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Abstract

We explore the interplay of generate-and-test and gradient-descent techniques

for solving online supervised learning problems. The task in supervised learn-

ing is to learn a function using samples of inputs to output pairs. This function

is called the target function. The standard way to learn non-linear target func-

tions is to use artificial neural networks, where the weights of the network are

learned via the backpropagation algorithm. The conventional backpropaga-

tion algorithm consists of two parts: initializing weights with small random

numbers, and gradient descent at every time step.

We consider a case that differs slightly from most supervised learning in two

ways. First, it is conventionally assumed that the samples are independently

and identically distributed, whereas we focus on the case where the samples are

temporally coherent. Second, it is often assumed that the learner has sufficient

capacity to closely approximate the target function, whereas we assume that

the target function is more complex than the learner. Our case is interesting

because the real world is often temporally coherent and extremely complex.

Temporal coherence means that samples at consecutive time steps are not in-

dependent; rather, the new sample depends on the previous samples. We call

the class of problems with stationary target functions but temporally coherent

input, semi-stationary learning problems. We focus on semi-stationary prob-

lems where the target function is more complex than the learner. We use a

novel idealized problem to study various solution methods. In the problem,

the inputs follow a Markov chain, and the target function is represented by
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a multi-layered network, which allows us to control the relative complexity of

the target function and the approximator.

In our idealized problem, the best approximation continually changes be-

cause of temporal coherence and the high complexity of the target function.

Because of this, there is a need for continual learning/adaptation. We use

the conventional backpropagation algorithm to track the best approximation.

However, this algorithm is temporally asymmetric in that it treats the begin-

ning of time differently, as the computation to generate small random weights

only happens at the first time-step. Surprisingly, this makes conventional back-

propagation unsuitable for continual learning. We show that backpropagation

performs well initially on our idealized problem, but that its performance de-

cays substantially over time and it loses the ability to adapt.

Finally, we propose a solution to the decaying adaptiveness of backpropa-

gation that continually injects random features alongside gradient descent. We

use a generate-and-test process to inject random features. Our generate-and-

test process replaces low utility features with random features from the initial

distribution. We find that this continual injection of randomness significantly

improves the adaptiveness and performance of gradient descent.
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Preface

No part of this thesis has been published.
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To my parents.
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"We are what we think. All that we are arises with our thoughts. With our

thoughts, we make the world." - Buddha
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Chapter 1

Introduction

The real world is often temporally coherent, which means that its future state

often depends on its current state. So, many system that interacts with the

world receive samples/observations that are temporally coherent. In super-

vised learning, the samples are assumed to be independently distributed, equiv-

alent to a random shuffling of the samples. This independence assumption is

the opposite of temporal coherence, and thus may be unsuitable for systems

that learn while interacting with the world.

In this work, we study semi-stationary learning problems; this is the class of

problems where the inputs are temporally coherent, while the target function is

fixed. The target function is the function that is to be approximated/learned.

We will focus on semi-stationary supervised learning problems. However, semi-

stationarity is not limited to supervised learning problems; other problem

classes like contextual bandits can also be semi-stationary.

In most supervised learning, there are two separate phases for learning and

evaluation. While, for systems that learn by interacting with the world, often

this separation is not possible. So, we measure performance using the loss on

the next sample.

Semi-stationarity also acts as a tool to study representation learning. Rep-

resentation learning has been studied for a long time. Still, it is not clear

what the desirable properties of a good representation are. These properties

can even depend on the problem setting of interest. Representations that are

useful in a stationary setting might not help track in a non-stationary setting.
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In semi-stationary setting, a couple of desirable properties are clear, and they

are: allowing fast adaptation to the new input, and selectively remembering

useful information.

Powerful function approximation has been the key to the recent successes

of machine learning. Still, one of the overlooked aspects has been the relative

complexity of the real world. The world can be immensely complex, and no

amount of memory may be enough to represent the world precisely. This idea

becomes more relevant if there that other systems in the world are equally or

more complex than the approximator. In this work, we explicitly study the

effects of having a complex world. We do this by making the target function

much more complex than the available function approximator.

Our first contribution is that we work on semi-stationary learning problems

in which the target function is more complex than the approximator. Previ-

ously, Sutton et al. (2007) also studied this class of problems. We extend that

work by focusing on a novel idealized setting where the function approximator

is non-linear. Recently, there has been some works on semi-stationary learning

problems, (Sun et al., 2018; Doan et al., 2020); we build on these studies by

looking at the effect of a complex target function.

We introduce the Bit-flipping problems. These problems are semi-stationary

supervised learning problems. The input for Bit-flipping problems is a vector

of bits, and at every time step, the bits flip independently with some proba-

bility. The target function is a multi-layered network with LTU non-linearity,

and it maps the vector of bits to a scalar. Controlling the size of the network

provides a simple way to control the complexity of the target function. We

describe the Bit-flipping problems in Chapter 3.

The standard way to solve supervised learning problems with stationary

target function is to optimize the weights to minimize the average error on

the input space. This type of optimization leads to a fixed set of weights.

Typically, stochastic gradient descent(SGD) is used to find these weights. A

different solution than converging to a fixed set of weights for semi-stationary

learning problems can track the best approximation for the current input dis-

tribution. This solution strategy takes advantage of the fact that inputs are
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temporally coherent by adapting the approximator to be more accurate for

the current input.

Our second contribution is showing on two instances of semi-stationary

learning problems that tracking a local approximation is better than any fixed

set of weights. Thus, tracking a temporally local approximation can be a

better solution than converging to the best set of weights. We present these

results in Chapter 4.

We use the conventional backpropagation algorithm to continually track a

local approximation. The conventional backpropagation algorithms consist of

two parts, first is initialization with small random weights, and the second is

gradient descent at every time step. There is a temporal asymmetry in the

algorithm because the computation needed to initialize the weights with small

random numbers only happens in the beginning. This temporal asymmetry

might make the conventional backpropagation algorithm unsuitable for con-

tinual learning. In Chapter 5, we explore tracking in semi-stationary learning

problems via the conventional backpropagation algorithm.

As our third contribution, we show that in semi-stationary learning prob-

lems, the conventional backpropagation algorithm displays decaying-adaptiveness,

where it initially achieves low error, but the error gets worse over time. The

initial distribution provides special conditions that allow for fast adaptation.

But, after adapting to multiple input distributions, the weights get far from

the initial small random weights, reducing adaptiveness. Thus, the internal

representations learned by backpropagation hinder adaptation. We show that

weights which are randomly sampled from a distribution that is symmetric

about zero are highly adaptive.

Finally, we propose a solution to the decaying-adaptiveness problem by

continually injecting randomness in the backpropagation algorithm. We use

a generate-and-test algorithm to inject randomness. The generate-and-test

algorithm is a search process in the space of features. It consists of two parts:

the generator, which proposes new features, and the second is the tester, which

finds and replaces low utility features.

Our generator samples random features from the initial distribution, and
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thus it provides a way to inject randomness continually. The tester uses the

trace of the product of the feature’s output and its outgoing weight as the

measure of utility. We show that slowly injecting randomness via this generate-

and-test process significantly improves the performance of the conventional

backpropagation algorithm.
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Chapter 2

Background and Related Works

In this chapter, we introduce the required background and notations for this

thesis. Readers familiar with the basics of online supervised learning, neu-

ral networks, generate-and-test, initialization of neural networks can skip to

Chapter 3. We will also talk about related works of cascade correlation, and

catastrophic forgetting.

2.1 Supervised Learning

In supervised learning, the task is to learn an approximation for a function, f

from x ∈ Rm to y ∈ Rn using samples of the mapping (x, y). Most supervised

learning in practice is offline. Offline means that first, all the samples are

explicitly saved in the memory and then they are processed. However, in

online supervised learning, the samples are processed in a one-by-one fashion,

and there is no external memory to save all the samples.

The performance of the approximator is measured using a loss function,

ℓ : Y ×Y → R. The loss function provides a measure of the difference between

the predicted output and the ideal output. In offline supervised learning, there

are two different phases, one for learning and another for evaluation. For eval-

uation, there is an explicit test set which is used to measure the performance

of the learned approximation.
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2.2 Online Learning

In many real-world interactions, data arrives in a stream, and predictions have

to be made only for the new example. Modelling these problems as an instance

of offline supervised learning is not natural. In the Online Learning problem

setting (Orabona, 2019), a prediction ŷ has to be made at every time step,

and the goal is to minimize the loss ℓt at that time step.

Supervised learning can be easily formulated as an online learning problem,

we will call it online supervised learning. In online supervised learning, there

is a stream of data {xt, yt}, and the predictions have to be made sequentially.

The performance measure is the loss on the next sample, this is fundamentally

different from offline supervised learning where performance is measured on a

separate test set.

Formally, in the Online Learning (Orabona, 2019) problem setting, a pre-

diction, ŷ is made at every time step, and the performance is measured against

the ideal prediction y using some loss function ℓt. However, this general online

learning problem is nonassociative in nature, i.e., there is no function from

x → y that has to be learned. Because we are not learning any function, there

is no notion of generalization.

The offline supervised learning problem focuses on the case when the sam-

ples (x, y) are independently and identically distributed (IID). On the other

hand, online supervised learning moves beyond this narrow scope of IID su-

pervised learning. The targets yt can be generated by an adversary; the loss

functions ℓt can also change with time. This problem setting provides an ex-

cellent framework to study various aspects of tracking yt in the worst-case

scenario.

2.3 Neural Networks and Backpropagation

Neural networks are connectionist systems that represent a function. When

an input is presented to a neural network, it is transformed by alternating

applications of a linear transformation and a non-linear function. Each pair of

application of a linear transformation and the following non-linear function is
6



Figure 2.1: A neural network with a single hidden layer

called a hidden layer. Each hidden layer outputs a vector, where each element

of the vector is the output of hidden units; these hidden units are also called

features. A feature is a function that takes in a vector input, transforms it to

scalar and then applies a non-linearity, so y = ϕ(wTx). Csáji et al. (2001)

showed that a neural network with a single hidden layer and a sufficiently large

number of hidden units can represent any function to arbitrary accuracy.

Rumelhart et al. (1985) introduced the idea that internal representations

in a neural network can be learned using gradient descent. In the last decade,

gradient descent based algorithms have provided significant performance im-

provement over traditional machine learning methods owing to increasingly

cheap availability of computation, data and some algorithmic improvements.

(Krizhevsky et al., 2012) for image classification, (Bahdanau et al., 2014) for

translation, and (Silver et al., 2017) in Reinforcement Learning are some of

the most notable examples of recent improvement.

Figure 5.1 shows a neural network with a single hidden layer. For this

network, the weights of the input layer will be updated using gradient descent

with the following rule:

[wij]t+1 = [wij]t − α ∗ ∂lt
∂wij

, (2.1)
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where, wij is the weight connecting the ith input to the jth hidden unit, lt is

the loss at time t and [xi]t is the ith input at time step t, α is the step-size

parameter. The backpropagation algorithm uses the chain rule to compute the

partial derivative of lt with respect to wij using the partial of lt with respect

to hj, as follows

[wij]t+1 = [wij]t − α ∗ ∂lt
∂hj

∗ ∂hj

∂wij

. (2.2)

2.4 Initialization in Neural Networks

Initializing the weights of neural networks with small random numbers is crit-

ical for their performance. A lot of work has gone into finding good ways to

initialize the weights. Glorot et al. (2010) showed that it is essential to initial-

ize weights in such a way that the gradients don’t become exponentially small

for the first layer when using sigmoid activations. Sutskerver et al. (2013)

showed that initialization with small weights is critical for sigmoid activations

as they may saturate if the weights are too large.

More recent work, (He et al., 2015), has gone into ensuring that the input

signal’s magnitude is preserved across the layers in the network. This signifi-

cantly improves performance when a single step-size is used for all the weights

in the network.

2.5 Generate and Test

Generate-and-test algorithms provide an alternate way to learn the represen-

tations using a search procedure (Kaelbling, 1993; Mahmood, 2013; Whiteson

et al. 2006). In this thesis, we will use an algorithm proposed by Mahmood et

al. (2013). This algorithm learns the weights of a neural network with a single

hidden layer. The output weights of the network are learned using gradient

descent, while the input weights are learned via a generate-and-test process.

The generate and test process is a search procedure in the feature space; a

feature refers to a single hidden unit in the network. The algorithm consists of
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two parts, a generator and a tester. As the name suggests, the generator pro-

duces new features. And the tester continually evaluates the utility of features

and replaces the low utility features with the features produces by the gener-

ator. The algorithm uses a parameter replacement-rate, which determines the

number of features removed at every time step.

The generator studied by Mahmood et al. (2013) produces new random

features. The weights from the inputs to the new feature are sampled from

{−1, 1}. When a new feature is added, its outgoing weight is set to zero. This

ensures that the already learned function is not changed because of the new

features.

Mahmood et al. (2013) proposed three testers. The first one evaluates

the utility of the feature based on the magnitude of the outgoing weight. So,

the features with the lowest magnitude of the outgoing weight are replaced.

Because new features are initialized with an initial weight of zero, they will

be the first to be replaced by the tester. Thus, they should be protected from

replacement for a few time steps. So, a maturity-threshold of twenty times-

steps was used, which protected new features from a replacement for twenty

time steps.

The second tester used a trace of the magnitude of outgoing weight to mea-

sure the utility of the feature. The trace of the weight magnitude is initialized

to the median of the existing traces. For this tester, there is no need for a

maturity threshold parameter. But, a new parameter for the decay-rate of

trace is introduced.

Finally, the third tester was designed specifically for algorithms that learn

a step-size for each feature. It used the learned step-size and the outgoing

weight magnitudes to evaluate the utility features.

2.6 Cascade Correlation

Cascade correlation (Fahlman et al., 1990) is an algorithm for solving super-

vised learning problems. It learns a neural network whose topology changes

over time, and the size of the network increases. In the cascade correlation
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architecture, the network starts with a linear layer and then hidden units are

added one by one. The inputs for the new hidden unit are the output of all the

existing hidden units and the original observation xi. The final network looks

like a multi-layered ResNet (He et al., 2016), where each layer has just one

unit. After every iteration of adding a new feature, first, a pool of candidates

is created. Then, each candidate is separately trained to maximize the corre-

lation with the error. And finally, the candidate with the highest correlation

with the error is added to the network.

The Cascade correlation algorithm can also be seen as a generate and test

method. The generator produces new features by choosing a feature from the

pool of candidates. The selected feature maximizes the correlation with the

error. Once a feature is added to the network, its input weights are fixed and

are never changed afterwards. The tester never removes any feature.

Despite this similarity, the Cascade Correlation algorithm has fundamental

differences with the generate and test algorithm of Mahmood et al., (2013).

First, the Cascade Correlation algorithm is purely offline, while the generate-

and-test algorithm can be used in both offline and online problems. Second,

in the Cascade Correlation algorithm, the candidates do not affect the output

of the network, while in the generate-and-test algorithm, there is no separate

pool of candidates.

2.7 Forgetting

Catastrophic forgetting (French, 1999) is a phenomenon observed in neural

networks when trained via backpropagation. Neural Networks completely for-

get previously learned information when trained on a new task. Catastrophic

forgetting is not surprising as the backpropagation algorithm is designed for

the case when the input distribution is IID and there are not any mechanisms in

place that can retain information when distribution changes. Various solutions

(Kirkpatrick et al., 2017; Lee et al., 2017) have been proposed for catastrophic

forgetting, but it is still unsolved in online continual learning problems (Parisi

et al., 2019). In reinforcement learning problems, consecutive inputs are highly
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correlated and thus are not IID. Many of the popular RL algorithms (Mnih

et al., 2013) use techniques like Experience Replay to reduce the correlation

among consecutive samples.

Forgetting is often perceived as a bad thing, and a lot of work has gone into

reducing the amount of forgetting in Neural Network trained by backpropa-

gation. However, in our problem setting, where the target function is more

complex than the available approximator, and the input is temporally coher-

ent, some amount of forgetting becomes desirable. Because the approximator

can not exactly represent the target function, we will want our network to rep-

resent the current part of the input space more accurately. This necessitates

some amount of forgetting.
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Chapter 3

Semi-Stationary Problem Setting

This chapter is critical for the thesis as we motivate and introduce our first

contribution, Bit-flipping problems. In the later chapters, we will use this

setting to study various solution methods.

Bit-flipping problems are instances of Semi-stationarity problems with a

complex target function. Semi-stationary problem setting is the class of prob-

lems with temporally coherent input and a fixed target function. In semi-

stationarity problem setting, learning is done online because of temporal co-

herence. We study semi-stationary supervised learning problems, but semi-

stationarity is not limited to supervised learning; it arises in all cases where

the input can be temporally coherent, and the target function is fixed, for

example, contextual bandits.

Formally, semi-stationary supervised learning problems are instances of

the online supervised learning problem. At every time step, an input xt is

presented, then the approximator makes a guess ŷt and then the loss ℓ(yt, ŷt)

is measured, where, ℓ : Y × Ŷ → R is a fixed loss function. There are two

additional constrains on standard online supervised learning which make it

semi-stationary -

• The target function is stationary.

• Input distribution changes over time.

Recently, (Sun et al., 2018; Doan et al., 2020) also looked at semi-stationary

learning problems. We extend their work by focusing on the case when the
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target function is more complex than the approximator. Previously, Sutton

et al. (2007) also studied semi-stationary problems with a complex target

function. However, this work was limited to linear approximators.

We start this chapter by introducing online supervised learning and how

it differs from standard supervised learning. Then, we motivate the need to

focus on learning complex functions in the real world. Finally, we introduce

Bit-flipping problems.

3.1 Online Supervised Learning

In online supervised learning problems, the task is to sequentially make a

prediction y ∈ Rn given an input x ∈ Rm. If the correct prediction is ŷt then

the loss at time t is ℓ(yt, ŷt), where, ℓ : Y × Ŷ → R is a fixed loss function.

The function mapping xt to ŷt is referred to as the target function. The goal

is to minimize the loss on the current sample.

A significant difference between online supervised learning and standard/offline

supervised learning is that there are different phases for training and evalua-

tion in offline supervised learning. First, an approximation is learned during

training and then it’s performance is measured on a test set during evaluation.

While in online supervised learning, training, and evaluation happen at the

same time.

In standard supervised learning, it is assumed that the samples (xt, yt)

are independent and identically distributed (IID). Where the independence

assumption means that the sample at time t is independent of all previous

samples. And the identical assumption means that the target function doesn’t

change over time. However, for systems that interact with the real world, this

is an unreasonable assumption. The world is non-stationary; the distribution

from which xt’s are sampled can change with time even the target function

can change with time.
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3.2 Learning a Complex Function in the Real
World

The IID assumption in supervised learning is very limiting as it avoids all types

of non-stationarities. On the other hand, the Online Learning problem setting

is too general. There can be arbitrary non-stationarities which can even be

adversarial. In this subsection, we will move beyond IID supervised without

going all the way to arbitrary non-stationarities.

One part of the IID assumption is that the samples are independently

distributed. This means that the sample at time t + 1 will be independent

of the sample at time t. In other words, the probability of sampling xt+1 is

independent of the value taken by xt. This assumption is quite contrary to

how the real world works. The world is highly temporally coherent, which

means that its state at time t + 1 is very similar to its state at time t. Thus,

there is a need to focus on the case when the inputs are temporally coherent.

Another essential but under-studied property of the world is its complex-

ity. The real world is much larger and more complex than any system which

is interacting with it. The capacity of the system can never be enough to

represent every detail of the world. Many of the recent successes of machine

learning systems have been because of powerful function approximation. Still,

the role of approximation is underappreciated in the community, and the idea

that the world is much more complex has not received enough attention.

There is no clear way to compare the relative complexities of the target

function and approximators in most supervised learning problems. Later in

the chapter, we will present Bit-flipping problems where the target function

will be more complex than the available approximator.

We put an additional constraint on the solution methods - the available

memory is smaller than the input space’s size. This constraint rules out solu-

tion methods that can remember the correct label for all inputs.
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3.3 Bit-flipping Problems

Bit-flipping problems are semi-stationary supervised learning problems. The

task is to approximate a complex multi-layered network when the distribution

of the input changes with time. We refer to the multi-layered network to be

approximated as the target network. The performance is measured using the

squared loss.

The input at time step t, xt, is a binary vector of m+1 bits. xt ∈ {0, 1}m×

{1} where xi,t ∈ {0, 1} for i in 1, ...m and xm+1,t is the bias input which is

always 1. The target is a scalar yt ∈R.

The target function is a multi-layered network with two layers of weights.

Figure 3.2 shows the network. The input weights are randomly sampled from

{−1, 1} and the output weights are sampled from a gaussian distribution with

mean zero and standard deviation σ. There is also a bias unit for the output

weights, so the final output is the dot product of the output weights with

output of LTUs, and a unit with a constant value of 1. All the approximators

will also have a bias unit in the hidden layer.

We use LTUs (R. S. Sutton et al., 1993) as the non-linear activation. Figure

3.1 shows an LTU. The output of an LTU, with input xt is 1 if
∑︁m+1

i=0 vixi > θi

else 0. Where vi is the weight connecting the input xi to the LTU and they are

also called the input weights. The threshold θi is set as θi = (m+ 1) ∗ β − Si

where Si is the number of input weights with the value of −1 and β ∈ [0, 1].

Previously, Mahmood et al., (2013) and Sutton et al., (1993) have used

a similar target network, but in those works the inputs were independently

distributed. In Bit-flipping problems, the inputs follow a Markov chain. At

every time step, the bit i flips with a probability pi ∈ [0, 0.5], independent of

every other bit. We refer to pi as the flipping probability. When all the bits have

a flipping probability of 0.5, the inputs are independently distributed, while the

correlation between consecutive inputs increases as the flipping probability gets

closer to 0.

When a bit flips with a probability of 0.5 we call it a fast-flipping bit

otherwise, we refer to it as a slow-flipping bit. In this thesis, we study the case
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Figure 3.1: A Liner Threshold Unit
(LTU) with inputs x1...xm. The
output f of the LTU is 1 if xTv > θ,
else it is 0.

Figure 3.2: The inputs in the Bit-
flipping problem has m + 1 bits of
which m flip independently with a
probability pi. The target network
has two layers of weights and LTU
non-linearity.

when only s of the bits are slow-flipping while m− s bits are fast-flipping.

Bit-flipping problems provides an easy way to control the complexity of

the target function. The number of hidden units in the target network offers

a measure of the target function’s complexity. When the number of hidden

units in the target network is more than the number of hidden units in the

approximator, the target function is more complex than the approximator. In

this thesis, we limit the approximators to the class of multi-layered networks

with a single hidden layer.

The evolution of each bit follows a Markov Chain, which is independent of

every other bit. Thus, the evolution of the input vector of m+1 bits also forms

a Markov Chain, we refer to this chain as the input chain. The Bit-flipping

problems are instances of semi-stationary supervised learning problem as the

input is taken from a trajectory on a Markov chain while the target function

is stationary. The main dimensions where a specific instance of Bit-flipping

problems can be instantiated are -

• Number of input bits

• The flipping probability pi for i = 1, ...,m of each bit

16



• Variance, σ of the outgoing weights

• Number of hidden units in the target network

• Number of hidden units in the approximator

3.3.1 Recurrence time

At time t, the input distribution is specified by values of the slow-flipping bits

because the fast-flipping bits are independently sampled. A particular quantity

of interest is the recurrence-time of the input chain. We define recurrence-

time as the expected number of time steps before returning to the same input

distribution.

For a Markov Chain, let S be the set of all states, A be a subset of S, and

Xt be the state at time t. The hitting-time (Norris, 1998) of A, TA, is the time

taken to reach any state in set A for the first time:

TA = min{t >= 0 : Xt ∈ A} (3.1)

The mean hitting-time for set A while starting from state i is defined as:

miA = E[TA|X0 = i] (3.2)

The mean hitting times for set A is the minimum non-negative solution of

the following set of linear equations (Norris, 1998):

miA = 0, if i ∈ A

miA = 1 +
∑︂
k ̸∈A

pikmkA
(3.3)

For the input-chain, the mean recurrence time for state i is equal to the

weighted average of hitting times from all other states weighted by the transi-

tion probability from state i. So, recurrence time, ri for state i is

ri =
∑︂
k ̸∈{i}

pikmki (3.4)

Let the starting state be 0. For the sake of brevity, we will refer to mi0 as

mi. Now,
17



mi = 1 +
∑︂
k ̸∈{0}

pikmk

For a problem with s slow flipping bits, there will be 2s total states. Let m be

the vector of hitting times for the state 0 from the states ∈ {1, ...2s − 1} to,

and P be the transition matrix for states 1 to 2s − 1, where Pij refers to the

probability of transition from state i to j. Now, we have

m = 1 + Pm

m = (I − P )−11 (3.5)

Thus, from equation 3.4, the recurrence time for state 0 is -

r0 =
∑︂
k ̸∈{0}

p0kmk (3.6)

Where, mk is the kth element of the hitting times vector m in equation 3.5

and p0k is the probability of transition from state 0 to k.

An instance of the Bit-flipping problem, with 20 input bits of which 10 are

slow flipping bits with a flipping probability of 10−4. The mean recurrence

time is 1,023,460 time steps.

3.3.2 Steady-state Distribution

In the Bit-flipping problem, the steady-state distribution for each bit i is uni-

form over {0, 1}. Additionally, all of the bits flip independently of each other.

Thus, the steady-state distribution over the whole input state is again uniform.

3.4 Expectations from Solution Methods

For the semi-stationary learning problems in which the target function is much

more complex than the approximators, we expect that stationary solutions

will do worse compared to methods that track the best approximation for the

current input distribution.
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We expect that step-size will be a sensitive parameter for solutions that

track. If the step-size is too low, the approximator will not be able to adapt to

the current distribution fast enough, and if it is too high, the learning process

will become unstable.

Apart from adapting to the current input distribution, another important

factor will be the ability to retain useful information. Methods that are better

able to retain useful information about past input distributions will do better

when previously seen distributions return.
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Chapter 4

Tracking the Best Local
Approximation

In the previous chapter, we introduced the semi-stationary problem setting

with a complex target function. In this chapter, we explore various solution

strategies for these problems. As our second contribution, we show that in

semi-stationary learning problems, continually tracking the best approxima-

tion can be significantly better than any fixed solution.

The target function in semi-stationary learning problems is stationary. The

standard method to solve such supervised learning problems is to optimize

the available parameters to minimize the loss function. This optimization

is usually done via stochastic gradient descent (SGD), and it converges to

a solution. The first solution method that we will try for semi-stationary

supervised learning problems will be based on SGD, and it will give us a

stationary solution.

Stochastic Gradient Descent based optimization methods have been ex-

plored to solve semi-stationary learning problems. Recently, Sun et al., (2018)

showed convergence guarantees for SGD in finite Markov chains.

In semi-stationary problems where the target function is more complex

than the approximator, the approximator cannot precisely represent the target

function. However, the input distribution changes with time, which means

that at different times the inputs will be sampled from different parts of the

input space. So, the best approximation will change continually depending

of where the samples are coming from. Thus, we can track a temporally-
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local approximation of the target function. Tracking a local approximation

can result in a lower error for the current input distribution at the cost of

increased average error in the full input space.

Most of the work on tracking based solutions (Nagabandi et al., 2018; Al-

Shedivat et al., 2017) have focused on non-stationary target functions. The

work closest to ours is by Sutton et al. (2007), where they worked with a sta-

tionary target functions and showed that tracking is better than converging to

a solution. However, their work was limited to linear function approximators,

while we work with non-linear approximators.

4.1 Travelling in a circle

In this section, we will introduce a problem where the input travels in a circle.

The input is two-dimensional vector of real numbers (x1, x2). The target func-

tion is x2
1 and the available approximator is linear and has just two weights

(w1, w2), thus it can only make predictions of the form (w1x1 + w2x2).

The input distribution is a gaussian with mean (m1t,m2t) at time t and

variance 0.001. The mean of the input distribution is not stationary; rather,

it moves around in a circle centred at (0, 0) and radius 1. The value of the

mean starts at (0, 1), and it moves along the circle at a rate of one degree per

time step.

Now, we will analytically find the best stationary solution for this problem.

The best stationary solution will minimize average error over the full input

space. Thus the objective is to minimize the following loss, where pt(x) is the

probability of x for the gaussian with mean mt.

c(w1, w2) =
359∑︂
t=0

1

360

∫︂
x1,x2

pt(x)(wTx − x2
1)

2dx (4.1)

At the minimum of the objective, its first derivative with respect to the

weights will be zero, i.e.

∇wc(w) = ∇w

359∑︂
t=0

1

360

∫︂
x
pt(x)(wTx − x2

1)
2dx = 0
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359∑︂
t=0

∫︂
x
pt(x)(wTx)xdx −

359∑︂
t=0

∫︂
x
pt(x)x2

1xdx = 0 (4.2)

Now, if we consider the gaussians at t and 180 + t, their means are neg-

ative of each other but they have the same variance, so pt(x) = p180+t(-x).

Therefore,

179∑︂
t=0

∫︂
x
pt(x)x2

1xdx = −
179∑︂
t=0

∫︂
x
p180+t(x)x2

1xdx

179∑︂
t=0

∫︂
x
pt(x)x2

1xdx +
179∑︂
t=0

∫︂
x
p180+t(x)x2

1xdx = 0

359∑︂
t=0

∫︂
x
pt(x)x2

1xdx = 0

So, in equation 4.2, we get

359∑︂
t=0

∫︂
x
pt(x)(xTw)xdx =0

Now, ((xTw)x)T = (xTw)TxT = wT (xxT ). So, the above equation be-

comes,

w
359∑︂
t=0

∫︂
x
pt(x)(xTx)dx =0

In this equation, pt(x) and xTx are always positive, so

w = 0 (4.3)

The second derivative of the objective in equation 4.1 is always positive,

thus the solution in equation 4.3, i.e. w = 0 is the global minimum. For this

values of w the mean squared error is 0.500.
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Figure 4.1: This figure shows on a simple problem that a tracking based solu-
tion can do better than the best stationary solution. It shows the performance
of SGD for tracking x2

1 using a linear approximator with a step-size of 0.1. The
oscillations in the tracking solution correspond to rounds around the circle.

Now, to track a local approximation, we used SGD to minimize the online

squared error. We used a step-size of 0.1 and initialized the weights to 0.

At every time step, the weights are updated using the gradient of the loss on

the current input. This resulted in an average error of 0.31 after 10000 rounds

around the circle. Thus, the average loss for a tracking-based solution is better

than that of the best stationary solution. Figure 4.1 shows the performance

of SGD for the first 10000 time steps for a single run.

4.2 Tracking in the Bit-flipping problem

In this section, we compare the performances of the best stationary solution

and a tracking solution on two instances of the Bit-flipping problem. The first

problem is a small instance of the Bit-flipping problem with nine inputs and

hundred hidden units in the target network. Two of the nine input bits are

fast flipping, while seven are slow flipping. Then, we test the two methods

on a bigger instance with thirty inputs and four thousand hidden units in the
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target network, where ten bits flip fast while twenty bits flip slowly.

4.2.1 Small instance of Bit-flipping problem

The small instance of the Bit-flipping problem has nine input bits. Two of the

nine bits flip fast with a probability of 0.5, and the remaining seven bits flip

slowly with a probability of 0.001. The target network has one hidden layer

with one hundred LTUs. The LTUs have β = 0.8. The approximator also has

one hidden layer, but with just two hidden units. Throughout this sub-section,

we will evaluate performance over 30 runs. Across the experiments, the same

30 sequences of samples were used; each sequence of samples was generated

from a different target network and a different sequence of inputs.

Tracking a local approximation

We used SGD to track a local approximation. At every time step, we update

the weights using the gradient for the error on the current sample. Figure

4.3 shows a running average of squared error over the previous 10,000 samples

for various step-sizes and non-linearities. For, the first 10,000 time steps, the

average is over all the samples seen so far. In this figure, the squared error is

averaged over 30 runs, and the shaded portion represents the standard error

of the running average.

Finding the best stationary solution

To find the best stationary solution, we trained the approximators on IID

samples from the steady-state distribution. From Section 3.3.2, we know that

for Bit-flipping problems the steady-state distribution is uniform over the input

space, i.e. all the inputs are sampled with equal probability.

We trained the approximators for 200,000 i.i.d. samples from the steady-

state distribution using stochastic gradient descent with random restarts. We

used random restarts to find as good a stationary solution as possible. Again,

for each sample, weights were updated using the gradient for the error on the

current sample. We performed ten random restarts, restarts happened after

every 200,000 time steps; at each restart, weights were randomly re-initialized.

To evaluate the quality of a stationary solution, we compared the average

loss of the solution on the full input space, which has 512 possible inputs. The
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Figure 4.2: Finding the best stationary solution for the small Bit-flipping
problem using SGD with random-restarts. The y-axis shows the mean squared
error over the entire input space. For each configuration of step-size, ten
networks were trained and the one that got least mean squared error was
chosen as the best stationary solution. The approximators were trained on
i.i.d. samples from the steady-state distribution.
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Figure 4.3: Tracking vs the best stationary solution found in Figure 4.2 on the
small Bit-flipping problem. All approximators were tracking using stochas-
tic gradient descent. For various step-sizes, we find that a tracking solution
achieves lower online error compared to the best stationary solution.
.
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set of weights with the least average error on the input space was chosen as

the best solution.

Stochastic gradient descent has a step-size parameter that has to be speci-

fied beforehand. We did a parameter sweep over a range of step-sizes, namely

{0.02, 0.01, 0.005, 0.002}. Again, we chose the step-size that provides the least

error on the full input space as the best solution. Figure 4.2 shows for various

step-sizes and non-linearities, the average error of the best solution on the full

input space.

Finally, Figure 4.3 shows the comparison of tracking solutions with the

average-error of the best stationary solution that we found in Figure 4.3. It is

clear from the figure that for some step-sizes the tracking-based solution gets

lower online error compared to the best stationary solution.

4.2.2 Big instance of the Bit-flipping problem

Now, we will compare the best stationary solution and tracking based solutions

on a bigger instance of the Bit-flipping problem. This instance has 30 input

bits, of which ten flip fast with a probability of 0.5, while the remaining 20

bits flip with a probability of 1e-4. The LTUs have β = 0.6. The target

network is big, and it has four thousand hidden units, while the approximator

has one hundred hidden units, and the hidden units in the approximator have

ReLU (non-linear) function. The LTUs have β = 0.8 We do 30 runs for all

the experiments in this subsection. All experiments have the same 30 target

networks, however, the input sequence may vary across experiments but it

remains the same in an experiment.

Like the previous sub-section, to find the best stationary solution, we

trained the approximators on i.i.d. samples from the steady-state distribu-

tion. We trained the approximator for 32 million samples using mini-batches

of size 32 using stochastic gradient descent. The approximator’s weights were

updated using the average of the gradient of the error for the 32 samples of

the mini-batch. For this experiment, we did not use random restarts. Figure

4.4, shows the running average of the online error for various step-sizes. The

average at every time was over the previous 10,000 samples. The average error
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Figure 4.4: Finding the best stationary solution on the big Bit-flipping prob-
lem using SGD. The figure shows that various approximators trained on i.i.d.
samples get to an average error of 1.60 when trained for 1M mini-batches of
size 32.

on the last 10,000 i.i.d. samples is chosen as the representative for average

error on the full input space.

To track a local approximation using SGD, we update the weights based on

the gradient on the current sample. Figure 4.5, shows the running average of

the error over the previous 10,000 samples. The sequences of samples used for

all step-sizes are the same. Again, we find that for a wide range of step-sizes,

the performance of a tracking solution is better than that of the stationary

solution.

Finally, we look at the effect of changing the flipping probability. For this

experiment, we fixed the target network and vary the flipping probability of

the slow flipping bits, which results in different sequences of inputs. The best

stationary solution is independent of the input sequence as the best stationary

solution minimizes the average error on full input space. Figure 4.6 shows the

online error for a step-size of 0.001 for various values of the flipping probability.

This figure shows that the error for tracking based solutions reduces as the

value of flipping probability goes down. Thus, the more temporally coherent
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Figure 4.5: Tracking a local approximation via SGD, for various step-sizes,
performs better than the stationary solution on the big Bit-flipping problem.
If the step-size is too small, tracking a good local approximation is hard, as
there is not enough time to get close to the local minimum.

Figure 4.6: Increasing temporal coherence improves the performance of track-
ing based solutions. We increase temporal coherence by reducing the flipping
probability. Same target function is used across different flipping probabilities,
thus for all flipping probabilities the stationary solution is same.
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the input, the better it is to track.

4.3 Summary

In this chapter, we looked at a couple of solution strategies for semi-stationary

learning problems. The first strategy was to find a stationary solution using

stochastic gradient descent and converging to a local minimum (Sun et al.,

2018). Second, was to track a temporally local approximation, which approx-

imates a better solution for current input distribution at the cost of having

a worse approximation for other parts of the input space. However, because

the measure of performance is the error on the next sample, the average error

in the full input space is not relevant. We saw that for tracking in the circle

and for various instances of the Bit-flipping problem, it is better to track a

local approximation than to get to the best stationary solution. In the next

chapter, we will study more details about tracking using backpropagation.
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Chapter 5

Decaying Adaptiveness of
Gradient Descent

In semi-stationary learning problems, the best approximation continually changes,

which creates a need for continual adaptation. In the previous chapter, we saw

that tracking the best approximation can be better than converging to a set

of weights. Now, we will take an in-depth look at tracking via backpropa-

gation. The conventional backpropagation algorithm consists of two parts:

initialization using small random weights and gradient descent at every time

step using the loss on the current sample. The special random initialization

creates a temporal asymmetry, as it only happens in the beginning. As our

third contribution, we show that this temporal asymmetry makes conventional

backpropagation unsuitable for tracking in semi-stationary learning problems.

In this chapter, we show that gradient descent can adapt to local approxi-

mations initially, but over time there is a decline in the ability to adapt. We

refer to this phenomenon as decaying adaptiveness of gradient descent. We

show that initialization with small random weights provides special conditions

that make it possible for gradient descent to adapt fast. However, over time the

effect of initialization with small random weights is lost, and gradient descent

loses the ability to adapt.
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5.1 Problem

We use an instance of the Bit-flipping Problem to study tracking with back-

propagation. This instance has twenty input bits. Fifteen of these bits flip

slowly with a probability 1e − 5, and the remaining 5 bits flip fast with a

probability of 0.5. The LTUs have β = 0.75. The target network has a single

hidden layer of non-linearity; the hidden layer has eighty units with LTU non-

linearity. The approximators are single hidden layer networks with five hidden

units.

5.2 Tracking via Backpropagation

Tracking via backpropagation consists of randomly initializing the weights and

updating them at every time step using the gradient of the loss on the current

sample. We evaluate approximators for four different non-linear functions,

namely - Sigmoid, tanh, ReLUs, and Leaky-ReLUs.

We used uniform Kaiming distribution (He et al., 2015) to initialize the

weights. The distribution is uniform U(−b, b), with bound -

b = gain ∗

√︄
3

num_inputs
, (5.1)

where the value of gain is chosen such that the magnitude of inputs does

not change across layers. For the ReLU, Leaky-ReLU, tanh, and Sigmoid

functions, the gain is
√
2,
√︁

2/1 + negative_slope2, 5/3, 1 respectively. We

used Leaky-ReLU with negative_slope of 0.01.

In our approximator, each layer consists of several features; output of each

feature is a weighted sum of the inputs, followed by a non-linearity

fj = ϕ(vT
j x + bj), (5.2)

where, x is the input, ϕ is an element-wise non-linear function, v in the input

weight vector, and b is the bias. We will refer to vT
j x+bj as sj, and the output

of a feature, fj, as activation. When the output of a feature is zero we call it

inactive, else we call it active.
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Figure 5.1: A network with two layers of weights

When we use the backpropagation algorithm to update the weights of the

network in Figure 5.1, the output weights at time t, wt are updated via the

following rule -

[wj]t+1 = [wj]t+1 + αδt[hj]t, (5.3)

where, α is the step-size parameter, δt is the error at time t, i.e. δt = yt − ŷt.

And, the input weights vt are updated as,

[vi,j]t+1 = [vi,j]t + αδt[wj]t
∂[hj]t
∂[sj]t

[xi]t. (5.4)

We measure performance using a running average of the loss. The average

at every time step is over the previous 10,000 samples. For the first 10,000 time

steps the average is computed over all the samples seen so far. We perform 100

runs in all the experiments. Across the experiments, the same 100 sequences

of data are used.

Figure 5.2 shows the online error for various approximators using different

step-sizes. We observe that for large step-sizes, the approximators can track a

good local approximation at the start. However, over time, the loss increases
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Figure 5.2: Tracking a local approximation via backpropagation on an instance
of the Bit-flipping problem. Gradient descent tracked a good local approxi-
mation for the first few thousand time steps. But, over time it lost the ability
to track.
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Figure 5.3: Tracking a local approximation using a smaller step-size on an
instance of the Bit-flipping problem. After running for 1M steps in Figure 5.2,
it may seem that performance for lower step-sizes does not worsen over time.
Here we ran the experiment for longer, 10M steps, and we found that the error
for smaller step-size increases over time too.
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and the approximators lose the ability to track a good local approximation.

For smaller values of step-size, the error is always high, but it may seem like

their performance does not get worse over time. However when we run this

experiment for longer, Figure 5.3, we find that approximators using smaller

step-sizes also display decaying adaptiveness.

The approximators can track a good local approximation initially, but they

lose this ability over time. This suggests that the initial distribution might

be providing some special conditions which allow the approximators to adapt

fast. But, over time, the effect of that special initialization is lost, and the

network loses the ability to adapt. There could be many properties that the

random initialization provides, like diverse features, highly adaptive features

etc. In the next section, we shed light on one of these properties.

5.3 Decaying Adaptiveness of Features: Drift-
ing to Regions With Small Gradients

When the gradient of the input weights of a feature is high, the input weights

change fast, which makes the feature highly adaptive and vice-versa. From

Equation 5.4, we know that the gradient of the input weights is proportional

to the derivative of the non-linear function, ∂fj
∂sj

, where sj is the input to the

non-linear function while fj is the output of that function. Figure 5.4 shows

various non-linear functions that we used in this chapter. In this section, we

show that at initialization, the average magnitude of the derivative of the non-

linear function is high, but over time the average magnitude of the derivative

decreases.

For ReLU function, the feature activation is zero when wTx+b is negative.

When the feature activation is zero, the gradient is zero too. Thus, when the

feature is inactive, w will not be updated. If a feature is inactive in large part

of the input space, the feature will be less adaptive.

Figure 5.5 shows the evolution of the fraction of ReLU features which are

active in more than 1% of the input space. The input space for this instance of

the Bit-flipping problem is {0, 1}20. At initialization, almost all of the features
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(a) ReLU (b) Leaky-ReLU

(c) tanh (d) Sigmoid

Figure 5.4: Various non-linear functions that we use in this chapter. The
blue line represents the function’s output, while the purple line shows the
derivative of the function. Non-linear function approximators get their power
to represent arbitrary functions because of these non-linear functions. For all
of these non-linear functions, there are regions where the derivative is close
to zero. Initialization with small random weights ensures that the output of
these functions lies in regions where the derivative are high, but over time,
that effect is lost as the output drifts into regions where the derivative is low.
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Figure 5.5: When tracking with a network of ReLU features, the features
become inactive in an increasingly large portion of the input space. When a
feature is inactive, its input weights do not change. Thus, there is no learning.
So, if a feature is inactive in large part of the input space, it adapts slowly.
This decrease in the activity of the features partially explains the decaying
adaptiveness for a network of ReLU features.

Figure 5.6: When tracking with a network of tanh features, the features get
saturated over time, which means that their average magnitude of activation
becomes high. As the magnitude of activation increases, the gradient for the
input weights decreases. Lower gradient for input weights implies that they
change slowly, which means there is slower adaptation, and that is what we
observed in Figure 5.2.
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are active in more than 1% of the input space. However, as time progresses,

this number starts to decrease. This decrease explains in part, the performance

decay that we saw in Figure 5.2 for the approximator with ReLU features.

Figure 5.6 shows the evolution of the average magnitude of activation for

the tanh function. At initialization, for the approximator with step-size 0.01,

the average magnitude of activation is 0.3, while after 1M steps, it gets to 0.95.

From Figure 5.4, we know that when the average magnitude of activation is

high, the gradients for the input weights are low and vice-versa. This decrease

in the magnitude of the gradient of input weights means that the features have

become less adaptive.

Random features are highly adaptive

We now show that random ReLU features are highly adaptive. If the

weights of the feature are randomly sampled from a distribution symmetric

around 0, the probability of activation is always 0.5. Let the weights, W, be

sampled from some distribution D. We have,

P (W = w|W ∼ D) = P (W = -w|W ∼ D) (5.5)

Now, for any input, x, except x = 0, if wTx > 0, then -wTx < 0 and

vice-versa, thus for any x,

P (WTx > 0|W ∼ D) = 0.5

P (max(WTx, 0) > 0|W ∼ D) = 0.5 (5.6)

Hence, for any distribution D, which is symmetric around 0, the probability

of activation for all inputs, except x = 0, is 0.5.

The assumption that the distribution is symmetric around 0 is not unrea-

sonable, all of the standard ways to initialize a neural network use symmetric

distributions. In the previous section, we used the uniform kaiming initializa-

tion. The distribution is uniform U(−b, b), which is symmetric around zero.

Thus, at initialization, the probability of activation was 0.5 for all inputs. So,

the ReLU features were highly adaptive in the beginning.
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5.4 Summary

In this chapter, we explored tracking via backpropagation for semi-stationary

learning problems. We found that conventional backpropagation displays de-

caying adaptiveness, where it gets lower error initially, but the error increases

over time. The main difference at the beginning and after some time is that

the starting point to get to the next local approximation has changed. We

showed that initialization with small random weights ensures that the output

of the features starts out in regions where the gradients of the input weights

are high. But over time, the effect of this initialization goes away, which causes

the loss in adaptiveness of the features.
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Chapter 6

Continual Injection of
Randomness

In the previous chapter, we saw that conventional backpropagation displays

decaying adaptiveness on semi-stationary learning problems. We found that

the initial distribution provides special conditions that make fast adaptation

possible. However, after adapting to multiple local approximations, the initial

distribution’s effects are lost, and the network loses the ability to adapt. There

is a temporal asymmetry in the conventional backpropagation algorithm, as

the special initialization is only present at the start. But, in semi-stationary

learning problems, there is a need for continual adaptation. Thus, the solutions

should be temporally symmetric and there shouldn’t anything special about

any specific time.

As our final contribution, we propose a solution to the decaying adaptive-

ness problem by continually injecting randomness. In the previous chapter,

we saw that the initial random features are highly adaptive, while the features

that we get after tracking for some time are much less adaptive. So our pro-

posed solution is to continually injects randomness by selectively replacing low

utility features. We do this using a generate-and-test process similar to the

one proposed by Mahmood et al. (2013). Our generate-and-test process has

two parts. First is a generator that proposes new random features from the

initial distribution. The second is a tester that finds low utility features and

replaces them with features proposed by the generator.
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6.1 Search via Generate-and-test

Here we will describe the generate-and-test process that we use to inject ran-

domness in the conventional backpropagation algorithm. The generate-and-

test process is a search procedure in the space of features. The process consists

of two parts, first is the generator, which produces new features, and second

is the tester, it finds low utility features that will be replaced.

Our generator randomly samples features from the initial distribution.

Thus, the generator provides a way to inject randomness continually. When

a new feature is added, its outgoing weight is initialized to zero. This ensures

that the newly added features don’t affect the already learned function.

The role of the tester is to find low utility features and remove them. The

tester that we use here measures utility using the trace of the magnitude of

the product of the outgoing weight, and feature activation. There are two

parameters in this tester. First, replacement-rate determines the rate with

which to replace features. And, second is decay-rate of the trace. We initialize

the trace as the median of the trace for all the other features.

6.2 Backpropagation and Search

Here we combine the conventional backpropagation (BP) algorithm with the

generate-and-test algorithm. We will refer to this algorithm as GTBP. Figure

5.1 shows a multi-layered network with two layers of weights. Algorithm 1

specifies the GTBP algorithm for this network. The algorithm performs a

gradient descent step at every time step and replaces low utility features based

on the frequency provided by the replacement-rate. This algorithm is very

similar to the one proposed by Mahmood et al. (2017), with the main difference

being that we use a new measure of feature utility, which is based on a trace

of the product of feature activation and its outgoing weight.

We use the same instance of the Bit-flipping problem, as we did in the

previous chapter. There are twenty input bits, of these fifteen flip slowly with

a probability of 1e-5 and the remaining five flip with a probability of 0.5. The

target network has 80 hidden units, and all the approximators have 5 hidden
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Algorithm 1: Backpropagation with generate-and-test (GTBP)
Initialization;
Initialize the weights: randomly sample v, and w from some
distribution D;

Set step-size α, replacement rate ρ, and decay rate η as desired ;
Initialize feature utility, z to zero;
for each sample (xt, yt) do

Forward pass: pass input through the network, get ft and ŷt;
Backward pass: update the weights v, and w using equations 5.3,
and 5.4 respectively;

Update utility: zt+1 = η|ftwt|+ (1− η)zt;
Find nρ number of features to replace with smallest utility, let
their indices be r;

if nρ < 1 then
With probability nρ, choose the feature with smallest utility to
be replaced

if there are features to be replaced then
Reset the input weights vr by randomly sampling from D;
Set the output weights wr to zero;
Reset the utility [zr]t to the median of [z]t;

units.

We used a running average of the loss to measure performance. We av-

eraged the loss over the previous 10,000 samples. For the first 10,000 time

steps the average is computed over all the samples seen so far. Figure 6.1,

shows the running average of the loss for various approximators trained via

BP, and GTBP. All the results are after 30 runs. And for all configurations of

parameters and algorithms, the same data was used, i.e. they had the same

sequence of input-output pairs. For all the approximators, we used a step-size

of 1e-2. For approximators that used GTBP, we used a replacement-rate of

1e-4, and a decay rate of 1e-2.

In Figures 6.2 and 6.3 we take a look at the evolution of feature activation

with BP and GTBP. From Figure 5.4, we know that for the tanh function

higher magnitude of activation implies lower gradients. We find that for tanh

funciton, Figure 6.3, the average magnitude of feature activation is lower for

GTBP. Thus, GTBP has higher adaptiveness. And for ReLU function, Figure
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Figure 6.1: Continually injecting randomness alongside gradient descent,
GTBP, is better for continual adaptation than just gradient descent, BP.
The figure shows a running average of squared error of BP and GTBP on
an instance of the Bit-flipping problem. The error for all of the approxima-
tors gets worse over time, but the effect is less significant with GTBP as the
generate-and-test part continually injects randomness. Thus, making GTBP
more adaptive than BP.
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Figure 6.2: For a network of ReLU features, continual injection of random
features results in features which are active in a larger fraction of the input
space. Initially, almost all the features are active in more than 1% of the input
space, but over time it decreases. For GTBP, this fraction reduces slowly as the
generate-and-test process is introducing new features, and most of these new
features are active in more than 1% of the input space. For the IID stationary
solution, the fraction of features active in more than 1% of the input space is
always more than 0.88, and it doesn’t decrease as the number of IID samples
increase.

Figure 6.3: For a network of tanh features, continually injecting random fea-
tures results in features that have a lower average magnitude of activation. For
both algorithms, the magnitude increases with time. Random features have a
small average magnitude of activation. Thus, for GTBP, this average magni-
tude of activation is smaller generate-and-test process continually introduces
random features.

45



Figure 6.4: Parameter sweep over replacement-rate and decay-rate of GTBP
for step-size 0.01. For all non-linear functions, a slow replacement rate pro-
vides a significant improvement over backpropagation. For this step-size, the
performance of GTBP is not a lot effected by the choice of decay-rate.
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6.2 shows that with GTBP, the ReLU features are active in a higher fraction of

the input-space. Thus, GTBP is more adaptive BP and this partially explains

the performance improvement in Figure 6.1.

Finally, we look at the sensitivity of GTBP to the new parameters replacement-

rate, and decay-rate. We use the same data as in the previous experiment for

all configurations of parameters. Figure 6.4 shows the average loss over the full

length of the experiment for various values of the parameters replacement-rate

and decay-rate. This shows that for a wide range of replacement-rate, GTBP

provides a significant improvement over BP. For these values of replacement-

rate and step-size GTBP is insenitive of the choice of decay-rate. However,

when replacement-rate is very high, the performance of GTBP can be worse

than BP.

6.3 Summary

In this chapter, we proposed a solution to the decaying adaptiveness problem

of gradient descent by continually injecting randomness. We used a generate-

and-test algorithm to replace low utility features by random features from the

initial distribution. We showed that the resulting algorithm, GTBP, performs

significantly better than the conventional backpropagation algorithm.
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Chapter 7

Conclusion

In this work, we introduced the semi-stationary problem setting. In these

problems, learning has to be done online. The main features that separate

these problems from IID function approximation is temporal coherence. Tem-

poral coherence means that the input at each time step is dependent on the

previous inputs. We focus on semi-stationary learning problems where the

target function is more complex than the approximator. To study this class

of problems, we introduced Bit-flipping problems.

We then explored two possible solution strategies for semi-stationary prob-

lems with a complex target function. First was to converge to a local minimum

using stochastic gradient descent(SGD). In these problems, the target function

is more complex, which implies that the approximator doesn’t have enough ca-

pacity to represent it exactly. So, our second strategy was to track the best

approximation for the current part of the input space, again using SGD. We

found on two semi-stationary problems that tracking a local approximation is

better converging to a set of weights. Thus, semi-stationary learning problems

with a complex target function allow us to study tracking solutions without

invoking arbitrary non-stationarities.

The conventional backpropagation algorithms consist of two parts: first,

to initialize the weights randomly, and second is gradient descent at every

time step. This random initialization creates a temporal asymmetry. Semi-

stationary learning problems require continual adaptation, so the solutions to

these problems should be temporally symmetric. We showed that this tempo-
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ral asymmetry in the backpropagation algorithm causes decaying adaptiveness,

where it can perform well initially, but the loss increases over time. We showed

that the small initial random weights provide special conditions that ensure

that features start in regions where the gradients are high, but over time this

effect is lost, and backpropagation looses the ability to adapt.

A natural solution to decaying adaptiveness is to continually inject highly

adaptive features. We know that random features from the initial distribution

are highly adaptive, thus continually injecting random features from the initial

distribution is one possible solution to this problem. We used a generate-and-

test process to do so, where the tester replaced low utility features by the new

features proposed by the generator.
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