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ABSTRACT
Geostatistical modeling takes geological data as inputs and builds statistical models for resource

prediction. Geostatistics consists of several components, including preprocessing, modeling, and

postprocessing. Exploratory data analysis (EDA) is an early step in preprocessing. It provides the

characteristics of data and helps identify erroneous or inconsistent data. In the context of geostatis‑

tics, missing data and below detection limit (BDL) data are an important anomaly to be understood

in EDA. Missing data are problematic in EDA techniques such as principal component analysis

(PCA). BDL data also cause problems when conducting cluster analysis and other analysis. Geo‑

statistical models need to be conducted in stationary domains, so multivariate and spatial cluster

analysis is another important aspect in EDA. It separates data into smaller groups in which data

share similar features.

This thesis coversmultiple aspects of geostatistical EDA.Adatamap examinesmissing data, and

it shows the number of missing data in each variable and location. A combined permutation and

Kolmogorov–Smirnov (KS) test identify if the missingness in variables is systematic. BDL data are

investigated in univariate and bivariate methods. A BDL statistics table complements histograms.

Three methods measure the spikiness of data. Bivariate analysis compares observed distributions

with expected distributions which indicate full independence of BDL occurrence. Kullback–Leibler

(KL) test quantifies the difference between the distributions, obtaining combinations of variables in

which the BDL occurrence can be dependent. This helps the understanding of the reasons for BDL

data.

The handling of BDL data in cluster analysis is addressed, including a workflow that finds the

optimal number of clusters. Tests on synthetic data examine the compatibility of the workflowwith

different data transformations and clustering methods. K‑means is a suitable clustering method for

dealing with BDL spikes. Four transformations compatible with the workflow are combined with

k‑means to examine clusters in real data. The trade‑off between spatial continuity and multivariate

continuity in cluster analysis is addressed. A novel classification method is proposed to find the

optimal clustering and domain labels. Ensemble clustering labels are used as inputs for the classifi‑

cation. The classification algorithm takes multiple sets of clustering labels as inputs. The domains

are assigned based on clustering labels and two hyperparamters ‑ spatial weight and number of

domains. The matrix of classification results shows higher spatial weight results in more contin‑

uous domains. Flow simulation results show that the domain label assignment has an impact on
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Abstract

the performance of the final geostatistical models, because flow responses are highly sensitive to

spatial and multivariate continuity.
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CHAPTER 1

INTRODUCTION
1.1 Background

Geostatistical modeling uses geological data for resource estimation and the workflow has several

components. Exploratory data analysis (EDA) finds the characteristics of data. If necessary, the an‑

alyzed data are cleaned and imputed (Abrevaya & Donald, 2017; Silva & Deutsch, 2018). The next

step is to conduct the modeling, including transforming data to Gaussian space, variogram infer‑

ence, kriging or simulation and back‑transformation (M. J. Pyrcz & Deutsch, 2014). Postprocessing

verifies the models using statistical tools such as cross‑validation (Browne, 2000). To generate accu‑

rate models, the quality of the input data is of great importance, and this is more likely when EDA

is conducted appropriately.

1.1.1 Exploratory Data Analysis

EDA is an approach to summarize the characteristics of data. The summary can possibly gener‑

ate suggestions for collecting new data, using suitable data for further analysis or modeling, and

reasons for the observed data features (Behrens, 1997; Tukey et al., 1977). The univariate data dis‑

tribution can be summarized by statistical tables. They provide information such as the mean, vari‑

ance and quantiles. Quantiles describe the univariate features more robustly when the data are

highly skewed (Takeuchi, Le, Sears, Smola, et al., 2006). Data visualization is also important in

EDA. It provides direct and concise observations of the univariate and multivariate data distribu‑

tions. Cumulative distribution function (CDF) and histograms examine the univariate properties

of data, which include the range of data, the frequency of data and the data skewness. Box plots

examine data characteristics across multiple categories. In each category, the data is summarized

with the minimum (q0), maximum (q100), median (q50), first quartile (q25) and third quartile (q75).

Scatter plots show bivariate relations, which can illustrate the correlations or non‑linearity between

variables.

Real data are rarely homogeneous. Data can be missing because of data collection errors. These

missing data can influence the performance of classification ormodeling (Ding, Han, Zhao, & Chen,

2015). There are several methods to address the problem, including dropping the missing data, fill‑

ing in the missing data with mean or median, and predicting the missing values with regression

(Little & Rubin, 2019). Adopting which method depends on the nature of missingness. If the miss‑

ingness is random, dropping the data can be feasible. If the missingness is systematic, regression

may be applied (Efron, 1994; Van Buuren, 2018). Outliers are extremely low or high data that appear
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far from the majority of the data. Several outliers can drastically influence the results of regression.

For example, in logistic regression, outliers can shift the decision boundaries greatly (Menard, 2002).

Outliers are often omitted or capped, and there are several methods to identify them. For univariate

and bivariate data, outliers can be observed visually using box plots or scatter plots. For high di‑

mensional data, Z‑score can be applied. It measures how many standard deviations data are from

the mean value. Outliers are often identified as data beyond 3 standard deviations (Rousseeuw &

Hubert, 2011).

Advancedmultivariate analysis tools explore high‑dimensional relations in data, including prin‑

cipal component analysis (PCA) (Hotelling, 1933) and cluster analysis (Fred & Jain, 2005; Romes‑

burg, 2004). PCA is a dimension reduction technique, and also creates new coordinates that decorre‑

late the original data. For high dimensional data, some dimensions do not show significant variabil‑

ity. By reducing the high dimensional data to fewer dimensions that exhibit themost variations, the

modeling can be faster. The new coordinates (principal components) are orthogonal to each other.

Starting from the first principal component, the lines are the ones thatminimize the average squared

distance of points to the lines. The following lines need to be orthogonal to the previous ones and

minimize the average squared distance (Abdi &Williams, 2010). Data first need to be standardized

to zero mean and a standard deviation of one. The zero mean is necessary as data need to be ro‑

tated to the new coordinates. The standard deviation of onemakes the interpretation of PCA results

easier. Then, the covariance matrix is calculated and decomposed into the eigenvector matrix and

the eigenvalue matrix. The resulting PCA transformed data is calculated by multiplying data with

the eigenvector matrix. PCA calculates the eigenvalues and eigenvectors of multivariate data and

projects data to the eigenvectors. The variability of each eigenvector is reflected by the correspond‑

ing eigenvalue. The resulting coordinates may not be the same as the original ones. Projecting data

to the first several principal components can represent the majority of the data variations.

Cluster analysis groups similar data together, separating them into subsets that have more dis‑

tinguishable features. Further analysis conducted on the well separated clusters can provide in‑

sight into the data. Data less than 4 dimension may be clustered visually. For higher dimensional

data, statistical tools are necessary. The similarity of data is defined differently and this leads to

different types of clustering methods. The most common ones include connectivity‑based cluster‑

ing (hierarchical clustering) (Johnson, 1967), centroid‑based clustering (k‑means) (Krishna&Murty,

1999), distribution‑based clustering (Gaussianmixturemodel (GMM)) (McLachlan & Basford, 1988;

Reynolds, 2009) and density‑based clustering (Density‑based spatial clustering of applications with

noise (DBSCAN)) (Shen et al., 2016). Hierarchical clustering groups data based on their connectiv‑

ity. Data closer to each other are grouped in early stages, forming intermediate groups. Different

definitions of distance between groups result in different linkage criteria. The commonly used ones

are maximum, minimum and average criteria. Using different linkage criteria can lead to different

clustering of the intermediate groups. The clustering results and the number of clusters can be ob‑
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served using a dendrogram (Sander, Qin, Lu, Niu, & Kovarsky, 2003). K‑means clustering groups

data based on the distance between clustering centroids and data. Data are assigned to the nearest

centroids and the new centroids are calculated for the next iteration of cluster assignment. The pro‑

cess continues until the algorithm converges. The results are determined by the number of clusters

and the location of the initially generated centroids, so different initial centroids are generated and

the best clustering results are returned as the final results. GMM shares similar process as k‑means.

The difference is that multiple Gaussian kernels are generated rather than centroids, and data are

assigned based on their probabilities in different Gaussian kernels. Gaussian kernels can handle

clusters with elongate shapes better than k‑means (Lücke & Forster, 2019). The key parameter of

DBSCAN is the radius r. For each data point i, DBSCAN search the number of data within r. If the

number of data is above a threshold q, the data are defined as core points. Points within r of other

core points are called directly reachable. Points are called reachable if there is a path for them to be

connected to core points. Points are called noise points when they are not reachable by other points.

For a core point, the cluster is defined as all data reachable from it. With many different clustering

methods, each clustering type has their own application situation. No clustering can outperform

another in all situations.

1.1.2 Problems with Geostatistical Exploratory Data Analysis

Geostatistical EDA focuses on understanding missing data, below detection limit (BDL) data and

outliers (Prades, 2017). Geostatistical missing data can come from the high cost of acquiring drill

hole data, or data collection errors. Sometimes data are missing in a variable because the data

in other variables are below a threshold (Little & Rubin, 2019). Missing data can occur for most

variables at some locations or in several variables at many locations. It can cause problems for

multivariate analysis such as PCA. If some variables aremissing, the coordinates in themultivariate

space are unknown, and these data cannot be used in PCA. To handle the missing data, the nature

of missingness needs to be understood. BDL data originate primarily measurement equipment

limitations (Palarea‑Albaladejo & Martin‑Fernandez, 2013). The concentrations of some elements

are so low that measurement equipment cannot detect them. They are often recorded as 0.0 and

form spikes in histograms. These spikes are problematic in quantile transformation (Prades, 2017).

The spikes can be distributed from low to high, which is also known as despiking (Verly, 1984). How

to assign quantiles for the data in spikes results in multiple despiking methods. Different ways of

transforming spikes can lead to different EDA results. To find an appropriate way of despiking

the BDL data, the characteristics of the BDL spikes and the dependence of BDL occurrence are

examined. Outliers are datawith extremely high values, sometimes orders ofmagnitude larger than

the mean of data. They may come from very high concentrations or data collection errors. Outliers

can also appear as extreme low values, and orders of magnitude less than the majority of data. The
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corresponding distribution is negatively skewed such as Fe or SiO2. Outliers can cause problems

when clustered with centroid‑based methods (Chawla & Gionis, 2013; Prades, 2017). They shift the

centroids drastically compared with ordinary data, resulting in inaccurate clustering results or an

incorrect number of clusters.

Applying advanced EDAmethods to geostatistical data helps identify stationary domains. Clus‑

ter analysis finds such domains in multivariate space, but there are several factors that affect the

performance of cluster analysis. The multivariate clusters cannot be identified simply through uni‑

variate or bivariate plots. Different clusters may not be obvious until analyzed in high‑dimensional

space, so statistical tools are of great importance for cluster analysis. The number of clusters is the

most important hyperparameter for popular clustering methods (Milligan & Cooper, 1985; Tibshi‑

rani, Walther, & Hastie, 2001). Setting different numbers of clusters can lead to different clustering

results. Therefore, robust methods to find the correct number of clusters are needed. The anomaly

data mentioned above can also affect the performance of clustering analysis. GMM can falsely as‑

sign a Gaussian kernel only for the BDL spikes, so different transformations are compared and the

appropriate ones are used to amend the problems caused by anomaly data. Validation methods

are also important to ensure the clustering results are trustworthy. Cross‑validation applied to

clustering results finds if data are clustered or partitioned.

Geostatistical data have two components, the spatial arrangement of the values and the multi‑

variate data values. Cluster analysis groups data in multivariate space. Data are labeled to ensure

multivariate continuity, but the corresponding spatial distribution of the labels (domains) may be

scattered. The scattered spatial continuity can lead to unstable variograms, and further influence

the performance of modeling. To obtain continuous domains, cluster analysis could be considered

with spatial data only. In this case, spatial continuity is ensured, but the clustering labels may be

scattered in multivariate space. It is not recommended to cluster spatial data directly because of the

complexity in the shape and geometry of geological domains. There is a clear trade‑off between the

multivariate and spatial continuity (Martin, 2019). It would be beneficial to modeling performance

if optimal clustering labels ensure reasonable continuity both in multivariate and spatial space.

1.2 Thesis outline

This thesis addresses selected problems in geostatistical EDA, includingmissing data, BDLdata, dif‑

ferent transformations of BDL in data cluster analysis, and the trade‑off effect of clustering labels

between spatial and multivariate continuity. Chapter 2 examines missing data in a geochemical

dataset. A data map shows the information about the missingness in variables and locations. Mul‑

tiple statistical tools determine if the missingness are random or systematic. Chapter 3 explores

the BDL data in the same dataset. The data are analyzed in both univariate and bivariate ways.

A BDL statistical table complements histograms. Three different methods evaluate data spikiness.
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Input data

Missing data analysis

Below detection limit data analysis

Cluster analysis Domain classification

Figure 1.1: Flow chart of Geostatistical EDA workflow

Bivariate analysis of the BDL data examines if the occurrence of BDL between two variables are in‑

dependent. Chapter 4 compares the effects of different transformations of data on cluster analysis.

Different transformations are considered to handle the potential problems caused by BDL spikes

and a workflow is proposed to identify the optimal number of clusters. This chapter also inves‑

tigates the compatibility of the workflow with different transformations and clustering methods.

Chapter 5 aims at finding an optimal set of domain labels which ensures both multivariate and spa‑

tial continuity. Ensemble clustering is used to cluster multivariate data. Then, a novel classification

method classifies domains given the clustering labels and spatial configuration of the data.

The tools covered in this thesis can formulate a flowchart shown in Fig.??. Missing data analysis

should be conducted first for the imputation of data. BDL analysis should be conducted next before

the spikes are despiked or preserved in cluster analysis. Cluster analysis and domain classification

can be conducted simultaneously.
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CHAPTER 2

MISSING DATA ANALYSIS
The increasing availability of multivariate data provides information and challenges for geostatis‑

tical modeling. The presence of missing data values may cause problems in exploratory data anal‑

ysis (EDA) including compositional data calculation and principal component analysis (PCA). The

nature of missingness influences the management of missing data. A data map is developed to

understand the extent and nature of the missing values. Statistical tools are developed to establish

whether the missingness is random or systematic. The comparison is conducted through a quanti‑

tative measurement of conditional distributions combining a Kolmogorov–Smirnov (KS) test and

a permutation test. Examples demonstrate the robustness of the techniques. The data map distin‑

guishes between missing at random and missing not at random. The statistic tools differentiate

missing completely at random from missing at random.

2.1 Introduction

2.1.1 Background

As sampling equipment improves and technical decisions become more challenging, an increasing

amount of multivariate data are acquired for geostatistical analysis. Although multivariate data

provide extra information, not all of the data are homotopic (equally sampled). Some variables are

missing due to cost, data vintage, and other considerations, and this may cause problems during

analysis. First, it could lead to undefined values in compositional data calculation. In Aitchison

(1982); Pawlowsky‑Glahn, Egozcue, and Tolosana‑Delgado (2015), the classical definition of com‑

positional data excludes the possibility of missing data. Arbitrarily assigning the missing values

mean values or zero values does not satisfy the sum to unity. Another problem with missing data

is encountered when conducting PCA (Abdi &Williams, 2010; Hotelling, 1933). PCA is an effective

method to reduce the dimensionality of multivariate data. It finds the dimensions that capture the

most variability and projects the full‑dimensional data onto these dimensions. The projected data

are also decorrelated, which simplifies geostatistical modeling. In PCA, the heterotopic (unequally

sampled) data cannot be used, because their locations in the full‑dimensional space are unknown.

With the potential problems caused by missing data, the missing data need to be imputed. Un‑

derstanding the nature of missingness is the first step before data imputation. It helps decide which

imputation method should be applied. For example, if the data are missing at random, the tradi‑

tional imputation methods do not introduce bias. There are three types of missingness: missing

completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR)
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(Rubin, 1976). MCAR means the missing data occurrence is independent of observed and missing

samples. It can happen for some systematic reasons but the missing values are completely random

with respect to the data values. In this case, simply omitting the missing data does not introduce

bias, but MCAR rarely occurs. MAR means the missingness occurrence is dependent on observed

data but does not depend onmissing data. For example, some variables are not sampledwhen other

variables are below a threshold. The missingness is classified as MNAR when it does not belong to

the previous two classifications. In this case, the missingness is dependent both on observed and

missing data. This is the most challenging scenario as the imputation based only on observed data

can introduce bias.

2.1.2 Geostatistical imputation

To avoid the aforementioned problems, the missing data can be dropped, but this may lead to

bias, especially when the nature of missingness is not random. Another solution is to impute the

missing data. Different from the well‑established theories of imputation in other fields (Enders,

2010), imputed geostatistical data should retain multivariate relationships and spatial structure.

One approach is to use Bayesian Updating (BU) (Barnett & Deutsch, 2015; Doyen, Den Boer, Pillet,

et al., 1996). The missing data are informed on by different data sources. One source is the data

of the same variable from other locations (primary data). The other is the collocated data at the

location of the missing value (secondary data). The two results are merged and the final result

is sampled to create multiple possibilities. Gaussian mixture model (GMM) imputation (Silva &

Deutsch, 2018) considers a non‑parametric fitting of the multivariate to adapt to more complex

features. The imputed data carry the uncertainty through subsequent analysis.

The real data used in this chapter come from the Government of the Northwest Territories. It is

part of the National Geochemical Reconnaissance stream sediment and water survey and the field

collected data serve the purpose of building a geochemical database for mineral potential. There

are three types of samples: stream silt samples, stream water samples, and bulk steam sediment

samples (Falck et al., 2012). The dataset consists of 51 variables (elements) and about 8500 data

samples. The dataset has missing data, below detection limit data, and outliers. Here, the missing

data are examined.

In this chapter, the difference between MCAR and MAR is examined through numerical anal‑

ysis. The term systematic missingness refers to MAR. First a data map is generated showing the

general information of the missingness, including the missing data location, variables containing

themostmissing data, and an optimal dataset that contains nomissingness. Then, a statistical tool is

developed to explore the nature of missingness. It compares the two subsets of complete variables,

where the target missing variable is present and absent. The developments are demonstrated with

the Northwest Territories dataset. The tool is further validated on a synthetic dataset generated
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from the real data where the mechanism of missingness is understood.

2.2 Import and explore the data

In this section, missing data notations are introduced first. Then, basic information about the miss‑

ingness in the real dataset is presented through a data map. A procedure to find the optimal subset

of data containing nomissing values is proposed and the optimal data subset are highlighted in the

data map.

2.2.1 Missing data notation

Suppose there is a data table (Fig.2.1). Rows represent data and columns represent variables. The

data are denoted {Zα,k; α = 1, · · · , N ; k = 1, · · · , K} where N represents the number of data and

K represents the number of variables. Zα,k is a number when the data are recorded above or below

detection limit (recorded as 0.0), and a null value or not a number (NAN)when the data aremissing.

Some terms are defined as follows: “data” refers to multivariate observations α {α = 1, · · · , N},

“variable” refers to all observations for a specific column k {k = 1, · · · , K}, and “value” refers to

specific entries Zα,k in the data table. When calculating the number of missing data P in row α,

Pα =
K∑

k=1

1{Zα,k = NAN}, α = 1, · · · , N,

where 1{True} = 1 and 1{False} = 0. When calculating the number of missing data M in column

k,

Mk =
N∑

α=1
1{Zα,k = NAN}, k = 1, · · · , K.

The following equation holds for the total number of missing data Nt:

Nt =
N∑

α=1
Pα =

K∑
k=1

Mk.

Figure 2.1: An example of data table. Red color represents missing data. Blue color represents observed data.
Data index are on the veritcal axis and the variable names are on the horizontal axis.

8



2. Missing Data Analysis

2.2.2 Data map

Consider the data map in Fig.2.2. The data are ordered based on the number of missing data in

each row (data observation) and column (variable). Blue represents available data and red repre‑

sentsmissing data. The plots on the edges show themarginal distributions of the number ofmissing

data. Data observations closer to the bottom have more missing variables. There are around 50 un‑

sampled locations. Variables closer to the right edge have more missing observations. 5 variables

(Sr, Sn, F, Zr, B) contain a large number of missing data, and Zr and B have almost 50% of miss‑

ing data. The area is divided into four regions: one region with complete rows and columns, two

regions with either incomplete rows or columns, and one region with both incomplete rows and

columns. Since there are no complete columns, the vertical line representing the complete/incom‑

plete column boundary is overlapped with the left margin. The dash line representing complete/in‑

complete rows is shown in the figure. The first table in the figure shows the basic information

about the missingness in data. For example, there are about half complete data locations and half

incomplete data locations.

If a datasetwith nomissingdata is required and imputation is not an option, themissingdata can

be dropped. Because only a complete row or column can be omitted, there is an optimal dataset that

contains the most remaining data. Since it costs more data to drop a column than a row (dropping

a column eliminates more than 8500 data, while dropping a row only costs 50 data), and there are

less missing data in columns close to the left margin, variables are looped starting from the very left

column.

1. In each column, find the rows containing missing data.

2. If dropping these rows costs less data than dropping the column, drop the rows. Otherwise,

drop the column.

3. Move to the next column. Repeat the process on the clipped dataset.

In the early stage of the procedure, rows are dropped. For many variables in the middle of the data

map, there are no missing data to be found as the missing rows already clipped. When the loop

reaches the last five variables, dropping the columns costs less data than dropping themissing rows.

The columns and rows to be dropped are highlighted light blue in Fig.2.2. The information about

the optimization is tabulated in the second table. There are 51 variables, and 5 variables are dropped.

90% of the variables are preserved. There are 433602 data, and 46466 data are dropped. The opti‑

mal dataset has 89% remaining data. This algorithm for choosing a large number of homotopic

data aims at preserving the most data after dropping the missing data, and it may be overridden

by understanding that some observations or some variables are important so they should not be

dropped.
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Figure 2.2: The plot of the data and highlighted missing part. The figure is divided by dashed lines showing
the complete and incomplete datasets.

2.3 The nature of missingness

In this section, a method to explore the nature of missingness is introduced and the results are visu‑

alized by three different plots. For comparison, further analysis considering the relevance between

variables and the size of missing data is conducted on the observed results. As observed in Fig.2.3,

the last five columns (missing variables) are to be dropped. Doing so excludes more than 40,000 po‑

tentially useful data.The missing data should be imputed. If the missingness is MCAR, the missing

data can be imputed by traditional methods. Otherwise, more advanced techniques (BU, GMM)

should be applied.

To understand the nature of missingness, missing variables are compared with non‑missing

variables (the variables kept after optimization). Consider Fig.2.4. Sn is themissing variable and Ag

is the non‑missing variable. The two subsets of Ag where Sn is present and absent are compared,

and they are denoted XAg|Sn = {Zα,Ag|Zα,Sn = R} and XAg|NoSn = {Zβ,Ag|Zβ,Sn = NAN}
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Figure 2.3: The zoomed‑in plot of columns (variables) to be dropped.

respectively, where α and β refer to data locations (rows). If the two subsets show very different

patterns, we may conclude the missingness is not random. The reason for this comparison is that

the collocated data variables are related as they are collected at the same location. The reason for

not comparing between the missing variables is clear: when Sn is present F could be absent. This

decreases the available data for comparison.

2.3.1 Quantitative measurement

The common quantitative approaches to measure the difference between the two distributions

XAg|Sn and XAg|NoSn, such as comparing the mean or the median, ignore the shape of distribu‑

tions. KS test (Young, 1977) solves this problem. KS test measures themaximumdistance d between

the cumulative distribution function (CDF) of different distributions. By definition, the KS result

d ∈ [0, 1]. The bigger the d value, the more different the two distributions are. As shown in Fig.2.5,

the maximum distance between the CDFs is marked by the blue line. The two distributions are

Gaussian distributions with different means and standard deviations. The red distribution has a

mean of 1.04 and a standard deviation of 0.96, and the gray distribution has a mean of 1.82 and a

standard deviation of 2.04. The two distributions are different, so the maximum distance d is equal

to 0.31. Since the CDFs are compared, the center and the shape of the distributions are both con‑

sidered. The problem of KS‑test is that different sample sizes could lead to artificial errors such as

high value due to few data. Another issue is that different variables retain different baseline d, so

it is difficult to set a threshold d to distinguish MCAR and MAR for all variables.
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Figure 2.4: The partial observations of three variables from the complete dataset.

The permutation test (Odén, Wedel, et al., 1975) is proposed, combined with KS test to solve

the issues above. Suppose there are two subsets X1 and X2 with n1 and n2 data respectively. The

whole sampleX = X1 +X2 with n = n1 +n2 data. First, X1 andX2 are compared. Then n1 and n2

samples are randomly drawnwith no replacement fromX form times as if theywere from the same

population. For each iteration i, the n1 subsample is denoted Xi
1 and the n2 subsample is denoted

Xi
2. Them pairs ofXi

1 andXi
2 are compared. If the comparison of the observed subsamplesX1 and

X2 shares similar features with the comparison of m pairs , X1 and X2 may come from the same

population. Otherwise, they belong to different populations. KS test is conducted on XAg|Sn and

XAg|NoSn, obtaining dobs, and the sample sizes are n1 and n2 respectively. Then n1 and n2 data are

sampled from XAg , obtaining XAg1 and XAg2. The KS test is conducted on the random sampled

subsets to obtain di. The resampling is iterated 1000 times (adequate in this case), and a pool of

d = [d1, d2, · · · , d1000] is obtained. The observed dobs is compared with d to decide how different

the two observed samples really are. Fig.2.6 shows the results of the permutation test. The vertical
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Figure 2.5: KS test for two distributions. The blue vertical line is the result d.

orange line shows the value of dobs, and the sampled d form the blue histogram. The histogram

of d shows if two distributions are sampled from the same population, their difference in KS test

should be around 0.03. The observed value is far from the cluster of random samples, so the subsets

XAg|Sn and XAg|NoSn are not randomly drawn from the same population, and the missingness in

Sn may be systematic.

Figure 2.6: The distibution of d. The orange line represents dobs

Sn can be compared with other 46 non‑missing variables and obtain a cumulative measurement

of the systematic missingness. The same procedure is conducted on the other 4 missing variables.

The cumulative results of different missing variables show which missing variable has the most

systematic missingness. Since different combinations of missing and non‑missing variables can

generate multiple sets of d, a universal quantitative measurement of the missingness that applies

to all combinations is needed. This measurement is denoted as p and p is calculated as:

p = dobs − dmean

σd
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where dmean and σd are the mean and standard deviation of d. p measures how many standard

deviations the observed d is from themean of d. d represents the set of the KS test results when two

subsets are drawn from the same population. In this way, the dobs is standardized and a threshold

value p can be set as the distinction betweenMCAR andMAR. Algorithm 1 summarized procedure

to calculate the cumulative measurement of the missingness in pseudocodes.

Algorithm 1Measaurement of missingness
Lm is a list of missing variables, and Ln is a list of non‑missing variables
for every element B in the list Lm do

Create an empty list pB

for every element A in the list Ln do
Find the subset XA|B and XA|NoB , and their size n1 and n2
Calculate dobs using KS test
Create an empty list d
for i from 1 to 1000 do

Sample two subsets XA1 and XA2 with size n1 and n2
Calculate di using KS test on XA1 and XA2
Add di to the list d

end for
Calculate the mean and variance of d
Calculate pB|A

end for
Add pB|A to the list pB

end for
Configure a Dataframe D using pB as columns
return D

2.4 Results visualization

2.4.1 p measurement

Sr Sn F Zr B

Ag 22.361275 33.367028 31.659201 17.397683 17.397683
Fe 23.506660 32.704326 19.658435 25.118166 25.118166
Zn 17.654142 30.638435 24.279118 18.707961 18.707961
Mo 15.892016 23.819519 20.156665 7.322113 7.322113
Na 18.245105 13.962434 2.526203 11.726063 11.726063

Table 2.1: The first 5 rows of the table of p value.

Table.2.1 shows the dataframe obtained from Algorithm 1. Columns are the missing variables

and rows are the non‑missing variables. p shows how different the two subsets of the non‑missing

variables are. pSn|Ag > pSn|Na means Ag indicates the systematic missingness more strongly than

Na. The dataframe is also plotted in three different formats (Fig.2.7). Each of the three plots fo‑

cuses on different aspects. The first plot shows the top 5 non‑missing variables giving the highest

p for each missing variable, and the cumulative p is also shown. The second plot arranges the non‑
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2. Missing Data Analysis

Figure 2.7: The p value for all the combinations of missing and non‑missing variables.

missing variables in the same order. The magnitude of p value for a specific combination is easy to

find. The third tornado chart ranks the non‑missing variables. It is convenient to find the ranking

of the non‑missing variables and their corresponding p value, but it is hard to find a specific com‑

bination and the cumulative p value on the tornado chart. As observed from the figure, Sn exhibits

the most systematic missingness. P is the variable that indicates the missingess in Sr, Sn and Fmost.

The difference of the subsets of P is examined in Fig.2.8. The blue histogram shows the distribu‑

tion of XP |Sn, and the orange histogram shows the distribution of XP |NoSn. Note the numbers of
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data are different, and the histogram is normalized. The statistic table shows the centers of the two

distributions are significantly different, which validates the high p value of this combination

Figure 2.8: The histograms of the subsets of P given the missing variable Sn.

2.4.2 p considering variable relevance

The results above measure the difference between the two observed subsets of the collocated vari‑

ables, but it does not necessarily indicate the difference between observed and missing data. For

example,XP |Sn andXP |NoSn are significantly different but the difference betweenXSn andXNoSn

may not be significant if P and Sn are unrelated. Since the collocated data are related, this rele‑

vance can link the measurement of non‑missing variables with missing variables. At the locations

where P and Sn are both present, equal size KS test is applied to find the relevance between the

two variables. Since different variables share different units, to compare their CDFs, each variable

is standardized. In this case, KS test mainly identifies the shape difference. For variable pairs shar‑

ing low d value, the two distributions share similar shape, and the relevance between variables is

calculated as r = 1 − d. The p value considering the relevance is denoted as pr and is calculated as

pr = r ·p (e.g. prAg|Sr = rAg|Sr ·pAg|Sr). The pr value is plotted in Fig.2.9. The relative cumulative pr

value between missing variables is adjusted. Zr has the lowest cumulative pr value, which means

Zr has less relevance with the other variables. Sn still shows the most systematic missingness, but

the sequence of the important non‑missing variables have adjusted. This can be revealed from the

tornado chart. The most significant non‑missing variable for Sr changes to Ag, which means the

difference between XAg|Sr and XAg|NoSr are more representative for XSr and XNoSr.

2.4.3 pr considering missing size

Furthermore, the relative size of missing and non‑missing data can be considered. If the missing

data take up only 5% of the total data, the missingness may not be a major concern, so the mea‑

surement of missingess should be low and this measurement is denoted as pn. Note, the low value

does not mean the missingness is random. In Fig.2.9, Sr has a higher cumulative pr value than Zr
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Figure 2.9: The pr dataframe after combining the p value with the relevance.

while themissing data size of Sr is 20 times less than that of Zr. Taking this factor into consideration,

the pr value of each non‑missing variable is divided by the ratio of non‑missing and missing size.

For example, Sr has 8000 non‑missing data and 200 missing data, so the ratio is 40. Each pr value

in Sr is divided by 40. Fig.2.10 shows the plots after this adjustment. The relative importance of

non‑missing variables does not change for missing variables. The ranks of cumulative pn change

significantly compared with that of pr. Sr and Sn have the least pn, indicating their systematic miss‑

ingness is not very concerning considering their missing data size. Observing the middle plot, the
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magnitudes of missingness can be divided into three parts. The minimum is Sr. It has the least

missing data and the cumulative pn is smaller than 10. The second part includes F and Sn. Their

cumulative pn range from 50 to 100. Zr and B have the most pn which is above 250, indicating their

systematic missingness is the most concerning among missing variables.

Figure 2.10: The plots of dataframe showing the level of missingness considering the missing size and rele‑
vance.

18



2. Missing Data Analysis

2.5 Method Validation

In this section, a synthetic dataset containing systematic and random missing data is used for val‑

idating the previous methods. A full dataset which contains no missing data is generated. Then,

data are dropped randomly and systematically. If the method is robust, it should identify the basic

information and themechanism of themissingness correctly. The results show themethod is robust

and the mechanism of systematic missingness is also understood.

The full dataset to start with is the optimal dataset obtained in Fig.2.2, because the variables

in the synthetic data should be intrinsically related. 20 variables are randomly drawn from the

non‑missing variables, and the data observations are shuffled. Variable Sc and W are dropped ran‑

domly with the missing size of 500 and 3000 respectively. Variable Th, Cu, Ca and La are dropped

systematically as follows:

zT h ∈ (−∞, mT h/3] ∪ [1.5mT h, +∞)

zCu ∈ (−∞, mCu/4] ∪ [1.7mCu, +∞)

zCa ∈ [ 3
4

mCa, 1.5mCa]

zLa ∈ [ 1
4

mLa, 1.2mLa]

where zi represents the data list dropped in variable i (i= Th, Cu, Ca, La) and mi is the full dataset

mean of variable i. For example, in variable Th, the data below one third of the mean and above 1.5

times of the mean are dropped.

2.5.1 Missing data map

The synthetic dataset is ordered based on the size of missingness, and Fig.2.11 shows the data map

of the general missingness information. The right side of the figure has the columns with the most

missing data, and the bottom of the figure have locations containing the most missing data. 14 vari‑

ables are complete and 6 variables havemissing data. The smallest size of missingness is in variable

Sc as only 500 data samples are dropped. Ca and La have the most missing data as the majority of

the data around mean value are dropped. The general missingness information is consistent with

the way the synthetic data are generated. To obtain the optimal dataset with no missingness, all

missing columns are dropped, and no rows need to be dropped. The synthetic data map does not

have patterns in the observed one where Zr and B have missing data at the same locations, because

data are dropped independently in each variable.
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Figure 2.11: The synthetic data map. The highlighted columns are to be dropped.

2.5.2 Permutation test

Table 2.2 shows the KS test results of dobs for all combinations of missing and non‑missing variables.

The smaller the d is, the closer the twoCDFs are. Sc andWhave relatively low d value as themissing

data are dropped randomly, and other missing variables have d value at least 10 times larger, which

implies the missingness is systematic. The results are consistent with the design of the synthetic

data. The permutation test results (Fig.2.13) show a relatively low p value in variables Sc and W. p

implies how much non‑missing variables reflect the difference between the missing and observed

data of a missing variable. The results also reveal that the variables missing the middle data ranges

(Ca, La) have higher p than the variables missing the outer data ranges (Cu, Th). The magnitude of

Cu and Th are similar to that of the missing variables in the real dataset. This implies the missing

data in the five variables (Sr, Sn, F, Zr, B) lie in the outer data ranges. The difference of dobs and

the set of random sampled subsets are shown in Fig.2.12. dobs of Sc fall within the majority of the
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Sc Cu Th W Ca La

Cd 0.022855 0.174078 0.115534 0.026534 0.135357 0.428173
Rb 0.027880 0.237570 0.532445 0.018968 0.644970 0.944102
Ni 0.035398 0.348219 0.147874 0.013417 0.397736 0.760646
Zn 0.037868 0.246505 0.080256 0.036658 0.339642 0.560598
Eu 0.015316 0.287281 0.379795 0.007999 0.547218 0.442209
Al 0.047457 0.312095 0.362104 0.017139 0.522110 0.876179
Sb 0.035239 0.216004 0.112636 0.033488 0.214670 0.481931
Ag 0.063809 0.233299 0.105138 0.025822 0.400627 0.664889
Hf 0.036257 0.212964 0.257828 0.014200 0.615349 0.839151
Na 0.023399 0.137106 0.189646 0.015000 0.449543 0.613481
Bi 0.028937 0.233261 0.542790 0.025964 0.612153 0.874565
Br 0.042346 0.127733 0.123594 0.029850 0.220423 0.436009
Mg 0.047230 0.170895 0.264166 0.015042 0.779581 0.867649
Co 0.040629 0.364067 0.299488 0.014464 0.505220 0.884321

Table 2.2: Observed KS test results dobs for the synthetic dataset.

Figure 2.12: The histogram plots of d distributions for different variables

permutation subsets (d) whereas the dobs of Th is far from the permutation subsets d because the

missing data in Th are dropped systematically. It also explains the higher cumulative p in systematic

missing variables compared with random missing variables.

Fig.2.13 shows the plots of the cumulative p of the synthetic data, and they illustrate themissing‑

ness in variables correctly. Take the relevance between variables and the size of missing data into

consideration. The pn results are plotted in Fig.2.14. For example, La has the most missing data and

themissingness in La is themost systematic, so La has the largest cumulative pn. The two randomly

dropped variables have fairly small cumulative pn. Each one of the results in the section captures

different aspects of the missingness in the synthetic dataset. The number of missing variables, ran‑

dom and systematic missingness, and the missing sizes are illustrated. Thus, the proposed method

is robust at assessing the property of missingness in a dataset.
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Figure 2.13: The results of the synthetic data p from permutation test.

2.6 Discussion

Although MNAR is difficult to analyze statistically, it can be observed from the data map. Com‑

paring the two data maps (Fig.2.2 and Fig.2.11), the major differences are in the ordering of the

missing data. In the real data map, missing data can be well clustered into the right bottom corner

while the synthetic data do not possess this feature. That is because the synthetic missing data are
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Figure 2.14: The results of the synthetic data from permutation test considering missing size and relevance.

dropped independently for each variable, while the missingness in real data occur at the same loca‑

tions. Especially for Zr and B that are missing together, their availability depend both on observed

and missing data. When the missing data can be clustered as in Fig.2.2, the missingness is likely to

be MNAR.

The reasons for using permutation test rather than bootstrap are that permutation is used to

test null hypothesis whereas bootstrap is used to obtain confidence intervals. The result of KS
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test (d) is the property between two subsets, while the confidence interval is calculated within one

subset. The null hypothesis here is the twodistributionsXA|B andXA|NoB are drawn from the same

population. If the hypothesis holds, the missingness in B is random. Otherwise, the missingness

may be systematic. Moreover, the reason for using the permutation test combined with the KS test

is that different sample sizes and variables generate multiple sets of observed d. When dobs = 0.1

represents significant difference in one variable, it may not be significant in another. d ∈ [0, 1] but a

threshold is needed to distinguish the random and systematic missingness for all variables. When

combined with the permutation test, the value of dobs is calibrated and the p value is a universal

measurement. So a threshold can be set for p. From the observations of this dataset, it is recommend

that the missingness can be viewed as systematic when p > 10.

The robustness of the method is validated by the synthetic data. Different patterns of systematic

missingness lead to various magnitudes of p value, and this helps understand the mechanism of

missingness in the real data. For example, the variables missing outer data ranges (Cu, Th) share

similar p value with missing variables in the real dataset (Sr, Sn, F, Zr, B). This implies the missing

variables in the original dataset may also miss the outer data ranges. So the mechanism (missing

which data ranges) of the missingness may be explored by dropping different data ranges of the

synthetic data and comparing the p values with the original ones. Note, this only works when the

synthetic missing data are generated from the same real data as the relations between variables

remain the same.

2.7 Conclusions

Missing data come from multiple sources. They can cause problems in data analysis such as PCA.

Different data imputation methods can be applied depending on the types of missingness, so it

is important to understand if the missingness in data is random or systematic. The technique of

missing data exploratory analysis performs well on the Northwest Territory data and it has two

major tools. First, it illustrates the general information of the missing data, that is, the number of

missing variables, boundary of missing and non‑missing data, and the optimal dataset. The second

tool is the KS‑permutation test that identifies the nature of missingness. The three types of results,

p, pr, and pn, convey different information about themissingness. Themajor information conveyed

in Fig.2.7 is the cumulative p value that indicates if themissingness is random. The pr value (Fig.2.9)

identifies themost relevant non‑missing variable that could be used for data imputation. The scaled

pn plots (Fig.2.10) show the most concerning missing variable considering the missing size. The

robustness of the method on this dataset is validated through a synthetic dataset generated from

the real data with no missing data. Variables dropping missing data randomly and systematically

are well identified.
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CHAPTER 3

BELOW DETECTION LIMIT DATA
Below detection limit (BDL) data are data lower than the minimum detection limit of the laboratory

measurement equipment and recorded as 0.0 or identified as ”BDL” in the database. These values

may form a spike in histograms and can cause problems when conducting further analysis. Ran‑

dom despiking and local average despiking are applied in practice. Before despiking, the nature

of BDL data and data spikiness should be understood. In this chapter, univariate and bivariate

analyses are conducted on the data from the Northwest Territories (Falck et al., 2012). A tabulated

summary of the univariate data analysis complements conventional histograms. Important infor‑

mation includes the proportion of BDL occurrence in each variable, which is used in bivariate anal‑

ysis. The spikiness of data are also examined. Three quantitative measurements are developed to

show different aspects of spikiness. The purpose of the bivariate analysis is to determine if the BDL

occurrence between variables are independent. A bivariate plane is divided into four regions by

BDL boundaries. The observed bivariate proportions are compared with the expected probabilities.

The expected probabilities represent independent BDL occurrence and are obtained by sampling

a standard Gaussian space considering correlations. Kullback–Leibler (KL) divergence is used to

measure the difference between the distributions. The resulting measurement is standardized by

the practical maximum, and multiple combinations of variables show strong dependence in BDL

occurrence.

3.1 Introduction

In geochemical data, there are often data below detection limit. The concentration of some elements

is so low that they are beyond the detection capability of the measurement equipment, such as

inductively coupled plasma (ICP) (Thompson, 2012), thermal ionization mass spectrometry (TIMS)

(Richter & Goldberg, 2003) and Energy‑Dispersive X‑ray spectroscopy (EDS) (d’Alfonso, Freitag,

Klenov, & Allen, 2010). The BDL data are recorded as either 0.0 or the minimum detectable value.

In either case, there are many duplicated data and they may form spikes in the distribution, which

could be problematic for exploratory data analysis and modeling (M. J. Pyrcz & Deutsch, 2014). In

cluster analysis, data are often normal score transformed to eliminate the effects of outliers and

scale variables to the N(0, 1) range (Prades, 2017). A problem arises in how to handle the BDL

data during transformation so that cluster analysis gives reasonable results. Since normal score

transformation uses quantile to quantile transform, there are two evident ways to handle the BDL

spikes. One is to spread the spike over a range of the normal distribution, in which case, each data
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has a unique Gaussian data value. The other way is to retain the spikes, and the BDL data share the

same rank. For example, if 30%of the data are BDL, they are all at the 0.3 quantile or some arbitrarily

low value. With spikes preserved, the transformed units behave similarly to the original units, so

they are suitable for centroid based clustering (k‑means), but not suitable for distribution based

clustering (GaussianMixture Model) (Prades, 2017). When spikes are spread, the transformed data

are not suitable for centroid basedmethod, because the cluster centroids are shifted, and the spread

spikes distort the relative distance between data. Suppose a spike consist of 50%data is transformed

to Gaussian space. The original data are all 0, but most of the spread BDL data are distributed from

‑3 to 0.

There are two major methods to spread the spikes: random despiking and local average despik‑

ing (M. J. Pyrcz & Deutsch, 2014; Verly, 1984). These two methods have their limitations of a too

high or too low nugget effect respectively. With random despiking, the quantiles of BDL data are

assigned randomly. Thus, the variogram have a high nugget effect. With local average despiking,

the BDL data are ranked based on averages of surrounding data. High local averages give the BDL

data high ranks, while low local averages give data low ranks. This may cause the transformed data

to be too smooth spatially, and a low nugget effect. Prades (2017) proposes to combine the local

and random despiking methods. BDL data are ranked based on local average first, and data value

are assigned from BDL value X1 to the nearest value X2 incrementally. A random value ranges

between X1 and X2 is added. Its weight is controlled by a hyper‑parameter W1. The results show

setting W1 to 0.5 can achieve a suitable trade‑off between random despiking and local despiking.

Before applying the methods to handle spikes in data, the first step is to understand the nature

of spikes and this helps choose the despiking method. In this chapter, BDL spikes and duplicate

data spikes are analysed with univariate and bivariate methods. First, the univariate distribution

is summarized by an information table to overcome the binning effect of histogram plots. Three

measurements of spikiness are developed to reveal different types of spike distributions, including

few spikes containing many data in each spike, many spikes containing few data, and spikes differ‑

ent from the expected distribution. The bivariate analysis uses KL divergence (Kullback & Leibler,

1951) to measure the discrepancy between the observed bivariate BDL distribution and an indepen‑

dent bivariate distribution. When the occurrence of BDL data are dependent, further investigation

can be done to understand the relation between variables. The same Northwest Territory data from

Section.2.1.2 (Falck et al., 2012) are used for demonstration.

3.2 Univariate Analysis

For univariate analysis, it is easy to plot histograms and examine the distributions visually. His‑

tograms show the data distribution over a range of values. BDL data are binned with surrounding

low value data, which makes BDL spikes less obvious. A statistics table is created to show informa‑
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Variables Min Value BDL Num. Aval. Data Sec. Min. Value Sec. Num. Average Ave. Exclude Min.

Au 0.0 6981 8486 0.30 1 0.96 5.41
B 0.0 2416 4554 1.00 342 1.79 3.81
Ba 0.0 462 8490 50.00 10 1357.60 1435.73
Bi 0.0 469 8441 0.02 328 0.26 0.28
Br 0.0 183 8466 0.50 18 4.11 4.20
Ce 0.0 191 8466 5.00 43 58.76 60.11
Cs 0.0 600 8466 0.50 102 4.23 4.55
Eu 0.0 5276 8466 1.00 1493 0.68 1.83
Hf 0.0 944 8466 1.00 438 6.47 7.28
Hg 0.0 703 8486 5.00 126 41.06 44.77
Lu 0.0 3831 8466 0.20 534 0.25 0.46
Na 0.0 122 8490 0.001 144 0.01 0.01
Rb 0.0 122 8466 5.00 37 71.75 72.80
S 0.0 2159 8441 0.01 158 0.09 0.12
Se 0.0 594 8445 0.10 585 0.95 1.02
Sn 0.0 2983 7515 0.10 6 1.34 2.22
Ta 0.0 2745 8466 0.50 256 0.75 1.11
Tb 0.0 3165 8466 0.50 344 0.62 1.00
Te 0.0 3269 8445 0.02 1114 0.029 0.04
Ti 0.0 694 8445 0.001 2008 0.007 0.008
W_ 0.0 5384 8490 1.00 1517 1.51 4.14
Yb 0.0 4618 8466 2.00 1190 1.47 3.23
Zr 0.0 3085 4557 200.00 31 133.04 411.88

Table 3.1: Univariate distribution informaion for each variable. The shortened column names are explained
in the context.

tion regarding the BDL data to complement the histograms.

There are other smaller spikes due to the round‑off errors. These spikes cause similar problems

as BDL spikes. Three quantitative measurements are developed to reveal the spikiness of data,

including the number of spikes and the sizes of spikes. The three measurements focus on different

aspects of the spikiness.

3.2.1 BDL table

The Northwest Territory data consist of 51 variables and about 8500 data samples. Most of the

variables contain BDL data. Table.3.1 shows information about the variables containing more than

100 BDL data. The relative size of the BDL spike influences the performance of quantile transform.

The first column shows the names of variables. The second column represents the recorded value

of BDL data. Here, all BDL values are recorded as 0.0. The third and fourth columns show the

number of BDL data and the available data. The number of available data varies as some variables

contain missing data. Fig.3.1 shows the percentage of the BDL data in each variable, along with the

number of BDL data and the number of available data. The variables are ranked based on their BDL

percentage. Au has the most BDL data, so it is ranked first. Zr has less BDL data but also ranked

the second because the available data in Zr is only around 5000. The proportions of the BDL data

are used in bivariate analysis.

The ’Sec. Min. Value’ column means the minimum detectable value. Note different variables
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Figure 3.1: The tornado chart of the number of BDL data.

may use different units. Some use ppm and some use ppb. The ’Sec. Num.’ column is the number

of the second minimum data. These two columns are a measurement of the precision of equipment

and the general spike size in the variables. When the number of duplicated data inmeasured values

is small, the BDL spike can be problematic.

The second last column shows the average of data, considering the BDL data. The last column

shows the average value excluding the BDL data. In variables which contain many BDL, the aver‑

age excluding the BDL are significantly higher than the overall average. It measures how far the

detectable mean are from the BDL spike. It can also help with despiking. The despiked BDL data

should not be far from the detectable mean to retain a realistic data distribution. If the BDL data

is too far from the detectable mean, the spike may need to be preserved close to the second mini‑

mum value. If the BDL data is close to the detectable mean, the spike may be spread between the

minimum and the second minimum value.

3.2.2 Measurement of univariate spikiness

Similar to BDL data, there are other spikes originating from the round up or round down effect. If

the precision of equipment is 0.01 ppm, the mineral content of 1.122 ppm and 1.123 ppm are both
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recorded as 1.12 ppm. Unlike the large spikes created by BDL data, these smaller spikes are not easy

to identify from histograms. So the number of spikes and the size of spikes need to be measured

quantitatively. These features are the spikiness of data.

There are two major types of spikes, which are demonstrated in Fig.3.2. One is the ”few spikes

butmany data” type. In the distribution of Au, there are only several spikes but they takemore than

70% of the available data. The other type is the ”many spikes but few data” type. In the distribution

of Fe, there are multiple spikes and each spike takes only about 5% of the data. The histogram

illustration may look different because of data are binned together. Different measurements are

developed for the two types of spikes.

Quadratic and log method

Suppose there are K variables, and Ni is the number of data at data value i. The number of unique

data value is L and each data value is denoted as l. For example, if there are 50 data with a value

of 0.3, N0.3 = 50. Only data with Ni larger than 1% of the total number of data are considered

as spikes. To identify the variables with few spikes but many data in each spike, the quadratic

equation is applied:

Mg(k) =

√√√√ L∑
i=l

N2
i (k), k = 1, · · · , K

and to identify the variableswithmany spikes but fewdata in each spike, the log equation is applied:

Ms(k) =
L∑

i=l

log(Ni(k)), k = 1, · · · , K

where Mg(k) and Ms(k) are the scores of spikiness for variable k. g stands for giant spikes and s

stands for small spikes. The value ofMg(k) is dominated by the size of large spikes, while the value

of Ms(k) is dominated by the number of spikes. The difference between the two measurements is

the relative importance of the size of spikes and the number of spikes. The quadratic term gives

large spikes more weight inMg(k)measurement, and the logarithm term give the number of spikes

more weight in Ms(k) measurement.

When using these two methods, the number of duplicate data is more important than the pro‑

portion of duplicate data. Fig.3.3 shows the scores of spikiness for all variables, using different

measurements. Variables are ranked based on their scores in each method. The top figure shows

the scores using the quadraticmethod, and the bottomfigure shows the scores using the logmethod.

Au ranks the first in the quadratic method, which means it has the largest spike. The rank of vari‑

ables using the quadratic method generally follows the proportion of BDL data in each variable.

The higher the BDL proportion, the higher the Mg(k) spikiness score, which is consistent with the

purpose of the quadratic method. Cs ranks the first in the logmethod, which implies it has themost

spikes. The variable ranks are generally different than the quadratic method. It is anticipated as
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Figure 3.2: Illustration of spikes in Au and Fe.

Figure 3.3: Measurement of spikiness using the quadratic and logrithm methods.

there are not many spikes with great size when the number of data is limited. The zero values in

both figures indicates there are no spikes in the corresponding variables. Table.3.2 also shows the

methods work as expected. The left table shows the quadratic method can find large spikes. The

five highest ranked variables all have giant spikes with Ni > 3000. The right table shows the log

method finds evenly distributed spikes. When the size of spikes are small and evenly distributed,

the number of spikes can be large.
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Mes. Spikiness Five biggest count

Au 7,008.18 [6981, 468, 309, 235, 139]
W 5,672.25 [5384, 1517, 917, 216, 120]
Eu 5,631.11 [5276, 1493, 1252, 294, 84]
Yb 5,070.30 [4618, 1543, 1190, 751, 194]
Lu 4,294.60 [3831, 1280, 1042, 663, 534]

Mes. Spikiness Five biggest count

Cs 103.62 [600, 224, 161, 158, 143]
U 95.12 [227, 225, 214, 201, 196]
Br 95.04 [203, 199, 192, 192, 192]
Sc 90.20 [275, 254, 252, 251, 247]
La 88.05 [263, 258, 246, 237, 232]

Table 3.2: Results from the two methods. Left using the quadratic equation and right using the log equation.

Kullback–Leibler divergence

Before introducing another type of measurement of data spikiness, Kullback–Leibler divergence

(Kullback & Leibler, 1951) needs to be explained. It measures the relative entropy between different

distributions. Entropy is also referred to as Shannon’s entropy which measures the average level

of information conveyed by random variables (Shannon, 2001). The equation is as follows:

H(X) = −
n∑

i=1
P (xi) log P (xi) (3.1)

whereX is a discrete random variable and x1, · · · , xn are the possible outcomes. P (xi) is the proba‑

bility of xi. The more information each observation can provide, the higher H(X) is. The equation

for the relative entropy is as follows:

D(P ||Q) =
∑

P (x)log(
P (x)
Q(x)

) (3.2)

where P (x) is the observed distribution and Q(x) is the expected distribution. It compares the

difference between two discrete distributions. The higher the D(P ||Q), the more different they are.

When two distributions are the same, the log term is equal to zero, and D(P ||Q) is equal to zero,

which is also the minimum value. The divergence indicates how much information is lost if Q(x)

is used to represent P(x). For example, suppose there is a coin and it is assumed to be fair, so the

probability of head and tail are both 0.5 (Q(head) = Q(tail) = 0.5). To verify the assumption,

the coin is tossed 1000 times with 700 heads and 300 tails (P (head) = 0.7, P (tail) = 0.3). The

observation diverts from the assumption, and the divergence is calculated using Eq.(3.2).

D(P ||Q) = 0.7 log(0.7/0.5) + 0.3 log(0.3/0.5) = 0.082

In the following sections, KL divergence is used to compare the difference between discrete distri‑

butions. The distributions can be univariate or multivariate.

Scaled method

The scores of the quadratic and the logmethods become higherwhen the available data increase. To

amend this issue, the scaled method can be applied. It measures how different the observed spike

distribution is from the expected spike distribution. Here, spikes are defined differently. Instead

of using the number of data at value i (Ni), the probability of data at value i (Pi) is used. Suppose
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3. Below Detection Limit Data

Figure 3.4: An illustration of spikes in the scaled method. Variable A and B represent two random variables.

Figure 3.5: The results of the measurement of spikiness, using the scaled method.

there are 1,000 data in total and 200 data have the value of 4.3 ppm. Then P4.3 = 0.2. If there

are 50 unique values in the 1,000 data, the expected probability for each value i is Pi = 0.02. This

is defined as the expected distribution, which is compared with the observed distribution. For

example, in Fig.3.4, there are three possible values. The expected probability for each value (the

blue bars) is 0.33. Variable A has the same distribution as the expected one, so there is no spike in

A. For variable B, Pi distribution is different from the expected distribution and the difference in

measured using KL divergence. The same measurement can be applied to the variables in the real

data and each variable has an expected distribution and an observed distribution. The spikiness

score for a variable is calculated using Eq.(3.2).

Fig.3.5 shows the results of comparing the observed distribution with the expected distribution

using KL divergence. The ranks are similar to those in the quadratic method, but they do not follow

the same principle. The first ranked variable Cs in the log method is ranked low in this case. It

means the observed spike distribution in Cs is similar to the expected spike distribution.
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3.3 Bivariate analysis

The purpose of bivariate analysis is to identify if the occurrence of BDL data between variables

are dependent. If so, more investigation can be conducted on the pairs of variables to understand

the reasons for BDL occurrence. The bivariate distribution is divided by BDL boundaries into four

regions ‑ one region where both dimensions are at BDL, two regions where either one of the di‑

mensions is at BDL, and one region where both dimensions are not at BDL (Fig. 3.6). Based on the

univariate analysis in the previous section, the proportions of BDL in variables are known. Assum‑

ing two variables are independent, the bivariate distribution of BDL occurrence can be calculated.

If the observed probabilities are far from the independent distribution, we may conclude the BDL

data occurrence is dependent.

3.3.1 Expected distribution

From probability theory, if two events A1 and A2 are independent, the joint probability is simply

the multiplication of the probabilities of each event.

f(A1, A2) = f(A1)f(A2)

where f represents the probability of an event. Since the probability of BDL for each variable is

known, it is easy to calculate the probabilitiesPind(B1, B2),Pind(B1, N2),Pind(N1, B2) andPind(N1, N2),

where Pind is the probability when two events are independent, and Bi and Ni represent variable

i is at BDL and not at BDL respectively. Fig.3.6 shows the four regions in a 2D plane. The univari‑

ate BDL proportions are marked by red dashed lines. However, Fig.3.7 shows some variables are

correlated. When calculating the expected probability, the correlations have to be considered. The

highest negative correlation is ‑0.16. In this case, Pind should be replaced by Pexp, which means the

expected probability of BDL considering correlations.

To obtain Pexp, a simple way is to sample in multi‑Gaussian space and count the number that

falls in each region. Dividing the number in each region by the sample size gives the expected

probability. Now, the BDLboundaries inGaussian units given the univariate BDLproportions need

to be calculated. This is achieved through quantile transform. The boundary of BDL in Gaussian

space is calculated by taking the inverse of Gaussian cumulative distribution function (CDF) given

the BDL proportions in the original space

bk = G−1(P (Bk))

where bk is the BDL boundary of variable k in Gaussian space, P (Bk) is the probability of BDL

in variable k. Table.3.3 shows the BDL boundaries in Gaussian space for Sn and S. The column

”Probability” refers to the probability of BDL. ”Gauss Unit” shows the converted BDL boundaries

in Gaussian space. Note the Gaussian space is standard. To calculate the expected probability of

each region, for example the regionwhere both Sn and S are BDL, samples are below ‑0.26 for Sn and
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Figure 3.6: Illustration of the four BDL regions in a bivariate setting. The original data are quantile transformed
and the spikes are spread. The random despiked BDL data are shown as the diagonal line. The marginal
distributions are Gaussian.

BDL Num. Aval. Data Probability Gauss Unit

Sn 2982 7511 0.39 ‑0.26
S 2031 7511 0.27 ‑0.61

Table 3.3: The BDL boundaries for Sn and S in Gaussian space.

GBoth_bdl GVar1_bdl GVar2_bdl GNon_bdl

Sn S 0.10 0.28 0.15 0.44

Table 3.4: Expected probability for Sn and S.

‑0.61 for S are counted, anddivided by the total number of samples. The expected probabilities using

10000 samples are shown in Table.3.4. ”GBoth_bdl”means the expected probability of data are BDL

for both variables. ”GVar1_bdl” means the expected probability of data are BDL for variable 1 (Sn).

”GVar2_bdl” means the expected probability of data are BDL for variable 2 (S). ”GNon_bdl” means

the expected probability of no data being BDL. Since the correlation between Sn and S is 0.009, the

expected probabilities of the four regions are similar to the independent probabilities.

3.3.2 KL divergence results

To obtain the observed probabilities Pobs(B1, B2), Pobs(B1, N2), Pobs(N1, B2) and Pobs(N1, N2), the

number of data in the four regions are counted and divided by the number of available data. Ta‑

ble.3.5 shows the results of the observed probabilities for Sn and S. ”Perct_both” means the per‑

centage of data are BDL for both variables. ”Perct_Col1” means the percentage of data are BDL for
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Figure 3.7: The correaltion matrix between variables with over 100 BDL data. The minimum correlation is
‑0.16.

variable 1 (Sn). ”Perct_Col2” means the percentage of data are BDL for variable 2 (S). ”Perct_None”

means the percentage of data are not BDL for both variables. The observed bivariate distribu‑

tion is different from the expected distribution. It has higher probabilities for Pobs(B1, B2) and

Pobs(N1, N2). KL divergence measures the difference between the two discrete distribution (Pexp

and Pobs) quantitatively. Given the data from Table.3.4 and Table.3.5, the difference is calculated

using Eq.(3.2):

D = 0.17log(0.17/0.108) + 0.21log(0.21/0.28) + 0.09log(0.09/0.15) + 0.51log(0.51/0.44) = 0.046.

The same procedure of sampling expected bivariate distribution, calculating observed distribu‑

tion, and calculating the difference usingKLdivergence is applied on combinations of two variables

having more than 1000 BDL data in Table.3.1. The variables include Au, B, Eu, Lu, S, Sn, Ta, Tb, Te,

W, Yb and Zr. If the resulting Dobs is large, we may conclude that the BDL occurrence between

the variables are not independent and further inspection can be conducted. Fig.3.8 shows Dobs for

different combinations. Only combinations with Dobs larger than 0.1 are shown in the figure. The

right figures show the probability distributions of four regions for observed (blue) and expected
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Perct_both Perct_Var1 Perct_Var2 Perct_None

Sn S 0.17 0.21 0.09 0.51

Table 3.5: Observed probability for Sn and S.

Figure 3.8: D values for each combination of the two variables. Only the combinations with D value larger
than 0.1 are shown.

(orange) distribution. Col1 refers to the first variable in combination and Col2 refers to the second

variable. The largest Dobs value is 0.22 for Sn and Tb and only 10 combinations are larger than 0.1

in all 66 (12 × 11/2) combinations. Considering the theoretical maximum of Dobs is +∞, the dif‑

ference may not seem to be large, but the distributions are fairly different in the right column of

Fig.3.8. To reveal more combinations of variables, simply lowering the threshold of Dobs can work,

for example using 0.01 rather than 0.1, but different datasets have different range of D. It is diffi‑

cult to set a threshold suitable for all cases. In fact, the range of Dobs is constrained by the possible

observed bivariate distribution Pobsp. The possible bivariate distributions are constrained by the

univariate BDL proportions. The maximum Dmax can be found to standardize the observed Dobs,

and the scaled D should provide more combinations that show difference between the observed

and expected distributions. A threshold can also be set as the scaled D is between 0 and 1.

Find Dmax

The range of Dobs can be calculated when treating Pexp as constant and Pobsp as variable. Pexp

represents independent BDL occurrence. WhenPobsp is close toPexp,Dobs is small and the observed

BDL occurrence is also independent. When Pobsp is very different from Pexp, Dobs is large and the

BDL occurrence is dependent. To find the range of Dobs, we need to find the range of Pobsp. First,
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how the univariate BDL probabilities constrain the bivariate distributions is shown. Suppose the

probability of BDL in variable 1 is x and the probability of BDL in variable 2 is y. The following

equations hold:

Pobsp(B1, B2) + Pobsp(B1, N2) = x

Pobsp(B1, B2) + Pobsp(N1, B2) = y

Pobsp(N1, N2) + Pobsp(N1, B2) = 1 − x

Pobsp(N1, N2) + Pobsp(B1, N2) = 1 − y

This is visualized on Fig.3.6. x, y, 1 − x, 1 − y are the marginal probabilities. Although there are 4

equations, only 3 are independent (any three equations can derive the fourth). Since there are 3 in‑

dependent equations with 4 unknown parameters, once one of the four probabilities(Pobsp(B1, B2),

Pobsp(B1, N2), Pobsp(N1, B2) and Pobsp(N1, N2)) is set the other three are determined. The possible

range for each region is also bounded as P ∈ [0, 1]. To show the range of possible bivariate distri‑

butions, it is convenient to treat the region with P ∈ [0, min(x, y, 1 − x, 1 − y)] as the independent

variable and the other three as the dependent variables. Now it is shownwhenDmax can be reached.

To make the demonstration convenient, assume x < y < 0.5 .(If they are set larger than 0.5, 1 − x

and 1 − y are less than 0.5. The demonstration remains the same and only symbols change.) In this

case, x is the minimum, and the independent probability region is Pobsp(B1, B2) ∈ [0, x]. Denote

Pobsp(B1, B2) = v, and the probabilities of the other regions are

Pobsp(B1, N2) = x − v,

Pobsp(N1, B2) = y − v,

Pobsp(N1, N2) = 1 − x − y + v.

The independent variable of expected distribution is denoted as Pexp(B1, B2) = p (Note p is con‑

stant) and the other regions are denoted as

Pexp(B1, N2) = x − p,

Pexp(N1, B2) = y − p,

Pexp(N1, N2) = 1 − x − y + p.

Putting them into Eq.(3.2):

D(v) = v ln
v

p
+ (x − v) ln

x − v

x − p
+ (y − v) ln

y − v

y − p
+ (1 − x − y + v) ln

1 − x − y + v

1 − x − y + p
(3.3)

In the definition of Eq.(3.2) (D(P||Q)), P is the observed distribution and Q is the assumed distribu‑

tion. Here, Pobsp is treated as P and Pexp as Q. This convention is consistent with the definition of

37



3. Below Detection Limit Data

KL divergence. Take the second derivative of Eq.(3.3):

∂2D

∂v2 =
p

v
+

x − p

x − v
+

y − p

y − v
+

1 − x − y + p

1 − x − y + v
(3.4)

Since v, p ∈ [0, x] and x < y < 0.5, Eq.(3.4) is larger than 0, so Eq.(3.3) is a convex function. By

definition, the minimum of D(v) is reach at v = p, and the maximum is reached at either v = 0 or

v = x.

Take the data in Table.3.3 for example. The independent variable is Pobsp(B1, B2) ∈ [0, 0.27].

The minimum D value is 0 and can only be obtained when Pobsp = Pexp, and the largest D value

is obtained at either Pobsp(B1, B2) = 0 or Pobsp(B1, B2) = 0.27. D is calculated in both cases to

find out the maximum value. In this case, the theoretical maximum Dmax is 0.32 and the maximum

implies strong dependence in the BDL occurrence of two variables. Dividing the observed Dobs

by Dmax scales the measurement and it indicates how dependent the BDL occurrences are. Note

since Eq.3.3 is not linear, the percentage of the scaled D is not a linear indication of the dependence.

The same procedure is applied to all the combinations of variables with more than 1000 BDL data

in Table.3.1 and the results are shown in Fig.3.9. Here, the dependent threshold is set to 10%, so

only the combinations with more than 10% of dependence are shown. There are 20 combinations

showing the dependency of BDL occurrence. There are more combinations than the previous case

where Dobs is used. On the right side of the figure, the probability distribution of each region is

also demonstrated. The blue bar represents the observed probabilities and orange bar represents

the expected probabilities assuming BDL occurrences are independent. From the histograms, the

observed and the expected distributions are fairly different, but they are not revealed using the

unscaled Dobs. The maximum scaled D is 50% dependence between Ta and Tb. This implies the

BDL occurrences in the these variables are strongly dependent. When data are BDL in one variable,

they are likely to be BDL in the other variable. Five combinations have a percentage exceeding 20%.

These combinations can also be worth further investigation.

3.3.3 Discussion

Although the problem of smallDobs value is solved by scalingDobs usingDmax, the actual threshold

for determining the dependence is unclear. 100% represents full dependence and 0means complete

independence. The intermediate percentage needs to be examined and a threshold for concern set.

When calculating the expected probability, only the linear relation between variables in the orig‑

inal space is considered. There are two reasons for that. First, when sampling in a multi‑Gaussian

space, besides mean, only the correlations impacts the shape of the Gaussian distribution. Another

reason is, nomatter how non‑linear the data are, the number of data in each region does not change,

and non‑linearity can only be observed in the region where data are not at BDL. It could be a prob‑

lem when the area is divided finer, but here only considering the linear dependence is reasonable.
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Figure 3.9: Percentage of dependence for each combination of the two variables. Only the combinations have
percentage larger than 10% are shown.

3.4 Conclusion

BDL data come from the detection limit of equipments. They are recorded as the same value and

form a spike. The spike can be problematic for geostatistical modeling and multiple despiking

methods are proposed. Before despiking the BDL data, the characteristics of data spikes need to

be understood. The BDL data table, which reveals more details on the BDL side, complements

histograms. When measuring the spikiness of data, three different methods are applied. Each

method has a unique application. Quadraticmethod reveals variableswith large spikes, logmethod

reveals variables with many spikes and the scaled method focuses on variables with different spike

distribution from the expected one.

The proposed bivariate method detects the dependence of BDL occurrence between variables.

Observed bivariate distributions are compared with expected distributions which assume indepen‑

dent BDL occurrence. When calculating the expected distribution, correlations between variables

are considered. Since joint probabilities are difficult to calculate directly, expected distributions

are simulated in a multi‑Gaussian space considering correlations. The observed probabilities are

compared with the expected one, using KL divergence and obtaining Dobs. Considering the theo‑

retical value of KL divergence ranging from 0 to infinity, it is difficult to set a threshold to deter‑

mine whether BDL occurrence is dependent. The bivariate distributions are bounded by univariate

BDL probabilities, so a maximum Dmax can be obtained, representing the full dependence of BDL

occurrence. The observed results are scaled by the maximum value to evaluate the level of BDL
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occurrence dependency. The workflow is summarized as follows:

• Choose two variables having over 1000 BDL data

• Find the univariate probability of BDL for each variable PBDL

• Convert the probability boundary to standard Gaussian unit boundary bk through quantile

transform

• Sample data in a standard bivariate Gaussian space considering the correlation between vari‑

ables

• Obtain the expected distribution

• Calculate the observed distribution by counting the number of data in each region

• Obtain the observed KL divergence value Dobs

• Calculate the range of possible observed probability Pobsp

• Obtain the maximum KL divergence value Dmax

• Calculate the scaled D, D = Dobs/Dmax

With the scaled D, 20 combinations show dependence of BDL occurrence when the threshold is

set to 0.1. In the real data, 5 combinations having 20% of BDL occurrence dependence, which can

be worth further investigating. The strong dependence of the BDL occurrence can come from the

dilution during the measurement. When the one variable is diluted, other variables contained in

the same solution are diluted at the same time. If the concentrations of some variables are already

low, the dilution can result in the concentrations of these variables at BDL simultaneously, which

is reflected as the dependence of the BDL occurrence.
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CHAPTER 4

MULTIVARIATE CLUSTER ANALYSIS
Data from different domains possess different features. If they are analyzed together, the combined

statistics may not provide as much meaningful information, so it is important to conduct cluster

analysis to support the definition of domains. The data quality affects the performance of cluster‑

ing. Missing data, below detection limit data and outliers can decrease the accuracy of clustering

analysis. Spikes formed by below detection limit (BDL) data can change the centroids of clusters.

The number of clusters is another important parameter that influences clustering performace. When

the number of clusters is wrong, data are partitioned rather than clustered. This chapter introduces

a workflow for detecting the optimal number of clusters. The clustering methods used are k‑means

and Gaussian mixture model. Different data transformations, including linear transform, uniform

transform and Gaussian transform are used to deal with outliers and spikes. The chapter examines

the performance of different combinations of the workflow, clustering methods and data transfor‑

mations. The statistical analysis indicates two clusters in the real data. The multivariate data are

projected to a 2D plane for validation.

4.1 Introduction

The purpose of exploratory data analysis is to understand the nature of data. It includes exploring

univariate andmultivariate distributions, finding outliers and duplicated data, and evaluating sum‑

mary statistics of the data. If data have multiple clusters, the statistical inference may not provide

accurate information, because they are averaged. Therefore, it is important to apply cluster analy‑

sis. Further statistical calculations and geostatistical modeling can be conducted on representative

groups.

4.1.1 Types of clustering methods

The idea of cluster analysis is straightforward: keeping similar data together. Different ways of

measuring similarity between data result in different types of clustering methods, such as distance

based and distribution based clustering. Distance based methods use distance between data as a

measurement of similarity. The closer the distance, the more similar the data are. Most distance

based clustering methods use the Euclidean distance to quantify the similarity of data:

d(x, y) =

√√√√||
k∑

i=1
xi − yi||2
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where d(x, y) is the distance between data vector x and y, and i represents variable i and k is the

number of variables. Distribution based methods fit multiple kernels to data distribution. The

probabilities of data belong to a same kernel show their similarity. Gaussian kernels are often used

because a small number of parameters can formulate multivariate Gaussian distributions.

K‑means clustering is the most commonly used distance based method (Abubaker & Ashour,

2013; MacQueen et al., 1967; Pedregosa et al., 2011). K‑means clusters data by assigning them to

their closest centroids. The number of centroids is the number of clusters. The procedure is as

follows: centroids are assigned randomly at the beginning. With the centroids assigned, data are

clustered to their closest centroids. Then the cluster centroids are recalculated. Data are assigned

again to the closest new centroids. The iterations continue until the centroids remain unchanged.

The process is equivalent to finding the clusters giving the minimumwithin cluster sum of squares

(WCSS):

WCSS =
N∑

i=0
min
µj∈C

(||xi − µj ||2)

where N is the number of data, µj is the mean of cluster j, and C is the number of clusters. The

minimum term shows the sumof squares is only calculated for data to their closest centroids (within

the same cluster). The algorithm can settle in local minima, and the final centroids are determined

by the initial assignment of centroids, somultiple realizations of initial centroids are generated, and

the final clusters are the ones giving the minimumWCSS.

Gaussian mixture model (GMM) is a common distribution based clustering method (Pedregosa

et al., 2011; Reynolds, 2009). It fits Gaussian density kernels to clusters and data are assigned based

on their probabilities in each kernel. The clustering procedure is similar to k‑means. Gaussian ker‑

nels are assigned in the initial state, and data are assigned to the kernels in which they have the

maximum probability. Then new Gaussian kernels are generated that give the maximum likeli‑

hood of data in the same cluster. Data are assigned again based on the new kernels. This process

continues until the Gaussian kernels stay the same.

Although the fitting process is similar for k‑means and GMM, each method has its own advan‑

tages. k‑means is more stable than GMM. When there are too few data to calculate a non‑singular

covariance matrix, GMM can diverge (Yamazaki & Watanabe, 2003). The cluster shape is more

flexible for GMM. The covariance matrix in GMM can handle elongated cluster shapes, while k‑

means assumes clusters have isotropic shape. Different methods need to be adopted for different

situations.

There are new clustering methods which can handle data with special shapes shown in Fig.4.1

(Fred & Jain, 2005). Using robust and efficient clustering methods such as k‑means and GMM

should be sufficient for identifying clusters in geostatistical data. In this chapter, k‑means and

GMM are used to examine clusters in data.
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Figure 4.1: New clustering methods can handle complex clusters such as the moon shape clusters (Fred & Jain,
2005).

4.1.2 Data transformation and number of clusters

Most data need to be processed prior to cluster analysis. One common practice is rescaling the

data to [0,1] for equal scale in every dimension. This is important especially for distance based

clustering methods. If the scale of one dimension is orders of magnitudes larger than others, the

clustering of data would be dominated by this dimension. The advantage of rescaling is that it

keeps the original shape of data, but it is not reliable when outliers and spikes are present. Outliers

are the data with extremely high value, sometimes 100 times higher than the mean. This can be

problematic for clustering, because the cluster centroids can be shifteddrastically by outliers. Spikes

are duplicated data, mainly coming from the precision limitations of the measurement equipment.

The biggest spike in real data can be the BDL spike. They are the data below the detection limit

of the measurement equipment, and can be recorded as 0.0 or the minimum detectable value. The

BDL data form a large spike at the low value region. This can cause distribution based clustering to

fit a narrow kernel only for the BDL data, while they could belong to other groups if the true values

were known.

Quantile transformation is another data transform used commonly in geostatistical modeling to

address outliers and skewed distributions. Suppose z represents data in the original units and y

represents the transformed units. F (z) is the cumulative distribution function (CDF) of data in the

original units and G(y) is the CDF in the space to be transformed to. When data are normal score

transformed, G(y) is the Gaussian density (M. Pyrcz & Deutsch, 2018). The following equation is

used to transform the univariate z to y:

y = G−1(F (z)) (4.1)
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Eq.(4.1) can transform the original univariate distribution to a Gaussian distribution. In multivari‑

ate cases, the transformation is conducted in each dimension separately. For example, in normal

score transform, the 1D marginal distribution has Gaussian shape but the multivariate data do not

necessarily have a multi‑Gaussian shape. This is desired as cluster analysis depends on the multi‑

variate relations. The transformed outliers are closer to the main data. The transformation of spikes

is also important. If spikes are preserved, data in spikes are assigned the same quantile. If spikes

are spread, data in spikes are assigned different quantiles.

Prades (2017) proposes to normal score transformdatawith the spikes spreadwhen usingGMM

and with the spikes preserved when using k‑means. However, transferring data to a uniform dis‑

tribution could be better, since it does not create an artificial cluster in the center of the space. In

this chapter, data rescaling, normal score transform and uniform transform of data are compared,

along with different treatments for data spikes.

The number of clusters (NC) is another important aspect that affects clustering performance. If

the NC is not optimal, data are partitioned rather than clustered. It is relatively easy to visualize

NC in a space less than 4 dimensions. For higher dimensional data, statistical tools are required.

The statistical tools used in this chapter are Hopkins statistic (Lachheb, 2021; Lawson & Jurs, 1990),

gap statistic (Tibshirani et al., 2001), silhouette coefficient (Aranganayagi & Thangavel, 2007) and

prediction strength (Tibshirani &Walther, 2005). Hopkins statistic determines if there is any cluster

in the distribution by comparing data with uniform samples. Gap statistic and silhouette coefficient

find the optimal NC. Prediction strength uses cross‑validation to verify if data are truly clustered

or partitioned. A workflow combining these four tools is proposed to determine the optimal NC.

4.1.3 Chapter structure

In this chapter, a series of tools are introduced for handling spikeswhen conducting cluster analysis.

First, a workflow to find the optimal NC is introduced with a detailed explanation of the statistic

tools used. Its application is demonstrated using synthetic data. Then the workflow’s compatibil‑

ity with different transformations and clustering methods is examined. The clustered results are

compared to the true labels and a measurement of the correctness rate is used to determine the

appropriate transforms and clustering methods. The synthetic data show k‑means clustering com‑

bined with linear transform, uniform transform and Gaussian transform with spikes preserved are

feasible. Theworkflow and the appropriate transforms are used on high‑dimensional real data. The

real data come from the Northwest Territories with the missing data eliminated (Falck et al., 2012).

From the previous chapters, the number of BDL data is significant. The large spikes are handled

when conducting cluster analysis.
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Figure 4.2: The original synthetic data (left) and the data with synthetic spikes (right).

Figure 4.3: Uniform transformed data, spreading out the spikes. The marginal distributions are shown on the
edges.

4.2 Workflow to determine the optimal NC

In most clustering methods, NC is an important parameter for correct clustering results. This sec‑

tion introduces a workflow of determining NC. It has 3 aspects: the detection of clusters existence

using Hopkins statistics, finding NC using gap statistic and silhouette coefficient, and the cross‑

validation of the resulting NC.

4.2.1 Data Preparation

Fig.4.2 shows the synthetic data used for illustration purposes. The left figure shows the original

data. The data consist of 3000 samples and 5 clusters with Gaussian shape, and the 5 clusters have
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different mean and variances. The right figure shows the synthetic data with spikes. 20% low value

data are treated as BDL. To handle spikes, the data are uniform transformed with spikes spread.

Fig.4.3 shows the uniform transformed data. The range of the uniform space is from 0 to 1. The

BDL data quantiles are randomly assigned. The left bottom line represents the data that are BDL

in both dimensions. They appear as a single dot at the left bottom in Fig.4.2. Data with only one

dimension BDL are on the bottom or left margins in Fig.4.2. The BDL boundary is at 0.2 because the

uniform space range is [0,1] and 20% data are set to be BDL. If the range is [0,2], the BDL boundary

is at 0.4. If 30% data are BDL, the boundary is at 0.3. From the marginal histogram distribution,

the data are uniformly transformed. The five clusters are still distinguishable. The transformed

clusters shapes are relatively isotropic, which is important for applying k‑means.

4.2.2 Clustering Tendency

The first step of cluster analysis is to determine if there are any clusters in data. It is also called

clustering tendency. Lawson and Jurs (1990) proposed the Hopkins statistic for this task. The idea

is to compare the dataset with uniform distributed samples (used as references). If the results are

very different from the reference, there can be clusters.

Suppose there are N data (dtj j = 1, · · · , N ). N samples are simulated in a uniform space that

shares the same range with the data, which are denoted as si, i = 1, · · · , N . The Hopkins statistic

H is calculated as

H =
∑N

i=1 yi∑N
i=1 yi +

∑N
j=1 xj

where yi is the distance of random sample si to its nearest neighbor sk (k denotes the nearest neigh‑

bor), and xj is the distance of data dtj to its nearest neighbor dtk. From the equation, if there are

clusters, the sum of xj is much smaller than the sum of yi, so H is close to 1. When there are no

clusters, the sum of xi is similar to the sum of yi. H is close to 0.5. Since the reference y is sampled

throughout the uniform sapce, Hopkins statistic is not very accurate when outliers are present. The

empty space between outliers and main data is uniformly sampled, and the sum of reference data

is much larger than the original data, resulting in H close to 1. The Hopkins statistic is more infor‑

mative when the data are uniform transformed. The uniform transformed synthetic data in Fig.4.2

have H value of 0.8, so it indicates clusters existence.

4.2.3 Optimal number of clusters

Silhouette coefficient and gap statistic are used to determine the optimal NC. Silhouette coefficient

measures the sparsity of clusters. For each data i, the silhouette coefficient Si is calculated as

Si =
bi − ai

max(ai, bi)
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Figure 4.4: The silhouette coefficient for data and the corresponding clusters when using k‑means and NC=5.

where ai is the average distance between i and the data in its own cluster, and bi is the average

distance between i and the data in the nearest cluster. Here, the distance means the Euclidean

distance between data. From the equation, Si ∈ [−1, 1]. When Si is close to 1, it indicates data i

should belong to the current cluster whereas Si close to ‑1 indicates the data may belong to other

clusters. The silhouette coefficient for the dataset SN is the average Si over all data, where i =

1, 2, · · · , N . SN close to 1 means the clusters are well separately. When SN is close to 0, it indicates

there may not be distinguishable clusters. When using Euclidean distance, silhouette coefficient

assumes clusters have isotropic shapes, sowhenSN is negative, it does not necessarilymean clusters

are wrongly grouped. It is also possible that clusters have irregular shapes. As shown in Fig.4.4, the

transformed data are clustered into 5 groups using k‑means. In the left figure, each horizontal line

represents Si for each data (3000 lines in total). The vertical red dashed line represents the averaged

silhouette coefficient SN . Data in cluster number 3 have a high silhouette coefficient because they

are compact and distant from other clusters. There are some negative values in cluster number 2

and 0. As observed from the right figure, they may be the data to the top‑left corner of cluster 0 and

bottom‑right corner of cluster 2, which are wrongly clustered.

The silhouette coefficients are plotted against a range of NC, and the optimal one is indicated by

the highest silhouette coefficient. Fig.4.5 shows the optimal NC is 5, which is corresponding to the

true NC of the synthetic data. Note ”Clustering Number” in the figures means the number of clus‑

ters. The silhouette coefficient range from 0.43 to 0.53. The difference is not very great considering

how differnt the data can be clustered using different NC. Especially when NC is 4, the silhouette

coefficient is fairly close to that of NC equal to 5. If the true NC is unknown, it is difficult to decide

between 4 or 5 clusters, so another measurement to validate the results is needed.

Similar to Hopkins statistic, the gap statistic uses uniform distributed samples as a reference to
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Figure 4.5: The silhouette coefficient for different NC.

Figure 4.6: The gap statistic and the corresponding log(Wk) for reference and data in a range of NC.

compare with data (Tibshirani et al., 2001). Suppose N data are divided into K clusters. Within a

specific cluster r (r = 1, · · · , K), the sum of pairwise squared Euclidean distance Dr is calculated

as

Di,j = ||xi − xj ||2

Dr =
∑

i,j∈Cr

Di,j
(4.2)

where Di,j is the squared Euclidean distance between data i and j, and Cr represents cluster r. For

all K clusters,

WK =
K∑

r=1

1
2Nr

Dr,

where Nr is the number of data in Cr. Gap statistic is equal to

Gap(K) = E∗log(WK) − log(W ′
K),

where the first term represents the expected value of log(WK) providing multiple realizations of N

samples from the multivariate uniform distribution. The second term log(W ′
K) is calculated from

the observed data. The optimal K is the NC which gives the maximum Gap(K).

48



4. Multivariate Cluster Analysis

Fig.4.6 shows the results of the gap statistic on the uniform transformed data. The NC is from

1 to 10. The left figure implies the optimal NC is 5, and Gap(4) is much smaller than Gap(5). It

provides another measure to help choose the optimal NCwhen silhouette coefficents are close. The

right figure gives an intuitive explanation for the gap statistic. Increasing NC decreases the overall

Wk, and the reference data provide a reference to illustrate the tendency of the decrease. When

K is not the optimal NC, the log(W ′
K) of observed data decreases similarly to the reference data.

When K is the optimal number, observed data are well separated and the WK decreases faster

than other cases, thus giving the maximum gap between the observed log(W ′
K) and the reference

log(WK). Note the optimal NC selection criterion is modified to give a more intuitive explanation.

The disadvantage of the gap statistic is similar to that of the Hopkins statistic. When outliers are

present, the decreasing of WK may not be in the same magnitude for reference data and observed

data. Gap statistic is more reliable when data are uniform transformed, so it is mainly used as a

complement to the silhouette coefficent.

4.2.4 Cross Validation

The cross validation for cluster analysis is also called ”prediction strength”. It is used to validate

the NC obtained from previous steps. The main idea is to conduct clustering twice on different

proportions of data and compare the results. The first time can be the whole data and the second

time randomly sampled 80% of the data. Since the proportion of data are randomly sampled, the

general shape of data should remain the same. If the results are similar, data are well clustered. If

the results are fairly different, data can be partitioned because theNC is not optimal or the clustering

method is not suitable.

First, all data are clustered (training data), obtaining cluster centroids. Then part of data are

sampled (testing data). They can be a proportion of data with or without replacement. 80% of data

without replacement are used here. Testing data are clustered, obtaining cluster labels. For testing

data sharing the same label, they are classified using cluster centroids from the training data. If

data in the same testing cluster are classified into the same group, the prediction strength for this

cluster is high. If they are classified into multiple different groups, the prediction strength is low.

The resulting prediction strength is the lowest among all clusters.

Suppose the training and testing data are clustered into K clusters separately. The prediction

strength:

ps(K) = min(
1

Nr(Nr − 1)
∑

i ̸=i′ ∈Cr

D[C(Xtr, k), Xte]i,i′ ), r = 1, · · · , K

whereNr is the number of data in testing clusterCr, i and i
′ are the data in clusterCr, [C(Xtr, K), Xte]

means cluster the training data Xtr to K clusters, and use the K centroids to cluster the testing data

Xte. D[C(Xtr, k), Xte]i,i′ = 1 if testing data i and i
′ are clustered together using the training cen‑
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Figure 4.7: The prediction strength over a range of NC.

troids, and D[C(Xtr, k), Xte]i,i′ = 0 otherwise. The summation term calculates the pairwised sim‑

ilarity in testing cluster Cr. From the equation, ps(K) ∈ [0, 1]. The reason for using the minimum

value is because the cluster giving the minimum prediction strength is where partitioning happens.

The more similar training and testing data are clustered, the more robust the resulting NC.

Fig.4.7 shows the prediction strength over a range of K values on the uniform transformed

data. ps(1) is always 1.0, because training and testing data have only one cluster, all data in the one

cluster of testing data are grouped together by the only centroid. The 5 clusters has a high prediction

strength of 0.95. It validates 5 as the optimal NC and the suitability of k‑means for the data. The plot

should not be used to determine the optimal NC as different testing data size changes the K giving

maximum prediction strength. The optimal NC does not always promise the highest prediction

strength. It should be used to validate the choice of NC and the compatibility of clusteringmethods

with data. A prediction strength higher than 0.9 indicates the NC is trustworthy.

4.2.5 Clustering results

Fig.4.8 shows the results of k‑means clustering using 5 clusters. In general, the 5 clusters are well

identified. Some data are miss‑clustered such as the left top corner data in the blue cluster. The

k‑means results are reasonable when data are uniform transformed with spikes spread. For high

dimensional data, there is no luxury of visualizing the results, so the workflow is more important.

Its compatibility with different clustering methods and different data transformation is examined

in the next section.

4.3 Compare Different Transformations

In this section, the compatibility between the proposed workflow and different transformations is

compared. The transformations include linear scaling, uniform score transformation with spikes
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Figure 4.8: K‑means results of the transformed data.

spreaded and preserved, and normal score transformation with spikes spreaded and preserved.

The clustering methods used are k‑means and GMM. Synthetic data containing spikes from the

previous section is used here. Deemed appropriate clustering and transformations are used to ex‑

amine real data.

4.3.1 Linear transformation

The linear transform rescales variables into the same range. Otherwise, dimensions with larger

scale may distort distance based clustering. Suppose a dataset with N samples and M dimensions

dij , i = 1, · · · , N, j = 1, · · · , M . Consider in dimension j:

drij =
dij − min(dj)

max(dj) − min(dj)
where drij is the rescaled data, and dj represents all N samples in dimension j. The transform

rescales all variables to a range of [0,1]. The advantage of the linear transform is that it preserves

the original shape of data, which is preferred in cluster analysis. The method also has several limi‑

tations. It does not have alternative ways to handle spikes, and it is not robust to centroid shifting

caused by outliers.

Fig.4.9 shows the rescaled data. The shape remains the same as in Fig.4.2 but the data are

rescaled from 0 to 1. The Hopkins statistic of the data is 0.94, indicating cluster existence. Gap

statistic and silhouette coefficients are calculated over a range of NC. Fig.4.10 shows the results

when data are clustered using k‑means and GMM. Both clustering tools show the optimal NC is 5,

except for the silhouette coefficient plot when using GMM. The results of k‑means and GMM clus‑

tering using 5 clusters are shown in Fig.4.11. It is obvious that k‑means method gives better results.

GMM clusters the BDL data as one single cluster, which is shown at the bottom left corner in the
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Figure 4.9: Linearly rescaled synthetic data.

right figure. This comes from GMM fitting a kernel specific to the spike formed by BDL data. The

spike also results in the wrong optimal NC using silhouette coefficient and GMM in Fig.4.10. The

cross‑validation results of k‑means is 0.98 while the results of GMM is 0.52, whichmeans the results

of using GMM change drastically when using different proportion of data. GMM is not compatible

with the transformation when spikes present.

Since the true label is available for the dataset, the percentage of data correctly clustered can be

calculated. More specifically, consider one cluster at a time and calculate the percentage of data that

truly belong to that cluster. The minimum percentage among all clusters is used as a measurement

for clustering performance and refer to it as the correctness rate. Suppose there are K clusters after

clustering. In a specific cluster Cr, r = 1, · · · , K, there are Tr true labels and each label is denoted

as t. The correctness rate Rr in this cluster is calculated as:

Rr = max(P (t)) t = 1, · · · , Tr (4.3)

where P (t) is the proportion of the true label t in cluster Cr. The correctness rate of the clustering

results R is calculated as

R = min(Rr) r = 1, · · · , K (4.4)

The k‑means results have a correctness rate of 0.90 while the correctness rate of GMM results is only

0.72. It means in the cluster labeled orange, only 72% of the data truly belong to that cluster. GMM

does not appear appropriate for the linear transformed data when spikes are present.

Now consider the scenario of outliers, which is very common in real data. Fig.4.12 is the same

synthetic dataset but with some outliers added. Some outliers are 10 times larger than the main

data. Since GMM does not work well when spikes are present, only the performance of k‑means

is examined here. The Hopkins statistic is 0.97, showing clustering existence in the data. Fig.4.13

shows the plots of gap statistic and silhouette coefficient, indicating the optimal NC should be 8.

Fig.4.14 shows the eight clusters using k‑means. Although the optimal NC is not the same as the
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Figure 4.10: Gap statistic (left) and silhouetter coefficient (right) on the linearly transformed data.

Figure 4.11: K‑means (left) and GMM (right) clustering results on the linearly transformed data.

true one, all fivemajor clusters are well clustered and the outliers are separately clustered. By using

k‑means, data with outliers can still be well clustered. The outliers only affects the analysis of NC.

However, the cross‑validation results are 0.0 when using 8 clusters. It could come from the testing

samples containing outliers. The number of data in outlier clusters is small, so it is possible that the

outliers in testing data are clusterd very differently from those in the training data. If the real NC

is used, the data are poorly clustered as shown in Fig.4.15. It comes from the outliers change the

cluster centroids drastically. Thus, using k‑means for linearly transformed data is reasonable, but

when outliers present, the number of data in each cluster may need to be examined.

4.3.2 Uniform transformation

There are two reasons for uniform transformation. Firstly, it scales different dimensions to a range

of [0,1]. The quantile transformation also handles the outliers. The outliers distort the clustering

by switching the cluster centroids drastically or changing the real NC as shown in the previous

section. Through quantile transformation, outliers appear as normal data and their effects on the

clustering results can be minimized. The quantile transformation can also treat spikes differently,

which increases its compatibility with different clustering methods.

First the synthetic data are uniform transformed with spikes spread. The robustness of using

53



4. Multivariate Cluster Analysis

Figure 4.12: Synthetic data with outliers.

Figure 4.13: Gap statistic (left) and silhouetter coefficient (right) on linearly scaled data containing outliers.

Figure 4.14: Results of k‑means clustering using cluster number of 8. Right one is the zoomed in scatter plot
of the region of interests.
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Figure 4.15: Results of k‑means clustering using cluster number of 5.

Figure 4.16: Results of gap statistic and silhouette coefficient using GMMwhen data are uniform transformed
with spikes spread.

k‑means on this transformation is demonstrated in the previous section, so only GMM is examined

in this part. Fig.4.3 shows the transformed data. The Hopkins statistic of the data is 0.8. Fig.4.16

shows the plots of the gap statistic and silhouette coefficients against different NC, and the results

indicate the optimal NC is 5. Fig.4.17 shows the results of GMM clustering. The 5 clusters have

similar shape as in the k‑means results (Fig.4.8), but there are more wrongly clustered data in the

right upper corner and right bottom corner of red cluster. The cross‑validation score is 0.84 for

GMM results, which is lower than that of k‑means. The correctness rate of the resulting clusters

is 0.78. In the wrost scnario (the red cluster), only 78% of data truly belong to that cluster. On the

contrary, the correctness rate of k‑means is 0.9. Therefore, when data are uniform transformedwith

spikes spread out, it is better to use k‑means method.

Now data are uniform transformedwith spikes preserved. Fig.4.18 shows the transformed data.

Outliers are at the margins, and they appear much closer to the main data compared with the origi‑

nal units. The spikes are obvious on themarginal histograms, and 5 clusters are visually distinguish‑

able. The Hopkins statistic is 0.83. It is higher than the spikes spreading case as spike data remain
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Figure 4.17: Results of GMM clustering when data are uniform transformed with spikes spread.

close together. Fig.4.19 shows the gap statistic and silhouette coefficients plots using k‑means and

GMM. The k‑means results indicate the optimal NC should be 5 but the GMM results have prob‑

lems identifying an optimal NC. Fig.4.20 shows the results of the two clustering methods. K‑means

performs better than GMM. The 5 clusters are separated better, although some miss‑clustered data

in the red cluster. The outliers do not influence the clustering as much as in Fig.4.15. Their contri‑

butions in shifting cluster centroids are similar to other data. The clusters of GMM show similar

features with the linear transformed data. The spike is independently separated rather than being

groupedwith other data. The corresponding cluster is shown as a single dot in the figure. This leads

to the wrong grouping of green and orange clusters. The cross‑validation score for k‑means is 0.96

while the score for GMM is only 0.46, which means data are partitioned by GMM. The correctness

rate for k‑means is 0.91 while the rate is only 0.61 for GMM. When clustering uniform transformed

data with spikes preserved, it appears better to use the k‑means method.

4.3.3 Gaussian transformation

Gaussian transform is another type of quantile transformation and widely used in geostatistical

modeling. It shares similar advantages with uniform transformation. The transformed data are

clustered in the center ofmulti‑Gaussian space. This can cause theHopkins statistic and gap statistic

inaccurate as they use uniform distribution as their reference distribution. These two statistics can

be adapted to use Gaussian distribution as reference in future work.

Fig.4.21 is the Gaussian transformed data with spikes spread as shown on the marginal his‑

togram. The Hopkins statistic is 0.93. This high value comes from the 5 clusters and the Gaus‑

sian transformation clusters data in the center of the space. The five clusters are not as visually

distinguishable compared to the previous transforms, because data are centered around (0,0) co‑
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Figure 4.18: Synthetic data after uniform transform and spikes preserved.

Figure 4.19: Results of gap statistic and silhouette coefficient using k‑means and GMMwhen data are uniform
transformed with spikes preserved.

Figure 4.20: Resulting clusters from k‑means (left) and GMM (right) when data are uniform transformed with
spikes preserved.
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Figure 4.21: Gaussian transformed synthetic data with spikes spread out.

ordinate. Fig.4.22 shows the gap statistic and silhouette coefficients plots. Only the gap statistic

on k‑means results gives the right NC, which indicates this transformation is not very compatible

with the workflow. Fig.4.23 shows the clustering results using 5 clusters. Neither approach gives

reasonable clustering results. GMM gives worse results by clustering the transformed spike as a

single cluster. Although k‑means performs relatively better, many data are miss‑clustered into the

orange cluster. The clustering does not separate data well especially at the center of space where

the data distribution is dense. The cross‑validation scores are 0.54 and 0.52 for k‑means and GMM

respectively, which means the transformed data are not reasonably clustered using these twometh‑

ods. The correctness rate of k‑means is only 0.77, which is much lower than that of the uniform

transformed data, and the correctness rate for GMM is 0.43. So transforming data to Gaussian units

with spike spread may not be compatible with the workflow and clustering methods.

Fig.4.24 is the Gaussian transformed data with spikes preserved. The five clusters are more

visually distinguishable comparedwith the spike spread case. TheHopkins statistic is 0.92. Fig.4.25

has similar patterns as in Fig.4.22. Only the gap statistic on k‑means results gives the correct NC.

Other methods cannot give a reasonable estimate of the optimal NC. Fig.4.26 shows the GMM and

k‑means clustering results using 5 clusters. K‑means clusters the data relatively better. The five

clusters are well separated, despite some data miss‑clustered in the blue and purple clusters. GMM

fits a specific kernel for the spike, which is shown as the red cluster on the left margin. Four major

clusters are mixed into two clusters, and outliers are clustered into one group. The GMM clustering

on the transformed data is not successful. The cross‑validation results are 0.95 and 0.48 for k‑means
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Figure 4.22: Results of gap statistic (left) and silhouette coefficient using k‑means and GMM (right) when data
are Gaussian transformed with spikes spread out.

Figure 4.23: Clustering results using k‑means (left) and GMM (right) when data are Gaussian transformed
with spikes spread.

and GMM respectively. GMM only partitions the data. The correctness rate for k‑means is 0.91,

while the correctness rate for GMM is 0.60. The workflow on GMM results cannot provide correct

optimal NC and clustering results are poorly separated, so GMM may not be compatible with the

Gaussian transformed and spikes preserved data.

4.3.4 Summary for Different Transformations

Table.4.1 summarizes the compatibility of data transformations and clustering methods with the

workflow. The correctness rates of k‑means are generally higher than that of GMM. When BDL

data and outliers present in data, k‑means is more compatible with the transformations than GMM.

Gaussian transformation with spikes spread is not an appropriate transformation as both cluster‑

ing methods give low correctness rate. Linear transformation of data does not handle outliers well

as it either gives incorrect NC or fails the cross‑validation test. Although Gaussian transformation

with spikes preserved performs well using k‑means, only the gap statistic results give the correct

NC.When analyzing real data, the transformationmay have difficulty determining the optimal NC.

For the methods having low correctness rate, they either do not give the optimal NC or partition

data rather than cluster them. Since the synthetic data do not have complicated distributions to
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Figure 4.24: Gaussian transformed synthetic data with spikes preserved.

Figure 4.25: Results of gap statistic (left) and silhouette coefficient using k‑means and GMM (right) when data
are Gaussian transformed with spikes preserved.

Figure 4.26: Clustering results using k‑means (left) and GMM (right) when data are Gaussian transformed
with spikes preserved.
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k‑means GMM

Linear Transform 0.90 0.72
Uni. Spread 0.90 0.78
Uni. Preserved 0.91 0.61
Gauss. Spread 0.77 0.43
Gauss. Preserved 0.91 0.60

Table 4.1: The correctness rates for each transform and the clustering methods.

be clustered, the appropriate transformations that can be applied on real data should have correct‑

ness rates above 0.9, which include linear transform, uniform transform with spikes spread and

preserved, and Gaussian transform with spikes preserved.

There are two features worth noting: the poor clustering performance of GMM when spikes

preserved, and the poor compatibility of Gaussian transformation with the workflow. GMM is a

distribution‑based clustering method. When spikes are preserved, their distribution is very dif‑

ferent from the rest data. Therefore, GMM tends to fit a sharp Gaussian model with almost zero

variance to spikes. The rest data cannot be grouped into this Gaussian kernel, even though they

are close to the spike data. The synthetic clusters are relatively isotropic. GMM may have a better

performance when the clusters are highly anisotropic. The poor compatibility between Gaussian

transform and the workflow could come from the mechanism of the transformation. The reference

state of the workflow is the uniform distribution, but the Gaussian transformation pushes data

around the center of the space while the marginal data are separated farther, which changed the

reference distribution of data. Thus, the Gaussian transformed data are not very compatible with

the workflow.

4.4 Real Data Application

In this section, the appropriate transformations are applied to examine clusters in real data. As

shown above, k‑means outperforms GMMwhen BDL data are present, so only k‑means clustering

is applied here. The proposed workflow is applied to determine the NC. The real data used in this

chapter come from the Government of the Northwest Territories (Falck et al., 2012). The missing

data are eliminated. The data consist of 8500 observations and 46 variables. Some of the variables

contain over 1000 BDL data as shown in the previous chapter. Since the NC in high‑dimensional

data cannot be visually examined, the workflow is of great importance.

Somemay argue there are too few data for the 46 dimensional space, also known as ”the curse of

dimensionality” (Bellman, 1966; McLachlan, 2004; Taylor, 1993). For an M dimensional space, the

number of data should be around the magnitude of 10M to make meaningful statistical inference.

It is necessary for mean and variance, but it wouldn’t be a problem for cluster analysis. In Fig.4.27,

there are only 10 data in a 2D space but the two clusters are still distinguishable. In cluster analysis,

61



4. Multivariate Cluster Analysis

Figure 4.27: Ten samples on a 2d space still give two clusters.

the proximities between data are more important than the number of data.

The Hopkins statistic for the 46 dimensional data is 0.74, indicating there could be clusters exis‑

tence. The data are transformed using transformation with correctness rate higher than 0.9 in the

previous section. Fig.4.28 shows the gap statistic and silhouette coefficients on k‑means clustering

results. The gap statistic and silhouette coefficient show different trends. The optimal NC is be‑

tween 6 to 10 for gap statistic, and different transformations give different plots. The uncertainty

indicates the NC provided by the gap statistic may not be reliable. Also, the gap statistic should

only be used as complement to the silhouette coefficient. All silhouette coefficient plots indicate

the optimal NC is 2, and the value at 2 is much higher than other NC, so 2 clusters are used for

the further analysis. The cross‑validations on the four transformation are all above 0.9. It indicates

k‑means separates the two clusters in the real data well.

It is difficult to visualize the 46 dimensional space to validate the two clusters, but the high‑

dimensional data can be projected to an easily visualized 2D plane. If there are two obvious clusters

on such a plane, we can conclude that there are at least two clusters in the real data. Since the work‑

flow has eliminated possibilities of other NC, the two clusters on a 2D plane should be sufficient to

validate the two clusters existence in the high‑dimensional space.

Algorithm 2 explains the procedure of finding such planes. Real data are projected to a 2D

plane, and k‑means using 2 clusters are conducted on the 2D data, obtaining the corresponding

silhouette coefficient. The process iterates thousands of times, and the 2D plane with the highest

silhouette coefficient is returned. While there are an infinite number of 2D planes, the algorithm

only needs to repeat enough times to find a certain plane that shows the clusters. The procedure

of effectively sampling is explained in Algorithm 3. Imagine there are 3 clusters in a 3D space. To

view the most separable clusters on a 2D plane, the plane should be the one created by the 3 cluster

centroids. When there are only 2 clusters, planes are sampled parallelly to the two cluster centroids.

The same logic can be applied to higher dimensional spaces. When there are more than 3 clusters,
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Figure 4.28: Gap statistic and silhouette coefficient results for different transform methods using k‑means.

3 cluster centers are randomly sampled to generate a plane. The algorithm samples around the

cluster centroids for more flexibility.

The purpose of the algorithms is not to find the plane that gives the highest silhouette coefficient.

It only needs to find one plane that can show the two clusters of the projected 2D data. After apply‑

ing the algorithm on differently transformed data, Fig.4.29 shows the 2D projected data that reveal

2 clusters. The coordinates do not have to be aligned with any variables. The two clusters in the left

two figures are closely connected with some extent of overlap. They have elongated shape and can

be distinguished by different orientations. The two clusters in the two right figures have elliptical

shapes, and they can be distinguished by different sizes and cluster centers. The four transformed

data all indicate 2 clusters on a 2D plane. Now, we can conclude that there can be two clusters in
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Algorithm 2 Find 2D plane
silht_score = 0
N = 0
Use the workflow on the high‑dimensional data to find the optimal number of clusters n_cls
repeat

N = N + 1
Simulate a 2D plane in the high‑dimensional space
Project the high‑dimensional data to the plane, obtaining the 2D projection data data_proj
Calculate the silhouette coefficient silht_hyper on data_proj using n_cls
if silht_hyper > silht_score then

silht_score = silht_hyper
data_save = data_proj

end if
until N > 10000
return silht_score, data_save

Algorithm 3 Simulate 2D plane
Find the number of clusters K and the corresponding centroids Ci(i = 1, · · · , K)
for i in range(K) do

Sample a point Pi around cluster centroids Ci

end for
if N==2 then

return A plane parallel to P1 and P2
else

Sample 3 points from PK

return A plane created from the 3 points
end if

the high‑dimensional data.

4.5 Conclusion

This chapter covers several aspects of cluster analysis on data with spikes. First, the workflow of

determining the optimal NC is introduced. The workflow consists of several statistic tools. Hop‑

kins statistic examines if there is any cluster in data. The silhouette coefficient and gap statistic

find the optimal NC by plotting the value against a range of NC. The optimal NC should have the

highest value of the measurements. Prediction strength validates if the chosen NC is reliable by ap‑

plying the clustering on testing data. This chapter also examines the compatibility of the workflow

with different transformations and clustering methods. The two clustering methods are k‑means

and GMM. Provided the true labels of synthetic data, correctness rate measures the proportion of

data truly belong to the same cluster, and it is used to evaluate the performance of the clustering

results. For the synthetic data, the suitable transformations are linear rescaling, uniform transform

with spikes spread and preserved, and Gaussian transform with spikes preserved. The appropri‑

ate clustering method is k‑means. These transformations and k‑means clustering are applied on

real high‑dimensional data with many BDL spikes. The results show 2 clusters in all four differ‑
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Figure 4.29: The planes illustrating two clusters in real data.

ently transformed data. To validate the results visually, high‑dimensional data are projected to 2D

planes, using the proposed algorithm to sample efficiently. All four figures indicate there are two

clusters in the 2D projected data.
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CHAPTER 5

ENSEMBLE CLUSTERING AND CLASSIFICATION
Different from conventional multivariate data, geostatistical data have two components: multivari‑

ate and spatial. In traditional clustering methods, the multivariate data are clustered into contin‑

uous groups according to their multivariate properties but the clusters or groups do not have any

spatial control. This is problematic for geostatistical modeling. Previous research used ensemble

clustering to reach an optimum state between multivariate and spatial continuity, but the perfor‑

mance relies on the subjective choice of thresholds. In this chapter, an alternative workflow is pro‑

posed. The ensemble clustering method is still applied to generate multiple sets of multivariate

labels. Given the clustering labels, classification on the spatial data is conducted considering both

the multivariate and spatial continuity. The multivariate and spatial aspects are incorporated in

an objective function. The importance of each term is adjusted through a spatial weight term. The

classification starts from a random assignment of domains. Each data is iterated through all possi‑

ble domains, and the domain label giving the minimum objective function value is preserved. The

reassignment is conducted multiple times until it converges. The robustness of the workflow is

demonstrated. The effect of spatial weight is assessed through multivariate geostatistical model‑

ing. Practitioners can choose different spatial weight and number of domains, and make their own

decision considering geological knowledge.

5.1 Introduction

5.1.1 Motivation

In exploratory data analysis (EDA), clustering techniques group large data into smaller groups,

making further analysis more precise. When clustering geostatistical data, the incompatibility be‑

tween the units and the properties of multivariate space and spatial coordinates can be problem‑

atic. Most clustering techniques ensure the continuity in multivariate space but the corresponding

spatial domains are scattered, and this causes difficulties in geostatistical modeling (M. J. Pyrcz &

Deutsch, 2014). For example, the scattered domains increase the difficulty of variogram inference

and prediction of what domain label prevails at an unsampled location. In this chapter, labels refer

to multivariate labels and domains refer to spatial labels.

In Fig.5.1, the bivariate data is clustered using k‑means (Krishna & Murty, 1999). Note XCOO

represents x coordinates, and YCOO represents y coordinates. Although the bivariate space is

grouped into two continuous clusters, the spatial domains are scattered. In Fig.5.2, the k‑means

clustering is conducted on the spatial data although this is not recommended, because the cluster‑
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ing on spatial data cannot accommodate the complex spatial shapes of geological features. While

the spatial continuity is assured, the multivariate clustering result is scattered. In these examples,

there is a trade‑off between the continuity of multivariate clusters and spatial domains (They are

the same labels, but shown in different space).

Figure 5.1: k‑means clustering results on 2D multivariate data. Left represents the multivariate labels. Right
is the domain distribution.

Figure 5.2: k‑means clustering results on 2D spatial data. Left represents the multivariate labels. Right is the
domain distribution.

To address the trade‑off problem, Martin (2019) proposes a clustering method considering the

spatial continuity and combinedwith ensemble clustering. Thiswork extendsMartin’swork into an

optimization framework. First, ensemble clustering is introduced. Ensemble clustering assembles

multiple clustering techniques together to obtain an optimal clustering result (Fred & Jain, 2005).

The individual clusterings used in the ensemble clustering are also called weak clustering (the term

weak and individual clustering are used interchangeably). As shown in Fig.5.3, individual k‑means

clusterings (weak clusterings) do not group the clusters well, but the merged ensemble clustering

result looks correct.
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5. Ensemble clustering and classification

Figure 5.3: An illustration of ensemble clustering method. Left four plots are individual clustering results.
Right plot is the merged ensemble clustering result.

The weak clusterings are generated similar to samples in random forests (Svetnik et al., 2003).

Each individual clustering uses different clustering techniques, set of data, and number of clusters.

These parameters do not have to be correct, but they are required to be various enough to generate

independent and identically distributed samples. From the ensemble of these weak clusterings, a

similarity matrix is obtained, and this matrix is used in hierarchical clustering (Johnson, 1967) to

determine the final clustering results.

In Martin (2019), the individual clustering technique considers both the spatial domains and

multivariate clusters. The performance of each individual result is measured quantitatively. The

spatial continuity is measured using entropy (Shannon, 2001) and the multivariate continuity is

obtained using within cluster sum of squares (WCSS). High entropy represents scattered domains

and high WCSS represents scattered clusters. These two measurements are negatively correlated.

As observed from the previous figures (Fig.5.1 and Fig.5.2), when the spatial entropy for a clustering

result is high, the WCSS is low, and vice versa (Fig. 5.4). Reasonable clustering results should have

low entropy and WCSS. To obtain the optimal ensemble clustering result, the entropy and WCSS

of each individual clustering in the ensemble is calculated and only the individual clusterings with

entropy and WCSS value below specific thresholds are used for the ensemble merging.

Although Martin’s method provides reasonable results, subjective choices of the thresholds de‑

termine the quality of final labels. When deciding the thresholds, practitioners need to examine

dozens of individual results. However, there are thousands of results that could be merged, so the

quality of the ensemble result is uncertain and subjective.

5.1.2 Hierarchical clustering

Hierarchical clustering is a classic and robust clustering method in addition to k‑means and Gaus‑

sian mixture model (GMM). It is used for merging individual clusterings in ensemble clustering.
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Figure 5.4: The WCSS and entropy are negatively correlated (Martin, 2019).

The main difference of hierarchical clustering from the other two is the clusters do not have cen‑

troids, so the resulting clusters can be in any shapes. This feature is useful when the shapes of

clusters are uncertain. There are two types of hierarchical clustering: agglomerative and divisive.

The first one is also referred to as “bottom up” approach and the latter one “top‑down” approach

(?). Here, the “bottom up” approach is considered. This approach treats each data as its own cluster

at the start, and merges the closest pair at each step. The process goes iteratively until all data are

merged into one group.

Similar to k‑means, the distances between data are the key to hierarchical clustering results.

Most commonly, Euclidean distance orManhattandistance are used. In The intermediate steps, two

groups are to be clustered together. Since each group contains many data, there are several ways to

determine the distance between groups. The distance between groups is also called linkage criteria.

Common linkage criteria include complete‑linkage, single‑linkage and average linkage (Fig.5.5). As

observed from the figure, complete‑linkage considers themaximumdistance of data as the distance

between groups, single‑linkage considers the minimum distance of data as the distance between

groups, and average‑linkage considers the average distance of data as the distance between groups.

There is also Ward’s criterion (Murtagh & Legendre, 2014; Ward Jr, 1963). At each merge step,

Ward’s methodmerges the two groups which lead to the minimum group variance, and it provides

similar results to average‑linkage. In ensemble clustering, Euclidean distance and average‑linkage

are applied.

The last step of hierarchical clustering is to determine the number of clusters. This can be

achieved from observing the dendrogram. Fig.5.6 is an example using only 20 data. The x axis

shows the data index, and the y axis is the distance between each group. Each data is shown as

leaf nodes and they are clustered into one group when the distance reaches the maximum. The

smaller the distance between groups, the earlier they are grouped together. From the figure, there
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are three major groups. To reveal these major groups, 3 clusters are chosen and the corresponding

distance is at 1.1. The number of clusters can be chosen directly, or the group distance is set and

the corresponding number of clusters can be easily found. In this chapter, the number of clusters

is chosen directly.

Figure 5.5: An illustration of three linkage method.
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Figure 5.6: An example of dendrogram using 20 data. x axis is the index of data. y axis is the distance between
data.

5.1.3 Proposed workflow

A novel workflow is introduced in this chapter. The traditional ensemble clustering is conducted

first. The individual clustering techniques used is k‑means where the parameters are sampled from

a set of choices. The purpose is to generate independent and identically distributed random sam‑

ples. The less correlated the individual cluster results are, themore robust the final ensemble results.

The next step is to use the ensemble clustering results as inputs for classification. An objective

function in the classification considers both spatial and multivariate continuity, and their relative

importance is adjusted through a spatial weight parameter. The inputs of the classification can be
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multiple clustering results with different number of clusters. At the beginning, the domains are as‑

signed randomly, and the objective function is calculated. Then each data are resampled through all

possible domains. If the new domain improves the objective function, it is preserved. The process

keeps iterating until the algorithm converges. Since there is a possibility of the algorithm converg‑

ing to a local minima, multiple initial states are generated and the best result is kept. The number

of domains and spatial weight are used as hyper‑parameters. Practitioners can generate a matrix

of results given a range of number of domains and spatial weight, then choose the optimal one con‑

sidering the geological understanding of the domains. The robustness of the workflow is checked,

and the effect of spatial weight is demonstrated through geostatistical modeling. With high spatial

weight, themodeling simulatesmore connected values, whilewith low spatialweight, themodeling

simulates more random disconnected values.

5.2 Ensemble clustering

The proposed workflow addresses the trade‑off between spatial and multivariate continuity in two

steps. The first step is to only consider the multivariate continuity, generating multiple clustering

labels. These labels are used as inputs in the second step, in which the importance of spatial con‑

tinuity is controlled by spatial weight. To obtain an optimal spatial and multivariate continuity,

the quality of the inputs clustering labels are important. In this section, the procedure to obtain

clustering labels using ensemble clustering is explained, and the superior results quality compared

with k‑means is demonstrated.

As explained above, ensemble clusteringmergesmultiple individual clustering results to obtain

a better one. The individual clustering used here is k‑means with a set of different parameters. To

sample independent realizations, each k‑means realization samples 80% of the data with replace‑

ment and the number of clusters range from 10 to 25. 100 realizations of k‑means results are used for

one realization of ensemble clustering. The similarity matrix used for the merging step is generated

by calculating the data’s pairwise occurrence in the same group.

Suppose there are N data z(ui), i = 1, · · · , N , and individual clusterings are conducted M

times on z(u). Each individual clustering k = 1, · · · , M , has its own data samples and they are

denoted as zk(u). The clustering label for z(ui) is denoted as yk(ui). If z(ui) is not sampled in

zk(u), yk(ui) = NaN . S is a N × N matrix representing the pairwise similarity. To calculate the

similarity between the z(ui) and z(uj):

Sij =
∑M

k=1 1{yk(ui) = yk(uj)}∑M
k=1 1{yk(ui) ̸= NaN & yk(uj) ̸= NaN}

, i, j = 1, · · · , N (5.1)

where 1{True} = 1 and 1{False} = 0. The similarity between data i and j is the proportion of

their sharing the same label throughout their co‑occurrence inM iterations. If two data are grouped

together most of the time, they possibly belong to the same cluster. For example, in 100 realizations,
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z(ui) and z(uj) are present together 80 times and are grouped together 60 times. Then Sij is 0.75.

After obtaining the similarity matrix from Eq.(5.1), the distance matrix of the data is simply

calculated as

Mij = 1 − Sij , i, j = 1, · · · , N

The real data used in the ensemble clustering comes from “Kola Ecogeochemistry Project” (Filz‑

moser, Garrett, & Reimann, 2005; Reimann, 2005; Reimann, Filzmoser, & Garrett, 2005). The site

is famous for its rich mineral deposits. The geochemical data consist of 618 data points and 26

variables. The data are standardized before clustering. The distance matrix (Fig.5.7) is used in hier‑

archical clustering to determine the ensemble clustering results. As observed from the figure, the

distance is equal to 0 for diagonal elements, as the the distance to a data itself is 0. The larger the

distance between data, the less likely they belong to the same cluster. The next step is to use it as

the predefined distance matrix in hierarchical clustering. The advantage of hierarchical clustering

is that the number of clusters does not change the clustering mechanism and the optimal number

of clusters can be observed from dendrogram. As shown in Fig.5.8, closer data are grouped earlier.

The small clusters grouped last on the left of the figure have long distance to the rest of the data,

indicating they could be outliers. Average‑linkage merging criterion is used here.

Figure 5.7: The distance matrix calculated from the ensemble clustering method.

Fig.5.9 and Fig.5.10 are the results of the ensemble clustering and k‑means clustering respec‑

tively. The number of clusters ranges from 3 to 8. The silhouette coefficient is used to evaluate

the performance of the clustering results. The higher the value, the better the data are grouped

in multivariate space. Considering the general higher silhouette coefficient, the ensemble method
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Figure 5.8: The dendrogram calculated from distance matrix. Each node on x axis represents a data point. y
axis represents the data distance.

outperforms k‑means. It is worth noting that in the ensemble clustering, when the number of clus‑

ters is low, the clustering technique mainly isolates outliers. In contrast, k‑means groups outliers

with main clusters, which can be the reason for its lower silhouette coefficient. The performance is

only evaluated in the multivariate space and the spatial plot is only used for displaying the labels

distribution.

Figure 5.9: The result of ensemble clustering on the real data. x and y axises represent location. Different
colors represent different groups.

73



5. Ensemble clustering and classification

Figure 5.10: The result of k‑means clustering on the real data. x and y axises represent location. Different
colors represent different groups.

5.3 Classification

One advantage of the proposed workflow is that there can be multiple clustering labels used as

inputs for the classification. Since there are some randomness in ensemble clustering, multiple

ensemble labels can be generated, and the reasonable ones are inputs. The difficult problem of

finding the best clustering label is avoided at the first step.

5.3.1 Objective function

Clustering ensures the continuity in multivariate space, but it does not make sense to conduct clus‑

tering on spatial data due to the complexity of geological shapes, a method is needed to ensure

the spatial continuity of domains. Another issue is the clustering results may identify many small

outlier groups. In the case of 8 clusters in Fig.5.9, there are only 2 to 3 main clusters. Finding ma‑

jor clusters is more important than identifying small outlier groups for the problem. The domain

classification mitigates this problem.

Like other classification methods, the domain classification needs an objective function to indi‑

cate approaching an optimum. Since there is a trade‑off, a hyper‑parameter (Wsp for spatial weight)

to adjust the importance of the spatial continuity is needed. Also the number of domains needs to

be specified. The general format of the objective function is as follows:

O(d, y) = (1 − Wsp) · M(d, y) + Wsp · S(d) (5.2)

whereO(d, y) is the objective function value,M(d, y) is themultivariate entropy, S(d) is the spatial

entropy, d represents the spatial domains and y represents the clustering labels. The objective
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function has the following features: when the number of domains is fixed, with Wsp equal to 0,

complete multivariate continuity is ensured. When Wsp increases, the domains are redistributed

and deviate from the labels. When Wsp is close to 1, complete spatial continuity is ensured. The

classified domains should give the minimum value of the objective function in each circumstance.

Now, the details of each term in Eq.(5.2) are explained. The multivariate entropy measures the

discrepancy between multivariate labels and spatial domains. Suppose the number of domains is

D, and the number of clusters is C. In domain i (i = 1, · · · , D), the probability of finding label j

(j = 1, · · · , C), Pij , is calculated as the number of data with label j in domain i, N(yji)), divided by

the number of data in domain i, N(di).

Pij = N(yji)/N(di) (5.3)

The entropy of domain i is calculated as:

Ei = −
C∑

j=1
Pij log Pij (5.4)

The multivariate entropy of the whole data is the weighted sum of Ei and is calculated as:

M(d, y) =
∑D

i=1 N(di) · Ei

N
(5.5)

where N is the total number of data. When M(d, y) is low, domains are consistent with labels.

When M(d, y) is high, the labels are distributed randomly within domains. For example, Table.5.1

shows the calculation of the probabilities. There are 3 labels and 2 domains. The probability is

calculated within each domain. After obtaining the probabilities, the entropy for domain 1 and 2

are:

E1 = −(0.133 log 0.133 + 0.2 log 0.2 + 0.667 log 0.667) = 0.86

E2 = −(0.3 log 0.3 + 0.5 log 0.5 + 0.2 log 0.2) = 1.02

The entropy for the whole data is the the weighted average of E1 and E2:

M =
150 · E1 + 100 · E2

250
= 0.924

The distribution of labels in domain 2 is more random, which means the domain and labels are less

consistent. When the number of domains is the same as the number of labels and there is only one

unique label in each domain, the multivariate entropy is zero, and this represents full multivariate

continuity. In practice, there can be P sets of labels used for multivariate entropy calculation, and

the final entropy is the average entropy over the P sets.

M(d, y1, · · · , yP ) =
∑P

p=1 M(d, yp)
P

(5.6)

The final objective function is adjusted from Eq.(5.2) to

O(d, y1, · · · , yP ) = (1 − Wsp) · M(d, y1, · · · , yP ) + Wsp · S(d) (5.7)
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Domain1 Domain2

Label1 20 30
Label2 30 50
Label3 100 20

Domain1 Domain2

Label1 0.133 0.3
Label2 0.200 0.5
Label3 0.667 0.2

Table 5.1: Example data of calculating multivariate entropy. Left is the number of data within each label and
domain. Right is the corresponding probabilities.

where P is the number of available sets of clustering labels.

The calculation of the spatial entropy is relatively simpler. We search in a local window, calcu‑

late the entropy of proportions of different domains, and average over all data. Fig.5.11 shows such

a search window. The window is centered in a data point with a radius of 60 km. For data point

z(uq) q = 1, · · · , N , the spatial entropy S(dq) is calculated as

S(dq) = −
K∑

k=1

p(k) log p(k), q = 1, · · · , N (5.8)

where p(k) is the proportion of domain k andK is the available domains. A value of p(k) = 0would

contribute 0 to the entropy (at the limit). The average S(d) over all data is simply calculated as

S(d) =
∑N

q=1 S(dq)
N

, q = 1, · · · , N

The more scattered the spatial labels are, the higher S(d) is, and this is not desirable. The optimal

domain distribution should give the lowest possible O(d, y1, · · · , yP ).

Figure 5.11: An illustration of a local search window. The window is marked as a blue circle.
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5.3.2 Classification process

With the objective function established, it is used to classify spatial domains. The spatial weight and

the number of domains need to be specified. Suppose there are 3 domains. The spatial domains are

randomly assigned at the beginning. Domains d are uniformly sampled from 1, 2 and 3, and the

initialmeasurementOinit fromEq.(5.7) is obtained. Then the domains are resampled one by one in a

random order. IfO decreases compared with the previous state, the new domain label is preserved,

otherwise, dismissed. All data are visited once in each iteration, and be revisited in a different

order in the next iteration until the algorithm converges. As shown in Algorithm 4, the objective

function is recalculated every time when data domains are changed. If there are 3 domains and 600

data, in each iteration, the objective function is calculated 1800 times. The maximum iteration is

set to 10. In practice, the algorithm converges much faster, because it can settle in a local minima.

To overcome this problem, the algorithm is run multiple times, which is equivalent to initiating

multiple beginning states, and the domains giving the lowest O are preserved.

Algorithm 4 Classification of the domains using the objective function.
Input: spatial weight Wsp, number of domains D and C sets of clustering labels y1, · · · , yC ,
The original order data is z(u)
Random assign the domains obtaining initial domains dinit

Oinit = (1 − Wsp) · M(dinit, y1, · · · , yC) + Wsp · S(dinit)
The current Ocurr = Oinit

Ncount = 0
repeat

Ncount+ = 1
Random order the data z(u) obtaining R(u)
for data i in R(u) do

for domain j in D do
Assign domain j to data i, calculate temporary Ot

if Ot < Ocurr then
Keep j as the domain of data i
Ocurr = Ot

else
Change the domain of data i to the original one

end if
end for

end for
until Ncount > 10

With the classification procedure explained, its robustness needs to be validated. WhenWsp = 0,

the algorithm only considers the multivariate continuity. If there is only one set of clustering label

input and the number of domains is set equal to the number of clusters, even starting from a random

distribution of domains, a robust algorithm should return a domain distribution identical to the

clustering labels. They may have different label names, but the spatial distribution should be the

same. Fig.5.12 shows the resulting domains in this situation. The domains are identical to the input

clustering labels. Although the colors are different, within a same domain, there is only one type
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of clustering label, and this is verified by the 0 multivariate entropy.

Figure 5.12: The classification of the domains when spatial weight is set to 0. Left is the input clustering labels.
Right is the classified domains.

The algorithm is used to classify clustering labels with the spatial weight Wsp increasing. The

spatial continuity increases and the multivariate continuity decreases. Fig.5.13 shows the input

clustering labels for the algorithm. The multivariate data used for the ensemble clustering is stan‑

dardized, which gives them 0 mean and variance of 1. This can decrease the influence of highly

skewed distributions. The labels are obtained from multiple realizations of ensemble clustering

with different numbers of clusters. The 6 inputs are denoted as y1, · · · , y6. When calculating the

objective function, O has the form of O(d, y1, · · · , y6). The number of clusters ranges from 8 to

14, from which some are tiny outlier groups. When considering the number of domains, only the

major groups are considered. Here, the number of domains is set from 3 to 5. Also, Wsp is another

important hyper‑parameter. Multiple Wsp values are tested and the change of spatial continuity is

demonstrated.

Fig.5.14 shows the domains obtained from the input clusters in Fig.5.13. Wsp ranges from 0 to 1,

showing the process of the domain classification emphasizing more on spatial continuity. In each

small figure, MV represents multivariate entropy, and SP represents spatial entropy. The lower the

entropy value, the higher the corresponding continuity. In each row (when the number of domains

is fixed), as Wsp increases, the multivariate continuity decreases and spatial continuity increases,

which is the desired performance when the algorithm is designed. In each column (when Wsp is

fixed), when the number of domains increases, the multivariate continuity increases and the spatial

continuity decreases. This is anticipated as more domains group data finer in multivariate space,

and lead to less continuous domains. With Wsp lower than 0.25, the domains are fairly scattered,

whilewithWsp larger than 0.75, the domains are too continuous. In practice,Wsp can be set between

0.25 and 0.75, and be fine tuned.

When Wsp is zero, classified domains can be viewed as the averaged clustering labels. In some
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Figure 5.13: 6 sets of clustering labels obtained from ensemble clustering.

high Wsp figures, the actual number of domains are smaller than the defined value, because when

the number of domains decreases, the continuity of domains increases. Since the domains are as‑

signed randomly at the beginning, the final results have high uncertainty when Wsp is close to 1,

because no clustering information can put constraints on the classification. In practice, clustering

labels are considered and Wsp is set in a reasonable range, which stabilize the algorithm. Practition‑

ers can generate their own matrix of domains and make decisions considering external geological

knowledge.

5.4 Statistic Validation

The proposed workflow is conducted on data for the purpose of dividing them into groups with

distinguishable features, and this can be verified by testing the within group variance (Kasim &

Raudenbush, 1998). The relative size of domains is another measurement of the classification per‑

formance. These quantitative measurements can also be used to determine appropriate hyper‑

parameters.

The total variance of data represents how scattered they are distributed. When the data are

grouped into smaller clusters, there are within group variance and between group variance. If the

groups are well clustered, the variance within each cluster should be small, and the corresponding

between group variance should be large. It also means the differences between data within the

same group are small and the differences between data in different groups are large.

Suppose there areN data, and they are classified intoK groups. The following equation regard‑
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Figure 5.14: The matrix of domains, given multiple Wsp and number of domains.

ing variances holds:

1
N

N∑
i=1

(xi − x̄)2 =
1
N

K∑
j=1

Nj(x̄j − x̄)2 +
1
N

K∑
j=1

Nj∑
i=1

(xij − x̄j)2 (5.9)

where Nj is the number of data in group j, x̄ is the grand mean over N data and x̄j is the mean

of group j. The first term is referred to as the total variance, the second term between group vari‑

ance and the third term within group variance. The total variance is a constant when data is fixed.

When data are classified into different groups, the latter two terms change. When dealing with

multivariate data, the data are standardized in each dimension, the variances are calculated in each

dimension separately, and the average variances over all dimensions are inputs for Eq.(5.9). For

example, there are data with 5 variables. The standardized data have 0 mean and standard devi‑

ation of 1 in every dimension. Then the total variance is calculated as the average variance over 5

variables. In this case, the total variance is always 1. When data are clustered, in one of the clusters,

the within group variances are 0.5, 0.6, 0.7, 0.8 and 0.9 for 5 dimensions respectively. The average

within group variance 0.7 is used in Eq.(5.9).

Table.5.2 shows the within group variance of the results obtained from the domain classifica‑

tion. The within group variance may not have a dramatic decrease because the variances are the

average over 26 variables. Some variables may not be very informative to help with the classifi‑

cation. Suppose an extreme case where half dimensions have within group variance of 0 and the
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Wsp 0.0 Wsp 0.25 Wsp 0.5 Wsp 0.75 Wsp 1.0

3 domains 0.913521 0.917744 0.851015 0.927525 0.982765
4 domains 0.882553 0.875699 0.798630 0.935520 0.933935
5 domains 0.762482 0.751216 0.846246 0.916249 0.919460

Table 5.2: The within group variance of the domains obtained from the classification.

Wsp 0.0 Wsp 0.25 Wsp 0.5 Wsp 0.75 Wsp 1.0

3 domains 1.080367 1.063830 0.660792 0.874103 0.675675
4 domains 1.269141 1.271895 1.219986 1.257460 0.850766
5 domains 1.281053 1.413696 1.570471 1.200598 1.454580

Table 5.3: The entropy measurements of domain sizes obtained from classification.

other half have within group variance of 1, the resulting univariate within group variance is 0.5, so

a 0.2 decrease of the average variance can be significant. When Wsp is around 0.5, the within group

variance is smaller which indicates the data are better grouped. From the table, the optimal choice

of hyper‑parameters can be 5 domains with Wsp equal to 0.25. The results can be improved if the

Wsp is finer tuned.

Another aspect to evaluate the performance of the classification is the domain size. The domain

sizes should be similar, but there can also be cases where some small domains are very different

from the rest. In general, similar size domains can represent well grouped data. To quantify this,

the entropy of the domain probabilities is measured. For K domains,

E = −
K∑

i=1
Pi log Pi i = 1, · · · , K (5.10)

where Pi is the proportion of data grouped into domain i. From the equation, if the entropy is large,

the domain sizes are similar. If the entropy is small, one of the domains dominates. Table.5.3 shows

the entropy value for domains in Fig.5.14. These values are consistent with the distribution in the

figure. 3 domains with Wsp equal to 0.5 leads to one large domain. The corresponding entropy is

only 0.66. When there are 5 domains and Wsp is equal to 0.5, the domains have similar size and

the entropy is 1.57. The entropy combined with the within group variance can provide information

about distinguishable groups with similar size. Since low within group variance and high entropy

value are preferred, simply dividing the values elementwisely in Table.5.2 by Table.5.3 gives the

desired measurement. The merged results is shown in Table.5.4, in which lower values represent

better classification results. From the table, choosing 5 domains with Wsp between 0.25 and 0.5 can

result in reasonable results.
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5. Ensemble clustering and classification

Wsp 0.0 Wsp 0.25 Wsp 0.5 Wsp 0.75 Wsp 1.0

3 domains 0.845565 0.862679 1.287870 1.061116 1.454494
4 domains 0.695394 0.688499 0.654622 0.743976 1.097758
5 domains 0.595200 0.531384 0.538849 0.763161 0.632113

Table 5.4: The merged measurement of the domains performance.

Al Si Mg

Al 1.000000 0.348090 0.046925
Si 0.348090 1.000000 0.004131
Mg 0.046925 0.004131 1.000000

Table 5.5: The correlation matrix of three variables.

5.5 Flow simulation

In this section, the effects of the spatial weight Wsp on geostatistical modeling are demonstrated.

The workflow includes simulating a gridded multivariate model in the region of Fig.5.11, relat‑

ing permeability models to multivariate models, and running flow simulation on the permeability

models. 100 realizations of multivariate models are simulated for each Wsp. Several realizations

are plotted for visual checking. The flow simulation is used to assess the results of 100 realizations.

If the multivariate models are different, the resulting permeability models are different, and this is

reflected in highly non‑linear sensitive response variables such as breakthrough time.

5.5.1 Data preparation

The first step is to choose the variables to be used for multivariate modeling. The variables should

be as uncorrelated as possible to assess the influence of different variables. The performance of

multivariate modeling is also affected by the number of available data. Since there are 618 data,

using 3 variables is appropriate. From Fig.5.15, there are some variables strongly correlated such

as Cr and As. Modeling these correlated variables do not provide much extra information, so Al, Si

andMg are chosen to be the variables for themultivariatemodeling. Table.5.5 shows the correlation

of the three variables. Mg is not correlated with Al and Si. Al and Si are barely correlated. Fig.5.16

shows the scatter plots of data. From the figure, the data are more clustered in low value regions

and generally skewed. There are no extreme outliers. Note the data are standardized, which is the

reason for the negative values. Although the negative value has no physical meaning, it does not

influence the flow simulation as the permeability models are generated from the relative values of

the data.

The next step is to obtain domain labels. The domain labels are generated using the procedure

demonstrated in Section 5.3. The clustering inputs are shown in Fig.5.17. To demonstrate the effect

of different spatial weight, the spatial weight is chosen to be 0.0 and 0.7. The reason for not choosing
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Figure 5.15: The correlation matrix of the data.

Figure 5.16: The 2D scatter plots of the multivariate data.

Wsp larger than 0.7 is that the full spatial continuity ignores the clustering inputs and the final

domains may have artificial errors. The number of domains is set to be 3. Fig.5.18 shows the results

of the domain classification and the location maps of the variables. As observed from the figure,

the domain distribution for Wsp = 0.0 is scattered as only multivariate continuity is considered.

Domain distribution of Wsp = 0.7 is more continuous as expected. Note the domain names can be

different in each case. For example, domain 1 in Wsp = 0.0 is referred to as domain 0 in Wsp = 0.7.

The data distributions are shown in the second row. For Al , high value data cluster in south east

region. For Si , the southern region has general higher value than the northern half. On the contrary,

Mg has higher values in the northern part.
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5. Ensemble clustering and classification

Fig.5.19 is the reflection of the domain labels in multivariate space, in which the distributions

are consistent with the statement of this chapter. Spatially scattered domains have continuous mul‑

tivariate clusters, while spatial continuous domains have scattered multivariate clusters. Fig.5.20

illustrates 3 realizations of the domainmodels for eachWsp. The simulated domain layouts are con‑

sistent with the domain labels. The grid size is 50 × 50. Data in Fig.5.18 are modeled independently

within each domain, and merged together based on their domain models in Fig.5.20. For example,

data labeled as domain 0 are used as inputs for multivariate modeling, and the results are only kept

where the grid cell is labeled 0.
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Figure 5.17: The cluster labels used as inputs for the domain classification.

5.5.2 Multivariate modeling

When conducting multivariate modeling, it is important to model the variables efficiently and re‑

tain their multivariate shape. Projection pursuit multivariate transform (PPMT) is used for this

purpose (Barnett, Manchuk, & Deutsch, 2014; Barnett, Manchuk, Deutsch, et al., 2016). The idea is

to use a series of methods to transform the multivariate data to an identical multi‑Gaussian shape,

model them independently and back‑transform, returning the original multivariate relations. The

transformation methods include linear decorrelation such as principal component analysis (Abdi

&Williams, 2010) andmin/max autocorrelation factors (Vargas‑Guzmán &Dimitrakopoulos, 2003).

These transformations start with sphered data (normal scored and with a correlation of 0). Correla‑
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Figure 5.18: The domain labels and the location map of the three variables.

Figure 5.19: The domain labels in multivariate space. Upper row for Wsp = 0.0. Lower row for Wsp = 0.7 .
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Figure 5.20: Categorical modeling of the domains with grid size 50 × 50.

tion only describes their linear relation, so the sphered data do not promise a multi‑Gaussian shape.

If data have multi‑Gaussian shape, when projected to any one 1D dimension, they should retain a

univariate Gaussian shape, and this 1D dimension does not have to be alignedwith the coordinates.

The PPMT method projects the sphered data to a 1D dimension that exhibits the most non‑

Gaussian shape currently and normal scores the data in that dimension. Then the multivariate data

is projected to the second most non‑Gaussian 1D dimension and normal scored again. The pro‑

cess is repeated iteratively until the multivariate data exhibits the desired level of multi‑Gaussian

shape. These 1D transforms are recorded for the back‑transformation. Fig.5.21 shows the plots of

the multivariate data after PPMT when Wsp = 0.7, and they are in multi‑Gaussian shapes. Note

the multivariate models are simulated independently in each domain, so the data are transformed

separately based on their domain label. With the data in multi‑Gaussian shape, the variables can

be modeled independently.

Since the data are modeled within each domain and each variable independently, there are 9

variograms inferred for each Wsp. As observed from Fig.5.22 and Fig.5.23, the variograms ranges

are longer for Al and Mg. When Wsp = 0.7, the variograms are relatively more stable, because

the variogram inference have more available pairs when domains are more continuous, The major

direction is 110°azimuth and the minor direction is 20°azimuth. When the resulting variograms are

not stable, omnidirectional search is used. Note the variograms are inferred from the normal score

transformed data, not the PPMT transformed data (refer to (Barnett et al., 2014)). Each variogram

generates 100 realizations of the univariate models. These univariate models are back‑transformed

to the original units first and then combined with the domain realizations in Fig.5.20, giving 100
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Figure 5.21: The scatter plots of the variables after PPMT. Each row represents the transformed multivariate
data in each domain.

realizations in original units for each variable.

The back‑transformed and domain merged data are shown in Fig.5.24. The simulated models

have similar data distribution as in Fig.5.18. For example, the high value region in the north of

the Mg datamap is preserved in the simulations. Although in both cases the simulated realizations

retain similar spatial distribution, it is worth noting that the realizations in Wsp = 0.0 is smoother

than those in Wsp = 0.7. This feature mainly comes from the conditioning data. As observed from

Fig.5.19, when Wsp = 0.0, within each domain the multivariate data share similar values. The

conditioning data sharing similar values result in smooth simulated results. Although the domain

simulations in Fig.5.20 are scattered, the abrupt changes mostly occur on the domain boundaries.

On the contrary, the domain realizations are more continuous in Wsp = 0.7, but the conditioning
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Al domain 0 Si domain 0 Mg domain 0

Al domain 1 Si domain 1 Mg domain 1

Al domain 2 Si domain 2 Mg domain 2

Figure 5.22: The variograms of variables in each domain for Wsp = 0.0.

Al domain 0 Si domain 0 Mg domain 0

Al domain 1 Si domain 1 Mg domain 1

Al domain 2 Si domain 2 Mg domain 2

Figure 5.23: The variograms of variables in each domain for Wsp = 0.7.
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data are multivariate scattered, so the resulting multivariate simulations are not as smooth. This

feature may be less obvious when the number of domains increases and the domain simulations

are more scattered, but their effect on the simulation smoothness may not be as dominant as the

conditioning data.
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Figure 5.24: One of the realizations of three variables after merging the domain labels. The upper row is for
Wsp = 0.0. The lower row is for Wsp = 0.7.

Fig.5.25 illustrates the scatter plots of the merged results. The top row is the original data plots

(618 data) , the middle row is the plots of one realization of Wsp = 0.0 results (2500 data), and

the bottom row is the plots of the one realization of Wsp = 0.7 results (2500 data). Both simulation

results retain the original multivariate shape of the data. The difference lies in the proportion of low

and high values. The Wsp = 0.0 results have a larger proportion of low values, while the Wsp = 0.7

results have a larger proportion of high values. This feature may come from the data merging. In

the upper row of Fig.5.20, high values are mostly in the blue domain. When merged in the last

step of modeling, most of the high values are clipped. While in the Wsp = 0.7 case, high values are

grouped into three domains and easier to be preserved in the merging step.

5.5.3 Flow Simulation

The observations of Fig.5.24 and Fig.5.25 are based on visual check of several realizations. Flow

simulation is used on all realizations, validating the previous observations. First, the multivariate

models are converted to univariate permeability models. Since the data are standardized, when

adding the variables together, they should contribute similarly to the sum. A new variable D is
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Figure 5.25: The scatter plots of the variables from original data and the realizations of Wsp = 0.0 and Wsp =
0.7.

defined to be related to permeability.

D(ui) = ZAl(ui) + ZSi(ui) − ZMg(ui) i = 1, · · · , N (5.11)

where ui represents the location i, N is the total available data. For the modeling case, N is equal

to 2500. Note the negative Mg is added, because the spatial distribution of Mg values is opposite of

Al and Si.

To demonstrate the different low and high values proportion observed in Fig.5.25, D(u) is gen‑

erated for each case (D0.0(u) and D0.7(u) for Wsp = 0.0 and Wsp = 0.7 respectively), and two

universal thresholds (Thigh and Tlow) are defined for converting D(u) to permeability. When D(u)

is above Thigh, the collocated permeability is set to 10 mD. When D(u) is below Tlow, the collocated
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permeability is set to 0.1 mD. When D(u) is in the middle, the collocated permeability is set to 1

mD. In this case, Thigh is chosen from the 0.8 quantile of the 100 realizations of D0.0(u) and D0.7(u)

(1.1), and Tlow is chosen from the of 0.2 quantile of the 100 realizations (‑1.45). Fig.5.26 shows 3

realizations for each Wsp. The realizations do not show significant difference as the multivariate

models are generated from the same conditioning data. The low and high value regions does not

vary significantly. When converted to permeability, two thresholds group the multivariate data

into three categories, making the difference less obvious. The difference between the two Wsp gen‑

erated permeability models needs to be examined through flow simulation. Note the proportion of

high, medium and low values are different in each realization.
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Figure 5.26: The realizations of permeability model using universal thresholds. The upper row for Wsp = 0.0.
The bottom row for Wsp = 0.7.

With the converted permeability models, a flow simulation can be established. The flow simu‑

lation is a simple constant head model, where the left margin has a hydraulic head of 10 m, and the

right margin has a hydraulic head of 0 m. The particles flow from left to right. Fig.5.27 shows one

realization of the flow paths. There are 100 particles generated for each realization and their break‑

through time to the right margin are recorded, which is determined by the proportion of high and

low values. Fig.5.28 shows the breakthrough times of the fast (P15) and slow (P85) particles. They

are controlled by the number of 10 mD cells and 0.1 mD cells respectively. In the left figure, when

Wsp = 0.7most particles arrive before 44 seconds, andwhenWsp = 0.0most particles arrive after 44

seconds . The faster breakthrough time indicates more high value (10 mD) cells in the permeability

models when Wsp = 0.7. In the right figure, when Wsp = 0.7, most breakthrough times are earlier

than 160 seconds, while when Wsp = 0.0, the majority of the breakthrough times range from 130 to
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200 seconds . In this case, the later breakthrough times indicate there are more low value cells in

the permeability models when Wsp = 0.0. The flow simulation results only demonstrate the effects

of different Wsp. We do not know which scenario is closer to the correct reference true values.

Since the permeability models are related to multivariate models, the flow simulation validates

the observations of themultivariate scatter plots. More spatial continuity simulates a higher propor‑

tion of high values, and more multivariate continuity simulates a higher proportion of low values.

A Wsp value considering both spatial and multivariate continuity should give intermediate results.

Most of the geostatistical data share similar multivariate shape as in the real data used here – most

data are skewed in low value regions with some high value outliers existing, so the observations

can be generalized to other geostatistical data.

Figure 5.27: One realization of the flow path. The left margin has a hydraulic head of 10 m. The right margin
has a hydraulic head of 0 m.

5.6 Conclusion

This chapter demonstrates the trade‑off betweenmultivariate and spatial continuity. A novel work‑

flow combining ensemble clustering and classification accommodates the issue. For this dataset,

ensemble clustering shows better performance than traditional methods through silhouette coeffi‑

cient, and clusters multivariate data which are used as inputs for classification. An objective func‑

92



5. Ensemble clustering and classification

Figure 5.28: The histograms of the arrival time for quantile 0.15 (left) and quantile 0.85 (right) particles of 100
realizations (permeability converted from universal thresholds case). Blue histograms represent Wsp = 0.0
breakthrough times and orange histograms represent Wsp = 0.7 breakthrough times.

tion for classification is formulated. The algorithm takes spatial weight and the number of domains

as hyper‑parameters, and can use multiple clustering labels as inputs. With higher spatial weight,

classified spatial domains are more continuous. The variance test validates the effectiveness of the

classification method on the demonstrated data by showing the decreased within group variance.

Combined with spatial entropy, the variance test also provides a tool to choose the appropriate

hyper‑parameters. Geostatistical modeling and flow simulation demonstrate the effect of spatial

weight in a practical way. PPMT provides an efficient way to simulate multivariate models in‑

dependently. The two universal thersholds convert the back‑transformed multivariate models to

univariate permeability. The flow simulation model has constant heads on two edges. Histograms

of the early arrival and late arrival particles validate the observations of the scatter plots. For this

dataset, when spatial weight is close to zero, higher proportion of low values are simulated. When

spatial weight is close to 1, higher proportion of high values are simulated. A reasonable interme‑

diate Wsp should give reasonable spatial and multivariate continuity.
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CHAPTER 6

CONCLUSION
Exploratory data analysis (EDA) constitutes an early and important step in geostatistical modeling.

Missing data, below detection limit (BDL) data can cause concerns in data transformation and fur‑

ther analysis. Statistical tools examine if the missingness is systematic by comparing the subsets

of the collocated variables. If the two subsets are significantly different, the missingness may be

systematic. Bivariate analysis on BDL data reveals if the occurrence of BDL spikes are dependent.

Expected distribution is comparedwith the observed distribution using Kolmogorov–Smirnov (KS)

test. The more different the two distributions are, the more dependent the BDL occurrence can be.

Different transformations of data with spikes can lead to various cluster analysis results. Four suit‑

able transformations are combinedwith theworkflow to find clusters in real data. The inconsistency

between multivariate and spatial continuity is addressed by a novel classification method classifies

spatial data based on ensemble clustering results.

6.1 Contributions

Missing data come frommultiple sources. Even though themissing data are in a few variables, they

can cause data locations to be left out in techniques such as principal component analysis (PCA).

Chapter 2 uses a data map and combines a permutation test with a KS test to examine the gen‑

eral information of missing data and systematic missingness (missing at random (MAR)) existence

respectively. For the data map, it shows the number of missing data and the number of missing

variables. Some variables and data locations may be dropped for a complete dataset. The optimal

dataset retaining the most data after dropping is highlighted in the data map. For the combined sta‑

tistical tools, comparing the subsets of non‑missing variables conditioning to the missing locations

in missing variables helps understand systematic missingness. Combined KS test and permutation

test generates a universal measurement p for all variables as an indication of the systematic missing‑

ness. The relevance between variables and the missing data size are also taken into consideration

for showing the level of systematic missingness.

BDLdata form spikes in the data distribution, which causes problemswhen being quantile trans‑

formed. Chapter 3 conducts a univariate and bivariate analysis on BDL data. Univariate analysis

provides information about the univariate spikes distributions. It generates a statistic table focus‑

ing on the characteristics of the BDL data. Different measurements examine the different types of

spikiness in data. Bivariate method provides tools to examine the denpendence of BDL occurrence

between variables. It compares the observed distribution with the expected distribution assum‑
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ing independence of BDL occurrences. The difference is measured using Kullback–Leibler (KL)

test. The more different two distributions are, the more dependent of the BDL occurrence in two

variables. The measurements of KL test are scaled by the theoretical maximum D, amending the

problem of too few combinations of variables when using the absolute D. The scaled D finds 20

combinations of variables in which the BDL occurrences are dependent.

Cluster analysis on data with BDL spikes can be difficult. Different clustering methods can

generate different results. Chapter 4 provides methods to handle BDL data in cluster analysis and

an algorithm to visually validate the multivariate clustering results. They include a workflow for

finding the optimal number of clusters, and comparing the performance of K‑means and Gaussian

mixture model (GMM) on synthetic data. The compatibilities of different transformations with the

workflow and the clustering methods are inspected. Results from synthetic data show k‑means

is an appropriate clustering method to deal with data with large spikes. Suitable transformations

inferred from synthetic data include linear transformation, univariate transformation with spikes

spread and preserved, and Gaussian transformation with spikes spread. The appropriate combina‑

tions of clustering methods and transformations reveal the number of clusters in the real multivari‑

ate data. To validate the results, an algorithm is developed to find a 2D plane that can show the

clusters, and the projected multivariate data on such a plane reveal 2 clusters in real data.

Cluster analysis only ensures the continuity in spatial data. The clustering labels are scattered

on spatial data. There is a clear trade‑off between the continuity between spatial and multivari‑

ate continuity. Chapter 5 provides a novel classification tool to find reasonable continuity in both

multivaraite and spatial domains. It first examines the better performance of ensemble clustering,

which gives more continuous multivariate clusters than individual clustering methods when the

spatial continuities are similar. A novel classification method is developed to find optimal domains

that ensure reasonable continuity in both multivariate and spatial spaces. Two hyper‑parameters

include the spatial weight and the number of domains. With higher spatial weight, the classified

domains have higher spatial continuity. The proposed classification method also takes multiple

clustering labels as inputs, which avoids the problem of choosing the best clustering results. The

effect of spatial weight on geostatistic modeling is exmained through flow simulation. The results

show in the demonstrated real dataset, high spatial weight generate more high values in modeling,

and low spatial weight generates more low values in modeling.

6.2 Limitations and Future Work

Although the tools in this thesis cover multiple aspects of geostatistical EDA, there is future work.

The multivariate analysis in BDL only considers the combinations of two variables. It is possible

that more dependence of BDL occurrence can be revealed in higher dimensions. This brings up

another topic worth investigation. The BDL data in each dimension divide that dimension into 2
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parts. When the number of dimensions increase, the subspaces divided by BDL data increase expo‑

nentially. An efficient way to calculate the dependency of BDL occurrence in different subspaces

can be of great interest. PCA is another common approach in EDA. BDL spikes can change the

original variance in data, which causes problems in calculating eigenvalues. Also, the subspace

divided by the BDL data can cause problems for calculating representative eigenvectors in PCA.

Investigating the influences of BDL spikes in PCA and different transformations to restore correct

PCA results can be the future work that helps with further analysis. The novel classification of

clustering labels gives practitioners a tool to choose the desired local continuity, but the algorithm

becomes unstable when the spatial weight is close to 1, because less local information is used. A

method to classify spatial domains considering geological settings is very important. The spatial

complexity of geological boundaries makes most of the clustering methods fail to group domains

correctly. There can be two general approaches to tackle the problem, converting the geological

boundaries into quantitative measurements that are compatible with modern clustering methods,

or setting constraints on the proposed classification, whichmakes the full spatial continuity close to

preset domain distributions. The preset domains could come from external geological knowledge.
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