ip-Lp!, Lpl-Lp2 couplings are rigid
while the Lp2-generator coupling is flexible; o

Figuﬁe 8.2 shows £he half sectional view of the
turbo~generator model used in the finite element“ana%ysis.
The actual shafts have many steps and intricate grooves. For
the present analysis either a linear tépér;or uniform
cross-section approximates each element of the shaft.

The turbo-generator is modelled using 18 elements. For.
an axisymmetric'system, as in the present analysis, : -i;
consideration of motion'in'bne plane by beam elements is
enough. A 76 degrees of freedom system is obtained. It is to
be noted that this is quite small in size for_é large'rotor
unit. The accurate finite element and inclusion of disks
within are4reéponsible'for this achievement. fo illustrate
this point element 9 which includes 10 blade‘gérrying disks
within itself, belonging to the Lp stagé) ié shown in |

Figure 8.3. If they are lumped a%t nodal points, as is

usually done, an 11 element model is obtained, instead of

the T~element model of the present analysis. Lumping of all'

such disks will requirée at least IOO_elements‘to rép:esent
the whole rotor}system,witﬂ 400 ﬁo 500 degrees of freedom in
each plané. | _

. lThe_position of the disks (wheels) ére shown by_dots
in Fiqure 8,2. The baiénce planes are located at sections BB
‘and couplings ét sections CC. The geﬁerator‘is hollow with
'longiﬁudinal slots to céfry the conductor coils, maaé df'

-

matefialkdifferent from the generator rotor. These aSpects'
. . -
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Figure 8.4 F.E model, element 9
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have been neglected, approkimating the generatot as a .
uniform solid rotor of homogeneous_naterial. |

| Slight modification of the program used will
incorporate these factors, if deemed_neceSSary. The shape
factor K and the'constants used in the linear. taper finite
element, K,.for area and K; for the SeCCnd.mbment,ot
inertia,bhave to he changed-from‘soliddcitcular to hollow
circular‘to adopt the sectional changes. For a
'"non—homcgeneous;materiaifequiualent modulus.of‘elasticity

,andldensitp have to be'eualuated and used. Tables_8.1 to 8.3
- give the element details,.coupling locations,fbalance plane
locations and information of the disks of each element.

. There are nineibearings Supporting theiturhojgenerator.
All of them belong to the_shortrbearing group uith'L/D_
ratios less.than‘1 .The bearing details are»giVenlin |
Table 8.4 The dynamlc coeff1c1ents of damping and stiffness
are calculated accordlngvto Holmes' theory of Chapter 6.
tThough the bearings havepdiﬁferent'L/D ratios, capac;ty
numbereheing the indepéndent‘parameter,'the graphs_cf\'

~:damping andfstiffneSs are appiicable to'all of them.

8 3.1 Instrumentat1on |
The turbo generator unit 1s equ1pped w1th Bently Nevada'»ﬁf
o .
_instrumentatlon. The v1brat10n sensors are mounted on thev
tbearlng caps. Steady state data is contlnuously obtalned

g Run up and run down data, through the cr1t1cal speeds 1s

.recorded whenever p0551ble, such as durlng overhaul and f1ne
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Table8.1. ~Details of-ﬁotor elements .
Element# Element length Root D1a Taper rat1o #D]SKS
"""""""" .""""'"f"""f"'""""""'"""""'1&""""'

1 29.840 8,00 - 1.6667 0

2 69.600 ' - 16.50 1.0000 8

3 37.375 - 15.75 0.7619 0

4 53.750 12.00 1.0000 1

5 39.875 12.00 1.4583 0

6 - 87.000 - 19.00 1.0000 8 .

7 34.000 . 18.00 0.8889 -0

8 38.250 : 16.00 1.3437 1

9. 139.000 - 25.00 - 1.0000 10

10 30.250 - 21.50 - ‘ 0.7807 0

11 43.250 - 17.00 . 1.2647 1 -

12 139.000 ; 25.00 1,0000 10 .

13 21.750 ' -22.00° 0.7727 0. :

14 85.375 . 17.00 1.0000 1 ey

15 73.500 - - 17.00 1.4117 0 ‘-éﬁ'

16 205.000 - 40.125 1:0000 0 N

17 : 73.500 24.000 0.7083 S0 -

18 ~ . -- 84.500 < 17.000 0.5294- 0’
Taper ratio = Tip dia/ Root dia.
so]1d c1rcular sect1on is assumed for al] elements
Shape factor = 0.85, E 30000000ps1 E/G=2.6,

l
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Table8.2. Details of couplings and bearings.

i i et e T vy

Hp-Ip 145.94 Hp 26.812 T
Ip-Lp1 365.69 Ip 342,315
Lp1-Lp2 576.19 Lpf 395.428
o Lp1 522.890
Lp2-Gen 7012 Lp2 607.928
Lp2 1 735.390
e B LI el SR A
All dimensions in inches.'
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Table .8.4. - Details of bearings '

Brg# Location . Nominal size White metal Radial Catenary
’ DxL’ . Length L clearance
1 Hp exhaust - 9x7 5.0 .007 275
2  Hp inlet - 12x8 7.0 .008 . 194
3° Ip inlet 12x9 7.0 .00875 . 166
- 4 Lp front - . 16x14 . - 10.0 .01075 -.095
5 Lp centre =~ 17x16 . 11.0 .0115 .029
6 ~Lp rear - S 17x12- 8.0 L0115 .003
7 Gen inboard 17x13.5 11.5 01125
8 Gen outboard 17x13.5 10.5 01125
g Collector 9x6 6.0 . 007

-—_.-___--_-—-.._-—--_'——_-__—-_———_-.--_—-___--___—--q-__-—-——--_--_--—---—_..

_--—_..‘_—----___--_..—-—-—---——_--—_--_—__-—_----.._.-—--—-—_-_-------—---—_

Brg#_V1scos1ty Load =~ Load with Unit L/D Sommer- - Capacity#

mu(Reyans) F’ Catenary F' load, P feld#SN CN
1 .3886E-5’ 509442' '5770.0 128.2 5556 .7515 2319
2 °.5833E-5 7158.3 - .7595.0 = 90.42 .5833 7356 2503
3 ~3262E-5 * 10174.0  10754.0 128:0 5833 .7189 24486
4  .2566E-5 39262.0  34384.0 214.9 6250 . 3968 1550
5 .- .2595E-5  54764.0 44111.0  235.8 6471 .3607 1510
B .2624E-5- 17515.0 -27974.0 205.7 4706. .4182 . 9262
7 .2755E-5 56519.0 . 53000.0 271.1. .6765 . 3481 1593
8. -.2871E-5 57472.0 50000.0 280.1 .6176 3511 ..1339
9 . .3378E-5  -50148. 2000. 0 37.4 .6667 . .2262 1.005
Calculations at a running speed of 3600 rpm. :
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- These are placed in a plane located 45-degrees‘td'the

1ndeterm1nate from the ba51c strength of materlals approach

'The cont1nu1ty COﬂdlthnS prov1de extra equat1ons 1n the

N _
213

balanc1ng The instrumentation con51sts of v1brat10n sensors

and a remotely placed, a few yards from the unit, dlsplay

o "J

Bearing 9 is'not monitored! Bearings 1 to 8 are

system,

.prQVided with prokimity probes (displacement transducers)

which measure the shaft motion relative to the bearing,

horizontal plane (The-horizontal‘plane is avoided for.u |

: measurement of the response since it contalns the . bearlng

Spllt) 90 degrees to this plane, the dual probes are placed
(veloc1ty transducers, 1ntegrated for dlsplacement) on .
bearlngs_ to-6 These probes measure the bearlng absolute
displacement (relatrve to the gr0und) ‘The dlsplay system 1s
prov ded w1th ampllflers and dlgltal vector fllters (DVF 21
\abctorlally add the bearlng absolute dlsplacement to~‘

¢

relative . dlsplacement to glve the shaft absolute -

\’

i?ment. ORI - N
'tkey phasor is. prov1ded to glve a t1me reference to

{he measurements made. A speed wheel is located at the 'A?bdiﬂ;\'
;ard end of the collector wh1ch helps measure the rotor j.d _

'd u51ng a proxlmlty (1nduct1ve) plckup Elght channel\'.”:l

;ﬁ recorders are used for data collect1on

: Th&ry .

For a mult1 support syétem, th bearlng reactlons are 'f1f, B

O R T S SO TSN ST P S LT IR e e S e
R e ) F e B S e e T el el b T e S T
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'f1n1te element method, prov1dlng enough equatlons to solve.
;he reactlons con51der1ng the statlc equ111br1um alone,
. 8.4.1 Initially straight shaft on'hOr}zbntal"bearings

The static equilibrium equations are:

h$$\\; | | "»"f':i;‘f:..‘»fn'ﬁ
ks W H4E 3335,

where F is the statlc 1oad1ng on. the shaft and F ehe statae .
loadlng at the bea.lng p01nts, W 1s the sec of unconstralned'
nodal varlables, B is the set of constralned nodal varlables_;
and. Rels-the set of constralnt forces s - ‘: ;//‘? m“ :

“For the shaft on rlgld supports, the nodal varlables B -

AR

"are equal to zero q3can be found from ”fh~
M D dT R,
Rg} = [Kg J0W} = {Fgls

T

‘ 8 4 2 In1t1ally bent shaft on horlzontal supports . '
v Blshop[43] and Morton[86] have con51dered the effectst

;f;of an 1n1t1ally bent shaft fbr the Whlfllng prOblem.'}},f]h




e flrst case 1f { wo } 1s made zero._,].nfﬁ"
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Con51der an 1n1t1ally bent shaft mounted on - horlzontal rlgld“'
bearlngs. Let the 1n1t1al bend of the shaft ‘be { We }, and .
{w } be. the stat1c dlsplacement when mounted on rlgld
“supports. The actual dlsplacement under the statlc we1ght 1s‘

{ W-Wo }. We obtaln the static equ111br1um equatlons as" ‘

\ f ?‘S:J SRR

~F0r rigidﬁhearings~on afstraight line, B=O;1Whioh gives:

A

[wa {Fw} + {w } f {w} w

and. -

i

EKW}{W-WO}fFB} B
'spmote that th1s equatlon 1s the same as the equatlon ‘in. the :}

T

8 4 3 Catenary
o The turbo generator 1s not a sangle rotor system. The ifa
"{/hlgh presSure, 1ntermed1ate pressure, low pressure and |

. generator un1ts are artlculated by coupllngs. ”he coupl1ngs

'

are de51gned such that shear force and bendlng moment aret

not'transmltted across, and cont1nu1ty of dlsplacement and

bendlng slope 15 malntalned These cond1t1ons in an 1deal -

'Q..’_
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situation allow. only ‘axial torque and axial force to be
transmitted across the rotor.’Zero shear force and bending
moment at the cpupling points also means easy disassembly of
the rqQtors during ﬁaintenance and overhauls. The shaft

élignment at the couplings is achieved by .changing the

‘bearing axis from horizontal to a curve called the catenyry.

v <

For the present turbo-generator unit, not all couplipgs

can be enforced with zero shear and bending moment: The Rpt

rotor will then be supported on one edge, this reaction
along with the internal elastiérfeactions of the statically
deformed shaft has to balance the rotor weight and the

e

bending moment.
Design of catenary

The support reactionsziRl} are obtained with an.
initially straight shaft and bearings. Let the nodal*
variables be divided into U and C, where C is the set of
constrained variables at the couplings consisting of moment
I¢' and shear force Ay, which are required to be zero. ﬁor

, : o)

static equilibrium, internal elastic forcesféf'?pe deformed

- shaft balance the ‘external forces due to the shaft weight

¢ . e . . » » ’ 3
and the bearing reactions. The static equilibrium equations

_are given as:.

iy
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cancelling rows and columns corresponding to the variables
Lo

C, we get:

el LR

Thé,catenary for setting the bearings { B } can be solved:
for. It can be noted here that the finite element)developéd

‘is the oniy element which has shear force and bending moment
b | v :

" as nodal variables allowing this direct method of
calculation of the catenary. ‘ | A
-
: ‘ TS S :
To find the react1on§ffor a given catenary:

A
4

The bearing reactions {Rg} can be calculated for a J

‘given static loading { FU} and {ZFB} and catehar& { B }. The
' ~ 4
displacement at non-bearing nodes.{ U } is given by:

t

w - [kl g (Fy) - [kl @) {

(G j.

/
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Hence bearing reactions are:

(Rg} = [Kgyl (U} + [k 10B) |

4
¢

Thus the static loads acting on the turbo-generator rotor

can be found.

8.4.4 Fluid film bgarings'

In the static case the rotor rests on the bearing
surface and the reactions are 6btained.from the rigid
supports. Iﬁ~thé dynamié‘dondftion the rotor is lifted
inside the bearing and is. supported by thg‘fluid film. It‘is
the fluid film dynamic characteristics which provide the
necessary rqactions to counter ﬁhe gtatic and dynamic
forces. ‘ ’ | .

When unbalance énd other dynamic forces are absent the
sﬁaft ie in a steady state motion, the only:forces that ac£
on the shaft are the static forces. Equation (6.2) of
Chaptér 6 gives the bearing.reactions. The steady state
response can be obtained from equaﬁion (6.3), after deleting
the dynamic force terms. -

Dynamic resporise agﬁany running spéed,‘Q, fbr given
dynamicujbrces, {F,(t)} and {Fz(f)}, can be found from
equatién (6.3). Dynamic response about the steady gtate
equilibrium'position is obtained by neglecting the static

forces, {F}, in the equationd8 of motion.




219

o
For obtaining the eigenvalues andaelgenvectors of a
| shaft supported on fluid film bearings the homogeneous
equations of motion, given J; equation (6.4), are solved.

As discussed in Chapter 6, the damping and stiffness
matrices are dynamic in nature. For a given vlscosity, unlt
load; speed and bearing these coefficients are given,

Since linear bearlnge are considered, the dynamic
forces are neglected coﬁpared to the static (eteady state)
forces. This assumptloh of linearity is valid for well # |
balanced rotors, with small unbalances, and small amplitudes
about the steady state equilibrium point. Thus, for a given
~static bearing load {.F }, running speed Q, viscoeity u and
bearing dimensions the capacity number CMais fonnd. From
Chapter 6, the corresponding dynamic coefficients are read
from the graphs. Note that the 1ntermed1ate calculatlon of

4

eccentr1c1ty ratio is- avo1ded

8.4.5 System.equations

iLet [ A(Q) ] be the dynamic systemlmatrix, including
shaft stiffness, damping, inertla and bearing stiffness and
damping terms. This is a complex matrix due to the
damp1ng/gyroscop1c terms. The forcing function, say, due to
unbalance distributed along the rotor need not be in an
axial plane. The general forc;ng ‘function can be represented
by a complex vector { Q(Q +-iQ'(Q) }. The'response also-
need not belong to a single axial plane(can be spac1ally

twisted along the rotor)f aga;n it can be.represented as a
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complex vector { g + ig }..

Craggs[61] suggested a method of calculating the
correction weights using this complex system matrix.
leflCUltleS might arise while handllng complex equatlon

" solvers when working with micro computers, because of the
limited software support. Matrix algebfé allows the
cohvefsion of thisbeqUation to a system of real equations,

also given by Morton[86]:

ﬂ'

[AR)](q + iq'} = Q(a) +{0' ()

expanding the system matrix, we get:
[K(2) + i @ c(R) - @2M]{q + ig') = {a(e) + iQ' ()Y

Equating the real and. imaginary parts of the equation we

obtain the system of“real‘equations}

The system matrix can be directly multiplied to give
_the correction weights for a measured unbalance response.

—

..///1
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Also the inversion of this matrix can be used for the

response for a given force (unbalance).

‘8}4.6 Cendensatidn of system size: dynamic reduction
The'accurate high order finite element with non-uniform
cross-section and disks included inside the elements,
allbwed‘the whole turbo-generator unit to be modelled by.
just 18 elements. The global degrees of freedom are 76 in
each plane or 152 for the whole rotor. Fcr-a:response study,
;a»linear equation of order 152 has to be solved for each
running speed. For the damped eigenvalue-probiem the sYstem'
si;e dcubles resulting in a 304 degrees of freedom real
\aSYmmetric system matrix with complex eigenvalues and’
eigenvectorsx' | ’

. Even‘foria latge omputer the system-matrix size is
prohihitive. Thenéalcula ions,.ifdat,all_feasible,'a:e’
.costly. The'eigehvalues btained from'the total system lie
much above the operating Speedl-eﬁcept forlthe fitsf fewt:ft
will be of great advantage 1f the accuracy obtalned by

"considering all the global degrees of freedom 1s retalned
,when only a.few master degrees of freedom are used. The-
modal reduction used 1n the analysfis of stablllty had the.
general1zed or the orthonormal co- ordlnates as the retalned
'degrees of freedom. As no phy31cal meanlng can be attached
to these varaables, retalned degrees of freedom are chosen_'

-to meet the follow1ng con51derat10ns.

1.  The accuracy of the reduced system depends on how well
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»
the retained modes(lower modes) approximate the motion,
upon‘éuperposition. Good accuracy is obtained by

selecting the nodal variables.cbrresponding‘to large

mass to stiffnéss ratio and disﬁributed over the

structure instead of picking them from a single region

. of the shaft,

The loading acting on the shaft has to be completely

represented by the forces corresponding'to the retained

‘variables. The loading causing flexure is eitheF a force

or a moment; both of these can be represented by forces

corresponding to the displacement, W, Qariébie.. Thus ¢,

Ay and I¢' variables can be SUppfessed{
- Compatibility of the retaihed~vafiables"is important.

vDiSplacement variablé, W, is continuous’all_along the

shaft including joints and points with loading.

The,bearing conditioqs'of stiffness and damping can be

“accommodated using displacement vatiables as the
retained degrees of freedom. | |
The input data (usually the bearing diSplacemenﬁf and

‘ the~§utput‘(usuallf'tﬁe corré¢tionwwei§hts in the o

~balance planés) can be represénted with displacement

variables retained.

Thus all or some of the displacement variables can be

: . b o o .
retained according to the accuracy needed, apart from other

considerations: o R S

o

" »I£ the aim is to find the dynamic*Sheét'fofce and‘ 

moments acting on’the shaft, to find the dynamic stresses,
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then the retained variablesishould'include Ay and i¢‘.
The classical reduction byicuyan.is obtained from the

static'equilibrfum equation. The retained nodal variables {X}

correspondlng to the applied forces dictate the motion of
the suppressed variables {Xq}. Accordlngly, {X } are
des1gnated as the master and {XS} as the slave var1ables. lf
The reduced set {XR} approx1mates any shape of the shaft
deformatlon by superposition of the static modes that’ result
from unit loads applled one at a time to the master degrees

of freedom. Let the static equlllbrlum equatlon be:
. ‘,//

Expressing the suppressed degrees of freedom ﬁn‘terms of the

retained, we get:

b sl fand (o]

" The [ T statlc ] matrlx is used to- transform rhe mass
stlffness and damplng matrlces, to reduce the system s1ze

Th1s method is. w1dely used in structural dynamlcs.}
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"Rouch[55] used the Guyan reduction to suppress the

‘shear variable ¥ which is not continuous at,sectiona13~

joiﬁts.‘Théﬁstagié’condéhsatiOQVis,limitedvin its |
applicatiég becéuse of_the;fdllowing reasons:

1. Usgfui only for Jéw spééd'dyhamics (gf&und‘figzt -
critical) ag’in:StruEtures.,fhe';siﬁical speeas~obtained,
are higher becaﬁSeféf the impdsed constr$iﬁt$'énd due to
the use of inaccuréte’ﬁoaeggv ‘ | |

2. Cannot}suppress ﬁhe nodes where the forces are nonzero.

3. lnertia effects‘are‘negleCted."“ |

The accuracy and the speéd>;angé of application greatly
improves by using modal‘reduction.'A method is derived to
bbtain a modal transformation matrix in terms of the deéired | N
variableé {Xg}. @et the uhdamped equations of-free motion

be:

‘The solution of which gives the eigenvalues and the
~_eigenvectors. The normalized modal matrix formed with the
eigenvgctdrs of ascending modes occupying columns from left

to right relate the nodal degrees nf freedom to the

' generalized co-ordinates:

A
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" Using the first R modes for an.approximation,'we obtain:

HEMIN

The retained generalized co-ordinates can be expressed.

terms of the retained nodal variables as:

U4

"g” . .

{ag) = [e] ™" L)

Hence we obtain the relation:

3;}{Tdynamic]{xR}

ThlS dynamlc transformatlon matrlx can be used for

in

reduc1ng the-system,s1ze This method is preferred to the
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static method for high speed machines such as

turbo—generator shafts; ‘ -

1. The suppressed variables need not be the ones with.
forces ébsenﬁ. | |

2. The dynamic modes represent the higher fregquency ‘<'
responsevbetter‘than the static modes.

Thevmethod though‘ha%'somé disadvantages:

1. Costly eigenvalﬁe problem has té Be solved to get the
modal‘matrix from which the tfansformation'matrix is
obtained. éf .

2. The undamﬁed system 1is considered:to obtain a real

!

transformation matrix. The actual damped system has a

-

»complei transformation matrix. ‘ .

-3, The?%gcuracy‘of thg higher'modes, which‘are‘included in
the transformatfon‘matrix( depends on4the'number of
elements or'gIObal degrees of freedom used to represent
the'system. Thus, all‘thekmodal vectors are not of ‘the

‘

Séme.accuracy,.limiting the number of modes that can be

-~

cénsidered‘and ﬁenée the number of degrees of freedom
that can be retained. The lower limit on the number of
retained degrees of freedom is‘the ruhning speed;_ét

‘least oﬁe mode'éboVe the running speed has to be uéed’to,_{‘

obtain a r%gfonable accuracy.

? ) o . .
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8. 5 Results and discussion

‘“”or system matr1x in a plane is of the order 76
'3}0n has been used to bring down the size to
'ﬁ'variable; W, at each node has been |

ﬂt motionvin the vertical planefis considered,
;;onding diredt stiffness due to the fluid‘film is
-’for. The cross-coupling stlffness and all the
;ierms are omltted to avoid complex eigenvalues and
kftors as discussed in the Chapter‘on stablllty.
laticbloads on each of the nine:bearings is |

ied with the catenary’effect included' Capacityvi

A A
.S calculated at the runnlng speed for all the

‘calcy

%, ‘and hence ‘the dynamlc coeff1c1ents.aThe verticalz
N stiffnesylof the:flfld film alone 1s con51dered reducing
| i 5u ‘to- a‘symmetrlc shaft supported Qn flex1ble
ratlng in the vertlcalgplane.‘Eurther?analysts
ls reférred to this undamped syStem:oThe;foundation and
pedestal are assumed to be r1gld Internal andgother,sourCes
of damplng have been neglected |

“he bearlng dynamlc character1st1cs have been shoun to

vary w1th the runnlng speed and hence the system matrlces,’-"

' elgenvalues and elgenvectors. As dlscussed in the Chapter on'_..fd

.stab111ty, the elgenvalues and vectors have to be determlned
—at each operatlonal speed For the present analy51s the
elgenvalues and vectors are obtalhed at the runnlng speed of

y' 3600 rpm.




* shown in Flgures 8.5 to 8. d, The dots 1n the mode shape
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‘Table-é d gives the~firsta10 critical spebds of the
turbo generator un1t The correspondlng mode shapes. .are
Q
dlagramselndlcate the node points of the elements The
nearest crltxcal to the operatlng speed (3600) is- 3312 17
rpm.' | |
. Table 8.5 compares the methods of Guyan and the dynamic’,

reductlon for the eigenvalue calculation. The system Sizefis

reduced from 76 t0419 in both the cases. The cr1t1cal speedsv

for the’ dynamlcally reduced system and the full system match

exactly whlch is not very surprlslng as the modes
/o

correspondlng,to the actual dynamlc system~havevbeen used.

7.

The Guyan reductlon doesn t seem to match: in its

'performance» This is because the dynamlc (st1ffness+1nert1a

controlled) modes have been approxlmated by the statlc modes

(stlffness comfrolled) :whlch addltlonally constraln the

.vsystem The error 1n u51ng the statlc modes for condensatlon‘

is ést1mated ‘in each of the modes, by calculatlng the -

"d1fference between the cr1t1cal speeds u51ng full and

\

statlcally reduced matrlces. The 6th mode (collector modelfj‘

h~has the greatest error (5 02%) The error for the lower”"l

modes ranges from 1 35% to 5 02% for-the f1rst 6 modes_andf

.‘for the higher modes(?th ‘to 10th) between ‘0. 8% to 1.95%. The =
.error reduces 1f more retalned varlables part1c1pate 1“‘£hey“

-.‘fmode UQder con51derat10n

The questlon mlght now arlse, why one should evaluate

the elgenvalues by the reduced system when the more accurate,

R

o S~




. Table 8.5. First 10 critfpa]"speeds'ofvt%e rotor system (Rpm)

- o e am b rm e e s A e e e e e e e R e e S e M et dm e e e e M e e e e e e ===

- - -

............
e e - e A e e e e e e e e S e e e e e A e SP Gm Ar m Ak M 4 N MR e W e M em e e M e e S el mm M e R G W T e e M G e e MR R A e e e e e e e

Genefator ;;3312,17;5 : 0 3312.17 o ;' 3338€§3 - o
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0
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full system results are available? In the presenf study the
‘reason is to compare the two methods of reduction. A more
valid réason is when the eigenValQes at d@fferent speeds

haQé to be found, as in a stability study. Then, the less \\\\
costly réduced systém can be augmented with the changes
occurring in the dynaﬁic ;oefficieﬁts, and critical épeeds

at different running speeds can be found.

At the lower criticals all the turbo-generator spans
aré not activated. Critical speeds can belong to just one or
a few neighbodring spans. The 6th critical excites only the
collector shaft; 2nd aﬁd 3rd just the Lp-Ip spans; 4th and
5th excite the Hp-Ip. Somevspané are totally unegcited iﬁ
certain modes; the‘generator span does not participate in
- any of the 2nd, 3rd, 4th,'5th,'8th, Sth and 10th modeé. Thié
fact is to be borne in‘mind}while'using dynamic reduction
for balancing ahd‘balancé plane sele;tion. For a single span
rotor, the whqle rotor (except for the node points) deflects
at each critical speéd; Whereas, a mﬁlti-span rotor with a
span stif@er than fhebothers, will not allow thé stiff
member to deform in the lower modes}'lf an;unbalancg"exists
ih the étitf span, the response is now ndn—ze;o in the spah
and the lower modes will fail to formhthg deformed éhape;vOn
superposition, | |

Effectiyeness of dynamic reauction of a single_Span'can
fbebdescribed by the number of modes conéide:éd.fFor a o
multispankroﬁorithg number of modes for eééh span have‘to;be

mentioned. The first ten modes of the turbo-generator has
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only two generatior modes.

Synchronous response is studied by placing an unbalance

mr= .01 lb.sec? at node 16 éorresponding to the generator.

As mentioned before, .the dynamic coefficients change with
the running speed. Average values of dynamic coefficients,
. -occuring at 3600 rpm, are used at all speeds to reduce the

computation time. For .more accurate determination of the

response, dynamic coefficients at each of ‘the running speeds
have tq be evaluated and used.

A dynamically reduced matrix of size 19 is used for the

e Gt o A B e B

reepohse study. It is"to be'mentioned here that’reeponse
studies using this matrix w@ll not match exactly with the
results'using.the full matrix;'as-the eigenvalues-did. This
is becagée of the truncation error introduced due to the use
of a few modes. Error is aleo induced if the reduction of a
damped system is obtained Qsing undamped modes. Yet, these
errors -are found,ﬁo be negligible. Guyen reduction using
static hodes might do quiﬁe well fof low speed fesponse.
The.fesponse study with the unbalance in the geeerator,
is\shown'id’FiQUres 8 15 ta 8 17 for three ranges of running
»speeds' at low running speeds, below the operatlng speed and 

'eflnally at the operat1ng speed and above.kThe absc1ssa

denobes the shaft length in inches aad the ordinate ‘gives .

- _ the 'absolute amplitude on a log scale. The locations ef the
R\\WR balance planes, of the turbine rotors, available for trim
balancing a;e»indicated by the lines'Bi,to B6. The trim» _ o

balancing planes of the generator are not shown, assuming

.
..,

e
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that-these_planes are already filled by previousqbalaggingrn

The deformed shape of the total length of. the shaft 'i;
plotted for each running speed ' The horizontal line- at 10’5
1nches is to indicate that amplitudes below are 1neffect1ve
This is not any absolute limit; compared to the largest ;
amplitudes occuring( above-.001") vibration below 10°° is 30
negligible. Naturally, this limit»ihanges nith the magnitude'
of the unbalance acting.

The response is not monotonically increasing with speed

as the mode shapes close to the running speed dominate. The

vgenerator response below the operating speed o£“3600 rpm (at

2600 and 3300 rpm) is higher than when the running speed is
above'the operating speed(at 4000 and 5500 rpm). This is
because the generator is unexcited in the higher modes 8 to
10.

The effect of the generator unbalance on the other
spans is also dependent on the mode shapes Thus. below the
runnlng speed the ¢ritical speeds belong to the generator,
Lpt and Lp2, w1th the Hp and Ip in the ineffective zone.

Note that at 3000rpm, though a hlgher speed, amplltude .

'is less than whenathe shaft is running at 2640, a cr1t1cal

The response on a span due to an unbalance on a

dszerent span (s1m11ar to flex1b111ty/1nfluence (jiif _

coeff1c1ent) is a measure of the coupllng ex1st1ng between

the spans. Thls information is useful to determlne the

-effect1veness of the balanc1ng planes. if the spans are

»
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. . - \ \ .
totaily uncoupled an unQalance on one cannot be corrected
using balance planes on énother. ¢

In the mddal balancing method, the £i£§t step is to run
the éhaft-near the first critical speed <sa§\;E\716ﬁ“%§m)
~and the generator unbalance is éorrected by placing weights
in the available balancing planes. It can be\:;adily seen
from the fespoﬁse at thét speed, Figure 8:15, tﬁgt the
balance_plénes‘B1 to B4 are ineffecti§e. Fog the toFal
balancing of the generator many balance planes’( 15 to 25,
shown in Figure:8k1.) are available. Whereas %rim balancing
‘is done using a limited number of planes, out of whi;h only
a few are effective (B5 and B6 for the present case).

The first few médesvof the span’ with ;hé unbalaﬁce are
to be considered.for,mpdal balancing and not the first few
vsystem modes. Thﬁs, the imbalance in the generator rotor is
'cor;ected at the 1st mode of the generator span (at 1138
rpm, incidentally also the 1st system moae) and next at the
2nd generator mode(ét 3312 rpm, the 7th system mode) Sﬁd not
,at the system 2nd critical(1716 rpm, an‘Lp-Hp mode ). The
effect of the H&p—generator modés and the combined modes,
espeéially‘those near the_running speed, transfér imbalance
fo‘theiother spans,‘caUSing them to réspond; Théée spans are
considered'néxt fdr'baiénéing. |

In ;he influencé coefficient method bélancing}is done
at‘the operéfinglspeed, 3600‘rpm in\this}éase.'From,thé,v
respoﬁsé‘cﬁ;v¢, Figure 8;17, it is seen thét;;again,‘Plangs,

B1 to B4 are ineffective to correct the imbalance in the
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generator.

To have a better understanding of the shaft behavioriat
the runnlng speed and to find the effectlveness of the |
turbine tr1m balance planes to correct Lmbalances in thelr
own spans, the rotor is run abt the operating speed of 3600
rpm with an imbaiance»of mr=.0frlb sec2 in each of the
spans, Hp, Ip;'Lp1, Lpé.and the generator;.one at a time and
the corresponding response is plotted in Figure 8.17.‘

It is seen in Figure 8.18 that the balance planes are

wvery effective for imbalances occuring in their own planes.

°

The p051t10n of the peaks will vary with the location . and .

type Of 1mbalance.

Only for the case of the Spans w1th large imbalance or

with the balance planes filled by.prevlous.balan01ng, as in

the generator, is help from the'neighbourfng span balance

planes taken.-

8.6 Conclusions. o . o —
' : (G

The accurate finite element; the,method.of‘inciudgng."

disks inside theuelement;-fluid,iilm‘bearings and dynamic

reduction have"been applied’to an actu turbOfgéneratorfc

unit. The results match closely w1th thos

reported by Craggs, Ellyln and Pelot[91]
n Dynamlc reductlon is. more accurate than the cla551c

Guyan reductlon, espec1ally for elgenvalue study The

_trlx of size 19 for the turbo rotor con51dered

observed in-situ; .

R



'analyz1ng large rotors in industry.

For a turbo- generator unit with rlgld spans and rlgld

span couplings, a weight in a plane can qurect imbalance in

any other plane on the shaft. On the oghef hand for a
flexible.shaft‘with flexible span couplings, the cofréction
plangs have to'be‘cloée to the planes of uﬁbalénce.,

Tﬁe intricate. refation of the critical speeds, mode
*shapes,*ﬁnbalanfé and span ébupling.is dischsséd using the

‘response curves.;Thus,"optimum’balance planes can be

designed, for a given balancing method. )
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APPENDIX A

i

Appropriate boundary conditions for a non-uniform beam

Assuming a steady state harmonic motion with-a:
F
frequency w, the transient functlonal reduces to a spatial

function. For a non-uniform beam of. length L it 1} g1ven as:

v

L L R 2
J’JZ'I El (¢')2dx+]2'J GKA {(W')2 - 20'e + 0%} dx
. , - _ :
- %— [ p A W dx -,%— I pl ¢2 dx
) ’ Y o B

,WheFf,the telation of shear'slope'w = ¢ LW',»is_used’to
eliminate}¢. For the case of a non-unifgrm hesm;xthe |
’cross—sectionai area,'A(x);'and the mohent"ofzinertia)~l(n),
ate included inside thé integrals. Material constants p, E
and G are assumeF to be constant._Shape factor,‘K, is also

'asssgid to be constant though strlctly speaklng, it changes

~with the cross sectlonal varlatlons.j".

>

To get the approprlate boundary condltlons varlatlon 1s.»

: con51dered of the: dlsplacement varlable w g1ven as: aw
venf(x)”andfof'the'rotatlonal slope, 9 g1ven as: 6¢
EnQCX)L'Va:iétiOn of ghe functlonal is g1ven by e

255
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L - .
3= [ TG0 g+ GkAG (G- 0)(nf - mg)

(<]

2, : .
- pw (A(x) W ny(x) - I(x) ¢ ny(x))]dx = 0
Integratlon by parts, the 1st and 2nd terms of the

equatlon(A1)g1ves:

/ v

] 8,
er(x) ¥lg % - [ (er(x) &
ac iz ] iaz( () ) ngdx
L
GKAC) (G0 - o1 - [ & sk (@ - ) n,ax

_quatlons of motlon are obtalned by substltutlng
eqUat;ons (AZ and (A3) in (A1) and u51ng the theorem and
assumprions of calculus of varlatlons

The apprbprlate boundary condltlons for a non- unlform
Tlmoshenko beam can be obtalned from equatlons (A2) and (A3)
at a boundary %=B where B= 0 or 1. |

The natural. (force ) boundary condltlons are.

- moment EI(B)¢ (B) | | | »
shear force GKA(B)W(B)

-

'_The k1nemat1c (forced dlsplacement) boundary condltlons

&

S e o “\

1. 'rotation‘é(B):

(A1)

(A2)

2. displacement.W(B).. , - 'gynyr - . ; v ” %\;—///f;‘ﬂ.
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Only one boundary condition.frdn each of 1 and 2
conditions can be taken to obtain admissible boundary
eonditiqns..Other combinations will not make the functiona;_
star}enary, | \ » |

The fofﬁoning'riéid boundary conditions can be obtained
at the boundary x=B: . v
1. a free end by prescrlblng zero for

| a. momenr, }(B)¢ (B), o o
b. “ and shear'force[ GKA(B)W(B);~
2. aihingedfen& by*prescribing Zero for
| a. mdment;'I(B)¢f(B), '_ ' *
b: | and,displaeement,'W(B);
3."aifiged end by prescrib}ng zero for
. disp}acement, w{ﬁé, . v
‘b..  and rotation;‘¢(B). I
Formulatxon of TM624 element L ‘ R T

TM624 1mp11es a T1moshenko beam eiément w1th the

)

dlsplacement var1able represented by a. polynomlal of 6 L

constants and the shear varlable by a polynomlal of 2

vy :

‘\vused 1n Gau551an 1nteqratlon

The funct1onal for a steady-state harmonlc motlon can

be obtalned 1n terms of w and%wwrnstead_of wgand 9 b,}*eb;fﬁi_‘j

A

ants. The last d1g1t ,;1ndlcates the number of p01ntsrfg
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\
'

2 [ | ’
R ) j o A Woidx + j Qpl((w')z 2y + ) dx g
0 0 ’
) J EL((W") 2 + 2 Wy + (v')%)dx +fJ 6 K A v2 dx {
0 _ 0 ' S

PO —

]

To get the approximate functional we assume polynomials

for the variables:

W=g

= 2 3, 4 .
., 1 Tt ax +ax® + agx” + a4 aS%SI
v =b0;fb]x | |
o - a

T ey

' - o A .
D : §$‘i' ‘ . . h
- 'The linear shear va¥iable is exact for a constant shear

'strain, and for a lkpear Qariat}on.as.iﬁ a beaW with a
uniformly distributed load. For C, ¢ontinuity a linear
‘funcﬁion is thé»miﬁimum Qrdér_requiréd to represent the
;Sﬂ;ar variable sé that th% fi:st'derivatiQe term in the
ffuﬁétional is‘fepreéented. Similarly, a éhéﬁratfc polyndmia;

for the displacement variable is necessary to_allow‘thev
Y -

,

second derlvatlve to be non zZero.

e T The rotatlonal slope isg glven by W"+ w, and the

. bending moment is EI(W" + ! ). The vectors of polynomiél

'constants { a } and nodal variables { W,} are:




259

X = b ' . ,
L_l LaO a] a2 a3‘a4 a'f'(‘ bO b]_l “/ - »

LW J = LW- W: wh' oy, W ] ' ' v
o L B B R \
where W, W', W' and ¢y are the variables.at nodes i’and

i+1, Let:

[X0] [ ] x xt 38 X 0 0]
D Lo 1 3l ad st g o_[<
el Lo 0z e ol wd o g

1Yo [0 0 0 0 0 0 1 -y

Therefore we cah write: |
Wix) =x0 {al},
Wix)=x1{al,
W''{(x) = X2 {(; b,
v(x) = Y0 {a},
and { We} = [ C ] {‘a:%.:

where,



r
100 0 0
010 0 O
002 0 0
[c1= o000 o0 0
TS B
0 128 32 43
00 2 62 128
ox‘oo 0 0
_
Henqe'
{a} =1 c
Term by term the functional can
integrals: 7
M1={w}{[
v (O
M2={w}T{j
T.
T .

0

0 0 07
0 00
0 0 0
0 10
S 00
50t 0 0
200> 0 0
0 1T @
. /
U] Wl

be approximated by the

0 A[C ] L}qJ [_xqj [c” ] dx} {w }
I[c ]]_x]lel_[ ¢ 4 o)
0\2\

{jpl[c Ly [_yo_[ e ]dx} o)

p ey’ Lqu l [x1] [c” 17 a0 fw}

T L
J;o I[C ] Lqu Lyo] [C” ] dx} g}
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' K& =<{w }T{‘JQ Eire-117 T, . -1
| e o [T [ x2]" | x2] [c7'] ax) {w,)

) -
K2 = T -1,T -1+
) {jm[c VL2l ] 17" a0 o)

0]

. |
3 = fu,) {jsr[c T e e a W)

0

@ = jsx[c il L_y]_[ 1] e ] dx} )

0Tt [t o T o | 1 ﬂ
o j GKALC™ 1" yo | Lyo | [C']] dx} {w_}
| e

(¢}

the matrices ére all 8x8 in sizé, witﬁ the advantage
that they can be directly added to one another.
Computational saving can be achieved by partioning thé
matrices corresponding to the displécement variables and
their derivatives and fhose corgesponding td the shear
‘variable. Addition of the component matrices is obtained by

an assembly routine .in this case.

Let .
- M11 = [ M1+ Mz + M3 + M4 + M5']5 
K11 = [ K1 +'K2 + K3 + K4 + K5 ] :
where ® » A )
Mt = LW DM ] (W) |
K11 = { w3 [ KR]{W}"

Using the rules of matrix differentiation, we obtain the

shomogeneous equations of motion as:

\
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{ [ K] =0 M] } i We}

Now, to be able to prescribe all rlgld boundary condltlons

we need to change the nodal varlables to,an,approprlate set,

W, ¢, Ay and I¢', as described in Chapter 2. A linear

transformation is used to obtain this change.
Formulation of the element TM544

This is also a Timoshenko type elemenf with the
displacement varlable represented by a polynomval with 5
constants, and the rotatlonal slape by a polynomial with 4

constants, with ‘a 4 point Gaussian quadrature is .used for

~integration. The extra constant (since we have 9 polynomial

constants with 8 nodal degrees of freedom per element¥, is
obtained by imposing the oostfaint w"' = 0, This constraint
implies that the piecewise representatlon of shear w1th1n
the element 1s a quadratlc f;nctlon. If the true
dlstrlbutlon is of a hlgher order then more elements are

required for a closer approximatlon.

The displacement and rotational.slope polynomials are:

—a +- 2
W=aj+ax tax® + a3x3 + a4x4
= L 2 ., 3
.. )
From the assumed condition, y''' =0, we get W!''' = "SAEN

o

.and a, =.b3/4.dDefining the vectors of bolynomial‘conStanfs
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and the nodal variables as: . .

- 7 ’
Lx]= Lao a, a, 2, b, blij b}
[NeJ = lN1 Ni'wz‘wé 9 91 ¢, ¢,

The nodal variables selected are either the variébleé_

whose variation is assumed.or their derivatives. Let:

»

ol =11 x 2 2 00 0 4]
f LX) =10 1 ‘2&&3x2_ 000 x3J
gl =1e0 0 0 1 x 4
: ly11.=“L0 00 '~0-“'0* 1 2x Bx |

A transformatlon can be obtalned from the polynomlal,

)

coeff1c1ents to the nodal varlable

Cgl = T

Gt
@t

:\, d
o 1
Hence Y o C
falslc' 1AW}

Where

[y
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- -
10 0 0 000 0
01 0 0 000 0
.o £ 330 0 0 244 |
o1 2038 000 23 &
1= | . » )
00 0 0 1000
- 00 0 0 0100 .
N 00 0 0 1 g 2243
.00 0 0 0 1 20322
- .
.and -
r" .. |
] 0 0 0 o0 0 0 0
o 1 o 0 0. o0 o o
2 122 S y
-3/87 -2/n 3;%;:%_ -1/ 1728 14 <1720 /4
. . 3 2 ,':_‘,“"f’;.- 3 ' ) :
cly . | YA 72 e e 10l e
o 0 0 0 0 . 0 0 0 )
0o o0 o O 0o .1 0. o
0 0 0. 0 -y zm 352
\ SRCV2 S 5 A VIS VO
0 0 0 | -0 2/23_ .1/‘_22 '-2/23 1/22J

[ C" ] is given for ﬁhis elemént, és it is selected for
furthe.fs.tudy'T If elements with varying éfbss~sections are ‘ ¢

‘used the correspondihg [ C‘]_matri# will change with thé ~
eleméné_length 1. The interhai Vatfﬁbles can now be

expressed ih'terméyof the‘nqda}NVa:iables { Wel as:
. ‘ ‘ ’ - .; N P Y N
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W= Lxo) [€7] 0

W= ) e ™)

6 = Lyol [¢1] W)
= vl [c'1 W)

The appro’ximate functional J can now be written as:

4

21 T |
-7{w} [kA] Tw}+—{W}[KB] {W}-—{w}[KC] C8;
L T |

. {w ) [KD] W) - % {w 3T [KE] ) - - {we}T«.fEmJ" Wy
2— {w } [IA] {w }

The component .st"bﬁﬂfness and mass matrices are given as:’

AV

er ¢y )’ i) [c'y ax. |

(kA =£

[KB]'T - é Loeka eyt Lxu Xi] 7'y ax
el = st e T o) (e '] o
[KD]v“= ‘ Laka ey Lvo] I_YOJ e dx
[KE_]'A-»=,-£ GKA [c ] LYoJ lx:J [C ]éixv,_
b e o) Lo e e
V[IA:J’ - ({L o1 [¢71 ol 'L‘Y’o‘J"v[c."f] o
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Integratlon is carrléd out by the four point Gau551an1
quadrature scheme. These four points vary with the element
length 1. Formulatlng with the non-dimensional parameter € =
x/l will enable ‘the use of the element matrices for tapered
elements. All these elements are of the same 51ze, 8x8,
allowlng direct addition, The component matrices can be’
identified: [ MA ] is the translatory inertia matrix{‘[‘IA ]

is the‘rotatory inertia matrix, [ KA ] is the stiffness

matrix due to bending; [‘KB"],'[‘KC ], [ KD ] and [ KE ] are

- the stiffnessamatrices due to shear.

The approxlmate homogeneous equatlons of motlon are.

obtai ned by the first variation of J with respect to { Wo!

aJ n
3“?' = 0
(e}

[[KA] + [KB] - [KC] - [KE] # [KD]] \- w?

&
or [{Ki] - wl[M*] = (0}

Where [ K*] and [ M*] are-the stiffnessfand~mass." .
- v

‘matrlces of the Tlmoshenko beam element, with respect to the

:nodal varlables w w', ¢ and ¢ To obtaln these matrlces in

terms of the chosen varlables (refer to Chapter 2), W, ¢, Aw

and I¢', a llnear relatlon 1s expressed between these two.

LN, 'n.

‘¢

L@

[MA] ' [IAJ] 0y
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Wy ER 0 0 00 o0 0 (w1

w%‘ 0 1 ,']/Ai 0 0 0.0 0 ¢;

Wigl, |0 070 0 100 0 A,

Wi [ =10 00 0 0 1 -1/A;,; 0 1 Lol ‘
s 010 0 000 0 flw,. ksl
o) 0 0 o‘ /1, 0 00 0 %

biy 0o : 0 }O ,!_ 0 0 ,+]¢1+1

%341 L? 00 0 000 ’ ]/Iiik‘ 1+]¢1;l1 3

§ |

' As before 11near tramsformatlon 1s ‘used for obtalnlng

¥

the matrices wltharespect to the new set of var1ab1es. .

- } . o
. P . .
s . o . .
[ § w : . |

. Formulation of TM654

mhls, aga1n, is a*Tlmoshenko elemen} w1th a polynomlal ;

,of 6 coeff1c1enos for the dlsplacement w%rlable and a

'*‘:w‘

polynomlal w1th 5 coeff1c1ents for ‘the rotatxonal slope and

‘uses a4 p01nt Gau551an 1ntegratlon scheme Thls hlgher

%

order element is. Obt&k?éd;QElng the same constralnt as 1n—— -

o

The dlsplacemeﬁt and tqtatlohal slope polynomlals are glven lf

asff



é,-

W= 2 3 -
P a;x + X"+ agx” + a4x4 + a5x5

= L2 :
¢ . bo *+ b}f * byx" 4 b3x3 + b4x4 .

v

Using the constraint conditidn we get, W''' = ¢'".

Differentiating-W and ¢ and using the constraint condition
ve get:

ba, + 2 ;
3 24a4x.f 69a5x = 2b2 + 6b3x + ]2b4x2

F%" cons@%nt coefficients; the two polynomlals are

equal

M

'_.’}L*"J:

Lo 12« 00 XZ 3 4_1_

-

i L.YO_J L_o 001 x x2 x3 g

268

if the coefficients of each power of x are egual “For .
~this case we get: >
: 6a3=2b;
24a,=6bs
, 60as=12b,
e define the veCtors;'w , ‘ |
N 3 4 5
kL%Ov_J’.é]_TxX?oog__}:_g* —
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i

L

L000 071 2x 3x2 4 |

LaO 94 aé bo b] bz b3Vb4_-l

i

Le |

. ] we . ' . | ) ' ' -
A ’,L N Lwg Wi Wi 05 45 0y, %41

~the relation of the‘hodal)variables,and the‘bOIynomial
| chfficients is given by: | '

AP L {'wé};= i 1 (e y

Where

O

~ "

o 0o |
0 0 o0

. .“323 RV

™

(1=

S OO0 0 O o ol
P
o

Py

R : S o : LT RERREETS S

‘The rest of the procedure is the same as 1n the "-f:“'
B formulatlon of TM544 and uses the same transformatlon matr1x BT

to obta1n the mass and st1\fness matr1ces to the requ1red

’ varlables. Calt
pormulstion of sx'alehest velng friginomstiic: fuictitad v

| - o e { ] e
[ 2 - e - :



270

'Functions other'than.algebrai; polynomia%s/éin be used

3

for the variables. Fourier has shown that any periodic

fundtion can be-représentedjby a series of harmonic

\ ”

‘functlons. Let us assume the dlsplacement and the rotatlonal

slopes aS' oo
A
W= a, +a, sin 22 + X . X
0 ] 7 a2 COS' 2 + a3 sin =2
+ a, cos _2__ >+ : 3mx 3x
4 2 4 Sin == + 3¢ COs ==
4 QJ .. 79:-' . .
6w / R B ¢
¢ =b +bsin X yp o TX b éax | " |
2mx” L
™ by cos FE 4 b -sin 8T 4 b Cos X
o 21* 6
051ng the constralnt cohd1t10n W"' =.0, we get the "
o relatlon W"";= ¢"' The coeff1c1ents of . llke harmonlc ;
functlons can be - equated 51nce each 1s orthogonally
. 1ndependent We theb obtain, - TPRLI B el
' T . B ‘ K4




[
[

”,

f: A

~The vectors of pokynomi#l constants and nodal variables are:
. s o o . v :3‘:;.

)

Lad = Loag 5 b b, by by b b |

u
— .
€

L—
_E

Ll = Yy ¥ h I

Varlables ct 1nter1or poxnts are glven as.'.:

w(x) LXQJ{ a }

¢¢(x) -LYOJ{ a } B
. W (x)‘lﬁlj{ a } . *k*$  é;~1'
| {a,} o

¢ Ax)

Whera

PN

ta
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The relation between the nodal variables and the coefficints

of the functions is :

) ) |
] 10 Ehe 2o 2T

Wil o 0o o 1 0o 1 o0 1|l

Wo 1 0 2 0 -4 0 L °

: KT 7T w 0 b, .
%10 0 0 -1 o .ol*_1<b2, Ty
1710 1T 0 1 o 1 o 1l

qb]' .0 0 % 0 | 2m 0 3r . b3 .

| 2 2 4

6| [0 T 0 a1 0 1 o bS’
(AR SR SR ° Il %]

Again the mass and stiffness matrices can be

transformed as before. This element is not‘testéd,
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APPENDIX B

'Static response with\TimoihenkO‘beam
| &

The.elementafy strength'of‘mate:iéls}épproach, using
:the Euler beam theory or the pure bending theory gives
tables for deflectibn, total slope,‘sheaf fgrce and'beﬁding
moment starting from thé d{ffereptial equation M = EiW",
‘obtained from théxﬁhre bending theory, along with the
prescribed end conditions. |

For deep beams the sheér‘deformation also accounts for
thé\loading. The reSulting static response is described by
the following equations: |
Bending moment : M =‘-El¢f.
Shear force : V = GKAY.
Deformation : W =v¢ - v.

For a distributed loading of a rate q per unit length,

the uncoupled'equatiohs in W and ¢ are:
EI¢]” - q

e Wl - g L EL 1

/ 79T GKR

The differential equations of static egquilibrium along
" with the boundary conditions and continuity conditions are
\ solveg to obtain the deflection, slope, bending moment and

273



f o cle

shear force.

The method is illustrgtéd ; r}a simply suppo:ted beam
‘wifh a concentrated load.at gbm "arbitrary distance 'a' from
one end.'Résultéfwithvother bnﬁn;ary conditions and loadings
are also.presented. - _' N |

For, vaetweeh 0 and a , we geﬁ:

T X = 'EI‘ ¢’ ‘
' L2
_ =-Pbx -
=7 v O ,
%9 = GKA(w' - ¢)
Pbx Ebg3
W= GRAT - GEIL.T Xt G
For, x between a'and 1, we get:
Pbx ol v _prdd
T ™ P.(x-a) = EIdX
U eebx?, pd D Pax o
o= 3Fry Y 7T CEL 2
1%9-=‘GKA(W' - ¢)
3 3 2
- . P Pax
w = oPax _ Pbxt - X + CZX + ¢,

The constants are solved.Using the conditions:‘w=0'at

-

X= O -and x=13;- and W and ¢ are contlnuous at x‘—a.

Subst1tut1ng the constants, we’ get the beam parameters whxch

¢
* 3
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\

are given for the case when x is between' o and a:

2

v R B By e 2ty
e é’;ab‘,(z__j ‘p;'z' . Pa .‘(22",;5_2)" A
. 2EIR 2EI 3EIL .2
- GKAy = %Q :
Elo’ . oPbx

*

X

‘when x is between a and ) the parameters are:

i = =Pax Pbx° . Px3__'Pax2
W7 GKAL T ®EIZ ' GET T 28l
Co,Pa 2 @ pa pad
+ a~ Pa_ Pa
3er (2 * 7). Xt g6t
: 2 2 o 2
w - =Pbx Px. Pax. ., Pa ,2 4
Tz TErcE tanm oty
GKAy = 2 ¥

2.Sim§1y‘suppoﬁtééfhith_a-concéntrated‘load P at'the cqntre

1



-t

N

*

</6

B
=

This is a special case of the previous exampla\fith a

1/2; but is solved independently to check.
For. x between 0 and 1/2: f“ - T . -

W= PX xS ‘PL
7 KR TT2ET tTeET X

L 7w 1“‘551' R

AY P/zGK'

1¢'= -Px/2E o - o :

"~ Due to symmetry only cne half of the beam results are showng;

e

3¢_Clémped- Clampngﬁith'conéeﬁtratgd;lbad P'atgthe cenfrefﬁ
For x between 0 and 1/2:
Be/26k + pLy 2/16E1 - POMEEL

PLx/8EI} 2/451

P/ZGKA

, ==
n

S -
[}

Ay

Again due'té SYmmétry only one half of the beam is.
_éonsidered. o ' o
4, Claﬁﬁedf Free»beam wifh;aﬁconéentrated‘lpad ?’at fhé’fégg j

end

3 . B . : . . . L .
. v PR .
. . f AR W
s . . [ K




For - x between 0 and 1:

V.
v

= ..
" '

. px7GKAe- Px3/6EIT4 Pix2/2€1
. Zpx /251 + PLx/EI |

o
H

'n

Ay =P/GK 6 by
CleeL-mE L

°

5.Uniformlyvloéded'simply—eﬁpportea-beam :

, e‘Let Qe be the load per unit 1¥hgth

n For X between 0 and 1/2 we get ehe beam parameters as:

= ’q' 2 LT
W = [& _ ] | 24 St
- . - EI 24 384 _ :

' -Againﬁysymmetry makes descriptidnibf»half"the‘beequompleﬁe.

6. Cantilever beam with end moment. -

A

For'x,betweenvo”end'l,lthe beam parameters are:



A few of the commonly dccuring basic cases have been
‘shown. . PR S - |

"‘,r v, . s
. L s e

Lo -

R
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| aprENDIX C . L

1

~

Ritz method for uniform and tapered simply supported -

‘_‘Tlmoshenko shaft

R o

Assuming a'harmonic motion of frequency, w, for :the s

-

dlsplacement W, and rotatlonal slope, ¢, the kinetic and

‘potentlal energy terms give . tte frequency equatlon

| Ji "fzx(qb"’)Zci;-;_ﬁ'.'j“L GKA - %”X{)de

2 _ o
w L . . L R AN (C])
. {.OVA‘WFQx + (1 - 2h) j o Iv@zdx . ‘
N . o ’0 | "?\ e '
e\/'

Where- h 1s the spln‘to whi?® veloc1ty ratlo to accomodate

N,

|

_dlfferent shaft whi rllng rates The dlsplacement and

e e N

. rotab/onal sl\pe'are given as functlons of the shaft length

o -
" -
o
L N
i

Where each of the«functlons f, and g._are chosen to "

:sat1sfy the spec1f1ed boundary condltlons.‘The assumed

v

: functlons, not be1ng exact, constraln the éyscem ralslng 1ts

RS
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.

»

'.actiticalfspeeas Ritz method iilecgg»the funct1on
coeff1c1ents to m1n1mlze the £ equency, by equatlng to zero

the partlal der1vat1ves of . a>&w1th respect to all the

‘constants ci and di . Equatlng these deﬂ&batlves to zero

-glves llnear equatlons in the deS1red coeff1C1ents and’ the;‘

characterlstlc eqaatlon Denotxng the numerator‘of

-

. equat10n~(C1) by Nr and the denomlnator by Dn, we qanhWtite

2Dn = Nr. Also we obtaln-(,'

S &..a ) , 2 | ) ) . .
" D’" [W f {GKA(w ,) - 2¢W' GKA - mz pA w2}dx] =0
e g .o ‘ v . C : ‘ .
[Tﬁ f fEI ')+ GKA cp I 2 GKA X5 W' - mzp A__1(1--2h)¢2}d'x]»_=; 0
. : * _ . .
Lot v, ,,’ . . , - , N . ’ »;‘: H . L . &,_ . )

D

If\the approprlate varlable functlons,~equatxoh (C2) whic
: satlsfy “the boundary condltlons are known then equetion (C3)

‘can be solved for the correspondlng cr1t1cal speeds

= [
! i

e ‘-H‘H.uhifotm shaft;:ttigonomet;ic,fﬁncfionsh.,

v
‘The variables expressed~e§‘theftrigonOmetric SerieS:'
: W =2Ci s1n D T T S
' e T e
SN
and ¢ =£di cog igi .
(.:‘ ..

L}
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’

satlsfy the h1nged boundary cond1t10ns at x=0 and L Taklng

+
11

~one term for each %arlable we get-

. 'n‘x B ”~ . TTX
W= C] sin — and ¢

i
(=8
—
.0
o
W
il
f

‘-

Subst1tut1ng in equatlon (C3) and s1mpl1fy1ng we get a'set |

of llnear algebralc equatlons 1n c, and d,. NOn tr1v€§17x

solutlons 1n 1% and ¢ are obtalned by equatlng the H?; .

determlnantS»of the-cqeff1c1ents to zero. ','
(GKA%-prL T ST GKA

;_““GKA R EIL’.‘ -+GKAL- i ~2h)w pIL

£

-~ . The characteristic ‘equation is: o .

B N : Ll
o L4 2_

' where .;’ Ek2 ’.eu s rep‘aced by p . When k/L 1s zero, tnedi

R

Euler beam SOlUthn, p = w, is obtalned 3df‘” . »”,7;>,fj

o

H-H linearly tapered element} algebraic functions = L

o~



f; ‘We. w1ll use the L1near&y tapered element deflned by =
Llndberg. for an. element of. lejpth L wlth the two end&nodes -
> at i and 1+1 ThlS eﬁement 1s also descrlbed 1m Chapter 2
. The aret’at an{ po1nt x is A(x) 5 K hd
L Cross sectlonal moment of 1nert1§ I x) = K hd3
The 11nearly varylng dLmen51ons h and d of the shaft are.
- \‘\ 'bl'x)_ 'h. '_{ "1-’-i(v‘1‘>4H)"x'/ﬁIQ"}"' ".'.‘:';.Q',‘.i'i
S e s a0} BT

Where -

041/d

b
T>fmhéfveriatibm_ef the area!and the moment of 1nertla i's glven

. [

hkiéherei'rﬁit;_:‘ - hg?\h-L' o ;fh‘?{ft*:
" L . (LH)+(1D)
I (1 H)(1 D) |
S b= -{ 3(1 D) + (1 H) 1
. b, s 3(1 D)z + 3(1 D)(1-H)



by = -{ (1 D)3+3(1 D)2(1 H) }
'b,. (1-D)? (1 H) L
Trlgonometr1c functlonqgare 1nconven1ent for tapered

shafts as orthogonallty 1s not appllcable, algebralc S
functlons afe more useful Lrt. ‘; f"  ’ ;‘; '; B

. S The hlnged boundary dondltlons, w O and I¢ 46, 3£§
? $fG. satlsfled at the two ends x= O and x= l The 1ntegrals‘are
v?}, calcula;ed as.. f'  5 *f?f: _i ;&/1~' "" f T :";U. ’

N
N

o A =B ke

el

o~

o smwei-a Sacw [
o T e L R I o
e Fae da



: "root correspondlng to the 1th node at x=0; and the constants’gl"

*fﬁﬁare.

“Where Ao and Io are the area and moment of 1nert1a at the

.o

w©, .

_——— . . E ’ -

| ’333333+a,( 166667)+a2( 133333) Lo
K8 -",-‘ 033333+a:( 016667)4-32( 009523), L ; Sl

ijﬂ 033333+a1( 016667)J% ( 013095)fv“”sv

7.K4.

' Il-

003373+a,( 016865)+a2( 001300)_;;15'

’ ‘

"..003373+b 016,865)+bq( 001300)+b (. 991108)’1

'511357
' R :1+b ( 000974) N |
j;o13333+b (. 016667)+bz( 00°524)+b ( 005952)

T

1l

| b, €« 003968)

Substltutxng these values 1n the thz s equatlon and

” °d1fferent1at1ng the characterlstlc equat1on 1s obtalned

el

.thCh 1n the determlnant form 1s.

L R T
| BRA, KT LY - W A Kg??‘ s GKA‘,K3.L5~V

Lo TTeKA K3 ‘j'_GKA K4L + EI L5K6

+_ w2 p I h* K5 L7
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. ] .
L R X .
Substituting 0. 2 w2 ___o P and rearranging
| A, o’ LZ, '
will give: P
%
k.6 k2,
h*EZ([Q)KBKSpg-p4SE(—E)K86KK4

N 2 ko.\ 4 ' * ) ko 42
+ B ( —IV) K8 K6, + h* GK K7 E K5 ( [—-) S

| P
+ 3 6% «8 ,g’ K4 + E( 72 ) K6 GKK7 - (GKK3)2§ =0

L™

o

The solution p is the non-dimensional frequency of the

tapered beam considered. -\b '



