l* l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL.339 {r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au micrctilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
l'université qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
dé..irer, surtout si les pages originales ~nt été dactylogra-
phiies & 'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de quatité infériet:re.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1270, ¢. C-30, et ses amendements subséquents.

Canad3

University of Alberta

A Communication Model for the Software Systeins
Development Process — a Unifying Approach

©)

by

Bogumila Kwiatkowska

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Fall 1991

B8

Bibliothéque nationale
du Canada

National Library
of Canada

Canadian Theses Service

Ottawa, Canada
K1 A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantia! extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
disiribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L'auteur conserve {a propriété du droit d'auteur
qu: protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-70068-8

f+4

Canadi

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Bogumila Kwiatkowska
TITLE OF THESIS: A Communication Model for the Software Systems
Development Process — a Unifying Approach

DEGREE: Master of Science
YEAR THIS DEGREE GRANTED: 1991

Permission is hercby granted to THE UNIVERSITY OF ALBERTA LIBRARY
to reproduce single copies of this thesis and to lend or sell such copies for private,

scholarly or scicentific research purposes only.
The author reserves other publication rights, and neither the thesis not exten-

sive extracts from it may be printed or otherwise reproduced without the author’s

written permission.

(Signed) A ITTITEO 0T
Permanent Address:
6802-110 Street,
Edmonton, Alberta

Date: 0%@6% q/ 199/

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of
“raduate Studies and Research, for acceptance, a thesis entitled A Communica-
ticn Model for the Software Systems Development Process — a Unifying
Approach submitted by Bogumila Kwiatkowska in partial fulfillment of the
requirements for the degree of Masters of Science.

Dr. H. J7 Hoover(Supervisor)

Dr.

Dr.

or. D. G. Fisher

To my husband Andrew and my parents.

iv

Abstract

This thesis concerns itself with modelling the software systems development pro-
cess We propose a model that focuses on the two most important, yet neglected,
aspects of software development: communication and people. We demonstrate that
communication (both formal and informal) between project participants is the maost
important factor in the systems development process and that the quality of software
systems depends on the eflectiveness of the underlying communication system.

A communication-based description provides a realistic and a uniform model for
all development activities. In fact, more than 50 % of software professionals’ time is
spent communicating with other project participants. This communication includes
such complex processes as negotiating, learning, and managing. However, none of
these processes is fully described in existing models.

Furthermore, the communication model provides a uniform, high level deserip-
tion for the integration of different methods and techniques. Because of its gen-
erality (communication uniformly describes all activities in all types of software
projects), it allows for the specification of existing models, for example, waterfall,
spiral, transformational, rapid prototyping, or object-oriented.

The communication model describes the software systems development process
as a network of agents exchanging messages over a set of channels. In this paradigm,
all activities (including the initial development and post-implementation) are rep-
resented as communication processes providing specific services.

Since the communication model is generic, it can be implemented in specific
projects using various methods and techniques. In our work, we describe a stale
and transition based formalism as an implementation example. This formalism,
Communicating Abstract Machines, is based on (1) the Communicating Finite State
Machines, (2) formal specification language for communication protocols (Estelle),
and (3) structural decomposition techniques used in Statecharts. Processes rep-
resented by Communicating Abstract Machines are easily visualized and can be
executed by both people and machines.

Acknowledgements

With sincere gratitude, I wish to thank my supervisor Dr. James Hoover for his
invaluable guidance and encouragement. throughout the research.

vi

Contents

1 Introduction

1.1

1.3

1.4

1.5

1.6

1.7

2.1

e

2.2

2.3

A New Approach to Software Systems Development
1.1.1 Communication Model Proposal
Formal Communication in the Development Process © 0 00000 L.
1.2.1 Oral Communication v
1.2.2 Written Communication
Group Communication oo

1.3.1 Inter-Group Communication
1.3.2 Intra-Group Communication
Types of Communication Processes
1.4.1 Negotiation Process in Systems Developmento oo
1.4.2 Learning Process in Systems Development o 0000 0L

1.4.3 Managing Process in Systems Development00
Practical Aspects of Communication Model00 000
1.5.1 Time Spent on Communication
1.5.2 The Number of Communication Channels
1.5.3 Examples of Project Failures due to the Communication Prob-

lems e
1.5.4 Current Practices in Software Projects
Communication and the Organizational Structure
1.6.1 Communication Principle
Outlineof this Thesis

Models for the Software Systems Development Process

Software Engineering and Systems Analysis and Design
Methods used in Software Engincering and Systems Analysis and
Design o o i
Models for the Software Systems Development Process
2.3.1 Waterfall Model oo oo
232 SpiralModelo
2.3.3 Criticism of the Software Life Cycle

vil

16

16
17
17
¥

I8

2.3.4 Transformational Method oo oo
2.3.5 Object-Oriented Method v o v v oo
2.3.6 Parallel Software Development Methodo o o000
2.4 Software Development Techniques . . o v v v v oo e oo e o
2.4.1 Rapid Prototyping« oo
2.5 A Process Description of the Software Systems Development Process
2.5.1 Software Processo oo e e
2.5.2 Software Process Programming
2.6 Communication Model - a new Paradigm
2.7 Communication - a Unilying Approach
271 Related Fieldso v v v v o v i e
2.7.2 The Communication Model and the Groupware

273 The Communication Model and Organizational Communication !

2.8 A Systematic Approach to Modellingo
2.8.1 Sten 1 - Software Systems Development Process Definition .
2.8.2 Step 2 - Why the Software Systems Development Process

should be modelled? o oo oo

3 Software Systems Development Process Modelling

3.1 Step 3 - Software Systems Development Process Redefined
3.2 Step 4 - Software Systems Development Process and its Model . . .
3.2.1 The Characteristics of the Software Systems Development
Process . v v v v i e e e e e e e e e e e e e e

3.2.2 Components of the Development Process

3.3 Step 5 - A Rigorous Model for the Software Systems Development
ProCeSS . v v o o o e e e e e e e e e e e e e e e e e

3.4 Step 6 - Formal Specification oo oo
3.4.1 Organizational Advantages of the Communication Model . .
3.4.2 Formal Model and an Automated Task Verification

3.5 Step 8 - Implementation of the Communication Model

4 A Rigorous Model For The Software Systems Development Pro-
cess

4.1 A Project Definitiono e
4.2 Participantso e
4.2.1 Participant Definition. o000
4.3 Tasks o e e e e e e e e e e
4.3.1 Task Specification oo
4.3.2 TaskState L e
4.3.3 Task Historyo,
434 Control Tasks v

viii

25
25

39

40
40
40

44 Objects o

44.1 Modules o
4.4.2 Knowledge R-pusitories . . . o000
443 Project Resources oo oo

4.5 A Communication Based Description for the Waterfall Model
4.5.1 A Communication Based Description for the Spiral Model
4.5.2 A Communication Based Description for the Prototyping Ap-

proach L

Modelling of the Systems Development Activities. A Case Study

5.1 Systems Development Activities
5.1.1 The Communication Model Representation for the Develop-
ment Activities L Lo

5.1.2 Structured and Unsiructured Processes .0 000000 L.

5.2 Unstructured Task. A CaseStudy
5.2.1 Process Specificaitono o000 oL
5.2.2 Task 1. Survey of the Current Situation

5.2.3 Task 2. Analysis of the Survey Reports00 ...

Tasks Specification. A Case Study

6.1 Communication e
6.1.1 Asynchronous Communication
6.1.2 Three Addressing Schemas oo
6.1.3 Port-to-Port Addressing Method . . . 0 .0 00000
6.1.4 Client/Server Paradigm
6.2 Message Definitiono oo
6.2.1 Message Related Data oo
6.2.2 Task Related Data
6.2.3 Case Study. Messages for Task 1 oo
6.3 Meta-Task Operations o

Formal Specification of Systems
7.1 Levels and Domains of Specification
7.2 Characteristics of the Specification
7.2.1 Abstract and Linguistic Nature of Specification
7.2.2 Dynamic Nature of Specification
7.2.3 Complex Nature of Specification
7.3 Intertwining of the System Specification and Implementation
7.4 Specification Definition
7.5 Formal Specificationo oo
7.6 Verification and Validation

h
8
T8
T
R0
81

8Y
90
90

8 Communicating Abstract Machines as a Formal Specification for

the Communication Model 91
8.1 Communication Systemn Mod-lling . .« .« o v oo 91
8.2 Simple Finite State Machineo o oo 94

8.2.1 Deterministic Finite State Machine Definition 95

8.2.2 Nondeterministic Finite State Machine 96
8.3 Abstract Machine (Extended Finite State Machine) 96
8.4 Communicating Finite State Machines 97

8.4.1 FExtended State Transition Language (Estelle) 98
8.5 Representation Methods for FSMo oo oo 99
8.6 Communicating Abstract Machines 100
8.7 Specification Example. Subtask 5o 102
8.8 Time Representation and its Functions in the Communication Pro-

tocol Specification L oo 104

8.8.1 Formal Time Specificationo 104

8.8.2 Example. Timing Specification for Subtask 5. 107

9 Conclusions 110
9.1 Contribution of thasthesis oo 110
9.2 Future Work o 0 o o e e 111

A Implementation Examples for the Communication Model 113
A.l Participant Implementationo oo 113

A.1.1 Resources Assigning Procedure 114
A.1.2 Human Resources Assigning Procedure 114
A.1.3 Human Resources Assigning Example 115
A.2 Secrvices, Mechanisms, and Facilitieso 116
A21 SErVICES o o v v i e e e e e e e e e e e e e 117
A.2.2 The Advisory Mechanism Example 117
A.2.3 Reporting Facilities oo oo 118

List of Figures

p—

Communication in the Systems Development Process ..o

Evolution of Models for Software Systems Development Process
The Communication Model and other Fields
Modelling of the Software Systems Development Process

Characteristics of the Software Systems Development Process

Mapping between the Development Process and its Model .00 L.
Three Aspects of the Communication Model
Vertical Expansion of the Process Specification.
Horizontal Expansion of the Process Specification

ATask LifeCycle o o
Communication Model for the Systems Analysis
Knowledge and Modules Repositories

A Cyclein the Spiral Model,
A Commnunication Based Representation for the Spiral Model

A Communication Based Representation for the Prototyping Technique
A Communication Based Representation for the Training Process

Systems Development Activities
Control of the Structured Task Execution.
Control of the Unstructured Task Execution
Client Service Improvement Task
Survey Task Specification,
The Relationships between the Survey Reports

Meta-task Operations

Limitations of simple FSMs and their Solutions
Functional Decomposition of Subtask 5
Communication Abstract Machine describing the behaviour of MG

Communicating Abstract Machine describing the behaviour of PM .

Xi

31
33

12
14
46

1)
66
67
68

94
102
163
103

28
29

A Communicating Abstract Machine with Time-outs

Structure of Services and Mechanisms

xii

Chapter 1

Introduction

The structure of a software product is isomorphic to the structure of the
project which developed it. (Conway’s Law [Conway 68] {Bochm 81])

Despite many advances in computer technoiogy and computing science, the “soft-
ware crisis”, identified in the 1960s, has not disappeared in the last thirty years.
Software projects notoriously overrun their budgets, pass their deadlines, and, most
importantly, fail to meet users’ requirements. Final products are often unrelialkie,
not well documented, and difficult to change. The current softwarce development
methodologies, techniques, and computer-aided tools alleviate some problems, but
they do not address the fundamental issues of the software systems development
process. The software crisis results from the absence of adequate modecls and a lack
of understanding regarding the nature of software systems and the peculiarity of
the development process.

In terms of human history, software systems are a new phenomenon. The de-
velopment of such systems, whether called software engineering, programming-in-
the-large, programming-in-the-many [Fernstrom 89], or systems analysis and design,
is a very young discipline. Yet this discipline is growing exceptionally quickly and
it has begun to affect almost every single aspect of human life. As has happened
with many new branches of knowledge, the development of software systems has
been modelled on other well established and somewhat similar fields. These are
engineering, formal logic, office work, and art. Each of these approaches captures
certain aspects of scftware systems, but none of them represents sufficiently the en-
tire complexity of these systems and their development methods. Unfortunately, all
four approaches have also introduced many misconceptions, and they are purveyors
of two extreme peispectives, claiming that the software system belongs cither to
the art or the engineering domain. This antagonistic “either-or” view has caused a
lengthy battle between the advocates of the engineering and art approach.

Engineering Approach

The enginecring approach regards software systems as physical products and the
development process as an industrial assembly line production. According to this
model, a software system is designed, prototyped, constructed, and distributed; it
then requires only a little maintenance to repair or replace the worn out parts.
However, this analogy does not apply. Firstly, a software system is not a physical
object, at least not in the same sense as a car or a house. Software systems can
exist in many different forms, as for example magnetic fields, electric pulses, or even
holes in a paper. Furthermore, software can be distributed over several physical
locations (it is difficult to imagine a distributed car which still functions normally).
Secondly, software systems do not wear out from use; therefore, they do not require
maintenance. What is, however, expected from a software system is its ability
to adapt to changing requirements and operate in evolving environments. Software
systems must be expandable, reducible (able to be scaled down), and flexible enough
to accommodate frequent changes. Software systems can not be modelled as physical
products; they are dynamic systems providing complex services to people. The
engincering approach also models two valid aspects regarding the development of
software systems: (1) software systems are created by groups of people and (2) the
creation process must be organized.

Observation 1

Software systems are not physical objects in the same sense as a car or a house.
They can be distributed and transformed from one physical form into another, and,
furthermore, they do not wear out through use. They provide services to people, and
since people and their environments change, services must, accordingly, be modelled
by dynamic systems. On the other hand, the creation of software systems involves
a large group of people and requires good organization.

Formal Logic Approach

Since computers are based on logic, the formal logic approach to software systems
is justifiable. A strict mathematical approach looks at the development process as a
transformation from formally defined specification into a corresponding implemen-
tation. This approach provides several good specification and verification methods;
however, it also has its difficulties. The problem lies in the formal specification
of human activities. Since software systems model human reality and a changeable
environment, a formal description of these phenomena is, at best, tedious, if not im-
possible. Attempts to define formally human language have shown that this task is
not easily accomplished. Therefore, taking into consideration the fact that services
required by people change continuously, an entirely formalized specification of a

o

large system is not feasible. Yet, the formal logic approach is useful in specification
and verification of the high risk systems, for example, a nuclear power plant coutrol
system. The formal logic approach has one further difficulty: the transformation
and verification procedures are only as reliable as the supporting proof theory.

Observation 2

The development of software systems should be based on formal techniques. How-
ever, a fully formalized development process for a complex system is not feasible,

Office Work Approach

The office work approach perceives a software system as a collection of docu nents
and the development process itself as a production of code or specification lines. This
tradition dates back to the key-stroke entry methods when everything intended for
the computer was typed. The predominant typing activities and vast araount of
printed paper fostered a resemblance to an office environment. Howeve, software
systems can not be defined only in terms of produced documents. Softw.re systems
require problem finding, creative thinking, and problem solving techniques ([Wein-
berg 71}, [Tracz 79], [Naur 85]). It is irrelevant whether the progrems are typed,
copied and pasted, scanned, or digitized and stored as a picture. It is important,
however, that the problems are defined and solved . On the other hand, the office
work approach has introduced another crucial aspect of the software development
- traceability, which means that the software development must be monitored while
all tasks and their results must be traceable.

Observation 3

The creation of software systems involves many problein finding and problem solving
techniques. These techniques should be traceable.

Art Approach

The artistic approach to the development of software systems is still popular among
many developers. Artistic, in this context, means that the system development
should be based on intuition and experience rather than on rules or formal defi-
nitions. However, software systems are not art works. They are not produced to
create an impression or feeling but to solve a problem with stated requirements.
They are created by cooperating groups of people using limited resources, and they
are required to provide strictly specified services.

The one major similarity between a literary work and a software system is that
they are both communication systems. However, literary works involve human-to-
human communication, but software systems involve two types of communication:
human-to-human and human-computer. Therefore, software systems must use lan-
guages which are understood by both humans and computers.

Observation 4

Software systems are based on both human-to-human and computer-human com-
munication. As a result, they use specification languages understood by humans

and computers.

1.1 A New Approach to Software Systems De-
velopment

None of the four approaches: engineering, formal logic, office work, or art provides an
adequate model for the software systems development process. Although they model
some aspects of the development process, they do not capture the communication
processes underlying software systems and their development.

A valid model for the software systems development process must consider two
realms: (1) modelling of the software systems and (2) modelling of the development
of software systems. These two aspects are interrelated, and they can not be treated
separately ([Conway 68], [Daly 79], [Tully 84]). Thus, the model for the development
process depends on the underlying assumptions about the nature of a software
system. For example, the false assumption that a software system is similar to
a physical object has led to the concept of an assembly-line model for software
production.

Moreover, modelling of software systems and their development must be based
on three assumptions: (1) software systems provide services; (2) software systems
are created and used by people; (3) Software systems are themselves communication
systems, and they are created in a communication process.

Software Systems as Services

Software systems should be modelled as services, which correspond to changing
human needs. People operate in changing social, political, economic, and natu-
ral environments. Moreover, people themselves undergo constant changes. Thus,
both soltware systems and their development process must be designed as dynamic,
fiexible, and expandable processes.

The service oriented model is concerned with the entire development process -
specification of users‘ requirements, construction (acquisition) of the tools to pro-
vide desired services, and the verification of the tools against their specifications.
The word development is understood herc in a broad sense as an ongoing process,
encompassing the entire life of a system. Thus, the service-based model does not
distinguish between the traditional pre- and post-implementation phases. Instead,
it has three components: specification, construction, and verification, all of which
repeat throughout the entire life of the system.

Software Systems Development as a Human Activity

The software systems development process should be modelled as a huma» activity,
specifically as a group activity. Software systems are designed, studied, modified,
and used by people. Even the best designed and formally specified system can
never be used if it does not address the particular users’ needs at a particular
time. A Human centered development process requires an explicit modelling of
the participants: end-users, systems analysts, programmers, technical support stafl,
management, project sponsors, standardization groups, quality assurance groups,
and technical writers. It is paradoxical that while most of the textbooks for systems
analysis and design and software engineering ([Martin 91], [Macro 90], [Powers ct al.
90], [Flaatten et al. 89], [Whitten et al. 89], [Senn 89}, [Amadio 89], [Yourdan 89)],
[Kozar 88]) advocate the users’ involvement in the entire development process, none
of them uses a model which includes an explicit description of the participants. This
fact is even more startling in light of the empirical studies which have shown that the
end-users’ and managers’ satisfaction (the feeling of system ownership, the positive
and open approach to the computerized system, and the extent of system use) is
positively correlated with their participation in the system development. A good
example is Montazemi’s study of 83 small firms [Montazemi 88]. Applying explicitly
stated measurements and statistical calculations, he arrives at the conclusion that
users’ participation is one of the major factors in successful software development.

The users are involved in all development activities: requirements specification,
system analysis review, system design prototyping, acceptance testing, and system
evaluation. They also participate in system modelling, feasibility studies, hardware
and software acquisition, and training. Nevertheless, the currently existing soft-
ware development methods do not model user roles; in fact, they do not describe
any participants. Thus, a realistic model of the development process must include
explicit representation for the roles played by all participants.

Moreover, software systems are not created by personal endeavor nor in groups
whose members do not communicate. On the contrary, software systems are cre-
ated and used by people who constantly communicate. Therefore, the development
process must be modelled as a human activity as well as a communications activity.

These two aspects are complementary to each other — human and specifically group
activity requires communication, while, at the same time, communication requires

human participation.

Software Systems Development as a Communication Process

Effective communication is the single most important factor in all software de-
velopment activitics [Powers et al. 90]. Without good communication between
project participants: users and developers, developers and sponsors, technical sup-
port groups and systems analysts, developers and vendors; it is not possible to
specify user requirements or build and acquire tools to provide specified services
([Bostrom 89)], [Bostrom 88], [Curtis et al. 87], [Guinan and Bostrom 86], [Bostrom
84]). This fact is particularly evident in large projects or systems distributed among
various organizations or geographical locations. It is even more apparent in the de-
velopment of non-traditional (non-transaction based) systems such as decision sup-
port systems, communication support systems, management information systems,
and knowledge based systems. The requirements specifications for these systems
depend essentially on effective communication between the system developers and
the users.

Consequently, explicit representation for participants and communication are the
two most important components of a valid model for the software systems develop-
ment process. In fact, each development activity is a communication activity, and
the development process is itself a complex communication system. Communication
is also the common denominator of software systems, development activities, and

management processes.

1.1.1 Communication Model Proposal

We propose a communication model as a unifying and representative method of
description for the software systems development process. We use the word unifying
in reference to three aspects of the software systems creation: (1) communication can
be used to model both systems and their development process; (2) communication-
based models describe both the specification of the development process and the
management of the actual development process; and (3) communication integrates
the existing software development methods.

1.2 Formal Communication in the Development
Process

Large development projects follow in fact well specified communication procedures
(protocols). They often use rigorous communication procedures and exchange a
vast number of documents to ensure that the design decisions are approved and
authorized. A large part of this communication follows a project organization chart
and is executed using a well defined scenario: the appropriate documents are filled
out, delivered, signed-off, and stored. This documented and well organized commu-
nication is often called formal communication and will be used in this sense in our
model.

We define formal communication as a project related technical communication
that is explicitly described and has documented results. It can result in a change in
the specification or task execution. It can also provide affirmation in a negotiation
process or information in a learning process. Formal communication is therefore
goal-oriented and has a particular plan (scenario) to achieve that goal. The word
formal does not refer to human communication style. In fact, our formally specified
communication tasks can be executed in an informal way. Consequently, our model
describes formal communication, but, at the same time, it does not preclude or ob-
struct the informal interaction among participants. Informal interaction should be
encouraged as a natural human need for social contacts and creative information ex-
change [Weinberg 71]. It is well known that many crucial decisions and design ideas
are the result of an informal interaction, communication initiated freely by the par-
ticipants without formally specified goals and results. Informal communication can
be continued within the development system using electronic mail and computer-
supported conferences or it can be realized in face-to-face mectings. However, the
results of such communication should be documented to preserve the integrity of
the system.

Formal communication has two basic forms: written and oral ([Constantine 90],
[Rettig 90]). Oral communication incorporates many forms, for example, small
group discussions, phone calls, meetings, interviews, presentations, walkthroughs,
and training sessions. Written communication includes memos, status reports,
meeting minutes, bulletins, analysis and design documents, end-users’ and train-
ing manuals.

1.2.1 Oral Communication
Meetings

In well-structured organizations, meetings are carefully scheduled and prepared. A
meeting agenda is prepared in advance and distributed to all participants. It states

the purpose of the meeting and provides a timetable for questions and discussion.
Required documents are attached to the meeting agenda, and they are reviewed by
the future meeting participants (or at least one designated reviewer). The meeting
itself follows the agenda and is documented by a designated participant, the record-
ing sccretary. Some meetings require facilitators; some also have designated critics
(devil’s advocates). After the meeting, the minutes are published and distributed
among participants and interested parties.

Walkthroughs (technical reviews) are a good example of highly structured and
goal-oriented meetings, designed to perform quality review and identify possible er-
rors. Team walkthroughs, perfcrmed accordingly with predefined scenarios, provide
better and faster results. An example of empirical study is the Electronic Meeting
System (EMS), GroupSystems Concept, developed at the University of Arizona and
used by over 33 of IBM’s sites. ([Grohowski et al. 90]). In this experiment, the
estimated time (provided by expert developers) was compared with the actual time
spent on mectings using the electronic meeting system. The average saving per
session was 51 % ([Valacich et al. 91], [Grohowski et al. 90]).

In general, the rigorously described and executed meetings are shorter and more
“subject oriented”; they also save participants’ time since they do not require phys-
ical presence at the same location. Furthermore, they aliow off-line (asynchronous)

communication.

Structured Interviews

An interview with the user is the basic tool used in systems analysis [Saunders 91].
In a structured interview, the interviewer learns about the interviewee (position,
character, biases) and prepares a list of questions organized into a scenario (guide).
The interview is always scheduled. Often, the interviewee is provided with the
st of questions (problem areas) before the interview. The interview itself adheres
to the scenario. The interviewer records the results by making written notes (if
the situation permits). After an interview, the significant points are documented.
Sometimes the post-interview documents have to be authorized.

Rescarch in communication demonstrates that well structured interviews with
clients drastically increase the accuracy of requirements specification and shorten
the required time. Bostrom [Bostrom 89] observed a significant improvement in
requirements quality, after trainiig the users and the developers in effective com-
munication. All project participants were taught th: PRECISION model. This
model was originally developed by neuro-linguists for therapeutic purposes and
later adapted for the business setting.

Group Work Sessions

The traditional method of systems analysis requires a number of individual inter-
views with the end-users. However, in many cases several individual interviews
can be replaced by one group mceting. The group work sessions are conducted by
systems analysts with a group of users (for example: end-users, management, and
project sponsors). By employing this technique, many conflicting opinions can be
resolved during one meeting. The best known group session technique is IBM’s
Joint Application Design (JAD) [Andrews 91].

1.2.2 Written Communication

Written communication incorporates many functionally different documents: pro-
posals, service requests, feasibility studies, requirements statements, design and im-
plementation specification, system and program-level documentation, user manuals,
change requests, conversion specifications, backup and recovery procedures, project
histories, problem logs, status reports, memos, and test plans. These documents
can be divided into two classes: internal and erternal. Internal documents are de-
veloper oriented (technical documents) or user oriented (management oriented and
end-user oriented documents). External documents are prepared for standardiza-
tion, education (case studies), legal, and commercial purposes.

Written communication is important for a number of reasous: (1) it creates a
permanent recording which can be analyzed, organized, and studied “off-line™; (2)
it provides a “parallel” medium as opposed to sequential oral communication; (3) it
uses a written form of language which is far more precise and structured than the
spoken form; and (4) it involves visual media (graphs, charts, drawings).

In practice, system documentation is used for asynchronous communication be-
tween project participants. Since the initial development of a large project takes
from one to three years, many participants never have a chance to communicate in
person and have to rely exclusively on written documentation [Curtis et al. 88].

Developer/user communication extends over time (in some existing systems over
twenty years). Users can perform specific functions long after the system has been
developed and all initial developers have left. Therefore, end-user documentation
and training manuals are the most important documents for presenting and explain-
ing the system to its users.

Singer in his book on written communication for software developers describes
the following rules [Singer 85]:

1. The number of problems in a computer system is inversely proportional to the
quality of the written specification.

2. The greater the number of undocumented changes to a system, the higher the

probability that those changes will be wrong, or that no one will understand
the changes even if they are correct.

3. The more a company relies on meetings and discussions to settle issues without
documenting the results, the more misunderstanding will occur.

The importance of an accurate documentation can not be overstressed. Software
systems are major financial investments and the absence of valid documeniation
translates into major financial losses. Attempts to “recreate” specificaiion from the
programs (reverse engineering) can be beneficial for additional verification and fine
tuning of the system. However, reverse engineering does not replace specification.

Histories of all development activities can be used not only for an internal anal-
ysis and audit but also for external comparisons and education. A well kept history
of the entire development process can serve as valuable educational material (a case
study). Retrospective analysis of successes and failures of complex software systems
will significantly improve the rescarch in software engineering. Therefore, it is un-
fortunate that million-dollar “bugs” are not well described, analyzed, and published
for, at least, educational purposes. In many cases, politics preclude publication of
any details. However, a growing number of researchers and practitioners advocate
recording and publishing of the lists of software problems ([Weinberg 83], [Rettig
90], [Neumann 91}).

The following excerpt, from Jerry Weinberg’s column [Weinberg 83] is an illustra-
tion for Singer's second rule as well as for the high cost of inadequate documentation:

I kecp a confidential list of the world’s most expensive programming
errors. All of the top ten on the current list are maintenance errors.
The top three cost their orgz=ization $ 1,600,000,000, $900,000,000, and
$245,000,000 — and each one involved the change of a single digit in
a previously correct program. In all three cases, the change was “so
trivial” it was instituted casually. A supervisor told a low-level mainte-
nance programmer to change that digit without any written instruction,
no test plan or nobody to read over the change.

1.3 Group Communication

Systems development process requires ongoing and extensive group communica-
tion, which involves a large number of participants, using different languages and
communication patterns (culture, age, and individual differences) ([Kettelhut 91},
[Bostrom 89]). Thus, the negotiation, learning, and managing processes must be
analyzed in conjunction with group dynamics. In general, communication between
project participants can be classified as inter-group and intra-group. The following

10

two subsections describe the issues related to (1) communication between groups
of participants and (2) communication between participants inside a heterogencous

group.
1.3.1 Inter-Group Communication

This subsection provides an example of communication channels and their functions
in the software systems development process. Figure I illustrates an example of the

piibbeabebtoi T rp=Sooo-ooee y (-pz======o- 1
: Legal ' 1 | Standards ! i Hardware |
V| Ag & t ' | Enforcemen{ ' i | Software | |
| visor . Group i 1| Vendors '
.. R sl e

[

l E D c
prTTTiTTTTm e !
: Project 1
1 End Users [5| Management s !
! ponsors '

[}
: Application domain !
1 A
iaain b st]
! Systems Technical i
' Traincrs j— > . !
) Analysts Writers :
[}
! Information (systcm) domain :
___ (]
I '
pTTTTo Lo ToT o nmeTTTRSSS I I T IS
H Application | Technical :
' Programmers Support '
: i
']

Implementation domain
'

Figure 1: Communication in the Systems Development Process

communication between groups of participants. The users, managers, and project
sponsors are categorized as a class of participants using an application domain.
Systems analysts, trainers, and technical writers are associated with the information
(conceptual) model; the application programmers and technical support group are
associated with a particular implementation of the designed system. The other three
groups: vendors, standard enforcement groups, and legal advisors are involved in
commercial (financial), organizational, and legal aspects of the system.

11

Communicatior between the Users and the Systems Analysts

The most important communication takes place between the future users of the
system and its developers (channel A in Figure 1). The result of this compicx and
extensive communication is the users’ requirements specification.

In practice, users communicate with a specialized group of developers - systems
analysts. This group serves as a mediator between the users and the technical group
of developers. The user group and the systems analyst group together create an
application domain based model and an information domain based model. However,
this process encounters two communication problems:

1. The user group and the systems analyst group have different backgrounds,
use different languages, and function in different organizational subcultures
[Guinan and Bostrom 86].

The user group is often heterogeneous. It can include many different indi-
viduals or departments with conflicting requirements. The systems analyst
group can also be heterogeneous, with members varying in background and
experience,

e

‘The problems in user/analyst interactions can be a major source of specification
errors. As it is noted by Salaway in [Salaway 87], these two groups must not
only communicate, but must also acquire knowledge from at least three domains:
application (problem), information system (solution}, and implementation (software
and hardware). With the growing number of computer literate users and simple
to use analysis and design tools (CASE tools), communication between these two
groups is becoming easier. However, for the majority of complex tasks th: systems
analyst remains the central communication channel.

Communication between Systems Analysts and Technical Specialists

Systems analysts, application programmers, and the technical support group have
two perspectives on the same system (channel B in Figure 1). They use different lan-
guages and operate in dissimilar environments. The mapping from the conceptual
model of the system to the physical model is done through communication between
these three groups. Formal specification techniques provide some tools to automate
the physical implementation process (code generators). However, a complex project
still requires considerable human participation and extensive communication.

Communication with the Software and Hardware Vendors

Since many components of large systems are built from the ready made software
products {with some neccessary adjustments), the software vendors are important

project participants. Efficient communication between the user representative group
(acquisition committee) and the vendors (channel C in Figure 1) is critical to a
project’s success. The product acquisition task involves gathering and processing
information about available hardware and software products, their cost, and war-
ranty policies. It may also require negotiation with the vendor as well as legal
advice.

Communication with the Standard Enforcement Groups

Usually, quality assurance is conducted by an external organization - - a third party,
independent from the users and the system developers. However, the quality assur-
ance or certification group must com. aunicate with project management and, often,
also with the systems analysts (channel D in Figure 1).

Verification and certification procedures depend on the type of enforced stan-
dards. Generally, standards can be classified into two groups: application oriented
standards and systuin development standards.

Application oriented standards are the particular industrial policies, for example:
standards for communication protocols. Industrial standards are usually verified
by independent agencies and government committees. For example, the conputer
networks protocols are certified by the International Standards Organization (150)
[Tanenbaum 88].

The analysis, design, and implementation oriented standards are the methodolo-
gies, methods, models, and techniques accepted as obligatory by specific projects or
entire organizations. These standards are verified by a special group of participants
or by an external quality assurance group (Certification Agency).

1.3.2 Intra-Group Communication

It should be emphasized that the majority of groups are themselves heterogencous.
The user groups {end-users, management, project sponsors) are often incongruous
and their requirements are incompatible. The development tean.. often consist of a
multiplicity of private consulting companies, individual contractors, and government
employees. Since participants belong to different groups (many groups at the same
time) their loyalties can be divided [Umstot 87). The conflicting interests of the
participants and their cross-cultural differences can only be consolidated by clearly
and precisely specified tasks.

1.4 Types of Communication Processes

Communication is the basis for three types of processes: negotiation, learning, and
managing.

13

1.4.1 Negotiation Process in Systems Development

The process of negotiation is the most important activity in the development of
the software systems. It is a sequence of decisions to accommodate the most user
requirements using limited budget and in limited time. Since systems are created by
large and often diversified groups of people for other large groups, the specification
of requirements and the mapping into the information model requires many com-
promises. Whereas negotiation has been studied by disciplines such as management
[Boehm and Ross 89], psychology [Umstot 87}, and linguistics (discourse analysis)
[Stubbs 83]; little has been done in studying negotiation in the context of a system
development. Recently, Robinson [Robinson 90] presented studies done on negoti-
ation behaviour during requirements specification. Robinson pointed out that the
negotiations, their results, and the rationalization behind the decisions should be
fully recorded. Thus when the particular specification must be changed, the records
(histories) of previous negotiations and decisions can be analyzed.

Negotiation and conflict situations exist not only in the specification phase,
they are a natural consequence of the diversity of groups and people participating
in the system development. The following examples illustrates a typical situation in
the contract based systems, when most private companies are natural competitors.
The situation involves two private companies A and B with conflicting interests.
Company A is handing over a project to company B. However, if company B
appears to be incapable of taking over the project, company A will stay and company
B will lose the project. Obviously, these companies have conflictirg interests and
their employees are not willing to cooperate. The division of work between company
A and B must always be negotiated and fully documented. Therefore, effective task
executions can be achieved only by rigorously specified communication protocols
imposed by an independent group.

1.4.2 Learning Process in Systems Development

The term learning is used here in a very broad sense — as a process involving acqui-
sition and dissemination of knowledge or training processes (acquisition of skills).
The software systems development process brings together many groups of people
with very different backgrounds.

Understanding and communication between these groups are difficult since each
group uses a different model of the system: application domain model, information
domain model, and implementation model [Wand and Weber 89]. These three
models are illustrated in Figure 1.

The first model is built by application specialists (for example: specialists from
medicine, accounting, or physics), with the help of system specialists (generalists),
in the process of requirements specification.

14

The second model is constructed by mapping from the application model to the
information domain. It involves both application specialists and systems analysts.
However, it is the systems analysts (information specialists) domain.

The last model is built by the technical group (application programmers and
technical support group) by mapping the system model (design specification) into
a particular physical system. Thus, the implementation model is realized as an
artifact — a collection of programs and related documents.

Each mapping requires knowledge from more than one domain. Therefore, the
domain specific knowledge must be transferred between groups. This transfer re-
quires both knowledge description (capturing) and knowledge acquisition (lcarning).

Learning is one of the most important and most time consuming activities ([Cur-
tis et al. 87], [Koubek et al. 89]). Curtis expresses this in the following statement:
“Much of what occurs during design is not designing, but the learning required in
order to design successfully.” However, as important and as time and resource con-
suming as it is, learning is excluded from the existing systems development models.

1.4.3 Managing Process in Systems Development

The managing process involves planning, scheduling, staffing, and controlling of the
development activities. It requires a well structured and well defined communication
network and fast access to vast amounts of i=" mation.

Development activities are executed within a specified time frame while using
limited resources. Thus, efficient management and effective resource utilization are
important in deciding about the success of software projects.

1.5 Practical Aspects of Comnmunication Model

1.5.1 Time Spent on Communication

At least half of a projects’ development time is spent on communication. Studies
of programmers and other software professionals show that they spend more than
50 % of their time on job related communication. Bell Laboratories’ study of 70
programmers [Boehm 81] indicated that 32 % of tie programmer’s time is spent
on job related communication, 6 % on training, 16 % on rezding, while only 13 %
is spent on writing programs. IBM User’s Study Group [McCue 78] reported that
30 % of programmer time is spent working alone and 70 % is spent working in
groups. Sullivan [Sullivan 88] studied software professionals and reported that the
amount of time spent on human interactions ranged from 32 % to 93 % with a mean
of 56 %. Grohowski, McGoff, Vogel, Martz, and Nunamaker [Grohowski et al. 90]

stated that business managers spend from 35 % to 70 % of their time in meetings
- these numbers do not include communication outside the meetings.

1.5.2 The Number of Communication Channels

The number of communication channels is proportional to the number of project
participants. Theoretically, each participant can communicate with all other par-
ticipants. Assuming that the class of participants includes practically everybody
who in some way (for some time) is involved in the development process (project
sponsors, end-users, management, systems analysts, programmers, technical sup-
port, standard enforcement group, system auditors, independent consultants, hard-
ware/software vendors, technical writers, trainers), the number of participants, even
for small projects, is considerable. A project with just ten participants has ninety
one-way channels.

Our communication model provides a tool to describe, analyze, and modify
communication patterns. In this process, unnecessary communication channels can
be eliminated and communication bottlenecks can be identified.

1.5.3 Examples of Project Failures due to the Communi-
cation Problems

Projects fail usually not because of technical difficulties but because of management
and interpersonal problems. They fail in most cases due to ineffective communica-
tion. Interestingly, the first major failure is illustrated by the biblical story recording
the unfinished construction of the Tower of Babel (Gen. 11:1-9). The project had
sufficient resources and a great plan, but it failed due to a single problem - the
builders had begun to speak different languages and communication between them
was thus impossible. The history of humankind is filled with many historical events
where miscommunication played the major role. The history of software system de-
velopment is far shorter (at most 30 years); however, it has already recorded many
system failures and mistakes due to communication problems. Many cases can be
found in the computer literature; however, for obvious reasons they do not provide
names or places. To illustrate the point, we will present a case described by Rettig
[Rettig 90). A telephone billing system had not been charging new customers for
several months. The program, which calculated installation charges, had not been
installed. Since, obviously, the customers did not complain, the free installation was
in place for several months. The problem was identified as a lack of documented
procedure for the system installation (planning and coordination was by word of
mouth) and a lack of communication (the technician, during installation, found that
one program was missing, but the technician ‘patched around’ the problem without
notifying anybody).

16

1.5.4 Current Practices in Software Projects

In practice, large projects use computer supported communication tools (electronic
mail, electronic bulletin board -~ News, network user groups) for interactions be-
tween people. They also use some forms of communication specifications (organi-
zational charts, company policies, informal guidelines for meetings, user interviews,
and team walkthroughs) and document all major communication activities (memos,
meeting minutes, walkthrough reports). Our communication model incorporates ex-
isting practices and provides tools for an explicit description of the communication
procedures.

The existing technology, especially computer networks, support many commu-
nication oriented tools: electronic mail, interest groups, bulletin boards, computer
supported conferences {groupware). These tools are often used, especially in aca-
demic and research environments (UNIX system). Andrew Message System (AMS),
described by Borenstein [Borenstein 91], is an example of a large scale mail and
bulletin board system. Many other communication tools (for example: Professional
Office System PROFS) are used by governmental organizations and private compa-
nies. However, communication tools, though used in development related activitics,
are not formally described and are not included in the software development process
models.

1.6 Communication and the Organizational Struc-
ture

It has been shown by many researchers and practitioners ([Conway 68], [Weinberg
71], [Boehm 81]) that there is a homomorphism from the structural organization
of the system to the structural organization of its designers. Thus a hierarchically
organized team of programmers tends to produce a hierarchy of programs (one
main program or procedure which calls a number of subprograms or subprocedures)
[Weinberg 71]. Today’s systems are far more complex than the traditional file and
transaction based batch systems; they are distributed, concurrent, and complex in
their functions. We can not use the traditional hierarchical structure to produce new
systems. This was expressed by Conway [Conway 68]: “...organizations which design
systems are constrained to produce designs which are copies of the communication
structures of these organizations.” Since the organizational structure determines the
communication channels, the software systems development process must provide
a communication network, which is flat (not hierarchical) and flexible. Therefore,
project participants must be viewed as role players (or actors) for the particular
task, who can change their roles from task to task, providing that they have the
requisite qualifications.

17

Our communication model describes a network of communicating participants,
who can change roles from task to task, and who have rapid access to project
information. This open communication system changes the organizational structure
of a development team to a flat and flexible network.

1.6.1 Communication Principle

We claim that communication is the most important aspect of the software systems
development and that the quality of the software system depends on the effective-
ness of the underlying communication system. Therefore, we have formulated the

following principle:

The quality of a software product depends upon the quality (effective-
ness) of the communication system underlying the project development.

1.7 Owutline of this Thesis

This thesis is organized as follows, Chapter 1 discusses the importance of commu-
nication in the software systems deveiopment process. It describes different types
of communication processes and their roles in the systems development.

Chapter 2 provides an overview of the methods and models used in software
engineering and systems analysis and design. It describes the SDLC models: water-
fall, spiral, transformational, and object-oriented. Section 4 discusses the software
process and software process programming. Section 5 introduces the communication
model. The last two sections define the software systems development process and
provide eight steps to the systematic modelling of the development process. They
also model the software systems development process following Step 1 and 2.

Chapter 3 follows the remaining six modelling steps.

Chapter 4 is a refinement of Step 5 and it describes in detail a rigorous ap-
proach to the communication model. It specifies the three primary components:
participants, processes, and objects. Objects are divided into modules, knowledge
repositories, and resources. Section 7 of Chapter 4 specifies the waterfall, spiral,
and evolutionary prototyping models using the communication paradigm. Thus, it
demonstrates that the communication model is a high level and universal specifica-
tion method.

Chapters 5 and 6 describe a case study in terms of structured and unstructured
activities. Chapter 5 defines the task specification, whereas Chapter & provides
more detailed specification for subtasks.

Chapter 7 discusses the general issues of formal specification: different levels
and domains, abstraction, complexity, and multiple functions. This chapter serves
as an introduction to Chapter 8, which describes the formalism of Communicating

18

Abstract Machines. Chapter 8 is a refinement of Step 6 - the formalization of the

model.

Chapter 9 presents the conclusions: the contributions of our communication
model to software engineering and future work.

Appendix A.1 includes the implementation details for the specification of a par-
ticipant and a resource assignment procedure. Appendix A.2 describes specific
services and mechanisms which can be implemented as a part of the Software En-

gineering Environments.

19

Chapter 2

Models for the Software Systems
Development Process

The problem of making computers useful to people as communications
and information devices is not an engineering problem, it’s a design

problem. (M. Kapor)

2.1 Software Engineering and Systems Analysis
and Design

Software engineering and systems analysis and design are relatively young disci-
plines and their subjects are still not well defined. Furthermore, some authors use
the terms programming-in-the-small, programming-in-the-large, and programming-
in-many referring to three levels of software: a single unit level (program), a system
level, and an organizational level. However, there is no one-to-one mapping between
these three types of programming and the two more traditional disciplines: software
engineering and systems analysis and design. Defining such a mapping is difficult
because software systems and their development have not only technical aspects,
but also managerial, economic, social, psychological, and environmental aspects.
Thus, they can be defined from many perspectives. The definition of software en-
gineering varies between authors. To illustrate that, we quote three definitions of
software engineering. The first one was given by Macro in [Macro 90]:

Software engineering is the establishment and use of sound engineering
and good management practice, and the evolution of applicable tools
and methods, and their use as appropriate, in order to obtain — within
known but adequate resources limitations — software that is of high
quality in an explicitly defined sense.

Humphrey in [Humphrey 89] gives the following definition:

Software engineering refers to the disciplined application of engineering,
scientific, and mathematical principles and methods to the economical
production of quality software.

Both definitions view software development as a well-organized and scientifically
based activity. However, they describe software development as a production systen.
Important as it is, the production of software by itself is not the goal of the software
systems development process. Rather, the goal is to provide adequate services to
users. This notion is implied by Boehm’s definition [Boehm 81]:

Software engineering is the application of science and mathematics by
which the capabilities of computer equipment are made useful to man
via computer programs, procedures, and associated documentation.

This definition contains two key points. First, the subject of software engincering
is not only computer programs, but also the related documentation, operational
procedures, and manuals. Second, the created software system must be “useful to
man.” Therefore, the social, psychological, economic, and even political implications
of the software systems are a part of the software engincering.

Systems analysis and design has a longer tradition than software engincering and
it is concerned with various systems, not only software systems. It includes the study
of a system and its problems, the definition of its requirements, and the evaluation
of alternative solutions. As a result, systems analysis and design concerns many
activities that are not a part of software engineering, such as feasibility studies,
acquisition of software and hardware, acceptance testing, user training, and data
conversion.

On the other hand, these two disciplines are interrelated. There is a growing
tendency to extend software engineering to include all aspects of the software de-
velopment process. This extension leads software engineering into the domain of
systems analysis and design. Consequently, our communication model unifies both
approaches.

The following three sections describe the software development methods, models,
and techniques. The distinction between them is important. A method describes a
high level approach to the systems development process and can use many models
and many techniques. Whereas, a technique is based on specific tools and can be
used with many methods.

21

2.2 Methods used in Software Engineering and
Systems Analysis and Design

Although many authors refer to methods as methodologies, for example Clark in
[Clark 90], we use the term methods as defined by Jackson and Dowson ([Jackson

87), [Dowson 86]}).
Three methods prevail in systems analysis and design and software engineering:

e Functional Decomposilion
o Jackson System Design (JSD) [Jackson 87]
o Object-Oriented Decomposition [Henderson-Sellers and Edwards 90].

All three are product-oriented; their progress is measured by the delivery of appro-
priate documents. The differences between these methods are based on different
approaches to the system specification: (1) systems can be described primarily by
processes (Functional Decomposition) or objects (JSD, Object-Oriented); (2) sys-
tems can be designed top-down (Functional Decomposition, Object-Oriented) or
bottom-up (JSD).

The top-down analysis and design is built around a hierarchical structure of the
system. In fact, few systems display such well structured organization. As Meyer
[Meyer 88] points out: “Real systems have no top.” However, Hatley and Pirb-
hai [Hatley and Pirbhai 97) claim that the systems in general exhibit hierarchical
structure: “The models create a hierarchical layering of system specification, con-
sistent with the hierarchical nature of systems in general.” In practice, the system
developers use both methods top-down and bottom-up simultaneously.

Functional Decomposition

Functional decomposition is a top-down analysis and design method. The term
functional means that the system is defined as a set of interrelated functions. The
data structures are secondary in this method. Functional decomposition works well
with systems that have a simple hierarchical structure, and which are implemented
using traditional procedural languages. This method is widely accepted by the
industry and it is the basis for Structured Analysis and Structured Design (SA/SD).
However, functional decomposition does not accommodate evolutionary changes,
nor the iterative nature of the development process. Neither does it support the
concepts of prototyping and reusable modules. It is also not very suitable for the
analysis and design of distributed, reactive, and time-dependent systems.

22

Functional Decomposition Revised

Some structured methods, for example the Yourdon Structured Method (YSM)
[Bowles 90], were significantly changed in the 1980s to expand beyond the func-
tional specification. YSM uses event partitioning and state transition diagrams to
represent control and timing,.

Jackson System Development (JSD) Method

JSD is a middle ground between the process-driven methods aud object-oriented
methods. In JSD, the development process starts from the modelling of the real
system (in application domain). The system functions are described alter this model
is created. Thus, JSD is different from the functional decomposition method, which
starts from the specification of system functions.

Whereas the JSD method has two parts: specification development and imple-
mentation development, the traditional functional decomposition has three stages:
analysis, design, and implementation. In Jackson’s method, the traditional design
phase is a part of the implementation.

JSD does not describe 21l development activities. For example, it excludes fea-
sibility studies, project selection, hardware and software acquisition, project man-
agement, system acceptance, and user training.

Object-Oriented Decomposition

In the Object-Oriented paradigm ([Chen and Henderson-Sellers 90] [Meyer 88]), a
system is described as a collection of object classes, which encapsulate both the data
structure and the permitted operations. Objects communicate by sending messages.
The implementation details of the objects and their procedures arc hidden, while
only the offered services are visible. Objects operate, therefore, on the client/scrver
model, in which the client sends a request to an other object (server). The server
executes an operation (or recursively makes a request for service) and sends back
the results to the client.

Object-oriented analysis and design focuses more on data abstraction: than on
the procedural character of the system. One of the assumptions of the object-
oriented design is that objects are changing slower than system functions; therefore,
the object based systems require fewer changes than the systems designed around
functions.

The object-oriented analysis, design, and implementation is fully beneficial when
all three stages use the object-oriented model and an object-oriented programming
language. Mixing different methods, for example: functional decomposition anal-
ysis, object-oriented design, and an implementation in traditional procedural lan-
guage (COBOL) leads to complicated mappings between different paradigms.

23

2.3 Models for the Software Systems Develop-
ment Process

Early models of the Software Development Life Cycle focused on the software prod-
uct and its evolution through the phases. The first model, the waterfall model, was
created to organize project activities. However, its strictly linear structure was not
sufficient to model the natural iteration in development process. Later, a risk-driven
model, spiral model, and new methods: transformational, object-oriented, and par-
allel were developed. On the other hand, new technologies and new applications
gave rise to rapid protolyping, ezploratory programming, and system assembly from

reusable components.

2.3.1 Waterfall Model

The firs. model of the Software Development Life Cycle was strictly linear. The
sequence of actions proposed by Royce in 1970 was widely accepted and became
known as a waterfall model. However, it was soon discovered that the software de-
velopment is incremental and iterative, and, as a result, the the traditional waterfall
model was enhanced to include the iteration procedure.

The waterfall model consists of a sequence of phases. The number and names
of them vary from author to author. Sommerville [Sommerville 89] includes five
phases: requirements analysis and definition, system and software design, imple-
mentation and unit testing, system testing, and maintenance. Martin [Martin 90]
introduces six stages: problem investigation, requirements analysis, feasibility anal-
ysis, design, construction, and changeover. In Martin’s model maintenance (system
support) does not exist. Whitten [Whitten et al 89] describes nine phases: survey,
study, definition, selection, design, acquisition, construction, delivery, and system
support. The system support phase corresponds to the traditional maintenance and
improvement phase.

2.3.2 Spiral Model

"The Spiral Model, introduced by Boehm in [Boehm 88], uses a risk-driven approach.
It is based on the concept that the same sequence of steps is repeated many times
throughout the system life cycle. Boehm describes five steps: (1) determine the
objectives of the current cycle; (2) specify the alternative means of implementing the
solutions; (3) evaluate alternatives, identify and resolve risks (for example, budget
and schedule); (4) develop a solution and verify it; (5) prepare plans for the next

cycle.
The main advantage of the spiral model is that it can be utilized by other

models by adding the sequence of five steps to each phase. The risk-driven model
can be used throughout the entire system life cycle; however, its results rely on the
experience of the project developers to evaluate the risk factors.

2.3.3 Criticism of the Software Life Cycle

A number of articles have criticized the linear nature of the waterfall model and
the concept of the software life cycle. The titles of some are self-explanatory, for
example “Stop the Life-Cycle, I Want to Get off” [Gladden #2] or “Life Cycle
Concept Considered Harmful” [McCracken and Jackson 82].

The criticism focused on three issues:

1. Life-Cycle phases are not applicable to all software projects.

2. Life-Cycle ignores the most important part of the development: commnnica-
tion between end-users and systems analysts.

3. All systems evolve, therefore we can not “frecze” the requirements. Further-
more, for most systems, we can not divide the system life cycle into initial
development and a post-implementation phase, maintenance.

As a solution to this problems authors suggest the rapid-prototyping approach,
which provides a working model of the system early in the process. Also, by using
prototypes users can visualize and “play” with the system, which helps to formulate
the system requirements.

2.3.4 Transformational Method

The transformational method is also called the formal transformations approach
[Sommerville 89], transform model [Bochm 88] and automated software synthesis
[Davis et al. 88]. It involves developing a formal system specification and then
automatically transforming this specification into an operational code.

The transformational model allows for easier modification of the system since
only the formal specification has to be modified. However, this approach is difficult
to implement for large systems composed of subsystems using different paradigms
and different programming languages.

2.3.5 Object-Oriented Method

A fountain model, described by Henderson-Sellers and Edwards in [Henderson-
Sellers and Edwards 90], has six steps:

1. Identify the objects, their attributes, and the services they provide.

25

9. Establish interacticn between objects (services required and services rendered).
3. Design detailed descriptions of objects.

4. Construct the library of objects.

5. Determine inheritance between classes of objects.

6. Construct the classes by aggregation and generalization.

The fountain model reflects the overlapping between steps and the iterative nature
of the development process. However, it concentrates on the description of the
project domain (application); not on the actual development processes.

2.3.6 Parallel Software Development Method

Conventional models (waterfall, spiral, fountain) have a single thread of activities,
but some classes of systems, specifically high-risk systems, are developed in parallel
by many tecams. Therefore, the following parallel methods were introduced: Dual
development [Ramamoorthy 81], N-version programming [Avizienis 85], and N-fold
inspection [Martin and Tsai 90].

These methods allow for reduplication of one or more parts of the software
development process. The dual development approach uses two teams working in-
dependently through each phase and consulting after each phase. In N-version
programming, the requirements phase and the specification phase is done by one
team, but the design and coding phase is done by N teams working in parallel.
N-jold inspection uses N teams for the specification of users’ requirements (revision
of the requirements), while all the other phases are carried out by one team only.

2.4 Software Development Techniques

2.4.1 Rapid Prototyping

The rapid prototyping approach is based on a technique and a supporting envi-
ronment which allows for building of rough models of the system. Prototyping
facilitates understanding and the communication between users and developers and
provides an iterative method of systems development. This approach includes sev-
eral classes, for example, Davis [Davis et al. 88] describes the following three:

1. Rapid throwaway prototyping, in which a tentative and partial implementa-
tion is developed during the requirements specification phase. This approach
is mainly used to clariiy users’ needs and facilitate communication between

systems analysts and users.

26

2. Incremental development is a process in which the final implementation is
constructed in phases and where a new functionality is added in each step.
Incremental development assumes that most of the requirements are known
at the beginning of the process, and implementation is performed in phases.

3. Evolutionary prolotyping crcates an implementation of known requirements
and gradually adds new requirements, which are often discovered while using
the initial prototype. In evoluiivuary prototyping, the requirements evolve in
parallel with the prototype.

Since all projects use some form of prototyping, we view rapid prototyping as a
technique rather than as a method. In practice, large projects are developed using
traditional phasing approach mixed with the prototyping techniques. For example,
Burns and Dennis [Berns and Dennis 85] describe a method combining waterfall
model and rapid prototyping.

Exploratory Programming Technique

Ezploratory programming is to some extent similar to evolutionary protolyping, in
which requirements are specified along with the development of prototypes. Fvolu-
tionary prototyping creates the specification, whereas in the exploratory program-
ming the implemented system itself is the specification. This technique is used
in a specific class of systems, for example, Al systems [Sommerville 89], in which
requiremnents are difficult to specify.

System assembly from reusable components

The reusable approach attempts to build a new system from the existing modules
with minimal changes. The major emphasis is on production, description, and
storage of the reusable modules. The reused modules are not only the code, but
also specification and design modules [Goldberg 90).

2.5 A Process Description of the Software Sys-
tems Development Process

The traditional methods, models, and techniques capture only some aspects of the
software systems development process. They describe the state of the documents (in
the document-driven approach), the state of the code (in the code-driver: approach),
or the risk involved in the code production (in the risk-driven approach). However,

27

they fail to describe the process itself. The need to define software systems develop-
ment as a process was noted in the early 1980’s. The First Workshop on Software
Process in 1984 introduced the terin software process [Balzer and Cheatham 84].

2.5.1 Software Process

There is no agreement between researchers on what should be included in the soft-
ware process. Opinion varies from the very specific programming-in-the-small ap-
proach, through the broader programming-in-the-large (system approach), to the
programming-in-the-many, which encompasses the managerial aspects of systems
development. Moreover, five different terms are used to describe software systems
development process: (1) software process (the annual international workshops),
(2) Software Engineering Process [Humphrey 89], (3) Systems Development Process
[Bostrom 89), (4) Systems Engineering Process [Humphrey 89], and (5) Information
Systems Development (ISD) [Hirschheim and Klein 89]. The definitions of these
terms are difficult to establish and there is no agreement as to which term should
be used in which context. Therefore, we have decided to use a seif-explanatory
term: software systems development process. This process includes all development
activities throughout the entire system existence.

2.5.2 Software Process Programming

Osterweil [Osterweil 87) stated in his seminal article that “Software Processes are
Software Too” and consequently introduced the concept of process programming.
Osterweil claimed that software development can be described algorithmically. His
article started a lengthly discussion regarding process programming, its subject,
models, and possible implementations. The various opinions can be divided into
three groups: (1) process programming is realistic and its main problem is to find an
adequate programming language [Katayama 89] [Kellner 89]; (2) process program-
ming requires more modelling and empirical studies before it can be automated
([Notkin 89], [Curtis at al. 87]); (3) process programming is impossible, since it
requires too much precision and it attempts to describe a non-deterministic process
([Lel:man 87], [Lehman 89]).

For the last four years, researchers have tried many different approaches, models,
and languages. The following list is not exhaustive; however, it demonstrates the

diversity of frameworks:
1. Functional approach based on LISP [MacLean 89

2. Algebraic approach [Katayama 89] [Nakagawa and Futatsugi 90)

3. Logic based approach, based on extended Prolog [Ohiki and Ohimizu 89] and
fuzzy logic [Levary and Lin 91]

4. Process model based on states and events concept: hierarchical communi-
cating sequential tasks (CSP like description [Hoare 85]) [Ashok et al. 89],
State Change Architecture (SCA) [Phillips 89], and statechails (STATEM-
ATE) [Kellner 89]

5. Object Oriented approach based on Process Modelling Language [Roberts 89]
6. Knowledge representation framework [Borgida et al. 87]

7. Dialogic framework based on dialogue logic [Finkelstein et al. 89], [Finkelstein
and Fuks 89]

8. Contractual model, ISTAR system [Lehman 85] [Dixon 88]

9. Behavioral models: behavioral approach ([Curtis 89}, [Curtis et al. 88]) and
Software Process Model (SPM) [Williams 88).

The functional approach models software process as a set of operations and rules.
Similarly, the algebraic approach decomposes the process into activitics, which are
characterized by their inputs and outputs. The Hierarchical and Functional Soft-vare
Process (HFSP) model represents complex activities as a hicrarchical structure and
describes them using mathematical functions.

In the logic based approach, processes are composed of subprocesses and are
defined as predicates.

The states and events based models differ in their implementation. The hieiar-
chical communicating sequential tasks approach describes objects, tools, user roles,
and activities. An activity has precondition, action, state variables, and a struc-
ture of subactivities. Activities are instantiated by their parents. The statecharts
based [Kellner 89] approach is similar, yet closely related to the visual formalism of
Harel’s Statecharts [Harel 87] and their particular implementation (STATEMATE).
The model described by Phillips [Phillips 89], the State Change Architecture, is
based on classes of objects representing finite state machines.

The object-oriented approach [Roberts 89] describes five principle classes: role,
interaction, action, entity, and assertion. It is based on an object oriented conceptual
modelling and Process Modelling Language, PML.

The knowledge representation approach is based on the premise that software
development is knowledge-intensive and the application, system, and implementa-
tion knowledge must be captured. The DAIDA project, described in [Borgida et
al. 87], organizes knowledge description in three layers: a requirements specifica-
tion, a design specification, and an implementation specification. Each layer uses a
different data model.

29

The Dialogue framework builds a systematic model of dialogue between clients
and developers. It is based on the speech act theory.

The Contractual approach is, in its basis, similar to the dialogue framework —
the software process is described by a set of contracts. Contract is defined by Dixon
[Dixon 88] as “a well defined package of work that can be performed independently
by a contractor (eg a developer) for a client (eg a manager or perhaps another
developer).” The ISTAR system [Lehman 85] exchanges information between pairs
of activities. The contractual model is restricted to the relationship between only
two activities and a hierarchical structure of the system.

Behavioral models for the software development process focus on the group dy-
namics and, therefore, on cognitive, social, and organizational aspects. They also
model learning and communication processes. Curtis [Curtis et al. 88] [Curtis 89)
presents the results from empirical studies and describes problem areas. The Soft-
ware Process Model, described by Williams [Williams 88], defines software develop-
ment as a set of communicating activities. An activity is defined by a precondition,
an action, a postcondition, and a message. Complex activities can be decomposed

into subactivities.

2.6 Communication Model — a new Paradigm

The history of software engineering and systems analysis and design, described in
previous sections, shows three tendencies:

1. A shift from product-oriented, models (document-driven or code-driven) to
process-oriented models (risk-driven model and software process modelling

and programming)
2. An expansion of the software process scope — from exclusively technical to
economic, managerial, cognitive, social, and behavioral.

3. An attempt to formally define the software systems development process.

These trends lead, in turn, to two conclusions:

1. The model for the software systems development process can not concen:.ate
exclusively on the technical aspects. In addition, it must describe the ac-
tual activities performed by people and machines, not the prescribed ideal
procedures.

The software systems development process can be algorithmically described
and executed by machines and people. Thus, the development of a software
system can be viewed as a special type of software system.

o

30

Our communication model draws from many earlier described ideas and mod-
els. Specifically, it is related to the behavioral, dialogic, and contractual models.
Furthermore, its formalization uses concepts similar to the states and events based
approach. However, our communication model is not simply an extension of the
behavioral, dialogic, or contractual approach - it is a new paradigm.

The communication model has three components: communication, people, and
services.

Communication describes uniformly all development activities, which are ex-
ecuted by (abstract) participants: end-users, managers, proj ot sponsors, systems
analysts, application programmers, technical support groups, product vendors, stan-
dardization committees, quality assurance groups, technical writers, user trainers,
steering committees, etc. Development activities provide services to participants.

Product
1. Product-Oriented Model
Product
— 7
2. Process-Oricnted Model
Product

Process /
People

3. Communication Model

Figure 2: Evolution of Models for Software Systems Development Process

The evolution of the software systems development models is illustrated in Fig-
ure 2. The traditional models are centered around the product. They are cither
document-driven or code-driven approaches. The software process and process pro-
gramming are process-driven; however, they concentrate almost exclusively on tech-
nical aspects. Although the behavioral, dialogic, and coniractual models are con-
cerned with the human aspects of the software development, they fail to provide an
explicit representation for participants and human resources.

31

Comparisons with the Behavioral, Dialogic, and Contractual Models

The behavioral model was described by Curtis [Curtis 89] and Williams [Williams
88]. Curtis has presented the results from an empirical study of large software
projects; however, he has not provided a model for the development process. He
analyzed three problems occurring in projects: (1) lack of application knowledge,
(2) changing and conflicting requirements, and (3) problems with communication
and coordination.

On the other hand, Williams described a high level model, Software Process
Model (SPM), which defines the development process as a set of activities commu-
nicating by sending messages. However, this model is lacking representation for the
participants, resources, and products, and it does not describe management activ-
ities. Furthermore, the model does not include any formalization details. It does
not express the non-deterministic character of the development process and does
not support ileration of the processes [Armenise 89].

The Dialogue based model describes two parties (users and developers) involved
in exchange of statements. This model is based on the speech act theory and it
concerns exclusively oral communication. The dialogic approach focuses on the
exchange of statements, not on the participants or the managerial issues (resources
management, planning, scheduling, controlling).

The contractual model describes the tasks and specifies the resource requirements
in terms of efforts — duration of a task in person-days. This model oversimplifies
the human and managerial aspects of the development process.

The behavioral, dialogic, and contractual models capture some notion of orga-
nizational communication. However, they are not sufficient to describe the entire
complexity of the communication in the development process. As well, they do not
include an explicit representation of the project participants.

2.7 Communication — a Unifying Approach

The traditional models, methods, and techniques are centered around the product
(the artifacts that are produced in the development process). As a result, they do
not capture the most important part of the software systems development: com-
munication. The communication model describes the real dynamics of the system
development process. It offers a new perspective on systems development, while not
excluding or replacing the existing methods and models. It gives a broader view
on the entire process as well as allows for incorporation of other methods. Thus, it
can be viewed as a high level uniform description for the existing methods (meta-
model) or as a complementary model which can be used in conjunction with all

other models.

2.7.1 Related Fields

The Communication model is based on a number of interrelated fields: software
engineering, systems analysis and design, organizational communication (organi-
zational behaviour), formal specification, office automation (groupware), database
management, cognitive science (knowledge representation), and linguistics. The

System Organizational Software
Theory Communication Engineering
Software Process
Systems Modelling
Analysis and Design Programming
7 So
4 ~
’ ~
P h
. Communication R4 R
Office Automation ’ o
Modecl for ’ s
GROUPWARE
Software Sysicms Bchavioral Model
Development o
Dialog-Basc
Process Model
Process
Modelling
CFSM \l Programming
Psychology
Formal Description Computer Linguistics
Techniques Networks

Figure 3: The Communication Model and other Fields

complex interdependences between these disciplines are illustrated by Figure 3.

The next two sections describe (1) the relationship between the communication
model and the groupware and (2) the relationship between the communication model
and the organizational communication.

2.7.2 The Communication Model and the Groupware

Current software systems integrate two functions: communication and information
processing. With a growing number of world-wide and organization wide networks,
the software systems are shifting from primarily computational systems to commu-
nication systems [Cook et al. 91]. Computer networks and multi-media technology
gave rise to the interdisciplinary studies of group dynamics and group communi-
cation: Computer-Supported Cooperative Work (CSCW), and the software systems

33

supporting group work, groupware ([Greenberg 91], [Ellis et al. 91]). Since both
groupware and CSCW are emerging fields, their definitions have not yet been pre-
cisely stated. An approach to groupware varies from totally mechanistic (regarding
groupware as a tool regulating and prescribing all communication activities) to
totally unrestricted (regarding groupware as freely initiated interactions between
participants) [Johnson-Lenz 91]. A vast number of different systems are called
groupware — from shared file systems to electronic classrooms. Ellis, Gibbs and
Rein give a definition and a functional classification of groupware systems [Ellis et
al. 91]. They define groupware as: “computer-based systems that support groups
of people engaged in a common task (or goal) and that provide an interface to a
shared environment.”

Their classification of the groupware systems includes six categories, to which

we have added examples:

1. Message Systems (e-mail, multimedia e-mail, intelligent mail) [Gifford 90]
[Borenstein 91]

2. Multiuser Editors [Ellis et al. 91]

3. Group Decision Support Systems (GDSS) and Electronic Meeting Systems
(EMS) [Valacich et al. 91] [Grohowski et al. 90]

4. Computer Conferencing [Weedman 91]
5. Intelligent Agents [Gifford and Francomano 90}

6. Coordination Systems (form-oriented, procedure-oriented, and communica-
tion organization oriented models) [Olson and Bly 91]

The groupware systems are currently used on an experimental basis, mainly in aca-
demic and research centers. The subject literature describes a number of successful
projects.

A Coordination system, Systems Concepts Laboratory (SCL) (developed by the
Xerox Palo Alto Research Center (PARC)), has been experimentally used for three
years in a distributed research environment. The analysis of this application was
presented by Olson and Bly [Olson and Bly 91]. This project supported communi-
cation between two sites, one in Palo Alto, California and the other one in Portland,
Oregon. Communication was based on computer technology and an open channel
for interactive video and audio.

A computer mediated conference system was used at the University of Califor-
nia at Berkeley for communication between graduate students. The results were
described by Weedman in [Weedman 91].

34

An example of the Electronic Mceting System (EMS), GroupSystems, was de-
veloped at the University of Arizona and described by Valacich, Dennis, and Nuna-
maker [Valacich et al. 91]. This EMS system has been in use for the last four
years and has been tested in both laboratory and field settings in over 150 organiza-
tions (for example: Hughes Aircraft department and IBM’s centers). The successful
implementation of the EMS in over 33 of IBM’s sites was reported by Grohowski
[Grohowski 90].

A Relationship between a Communication Model and the Groupware

Our communication model should not be classified as a groupware. Although, both
groupware and the communication model use the communication paradigm, they
have different scopes and applications. In our work, we describe the software sys-
tems development process as a communication system. Thercfore, we have intro-
duced a rigorous communication model. In the construction of the communication
model, the modelling process is of paramount importance; wherecas the particular
implementation of the model is a secondary issue.

However, there are two aspects that interrelate our communication model with
CSCW and groupware systems. The results of the interdisciplinary studies of
CSCW, specifically the studies oriented toward software projects, can be used to ex-
tend the communication model and build a set of specific communication protocols
for particular classes of projects. Furthermore, the successful implementation of the
groupware systems demonstrates that the communication paradigm is operationally,
technically, and economicly feasible.

2.7.3 The Communication Model and Organizational Com-
munication

Whereas the researchers and practitioners concentrate on technical aspects of the
software systems development process, the behavioral aspects are relatively ne-
glected. The majority of papers on the communication, negotiation, and learning
aspects come from the management sciences ([Martin and Fuerst 84], [Bostrom
84], [Guinan and Bostrom 86], [Bostrom 89], [Koubek et al. 89], [Lind 87}, [Mon-
tazemi 88], [Salaway 87]). The dialogue studies were concentrated mainly on human-
computer interfaces [Harston and Hix 90}, however, some works adapted the dia-
logue approach to software systems development modelling [Finkelstein and Fuks
89]. Other studies of group dynamics and group communication were done in con-
junction with CSCW [Bostrom 88]. There are also studies from the linguistics
perspective [Lyytinen 85].

The communication framework for the development of software systems was
suggested over twenty years ago by Ackoff. Since then numerous works have sug-

35

gested that effective communication is the most significant aspect of the system
development. These works were concentrated around three approaches:

1. Classical information and communication theory (based on Shannon’s theory)
[Martin and Fuerst 84)

2. Empirical studies of communication in the project settings [Montazemi 88|,
[Bostrom 89)

3. Theoretical studies (modelling and analysis)

The models based on the communication theory have five components: sender,
encoder, channel, decoder, and receiver. Participants send four types of messages:
data, information, ideas, and decisions. Martin and Fuerst [Martin and Fuerst 84]
analyzed the design process in terms of accuracy (transmission errors), timeliness
(transmission time), efficiency (balance between input and output), and relevancy
(relevancy to information, decision, etc.)

Bostrom [Bostrom 89] and Guinan [Guinan and Bostrom 86] stated that the
software development process can be greatly improved by studying the existing
communication patterns in the software development projects and by teaching the
cffective communication protocols.

The most difficult development activity is analysis of users’ requirements, which
are specified during an interaction between users and developers. Since these two
groups operate in different domains, use different languages, and often represent
different organizational culture, the communication between them encounters many
difficulties. As a result, communication breakdowns are reflected in inadequate re-
quirements. To improve communication and describe its patterns, Bostrom has used
PRECISION model, which includes specific procedures (protocols) and behaviours
for effective communication in the business setting.

Lind [Lind 87] described a model of organizational communication based on
the Open Systems Interconnection model used in the computer networks. Each of
the seven layers corresponds to an appropriate organizational level. For example,
the highest level (application layer) corresponds to the users’ environment and the
lowest (physical layer) to the physical message sending.

2.8 A Systematic Approach to Modelling

Modelling of the systems development process operates in three domains: (1) the
software systems development process itself — the problem domain, (2) the model
of the development process — the solution domain (system domain), (3) the imple-
mentation of the model in a specific environment using specific language.

36

In general, researchers do not make a clear distinction between the reality being
modelled, the conceptual model of the reality, and the implementation of the model.
For example, Levary and Lin [Levary and Lin 88] describe the development pro-
cess in both process and model terms and Liu and Horowitz [Liu and Horowitz 89]
describe the problem space using concepts specific to the model itself.

It is very difficult to distinguish between the abstract description of the devel-
opment process itself and its, equally abstract, model. However, the goal of the
modelling is to separate the modelled reality from the particular modelling domain.
The appropriate method of modelling has, therefore, three phases: (1) analysis of
the problem domain, (2) mapping the problem domain into the model (solution),
and (3) mapping the model into a particular physical implementation (artifact).

Therefore, we cannot formally specify process programming until we understand
the software systems development process itself. Thus, we must first consider the
analysis of the software systems development process, then proceed to modelling,
and, following that, to a particular implementation. However, an opposite approach
is taken in the current research on process modelling and process programming,.
With few exceptions, process programming concentrates on two areas: constructing
a model (without prior analysis) or building an implementation (without a model
or analysis). Therefore, the existing techniques lack a systematic approach; they do
not include all necessary phases: process analysis, model design, and model imple-
mentation.

Analysis must abstract and describe the most important attributes of the devel-
opment process, as well as, the basic types of activities, participants, objects, and
the relationships between them.

A model should be built by mapping the characteristics, processes, objects, and
relationships from the process domain into the model domain.

Taking into consideration the above guidelines, we define eight steps to a sys-
tematic modelling of the software systems development process:

1. Define the overall scope of the modelling. What general aspects of the process
do we want to describe, analyze, model, and implement?

2. Give the rationale for our work.

3. Refine the scope of the modelling. Do we want to model the entire process or
specific aspects? Do we want to have one high level model or many specific
models?

4. Describe the process and its model

(a) Define the attributes of the development process

(b) Map the process attributes (Problem Space) to the model attributes (So-
lution Space).

37

5. Build a rigorous model and verify it against the requirements from Step 4.

6. Formalize the model.
7. Describe ezamples in the chosen formalism.

8. Validate the model in the real world. Implement the model and a chosen
formalism in a large and complex project.

Problem Empirical Studies

Space Examples

Analysis Experience Observations

b
ANALYSIS .
(siop 1.2.3.4) Synthesis Verification
P Lo Abstraction

|
Problem Software Systems
Space Development Process

Model ..
Informal Description
DESIGN i
(step 5,6) Mapping Verification

Solution Communication
Space System
Model Rigorous Description

IMPLEMENTATION
(step 7.8) Mapping Verification
Formal Communicating
Description Abstract Machines _l

Figure 4: Modelling of the Software Systems Development Process
Figure 4 depicts the activities involved in the modelling of the software systems

development process. These eight steps should be viewed as a way of organizing
and describing the modelling effort, not as prescriptive normative rules.

38

2.8.1 Step 1 - Software Systems Development Process Def-
inition

The software systems development process is defined here as a process describing the

required services and providing tools to support these services. The software tools

can be acquired or designed and built by the developers. Our definition emphasizes
services not products:

The software systems development process is a dynamic communication
process which has three components: a specification of the required ser-
vices, a construction of the products proviling these services, and a
verification of the constructed tools against their specifications. Specifi-
cation, construction, and verification are repeated throughout the entire
existence of a system.

We understand the term development as a process which continues throughout
the entire life of a system. The changes are an inherent part of software systems and
each change starts a new cycle of specification, construction, and verification. A
software system should be easy to modify; this is the reason why software has been
called soft. Balzer [Balzer 86] states that “Rather than attempting to climinate
the need for maintenance we should recognize that enhancements, not the initial
development, is the central software activity.”

2.8.2 Step 2 - Why the Software Systems Development
Process should be modelled?

In Chapter 1, we argued that without an understanding of the development process,
large projects are developed using a mixture of some tested, yet not adequate,
methods and intuitions. The results are often disastrous.

Modelling of the software systems development process provides the following:
(1) understanding of the development process, (2) comparison methods for different
development models, (3) methods and tools for knowledge representation, (4) quan-
tifiable measurements for quality assurance, (5) support for project management,
and (6) tools for learning about software development (for example: complete case
studies).

Furthermore, the model implementation supports: (1) recording (documenting)
project activities, (2) verification of the specified activities, (3) advising new par-
ticipants about existing procedures, (4) automated execution of specific tasks, and
(5) analysis of current status and project history (for example: status report or
resource utilization report).

39

Chapter 3

Software Systems Development
Process Modelling

3.1

Step 3 — Software Systems Development Pro-
cess Redefined

The communication model has the following characteristics:

1.

It represents all aspects of the development process: technical, managerial,
legal, economical, political, social, psychological, and environmental.

It describes uniformly the entire life of the system; it does not differentiate
between the traditional pre- and post-implementation phases.

It represents all development participants: end-users, managers, sponsors,
systems analysts, programmers, technical support, technical writers, legal ad-
visors, software and hardware product vendors, and librarians.

It defines software as services to people.

It is a generic high level model which is expressive erough to describe devel-
opment activities in diverse projects. The need for such a meta-model has
been noted, for example, by Deiters, Gruhn, and Shafer in [Deiters et al. 89].

3.2 Step 4 -- Software Systems Development Pro-

cess and its Model

The literature on process modelling and process programming presents many dis-
cussions regarding the definition of the development process. In this section, we

40

describe four contributions ([Curtis 89], [Curtis et al. 1988], [Tully 89], [Liu and
Horowitz 89], [Armenise 89]). Next, we integrate their perspectives and give a
cohesive description of the software systems development process.

Curtis, Krasner, and Iscoe ([Curtis 89], [Curtis et al. 1988]) give the following
list of problems occurring in the development process:

1. Lack of application knowledge among the developers. The application-specific
knowledge must be captured and the project members must acquire this
knowledge.

2. Fluctuating and contradicting requirements. The model must support changes
(representation for uncertain design decisions, prototyping, change manage-
ment, and control over change propagation).

3. Communication and Coordination problems. The software development en-
vironment must be used as a medium for communication to integrate people,
tools, and information.

Tully [Tully 89] gives an alphabetical list of objects and concepts that should he
modelled: actions, activities, agendas, agents, configurations, deliverables, events,
messages, methods, obligations, permissions, pre- and post-conditions, roles, rules,
tools, triggers, types, versions, and views. However, scme of these items overlap the
actual model, for example: pre- and post-couditions or agents. These iwo concepts
belong to the model description, rather than to the development process description.

Liu and Horowitz [Liu and Horowitz 89] specify the following features for the
process model:

1. Model must describe software development as a design process.

2. Model should be able to express parallel development processes.

3. Model should have a representation for the products (artifacts).

4. The activities should be executed only when the specified conditions are met.
5. The failed activities should be tractable.

6. A relationship between activities and resources should be explicitly stated.

Armenise [Armenise 89] describes the following characteristics of the software
systems development process model: (1) it should be general, formal, executable,
and open, (2) it should manage uncertainty and iteration; (3) it should record
the rationale behind all project decisions; (4) it should support abstraction and
parallelism; and (5) it should control the execution of activities.

41

3.2.1 The Characteristics of the Software Systems Devel-

opment Process

Polymorphism

O parallc! O Each project
is specific
e
O Distribu S eneralization
O Concurrent is difficult

O Non-deterministic

Time Changes

O Human controlled

Figure 5: Characteristics of the Software Systems Development Process

Figure 5 depicts, in our opinion, the most important characteristics of the software
systems. In general, the software systems development process displays the following

qualities:

1.

o

Complerity — resulting from a large number of highly interrelated objects
and processes. The complexity of a system is also related to the fact that the
systems are concurrent, distributed, and real-time.

Polymorphism — each project is specific; therefore, it is difficult to define a
generic development process.

Evolution — all systems are evolving; the changes may differ in their speed,
but they are an intrinsic part of the system.

Uncertainty — development processes are executed by people, who react to
external stimuli (for example: political or economic) and, sometimes, behave

in totally unpredictable ways.

Complexity

The complexity of the software systems development process stems from two areas:
(1) complexity of the software system and (2) complexity of the the process. The
complexity of software systems is caused by a number of factors, among them: (1)
the size of a software system, (2) complexity of the processes which are modelled
by the software system, and (3) special characteristics of a software system, such as
parallelism, distribution, or concurrency.

The complexity of the development process is caused by the following factors:
(1) a large number of project participants and the high level of stafl turnover, (2)
negotiation problems (lack of user agreement regarding requirenents), (3) distri-
bution of the participants, (4) concurrency problems, and (5) changes in project
policies and standards.

Polymorphism

Each project, as well as each software system, is unique. This specific quality does
not allow for creating a universal method applicable to all projects for all software
systems. However, a high level generic model can be used by different projects,
which can extend this high level model by project-specific methods, techniques,
and rules. On the other hand, some classes of development activitics display many
similarities. Therefore, their specifications can be reused.

Evolution

Since software systems exist in changing environments, they naturally evolve. Con-
sequently, the development process changes together with systems. In addition, the
development process evolves independently from software, by using new methods
a:-1 technologies. In turn, the modifications of the development process often cause
changes in the software systems.

The laws of system evolution were proposed by Belady and Lehman [Belady
and Lehman 76]. These laws, often called Lehman’s laws, are useful for describing
software system dynamics; however, since their proposal, they have yet to be verified
on sufficiently large systems for an extended period of time [Sommerville 84]. The
Law of the Continuing Change [Belady and Lehman 76] states that “A system that
is used undergoes continuing change until it is judged more cost effective to freeze
and recreate it.” The Law of an Invariant Work Rate [Boehm 81] states that “The
global activity rate in a large programming project is statistically invariant.”

The second law seems to contradict the widely accepted fact that so-called main-
tenance activities constitute up to 75 % of a total system cost [CSTB report 90].
However, in most cases, the cost of maintenance does not include the enhancements
or retrofits. Moreover, maintenance involves only the minimum necessary changes

43

to source code, often excluding the corresponding changes to documentation, spec-
ification, and original requirements. In other words, the system integrity must be
maintained. Otherwise, the complexity of the system increases with each change.
This fact was expressed by Lehman’s Increasing Complezity Law [Boehm 81}: “As
a large program is continuously changed, its complexity increases, unless work is

done to maintain it.”

Uncertainty

Similarly to complexity, uncertainty has two sources: the software system and its
development process. The specifications of software systems are deterministic only
at specific points of time; otherwise, systems constantly evolve in unpredictable
directions. This characteristic is reflected in the development process, which has to
accommodate the incoming changes and, at the same time, maintain the integrity
of the overall system. The uncertainty of the development process is unavoidable,
since people make the decisions and control the system.

3.2.2 Components of the Development Process

Product

Process
Peoplz

Physical Dimensions

N2

Resources Modules Knowledge

£ v

Process 4_/ l—— Machines

/ —* Software

Conceptual Dimensions

Figure 6: Mapping between the Development Process 2id its Model

44

Figure 6 presents the mapping between the people, products, and processes and their
abstract counterparts: participants, objects, and communication processes.

Four types of processes are present in all projects: (1) communication, (2) ne-
gotiation, (3) learning, and (4) managing. The communication process is a generic
activity, which underlies negotiation, learning, and managing.

In our model, participants specify, modify, execute, and control processes. They
are described in terms of their roles, not in terms of actual physical people. Thus,
participants roles can be performed by one person, a group of pcople, or a machine.

Objects can be divided into: resources, knowledge, and modules (services). Re-
sources include people, time, finances, hardware, and software. Knowledge is a
collection of information and rules required to perform development activities. Mod-
ules are the physical objects created or modified by the the process, for example:
specification, source code, or test documentation.

The Problem Space and the Solution Space

The mapping from the development process attributes to the particular model re-
quirements is not one-to-one. Often, a single characteristic is represented by a
number of modelling concepts.

The polymorphism problem is solved by the descriptive nature of the communica-
tion model and abstraction levels. This generic model can be converted into specific
or prescriptive models by adding a set of rules (constraints) for specific projects.

Complezity of the system is expressed by two notions: abstraction and granularity
in the model.

Evolution of the process is supported in the model by the notions of granularity,
abstraction, timing, and traceability.

Participants have a straightforward representation in our model. The processes:
communication, negotiation, learning, and managing, are described by a generic
communication process. Objects are mapped into corresponding objects.

3.3 Step 5 - A Rigorous Modeli for the Software
Systems Deveiopment Process

We describe the software systems development process as a collection of participants
communicating by sending messages. Interactions between participants are specified
by the communication protocols. Participants are the only active component in our
model, and they manipulate objects. Thus, objects are created, stored, modified,
deleted, analyzed, or sent by participants.

The communication system, S, representing the software systems development

45

process, is defined as a triple:

S=<P, 0,, C, >

where

P, is a finite set of participants,

0, is a finite set of objects,

C, is a finite set of communication processes.

_ e
Static Aspects i > i
! Aspects E
1
Modules Knowl¢dge '
Repositories !
: l
Resources Policies !
H i
Dynamic Aspects Commu.hication |
’]
Processes !
_T ks
Participants : = :
f e 4

Figure 7: Three Aspects of the Communication Model

Figure 7 illustrates the relationships between the dynamic, static, and prescrip-
tive aspects of the communication model. The dynamic component is represented
by participants who are the initiators, executors, and controllers of processes. The
static aspect corresponds to the objects sent between participants (only the access
rights are sent) and stored in a common repository. The prescriptive component is
represented by a set of policies. They are stored and used for creation and mod-
ification of processes. Thus, the processes reflect the project policies. Policies are
shown in Figure 7 as a subset of the knowledge repositories. However, this particu-
lar placement should be viewed as an example of an implementation, not as a part
of the conceptual model itself.

Granularity

Granularity determines the level of detail in an object or process description. An
object or process can be defined at many levels by adding horizontally or vertically
the necessary details.

Hlorizontal expansion translates into the addition of new participants and pro-
tocols to the same level of description. Horizontal decomposition breaks the partic-
ipant, process or object into a number of orthogonal modules, which ideally should

be loosely coupled.

46

Vertical expansion adds more detailed descriptions at the lower levels. It de-
termines the composite and atomic elements and creates hierarchical structures of
components.

A
@

Level 1

’l
4
L
’
B y ¢ C
c@?
Level 2 ¢ D

Figure 8: Vertical Expansion of the Process Specification

o B
O

’

’

Figure 8 depicts the vertical decomposition of a process with two levels: Lewel
1 and Level 2. In the graphical representation, the planes correspond to levels, the
circles represent participants, and the arrows represent flows of messages. lLevel 1
describes the following situation. Participant A is woiking on an interface for an
accounting system. When the design is finished, participant A sends all related doc-
uments for authorization (message a) to participant B. Participant B receives the
request, performs appropriate procedures (authorization procedures are hidden at
level 1) and sends back either authorized documents or rejections (message b). The
Level 1 procedure is expanded vertically by adding Level 2, which describes in detail
the authorization process itself. Participant B sends the request for authorization
(message c) to the steering committee, which authorizes or rejects the documents
(this process is hidden at level 2) and sends the results (message d) to participant
D, a quality assurance group. D sends the verified authorization (message ¢) to B.

" E— R
d
<O

Figure 9: Horizontal Expansion of the Process Specification

Level 2

The described process can also be expanded horizontally by adding new partic-
ipants to Level 1 (Figure 9). The description of this process has been changed in

47

the following way. Two participants, the analyst A and the user U, work together
on the system interface. The communication between both of them is represented
by messages f and g. When the design is finished, A sends the documents for au-
thorization (message a) and U sends an independent evaluation report (message k)

to B.

Abstraction Levels

Abstraction distinguishes between the descriplion (specification) of a class of par-
ticipants, processes, or objects and a particular instantiation of a participant, a
process, or an object.

Objects have their abstract specifications and actual occurrences. Thus, mod-
ules, which are a class of objects, have their specifications and their physical counter-
parts. For example, a module can have the following specification: French transla-
tion of Hoare’s book Communicating Sequential Processes. The physical occurrence
of this module is the actual French text (artifact).

Participants are abstract specifications, which describe particular roles played
by people or machines. A role description is merely a specification for an actor. For
example, a fluent French-English translator who specializes in computing science
translations; a publisher; and a technical revisor are specifications for three partic-
ipants. The physical occur.ence of the first participant can be a specific person A,
a group of translators, or a software system providing translation services.

A process (task), in our model, has two aspects: specification and ezecution of
the specification.

Specification of the development processes involves two steps: (1) decomposition
into communication subprocesses and (2) formal specification of the subprocesses.
On principle, project activities should be formally (rigorously) specified and verified
before they are executed. However, the extent of formal specification is project-
specific. Processes are specified and modified by human participants; although,
computer support can facilitate this process. In general, all changes to process
specification must be controlled and recorded. The change documentation must
include not only a change description, but also the rationale for the particular
change. In many respects, task specification can be compared to source code of a
computer program.

Sxecution of the process incorporates management activities: planning, schedul-
ing, resource allocation, and controlling. Tasks are executed under human control;
however, specific classes of tasks can be partially or even fully automated. Further-
more, each execution should be recorded, so that the processes are traceable. To
some degree, process execution can be compared to interactive or real-time program
execution.

48

Traceability

Although the communication system is not a document-driven system, documents
are a crucial part of our model. We have introduced two rules to govern docu-
mentation: (1) processes must be specified and verified before their execution and
(2) executions must be traceable. These rules ensure that project documentation
is created automatically, as a by-product, and in parallel with the actual activities,
not, as still often happens, as an afterthought.

Timing
Time is used in the development process in many functions; for example: to control
multiple versions, synchronize processes, or estimate task duration. Since the details

of timing are implementation-specific, we discuss time related issues in Chapter 8,
as a part of the formalism description.

Process Representation

All processes are specified by communication protocols, which are defined and mod-
ified by participants.

Processes can be specified top-down or bottom-up. The layered architecture is
based on the client/server paradigm, in which higher level client process requests a
service described at a lower level. Service details are hidden from the higher level
description. This architecture, also called an encapsulated specification, provides a
changeable and expandable model.

In the top-down specification, a process description starts with a high level, for
example, a testing process. Next, the process is decomposed into subprocesses.
The testing process can be decomposed into four subprocesses: test plan prepa-
ration, unit test, system test, and acceptance test (test performed by the user).
Subsequently, subprocesses can be decomposed into lower level subprocesses. In
our example, the first subprocess, test plan preparation, can be factored into three
subprocesses: operational test preparation (critical services, exceptions handling?},
performance test preparation (response time), human engineering test preparation
(human interface). This decomposition procedure can be repeated until the speci-
fication is satisfactory to the project participants.

In the bottom-up specification, the process description starts f-om the atomic
processes which are then aggregated and abstracted to higher level complex pro-
cesses.

49

Participant and Object Representations

The participant representation has two levels: (1) conceptuai - participants’ roles
and (2) physical - instances of participants. Conceptual specification is a high level
description of skills, experience, and knowledge, which are necessary to execute a
particular service. The actual physical participants are the people, machines, or
processes. A physical person can play different roles and execute many tasks in
parallel. For example, the same person can play a role of project leader in process
A and a role of application programmer in process B.
Objects and their representation are described in Chapter 4.

3.4 Step 6 - Formal Specification

The communication model is based on the thesis that the model for the complex
software development process must include an explicit specification of the forma'
communication between project participants. The communication processes should
be formally (or rigorously) specified and the history or their executions should be
well documented. It is not the intention of our model to introduce too much rigor;
rather, the goal is to clearly specify and analyze the procedures already used by a
project and then automatically support their executions.

Contrary to popular opinion among practitioners, formal methods are used not
only in the academic or research environments; they are also used with very good
results by commercial systems. For example, Hall [Hall 90] states the following
facts, based on his experience with a large software engineering company:

1. Formal methods are helpful in finding and eliminating errors in early stages
of analysis and design.

o

Formal methods provide rigor and organization to system specification.

3. Formal methods are based on mathematical concepts which are at a higher
level of abstraction than the programs, and therefore are easier to understand.

4. Writing a formal specification decreases the cost of development.

5. Formal methods help the users understand the specification of the system.

The Degree of Task Formalization

Idcally, all development activities should be formally specified and verified. How-
ever, for most projects, this approach would be not feasible. Therefore, our com-
munication model is designed as an open system, which can be incrementally built

50

from atomic specifications. As a result, the extent of formalization depends on
participants of particular projects.

A Formalism for the Communication Model

Since our model is based on the communication paradigm, it has many similaritics
with communication networks. Furthermore, the description of the communication
process is based on a concept of protocols. Protocols are used here in a similar way
to the computer network protocols. Therefore, in searching for an adequate formal-
ism, we have investigated standardized Formal Description Techniques for computer
networks protocols. The currently existing standards use three formal languages:
Estelle ([NBS Report 87]), Lotos ([Turner 89]), and SDL. The International Stan-
dards Organization (ISO) standardized Eztended Finite State Machine Language,
Estelle, and Language Of Temporal Ordering, Lotos. The CCITT has standardized
a Specification and Description Language, SDL. Whereas Estelle is based on the
communicating finite state machines formalism; SDL is based on similar concepts
of extended finite state machines. LOTOS specifications are based on temporal
logic.

The state-based models are widely used in software engincering and are very
popular in other disciplines. Therefore, we base our formalism on the Communi-
cating Finite State Machines (CFSM) and Estelle. The implementation of a well
known specification technique has major advantages. The literature and a number
of applications have demonstrated that the FSM-based model can be successfully
used for communication protocols. Furthermore, the existing Estelle’s facilities:
verifier, simulator, and graphical representation, can be adapted and used by the
particular implementation of our model.

3.4.1 Organizational Advantages of the Communication
Model

The communication model can improve the following aspects of project manage-
ment:

1. Increase the accuracy of the users’ requirements specification by applying
precise communication techniques.

2. Eliminate unnecessary communication. Since general communication rules
are explicitly stated and critical communication tasks are formally specified,
tasks can be checked for unnecessary redundancy or discrepancy.

3. Improve the understanding of the tasks and the participant roles throughout
the entire project. Participants can view the task specifications, the history

51

of task executions, and the current task status.
Reduce job related stress by clearly stating the responsibilities of participants.

Provide automated documentation of project task specifications and execu-
tions.

Assist new project participants in the learning process by providing access to
previous task executions as well as to current task specifications.

Overcome the culturally and socially prescribed communication patterns. Gro-
howski, McGoff, Vogel, Martz, and Nunamaker [Grohowski et al. 90] report
that the anonymity of electronic meeting systems helps to overcome the status

and cultural &*7 - . - "qterfering with productivity.

Facilivate com. .. ~etween participants from remote sites. Formally
specified tasks 1y stated responsibilities help to organize work in
terms of prv- 1. . and work from the home office.

2.4.2 Formal Mocel and an Automated Task Verification

The formal specification of communication processes provides tools to identify some
of the properties and to perform task analysis. The existing CFSM-based methods

can be used for the following:

1.

2.

Reachability analysis
Deadlock detection

Completeness checking (for example: balancing the sent and received mes-
sages)

Identification of critical paths in the tasks scheduling process

Identification of communication bottlenecks.

3.5 Step 8 - Implementation of the Communica-

tion Model

The following section demnonstrates that the implementation of the communication
model is operationally, economically, and technically feasible. The proposed model
is modular which means in practice that it can be built from simple blocks. The
extent of task specification is totally dependent on the size of a project, its specific

type, and the type of people involved in the project. High-risk systems, as well as
large and complex systems require a more rigorous approach. Small projects can
utilize formal protocols for only a single area, for example requirements specification.

The communication process is dynamic but it also reflects the organizational
structure of a particular project. The model itself is seen as a box of tools to buikl
customized software development environments. The users of the model can use
the standard tasks or they can specify their own development iasks. Fach of the
project management activities can be provided by standard protocols or redefined to
meet particular needs. The resource assignment procedure can easily be modified to
incorporate project or company specific policies. In decision making tasks, company
policies are imposed by the constraints. During the specification of tasks (before
tasks execution) the constraints are verified. For example, let us assume that a
project has rule R1 (constraint): “all tasks involving financial statements must
e approved by the accountant (participant playing the role of accountant) before
their execution.” This rule will be implemented in the following way. During task ¢
specification, the verification mechanism will identify the pertinent rules. Since task
t involves a financial statement, rule R1 will be applied, and the task t specification
will include an accountant approval subtask ¢{1. The subtask t1 will be triggered
during the task scheduling procedure. The Approval Request message will be sent
to the accountant participant. Once the task ¢ is approved (the approval answer
is sent from the accountant), the task ¢ will be scheduled for execution; otherwise
the results will be sent to the task initiator (participant who has requested the task
scheduling).

The communication model will be implemented as a computer based network of
communicating agents. All objects, including paper documents and images, will be
stored in databases and will be accessible by all participants (with some limitations).
Messages will be sent according to protocols and distributed to participants, for
example, by electronic mail.

53

Chapter 4

A Rigorous Model For The
Software Systems Development
Process

The software systems development process model has three primary components:
1. Participants
2. Processes

3. Objects: modules, knowledge repositories, and resources.

Participants are active agents who make decisions, control tasks, exchange mes-
sages, and perform services.

Processes describe development activities, which are executed by the participants
upon objects: modules, knowledge repositories, and resources. Processes are created
and modified according to the policies described in the knowledge repositories and
executed utilizing the assigned resources.

Tasks are processes with desired outcomes. Thus, a process can be completed,
but the task can fail. For example, in Chapter 3, we have described an authorization
process, which has two possible results: “authorization” or “rejection.” However,
the authorization task requires one outcome only: “authorization.” Hence the au-
thorization process can be repeated successfully many times, yet, in eack execution,
the authorization task can fail.

Modules are the objects produced or modified in the development. process. They
include all project documents (for example: feasibility assessments, problem state-
ments, requirements specifications, and requests for proposals), data dictionary, user
manuals, and application software.

Knowledge repositories contain information about the application system, devel-
opment methods and techniques as well as software and hardware.

94

Resources describe objects used in the development process: human and financial
resources, time constraints, available hardware and software, equipment, etc.

The organization of this chapter is as follows. The first section defines a project
and its specification, execution, modification, and history. The subsequent sections
describe: participants, tasks, modules, knowledge repositories, and resources. Section
4.7 uses the communication model to represent the waterfall model, spiral model,
and the prototyping technique. Examples of participant specification and resource
allocation procedures are included in Appendix A.1. Implementation of services
and mechanisms is described in Appendix A.2.

4.1 A Project Definition

The communication model of the software system development process will be im-
plemented by particular projects. Thus, we describe the model in a project set-
ting. A software project is defined by two notions: project specification and project
ezecution. The project specification defines sets of allowable participants, tasks,
modules, knowledge repositories, and resources for a specific software development
project. The project execution describes a particular instance of a project specifica-
tion performed under well-defined conditions, within a specified time, by designated
resources, and involving active tasks.
A project specification is defined as a tuple:

Project Speci fication =< P,T,M,K, R >

Where

P is a finite set of all project participants,

T is a finite set of all rigorously specified tasks,

M is a finite set of all project modules,

K is a finite set of all knowledge repositories,

R is a finite set of all allowable project resources.
A project execution is defined as a tuple:

Project Execution =< Pp,To, M., K., R, F >
Where

P, is a set of project participants involved in at least one currently active task,
P.CP,

T. is a set of active project tasks, T, C T,

M. is a set of active project moduies, M. C M,

K, is a set of active knowledge repositories, K. C K,

R. is a set of assigned resources, R. C R,

F is a mapping assigning project resources to project participants, F : R, — FP..

A Modification of the Project Specification and Execution

A model for the systems developm~nt process must be ezpandable and changeable;
therefore, the project specification and its execution must be modifiable. Project
components are closely interrelated, ¢ change to one component can propagate
throughout the project specification and execution. Thus, modifications to pro-
cesses, participants, or objects involve complex propagation techniques. Since these
techniques are implementation specific, we do not give more details at this level and
we conclude our discussion with an example of a change to human resources.

In general, software projects nave a high staff turnover. Thus, the situation,
in which an experienced project member resigns unexpectedly, is not unusual. In
this case, the data related to a particular team member is removed from project
resources and all task: involving that person are reassigned or suspended. Subse-
quently, the reassignment of tasks often causes a ripple effect, which spreads the
changes throughout the project. On the other hand, projects with sufficient time
or financial resources avoid task reassignment either by postponing the completion
daies for affected tasks or by hiring a replacement. This example does no‘ ex-
haust all possible solutions to stafl fluctuation; however, it indicates the comnex
interrelations between tasks and resources.

4.2 Participants

Our communication model gives a uniform representation to the .arious groups

and individuals participating in the project development. It models the activities

performed by the users, the customers, middle and executive management, steering

committee, system developers, system support team, advisory committee, industrial

standards enforcement group, and many other groups and organizations. In general,

parlicipants represent the activities executed by a person, a group, or a machine.
Project participants are the actors who perform four functions:

1. Send and receive messages.
2. Make decisions (most of the decisions are external to the system).
3. Control task execution (initialization, termination, and modification).

1. Perform requested services.

Participants do not describe physical persons; they define their functions in a
communication process. This role-oriented approach has two advantages: orga-
nizational and psychological. Organizationally, the separation between roles and
physical persons allows for an easy task reassignment. Psychologically, it facilitates

56

the negotiation process between individuals with different backgrounds and differ-
ent requirements. Depersonalized task description is a part of Bochm and Ross’s
Win-Win Theory [Boehm and Ross 1989]. Our approach follows the three rules of
the Win-Win Theory: it scparates the people from the problem; focuses on people
functions not on their positions; and uses objective criteria for staffing.

4.2.1 Participant Definition

A participant is defined as a tuple:
Pariicipant =< participant identifier, A >

where the participant identifier is a unique identifier and A is a finite set of
atiributes.

A spicial Jass of participants, librarians, is responsible for the three reposito-
rics: knowlcdge, medules, and resources. Librarians maintain the data according to
project standards and provide information and modules upon requests.

4.3 Tasks

Project tasks specify development activities and their desired outcomes. Processes
describe all predictable communications between task participants. However, in
general, the final results of the tasks are non-deterministic. This non-determinism
has two sources: (1) the task participants make decisions external to the system
and (2) an external control process car modify or terminate task execution.

Functionally, tasks describe the creation of participants, modules, knowledge
repositories, and resources. In particular, task participants execute a special ere-
ation task to specify other tasks. Task execution can be modified by the participants
through the control task.

Structurally, tasks have a layered architecture in which a higher layer (client)
uses the services provided by a lower layer (server). The client/server organization
of tasks provides a hiding mechanism. Thus, the organization of lower levels is
invisible to the higher levels and the services are supplied through an interface.

In terms of predictability, tasks cun be divided intu two classes: highly pre-
dictable tasks, --alled structured tasks; and unpredictable tasks with changing spec-
ification, callea unstructured tasks.

The following subsections describe task specification, erccution, state, and his-
tory. Task specific. *ion describes all possible communication activities of task par-
ticipants. Task erecution is a physical uccurrence of iask specification. The task
state is defined by the current state of each participant. Task history records task
states from the initial to current state.

57

4.3.1 Task Specification

A task description has two components: (1) process specification and (2) desired

oulcome specification.
Task Speci fication =< Proccss Speci fication, Desired Outcome Speci fication

First, we present the definit” n of process specification. Processes involve ¢ s
of participants, communicativ jrotocols, project modules, and knowledgz Tepe.il-
tories. Communication protocols describe the behaviour of a process.

Process specification is defined by a tuple:

Process Specification =< P, Ty, { Attribute}i_,, My, K¢ >

Where
) is a set of participants involved in the specified process.
T, is a sct of communication protocols describing the behaviour of the participants,
Altribute; is an implementation specific process attribute, for example: priority.
M, describes the set of project modules affected by the specified process.
K, describes the set of knowledge repositories affected by the specified process.
Task specific-tion is defined by a tuple:

Task Speci fication =< Py, T, { Attribute}]_,, Ms, K, O >

Where O, is a finite set of desired outcomes, described in terms of the communi-
cation processes. Thus, the description of a desired outcome includes all details
pertaining to an interaction, such as: sender, receiver, time, message content, and
other message conditions.

Task crecution is defined by a tuple:

Task Ezxecution =< task —id, Po,Te, M., K., 0., Re, F >

Where

task-id is a unique task identifier,

P, is a set of participants involved in the task execution

T is a set of protocols describing the behaviour of participants

M. is a sct of project modules affected by the task execution

K, is a sct of knowledge repositories affected by the task execution

0O, is a fimte set of desired outcomes

R. is a set of the project resources required by the task execution

F is a mapping between project participants and project resources, F:P. — R..

58

4.3.2 Task State

The global task state is described by the state of all task participants and commu-
nication channels.
Task state is defined as a tuple:

Task State =< < 3, >,C >

Where

s; describes the state of the participant P

C describes the priority queue for the messages (mailbox) for all task participants.
Figure 10 shows the relationships between task specification, scheduled task, and

Task
Specification
" “Resource)
""""" T Allocation '
baseno o os on e oo o)
Scheduled
Tas« Authorized
Participant
Task Control _ _:_ -!{c:s(;u;c-c- T ‘:
Execution : Changes '

Figure 10: A Task Life Cycle

task execution.

4.3.3 Task History

Task execution is described by a trace of the process. Thus, a task history is a
sequence of task states.

In a particular implementation, a task execution can be recorded by the history
mechanism, which registers a system time for each state. In this timing method,
there are two recorded points: start time and end time.

The task history is defined as a finite set of triples :

Task History = {< task state, Tstart, Tend >}z

Where

task state is one of the valid task states
Tsiare TEPresents the state start time
Tend represents the state end time.

4.3.4 Control Tasks

In general, tasks can be controlled from many levels. For brevity, we present an
example with two control levels: task and project. A single task execution is moni-
tored by the Control Task (Figure 10), which has an authorized participant who can

initiate, suspend, restart, terminate, or abort task execution.
At the higher level, all tasks are controlled by the Project Control Task, which

can interrupt other task executions, change their specifications, and restart their
executions with new specifications.

4.4 Objects

Objects are passive; they can be creat=: (mndules) or they can be used by processes
(knowledge repositories and resources).

4.4.1 Modules

Project modules are defined as self-contained permanent documents, such as: user
requirernents, system specifications, design architecture, user manuals, data dictio-
naries, stored data, and application programs. Modules are created and modified
in the system development process. All documents are included in the same class:
project modules. This approach recognizes two important aspects of system devel-
opment. Firstly, with increasing usage of formal specification languages, the system
specification can be automatically converted into computer programs. Secondly,
systen, Jocumentation is as important as programs.

A module has a unique identifier, date-time stamp, last task identifier, and
module description. Modules are stored in a module repository and maintained by
librarians. The librarians provide copies of modules upon authorized requesi. Thus,
a participant must have specific access rights to obtain a copy of a module.

4.4.2 Knowledge Repositories

Knowledge repositories involve three classes of information: application knowledge,

software and hardware knowledge, and systems development methods and techniques.
The application knowledge repository includes information about the system

environment, users, organizational structures, finances, and application.

‘The software and hardware knowledge repository contains information about
t! software packages, programming languages, operating systems, hardware, and
computer netwoiks related to the project.

The methods and techniques repository describes models, specification languages,
and verification metl ods vsed in the project.

60

4.4.3 Project Resources

Project resources include human, hardware, software, and financial resources. They
also include special equipment and time constraints. A resource is defined by the
following tuple:

Project Resource =< Resource Id, Resource Type, {Attribute}i_, >

Human resources describe the people involved in the project development. Hardware
resources describe the hardware available for a particular project. Software resources
describe the acquired software, which is used by the project without change. If the
source code is available and changed by the project, the software resource becomes
a project module. Equipment resources include office space, desks, chairs, tables,
overhead projectors, etc. Financial resources specify the economic aspects of the
system. This list of resources is not exhaustive, and new classes can be added o
meet the needs of a particular implementation.

Human Resources

The communication model regards systems development as a mainly human activ-
ity. Thus, it has explicit representations for the participants and human resources,
These two notions allow for easier modelling and automated support for the man-
agement of human resources.

Systems involving large and diversified groups of people, must be viewed from
technical, social, and psychological perspectives. All three are equally important,
and all should be modelled and analyzed. 'lclow, we give an example of a human
resources management system. This systc:i maintains the following information
about each participant: (1) history of education and work experience, (2) individual
career plans and goals, (3) individual preferences in terms of task scheduting (for
example: work from home, evenings, part-time), (4) special persorality traits, and
(5) social role in a team (for example: task initiator, harmonizer, compromiser, or
devil’s advocate). Thus, the staffing procedure takes into account all aspects of a
particular person, not only the technical perspective.

4.5 A Communication Based Description for the
Waterfall Model

In this section, we describe a waterfall model using the communication paradigm.
We use an exemplary waterfall model from a widely used systems analysis and
design textbook [Whitten, Bentley, and Barlow 89]. This particular version displays
all general characteristics of a generic waterfall model. The development process

61

is divided into nine phases: survey, study, definition, selection, acquisition, design,
construction, delivery, maintenance and improvement. Each phase produces specific
documents. The transition between phases depends upon the production of the
appropriate documents. Thus, the model is document-driven. However, 1t has a
feedback inechanism: a feasibility study conducted after each phase.

For brevity, we model only the first four phases, which traditionally constitute
systems analysis. Each phase concludes by producing an appropriate document.
For the four phases these are a feasibility assessment, a problem statement, a re-
quirements statement, and a systems proposal.

sA O 2 Q) AUTH
1

Level 1 1

p SA ;
Su °f -
- —O—/——0
Level 2 / ST DEF SEL
I

’

!
!

— —19 Management
SuU
Level 3 End-Users

Figure 11: Communication Model for the Systems Analysis

Figure 11 illustrates the communication based representation for systems analy-
sis. Bach phase is represented by a participant; the documents and related decisions
are represented by messages. The highest level has two participants: Systems An-
alysts (SA), and the Authorization Group (AUTH).

S A performs system analysis and communicates with AUT H to receive an ap-
proval for particular documents. A request for approval is represented by message
b; the answer from the authorization group is represented by message a.

Activities performed by participant SA are specified at Level 2, which involves
five participants: Systems Analysts (SA), Survey Group (SU), Study Group (ST),
Definition Group (DEF), and Selection Group (SEL).

The Survey phase is started by SA, who sends message d to 5U. SU sends the
results, the feasibility asscssment, to SA. Then, participant SA performs initial
verification and sends the document to AUT H. Participant AUT H either approves
the documents or sends back a rejection. If the the feasibility assessment is accepted
by the users, the process continues. SU sends appropriate documents (message e)

to ST. ST performs activities involved in the study phase (not shown by Figure 11)
and sends the results, a problem statement, to SA (message f). SA performs the
authorization procedure and sends back an authorization or rejection. ST sends
the required documents (message k) to DEF. DEF performs the activities related
to the user requirements analysis and specification. The results from this phase, a
requirements statement, are sent to SEL (message 7) who, in turn, sends the final
document, a formal system proposal, to SA (message j). SA sends the system
proposal for final authorization by the AUTH.

Each activity can be specified in more detail by a lower level description (Level
3). For example, the Survey activities, executed by participant SU, involve End-
Users and Management in determining project scope and a preliminary feasibility
study. The vertical su:d horizontal decomposition can be carried on for the remaining
participants. We feel, however, that the example above is sufficient to illustrate the
following mapping techniques:

1. Phases and activities are represented by the participants at a corresponding
level cf granularity.

2. Documents and decisions are described as messages.
3. Interactions between participants are defined by the communication protocols.

The representation for the activities corresponds to the real life situation, in which
one person or one group is responsible for a particular activity. This person can
perform the assigned activity or delegate it to other people or machines; though,
one perscn (or one group) is responsible for the overall results.

In the communication model, development activities can be either processes or
tasks (processes with specified desired outcomes). First, we define the activities as
processes, then, we create tasks by adding desired outcomes to the processes. Thus,
for tasks. the execution of a process is repeated until the par..-ular outcome is
achieved. In our example, the survey phase can be repeated until the authorization
participant (AUT H) sends an approval to participant SA (message a).

A Communication Model for the Module Repository

The above example has illustrated the flow of documents and decisions; however, it
has not described how the documents are stored and how the required knowledge is
used. Thus, in the following subsection, we decompose the earlier described Survey
phase into two processes: knowledge acquisition and documeitation storage.

In the example illustrated in Figure 12, we model two instances of knowledge
acquisition: (1) initial enquiry about existing standards and (2) addition of appli-
cation knowledge. The initial enquiry about the project standards is the first step

63

KRL b SU_ d ML
a cl
[l
[
’l
ML/ ST g8 KkRL
@r h[g

Figure 12: Knowledge and Modules Repositories

of the survey phase (participant SU). As is illustrated by Figure 12, SU sends a
request for information (message a) to the Knowledge Repository Librarian K RL.
In our graphical notation, a participant is represented by a circle; whereas, a librar-
ian is indicated by a square around a circle. K RL performs a search to find all
standards related to the Survey Phase as well as the existing examples. When the
data is located (or when there is no related information), a response (message b) is
sent to SU.

During the Survey Phase, SU gathers the facts about the application. These
findings are subsequently added to the Application Knowledge Repository by send-
ing appropriate messages to KRL. KRL verifies new facts ag~inst the existing
information and policies. In case of inconsistency, K RL sends a notification to par-
ticipant SU, who, in tuzn, must decide whether the information should e changed
or added and marked as inconsistent.

When the required activities are completed, a feasibility assessment document
is sent to SA for authorization. Participant AUT H performs appropriate activities
(not modelled in this example) and sends back either an authorization document
or a rejection notice. After the authorization, SA sends an appropriate message to
SU.

If the feasibility study document is authorized, participant SU sends the re-
quired documents (message ¢) to the Module Repository Librarian (ML). ML
verifies received documents against the existing project standards. The verification
of documunts is shown in detail at Level 2 (Figure 12). ML sends the documents
(message f) to ST. ST consults K RL (messages h and g) and sends back the
results (message e). ML either accepts the documents or declines the service. If
the answer is positive, SU can complete the survey task. However, if the answer
is negative, participant SU has two options: change the documents to conform to
the current standards or change the standards. The process of changing standards
depends upon the standard type as well as the policies of the particular project.
Thus, we do not claborate on the change approval, but we describe the change
propagation. For simplicity, we assume that a request for a change to the standards

64

has been approved by S 4.

A Propagation Task for the Standards Modifications

When the project standards have been modified, the participants of the affected
tasks must be notified. The propagation task finds all active tasks involving modified
standards. The message about the change of standards is sent to all involved tasks
(the message is multicasted). This instance of multicasting is an example of a
significant reduction in the communications and information overload. Generally,
large projects have a system in which each change is announced by a memo or notice
sent to all team members. As a result, a large number of memos are broadcasted
to uninvolved parties. In our example, the information about modifications is sent
to interested parties only.

4.5.1 A Communication Based Description for the Spiral
Model

The spiral model, described by Bochm [Bochm 88], takes a risk-driven approach.
In this model, the development process evolves through cycles; each cycle involves

the same steps. A cycle can represent a phase, an activity, or even the development
of a single program. Cycles can exist and evolve in parallel.

l

O Determine objectives O Evaluate alternatives
QO Identify alternatives O Identify risks
and their constraints (O Determine risk resolutions

f !

QO Develop product using

risk analysis
A QO Verify development and product
QO Prepare for next phase

|

Figure 13: \ Cycle in the Spiral Model

(O Plan next phase

Figure 13 illustrates the four steps of the spiral model. First step identifies the
objectives of the cycle, alternative solutions, and constraints for each alternative.
The second step evaluates each alternative in terms of objectives and constraints and
identifies risks and their resolution techniques. The next step develops the products
taking into consideration the involwed risks and their resolution techniques. It also
reviews previous steps and products. The last step plans for the next phases.

65

Risk factors and their possible resolutions arc taken into consideration in the
development of a particular product. Thus, depending on the type of the risk, for
example; financial, health hazard, or user rejection; the development itself can use
different methods, such as waterfall, formal transformation, or prototyping.

The mapping from the spiral model to the communication model uses the fol-

lowing methods:
1. A cycle is represented by a high level participant.
2. Each step in the cycle is represented by a lower level participant.

3. Activities performed during each step are represented by the decomposition
of participants into a lower level.

4. The results of the steps and the decisions are represented by the messages.

1 |

The sequence and other interdependencies between activities are defined by
the communication protocols.

e /
Levell .7 ;
. /

’

- j
C -
’ O
Lovel2 | b E.

4
’
4

>

Management

/
Finanicial
Analysis
End-Users
Level 3

Technical Advisor

Figure 14: A Communication Based Representation for the Spiral Model
Figure 14 depicts the communication based representation for the spiral model.

The highest level participant C represents one cycle in the spiral model. Participants
1. E, DEV, and P represent respectively Step 1, Step 2, Step 3, and Step 4.

66

Participant C starts the cycle by sending message a to participant I. I performs
required activities and sends the results (message b) to participant E. E evaluates
the alternatives and identifies the overall risks. The evaluation of alternatives and
risk analysis are done in consultation with other participants: End-Users, Manage-
ment, Technical Advisors, and Financial Analysts. Their interactions are shown in
Figure 14 at Level 3. The results from the evaluation and risk analysis are sent to
participant DEV (message ¢). DEV develops the system taking into consideration
the risks factors. From time to time, DEV consults with AUT H to ensure that the
development is carried out applying correct risk resolutions. After the development
and verification of the products, participant DEV sends the results (message d)
to participant P, who plans for the next phase. P consults with the authoriza-
tion group, participant AUTH. Once the start of the next phase is authorized,
participant AUT H sends an authorization message to participant C (message j).

4.5.2 A Communication Based Description for the Proto-
typing Approach

In this section, we model the evolutionary prototyping approach described in Chap-
ter 2. The same mapping techniques can be used for the rapid throwaway and inere-
mental development. Prototyping techniques basically 1se the code-diiven approach,
in which the user incrementally specifies requirements while using a succession of
prototypes.

Prototyping techniques are represented by two participants: the development,
team and the users. These participants send messages including prototypes (code)
and new or changed requircments. Evolutionary prototyping is depicted by Fig-

a
SA) >(U

O=—==0
Level 1 s

l’ . c AR

O= =
3
U d) M

Level 2

Figure 15: A Communication Based Representation for the Prototyping Technique

ure 15. In this example, we concentrate on the specification of requirements. There
are two major participants: a systems analyst (SA) and a user (/). The first step

67

is the preliminary analysis and requirements specification. U sends initial require-
ments (message b) to SA. SA then responds with a prototype of the syster.. (message
a). The user exercises the prototype and responds with requirement changes or new
requirements. This cycle of sending prototypes and requirements is repeated until
the user sends a message Lo stop the requirement specification phase. At a lower
level (Level 2), the user tests the prototype and sends the results (message c) to the
requirements analysis group (AR). AR consults with management, (M), and sends
message d (new requirements, changes, or request for more testing) to U.

Modelling of the User Training Process

Gomaa in [Gomaa 83] states that users, particularly novice users, need initial train-
ing in the prototyping. Prototypes are difficult to use because they are generally
not fully operational and often they do not have sufficient documentation.

/0

T

=
a5

Figure 16: A Communication Based Representation for the Training Process

The training process illustrated in Figure 16 is decomposed into three steps:
initial preparation, training session, and testing. It involves eight participants:
training group (T'), initial training group (IT), prototype developers (PD), session
group (S), users (U), testing group (TT), knowledge repository librarian (K RL),
and module repository librarian (M L). In the preparation phase, IT sends a request
for information pertaining to the particular prototyping technique. The knowledge
repository librarian, K RL, sends the requested information (message b). However, if
the information is unavailable or incomplete, participant IT consults the prototype
developers, participant PD. The initial preparation produces two outputs: (1)
a training session plan and (2) a training manual (for example: on-line tutorial).
These documents are sent to M L. The training session involves participant S and
users, U. The last step of training is the testing procedure. TT is responsible
for conducting appropriate testing to verify the quality of training. The training
sessions can be repeated if the test results are not satisfactory.

68

Chapter 5

Modelling of the Systems
Development Activities. A Case

Study

5.1 Systems Development Activities

The systems development activities can be classified according to their duration,
major driving-force, and predictability (Figure 17).

Intermittent

Duration > .
Continuous

Structured

Preaictability >

Unstruciured

Goal Oriented

Driving-Force o)
Decision Ouiented

Time Oriented i

Figure 17: Systems Developriieni Activities

The duration of an activity varies from hours to years; some activities are contin-
uous (they last through the entire life of th development process), whereas others

are periodical.

69

A progress of an activity is determined by its driving force: goal, decision, time.
Thus, we classify activities as mainly: goal-oriented, decision-oriented, or time-
oriented. These forces do not exclude each other; in fact, they are often used to-
gether. In a system defined in terms of states and transitions, the driving force spec-
ifies the conditions for a transition from the current state to the next state. Thus,
in a goal-oriented process, a transition occurs when a specified goal is achieved, for
example, a specific document or code is produced. In the decision-oriented process.
the progress from state to state depends upon an external decision made by an
authorized participant. In the time oriented process, the change from state to state
is activated by an external clock.

The predictabiliy specifies whether the behaviour and th~ >utcome of a process
are well known in advance, or are ihey only roughly determined and incrementally
specified.

The currently existing models for the systems development process do not have
a uniform representation for all types of development activities. The traditional *«-
terfall model describes a sequence of document-oriented, highly predictable, short
and long term activities. It does not describe goal-oriented or decision-oriented ac-
tivities. The spiral model is a decision-oriented model; buwcer, it does not describe
the goal-oriented or time-oriented . tivities. A model basc on the prototyping
techniques represents the unpredictable tasks, yet is dors net doscribe decision- and
time-oriented activities.

5.i.1 The Communication Model Representa. on for the
Development Activities

The communication model has a uniform representation for all project activities:
long and short term, goai-orici-i+«l, decision-oriented, time-oriented, predictable and
unpredictable.

The goal-oriented activities are represeuted by the tasks, (processes with the
specified outcomes). The desired outcomes can be stated as paiticular products or
states, or a combination of both. The task execution is repeated until the goal is
achieved. The specification for the decision-oriented process involves an authorized
participant who decides about the progress of the process. The time-oriented process
makes the transitions upon the time messages coming from the timer.

The predictable activities are defined as structured processes; the unpredictable
as unstrmctured processes.

5.1.2 Structured and Unstructured Processes

A structured process is specified by a set of participants, a protocol, a set of modules,
and a set of knowledge repositories. Whereas, the structured task involves the struc-

70

tured process description and a set of the desired outcomes The structured tasks
and processes are controlled by their protocols and by an authorized participant,
who can decide, indenendently from the protocol, to suspend, terminate, or abort
a process or task exccution. Control of the structured task execution is illustrated
in Figure 18.

o D

Protocol

External
Decision

Next Suate

Structured
Task
Exccution

Figure 18: Contral of the Structured Task Execution

The unsiructured task specification has ihe following components: goal specifi-
cation, theory description (methods to achieve the goal), accomplishiment measure-
ments. and main task and subtasks specifications. An unstructured task is defined
incrementally by a number of structured subtasks. The interdependences between
subtasks are described by the main task specification.

Control of the unstructured task exccution is Hlustrated in Figure 19.

v ot
l Task Specification

v

Echt:nal ‘«"l Next Subtask
Decision .
Unstructured
Task
Exccution —
Subtask 1 : Subtask 2
Protocol H Protocol
!

e G e

1

i | Structured Structured "

' | Subtask 1 Subtask 2 '

! 1

! 1

Figure 19: Control of the Unstructur- I ‘1asl. ¥xecution

There are two levels of monitoring mechanisms: (the main task controlled by
its specification, a monitoring process, and an authorized participant and (2) the

subtasks coutrolied by their respective protocols and authorized participants.

The monitoring process periodically requests the measurements and verifies the
state of the overall system. If the status of the process is not satisfactory, the
authorized particip int is notified or the task is automatically terminated.

5.2 Unstructured Task. A Case Study

A large telecommunication company decided to undertake a special project to pro-
tect its revenue by increasing its client satisfaction. Since it had been observed
that some of the clients were turning to other telecommunication systems vendors,
this company decided o increase the knowledge of the client representatives and
provide them with the optimal design tools. The project duration is estimated for
three years and the project budget is Vinited to five million dollars. The project’s
human reseurces are limited to the eiirent comuzuy’s employees. The software and
hardware resources can Le expands . i . uisit,on and deveioping new products)
within budgetary limits.

The following seciions provide a definition of the overall task. Client Serovice

Improv-nent.

{;oal Description

The goal of the main task is to protect the revenue of a large tel.communicat'on
company. Since the revenue is provided by the priv:i~ customers, the major goal
of the company is Lo increase the number of customers or at least retain the same
number. The nummber of customers and the number and size of their orcers ave
directly related to customer satisfaction.

Theory Description

The ta<" s based on the theory: “Expanding the Technical Knowledge of the cus-
tomer 1 .~ sentatives will increase (or retain) the number of customers.”

Accomplishment Measurements

Assuming that the above theory is true, we have to show positive correlation be-
tween the knowledge of the customer representatives and the number of customers.
Thus, we need two measurements: a level of technical knowledge (competence) and
a number of the customers (indicating the customer satisfaction). The evaluation
of the customer represeniatives’ knowledge can be done using standardized ques-
tionnaires, technical tests, practical exams, or interviews. It will be performed at
the start of the task and repeated during the task execution.

-1
o

The second measurement, a number of customers, must be calculated at the start
of the task and then it should be monitored during the task execution. The number
of customers can be measured by vue raw numbers, or it can be modified by the
size of th.. customers’ orders. It can be also adjusted by some other measurements
of client satisfaction, for example: by th recults from a standardized questionnaire
or a «tructured interview.

in cur model, the goal, objectives, wnd theory (strategy) are clearly stated.
Thus. the participants, especially the customer representatives, can be ensured that
the particalar measurements will not be used fo: job reviews or work appraisals.
The goal of the task is not a sclection or elimination of the personnel, but the
improvement of the knowledge level and skills of the entire group. Thus, a clear
and precise description of the task, which can be accessed and reviewed by the task
participants, can significantly lower the level of anxiety among the staff.

Success Condition

The task exccution will succeed if, after five months, the technical knowledge of the
customer representatives has been increased and the nimber of customers has been
increased or, at least, has stabilized.

Failure Condition

The task should be considered a failure if after five months of a measured increase
of the technical knowledge of customer representatives, the number of customers is
dropping. A failure of a task execution does not disprove the theory itself; it means
that in a given situation using particular measurements, the task has not succeeded
in supporting the theory. We must take into consideration the fact that a modelled
system represents only a part of the complex environtient, leaving out many of the
external factors, for example: political situation.

5.2.1 Process Specification

The main task involves four participants: Management Group (M(/), Custemer
Representatives (CR), Technical Support Group (T'S), and Project Monitoring
Group (PM). The management group has authority to specify, plan, schedule,
reschedule, initiate, and terminate tasks. Customer representatives provide the
information about the customers (current and potential), and their requirements.
Technical support group provides the information about the available tools, and
participates in the acquisition and the design of new tools. The project monitoring
group makes the periodical measurements.

73

Since the project activities are highly unpredicatable, the project tasks are spec-
ified incrementally. Thus, the main task, client service improvement, is specified by

a number of structured subtasks.

—

Client Service
Q Improvement
\
‘\
\

\
Ay

4

/ Csl
SG AG O

Figure 20: Client Service Improvement Task

In our example, illustrated in Figure 20, the first subtask is defined as a survey
of the current situalion; the second is defined as an analysis. The survey subtask
i specified first. After its execution, the results are analyzed and the next subtask,

analysis, is described.

5.2.2 Task 1. Survey of the Current Situation

Figure 21 illustrates cor inunicati~ between participants in the survey task.

mi, ,2,4,56
o 0

SG
\‘ r1.2.3.4.5.6 G

m5
PM O

Figure 21: Survey Task Specification

Management group sends messages ml, m2, m3, m4, m5, and m6 requesting

six reports:
I. Survey of the tools used by our company (message r1),

2. Survey of the wols uzed by competitors (r2),

74

. Survey of the commercially available tools (r3),

w

. Survey of the tools desired by customers (r4)

N8

5. Measurements of the customer representatives knowledge (r5)

6. The number of customers (r6)

5.2.3 Task 2. Analysis of the Survey Reports

Figure 22 illustrates exemplary results from Task 1.

Tools used by our company Tools used by compeiit.is

Tools desired by custe:. = Tools commercially available

Figure 22: The Relationshi.- ,ciween the Survey Reports

The circles, similar to a Venn diagram, represent the tools described by the cor-
responding survey reports. Thus, for example, circle R5 describes the tools known
by the customer representatives. Figure 22 shows that the customer representa-
tives are not aware of many tools offered by our company and desired by the users.
Thus, the goal for the next subtask should be: “Increase the customer represen-
tatives’ knowledge about tools used currently by our company and desired by the
customers.” Using the symbols from Figure 22, we can describe this goal as increas-
ing the current knowledge (R5) to match the intersection between 21 (tools used
by our company) and R4 (tools d=sired by customers).

I

Chapter 6

Tasks Specification. A Case
Study

Chapter 5 described the systems development activities in terms of their duration,
predictability, and driving-force. In the following chapter, we discuss the task spec-
ification and the meta-task operations. This chapter is divided into three sections.
Communication, Message Definition, and Task Description. The communication
section describes the client/server paradigm and the addressing schema used in
our model. The secor.d section defines the system messages and gives examples
from the Case Study. The last section describes the meta-task opcrations: defining,
recording, planning, modifying, s heduling and rescheduling, cancelling, initializa-
tion, suspending and restarting, terminating, and aborting.

6.1 Communication

The communication model reflects the technical communication betwern project
team members. In theory, assuming a “democratic system” in comrnunication, a
project member can communicate with any other project member. In practice, a
project is limited by time and resources, thus communication must be, to some
extent, restricted. Consequently, projects use informal and formal protocols to
specify who can talk, and when. Similarly, our model uses communication protocols
to describe the development activities.

Business cominunication has three specific characteristics: (1) different commu-
nication schemas, (2) adaptability to a particular situation, and (3) unreliability.
Since the communication model reflects the nature of human communication, it is
concerned with these three aspects.

Communication protocols are capable of representing all inter-group communi-
cation schemas [Umstot 87: interpersonal, serial (a message is passed from one

participant to the next one), centralized (one participant scrvers as a bub in a
star-like network), autocratic (one participant sends a message to a smail group of
participants, then cach group participant disseminate the message to subordinate
groups), and decel. ralized (message is passed in a circle).

Protocol specification includes many optional paths; thus, the execution of a
protocol varies depending upon circumstances. For instance, a protocol can have
two communication paths: emergency and normal. In an emergency situation, the
protocol is executed with reduced communica’.on (for example: certain authoriza-
tion precedures can be bypassed). Whereas, the same protocol, exccuted under
normal circumstances, involves all specified communication interactions.

Because of the human participation (people often forget to reply or attend the
meetings), communication between participants is unreliable. Therefore, the com-
munication model requires a time-¢ut mechanism to improve reliability of the sys-
tem. The timing issucs will be discussed later, in a context of a particular formalism.

To provide the require:! {lexibility and universality, our model uses asynchronous
communication, three addressing schemas, port-to-port addressing method, and
client /server paradigm.

6.1.1 Asynchronous Communication

The asynchronous mo?: of communication is based on the concept of a mailber.
Thus, messages arc - 1. o mailboxes and placed according to their priorities. Par-
ticipants check theirxes and perform appropriate actions. The asvnchronous
mode of communication ailows participants to perform other operations - hile wait-
ing for the reply from a sciver.

The communication model uses the asynchronous communication for two rea-
sons. First, this mode reflects business communication between the project mem-
bers, in which memos, and notes are placed in the mailboxes, the phone calls are
recorded, and meetings and appointments are arranged by a secretary. Second,
asynchronous communication is more general than synchronous; it is able to repre-
sent synchronous communication, but the opposite is not true.

6.1.2 Three Addressing Schemas

The communication model uses three addressing schemas: point-to-point, mullicas-
ting, and broadcasting. Point-to-point involves one sender and one receiver; mul-
ticasting corresponds to one to a group communication; broadcasting involves one
to everybody communication. These schemas allow for representing different types
of communications: interpersonal (point-to-point), serial (point-to-point), central-
ized (broadcasting), autocratic (multicasting), and decentralized (point-to-point
and multicasting). '

7

6.1.3 Port-to-Port Addressing Method

Messages are sent from the client port to the service port. Ports are the access
points to appropriate services. A service can be supported by a number of servers
or it can be executed by the same participant. A port is a communication channel
- a priority queue protected by the system. Port-to-port addressing provides a uni-
form access to all local and remote objects, which allows modelling of a distributed

system.

6.1.4 Client/Server Paradigm

The communication model uses the client/server paradigm, in which a client partici-
rant sends a request to specific server participant. Upon arrival, the service request
is placed in a priority qucue. When the request is received, the server perfr--ms
requested operation and sends a reply to the client.

6.2 Message Definition

Message is defined as a typed -ollection of data objects used in communication
between participant. The particular implementation of the communication model
can employ different classes of messages. For instance, it can have two types of
messages: short messages and messages with data segments. The data segment may
include the actual data or the address and the access rights. Thus, data can be
passed by value or by reference. In the first case, the data segment contains the
actual data; for example: a task description or copy of a project module. In the
second case, the data segment has only the data address; for example: the task
identifier or project module identifier.

A message has two groups of information: message related data and task related
data. The message related information has five components: identification, autho-
rization, target, priority, and reply specification. The task related information has
four components: authorization, priority. meta-task operation, and task description.

message ::= <message data, task data>
message data::= <identification, authorization, target, priority,
reply specification>
task data::= <task authorization, task priority, meta-task operation,
task description>

6.2.1 ‘essage Related Data

Message identification is a unique name, a tag which distinguishes messages. It may

78

be implemented, for ex: itle, as a combinatior -»f a number, a date-time stamp, or
a sender ideniifis.

message identification :: = <date-! ‘r: stamp, sender_id>

Message authorization identifies the sender as a person authorized to send this
message type and also relates this message to a higher level task description.

Message target is a specific port address. A message can be sent only to a
port with known address. The methods of disseminating the information about
addresses arc specific to a particular implementation. For instance, some ports can
have public addresses — known to all participants, while others can have protected
addresses, known only to a group of participants.

Message priority specifies the order in which messages are received from the
mailbox. There should be a special provision made for emergenscy messages. For
example, an emergency message “Abort task” should force the server to immediately
stop the task.

The reply specification describes the reply protocol. For instance, it can be
defined in one of the following ways:

1. Send acknowledgement when the message is received and send reply apon
compleiion of the task.

)

Do not send acknowledgement but send status information every 24 hours
until the task is compl -d.

3. Send reply only upon --..-.plerion of the requested task.

4. Do not reply.

6.2.2 Task Related Data

Task authorization provides the data relating this task to other tasks in the system.
These rciationships are used by the explanatory mechanism, which gives answers to
questions: “Why this task is being executed?”, “What would happen if the task is
cancelled?.”

Task priority can be expressed in term of arbitracy priority numbers or in terms
of a due date.

Meta-Task Operation specifies an operation which will be performed upon a task
specification, task execution or the history of an execution. They are described in
section 6.3.

79

£.9.3 Case Study. Messages for Task 1

‘i . following section describes the messages for Task 1 — Survey of the Curren*
Sitaation (Chapter 5, Figure 20).

‘The Management Group sends message 1 (m1), requesting the information about
the design tools offered by our company. The message is sent to the Technical
Support Group. A reply is expected in two weeks in the form of a Survey Report

(message rl).

message id: ml
sender: Management Group
authorization: Survey of the Current Situation - Request No. 99
target: Technical Support Group
priority: high

Reply specification: upon completion , within 2 weeks from
the receiving date.

Task Specification: goal: the design t~nls used by our company
method: all decisions <e .egated to the
message targat
result: Survey Repoir= {Suztaskl.rl)
priority: high

@ e e e - - " = = S - S o8 T S — Am AT s v es e -

The Management Group sends message 2 (m2) to the Customer Representatives
Group, requesting the information about the design tools used by the competitors.
sent to ine Customer Representatives Group. A reply is expected in two weeks in
the form of a Survey Report (message 72).

message id: m2
sender: Management Group
authorization: Suivey of the Current Situation - Request No. 99
target: Customer Representatives Group
priority: high

Reply specification: Acknowledge upon receiving,

Reply upon completion, within 2 weeks
from the receiving date.

80

Task Spacification: goal: the design tools used by the
competitors
method: all decisions delegated to the
message target
result: Survey Report (Subtaskl.r2)
priority: high

Message 3 (m3), requesting the information about the design tools commercially
available, is sent to the Technical Support Group. A reply is expected in three
weeks in the form of a Study Report (message 73). Message 4 {m4), requesting
the information about the design tools desired by the customer, is sent to the
Customer Representatives Group. A reply is expected in three weeks in the fori
of a Requirements Report (message 74). Message 5 (m¥5), requesting the current
measurements of the customer representatives knowledge, is sent to the Monitoring
Group. A reply is expected in one weck in the form of a Measurements Report (r5).

6.3 Meta-Task Operations

Tasks and processes are defined and modified by participants. The standard types
of meta-task operations are: defining, recording, planning, modilving, scheduling
and rescheduling, cancelling, initializatinn, suspending and restarting, terminating,
aborting, and accessing.

Figure 23 illustrates the opcrations on a task specification, a scheduled task, a
task execution, and a task execution history.

Defining, recording, planning, modifying, and scheduling refer to task specifica-
tion. A scheduled task can be rescheduled, cancelled, modified, or initialized. 'The
task execution can be suspended, terminated, or aborted. The suspended task exe-
cution can be restarted and the history of task execution can be accessed.

Task Defining

Similarly to other types of software, tasks specifications can be shared between
projects, acquired from vendors, or written by participants for a specific project.
Participants prepare new tasks specifications using the task defining process, whicn
has, for example, the following steps:

1. Identification of related information: (1) similar tasks (their reusable compo-
nents) and (2) project policies regarding similar tasks

2. task specificatioa, which may involve consultations with other participants

81

-0 Defining

O Recording

Specification

O Planning
Versioa
O Modifying
/»0 Scheduling
Scheduled O Rescheduling
-—
Task o Cancelling
Lo Initialization
Task .
— . © Suspending
Exccution / O Restarting
Ju aded | 0 Terminating
- / O Aborting
Execution /
Hi <« | O Accessing
istory

Iigure 23: Meia-task Operations

3. Verification of the task specification against project policies.

In the first subtask, the participant sends a request tc the Knowledge Repository
brarian. The librarian finds the related information and sends it back to the
_questing client. In the second subtask, the participant decides which tasks can be
reused, consults with other participants, and requests further information from the
librariar:.

Example of the Initi«u Task Specification

The following example describes the defining process for the task providing the
current measurements of the customer representatives knowledge (Report 5).

Task Decomposition:

. Prepare tests for the customer representatives.
. Prepare interview specification.

. Perform test.

. Cunduct interviews.

. Evaluate test results.

Prepare final report - RS.

D N p W N e

The knowledge repository librarian sends the following information about related
tasks and project policies:

1. Skills and knowledge evaluation uses two methods:

(1) Objective test (theoretical and practical) administered
to all test subjects at the same time.

(2) Individual interview with the test subject, which
indicates the skills and knowledge as well as
the subject’s attitudes and concerns.

2. Histories of previous tests indicate that the employees are

accustomed to the test situations.

Related Policies:

. Evaluction of employee’s skills or knowledge must be

2.

preceded by a notice with an explanation of the purpose
of tL- :«valuation.
The e.-a’ ation results must be kept confidential.

Taking int~ &-count the related policies and standards, the task decomposition
must be moditied in the following way:

Revised Task Decomposition (revisions are indicated by arrows):

-=>

-=>

-->
-->

0 ~N O 0D W

. Obtain Report Z (Survey of Tools used by our Company) and

prepare material for testing.

Prepare a 'notice explaining the purpose of this evaluation.
Ensure the customer representatives about the confidentiality
of the test results.

Prepare tests for the customer representatives.

Prepare interview specification.

Perform test.

. Conduct interviews.

Evaluate test results (ensure the confidentiality).
Prepare final report - R5 (ensure the confidentiality).

Task Recording

The Recording Task sends a request to the Knowledge Repository Librarian request-
ing the addition of a new task specification. Librarian verifies the project policies
and stores the specification.

83

Task Planning

The Planning Task performs a tentative resource allocation: human, software, hard-
ware, equipment, finances, and time. It verifies whether the task is possible with
the existing resources. If the project resources are not sufficient, the planning task
may start a resource acquisition task or it may send back a reply outlining the exist-
ing and required resources. Planning may also include the task analysis procedure:
bottleneck analysis, overload and underload analysis (for the tentatively allocated
resources).

Task Scheduling and Rescheduling

The Scheduling task executes the resource allocation procedure for a specified time
or first available time. In the first case, when the time is specified, as for example
next week, the allocation process finds all required resources available next week.
If the resources are available, the server sends a positive reply to the client. The
particular details cf the allocation schema are discussed in Appendix A.

When the resources are unavailable, the resource allocation performs the priority
verification task. The Priority Verification Task checks the priority of the tasks
allocated to the resources. If the priority is lower than the current task, a task
rescheduling can be started.

After the task is placed in the scheduler queue, it can still be rescheduled or
cancelled. Tasks can be rescheduled as the result of higher priority tasks or unavail-
ability of resources, or an explicit request from the client.

Task Cancellation

The Task Cancellation process removes the scheduled task from the scheduler queue
and releases allocated resources. The cancellation may or may not be recorded,
depending on a particular project policy.

Task Initialization

The task is initialized by two methods: (1) automatically by the scheduler at a
specified time aud under specificu conditions or (2) manually by an external partic-
ipant.

Task Modification

The task specification and task execution can be modified. However, in both cases
a specific changing mechanism is required. Thus, in case of specification change,
the current executions of the specification must be suspended and restarted with

84

the new version of specification. In case of execution modification, the execution
must be suspended, the task specification modifiec, and then the task execution
resumed. A specific implementation may involve different change mechanisms.

Task Suspending and Restarting

A task execution can be suspended and later resumed. However, this operation
stops the task execution for a short tirie without releasing resources. Otherwise,
the resources must be released and the remaining subtasks must be rescheduled and

then restarted.

Task Terminating

The execution of a task can be terminated upon a request from the authorized
participant. Termination is performed according to its protocol. For instance, it
may require completion of a special report or a subtask. Thus, the terminated task

does not stop immediately.

Task Aborting

Task execution can be aborted by an authorized participani. In this case, all task
actions stop immediately.

Accessing the Execution History

Since the history of each execution is automatically stored, it can be accessed by the
authorized participants. A history contains also, in case of terminated or aborted

tasks, an explanation for these actions.

85

Chapter 7

Formal Specification of Systems

This chapter is concerned with the system specification. The first section describes
three levels and domains of the specification. The abstract, dynamic, and compler
nature of specification is described in Section 7.2. The subsequent section examines
relationship between the specification and its implementation. Section 7.4 defines
the term system specification. The last two sections describe, respectively, formal
specification and the difference between verification and validation.

7.1 Levels and Domains of Specification

In our work, we use the term specification at three levels: (1) systems development
process, (2) system, and (3) module. Furthermorc, we refer to three domains: (1)
application (specified system), (2) abstract model, and (3) implementation.

Chapter 1 described two distinct, yet closely related, levels of specification: (1)
the software systems development process and (2) software system. Now, we are
introducing a third onc: local specification. The distinction between the local and
the system specification, introduced by Guttag in [Guttag 81], is pivotal for the
development of the appropriate specification methods. On the other hand, we have
argued in Chapter 1 and 2 that the essential attributes of the software systems
development process and the software system are similar. Thercfore, in this chapter,
we refer to both as system specification and, as a result, we discuss only two levels
of specifications: system and local.

The local specification applies to a single program unit, and its scope is limited
to the module and its interface with the other modules in the system. In most cases,
local specification is created and used exclusively by the system developers.

The system specification differs significantly in its scope and usage from the
locai specification. Its scope is to describe the entire system and its interface with
the environment. Furthermore, system specification describes not only the system

86

behaviour, but also the system attributes, such as: performance, security, reliability,
robustness, or viability. In addition, it is created and used by diversified groups of
people: managers, systems analysts, and programmers.

Although the system specification is far more complex than the local specifi-
cation, the litccature on formal specification either concerns itself exclusively with
the local specification, or does not recognize the difference between them. A direct
transfer of the methods used in the local specification to the system specification
creates two problems. First, many specification techniques and languages, used
for a single module specification, do not scale up to a large and complex system.
Second, most local specifications use specialized languages based on advanced math-
ematical concepts, which are not accessible by the heterogeneous group of people

participating in the system specification.

7.2 Characteristics of the Specification

7.2.1 Abstract and Linguistic Nature of Specification

Both the system and the local specification are abstract linguistic constructs, which
are used in human-machine and human-to-human communications. Therefore, spec-
ifications must be machine and human readable, or they must be automatically
translated into human readable texts. As a result, specifications use a combination
of natural, artificial, and pictorial languages (graphical specification).

7.2.2 Dynamic Nature of Specification

Specification is an intrinsic part of the entire software development process and it
has an cvolutionary and dynamic character. Thus, the system specification must
be viewed as a process, not as a final product.

The traditional waterfall model assumes a linear sequence of the analysis and
design steps, in which the specification has to be completed before the design can
be started. In reality, the analysis and design process has an iterative and evolving
nature.

As it was noted by Floyd in [Floyd 89)], the system specification is not pre-
defined, it is rather created throughout a number of interactions between the users
and the system developers. In this view, the specification process is a learning
process. The users have to learn a new perspective on their system, whereas the
developers iearn about the organization of the existing system and its goals

Furthermore, specification must reflect changes in the modelled application and
its environment. Since systems and their environments do change, the system spec-
ification is never finished and is constantly under a number of revisions.

87

7.2.3 Complex Nature of Specification

System specification is complex because (1) it describes many aspects of a system
and (2) the systems it specifies are often complex.

Specification describes both the functional and non-functional perspective on a
system. Functional specification defines the system from the operational perspec-
tive. The non-functional specification describes attributes such as performance,
security, reliability, robustness, and viability. However, depending on a specific sys-
tem, the non-functional attributes can be also functional. Moreover, some aspects
such as ergonomics (for example user interface), maintainability, or reusability; are
difficult to classify. In our work, we concentrate on the functional description of a
system.

In addition, specification reflects the complexity of the specified system: its size
and a number of relationships between its components.

Decomposition and abstraction are the two methods used to decrease the com-
plexity. A modular approach allows for decomposition of the specification into
smaller, more manageable, parts. An abstraction method allows for constructing
multilayered specification, in which the top layer includes the requirements specifi-
cation and each consecutive layer has more implementation details. As a result, the
system specification must include mappings from the higher to the lower levels,

7.3 Intertwining of the System Specifica.ion and
Implementation

Ideally, the conceptual specification should be independent from the physical aspects
of the system. Abstract description allows for creation of a specification with many
possible implementations and it eliminates the reexamination of the conceptual layer
after each change in the physical layer. However, in the case of the software systems
it is difficult to describe precisely what constitutes the specification of the system
and what constitutes the system implementation. The distinction between them
is based only upon the level of abstraction. Moreover, some aspects of the system
specification, for example, the time- and security-related specifications, depend on
the physical implementation of the system. However, relatively few works recognize
the intertwining of specification and implementation ([Swartout and Balzer 1982,
[Floyd 1989]).

88

7.4 Specification Definition

The term system specification is used here to denote a specification (or a set of
specifications) of a software system. The software system is described, for the
purpose of this work, as an open system implemented totally or partially by a set
of computer programs.

The conceptual specification is a description of the users’ requirements mapped
to a specific conceptual model and expressed in a particular language. The im-
plementation specification is a mapping from the conceptual specification into the
particular implementation of the system.

To generalize, we define specification as a sequence of layers S;. Each layer is a
text expressed in a particular language (or languages) and referring to a specified
model (or models). Languages can be graphical or sequential and formal or infor-
mal (natural language). Modcls can be represented by formal systems or general
descriptions.

One specification layer should correspond to one level of abstraction. This is
usually guaranteed by the model and language used at a particular level.

Specification also includes the mappings between the layers. Mapping M; de-
scribes (1) the methods creating layer i + 1 from layer i and (2) the verification
methods to demonstrate that the requirements from a higher level are preserved by
the lower level.

The specification at level 7 is a tuple:

Si =< T'l” Ll'a ‘/h A[l >

where

T; is the set of specification texts for layer ¢

L; is a set of languages uscd at layer ¢

V; is a set of models used at layer z

M; is the set of mapping functions from layer i — 1 to layer ¢ and reverse functions
or verification methods from layer ¢ to layer ¢ — 1.

Specifications use three classes of semantics: denotational, operational, and ax-
jomatic. Other authors described these methodologies as two approaches - restric-
tive and prescriptive [Lamport 86], or as two styles - definitional and operational
[Liskov and Guttag 86]. The prescriptive approach gives a high-level description of
all possible behaviours of the designed system. An implementation is equivalent to
the specificatior, which means that all specified behaviours have their representa-
tions in the implementation. The restrictive approach specifies a system by a set
of propertics it must satisfy. It allows a construction of different implementations
exhibiting different behaviours as long as all of them satisfy specified properties.

89

7.5 Formal Specification

The specification methods may be classified as informal, semiformal (rigorous), and

formal.
The specification is formal when all components are formal:

1. The ianguages L; are formal (they have formally defined syntax, semanties,
and pragmatics)

2. The models V; arc formal
3. The mappings between layers and verification methods are formalized.

Formal in this context refers to having mathematical basis. In more restricted
meaning, formal description implies that all properties of a system can be proved.

7.6 Verification and Validation

Some authors use the terms verification and validation interchangeably ([Bochmann
87]) while others use them with different meanings. For example, Rudin ([Rudin
87]) uses walidation to describe checking of the syntactical correctness and verifi-
cation to analyze the functional aspects of a system. However, from the software
engineering perspective verification and validation have two different scopes; verifi-
cation is, in fact, a part of validation. Verification determines the correspondence
between a software system and its specification. Also, it demonstrates consistency,
completeness, and correctness of software. The scope of validation is broader and
it includes the evaluation of the system by its users. Boehm in [Bochm 81] defines
the verification and validation in the following way:

Verification: To establish the truth of correspondence between a soft-
ware product and its specification (from the Latin wveritas, “truth”).
Validation: To establish the fitness or worth of a software product for
its operational mission (from the Latin valere, “to be worth™).

In our work, we use terms verification and validation in the above sense.

90

Chapter 8

Communicating Abstract
Machines as a Formal
Specification for the
Communication Model

8.1 Communication System Modelling

Reactive Systems

Our communication model belongs to the broad class of reactive systems. The term
reactive system cemphasizes that the major purpose of the system is interaction
with its environment. This is different from the sequential approach, in which the
interactions take place exactly twice: at the beginning and upon termination of
the process. For instance, sequential programs can be viewed as functions from
the initial state to the finial state, which accept input values at the beginning and
produce output values upon termination. The traditional waterfall model is an
example of the sequential approach to the systems development process.

A formal specification of a reactive system is difficult, since (1) reactive system
interacts with the environment throughout its execution, (2) the execution is usually
long-term or non-terminating, and (3) reactive system is often distributed, concur-
rent, non-deterministic, and real-time. On the other hand, the formal specification
is necessary to manage the complexity of this class of systems.

Communication System Definition

A specification for the communication system includes (1) definition of the interface,
(2) description of processes, (3) description of interprocess communication, and (4)

91

b(’haVioral COﬂStraintS. ll(‘ll((‘, we (](‘ﬁ"(‘ ('Olnl"ll“i('ati()ll svstem S as a « ll('l(lrll)l(‘:
A l I
S =< E, {A[,‘}?___l,(T >

where E 1s a description of the interface with environment, M, is a formal description
of process P;, C is a specification for the interprocess communication, and 7' defines
constraints on the behaviour of the system: start, termination, or failure condition,
for example.

In this chapter, we concentrate on process specification since other components
are implementation dependent. To describe processes, we introduce a formalism
based on the concepts of states and transitions — Communicating Abstract Ma-
chines. This formalism is only one of the possible descriptions, and a particular im-
plementation of our model can be based on any other formal technique, for instance:
Petri Nets ([Peterson 81], [Liu and Horowitz 89]), the Calculus of Communication
Systems (CCS) [Milner 80], Communicating Sequential Processes (CSP) [Hoare 85],
Temporal Logic {Lamport 80], or Actors [Agha 86].

Our choice of a formal language is based on three premises: (1) Formalism
for the communication model should have operational semantics; (2) It shonld be
accessible to diversificd groups of people; and (3) It should be based on one of
the existing techniques. The state-based approach meets all three requirements.
Its semantics is operational; therefore, it can be easily visualized and enacted by
the developers ([Shwarz 82], [Pattavina 84], [Joseps 88], [Lam and Shankar 90]).
It is widely used in software enginecering and many other fields. Furthermore, its
graphical representations, such as State Transition Diagrams and Statecharts, are
supported by many CASE tools.

On the other hand, methods based on temporal logic or algebra, Milner’s Caleu-
lus of Communication Systems [Milner 80}, for example, use a specialized notation
and reasoning methods which restrict their usage mostly to academic and research
settings [Lam and Shankar 90].

Applications of State Machines

Various fields use the state machine concept: mathematics (automata theory), com-
puting science (complexity theory, language recognizers), linguistics (Augmented
Transition Networks), engineering (digital circuits design), and systems modelling.
This fact demonstrates that the state-based formalism is widely accepted and suc-
cessfully used by diversified groups of people. In the context of the communication
model, we are interested, especially, in two applications: computer networks and
systems analysis and design.

In computer networks, the FSMs are used to model communication protocols.
In particular, Estelle (Extended State Transition Language) is a popular formal

description stardard accepted by 1SO. The theoretical basis and practical imple-
mentations of Estelle are described in ([Merlin 75), [Merlin 76], [Lam and Shankar
84), [Jard 85], ;Kovacs 86), [Lombardo 86), [Palmer and Sabnani 86], [Ross 87],
[Bohmann 77, 78, 80a, 80b, 82, 87) [Budkowski and Dembinski 87]). The formal
specification language Estelle was extended by the notion of time [Dembinski and
Budkowski 87] and supported by a number of software tools [Ansart 86], among
them C and Smalltalk compilers and a dynamic graphical representation GROPE
[New and Amer 89)].

In systems analysis and design, state machines are used to model system pro-
cesses. The standard techniques include State Transition Diagrams, PERT charts,
extended Data Flow Diagrams, and Statecharts. For example, Ward, in [Ward 86],
added state machines to the traditional DFDs. These automata, called transfor-
mation schema, define timing and control, whereas DFDs describe the overall flow
of information. STATEMATE is a graphically oriented system based on Harel’s
Statecharts and used for the specification, analysis, design, and documentation of
reactive systems ([Harel 87], [Harel 88], [Harel et al. 90]),

Since state machines are used in various disciplines, each field has developed
its own terminology and notation. In addition, the original FSMs were extended
in many ways to include: state variables, enabling predicates, procedures, timing,
probabilitics, and structural decomposition. Therefore, to describe the Commu-
nicating Abstract Machines, we must first define the basic terms and give a short
history of the extensions to FSMs.

Limitations of Simple FSM and their Solutions

The original Finite State Machines were created to describe small systems. As a
result, when they have been used for the specification of large reactive systems, the
developers encountered many problems. Thus, the simple state machines have been
extended in many ways to overcome the “traditional” limitations. Four problems
are discussed in the literature [Harel 87): (1) “Flat” and unstructured nature of
¥'SMs; (2) Stale cxplosion; (3) A separate representation for each transition; and
(4) The sequential nature of FSMs. Figure 24 illustrates the four problems and
their solutions.

Organization of this chapter follows the history of FSMs. Sections 8.2, 8.3, and
8.4 describe the Finite State Machine models used for the specification of communi-
cation protocols: Simple Finite State Machine, Abstract Machine (Extended Finite
State Machine), Communicating Finite State Machines, and Extended State Tran-
sition Language (Estelle). Section 8.5 discusses representation methods for FSMs.
Sections 8.6 and 8.7 define Communicaling Abstract Machines (CAM) and provide
specification for Subtask 5 from case study. Section 8.8 adds the notion of time to
the CAM and gives an example of time specification for Subtask 5.

93

Unstructured Slruclum.l. “_‘@
Decomposition
<—4imc Variables Abstract
Machines

State Explosion

/

Procedures
Predicates
- CFSM
chrcscnfa.uon Broadcasting -
for each transition
Mcssages

Scquential Nature

- Newwork of Machines

Figure 24: Limitations of simple FSMs and their Solutions

8.2 Simple Finite State Machine

The articles by Bjorner, Bochmann, and Danthine ([Bjorner 70], [Bochmann 78],
[Danthinie 80]) were among the first works adopting simple Finite State Machines
to model communication protocols. Their articles were concerned mainly with the
following issues: discrete character of FSM, sequencing of the events, and synchro-
nization.

Discrete Character of the FSM

The Finite Statc Machine models are characterized by discrete-valued inputs, ont-
puts, and internal elements; whereas, the ccatinuous machines can accept and pro-
vide continuous signals. On one hand the discrete model of processing is limited by
the virtue of digitalization, but on the other hand it better reflects the nature of
the digital computer. Since the FSM has a discrete nature, modelling of real-time
systems requires methods for time quantization.

Sequencing of the Events

A basic Finite State Automaton gives an output value depending on the current
input and a sequence of previous inputs. Each sequence of inputs is named by a
state name. A process modelled by a single FSM can only accept one input and

94

produce one output at a time. It can be only in one state (called the current or
present state) and perform one transition at a time. During its execution a machine
can be either in a state or a transition. Since the finite state machine is sequential,
parallel execution must be represented by a set (network) of the single machines.

Synchronization

There are two types of finite state machines: synchronous and asynchronous. A
synchronous machine works upon a clock pulse; each transition is executed upon a
clock tick. Time itself is modelled as an ordered set of integers. Thus, at time ¢, the
machine is in state ¢(¢) and and at time t +1 it is in state ¢(¢t+1). An asynchronous
machine executes its transition upon occurrence of a triggering event.

8.2.1 Deterministic Finite State Machine Definition

The following definition is based on the Finite State Automaton described by Dan-

thine, in [Danthine 80).
A deterministic finite state machine is a tuple :

FSM=<Q,%,q.,f,y>

Q - a finite set of states
¥ =TUO - a finite set called input/output alphabet
qgo - the initial state, qo € Q
f - a total function called the state transition function f:/ xQ — Q
g - a total function called the output functiong: Q@ x I — O

The g function corresponds to a Mealy model of the FSM, in which the output
depends on beth the presert state and the present input. The other possibility for
the output functior is the Moore model, in which the output is determined only
by the present state, so the output function is defined as g : @ — Q. In the next
sections, we refer to the Mcaly model of FSM.

Transition Function

Automata perform one or both of the following tasks. They compute partial func-
tions X* — Y™ (X and Y are finite alphabets’ or they recognize languages L(X)

over alphabet X.
The A transition is introduced to represent an internal event of the machine

which is not triggered by the input event. Lambda transitions are used to compose
a compiex machine from a number of submachines.
Deterministic finite state machine with A-transitions is defined as a tuple :

FSM —-)X=<Q,XU{}\},q,f, 9>

95

Q - a finite set of states

Y =TUO - afinite set called input/output alphabet

qo - the initial state, qo € Q

J - a total function called the state transition function F:IU{A}xQ—-Q
g - a total function called the output function ¢: Q x TU {A\} = O

8.2.2 Nondeterministic Finite State Machine

In deterministic inachines, the next state is completely defined by the present state
and input; in nondeterministic machines a number of next states can be possible,
Nondeterminism can also be added by introducing a set of initial states instead of
one initial state.

A nondeterministic finite state machine is defined by a tuple:

NFSM =< Q,%,Qo, f,g >

Q - a finite set of states , P(Q) - a power set over Q

2 - Input/output alphabet

Qo - a set of initial states, Qo C Q

[- a total function (transition function) f: J x QR — P(Q)
g - a total function (output function) g: Q x I — P(0O)

8.3 Abstract Machine (Extended Finite State
Machine)

In the modelling of more complex systems, the number of states can casily become
immense. This limitation of the FSM is known as the stafe space cxplosion problem.
To eliminate the necessity of state enumeration, an abstract model was proposed
with state classes and state variables. This extension was originally done by Keller
[Keller 76] for parallel programs. Later, abstract machines were used in modelling
of communication protocols ([Bochmann and Gecsei 77], [Danthine 80], [Bochmann
and Sunshine 82], [Simon 82], [Bochmann et al. 82], [Linn 88]).

The abstract model introduces state space variables and extends transitions by
enabling predicates and procedures written in programming languages.

The states are organized into classes and FSM is extended by a vector of local
variables V = (v}, v,,...,v;). A state class type is described as a tuple < s,v; >,
where s € S is a type name, and v; is a vector of variables, called state variables.
The instances of the states are described by the type name and the values of the
state variables. If the variables are unbounded, the number of state instances can

96

be infinite. Therefore, the name abstracl machine seems to be more appropriate
than eztended finite stale machine.

The transition is extended by an enaoling predicate P; and an acifon function
F,. An enabling predicate is a logical statement on the state variables and the
event value. When the transition is triggered by the appropriate event or set of
cvents, the enabling predicate is evaluated. If the predicate evaluates to a true, the
corresponding function F, is calculated, ihe next event or events are generated, and
the machine changes its state to the next onc. Function Fiy(v;) is described by a

procedure written in one of the programming languages, for exainple: Pascal, C, or

Smalltalk.
Thus, transition ¢ from state ¢; to state g4 is represented by the following tuple:

t =< qi, El’ Pl(v!')$ Ft(vi)v Gi+1, En >

where

¢i>¢i+1 € Q and ¢; is the present state, ¢i4y is the next state

E, C P(X), sct of triggering events

E, C P(X), sct of output events. P(v;) - an enabling predicate
Fiy(v;) - transition function.

Abstract Machine Definition

The abstract machine is defined as the following tuple:
AFSM =< Q,%,Q0, %, P(V),V >

Q - a state space, QC SxV
¥ - a set of events
Qo - a sct of initial states, Qo C Q
¥ - a mapping @ x T x P(V) = Q x ¥ x F(V)
V - a vector of local variables
P(V) - a set of predicates over V'
F(V) - a function V = V
The system behaviour is described by the set of global states and transitions
between them. A global state is a pair < S, E > where S is n-tuple < s, s2, ..., 5; >
of entity states and E is n-tuple of the triggering events lists.

8.4 Communicating Finite State Machines

Aho, Ullman, and Yannakalis are among the first to use the communicating state
machines ior the protocol specification [Aho et al. 79]. Later, the Communicating

97

Finite State Machines (CFSM) were described in more detail Brand and Zafiropulo
[Brand and Zafiropulo 83] and Lam and Shankar [Lam and Shankar 84].

In the model described by Brand and Zafiropulo, the mechanism enabling the
transitions is based on sending and receiving messages. The entities in a commu-
nication system are modelled as finite state machines, processes are described by
protocols, and the interprocess communication is specified by channels with mes-
sages.

Brand and Zafiropulo define protocol as the following tuple:

N

<< S Noi,<o >N, < M; > =1, SuCC >

Where
S; - set of states for process ¢
o; - a global initial state
M; ; - a finite set of messages that can be sent from process ¢ to process j
succ - partial function mapping state and message into state.
The model proposed by Lam and Shankar has the following components [Lam
and Shankar 84]:

1. A finite set of protocols for the entities Py,..., P,
2. A finite set of channels C;
3. A finite set of messages AM;; sent by entity P; into channel Cy.

The global state in CFSM is specified by a pair << s; >, < my > ., where vector
< s; > represents the states of all entitics in a system, and 1y represents messages
in channel Cy.

A state transition function is replaced here by a set of events. Events are de-
scribed by two components: an enabling condition and a procedure, which is ex-
ecuted when the enabling predicate is true. Events are classified into two groups:
entity events and channel events. The entity events affect both the state of an en-
tity and the contents of the channel. Channel events are only concerned with the
messages in a channel. The entity event is defined as a triple:

< S,',SJ',M >

where s; denotes current state, s; next state, and M denotes sending or receiving a
message.

8.4.1 Extended State Transition Language (Estelle)

Extended State Transition Language, Estelle, is a formal description technique
(FDT) developed by the Nativnal Bureau of Standards (NBS). Estelle has been

98

accepted as an international standard by the International Organization for Stan-
dardization (ISO) for the description of computer communication protocols [NBS
Report 87].

Estelle describes a system as hierarchically organized modules (entities) com-
municating through channels. A bchaviour of an entity is described by a single
extended finite state machine. Procedures associated with transitions are described
in one of the high level programming languages. Both the hierarchical structure
and the use of procedures reduces significantly the state ezplosion problem. Thus,
Jstelle defines protocol by a relatively small number of states.

Estelle uses the following definition of a transition [Linn 86]:

trans

priority <expression>

from <state list>

to <state>

provided <predicate>

when <message id>

delay <min> <max>
begin

<procedure description in Pascal>
end;

Description used in our model is based on Estelle. However, we do not use any
particular programming language for the procedures.

8.5 Representation Metheds for FSM

State Transition Diagram

The most often used representation for the FSM model is a state transition diagram
(state diagram). It is a labeled directed graph, in which arcs represent transitions
and nodes represent states. Transitions are labeled by the inputs and outputs. Dis-
tinctive states: initial (start), final, and acceptance, are marked by special symbols.
This method is a good graphical representation of a machine, but it becomes incom-
prchensible for a large number of states and transitions. The state transition table,
the state transition matriz, and, especially, Statechart accommodate more complex
cascs.

The State Transition Table and Matrix

The state transition table consists of four columns: current state, input(event),
output (action), and next state.

99

Two representations are used for the state transition matrix. In the first one, the
states are listed on the left side of the matrix, events along the top. Fach element
in the matrix shows an action and next state. In the second representation, the
present (current) states are listed on left side and the next states along the top.
Events and actions are shown in the clements of the matrix.

Event Trace Diagrams

Event Trace Diagrams show each machine as a vertical line with an assigned name.
The messages sent between machines are shown as directed vertical lines from the
sender to the receiver. Time changes are shown from top to bottom.

Statecharts

Statecharts, introduced by Harel [Harel 87], extend a finite state machine by four
notions: (1) hierarchical (nested) structures of states, (2) state variables, (3) tran-
sition actions, and (4) transition guards (Boolcan expressions). They are used by
many state-based modelling techniques, for example: Object Modelling Technique
(OMT) [Rumbaugh et al. 91) and STATEMATE system [Harel et al. 90).

8.6 Communicating Abstract Machines

The formalism described in the following scction, Communicating Abstract Machines
(CAM), combines the features of Abstract Machines, CFSMs, and Statecharts. It is
an asynchronous and message-based system with composite states. An asynchronous
system is understood here as a system which is not synchronized by an internal
clock. Transitions, in this model, are enabled only by the messages. However, a
synchronous model can be viewed as a special case of the asynchronous approach.
Thus, any synchronovs model can be represented by the Communicating Abstract,
Machines, in which the clock signals are described as messages.

In CAM, processes (represented by single abstract machines) interact by gen-
erating and accepting messages. Messages arrive to the specified machine and are
placed on a queue, called a mailboz. A message is removed from the mailbox when
the corresponding transition is executed. When the transition is cnabled, the ma-
chine performs appropriate action and goes to the next specified state.

Composite states are described by an abstract machine, in which the incoming
messages for the initial state and the outgoing messages before the final state balance
with the incoming and outgoing messages for the decomposed state.

100

Incoming and Outgoing Messages

There are two general classes of messages: exfernal and internal. The external
messages represent the interaction between processes (machines), and the interac-
tion between the system and its environment. External messages have two types:
incoming and oulgoing. The class of internal messages has only one type, called
next-stale. This message is generated by the machine AM; for the machine M;. In-
ternal messages represent the internal behaviour of the machine and corresgond to
the A -transitions in the traditiona! I/O automata.

Incoming Messages

Incoming messages occur as a result of corresponding outgoing messages. Thus,
the message compleleness means that for each incoming message there must exist a
corresponding outgoing message.

Incoming messages play the role of the triggering events for the transitions.
An incoming message is represented graphically by a sign “>" and a corresponding
message identifier. Thus, “> m1” represents incoming message m1. Incoming mes-
sages have two sources: other machines in the system and the system environment
(external control messages: suspend, restart, terminate, or abort).

Outgoing Messages

Outgoing messages are generated by a process (machine) or the system environment.
They can be sent to any machine, providing that the receiver’s address is known
and the mailbox is in operation. To simplify our examples, we assume that the
mailboxes are unbounded and always in operation. However, an operating mailbox
does not imply an operating receiver.

An outgoing message is represented graphically by a sign “<” and a correspond-
ing message identifier. Thus “< m1” represents oncgoing message ml.

Communication protocols can i~present many communication schemas, for ex-
ample: the hand-shaking mechanism or the posting board concept. Thus, in the first
case, the participant who is sending a message waits until it is acknowledged by the
receiver. In the posting board scheme, messages are sent to a dedicated participant
(with permanent storage) and stored, then they can be read by other participants.

Definition of the asynchronous FSM

Our definition of the asynchronous FSM is influenced by Keller [Keller 76], who
defines a transition system as a pair (Q,—), where @ is a set (not necessarily
finite set) of states and — is a binary relation @ x @, called the set of transitions.
The asynchronous FSM is defined by the following tuple:

101

FSA[=< Q‘ SqQUvd' >

Where

Q is a state spaceand @ C S x V

¥ is a finite set of incoming and outgoing messages

Qo is a set of special states (initial, final, or acceptance), Qo C Q
¥ is a transition function, 3 : @ X ¥ — @ x ¥ x F(V)
Network of Asynchronous Machines

A collection of FSM machines can be called a network of machines if:
1. There are at least two machines Af; and AM; in the network Net({M;},

2. For each machine, there exist at least one outgoing and one incoming message.

8.7 Specification Example. Subtask 5

Formal specification of Subtask 5, (case study in Chapter 5) has two parts: (1)
Functional Decomposition and (2) Abstract Machine Specification for cach partici-
pant. The overall communication required for Subtask 5 is illustrated in Figure 25.

Monitoring

start Participant
stop
/O MG
l”
'l
’I
Y RM N
O< O
MG Reply 5 PM

Figure 25: Functional Decomposition of Subtask 5

At Level 1, the Monitoring Participant starts (message start) or stops (message
stop) Subtask 5. Level 2 describes communication between the Management Group,
MG, and the Project Monitoring Group, PM. The Management Group sends the
message Request for Measurements (RM) requesting current measurements of the
customer representatives knowledge. A reply is expected in one weck in a form of
the Status Report of the Customer Representatives Knowledge, Reply 5.

Iigures 26 and 27 represent respectively behaviours of the Management Group
and the Project Monitoring Group.

> Report 5

> stant > stop
<RM < terminate
") -
>TTS

Figure 26: Communication Abstract Machine describing the behaviour of MG

State 1 in Figure 26 is the initial state of the machine. When message start is
received from the monitoring participant, message RM is sent to participant MG
and the machine changes its state to State 2. In State 2, participant MG can receive
two messages: stop or Report 5. When message stop comes from the monitoring
participant, participant MG sends message terminate to participant PM and goes
to State 3. In State 3, it awaits the Terminated Task Status Report, TTS from
participant PM. If, in state 2, the machine receives Report 5, it returns to the
initial state, State 1, and stops.

Figure 27 describes the behaviour of the Project Monitoring Group (PM).

<Report 5 >1
O

<RI

D—" G -®
o/ TN
<TTS > terminate
G)

o/

Figure 27: Communicating Abstract Machine describing the behaviour of PM

Initially, the machine is in State 1 (initial state). The incoming message RM
triggers the first transition — the machine changes its state to State 2. After
message RM has been received, participant PM sends a Request for Information
(RI) to the Task Librarian (not shown in our example) and goes to State 3. In
State 3, it can receive two messages: the requested information (I) or terminate.
When, it reccives message I, it changes state to State 4, in which the Report 5 is
prepared.

103

When Report 5 is sent out, the machine changes to State 1 and stops.

When, the machine is in State 3 and message terminale arrives, it changes its
state to State 5 and prepares message TT'S. When message T'T'S has been sent,
the machine returns to its initial state, State 1, and stops.

8.8 Time Representation and its Functions in
the Communication Protocol Specification

The time-sensitive systems comprise two classes:

1. Time-dependent - systems which have internal time constraints [Lamport 78).
These constraints are qualitative or quantitative. Qualitative constraints rep-
resent the temporal order of events; whereas, the guantitative constraints
specify the duration of events.

2. Real-time - systems which have external time constraints (imposed by their
environments). These systems have two types of timing constraints: perfor-
mance and behavioral [Dasarathy 82]. Performance constraints set limits on
the response time, wherecas behavioral constraints describe the rates in which
the environment interacts with the system. The hard real-time systems have
time constraints as a part of their specification and as a condition of cor-
rectness. The soft real-time systems have time parameters as a part of their
specification, but will function correctly even though the time requirements
have not been met.

The communication model belongs to the real-time systems. In particular, the
protocols for the critical tasks are hard real-time. Therefore, the specification and
verification of communication protocols is incomplete without time related descrip-
tion and analysis [Yemini 82].

8.8.1 Formal Time Specification

The following subsection provides an overview of time representation in FSM-based
models and describes the functions of time in our formalism.

Time in the FSM-Based Model

The FSM-based models use two representations for time; they associate time with
(1) the executions of transitions or (2) the lifetime of states. These two methods
correspond to two views of the FSMs. The first one, introduced by Beizer in [Beizer
70], describes states as snapshots of the system at an arbitrary moment of time

104

and transitions as actions of a specific duration. The second approach, described
by Bolognesi and Rudin in [Bolognesi and Rudin 84], views transitions as instanta-

neous.

Time Information

A specific representation for the time constraint is implementation dependent. Thus,
depending on particular project and implementation, time can be global or local, and
it can be represented by constants or intervals ([Bolognesi and Rudin 84], [Dasarathy
82]). Furthermore, the notion of time can be used in various functions. We will
discuss here three functions of time: (1) reliable communication, (2) performance
specification, and (3) synchronization with external systems.

Mechanism Providing a Reliable Communication

A mechanism to improve the reliability of communication is needed, simply because
the human participants are unrcliable. Thus, we present in this section an example
which uses time-outs, acknowledgements, and reminders.

The: time-outs are supported by a mechanism denoting the passage of fixed
amounts of time (local or global).

An acknowledgement mechanism requires that the receiver sends back an ac-
knowldgement upon receiving the message. If the acknowledgement is not received
by the sender, after a specified time, a reminder is sent.

A simple model with acknowledgements and reminders is described by the fol-
lowing scenario. Participant S sends message m to participant R. When message m
is received by R, R sends back an acknowledgement AC K'(m) for message m. When
acknowledgement AC K (m) is received by S, predicate RECEIVED(ACK (m)) is

evaluated to true.
The process of resending reminder rem is described by the following procedure:

Send (m);

While not RECEIVED(ACK(m)) do
Send (rem)

end;

This procedure will resend a reminder until the acknowledgment is received. How-
ever, if the receiver is not operating, the sender sends unlimited number of unnec-
essary reminders. Therefore , this simple mechanism should be modified to restrict
the number of reminders. This can be achieved by two mechanisms: a time-out
and a counter of the reminders. First mechanism, a time-out, resends a reminder
at specific time intervals. The time-out value can be approximated from the mes-
sage propagation time, priority of the message, and the receiver workload (receiver

105

response time). The second mechanism limits the number of reminders; after the
maximum value is reached, the receiver is assumed to be non-active.

The timer is set up for each message, m, and it can be disabled only when
the predicate REC EIV E(AC K (m)) is true. A reminder rem is sent when TTIME-
OUT(m) from the timer is received.

Send (m);

Set timer for interval i;

While not RECEIVED(ACK(m)) and TIMEOUT(m) do
set timer for interval i
send (rem)

end;

In the mechanism with a counter, reminders are resent a limited number of times,
An arbitrary number n is chosen to represent a maximum number of retries. If after
n reminders the acknowledgment is not reccived, this procedure stops resending and
initiates a task to inform about a communication problem.

COUNT:=0;
While not RECEIVED(ACK(m)) and TIMEOUT(m) and COUNT < n do
set timer for interval j
send (rem)
COUNT:= COUNT + 1
end;
If COUNT > = n
Start Communication Problem Task;

Mechanism for the Performance Specification Measurements

Performance constraints require estimation of the execution time for tasks. The
time estimation is done by the participants based on the history of similar tasks
and the available project resources. For example, in Subtask 5, the Management
Group estimated the time required for Report 5 for one weck.

Mechanism for Synchronization with External Systems

The real time mechanism is required, when two or more systems must be syn-
chronized at some point. Real time provides the external reference point to all
participating systems. Time requirements can be generalized as a synchronization
between real time and a particular state of a system. This synchronization can be
represented as a triple (s, taz, tmin). When the minimum time is specified, the sys-
tem must be in state s at the time t,,;, or afier time {,,;n. When the maximum time

106

is specified, the system must be in state s before or at the time ¢,,,,. Combination
of these two will give a specification: the system must be in state s after time ¢y
and before time Ly, -

8.8.2 Example. Timing Specification for Subtask 5

Figure 28 illustrates an abstract machine specifying Subtask 5. It corresponds to
the behaviour of Management Group depicted in Figure 8.4.

ns >T2
7 >R] <set T3 .
> start > slop
<RM < terminate
3
< T1-off < REM(RM)
>T1
>TTSor T3

Figure 28: A Communicating Abstract Machine with Time-outs

The example above has three time-outs: (1) T1 for message RM, (2) T2 for
Report 5, and (3) T3 for TTS. The time-outs set the timer to appropriate values.
After the specified time ¢, a time-out message T, is sent by the timer (time server).
Time-outs 7y, T,, and Ty have two functions. Time-out 71 is used to improve the
reliability of communication, while 72 and T'3 are used as performance constraints.
T; is the estimated time for the Report 5 and T is the time required to complete
the Terminated Task Status Report (TTS).

Initially, the machine is in State 1. When message start is received, it sends out
message RM and goes to State 2. Message RM automatically sets timers 71 and
T2on. Timer T'1 is set to, for example, one hour; timer T2 is set to one week. Thus,
if an acknowledgement for message RAf (AC K (RM)) has not been received after
11 units of time, a time-out message T'1 is sent by the timing mechanism. When T'1
is received, the machine goes to State 5, sends out a reminder (REM(RM)), and
returns to State 2.

However, if the acknowledgment ACK'(RM) is received, the machine changes
to State 4. turns off timer T'1 by sending message TI-off, and returns to State 2.

If the Report 5 has not been received before the timeout 2, the machine sets
timer t3 and goes to State 3. When, the time-out 73 or message TT'S is received,
the machine goes to the final state (State 1).

Formal Specification of Subtask 5

Management Group Subtask 5, Level 2

Participant: Management Group (MG)
States : S1, S2, S3

Initial State: 51

Finial State : S1

Desired Outcome: Report 5

Transition from State 1 to State 2
when message: start
action: send message RM
set timer T1 and T2

Transition from State 2 to State 3
when message: time-out T2
action: set timer T3
send message request TTS

Transition from State 2 to State 3
when message: stop
action: set timer T3
send message terminate

Transition from State 2 to State 1
when message: Report 5
action: next state

Transition from State 2 to State 4
when message: ACK(RM)
action: next state

Transition from State 4 to State 2

when message: next state
action: T1-off

108

Transition from State 2 to State §
when message: timeout T1
action: next-state

Transition from State 5§ to State 2
when message: next-state
action: REM(RM)

Transition from State 3 to State 1

wvhen message: TTS or timeout T3
action: next-state

109

Chapter 9

Conclusions

9.1

Contribution of this thesis

This thesis describes a new model for the software systems development. process
a model based on technical communication between all project participants. The
contributions of the communication model to software systems development process
modelling, can be summarized by the following:

1.

o

The communication model recognizes the most important aspect of the soft-
ware systems development process - communication. It formally models the
communication processes between all project participants (Chapter 1 discusses
the role of communication).

The communication model emphasizes the role of people. It includes explicit
representation of all project participants, not only developers. An explicit
representation of participants and a formal description of the communication
processes can be used to specify a software system in terms of services.

Human aspects were recognized early in the history of software engincering,
particularly by the well known book The Mythical Man-Month [Brooks 75].
However, research on the role of people in project development have concen-
trated on human resources management [Abdel-Hamid 89], computer psychol-
ogy, and cognitive issues. The human dimension has not gained attention in
the formal models for the software systems development process.

The communication model uses a uniform paradigm for the entire life of the
software system — it does not distinguish between so-called “initial develop-
ment” and “maintenance”.

The communication model considers both types of communication: oral and
written. Therefore, it unifies product-oriented (document-driven and code-

110

driven methods) and process-oriented (risk-driven and process programming)
approaches. The mapping between various models (waterfall, spiral, and rapid
prototyping) and the communication model is described in Section 4.5.

5. The communication model is formally defined using operational semantics;
therefore, it can be executed (enacted) by people and machines.

6. The communication model is a generic model; therefore, it can be instantiated
in specific projects using different methods and techniques.

7. Communication is a generic type of activity that can describe #ll types of
development activities: negotiation, learning, and managing. Furthermore, it
is used as a common description for software systems and their development

process.

8. The communication model can improve many aspects of project management;
it eliminates unnecessary communication, facilitates communication between
participants distributed among remote sites, improves the task understanding,
and provides automated task documentation (Section 2.8.2 and Section 3.4.1
describe this issue in more detail).

9. The formal specification of communication provides methods to identify spe-
cific properties of the system, such as: absence of deadlock, presence of bot-
tlenecks, and completeness (Section 3.4.2 provides more examples).

9.2 Future Work

Our communication model integrates the CASE (Computer Aided Software Engi-
neering) tools with systems development methodologies. In this model, the methods
and techniques are described by the communication protocols and behavioral con-
straints. The sets of processes and constraints are implementation and project
specific. The users of each software environment can define their own sets of pro-
cesses, for example, using an Environment Definition Language (EDL) [Sorenson
88a] [Sorenson 88b).

The communication model can be used to integrate the tools for software engi-
neering environments. This system can monitor the entire life of tasks and subtasks
of the project. It can give information about the history and current status of all
components: participants, tasks, modules, knowledge repositories, and resources.

The system based on the communication model can support the following facil-
ities:

111

7.
8.

. Documentation Mechanism for the project tasks, participants, modules, knowl-

edge repositories, and resources (multi-version mechanism, history mecha-
nism).

Reporting Facility for the current status of the system in terms of tasks,
participants, associated modules, and assigned resources.

The Task Planning, Task Scheduling and Rescheduling Facility (producing
the PERT charts, Gantt charts, and automated analysis of the critical paths)

Automated Analysis of conmmunication bottlenccks, deadlocks, and lifelocks.

. Rule-based Task Assigning Mechanism using a matching and reasoning pro-

cess.
Analysis of the work (task) load for individual participants
A Security Mechanism for project modules and project knowledge repositories

Concurrency Control Mechanism for project modules

Most of the information required by this model is alrcady present in any large
project. However, related data is scattered among the organizational charts and
standards, reporting rules, time sheets, progress reports, and task assignments. The
proposed system gathers the existing information in a well-organized communication
network.

112

Appendix A

Implementation Examples for the
Communication Model

A.1 Participant Implementation

In the example below, the participant attributes are organized into three sets: con-
irol, expertise, and securily. The control attributes describe the level of autliority.
The highest level allows for the task initialization, execution, modification, and
termination. The expertise area describes the knowledge related to a particular
repository (application, software, hardware, methodology). The level of knowledge
is described by a standardized scale (for example: years of experience). The ex-
pertise is described as required or desired. Required expertise is necessary to carry
the participant functions; whereas, desired expertise is helpful but not necessary.
The security level defines the access rights to the sensitive modules and knowledge

repositories.

An Example of a Participant Specification

Participant Task Initiator is described by a set of attributes:

Participant Identifier: task initiator 1
Attributes:
Control: initiate and terminate tasks for system support
Expertise:
Required:
Application knowledge: production system, Level=2
Software knowledge: SQL/DS, Level=1,
COBOL, Level=2

Methodology: Waterfall model

113

Desired:
Software knowledge: SQL/DS with REXX, Level=t
Security level:
Exclude: control task

A.1.1 Resources Assigning Procedure

The project staffing is represented by a mapping F : P. — P(R.) between project
participants and the project resources: human, software, and hardware. A sct of
project resources is assigned to each participant. When there are no resources to
assign, the set is empty. The mapping F can be dynamically changed, allowing for
an easy reassignment of participants. This flexibility is particularly important for
the unusually high staff turnover in the information system projects.

A.1.2 Human Resources Assigning Procedure

Human resources have a special place in the communication model. The process of
assigning tasks to resources (staffing) requires analysis of two goals: the project goal
and the career and life goal of the people participating in the project. Therefore,
the matching process is based on a number of rules considering all aspects of human
resource management [Boehm 81].

In a particular implementation, the Task Assigning process can involve two types
of procedures: automated and manual.

Automated Assigning Procedure

The initial mapping Z : P, — P(R.) between participants and project resources
matches the lists of attributes and the workload of a particular person with the
specific participant instance. Each participant is mapped into a set of possible
candidates from human resources. The set of candidates is ordered by a wcight.
Weight reflects the degree of similarities betwecen participant and resource attributes.
Participants have two classes of qualifications: required and desired. Required
qualifications are necessary to include a human resource member in a matching set.
Desired qualifications are used to calculate the weight of each resource. The human
resource matching process is described by the user defined rules. The following two
rules can be used, for examples, to calculate the weight value for the candidates.

Matching Rule 1:

If resource.control matches participant.control and
resource.security matches participant.security and

114

(for each type of required expertise
resource.level >= participant.level) then

do
add resource-id to candidate-list
resource-id.weight := resource.level - participant.level

end

Matching Rule 2:

If resource-id in candidate-list then
do
for each type of desired expertise
resource-id.weight := resource-id.weight +
resource.level X 2

end

This initial automatic mapping gives a suggested list of candidates, which can
be easily modified by the authorized participants to reflect the specific situation

and individual preferences of people.
The rcossignment procedure takes specified human resources and finds the cor-

responding participants. Subsequently, it performs the initial assignment procedure
for all affected participants.

Manual Procedure for Task Assignment

The manual procedure allows for the selection from the automatically created list
of candidates. Morcover, it permits ad hoc changes to project staffing.

A.1.3 Human Resources Assigning Example

The initial participant assignment procedure produces a set of project resources for
the participant instance task-initiator-1. The set of possible candidates has two
clements: employee id 900808 and employee id 870701. Candidate 900808 has a
weight of 10, and candidate 870701 has a weight of 9.

Set of candidates = {(900808, 10), (870701, 9)}

The weight on the candidate list is calculated according to prespecified rules.

Matching RULE 1:

Remark:

115

p.control corresponds to participant’s control attribute
r.control corresponds to resource’s control attribute

If p.control = r.control and
p.security = r.security and
p.required expertise level < or = r. expertise level
then
add resource identifier to the candidate list
weight = 1 + (r. expertise level - p.required-level) X 2
+ (p.expertise level - r.desired expertise level)

The first person assigned to the system support task has the following descrip-
tion:

Resource Identifier: 900808

Resource Type: Human
Attributes:
Control: system support
Expertise:
Application knowledge: production system
Software knowledge: SQL/DS, Level=3
SQL/DS with REXX, Level=2.5
Methodology: Waterfall model
Security level: No exclusion

The second person has the following description:

Resource Identifier: 870701
Resource Type: Human
Attributes:
Control: system support
Expertise:
Application knowledge: production system
Software knowledge: SQL/DS, Level=2
Methodology: Waterfall model
Security level: No exclusion

A.2 Services, Mechanisms, and Facilities

Services, mechanisms, and facilities constitute a part of model implementation.
They support the software systems development process and automate execution

116

of development activities. However, their implementation details are not crucial to
the conceptual understanding of the communication model. Yet, we will include a
few implementation examples to demonstrate the universality of the communication
model.

A particular implementation of the communication model can have services for
each component: participants, tasks, modules, resources, and knowledge reposito-
ries. Services can use common mechanisms, such as history, concurrency control,
and version control. At the conceptual level, services, mechanisms, and facilities
can be viewed as high level participants providing specialized functions.

A.2.1 Services

The following subsection describes four object related services: Module, Resource,
Knowledge Repository, and Resource; and three task related services: Defining and
Planning, Scheduling, and Execution.

The Project Modules Service manages the Project Modules. It has two support-
ing mechanisms: a multi-version mechanism and a concurrency control mechanism.

The Resource Service is responsible for maintaining the current and historical
data about resources (human, hardware, software, financial), as well resource allo-
cation. It has two mechanisms: allocation and history.

The Knowledge Repositories Service maintains a large knowledge base for ap-
plications, methodologies, techniques, and standards. It also provides advisory and
tutoring services. The advisory service can provide information about methcdolo-
gies, techniques, standards, and task examples.

The Task Defining and Planning Service is used to specify tasks and their par-
ticipants. The resource allocation is done by the same service using the allocation
mechanisn from the Resource Service. The Task Scheduling Service provides the
scheduling and rescheduling of tasks. It also verifies resource allocation. Task
scheduling can also be equipped with a history mechanism as an auxiliary. The
Task Execution Service starts, controls, and terminates task execution. It also has

access to the history of previous executions.
Figure 29 illustrates the organization of Services and Mechanisms for the de-

scribed implementation of the communication model.

A.2.2 The Advisory Mechanism Example

The Advisory Mechanism provides information to an inexperienced participant. For
example, a new participant is given a task involving a Data Flow Diagram for a
small component of the system. When the participant issues a request, such as:
“Provide all information about DFD”; the Advisory Mechanism will provide the

following information:

117

Multi-version
Mechanism

Concurrency
Control

Project
Modules
Scrvice %

Task .
Execution | Clicnt

Control

Knowledge
Base

Service

Advisory
Mecchanism

History
Mechanism

Figure 29: Structure of Services and Mechanisms

History
Mcchanism

Rescheduling

Mcchanism

Task

Scheduling
Service

Task
Defining
Service

Resource

Scrvice

Allocation
Mechanism

History

Information related to Data Flow Diagrams:

Tools: Exelerator

W N e

. Standard notation used in this project: Gane-Sarson notation
Identification Standards (process - Pn, each lower level Pn.n)

Restriction: all objects (process, data flow, external/internal
entity, data store) must be documented in the project dictionary

5. DFD examples: list of existing DFD
6. DFD designing task example: Task specification
7. Example of task execution

A.2.3 Reporting Facilities

Implementation of the communication model can provide historical, statistical,
and current status reports. These reports can be requested on a regular (weekly,

118

Mechanism

monthly) or an ad hoc basis. The appropriate reports will be produced in the
specified time period and distributed (for example: by electronic mail) to the users.

A similar reporting facility, providing selected news, was described by Gifford
[Gifford 90]. This system has an active agent searching for information on a daily
basis and providing only sclected information (from newspapers, journals, etc.) to
its customers. Similarly, in the implementation of our model, the user can spec-
ify an interest topic or a report type; and an appropriate participant will search
periodically the literature and prepare reports.

A rigorous description of the project participants and the development activities
enable automated reporting. Thus, the system can produce various reports. For
example: (1) Project Tasks Reports (current status of tasks presented in descriptive
or graphical form), (2) Resource Allocation Reports — showing the resources with
assigned tasks, (3) Resource Utilization Reports — showing resource schedules.

The historical mechanisms maintain information about the history of all project
components. Thus, historical reports can also be automatically generated by the

system.

119

Bibliography

[Abdel-Hamid 89] Tarek K. Abdel-Hamid, The Dynamics of Software Project
Staffing: A System Dynamics Based Simulation Approach, IEEE Trans. on Soft-
ware Engineering, Vol. 15, No. 2, (February 1989), pp. 109-1189.

[Amadio 89] William Amadio, Systems Devclopment. A Practical Approach, Michell
Publishing, Inc., 1989.

[Amer et al. 88] Paul D. Amer, Figen Ceceli, and Guy Juanole, Formal Specifica-
tion of ISO Virtual Terminal in Estelle, IEEE INFOCOAM 88, March 1988.

[Andrews 91] Dorine C. Andrews, JAD: A Crucial Dimension for Rapit Application
Development, Journal of Systems Management, March 1991, pp. 23-27.

[Ansart 86] J.P. Ansart et al, Software Tools for ESTELLE, Protocol Specification,
Testing, and Verification, VI, 1987, pp.55-61.

[Agha 86] Gul Agha, Actors. A Modcl of Concurrent Computation in Distribuled
Systems, The MIT Press, 1986.

[Aho et al. 79] . V. Aho, J.D. Ullman, and M. Yannakakis, Modelling Communica-
tions Protocols by Automata, Proceedings of the 20th Symposium on Foundations
of Computer Science, October 1979, San Juan, Puerto Rico, pp. 267-273.

[Armenise 89] Pasquale Armenise, A structured approach to program optimization,
IEEFE Trans. on Software Engineering, Vol. 15, No. 2, (February 1989), pp. 101-
108.

[Ashok et al. 89] V. Ashok, J. Ramanathan, S. Sarkar, and V. Venugopal, Process
Modeling in Software Engincering, Software Engineering Notes, Vol. 14, No. 4,
pp. 39-42.

[Avizienis 85] A. Avizienis, The N-version approach to fauit-tolerant software,
IEEE Trans. on Software Enginecering, Vol. 11, No. 12, (December 1985), pp.
1491-1501.

120

[Balzer and Cheatham 84] Robert Balzer and Thomas E. Cheatham, Software
Technology in the 1990’s: Using a New Paradigm, Proceedings of the Software
Process Workshop, Surrey, UK, February 1984, pp. 3-11.

[Balzer 86] Robert Balzer, Program Enhancement, ACM SIGSOFT Software En-
gineering Notes, Vol. 11, No. 4, August 1986, pp. 66-67.

[Beizer 70] B. Beizer, Analytical Techniques for the Statistical Evaluation of Pro-
gram Running Time, Proc. Fall Joint Computer Conference, 1970, pp. 519-524.

[Belady and Lehman 76} L. A. Belady and M. M. Lehman, A Model of large pro-
gram development, IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 225-252.

[Blyth et al. 90] David Blyth, Cornelia Boldyreff, Clive Ruggles, and Nik Tetteh-
Lartey, The Case for Formal Methods in Standards, IEEE Software, September

1990, pp.65-67.

[Blumer 82] Thomas P. Blumer and Richard L. Tenney, A Formal Specification
Technique and Implementation Mecthod for Protocols, Computer Networks, 6

(1982), pp.201-217.

[Bochmann and Gecsei 77} Gregor V. Bochmann and Jan Gecsei, A Unified Method
for the Specification and Verification of Protocols, IFIP, 1977, pp.229-234.

[Bochmann 78] Gregor V. Bochmann, Finite State Description of Communication
Protocols, Computer Networks , 2 (1978), pp.361-372.

[Bochmann and Sunshine 80] Gregor V. Bochmann and Carl A. Sunshine, Formal
Methods in Communication Protocol Design, IEEE Trans. on Communications,

Vol. COM-28, No.4, April 1980,

[Bochmann 80] Gregor V. Bochmann, A General Transition Model for Protocols
and Communication Services, IEEE Trans. on Communications, Vol.COM-28,
No.4, April 1980, pp.643-650.

[Bochmann ct al. 82] Gregor V. Bochmann et al., Experience with Formal Specifi-
cations Using an Extended State Transition Model, IEEE Trans. on Communi-
cations, Vol.COM-30, No.12, December 1982, pp.2506-2511.

[Bochmann 87] Gregor V. Bochmann, Semiautomatic Implementation of Commu-
nication Protocols, IEEE Trans. on Software Engineering, Vol. SE-13, No.9,
September 1987, pp.989-999.

[Boechm 81] Barry W. Boehm, Software Engineering Economics, Prentice-Hall,
1981.

[Boehm 87] Barry W. Bochm, Improving Software Productivity, [EFE Computer,
September 1987, pp. 43-57.

[Boehm 88] Barry W, Boehm, A Spiral Model of Software Development and Fu-
hancement, IEEE Computer, May 1988, pp. 61-72,

[Boehm and Ross 89] B. W. Bochm and R. Ross, Theory-W Software Project Man-
agement: Principles and Examples, IEEE Trans. on Software Engincering, Vol.
15, No. 7 (July 1989), pp. 902-915.

[Bolognesi and Rudin 84] T. Bolognesi and H. Rudin, On the analysis of time-
constrained protocols by network flow algorithms, Proc. Workskop on Protocol
Specification, Testing, and Verification, IV, Sky Top, Pennnsylvania, June 1984,
(North-Holland, Amsterdam, 1984).

[Borenstein 91] Nathanicl S. Boreustein, Multimedia Flectronic Mail: Will the
Dream Become a Reality?, CACM, Vol. 34, No. 4, (April 1991), pp. 117-119.

[Borenstein and Thyberg 91] Nathaniel S. Borenstein and Chris A. Thyberg,
Power, ease of use and cooperative work in a practical multimedia message sys-
tem, International Journal of Man-Machine Studies, Vol. 34. No. 3, February
1991, pp. 229-259.

[Borgida et al. 87] Alex Borgida, Mathias Jarke, John Mylopoulos, Joahim W.
Schmidt and Yannis Vassiliou, A knowledge Based Environment for Building
Information Systems, Proceedings of CIPS Conference, Edmonton, 1987, pp. 99-
107.

[Bostrom 84] Robert P. Bostrom, Development of Computer-Based Information
Systems ~ A Communication Perspective, Computer Personnel, Vol. 9, No. 4,
(August 1984), pp. 17-25).

[Bostrom 88] Robert P. Bostrom, A New Memeber Of Your Management Team,
Information Ezecutive, Vol. 1, No. 1, pp. 43-46.

[Bostrom 89] Robert P. Bostrom, Successful Application of Communication Tech-
niques to Improve the Systems Development Process, Information and Manage-
ment, Vol. 16, No. 5, (May 1989), North-Holland, pp. 279-295.

[Bowles 90] Adrion J. Bowles, A Note on the Yourdon Structured Method, Software
Engineering Notes, Vol. 15, No. 2, April 1990, p.27.

[Brand and Zafiropulo 83] Daniel Brand and Pitro Zafiropulo, On Communicating
Finite-State Machines, Journal of the ACM, Vol. 30, wvo. 2, (April 1983), pp.
323-342.

[Brooks 75] Frederick P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley,
1975.

[Budkowski and Dembinski 87] Stanislaw Budkowski and Piotr Dembinski, An In-
troduction to Estelle: A Specification Language for Distributed Systems, Com-
puler Nelworks and ISDN Systems 14 (1987), pp. 3-23.

[Burns and Dennis 85] R. N. Burns and A. R. Dennis, Selecting Application Devel-
opment Methodology, Data Base, Vol. 17, No. 1, Fall 1985, pp. 19-23.

[Chan and Henderson-Sellers 90] M. L. Chan and B. Henderson-Sellers, Corporate
Object-oriented Development Environment (CODE), ACM SIFSOFT, Vol. 15,

No. 1, January 1990, pp. 42-43.

[Choi 84] Tat Y. Choi, On the recoverability of finite state protocols, Proc. of the
COMPFPSAC ’84 Conference, pp.325-332.

[Choi 85] Tat Y. Choi, Formal Techniques for the Specification, Verification and
Construction of Communication Protocols, IEEE Communication Magazine,
Vol.23, No.10, October 1985, pp. 46-52.

[Clark 90] Jon D. Clark, Function Versus Data-Driven Methodologies: A Prescrip-
tive Metric, Software Engineering Notes, Vol. 15, No. 2, April 1990, p. 26.

[Constantine 90] L. Constantine, Teamwork Paradigm and the Structured Open
Team, Proceedings of Software Development ’90, San Francisco, 1990.

[Conway 68] Melvin B. Conway, How Do Committees Invent?, Datamation, April
1968, pp. 28-31.

[Cook et al. 91] Steve Cook, Gary Birch, Alan Murphy and John Woolsey, Mod-
elling groupware in the electronic office, International Journal of Man-Machine
Studies, Vol. 34, No. 3, March 1991, pp. 369-393.

[CSTB Report 90] Computer Science Technical Board, CACM, Vol. 33, No. 3,
(March 1990), pp. 281-293.

[Curtis et al. 87] Bill Curtis, Herb Krasner, Vincent Shen and Neil Iscoe, On Build-
ing Software Process Models Under the Lamppost, Proceedings of the 9th Inter-
national Conference on Software Engineering, Monterey, California, March 1987,
pp. 96-1G3.

[Curtis et al. 88] Bill Curtis, Herb Krasner, and Neil Iscoe, A Field Study of the
Software Process for Large Systems, CACM, Vol. 31, No. 11 (November 1988),
pp. 1268-1287.

123

[Curitis 89] Bill Curtis, Three Problems Overcome with Behavioral Models of the
Software Development Process, Proceedings of the 11th International Conference
on Software Engineering, May 1989, pp. 398-399.

[Daly 79] Edmund B. Daly, Organizing for Successful Software Development, Data-
mation, December 1979, pp. 107-120.

[Davis et al. 88] Alan M. Davis, Edward I1. Bersoff, and Edward R. Comer, A Strat-
egy for Comparing Alternative Software Development Life Cycle Models, IEEE
Trans. on Software Engineering, Vol. 14, No. 10, October 1988, pp. 1453-1460.

[Danthine 80] Andre A. S. Danthine, Protocol representation with finite-state mod-
els, IEEE Trans. on Communications, vol. 28, no. 4, pp. 632-643, 1980.

[Dasarathy 82] J. Dasarathy, Timing Constraints of Real-Time Systems: Con-
structs for Expressing Them, Mcthods of Validating Them, Proc. IEEE Real-
Time Systuns Symposium, December 1982.

[Deiters et al. 89] Wolfgang Deiters, Volker Gruhn, and Withem Schafer, System-
atic Development of Formal Software Process Models, Proceedings of 2nd Euro-
pean Software Engineering Conference, Coventry, UK, September 1989, LNCS
387, pp. 100-117.

[Dembinski and Budkowski 87] Piotr Dembinski and Stanislaw Budkowski, Simu-
lation Estelle Specifications with Time Parameters, Proc. IFIP Seventh Interna-
tional Conference on Prolocol Specification, Testing and Verification, Moutreal,
June 1986.

[Diaz 82] Michael Diaz, Modelling and Analysis of Communication and Coopera-
tion Protocols Using Petri Net Based Models, Proc. 2nd Int. Workshop on Pro-
tocol Specification, Testing and Verification, May 1982.

[Diaz 87) Michel Diaz, Petri Net Based Models in the Specification and Verifica-
tion of Protocols, Petri Nets: Applications and Relationships to Other Models
of Concurrency, Lecture Notes in Computer Science, Vsi. 255, Springer-Verlag
1987.

[Dixon 88] David Dixon, Integrated Support for Project Management, Proceedings
of the 10th International Conference on Software Engineering, Singapore, 1988,
pp. 49-58.

[Dowson 86] Mark Dowson, The Structure of the Software Process, ACM SIGSOFT
Software Engineering Notes, Vol. 11, No. 4, August 1986, pp. 6-10.

124

[Fllis et al. 91] C. A. Ellis, S. J. Gibbs, and G. L. Rein, Groupware: Some Issues
and Fxperiences, CACM, Vol. 34, No. 1 (January 1991), pp. 38-58.

[Fernstrom 89] Christer Fernstrom, Design Considerations for Process Driven Soft-
ware Environments, Software Engineering Notes. Vol. 14, No. 4, June 1989, pp.65-

67.

[Finkelstein and Fuks 89] Anthony Finkelstein and Hugo Fuks, Multi-party Specifi-
cation, ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 3, (May 1989),

pp. 185-195.

[Finkelstein et al. 89] Anthony Finkelstein, Hugo Fuks, Celso Niskier and Martin
Sadler, Constructing a Dialog Framework for Software Development, Software
Engineering Notes. Vol. 14, No. 4, June 1989, pp.68-72.

[Finegan an Besnier 89] Edward Finegan and Niko Besnier, Language Its Structure
and Use, 11BJ Publishers, 1989.

[Flaatten et al. 89] Per O. Flaatten, Donald J. McCubbrey, P. Declan O’Riordan,
Keith Burgess, Foundations of Business Systems, The Dryden Press, 1989.

[Floyd 89] C. Floyd, STEPS to Software Development with Users, ESEC’89 2nd
European Software Engineering Conference, LNCS 387, Springer Verlag, 1989,
pp. 48-64.

[Gifford and Francomano 90; David K. Gifford and Anne Francomano, An Informa-
tion System Based Upon Programmable Agents, Proceedings of the CIPS Con-
ference, Edmonton, 1990, Session 4, Paper 1.

[Gladden 82] G. R. Gladden, Stop the Life-Cycle, I Want to Get off, Software En-
gineering Notes, Vol. 7, No.2, April 1982, pp. 35-39.

[Gomaa 83] Hassan Gomaa, The Impact of Rapid Prototyping on Specifying User
Requirements, ACM SIGSOFT Software Engineering Notes, Vol. 8, No. 2, April
1982, pp. 17-28.

[Goldberg 90] Allen Goldberg, Reusing Software Developments, ACM SIGSOFT
Software Engineering Notes, Vol. 15, No. 6, (December 1990), pp. 107-119.

[Greenberg 91] Saul Greenberg, Computer-Supported Cooperative Work and
groupwork, International Journal of Man-Machine Studies, Vol. 34, No. 2, Febru-

ary 1991, pp. 133-142.

[Grohowski et al. 90] Ron Grohowski, Chris McGoff, Doug Vogel, Ben Martz, Jay
Nunamaker, Implementing Electronic Meeting Systems at IBM: Lessons Learned
and Success Factors, MIS Quarterly, Vol. 14, No.4, December 1990, pp. 369-383.

[Guinan and Bostrom 86] Patricia J. Guinan and Robert P. Bostrom, Development
of Computer-Based Information Systems: A Communication Framework, Data
Base, Vol. 17, No.3, Spring 1986, pp.3-16.

[Guttag 81] J. Guttag, A Few Remarks on Putting Formal Specification to Pro-
ductive Use, Proceedings of the Workshop on Program Specification , Aarthus,
Denmark, August 1981, LNCS 134, Springer Verlag, 1981, pp. 370-380.

[Hall 90] Anthony Hall, Seven Myths of Formal Methods, IEEE Software, Septem-
ber 1990, pp. 11-19.

[Harel 87] David Harel, Statecharts: A Visual Formalism for Complex Systems,
Science of Computer Programming, Vol. 8, No. 3, (June 1987), pp. 231-274.

[Harel 88] David Harel, On Visual Formalisms, CACM, Vol. 31, No. 5, (May 1988),
pp. 514-530.

[Harel et al. 90] David Harel, Hagi Lachover, Ammon Naamad, Amir Pnucli,
Michal Politi, Rivi Sherman, Aharon Shtull-Trauring, and Mark Trakhtenbrot,
STATEMATE: A Working Environment for the Development of Complex Reac-
tive Systems, IEEE Trans. on Software Engincering, Vol. 16, No. 4, (April 1990),
pp. 403-413).

[Harston and Hix 90] H. Rex Harston and Deborah Hix, Developing Human-
Computer Interface Models and Representaiton Techniques, Software Practlice
and Ezperience, Vol. 20, No. 5, (May 1990), pp. 425-457.

[Hatley and Pirbhai 87] Derek J. Hatley and Imtiaz A. Pirbhai, Strategies for Real-
Time System Specification, Dorset House Publishing, 1987.

[He and Lee 88] Xudong He and J. A. N. Lee, A Strategy for Integrating Formalisms
in Software Development, Proceedings of CIPS’88 Conference, Edmonton 1988,
pp. 33-42.

[Henderson-Sellers and Edwards 90] Brian Henderson-Sellers and Julian M. Ed-
wards, The Cbject-Oriented Systems Life Cycle, CACM, Vol. 33, No. 9 (Septem-
ber 1990), pp. 143-159.

[Hirschheim and Klein 89] Rudy Hirschheim and K. Klein, Four Paradigms of In-
formation Systems Development, CACM, Vol. 32, No. 10, (October 1989), pp.
1199-1216.

[Hoare 85] C. A. R. Hoare, Communicaling Sequential Processes, Prentice Hall,
1985.

[Horning 81] J. J. Horning, Program Specification: Issues and Observations, Pro-
gram Specification, Proceedings of a Workshop , Aarthus, Denmark, August 1981,

LNCS 134, Springer Verlag, 1981, pp. 5-24.

[Humphrey 89] Watts S. Humphrey, The Software Engineering Process: Definition
and Scope, Software Engineering Notes, Vol. 14, No. 4, (June 1989), pp. 82-83.

[Jackson 83] Michael Jackson, System Development, Prentice-Hall, 1983.

[Jain 87] Pradeep Jain and Simon S. Lam, Modeling and Verification of Real-Time
Protocols for Broadcast Networks, IEEE Trans. on Soflware Engineering, Vol.
SE-13, No.8, August 1987, pp.924-937.

[Jard 85] Claude Jard, Roland Groz, Jean-Francois Monin, VEDA: a software sim-
ulator for the validation of protocol specification, Proc. COMNET 85, Budapest,

North-Holland 1985,

[Johnson-Lenz 91] Peter Johnson-Lenz and Trudy Johnson-Lenz, Post-mechanistic
groupware primitives: rhythms, boundaries, and containers, International Jour-
nal of Man-Machine Studies, Vol. 34, No. 3, March 1991, pp. 391-417.

[Josephs 88] Mark B. Josephs, A state-based approach to communicating processes,
Distributed Commputing, Vol. 3, No. 1, 1988, pp. 9-18.

[Katayama 89] Takuya Katayama, A Hierachical and Functional Software Process
Description and its Enaction, Proceedings of the 11th International Conference

on Software Engineering, Nice, France, 1989, pp. 343-352.

[Keller 76] Robert M. Keller, Formal Verification of Parallel Programs, CACM, Vol.
19, No. 7, July 1976.

[Kellner 89] Marc I. Kellner, Representation Formalisms for Software Process Mod-
eling, ACM SIGSOFT Software Engineering Notes, Vol. 34, No. 4, (June 1989),
pp. 93-96.

[Kettelhut 91] Michael C. Kettlelhut, Avoiding Group-Induced Errors in Systems
Development, Journal of Systems Management, March 1991, pp. 13-20.

[Koubek et al. 89] Richard J. Koubek, Gavriel Salvendy, Hubert E. Dunsmore and
William K. LeBold, Cognitive issues in the process of software development: re-
view and reappriasal, International Journal of Man-Machine Studies, Vol. 30,
(1989), p. 171-191.

[Kovacs 86] Laszlo Kovacs and Andras Ercsenyi, Specification Versus Implemen-
tation Based on ESTELLE, Computer Communication Review, Vol. 16, No. 4,
July/August 1986.

[Kozar 88] Kenneth A. Kozar, Humanized Information Systems Analysis and De-
sign, McGraw-Hill, 1988.

[Lam and Shankar 84] Simon S. Lam and A. Udaya Shankar, Protocol Verification
via Projections, IEEE Trans. on Software Engineering, Vol. SE-10, No.4, July
1984, pp.325-342.

[Lam and Shankar 90] Simon S. Lam and A. Udaya Shankar, A Relational Notation
for State Transition Systems, IEEE Transactiona on Software Enginecering, Vol.
16, No. 7, (July 1990), pp. 755-775.

[Lamport 78] Leslie Lamport, Time, Clocks, and the Ordering of Events in a Dis-
tributed System, CACM, Vol.21, No.7, July 1978, pp.558-565.

[Lamport 80] Leslie Lamport, ‘Sometime’ is sometimes ‘not never’: a tutorial on the
temporal logic of programs. Proc. of the Seventh Annual Symposium on Princi-
ples of Programming Languages, pp.174-185, ACM SIGACT-SIGPLAN, January
1980.

[Lamport 86] Leslie Lamport, On interprocess communication. Part I: Basic for-
malism, Distributed Computing, Vol. 1, No. 1, 1986, pp.T77-85.

[Lehman 85] M.M. Lehman, Approach to a Disciplined Development Process: the
ISTAR Integrated Project Support Environiment, ACM SIGSOFT Software Fn-
gineering Notes, Vol. 11, No. 4, 1985, pp. 46-60.

[Lehman 87] M. M. Lehman, Process Models, Process Programs, Programming
Support, Proceedings of the IEEE 9th International Conference on Software kn-
gineering, 1987, pp. 14-16.

[Lehman 89] M. M. Lehman, Some Reservations on Software Process Programming,
ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 4, June 1989, pp. 111-
115.

[Levary and Lin 91] Reuven R. Levary and Chi Y. Lin, Modelling the Software
Development Process Using an Expert Simulation System Having Fuzzy Logic,
Software Practice and Ezperience, Vol. 21, No. 2, February 1991, pp. 132-148.

[Lin 88] Huai-An Lin, A methodology for constructing communication protocols
with multiple concurrent functions, Distributed Computing, Vol. 3, No. 1, 1988,
pp. 23-40.

128

[Lind 87] Mary R. Lird, A Model of Organizational Communications, Data Base,
Vol. 18, No. 3, pp. 4-12.

[Linn 86] Richard J. Linn, The Features and Facilities of Estelle, Protocol Specifi-
cation, Tesling, and Verification, V, IFIP, 1986, pp. 271-291.

[Liskov and Guttag 86] Barbara Liskov and John Guttag, Abstraction and Specifi-
calion in Program Development, The MIT Press, 1986.

[Liu and Horowitz 89] L. Liu and E. Horowitz, A Formal Model for Software Project
Management, IEEE Trans. on Software Engineering, Vol. 15, No.10 (October

1989).

[Lombardo 86] Alfio Lombardo, On the ESTELLE specification of OSI protocols,
Proceedings of the Computer Nctworking Symposium, Washington, November
1986.

[Lyytinen 85]) Kalle Lyytinen, Implications of Theories of Language for Information
Systems, MIS Quarterly, March 1985, pp. 61-73.

[Macro 90] Allen Macro, Software Engineering. Concepts and Management, Pren-
tice Hall, 1990.

[MacLean 89] Roy MacLean, A Functional Paradigm for Software Development,
Software Engineering Notes, Vol. 14, No.4, June 1989, pp. 113-115.

[Martin and Fuerst 84] Merle P. Martin and William Fuerst, Communication
Framework for Systems Design, Journal of Systems Management, Vol. 35, No.
3, (March 1984), pp. 18-25.

[Martin and Tsai 90] Johnny Martin and W. T. Tsai, N-Fold Inspection: A Re-
quirements Analysis Technique, CACM Vol. 33, No. 2 (February 1990), pp. 225-
232.

[Martin 91] Merle P. Martin, Analysis and Design of Business Inoformation Sys-
tems, Macmillan Publishing Company, 1991.

[McCracken and Jackson 82] Daniel McCracken and Michael A. Jackson, Life Cycle
Concept Considered Harmful, Software Engineering Notes, Vol. 7, No. 2, April
1982, pp. 29-32.

[McCue 78] Gerald M. McCue, IBM’s Santa Teresa Laboratory — Architectural De-
sign for Program Development, IBM Systems Journal, Vol.7, No. 1, pp.2-25.

[Merlin 75] P.Merlin, A Methodology for the Dcsign and Implementation of Com-
munication Protocols, IEEE Trans. on Communications, Vol. COM-24, Number
6 (June 1976), pp.614-621.

[Merlin76] P.M. Merlin, D.J. Farber, Recoverability of Communication Protocols -
Implication of a Theoretical Study, IEEE Trans. on Communications, Vol. COM-
24, Number 9, (September 1976), pp. 1036-1043.

[Merlin 79] P.M. Merlin, Specification and Validation of Protocols, IEEFE Trans. on
Communication, Vol. COM-27, No.11, (November 1979), pp.1671-1680.

[Meyer 88] Bertrand Meyer, Object-oriented Software Construction, Prentice-Hall,
1988.

[Milner 80] Robert Milner, A Calculus of Communication Systems, LNCS 92,
Springer Verlag, 1980.

[Montazemi 88] Ali Reza Montazemi, Factors Affecting Information Satisfaction in
the Context of the Small Business Environment, MIS Quarterly, Vol. 12, No. 2,
June 1988, pp. 259-276.

[Nakagawa and Futatsugi 90] Nakagawa and Futatsugi, Software Process a la Alge-
bra: OBJ for OBJ, Proceedings of the 12th International Conference on Software
Engineering, March 1990, pp. 12-23.

[Naur 85] Peter Naur, Programming as Theory Building, Microprocessing and Mi-
croprogramming, Vol. 15, (1985), North-Holland, pp. 253-261.

[NBS Report 87] User Guide for the NBS Prototype Compiler for Estelle, National
Bureau of Standards, Report No. ICST/SNA-87/3.

[Neumann 91] Peter G. Neumann (ed.), Illustrative RISKS to the Public in the
Use of Computer Systems and Related Technology, ACM Software Engincering
Notes, Vol. 16, No. 1, pp. 10-24.

[Notkin 89] David Notkin, Applying Software Process Models to the Full LifeCycle
is Premature, ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 4, (June
1989), pp. 116-117.

[Ohki and Ochimizu 89] Atsuo Ohki and Koichiro Ochimizu, Process Programming
with Prolog, Software Engincering Notes, Vol. 14, No. 4, June 1989, pp. 118-121.

[Olson and Bly 91] Margrethe H. Olson and Sara A. Bly, The Portland Experience:
a report on a distributed research group, International Journal on Man-Machine
Studies, Vol. 34, No. 2, February 1991, pp. 211-228.

130

[Osterweil 87] Leon Osterweil, Software Processes Are Software Too, IEEE 9th In-
ternational Conference on Software Engineering, 1987, pp. 2-13.

[Palmer and Sabnani 86] J.W. Palmer and Krishan Sabnani, A Survey of Proto-
col Verification Techniques, Proc. MILCOM’86 IEEE Military Commaunications
Conference, Monterey, California, October 1986, Vol.1.

[Pattavina 84] A. Pattavina and S. Trigila, Combined Use of Finite-State Machines
and Petri Nets for Modelling Communication Processes, Electronics Letters, Vol.
20, No.22, October 1984, pp.915-916.

[Peterson 81] James Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall, 1981.

[Phillips 89] Richard W. Phillips, State Change Architecture: A Protocol for Ex-
ecutable Process Models, ACM SIGSOFT Software Engineering Notes, Vol. 14,

No. 4, (June 1989), pp. 129-132.

[Powers et al. 90] Michael J. Powers, Paul H. Cheney, Galen Crow, Structured Sys-
tems Dcvelopment, boyd & fraser, second edition, 1990.

[Pricto-Diaz 90] Ruben Prieto-Diaz, Domain Analysis: An Introduction, Software
Engineering Notes, Vol. 15, Ne. 2, April 1990, pp. 47-54.

[Ramamoorthy 81] C. V. Ramamoorthy, Application of a methodology for the de-
velopment and validation of reliable process control software, IEEE Trans. on

Software Engineering, Vol. 7, No. 6 (November 1981), pp. 537-555.

[Redwine and Riddle 89] Samuel T. Redwine Jr. and William E. Riddle, Software
Reuse Processes, Software Engineering Notes, Vol. 14, No. 4, June 1989, pp.
133-135.

[Rettig 90] Marc Rettig, Software Teams, CACM, Vol. 33, No. 10 (October 1990),
pp- 23-27.

[Roberts 89] Clive Roberts, Describing and Acting Process Models with PML, ACM
SIGSOFT Software Engineering Notes, Vol. 14, No. 4, (June 1989), pp. 136-141.

[Robinson 90] William N. Robinson, Negotiation Behavior During Requirement
Specification, Proceedings of 12th IEEE International Conference on Software
Engineering, March 1990, pp. 268-276.

[Ross 87] M.Ross and R. van der Heever A Critical Evaluation of the Estelle For-
mal Description Technique in the Specification of the Message Handling System
Protocols, Proc. of the IFIP TC 6 First Iberian Conference on Data Communi-
cation,IFIP, 1987,

131

[Rudin 85a] Harry Rudin, Time in Formal Protocol Specifications, Kommunikation
in Verteilten Systemen I, Heger, D. et al. (Eds.), Berlin: Springer-Verlag, 1985.

[Rudin 85b] Harry Rudin, An Informal Overview of Formal Protocol Specification,
IEEE Communications Magazine, Vol.23, No.3, March 1985, pp.46-52.

[Rudin 87] Harry Rudin, The Dimension of Time in Protocol Specification, Net-
working in Open Systems, Proceedings 1986, Lecture Notes in Computer Science,
Vol. 248, Springer-Verlag, Edited by Gunter Muller and Robert P. Blanc, 1987,
pp.360-372.

[Rumbaugh et al. 91] James Rumbaugh, Michael Blaha, William Premerlani, Fred-
erick Eddy, and William Lorensen. Object Oriented Modeling and Design,
Prentice-Hall, 1991.

[Salaway 87] Gail Salaway, An Organizational Learning Approach to Information
Systems Development, MIS Quarterly, Vol. 11, No. 2, June 1987, pp. 245-264.

[Saunders 91] Paul R. Saunders, Effective Interviewing Tips For Information Sys-
tems Professionals, MIS Quartely, Vol. 42, No.3, March 1991, pp. 28-31.

[Shankar 82] A. Udaya Shankar and Simon S. Lam On Time-Dependent Commu-
nication Protocols and Their Projections, Protocol Specification, Testing, and
Verification, IFIP, 19382,

[Schwarz 82] Richard L. Schwartz and P. Michael Melliar-Smith, From State Ma-
chines to Temporal Logic: Specification Methods for Pratocol Standards, IEEE
Trans. on Communications, Vol. COM-30, Na.12, December 1982.

[Senn 89] James A. Senn, Analysis and Design of Information Systems, McGraw-
Hill, Second Edition, 1989.

[Simon 82] Gerald A. Simon and David J. Kaufman, An Extended Finite State
Machine Approach to Protocol Specification, Protocol Specification, Testing, and
Verification, IFTIP 1982.

[Singer 87] Larry M. Singer, Written Communicalions for MIS/DP Professionals,
Macmillian, Inc., 1987.

[Sommerville 84] lan Sommerville, Are we Really Software Engineers? Proceedings
of the Software Process Workshop, Surrey, UK, February 1984, pp. 59-64.

[Sommerville 89] Ian Sommerville, Software Enginecering, Addison-Wesley, Third
Edition, 1989.

132

[Sorenson 88a] Paul G. Sorenson, First Generation CASE Tools: All Form but
Little Substance?, Proceedings of CIPS’88 Conference, Edmonton, 1988, pp.264-

271.

[Sorenson 88b] Paul G. Sorenson, The Metaview System for Many Specification
Environments, IEEE Software, March 1988, pp. 30-38.

[Stubbs 83] Michael Stubbs, Discourse Analysis, The Sociolinguistic Analysis of
Natural Language, The University of Chcago Press, 1983.

[Sullivan 88] Sarah L. Sullivan, How Much Time Do Software Professionals Spend
Communicating, Computer Personnel, Vol. 11, No. 4, September 1988, pp. 2-5.

[Swartout and Balzer 82] William Swartout and Robert Balzer, On the Inevitable
Intertwining of Specification and Implementation, CACM, Vol. 25, No. 7 (July

1982).

[Tanenbaum 88] Andrew S. Tanenbaum, Computer Networks, Second Edition,
Prentice-Hall, 1988.

[Tracz 79] William Tracz, Programming and the Human Thought Process,
Software-Practice and Ezrperience, Vol. 9, (1979), pp. 127-137.

[Tully 84] Colin J. Tully, System Development Models, Proceedings of Software Pro-
cess Workshop, Surrey, UK, February 1984, pp. 37-46.

[Turner 89] Kenneth J. turner, A LOTOS-Based Development Strategy, Proceed-
ings of the 2nd International Conference on Formal Description Techniques.
FORTE’89, Vancouver, December 1989, pp. 157-174.

[Umstot 87] Denis Umstot, Understanding Organizational Behaviour, West Pub-
lishing Company, Second Edition, 1987.

[Valacich et al. 91] Joseph Valacich, Alan Dennis, and J. F. Nunamaker, Jr, Elec-
tronic meeting suppart: the GroupSystems Concept, International Journal on
Man-Machine Studies, Vol. 34, No. 2, February 1991, pp. 261-282.

[Vuong 87] Son T. Vuong and Allen C. Lau, A Semi-Automatic Approach to Proto-
col Implementation — The ISO Class 2 Trasport Protocol as an Example, IEEE

INFOCOM’87, 19817.

[Wand and Weber 89] Yair Wand and Ron Weber, An Ontological Evaluation of
Systems Analysis and Design Methods, Information System Concepts: An In-
depth Analysis, Elsevier Science Publishers, (North-Holland), 1989, pp. 79-107.

133

[Ward 86] Paul T. Ward, The Transformation Schema: An Extension of the Data
Flow Diagram to Represent Control and Timing, IEEE Trans. on Software En-
gineering, Vol. SE-12, No. 2, (February 1986), pp. 198-210.

[Weedman 91] Judith Weedman, Task and non-task functions of a computer confer-

ence used in professional education: a measure of flexibility, International Journal
of Man-Machine Studies, Vol. 34, No. 2, February 1991, pp. 303-318.

[Weinberg 71] G. M. Weinberg, The Psychology of Computer Programming, Van
Nostrad Reinhold, New York, 1971.

[Weinberg 83] Jerry Weinberg, A Column by Jerry Weinberg, Infosystems, August
1983, p.49.

[Williams 88] Lloyd G. Williams, Software Process Modelling: A Behavioral Ap-
proach, Proceedings of the 10th International Conference on Software Engincer-
tng, Singapore, April 1988, pp. 174-186.

[Whitten et al. 89] J. Whitten, L. Bentley, and V. Barlow, Systems Analysis and
Design Meciiads, Irwin 1989.

[Wood 90] William G. Wood, Application of Formal Methods to System and Soft-
ware Specification, Proceedings of the ACM SIUSOFT. International Workshop
on Formal Methods in Software Development, May 1990, pp. 144-146.

[Yemini 84] Yechiam Yemini and James F. Kurose, Can Current Protocol Verifi-
cation Techiques Guarantee Correctness? Computer Networks, Vol. 6, (1982),
pp.377-381.

[Yourdon 89] Edward Yourdon, Modern Structured Analysis, Yourdon Press,
Prentice-Hall, 1989.

134

