Tile Embeddings: A General Representation for
Procedural Level Generation via Machine Learning

by

Mrunal Sunil Jadhav

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Mrunal Sunil Jadhav, 2022

Abstract

Procedural Level Generation via Machine Learning (PLGML) refers to the
application of machine learning techniques to the automated generation of
game levels. PLGML researchers have investigated different level generation
techniques to generate new game levels matching the style of a training cor-
pus. While the PLGML community has made notable progress in designing
impressive level generators, we are still far from achieving the holy grail of
generalizability. Generalizability refers to a level generators’ ability to gen-
erate a previously unseen, new game level based on the training data used
to build the model. A primary reason for this is the limited availability of
PLGML datasets and inconsistent level representation practices across differ-
ent games. Traditionally employed PLGML datasets are hand-annotated by
domain experts and fan communities. The process of curating clean datasets
is time-consuming. Hence, even though many video games exist, select few
have received a disproportionate amount of research attention.

Towards this goal of generalizability, we propose a representation learning
approach for game level design. We introduce tile embeddings, a continuous,
unified affordance-rich representation of 2D games. This thesis covers an initial
implementation of tile embeddings and their further modification to handle the
particular case of skewed tile distribution observed in games like Super Mario
Bros.. We then introduce a novel, two-step level generation process that can
leverage the flexibility of a discrete representation with the expressivity of

continuous tile embeddings. We evaluate our tile embedding representation

1

on its ability to predict affordances for unannotated tiles and to serve as a
PLGML representation for annotated games. We perform an ablation study
for level generation of Super Mario Bros., and further show the ability to
apply our approach to level generation for unannotated games. Our outputs
cover generative spaces matching the distribution of the original training data,
thus demonstrating the potential of tile embeddings for PLGML applications
for any tile-based 2D games. The presented thesis attempts to address the
core challenges of PLGML around representation and dataset availability. We
believe with more work in this direction, our approach has the power to open

new horizons for PLGML research.

1l

Preface

The research presented in this thesis is my original work, done under the
supervision of Dr. Matthew Guzdial at the University of Alberta. Dr. Guzdial
played an instrumental role in shaping the writing of the presented thesis.
Parts of this work have been published with him as the co-author. They are

as follows:

e Chapter 4: Jadhav, M., Guzdial, M. (2021, October). Tile embed-
ding: a general representation for level generation. In Proceedings of
the AAATI Conference on Artificial Intelligence and Interactive Digital
Entertainment (Vol. 17, No. 1, pp. 34-41).

e Chapter 5: Jadhav, M., Guzdial, M. (2022). Clustering-based Tile Em-
bedding (CTE): A General Representation for Level Design with Skewed
Tile Distributions. arXiv preprint arXiv:2210.12789 (Presented at Ex-
perimental Al in Games Workshop held at the Eighteenth AAAT Con-
ference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE-22)).

v

To my brother, my inspiration and my true north.

In god we trust; all others must bring data.

— W. Edwards, Deming.

vi

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Matthew
Guzdial for his constant guidance throughout my degree. He is kind, patient
and wears an invisible superhero cape every day. He taught me everything
I know about research, from approaching a problem to formulating hypothe-
ses, designing experiments and documenting results. Without his insightful
discussions and expertise, this thesis would not have been possible. He in-
spired me to think outside the box and has always supported me in pursuing
diverse projects. His tireless efforts in providing valuable feedback helped me
develop my academic writing skills. This was my first research experience,
and he has been a great mentor, always motivating me to be a better student
and researcher. 1 am forever grateful to him. I would also like to thank all
the members of the GRAIL lab. Our weekly lab meetings provided insightful
discussions about current academia, industry, time and workload organization.

I would like to extend my sincere thanks to my committee members Prof.
Denilson Barbosa and Prof. Levi Lelis, for taking the time to read my thesis
and for generously providing their knowledge and expertise through the final
phase of my master’s.

I would like to acknowledge CIFAR, Alberta Machine Intelligence Institute
(Amii), and the University of Alberta for their generous financial support
throughout my graduate studies.

I am deeply indebted to my mom and dad for teaching me the right things
and for all their care, sacrifices, and concern. This thesis stands as a tes-
tament to their unfailing love. No amount of words is enough to thank my
grandparents, who always encouraged my education and raised me with love.

An enormous thanks to my brother, Pritish, who holds a big place in my heart.

vii

I wouldn’t be the person I am today without the drive, inspiration and support
he has given me. A very special thanks to my sister-in-law (read as a sister),
Anushree, for her heart-warming kindness. Thank you for always caring about
me and my work and being genuinely wonderful. I would also like to thank my
niece, Ira. Her innocence makes me feel like a little kid again. Thank you for
being my stress-buster, my happiness and my all-time cuddle. I am genuinely
grateful to my best friend, Soham, who has been my source of sunny optimism
through this journey. Thank you for all the love and strength.

I wanted to recognize my extended family, the Suryawanshi’s: Anjali,
Arvind, and Aradhya and the Patankar’s: Mukta, Sunil, and PG. Their un-
wavering faith in me has been a true asset. I am also grateful to my amazing
family in Canada: Vihaan, Anvay, Ankush, Apurva, Swapnali and Manoj for
their love and care.

I am thankful to have friends who have been there for me through all the
ups and downs, always cheering me on: Aditya, Ketan, Nidhi, Pratik, and

Rohan. Thanks for all of the laughs, advice, and memories throughout time.

viil

Contents

1 Introduction 1
2 Background Material 6
2.1 Artificial Neural Networks 7
2.2 Autoencoders 10
2.2.1 Undercomplete Autoencoders 11
2.3 Recurrent Neural Network 12
2.3.1 Long Short Term Memory Network 13
24 Clustering 16
2.4.1 Gaussian Mixture Models 16

2.4.2 Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) 18
2.5 Common Video Game Terminology 20
2.5.1 Platformer Games 20
25.2 Level Design. 21
3 Literature Review 24
3.1 Autoencoders 24
3.2 Level Representation 25
3.3 Embedding Vectors 26
4 Tile Embedding: Initial Approach 28
4.1 Data Preparation 28
4.1.1 Local Pixel Context 29
4.1.2 Semantic Context and Unified Affordances 30
4.2 Model Architecture 30
4.3 Evaluation 32
4.3.1 Cross-fold Affordances Analysis 32
4.3.2 LSTM for Level Generation-Annotated Game 34
4.3.3 LSTM for Level Generation- Unannotated Game . . . 35
4.4 Results 36
4.4.1 Cross-fold Affordances Analysis 36
442 LSTM for Level Generation-Annotated Game 38
4.4.3 LSTM for Level Generation-Unannotated Game 39
4.5 Discussion and Takeaways 40

5 Clustering-based Tile Embedding: Dealing with games having

skewed tile distribution 42
5.1 CTE: Cluster-based Tile Embeddings 42
5.1.1 Incorporating Edge Information 44
5.1.2 Introducing Clustering Loss 45
5.2 Level Generation for Super Mario Bros. 46
5.2.1 The Curious Case of SMB Level Generation: 46

X

5.2.2 Two Step Level Generation
5.3 Experiments
5.3.1 Level Generation for SMB
5.3.2 Level Generation for Unseen Games

6 Conclusion
6.1 Limitations
6.2 Future Work
6.3 Takeaways
References

Appendix A Additional Outputs and Discussions

List of Tables

4.1
4.2
5.1

6.1

Al

A2

Results of evaluation metrics for predicting affordances on un-
seen tileso
Results of alpha evaluation

Comparative study of SMB generators based on PCGML tile
metrics. Bold indicates mean values nearest and [talic indicates
values farthest from the original mean dataset values. Asterisks
indicate theoretical values.

Evaluating clustering and translation modules of our two-step
level generation pipeline.

The edit distances observed between the generated cluster rep-
resentations and the training and test data suggests that the
model is not overfitting.
Median percentages of top five tiles occurring in a level. This
table illustrates skewed tile distribution in Super Mario Bros

and comparatively balanced tile distribution in lode runner tiles.

x1

36
37

49

o6

66

List of Figures

—_
DO =

bo o
RO =

2.3

2.4

2.5

Do
o

2.8

el
INGGUN NI

i
o

Example of a level from the game: Super Mario Bros
Example of generated SMB level with level generator trained
on tile embeddings 0oL

Organization of layers in a simple Neural Network.
Peeking into node hj; of the neural network shown in Figure
2.1. The neuron computes preactivation z as the summation of
inputs multiplied by the weights. The bias b is also added to the
preactivation and then the activation function f is applied to
compute the final activation a which is passed on to the neurons
in the next layer. L.
Architecture of an undercomplete autoencoder. An encoder
takes in a visual representation of a Goomba and maps it to a
compressed embedding vector. The decoder then reconstructs
the original image of the Goomba from the compressed repre-
sentation. L.
An example of a folded Recurrent Neural Network on the left
and its unfolded version on the right. This figure visualises how
parameters of an RNN network are shared across time. . .

A detailed architecture of a Long Short Term Memory cell il-
lustrating how an input gate i;, a forget gate f; and an output
gate o; are computed based on the information in the current
input x;, the previous cell state ¢;_; and hidden state h;_;.

Unfolded LSTM Network along the input sequence of length' n.

The figure shows three clusters (K = 3) stemming from a mix-
ture of three Gaussians with different mean and standard devi-
ation values.

12

13

14
15

17

A demonstration of DBSCAN Clustering with eps: € and min_samples:

4 to group points in two clusters. The two clusters are indicated
by two colours: Green and Purple. A deeper tone of each colour

indicates core points and a lighter tone indicates border points.

(a) SMB level Image (b) Corresponding VGLC representation
(¢) Proposed continuous tile embedding representation

Neighbourhood Context for Tiles.
Network Architecture.
t-SNE Visualization of Embedding Space.
(a) Level generated for Lode Runner by training LSTM on tile
embeddings. (b) Level generated for Lode Runner by train-
ing LSTM on VGLC tile character representation. (c) Kernel
Density Estimation with Linearity and Leniency
Levels Generated for Bubble Bobble
Median Frequency of a tile in Lode Runner vs SMB levels.

xii

18

22
29

30
33

39
41

5.1

5.2

5.3

5.4
Al

A2

A3

SMB LSTM level generator outputs with: (a) VGLC represen-
tation (b) original tile embedding (c) CTE. We also include good
(d) and bad (e) examples for our two-step CTE level generation
PrOCESS. .« v v v v e i e
A complete system diagram. We train an autoencoder on the
RGB, affordance, and edge information using a cluster-based
loss to learn our Cluster-based Tile Embedding (CTE). We then
discretize this representation via DBSCAN, and train an LSTM
level generator on this discretized CTE. We train a translation
model (also an LSTM) to convert back to CTE from the discrete
representation output by the level generator.
Expressive range analysis for the unseen game: Bugs Bunny
Crazy Castle.
Expressive range analysis for the unseen game: Genghis Khan.

Figure (a) shows a test SMB dataset level and Figure (b) shows
its translated output obtained using the second step of our two-
step generator. The differences between the two are highlighted
in yellow. To get this translated version we convert the dataset
levels of a game to: 1) their cluster representation using the
DBSCAN and 2) their CTE representation using our newly
trained autoencoder. We use these cluster representation and
their correspoding CTE representation of dataset levels to train
the translation model as discussed in the two-step level gener-
ation process. Figure (c¢) and (d) show more examples of SMB
level generation output with the two-step level generator trained
on our CTE representation.
Level Generation for Bugs Bunny Crazy Castle : (a) Test dataset
level (left) and its corresponding translated output (right) with
differences highlighted in yellow (b) Examples of good gener-
ation output (c) Examples of bad generation output. Unlike
good examples as in shown in (b), bad examples in (c¢) show
the presence of unreachable level sections due to the lack of
portals/doors, and inconsistency in level structure.
Level Generation for Genghis Khan : (a) Test dataset level (left)
and its corresponding translated output (right) with differences
highlighted in red (b) Example of good generation output(c) Ex-
ample of bad generation output. The dataset levels of Genghis
Khan only have one pair of town and castle tiles each whereas
examples of bad generation (c), have multiple pairs. The bad
levels also contain randomly placed mountain and forest tiles,
instead of the clustered appearance found in (b) and in the
original dataset.

xiil

43

44

53
54

67

68

Chapter 1

Introduction

Procedural Content Generation via Machine Learning (PCGML) involves train-
ing machine learning models on existing game data to generate new content
such as levels, characters, stories, and music [59]. A significant amount of
PCGML research has been devoted to generating game levels with limited
human interaction. This discipline of generating levels by employing Machine
Learning algorithms is referred to as Procedural Level Generation via Machine
Learning (PLGML). A level is a space the player travels through, interacting
with objects like enemies and collectibles. For instance, Figure 1.1 shows a
level of Super Mario Bros., a platformer game developed by the Nintendo
Entertainment System (NES). During gameplay, the player i.e., Mario, races
through the level, collects coins, and defeats enemies to reach the end of level.
Unlike image generation using machine learning, PLGML models cannot train
only on the pixel representations of game levels. Levels obey structural and
functional constraints to ensure playability. As seen in the Figure 1.1, a con-
nected series of solid platforms should be present for Mario to have a path
to run on till the end, and collectibles and enemies are placed on the player’s
potential paths to add challenge to the game. A secondary representation is
therefore needed to capture the behaviour of game objects in addition to their
pixel representation.

A valuable contribution to the PLGML community is the Video Game
Level Corpus (VGLC) [61] which provides annotated training corpora for level

generation research. A rich amount of PLGML literature has leveraged this

00000000 &

Figure 1.1: Example of a level from the game: Super Mario Bros

representation to generate levels using various machine learning algorithms
such as autoencoders [43], [44], GANs [14], [36], and LSTMs [54], [60]. The
VGLC maps the pixel representation of game objects to a set of characters
called tiles. Each tile is associated with a set of in-game affordances. Af-
fordances convey the conceptual idea of the object and capture the possible
interactions of the player with the object [4]. For instance, the VGLC represen-
tation associates a Goomba £ in Super Mario Bros(SMB) with the affordances
Enemy, Damaging, Hazard, Moving [61].

These representations are game-specific and a substantial amount of man-
ual effort goes into curating them. Consider the problem of training a PLGML
model for generating levels for the game Bubble Bobble. Since no anno-
tated representation of its levels exists, we would have to parse the levels
ourselves. This typically involves a series of tasks including processing images
with OpenCV, human editing, extracting a reduced set of representative tiles,
and tagging them with appropriate affordances based on their behaviour [61].
This represents a significant amount of work.

While each tile character is mapped to a set of affordances, the affordances
are not directly included in the representation. For instance, the Goomba &
is represented with the character ‘£ in the VGLC representation, and the
affordance-mapping information is present in a separate JSON file. Hence,
at their core, the level generation tasks that leverage these representations
address problems as a character generation process. Appropriate visual recon-
struction also impacts the choice of tiles to include. This enforces the require-
ment of position-specific tags in the affordance set of the tile/character. For
instance, in SMB there are repeated pipe objects of different heights. They
are often represented with four different tiles, ‘[, ‘|’, ‘<’, ‘>’ representing

the bottom-left I, bottom-right B, top-left and top-right B of a pipe re-

2

spectively. In other instances, PLGML practitioners must author secondary
processes to visualize levels, such as mapping different characters/tiles to dif-
ferent images depending on their y-position [61]. The current, traditionally
drawn VGLC level representation has a number of drawbacks, requiring sub-
stantial human effort when collecting data, game-specific representations, and
extra processing to visualize generated levels.

This thesis addresses the core challenge of data representation in PLGML.
We draw inspiration from word embeddings [34] and introduce tile embeddings,
which integrate visual and semantic information of tiles. Tile embeddings are
a domain-independent, affordance-rich representation of game levels, reducing
the reliance on manual translations and domain expertise. Studying the appli-
cation of the tile embedding representation to level generation demonstrated
that they struggled to generate levels for games with imbalanced tile distri-
butions. For example, as seen in Figure 1.1 of Super Mario Bros. (SMB), a
majority of the tiles in the level represent the background tiles. Training a
level generator on the tile embedding representation of SMB levels resulted in
empty levels as illustrated in Figure 1.2. This is a common problem in PLGML

when the process of sampling new levels is greedy and biased towards the tile

with the highest probability (in the case of SMB: empty sky tiles) [52].

Figure 1.2: Example of generated SMB level with level generator trained on
tile embeddings

Traditional PLGML approaches have taken advantage of the discrete na-
ture of the VGLC representation to alleviate the issue of skewed tile distri-
butions. For instance, a level generator can be trained on the VGLC or any
discrete representation such that given a sequence of previous tiles in a level,
it predicts a distribution over the likelihood of possible next tiles. When

generating a new level, tiles at each position can be sampled from this proba-

3

bility distribution [60]. This sampling process solves the problem of producing
empty levels encountered with a greedy tile selection strategy. In order to
enable sampling in our level generator, a discrete representation is learned by
clustering learned tile embeddings. Thus the presented work leverages the
benefits of learning simultaneous discrete and continuous representations to
improve level generation for games with skewed tile distributions. This al-
lows us to approximate the benefits of a discrete representation like the VGLC
without the cost of hand-processing training data.

Our presented work seeks to answer following research questions:

e [s it possible to automate the extraction of level design data and build

large corpora for PLGML research?

e How should a game level be represented in an interaction-aware and

domain-independent way?

e Given a domain-independent representation of a game level, would it be
possible to train one level generator on level representations of different

games?

In relation to these questions, our main contributions through this thesis are

as follows:

e Introducing tile embeddings as a general representation for Procedural

Level Generation via Machine Learning (PLGML).

e Applying tile embeddings to approximate the affordances of tiles of unan-

notated games.

e Introducing a novel two-step level generation pipeline based on discrete

and continuous tile embedding representation.

e Employing the presented level representation and generation approach
to generate levels of annotated games and studying the quality of its
outputs in comparison to the outputs of an LSTM trained on the VGLC

representation.

e Demonstrating the ability of our approach to generate levels for games

with only visual information available.

Chapter 2

Background Material

This chapter introduces readers to the concepts necessary to understand the
presented thesis. The rest of the chapter is organized as follows: We lay the
groundwork by discussing the basics of Artificial Neural Networks in Section
2.1, followed by an introduction to autoencoders in Section 2.2. An autoen-
coder is a feedforward unsupervised algorithm which we employ for learning
representations of game level design. Section 2.3 describes the Recurrent Neu-
ral Network (RNN), which is an autoregressive neural network commonly used
for generative language modelling. We then discuss the Long Short Term Mem-
ory (LSTM) RNN, a special type of RNN that forms the basis for our level
generation model.

In Section 2.4, we cover different clustering techniques and how they can
be employed to detect groupings in data. We particularly discuss two cluster-
ing algorithms: Gaussian Mixture Models (GMM) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) in detail along with their
advantages. These techniques are relevant to our work as we use them in
designing a novel loss function for training our autoencoder and to discretize
the learned continuous representation of a game level. In Section 2.5, we de-
fine common terminologies related to video games and then briefly introduce a

well-known representation in PCGML: the Video Game Level Corpus (VGLC).

2.1 Artificial Neural Networks

Artificial Neural Networks, more commonly referred to as Neural Networks,
are a fundamental building block of many deep learning algorithms. They are
a simplified approximation of the human brain and its ability to learn from
an experience by modifying itself. A neural network consists of connections
of nodes organized into multiple layers. Figure 2.1, visualizes a simple neural
network. We now walk through the presented neural network from left to

right, explaining three categories of neural network layers:

Input Layer Hidden Layers Output
S Layer

Figure 2.1: Organization of layers in a simple Neural Network.

e The Input Layer at the beginning of the workflow accepts all the data
into the network for subsequent processing. This is followed by one or

more hidden layers.

e Hidden layers are responsible for applying mathematical functions and
data transformations on the input data. A hidden layer takes the input
from the previous layer, performs computations and feeds the output
to the next layer. With the number of hidden layers, the complexity

of the neural networks increases. As we progress into the network, the
7

hidden layer tends to detect more abstract features by combining the
features of the previous layers. For example, if we consider the task of
face recognition, the initial layers might detect edges or parts of the face
like eyes, nose, and ears. In contrast, the later layers might detect the

overall complexion.

e The Output Layer is the last layer of the network that produces the
prediction for the intended task. The number of nodes in the output
layer depends on the problem we are trying to solve. For instance, in
a classification problem, the number of nodes in the output layer will

equal the number of classes present in the dataset.

Each layer is comprised of neurons which are the basic computational units of
a neural network. The inputs are connected to each neuron by weights. Each
neuron calculates the weighted sum of input features and passes it through
an activation function as shown in Figure 2.2. The activation function of a

neuron can be mathematically expressed as:

y = f(z$z * w; + b) (2.1)

where,

e 1; i€ 1,2,....,n corresponds to the input feature vector.

e w; is the weight associated with the input feature x;. Weights control

the impact an input value will have on the output.
e b is the bias. Bias is used to offset the result of the activation function.

e f is the activation function. The output of the activation function is
the signal a neuron will pass on to later layers of the neural network,
in response to a particular input. Activation functions are typically
non-linear. Prominent examples of activation functions include Sigmoud,

Tanh, ReL U, and Leaky ReLU.

T\ Activation
Function

— a

Output

Figure 2.2: Peeking into node hy; of the neural network shown in Figure 2.1.
The neuron computes preactivation z as the summation of inputs multiplied
by the weights. The bias b is also added to the preactivation and then the
activation function f is applied to compute the final activation a which is
passed on to the neurons in the next layer.

Processing information from the input layer through the hidden layers to cal-
culate the output in the final layer is referred to as Forward Propagation in
a neural network. As evident from the equation above, weights and biases
play a crucial role in calculating the output. For the model performance to
improve, the predicted output should grow closer to the optimal solution. A
Loss Function is a correctional function for the neural network. It is designed
to calculate how far the predictions are from the optimal solution, i.e., the
error. Thus, learning in neural networks is defined as an optimization problem
of minimizing the error by updating the values of weights and biases.
Backpropagation in a neural network is responsible for distributing the total
error across the network by propagating it from the output layer through the
hidden layers till it reaches the input layer. It calculates a partial derivative
of the loss function with respect to network parameters i.e., the weights and
biases. This derivative is called a gradient. Each weight and bias of the
network is updated based on their computed gradient. Commonly employed

backpropagation algorithms are Stochastic Gradient Descent (SGD), Adam,
9

and Adagrad.
Based on the architecture and connections between layers, two types of

neural networks are relevant to our thesis:

1. Feed Forward Neural Network: Feed-forward neural networks allow the
information to flow in a single direction. The output of the previous
layer forms the input to the next layer. They are mostly used for pattern

recognition, classification and regression problems.

2. Recurrent Neural Network: These types of neural networks are dynamic
and are widely applied for time-series tasks that require handling tem-
poral data such as stock prediction [46], language translation [62] and
image captioning [66]. They distinguish themselves from feed-forward
neural networks by their concept of ‘memory’. The decisions in recur-
rent neural networks are based not only on the current input but also on

the previous output.

Neural networks form the backbone of our representation learning and level
generation network architectures. We elaborate on the particular neural net-

works our work relies on in the next following sections.

2.2 Autoencoders

An Autoencoder is a feed-forward neural network trained to reconstruct its
original input in order to learn a useful abstract representation. It consists of
an encoder network that learns to map an n-dimensional input to an abstract
p-dimensional latent space. An encoder A can be mathematically represented
with the function: A : R — RP. The latent space is also referred to as
an embedding space and the learned representation is called an embedding
vector. The embedding vector is a real-valued continuous vector containing all
the important information needed to represent the original data. The encoder
network is followed by a decoder network that learns to take the embedding
vector code and reconstruct the original input. It can be represented with

function B: B : R? — R" To summarize, an autoencoder can be represented
10

as:

argming g E[6(xz, B(A(x))] (2.2)

where [E is the expectation over the loss 9.

The ability to learn general representations of data with little or no su-
pervision, which can then be effectively used to develop machine learning ap-
plications, makes autoencoders a suitable tool for representation learning. To
achieve a valuable representation, it is important to prevent an autoencoder
from learning an identity function that simply copies the input to the output.
To this effect, an autoencoder can be optimized using additional constraints.
These constraints can be imposed on the architecture (Undercomplete Autoen-
coders [15]), the input (Denoising Autoencoders [65]) or by using a regularized
loss function (Sparse Autoencoders [38]). In this thesis, we train an under-
complete autoencoder with a tailored loss function to learn our embedding

representation.

2.2.1 Undercomplete Autoencoders

An undercomplete autoencoder compresses the input in a hidden vector rep-
resentation to be smaller than dimension of its input. By forcing the input
through a bottleneck as illustrated in Figure 2.3, an undercomplete autoen-
coder can capture the most significant features of the training data.

An autoencoder is primarily trained to minimize the reconstruction loss
which measures the distance between the original input and decoder output.
The reconstruction loss depends on the representation of input-output pairs.
For instance, when working with continuous data like images, the reconstruc-
tion loss commonly employed is Mean Squared Error [13]. For discrete data,
categorical losses such as Binary Cross Entropy [7] or Categorical Cross En-
tropy [1] can be used. While training an autoencoder with reconstruction loss
is common for many applications, their loss function can also be customized to
a desired learning goal such as to learn a valuable representation for clustering

applications .

11

Encoder Decoder

Compressed
embedding vector

A
AN
/ H
F H
|
ﬁ \ | ﬁ

(16 x 16 x 3) Reconstructed
RGB pixel input A (16x 16 x 3)
i output

Figure 2.3: Architecture of an undercomplete autoencoder. An encoder takes
in a visual representation of a Goomba and maps it to a compressed embedding
vector. The decoder then reconstructs the original image of the Goomba from
the compressed representation.

2.3 Recurrent Neural Network

Feed-forward neural networks assume each input to be independent of others
and that the decisions are based only on the current input. Due to this assump-
tion, standard feed-forward neural networks show limited ability in modelling
sequential data where the data points exhibit dependency between the obser-
vations. Examples of such data include text streams, audio and video clips,
and time-series data like stock prices and weather. An RNN is a type of neural
network specially designed to handle sequential information. It approximates
the concept of memory by sharing the weights of hidden layers and allowing
them to refer back to earlier input.

Figure 2.4 shows the architecture of an RNN where,

e W, are the weights for the connection from the input layer to the hidden

layer.

o Wy, are the weights for the connection from the hidden layer to the

output layer.

e IV are the weights for the connection from the hidden layer to the hidden

layer (memory).
12

Y Yt-1 Yt Yi+1

F Y A A
Why Why Why Iwhy
. W W
a——» _.') w » W > L [,
r 4 Y A
Wixh Wxh Wxh Wxh
X Xt-1 Xt Xt+1

Figure 2.4: An example of a folded Recurrent Neural Network on the left and
its unfolded version on the right. This figure visualises how parameters of an
RNN network are shared across time.

e ¢ is the activation of the layer.

To train an RNN, we update its network parameters by computing their gra-
dient. The gradient flows backwards across the timesteps. This algorithm is
called Backpropagation Through Time (BPTT) which computes the gradient
at any given time by summing the gradient errors over subsequent timesteps.
The number of timesteps in an RNN increases with an increase in sequence
length. Therefore for long sequences, the multiplicative term of the gradient
dominates the backpropagation. Naturally, the gradient either explodes or
vanishes which makes it difficult to train an RNN on long sequences.

The problem of exploding gradients in an RNN can be addressed by em-
ploying gradient clipping or by using different weight initializations. Similarly,
two RNN variants have been designed to deal with the issue of vanishing gra-

dients 1) Long Short Term Memory RNN [22] and 2) Gated Recurrent Unit

[3].
2.3.1 Long Short Term Memory Network

LSTMs are a type of RNN designed to address the problem of vanishing gra-
dients by extending memory. They are well-suited for handling long-term
dependencies in sequential data. Similar to a vanilla RNN, an LSTM RNN
is also composed of recurrent units. However, there is a difference in the op-

erations performed inside the units and in the connections between them. In
13

addition to the existing hidden state as seen in the RNN, an LSTM maintains
a cell state. The cell state acts as long-term memory. An LSTM unit computes
the hidden state and the cell state using a gated mechanism. It is comprised of
three gates: a forget gate, an input gate, and an output gate. By using these
gates, a LSTM unit can decide which information to remove, add, and store

in the network. The architecture of an LSTM unit is shown in Figure 2.5.

LSTM cell h¢ \"\
\ Cy

ci1/ /o

o+ | >

x
[y T tanh
fi X)) o _5(X)
o

O tanh o
Ml | || } &

{I"\}\ __,_//I :
. _

t

Figure 2.5: A detailed architecture of a Long Short Term Memory cell illustrat-
ing how an input gate i;, a forget gate f; and an output gate o; are computed
based on the information in the current input z;, the previous cell state ¢;_;
and hidden state h;_;.

1. A Forget Gate f; indicates which information from the previous cell
state is relevant at the current time stamp. It is comprised of a Sigmoid
function o based on the previous hidden state information h;_; and the
current input x;. A Sigmoid function outputs values between 0 and 1.
Values closer to 1 indicate ‘to remember’ and values closer to 0 indicate
‘to forget’. Each value in the previous cell state (¢;_1) is then multiplied

by the forget gate to decide which values of the cell state are relevant.

2. An Input Gate i; updates the cell state. It accepts the previous hidden
state information and the current input, followed by simultaneously ap-
plying a Sigmoid and Tanh activation function to them. The Sigmoid

output has values between 0 and 1 indicating the importance of each
14

value. Values closer to 1 indicate more importance. On the other hand,
the Tanh function scales the values between -1 to 1 to help regulate the
network. The Sigmoid and Tanh activations are multiplied to produce

the new cell state c;.

3. The Output Gate o; uses the Tanh function to regulate the output of
the newly modified cell state and a Sigmoid function to decide which
information of the new cell state to carry forward as the next hidden

state hy.

Like an RNN, an LSTM network can also be unfolded in time along the input

sequence as seen in Figure 2.6.

} ho L’/t—l hy ht+J [hn

ci-1 / / NG

hy

Zo Te-1 Ty Tet1 Tn

Figure 2.6: Unfolded LSTM Network along the input sequence of length n.

LSTMs are capable of learning structural composition of sequential datum. For
textual data, an LSTM can be trained to predict the next word given a previous
sequence of words in a sentence. Such a trained predictive LSTM model can
also be employed for sampling new sentences. This can be achieved by first
feeding a sequence of seed words to the trained LSTM to get a predicted word
as output. The predicted word is then appended to the initial seed sequence
and fed to the LSTM again to predict the next word. The process of shifting
the window of the seed text to include the previous output and again feeding it
back to the LSTM to generate next words in sequence is performed iteratively
to generate an entire sequence of text. Such generative networks in which the
outputs are fed back into the model as inputs are called autoregressive.

In PCGML, 2D video game data can be viewed as sequential data [60].

Therefore, similar to text generation, an autoregressive LSTM network can be
15

used for generating new sequences representing game levels.

2.4 Clustering

Clustering is an unsupervised learning task that identifies groups of similar
objects in an unlabelled dataset. It implicitly identifies hidden patterns of
features and divides the underlying data into discrete clusters. Based on dif-
ferent criteria on which groupings can be identified, clustering algorithms can

be categorized as follows:

1. Centroid-based: Centroid-based clustering algorithms partition the
data into a specified number of clusters k, based on the proximity of

the data points to the cluster centroids.

2. Distribution-based: Distribution-based clusters assume different dis-
tributions in the underlying data. These approaches assign data points
to clusters based on their likelihood of being drawn from the same dis-

tribution.

3. Density-based: Density-based clustering algorithms define clusters as

regions of high density separated by low-density regions.

4. Connectivity-based: Connectivity-based clustering methods organize

the data into a hierarchical structure based on group similarities.

Within the scope of this thesis, we narrow our focus on two types of cluster-
ing algorithms: Distribution-based clustering (Gaussian Mixture Models) and

Density-based clustering (DBSCAN).

2.4.1 Gaussian Mixture Models

A Gaussian distribution is a bell-shaped, continuous probability distribution
that is symmetrical around the mean. A Gaussian Mixture Model views the
underlying dataset as a mixture of multiple Gaussian distributions, each rep-
resenting a cluster (Figure 2.7). Mathematically the model can be represented

as:
16

Cluster 1

mop 1
Figure 2.7: The figure shows three clusters (K = 3) stemming from a mixture

of three Gaussians with different mean and standard deviation values.

plzr) = T N (2|, L) (2.3)

11

where,
e /i defines the mean of the distribution k, ke 1, ... K
e K is the total number of distributions or clusters.
e Y is the covariance matrix defining the width of each curve.

e 7 is the mixing coefficient which assigns weight to each distribution. Mix-
ing coefficients are probabilities and are subject to constraints Zszl T =

1 and 7, > 0 Vk

A GMM uses the Expectation-Maximization algorithm (EM) for estimating
the model’s parameters. The EM algorithm alternates between two steps until
the model converges: (1) The E-step that calculates the posterior probability
of each data point being generated by each Gaussian k£ given the model pa-
rameters (2) The M-step updates the mean, covariance matrix and component

weights based on the points assigned to each Gaussian k.

17

A GMM is a powerful tool for clustering that offers flexibility in the shapes
and sizes of clusters. It is particularly useful for applications where data can
be assumed to be generated as a mixture of different Gaussian distributions.
For instance, a mixture of game levels from different genres can be pooled
together to form training data. A GMM estimates the likelihood of a data
point belonging to a particular cluster. This probabilistic cluster assignment
is beneficial in cases where it’s hard to assign a single label to each data point.
For example, consider the task of classifying levels of different games according
to their genre. Puzzle Quest is a turn-based puzzle game that is backed by
action. It involves tile-matching puzzles to win gold, spells, and equipment,
in order to battle against other players. Since a Puzzle Quest level could be
categorized as a puzzle or action game level, it wouldn’t make sense to assign
it to only one genre. GMM is a soft-clustering algorithm i.e., it predicts the
likelihood of a data point belonging to each cluster thus allowing partial cluster
assignments. In the example above, employing a GMM would prove beneficial

as it can assign a level to more than one genre.

2.4.2 Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)

Noise points

o T O
min_samples = 4 Border points

Figure 2.8: A demonstration of DBSCAN Clustering with eps: ¢ and

min_samples: 4 to group points in two clusters. The two clusters are indicated

by two colours: Green and Purple. A deeper tone of each colour indicates core

points and a lighter tone indicates border points.

18

DBSCAN is a popular density-based clustering algorithm that divides data
points based on their spatial distribution. DBSCAN defines a cluster as a
continuous space of high-density points separated from other clusters by lower-

density regions. To detect clusters, it relies on three parameters:

1. eps: The maximum distance at which two points can be considered

neighbours.

2. min_samples: The minimum number of points required to consider a
region dense, i.e., to form a cluster. As a rule of thumb, min_samples >=

D + 1 where D is the number of dimensions in a dataset.

3. metric: The distance function used to calculate the distance between
two points. Commonly used metrics include Euclidean, Cosine, and

Manhattan.

Based on these parameters, DBSCAN classifies each point in the dataset as

either a core point, border point or noise point as shown in Figure 2.8.

1. A Core Point has at least min_samples number of points within its neigh-

bourhood defined by eps.

2. A Border Point has fewer points than min_samples within the radius of

eps but is in the neighbourhood of one or more core points.

3. A point that can neither be classified as a core point nor a border point

is a Noise Point.

Compared to other clustering algorithms, DBSCAN offers an important prac-
tical advantage of noise detection. Unlike most of the other clustering algo-
rithms, which use distance as a measure to detect clusters, DBSCAN performs
clustering based only on the density in a region. Thus, DBSCAN does not re-
quire us to specify the number of clusters and allows clusters of arbitrary

shapes.

19

2.5 Common Video Game Terminology

In this chapter’s earlier sections, we talked about the Machine Learning tech-
niques employed in the presented thesis. Our work relies on the application
of these ML algorithms for learning representation and generation of 2D tile-
based platformer game levels. To familiarize readers with our application do-
main, we pick some essential concepts related to level design and define them

in this section.

2.5.1 Platformer Games

Platformer refers to the genre of video games where a player navigates through
an environment to reach a goal. The gameplay space is broken up into sub-
spaces called levels that the player must navigate one at a time. During a
game, the player may need to battle enemies, avoid obstacles, and gather re-
wards. We focus on platformer games as they make up a majority of our
training data and evaluation domains. Following are the commonly shared

components of platformer game level design as identified by [48]:

Platforms:

Platformer game levels include a series of ‘platforms’ on which the player can
stand, run or jump. Platforms can have various characteristics. For example,
a sticky platform or a platform made of high-resistance material can slow down
a player whereas an ice-based platform or the presence of oil on a platform
can make it slippery. A platform can also be destructible or collapse after an

event, such as after a specific number of jumps.

Obstacles:

Obstacles provide a challenging component to game levels. They are the game
elements capable of damaging the player’s movement. Depending on the type
of obstacle, a player may choose to fight, kill, or avoid them. Obstacles can be
static such as platform gaps and spikes, or they can be dynamic like a moving

enemy or firing cannons.

20

Collectibles:

Collectibles consist of reward items such as gems, emeralds, weapons, cards
and coins that a player can gather. Depending on their type, collectibles
can have different values. Some collectibles increase a player’s score, while
some provide power-ups by improving a player’s health, granting extra lives,
or transforming a character. For instance, a mushroom in Super Mario Bros.

turns Mario into his super form.

Movement Aids:

Movement aids include elements such as trampolines and ropes that support

the player’s navigation and basic gameplay mechanics.

Triggers:

Triggers include objects capable of changing the state of the level. For example,

hitting a certain block can open a path for a short period.

2.5.2 Level Design

Designing a game level involves bringing together all the game elements to cre-
ate an immersive experience for a player. Along with specifying the positions
of game objects such as platforms, rewards, and obstacles, a level design also
defines their visuals. For efficient memory utilization, many platformer games
are designed using tilemaps where different game objects are represented us-
ing tiles. Tiles are small regularly-shaped graphical units repeated to form a
game level. Each tile also has a set of associated mechanical affordances that
define its behaviour. For instance a Brick tile can have affordances such as
Solid and Breakable referring to its structural properties. A tileset refers to a
complete set of all tiles available for use in the environment and a tile sprite
is the pixel art designed for different surfaces or object types. Games relying
on tiles are commonly referred to as tile-based games. Examples of tile-based
platformer games include, but are not limited to, Super Mario Bros., Mega-

man, Kid Icarus, Legend of Zelda and Lode Runner. We draw on these games

21

as the training data in this thesis.

Dimension of
/ embedding vector
¥

(b) (c)

Figure 2.9: (a) SMB level Image (b) Corresponding VGLC representation (c)
Proposed continuous tile embedding representation

Procedural Content Generation techniques are leveraged for algorith-
mic generation of game content such as levels, music, textures and characters.
Procedural Content Generation via Machine Learning is a branch of
PCG that applies machine learning algorithms to generate new content match-
ing the style of the training dataset.

This thesis focuses particularly on representation learning for game levels
and studies the importance of representation for the PCGML task of level
generation. For successful generative modelling, the underlying representation
must embed crucial level design information. We propose an alternative to
the commonly used representation in PCGML: the Video Game Level Corpus
(VGLC) [61]. The VGLC representation includes a set of 2D tile-based video
game levels represented as a sequence of repeating discrete symbols, where
each symbol represents a tile. Our goal is to learn a continuous representation
that embeds the behavioural and visual information of game objects Figure

2.9. We can then use this representation to learn a discrete representation.
22

The usage of the terms ‘discrete representation’ and ‘continuous representa-
tion’ is in reference to the discrete and continuous nature of the level design
representations. A categorical or discrete variable takes a countably finite
number of values whereas a continuous variable can take on an infinite set of
values.

In this chapter we reviewed the required background for our work. In the

next chapter, we discuss the prior related work.

23

Chapter 3

Literature Review

In Section 3.1 of this chapter, we review prior studies that employ an autoen-
coder network for PLGML tasks such as level generation and blending. We
then discuss existing game level representation practices in PCGML in Sec-
tion 3.2. Both these sections particularly highlight the approaches that employ
clustering, as our work relies on it to discretize tile embeddings. In Section
3.3, we review literature on word embeddings, and also cover some prior work

on game embeddings.

3.1 Autoencoders

Prior research has successfully employed autoencoders [21] and Variational
Autoencoders (VAEs) [30] for PCGML application such as level generation
and blending [44], [63]. Jain et al. [25] were the first to demonstrate that
autoencoders could learn representations useful in downstream PCGML tasks.
Guzdial et al. [16] presented an explainable co-creative tool by training an
autoencoder on existing level structures and associated design pattern labels.
Yang et al. [68] employed a Variational Autoencoder with a Gaussian mixture
as a prior distribution (GMVAE) for level generation. Their work essentially
relies on clustering to identify similar (16 x 16) chunks from levels of multiple
games. The learned components of the Gaussian Mixture Model are then
used to generate new chunks of the same style. Karth et al. [26] proposed
neurosymbolic map generation using a VQ-VAE and Wave Function Collapse

(WFC). A VQ-VAE quantizes patches of level images to a finite tileset on
24

which WFC is applied to generate levels. While these works do not directly
focus on embeddings, the essence of our approach is in learning and optimizing
the latent tile embedding representation.

Alvernaz and Togelius [2] trained an autoencoder to generate a lower di-
mensional representation of a videogame environment which was then used in a
reinforcement learning framework. This is similar to our approach as we learn
a level representation using level structure and affordances. However, while
their work focused on automating gameplay, we focus on automating design.
Additionally, a majority of these previous approaches are based on represen-
tations of either chunks of levels or entire levels. In our presented work, we
instead focus on learning the representation of the level’s basic building blocks,

tiles.

3.2 Level Representation

Most PCGML approaches addressing level design tasks rely on datasets of
annotated images [3], [44], [53], [60], or gameplay videos [17]. A notable con-
tribution to the current Game Al research community is the Video Game Level
Corpus (VGLC) [61]. Tt presented a training corpus for 12 games consisting of
level images and parseable text files in three different formats: tiles, graphs,
and vectors. This work has gained popularity with 106 citations at the time
of this writing.

How one determines a set of affordances for tilesets is an open area of re-
search. While most PCGML approaches rely on the hand-authored set from
the VGLC or similar representations, there has been some effort to derive
these in a more grounded way. Summerville et al. [57] attempted to learn the
semantic properties of tiles from gameplay. Snodgrass [51] clustered potential
tiles into groups and estimating their quality based on levels generated using
these potential tiles. The tiles surrounding the candidate tile played an impor-
tant role in clustering. Similar to this work, we use clustering to learn discrete
representation by grouping continuous embedding representation. However,

in our presented work instead of using neighbouring tiles for clustering de-

25

cisions, we base them on the RGB pixel representation of candidate tile, its
behavioural and edge information. For level blending tasks such as Sarkar et
al. [43], which combines different game representations, there’s a need to come
up with a joint set of affordances across games. However, this is typically done
by hand. Bentley and Osborn [4] presented an annotation tool and a common

set of nine affordances. We leverage the affordances from this tool.

3.3 Embedding Vectors

Word embeddings [34] are extensively used in modern NLP tasks. Each word
is represented as a continuous d-dimensional vector denoted by w' € R%
The low-dimensional representation captures the word’s meaning (semantics)
from streams of text. Words related to each other are placed closer in the
vector space, and relationships between words are encoded as the differences
between these points. A popular word analogy that can be demonstrated by
this vector space is ki;bg — man + woman = quéen, which demonstrates an
understanding of concepts and context by the model. While the potential of
word embeddings to hold these analogies is questionable, embedding vectors
have proven to be efficient and fruitful in representing words for several NLP
applications [9], [12], [35], [67].

World models represent a novel approach to learning to represent an entire
game or similar virtual environment as a neural network [18], [29]. Related
to this, Yousefzadeh Khameneh and Guzdial [28] used a VAE to extract em-
beddings of the entities in a game, which they call entity embeddings, which
encoded information of gameplay elements. We instead focus on capturing
the level structure in our representation and define tile embeddings as a d-
dimensional vector in an embedding space encoding the semantic information
of a tile.

To the best of our knowledge, we are the first to tie clustering and embed-
dings together for representation learning in PCGML. However, this approach
has been explored in other fields like reinforcement learning for games. [32]

introduced the shrinkage effect in training an encoder for extracting represen-

26

tations of players in professional ice hockey. It allows the model to transfer
information between the observations of different players such that statistically
similar players lead to similar representations under similar game contexts. We
draw a parallel to this work and implement clustering loss to enforce intrinsic
clustering and assign similar representations to tiles with similar RGB pixel

representation, affordances and edges.

27

Chapter 4

Tile Embedding: Initial
Approach

The goal of our work is to learn an affordance-rich embedding of a tile as a
PLGML representation. In this chapter, we describe our initial attempt at
learning tile embeddings by training an undercomplete autoencoder on visual,
contextual and behavioural information of tiles. We discuss the specifica-
tions of our training data and its preprocessing in Section 4.1, followed by our
model architecture and training in Section 4.2. Our trained autoencoder is
employed to extract a 256-dimensional embedding vector as our tile represen-
tation, which we refer to as a Tile Embedding. In Section 4.3, we evaluate the
obtained tile embeddings on their ability to approximate the affordances of
unannotated tiles. We then apply tile embeddings to level generation for an-
notated and unannotated games. In Section 4.4, we walk through the results
of above evaluations and demonstrate the utility of tile embeddings to serve

as a PLGML representation for level generation.

4.1 Data Preparation

Our training data consists of five classic Nintendo Entertainment System
(NES) games: Super Mario Bros, Kid Icarus, Legend of Zelda, Lode Run-
ner and Megaman, which are all 2D, tile-based games. Figure 4.2 illustrates
our architecture, described in detail below.

We draw on local pixel context and affordances associated with the tiles

28

Lode Runner . | Legend of Zelda ’ ‘ Super Mario Bros & Kid lcarus :f:
~ alk

Figure 4.1: Neighbourhood Context for Tiles.

from the VGLC [61]. We incorporate affordances as an input since the visual
similarity between tiles can be deceptive. Tiles that differ in pixel appearance
may have the same behaviour, such as the recoloured tiles in Figure 4.1. Fur-
ther, when affordances are not known, the neighbourhood context could be
crucial for the embedding vector. For instance, a brick may depict a [‘solid’,
‘breakable’] object in one game, but a background pattern in another game
with the affordances [‘empty’, ‘passable’]. However, in this case, the bricks in
the latter case would repeat in a way similar to solid coloured sky tiles in other
games. Thus the placement of a tile’s embedding value in the latent space is
influenced not only by the visuals of the tile but also by its behaviour and

relationship with the neighbouring tiles.

4.1.1 Local Pixel Context

One part of the input to our autoencoder is the pixel representation of a tile
and its neighbouring tiles as demonstrated in Figure 4.1. For this, we use the
level images from the VGLC Corpus. To capture local context, we slide a
48*48 pixel window, as we use a 16*16 tile representation, over the images to
extract all unique contexts. By unique we indicate all possible combinations of
VGLC tile types in the neighbourhood of the candidate tile, it does not matter
if the tiles differ in terms of their pixel appearance. We made this choice to
reduce class imbalance in tile types, as “empty” background tiles occur much

more frequently than all others.

29

4.1.2 Semantic Context and Unified Affordances

The other input to our model is the affordances of the candidate tile. The
annotations for each of the tiles are obtained from the JSON files stored in the
VGLC Corpus [61]. However, these are all game-specific, thus it is necessary
to map the different game affordances to a single, unified set. Based on prior
work [4], [43], we employ the following 13 common tags: Block, Breakable,
Climbable, Collectable, Element, Empty, Hazard, Moving, Openable, Passable,
Pipe, Solid, Wall. For example, Climbable, Passable refers to tiles such as
stairs, ropes, and ladders. The player can use these tiles to move in the vertical
direction or can choose to pass the tile and continue on their original path.
Hazard covers all harmful obstacles to the player such as spikes, cannons, and
enemies. The affordances for each tile are then expressed as a multi-hot vector,

with 1 at the index of features that are present for this tile, and 0 otherwise.

Candidate Tile : E Affordances: Passable, Collectible |

(256,) Tile Embedding I

Convolution Deconvolution
Network Network

Input 1: Output 1:
48448°3 Flatten Reshape 16*16%3
0 Candidate tile
[0,1,0,0,...,0] 1
o]
Input 2: (13,) . sigmoid .
Concatenation 0.5
Multi-hot encoding of Layer ' :
affordances Dense Layers jmage and Dense Layers 0
Affordance
feature vector Output 2: (13)

Figure 4.2: Network Architecture.

4.2 Model Architecture

An autoencoder is a feedforward multilayer neural network architecture that

learns a compressed representation of the input to capture key structures. In

our work, we adapt the X-Shaped VAE architecture proposed by Simidjievski
30

et al. [47]. The encoder consists of two branches that process the individual
inputs. The outputs of the two branches are merged and compressed into a
single embedding vector which we employ as our tile embedding. The decoder
network again splits into two branches to reconstruct the desired outputs.

The 48%48 pixel input is fed to a three-layer encoder convolutional network
- the first with 32 (3*3), then 32 (3*3) and finally 16 (3*3) filters. Each
layer is followed by Batch Normalization and then Tanh activation. Batch
normalization applied before a non-linear activation function stabilizes the
distribution of the input and reduces the divergence risk [23]. This output
is flattened to form a one-dimensional image feature vector. In parallel, the
multi-hot feature vector of affordances is passed through two fully connected
layers of sizes 32 and 16 with Tanh activation for a feature vector encoding of
the affordances.

We concatenate the output of both branches and pass it through a fully
connected layer to get a (256,) dimensional tile embedding. This captures
the relationships between branches in a common latent representation. This
merging of information is crucial in cases where the affordance information
is unknown, such as when we wish to derive tile embeddings for a new game.
We hypothesize in these cases that we can approximate reasonable affordances
based on pixel data alone. The decoder is close to an inverse of the encoder.
A three-layer deconvolutional network upsamples the embedding vector to
reconstruct the pixel portion of our output. Given that we want an embedding
for individual tiles, we reconstruct just the 16*16 centre tile. In parallel, in
order to reconstruct the affordances, we include two fully connected layers of
sizes 16, and 32. The output of these layers is finally connected to a dense
layer with Sigmoid activation representing the affordances of the centre tile.

We trained this model with the adam optimizer and two-loss functions. For
the image output, we use mean square loss. The multi-label prediction task for
our N affordances can be formulated as N independent binary classification
problems and so we use binary cross-entropy loss as our second loss function.
However, our training dataset does not have equal instances of each label. To

counter this problem of class imbalance, we derived a TF-IDF vectorizer to
31

compute an importance score for each label based on its frequency. We use

this as the weight for each label and define our binary cross-entropy as,

N
Weighted BOCE = — Zyilog(P(yi)) * W; (4.1)

i=1
where, y; is the ground truth, P(y;) is the predicted probability for label ¢ in
N, and w; is the TF-IDF weight for label i. The objective function combines
the two above loss functions with a weighted linear combination. We use
the weight 0.8 for the image loss and 0.2 for the affordance loss, which we
derived empirically. During training, we employ 20% of our training data as
a validation set and apply early stopping to avoid overfitting [19], [37].

We include a t-SNE [64] visualization of our learned latent space (Figure
4.3). It shows a good mix of our tile embeddings across different games. Lode
Runner is over-represented as it has the most samples of any game. However,
even games like Legend of Zelda, which are very different from the other games,
are fairly evenly distributed across this latent space, indicating it has been able

to generalize across the different games.

4.3 Evaluation

In this section, we discuss the three evaluations of our system. First, we
approximate affordances for tiles of unseen games. Second, we compare tile
embeddings and the VGLC tile representation on a level generation task. Fi-
nally, we demonstrate the application of tile embeddings for generating levels

of a game with no annotated data.

4.3.1 Cross-fold Affordances Analysis

We employ a cross-fold analysis over our five games: Super Mario Bros, Kid
Icarus, Legend of Zelda, Lode Runner, and Megaman. Our model is trained
on four games with the fifth game held out as test data. We extract and pass
48*48 pixel contexts from test levels as the input to our trained model. We

act as though their affordances are not known and pass a (13,) array of zeros

32

%

lode_runner 3¢ megaman m legend of zelda 4= smb ¢ kid_icarus
Figure 4.3: t-SNE Visualization of Embedding Space.

as the second input. This allows us to approximate a situation in which we
are attempting to predict the affordances for an unseen game.

Evaluating the predicted affordances is a multi-label prediction task where
the predicted output may be fully correct, partially correct, or fully incorrect.
We therefore employ a number of metrics. Eract Matching Ratio (EMR) in-
dicates the percentage of test examples where the predicted labels are exactly
correct. EMR can be harsh in a multi-label setting. Hence we adopt example-
based and label-based evaluations from [55] with the metrics: Precision, Recall,
Accuracy to evaluate our model for partial correctness. We include Example-
based versions of these metrics, which are applied on each instance and aver-
aged over the number of instances in the dataset. For the Label-based version
of these metrics, we investigate their values for individual labels and compute
the average on each label’s precision, recall and accuracy independently. The
example-based metrics allow us to determine our performances in terms of all
the labels (affordances) of each tile, whereas the label-based metrics capture

the performance in terms of individual labels (empty, hazard, etc.). Accuracy
33

provides an intuition of the model’s correctness in predicting true positives
(TP) and true negatives (TN). However, for a sparse prediction vector, ac-
curacy may be misleading. To understand the performance of the model at
predicting positives accurately, we employ Precision and Recall. Of all the
labels that the model predicted (TP+FP), precision indicates the percentage
of labels that were actually true (TP). On the other hand, Recall is the per-
centage of true labels that the model was able to capture (TP/ (TP+FN)). To
further investigate misclassification and missing-label errors, we adopt a more
robust metric: Alpha Evaluation [5]. Alpha Evaluation weighs missing-label
errors (M,) and misclassification errors (F,) separately using parameters
(for missing-label) and v (for misclassification). a controls the forgiveness for
errors. Alpha Evaluation is given by the formula,

Yo VPl

alpha score = (1 (4.2)

such that a > 0, 0 < 3,5 = 1|y = 1, where Y, is the ground truth and P,
are the predicted labels.

4.3.2 LSTM for Level Generation-Annotated Game

In this evaluation, we directly compare our tile embedding representation to
the state-of-the-art VGLC representation for one game. LSTMs are a special
type of RNN with a memory mechanism at the heart of their architecture.
LSTMs have been extensively used in PLGML. We adapt the work of Sum-
merville and Mateas [60] and train two similar LSTM networks, one with the
VGLC tile representation and the other with our tile embeddings to generate
levels for the game Lode Runner. We chose Lode Runner due to the results
of the first evaluation. Lode Runner tiles are 8*8 pixels in size. To fit this to
our autoencoder architecture, we upscaled the level images using the Python
Imaging Library (PIL) such that each tile has a dimension of 16*16 pixels.
We trained our model to consider a history of the last 3 rows (approximately
100 tiles) and generate the next 3 rows at a time. Similar to Summerville and
Mateas” work, to track the progression of the level, we include column depth

as an input to the network. The only differences between the two network
34

implementations are in the input and output layer due to the differences in
representation.

Input Layer: Before training an LSTM on tile embeddings, each level is
converted to an embedding representation with our trained autoencoder model
using context windows and affordances. For instance, a (512 * 352*3) level
image of Lode Runner is converted to a (32%22%256) representation. The other
LSTM is trained on the (32*22) character representation obtained from the
VGLC dataset.

Output Layer: For the LSTM trained on our embedding representation,
the output layer predicts the embedding directly. It is modelled as a (256,)
Dense layer with Tanh activation. Before visualizing a level, we map the
predicted embedding to the nearest actual embedding. We use the memory
efficient Annoy library® to index the embeddings and find the nearest neighbor
based on the Manhattan distance. For the VGLC representation, the output
of the LSTM is connected to a dense layer with Softmax activation indicating
the probability of a tile character. We perform an expressive range analysis of

generated levels with the metrics: Linearity and Leniency [33], [50], [56].

e Linearity profiles the structure of a level in terms of how well it fits to
a line. Linearity is computed by performing linear regression on centre
points of all the platforms. We then compute the average distance be-
tween each centre point and its projection on the regression line. The
score is normalized between [0,1] by dividing by the total number of

centre points.

e Leniency measures the difficulty of the level. We assign rewards with
weight 1 and enemies with weight -1. We then calculate the sum of

leniency values and average it with the total number of tiles.

4.3.3 LSTM for Level Generation- Unannotated Game

As our third evaluation, we apply tile embeddings for generating levels for the

game Bubble Bobble. We chose this game because no annotated dataset for it

Thttps://github.com/spotify /annoy
35

currently exists. We download 100 Bubble Bobble level images as our training
dataset.? We extract tile embeddings by passing the 48*48 pixel context and a
(13,) zero vector to an autoencoder trained on all five NES games. We employ
the same architecture as we did for Lode Runner to train an LSTM on the
embedded level representation. The majority of the Bubble Bobble levels are
vertically symmetric, and so we parse the levels column-wise. Our model is
trained to generate the right half of the level when the left half is fed as an
input. During inference, we mirror the generated right half to produce an

entire level.

4.4 Results

4.4.1 Cross-fold Affordances Analysis

Test Data Example-based Label-based
EMR Prec Recall Acc | Prec Recall Acc
SMB 0.17 052 049 039 | 0.22 023 0.11
Kid lcarus 0.44 0.63 055 054 | 0.27 030 0.14
Megaman 0.36 0.60 0.61 053|025 032 0.14
Lode Runner 0.11 0.44 0.27 0.27 | 0.26 0.17 0.05
LOZ 0.39 0.78 0.61 0.59|0.34 0.17 0.10
Mean 0.29 059 051 046 | 0.27 0.23 0.11
MFL Baseline | 0.32 046 0.46 042 | 0.46 0.15 0.07

Table 4.1: Results of evaluation metrics for predicting affordances on unseen
tiles

Table 4.1 and Table 4.2 present the results of all the evaluation metrics for
predicted affordances of unseen game tiles. The most frequent label combina-
tion in our dataset is [‘empty’, ‘passable’] accounting for approximately 32%
of the dataset. The Most Frequent Label (MFL) Baseline indicates the value
of our metrics if only the most-frequent label combination is predicted. We
include it as a comparison point in the table and in our discussion of the re-

sults below. For all the metrics, the closer the value is to 1, the better. Bold

https://www.adamdawes.com /retrogaming /bbguide/

36

Test Data a-Evaluation with a=1
B=0.75, v=0.25 p=1,v=1 (=0.25,v=0.75

SMB 0.66 0.29 0.63
Kid lcarus 0.75 0.45 0.69
Megaman 0.71 0.40 0.70
Lode Runner 0.67 0.17 0.50
LOZ 0.78 0.43 0.65
Mean 0.71 0.35 0.63
MFL Baseline 0.64 0.30 0. 67

Table 4.2: Results of alpha evaluation

indicates the highest value and #talic indicates the lowest value across the test
games for our model.

Exact match ratio (EMR) indicates the percentage of label combinations
identified exactly by the model. On average, EMR is 0.29 with a standard
deviation of 0.14. The performance is mainly because the metric is aggressive
and does not attribute any value to partially correct predictions. The MFL
Baseline achieves 0.32 due to the fact that the label makes up 32% of the
dataset. However, we still outperform it for three of the five games.

We observe stronger performance on example-based measures that evaluate
partial correctness. The average values observed across all example-based
evaluations are better in comparison to our MFL baseline. However, if we
evaluate individual labels, we find lower values. These lower values on label-
based metrics is likely due to the poor performance in predicting rare labels,
and due to the over-abundance of the most common labels.

In all five games of our dataset, Solid, Passable, Empty tiles occupy a ma-
jority of the level as compared to other tiles. Concretely, these labels together
account for 70.8% of our training instances. Comparatively higher values on
the example-based evaluations than label-based evaluations demonstrate that
the model is capable of predicting frequent labels and struggles to predict rare
labels such as Climbable, Collectibles, Element, Block, Wall, Hazard. For in-
stance, the level design for Legend of Zelda has dungeons composed of Solid

tiles which our model is good at predicting. Hence metrics for Legend of Zelda

37

have higher values than other games. In comparison, Lode Runner has the
lowest values for most of the metrics as its levels have a well-proportioned set
of tiles including Enemy, Collectable, Breakable, Solid, Empty, Passable. It
also had the largest set of overall data, and our model clearly struggled when
we withheld these training samples. However, our tile embeddings are able
to effectively represent Lode Runner levels when trained on this data, as we
demonstrate in the next evaluation.

Table 4.2 highlights the effect of different values of 5 and v on the a-
evaluation scores. Lowering the weight of misclassification errors (y) and in-
creasing the weight of missing errors (), increases the a-evaluation score.
This indicates the presence of more misclassification errors and fewer missing
labels i.e more False Positives.

Overall, we find these results to be heartening, as our model outperformed
our MFL baseline for seven of our ten metrics, and always performed better
than it for at least two games. This suggests we can approximate affordances
on unseen games. Additionally, for certain use cases like level generation,
getting the exact correct affordances is not required as long as the latent
space representations of similar entities are close together. This is due to
the fact that identifying the entities with similar behaviour will ensure they
are appropriately handled in terms of placement during level generation. For
instance, as long as enemy tiles are grouped together and separate from solid

tiles, a secondary model can be trained to place them in appropriate positions.

4.4.2 LSTM for Level Generation-Annotated Game

Figure 4.4 gives the results for our second evaluation. We generated 150 levels
with each LSTM: one trained on tile embeddings and the other trained with
the VGLC representation. Figure 4.4 shows the Kernel Density Estimation
with Leniency and Linearity. While there is a small section of the plot that
the VGLC levels cover that the tile embedding levels do not, overall the levels
generated with the tile embeddings representation cover more of the original
distribution. In particular, since the VGLC representation did better in terms

of linearity, we expect that the VGLC’s hand-authored representation was
38

—— VGLC Representation
06 Tile Embedding

® —— Lode Runner Dataset

leniency

-0.2 D.IO 0.‘2 0.4 D.‘E
linearity
(©

Figure 4.4: (a) Level generated for Lode Runner by training LSTM on tile
embeddings. (b) Level generated for Lode Runner by training LSTM on VGLC
tile character representation. (c) Kernel Density Estimation with Linearity
and Leniency

better able to encode structural knowledge. However, the LSTM struggled to
model less common elements with it, including enemies and rewards, which

can be seen in the Kernel Density Estimation and example level.

4.4.3 LSTM for Level Generation-Unannotated Game

FrEaY
FFEN

|2/ wn]
.,

FFF._FF B b |

Figure 4.5: Levels Generated for Bubble Bobble

Figure 4.5 shows the Bubble Bobble levels generated by the LSTM trained
on tile embeddings. While we note some oddities (floating enemies) the levels
overall are of surprisingly high quality, indicating the appropriateness of this
approach for generating levels on unseen games. We note that these levels
were output as a tile embedding and then visualized with Annoy as described
above. Omne benefit of our approach is that we naturally model tiles with
the same affordances (e.g. solid tiles) with all of the visual variety from the
original content, leading to the yellow, blue, and pink structures in the output
levels. Approaches like the VGLC representation cannot due this, and require a

secondary process to map tiles with the same affordances to multiple, distinct

39

output tiles. To play these levels one would need to map them to in-game
objects (which is also necessary for the VGLC representation) or employ the

embeddings in a playable, deep neural network-based game [29].

4.5 Discussion and Takeaways

In this chapter, we trained an undercomplete autoencoder to take in a tile’s
mechanical affordances and the local pixel context to learn a 256-dimensional
tile embedding representation. The placement of embedding vectors in a latent
space is thus influenced by their visual as well as behavioural (affordances) sim-
ilarity and their relationship with neighbours. We then presented evidence that
tile embeddings can reasonably approximate the affordances on unannotated
tiles. By generating levels of annotated and unannotated games, we demon-
strated that our tile embedding representation could be successfully drawn
for the PLGML task of level generation. However, certain shortcomings still
need to be addressed. While tile embeddings have shown promising results
in generating Lode Runner levels, we observe their limitation in effectively
representing and generating levels of Super Mario Bros. (SMB).

The output layer of the tile embedding-based LSTM level generator dis-
cussed above has a dense layer at its output. Given a previous sequence of
tile embeddings, it outputs a 256-dimensional embedding vector of the next
tile in succession. Naturally, at every step, it generates the embedding vector
corresponding to the tile having the highest probability of occurrence. This
behaviour of a tile embedding-based level generator making locally optimal
decisions is in resonance with the mechanism of greedy sampling.

The drawback of greedy sampling in a level generator becomes evident
especially when dealing with skewed tile distributions. As shown in Figure
4.6, Lode Runner and SMB levels exhibit contrast in their tile distribution. In
comparison to SMB, Lode Runner levels has a balanced distribution of tiles.
A typical SMB level has 90% of Empty background tiles, making it the most
probable tile at any given position. Therefore a tile embedding-based level

generator that performs greedy sampling generates empty levels when trained

40

on SMB.

Balanced Tile Distribution: Lode Runner Skewed Tile Distribution: SMB

[=]
@
s

=
[
'
=
o

=

=
s
=
o

=]
[~
N
=
=

e
L]

Median Percentage of Tile in a Level
=]
(1)

Median Percentage of Tile in a Level

=
j

=
=]
I
e
=]

T T T T T
b # B - G E M - X 5P [] o EQ < =B 7 b
Tile Character Tile Character

Figure 4.6: Median Frequency of a tile in Lode Runner vs SMB levels.

In the next chapter, we take a step toward alleviating the issue of greedy
sampling in a tile embedding-based level generation by discretizing the repre-
sentation. We take inspiration from prior PLGML level generators that have
used probabilistic sampling, made possible due to the discrete nature of VGLC
representation. While VGLC is a natural fit for many PLGML applications,
it has limited expressivity and benefits from hand-authoring. We believe, the
PLGML community would hugely benefit if we could learn the same quality
of discrete representation without human transcription as well as preserve its

continuous counterpart.

41

Chapter 5

Clustering-based Tile
Embedding: Dealing with games
having skewed tile distribution

The goal of this chapter is to learn an improved tile embedding for games with
skewed tile distributions for level generation. Towards this objective, we be-
gin this chapter by discussing our modifications to the original tile embedding
autoencoder to learn our new Cluster-based Tile Embeddings (CTE). Next,
we explain the limitations of an LSTM level generator trained on the original
tile embedding representation for games with skewed tile distributions. We
then present our novel two-step level generation pipeline that learns a dis-
cretization of our CTE through clustering and leverages both representations
for level generation. We employ our two-step level generation pipeline for level
generation of Super Mario Bros. (SMB). We compare the results of our ap-
proach on SMB level generation against the results of LSTMs trained on CTE;,
the original tile embeddings and the VGLC representation of SMB levels. We
then demonstrate our approach’s ability to generate levels for two games that
no prior PLGML approach has attempted: Bugs Bunny Crazy Castle and

Genghis Khan, based solely on images of their levels.

5.1 CTE: Cluster-based Tile Embeddings

The VGLC tile-based representation of a level L is an h X w dimensional array.

Here h and w are the height and width of the level, respectively. Each character

42

(@

(b)

(©

(d

(e)

Figure 5.1: SMB LSTM level generator outputs with: (a) VGLC representa-
tion (b) original tile embedding (¢) CTE. We also include good (d) and bad
(e) examples for our two-step CTE level generation process.

of L is called a tile which is associated with a 16 x 16 pixel representation in a
level image and a corresponding set of affordances. Affordances convey a tile’s
mechanical behaviour.

Our original tile embedding work employed a dual branched autoencoder
to learn a 256-dimensional embedding vector representation of a tile [24]. The
network accepted two inputs: 1) a 3*3 grid of the candidate tile at the centre
with its neighbours surrounding it in the 16*16*3 RGB pixel representation
(48 x 48 x 3), 2) the candidate tile’s 13-dimensional one-hot affordance vec-
tor. To compare more easily to the original tile embedding work, we utilise the
same set of games (Super Mario Bros., Kid Icarus, Megaman, Lode Runner and
Legend of Zelda) as our training corpus and maintain the same tile-affordance
mapping. The tile-based level data is taken from the VGLC corpus! and the
JSON files for tile-affordance mapping are from the original tile embedding

"https://github.com/TheVGLC/TheVGLC

43

https://github.com/TheVGLC/TheVGLC

Autoencoder

——> represents the input represents the
output for training the model. GMM Clustering loss on
_l reconstructed data
q represents the input represents the (1037.) Data Vector I ”‘
corresponding inference using the trained model. i ﬁ
=) i

]

i associated
PR r—— FE affordances
(150 x 16) SMB Dataset Level SMB dataset levels 1]
output: 0
i izati iz (48 x 48 x 3) Candidate tile with context, iz: 13-dimensional multi-hot affordance vector,
Discretization of CTE iz (16 x 16) edge feature vector of candidate file, o: 1037-dimensional reconstructed vector
discrete Al embodd
representation of embedding | 4
h

. DBSCAN i"—vecmrs across
_emKhelddTg vector e —— List of embedding vectors corresponding to each tile in a level !
In K clusters
(n, K) (n, 256)

(150 x 16 x 256)
CTE representation
Translation Model a level

(Ciy, 256) —> LSTM (128,)
> — 5 CTE representation
’—>(Ci-110i, K)— LSTM (128,) new generated levels
© (ci, 256)

oncatenate
Dense

Discretized CTE Cj.1 is the previous column and c; is the current column

representation of N
level (150 x 16 x K) LSTM Level Generator
l Sequences of presenenennnes .
7 discrete CTE.___, |STM Sampling new
Seed sequence b rep ion of : 3 levels in discrete - -
- 7 alldataset levels ‘ CTE representation Visualise generated levels

Figure 5.2: A complete system diagram. We train an autoencoder on the
RGB, affordance, and edge information using a cluster-based loss to learn our
Cluster-based Tile Embedding (CTE). We then discretize this representation
via DBSCAN, and train an LSTM level generator on this discretized CTE.
We train a translation model (also an LSTM) to convert back to CTE from
the discrete representation output by the level generator.

implementation?. We make two modifications to the training of the original
autoencoder to better handle level design tasks for games with skewed tile dis-

tributions and refer to the newly extracted 256-dimensional embedding vector

as the Cluster-based Tile Embedding (CTE).

5.1.1 Incorporating Edge Information

When applying the original tile embeddings to games where the affordance
information was unknown, we found that the latent space representations de-
pended predominantly on coloured pixel information of a tile. For instance, an
empty blue sky tile was placed close to a solid blue brick tile. To discourage

this, we included edge information into our embedding. Canny edge detection

Zhttps://github.com/js-mrunal/tile_embeddings

44

https://github.com/js-mrunal/tile_embeddings

[6] is a common algorithm for identifying edge information. We convert the
16 x 16 x 3 pixel representation of a tile to grayscale and apply the canny edge
detection algorithm to obtain a 16 x 16 edge feature vector. Thus for each can-
didate tile, we feed three inputs to our autoencoder: the pixel representation
of the candidate tile along with its neighbours (48 x 48 x 3), a 13-dimensional

multi-hot affordance vector and (16 x 16) edge features.

5.1.2 Introducing Clustering Loss

In the original tile embedding work, the learned latent space was fairly contin-
uous, without clear separation between types of tiles. Learning more distinct
groups can improve the utility of a final representation [20]. With an aim to
push representations of similar elements closer while keeping representations
of dissimilar elements apart, we introduce an explicit cluster-based loss L. in
the training process. For this cluster-based loss, we must cluster our data prior
to training our autoencoder. The idea is to leverage the clusters as a guide
for representation learning. For each candidate tile, its 16 x 16 x 3 RGB pixel
representation, 13-dimensional multi-hot affordance vector, and 16 x 16 edge
vector are fed to a Gaussian Mixture Model (GMM) [39].

A tile can belong to multiple clusters. For instance, it is appropriate to
assign a Cannon El in MegaMan to a cluster of Hazards as well as to a cluster
of Solids. We rely on a GMM in order to account for such potential overlap in
tile groups. We pick an elbow point based on the Silhouette score and Bayesian
Information Criterion (BIC) to determine the optimal number of clusters [40],
[45]. For the given VGLC dataset, we observe an elbow point at 10 clusters.

We compute our clustering loss (L) as the categorical cross entropy error
between the GMM cluster assignment of a given tile and its corresponding
embedding during training. Along with L., our loss function includes the mean
squared error on the reconstructed edge feature vector (L.), the mean squared
error over the reconstructed image data (L;) and the binary cross entropy loss

on the reconstructed affordances (L,). In totality, the loss function can be

45

mathematically represented as:
Total loss = (0.5 L;) + (1.5 L) + (0.5 L) + (0.5 L.) (5.1)

To accurately embed affordance information, we increase the relative weight

of its reconstruction.

5.2 Level Generation for Super Mario Bros.

In this section, we describe the difficulty in generating SMB levels using an
LSTM trained on the original and CTE tile embeddings, which motivated our

novel two-step level generation process described below.

5.2.1 The Curious Case of SMB Level Generation:

We train two LSTM models, one on the original tile embeddings and the other
on our CTE representation, for SMB. We follow the training process from [24].
Sampling from an LSTM trained on a continuous representation is determin-
istic and hence for a given seed input, these models generate only one output
as shown in Figure 5.1(b) and (c) respectively. In both cases we feed in the
same 200 tiles of flat ground as input. While the CTE representation helps the
LSTM learn to generate more reasonable output than the original tile embed-
ding, the output is repetitive and does not reflect Mario-like structure. These
outputs show clear limitations of an embedding-based generator in modelling
levels with skewed tile distributions, given that the outputs for games with
balanced tile distribution appear much more like the original levels [24]. In
Table A.2 of the Appendix, we outline the difference in tile distributions for a
skewed and a comparatively balanced tile-based game.

Analysis: A possible explanation for these poor results is the lack of
a sampling mechanism in the generator, since the CTE output is similar to
the most likely Mario level output from a probabilistic generator [52]. In
comparison, we observe higher quality results when our LSTM is trained on
the VGLC representation as seen in Figure 5.1(a). The only difference between

the two models is in the output layer [24]. For the model trained on the
46

VGLC representation, the output layer is a probability distribution p over
possible tile types [60]. The next tile is sampled from p. If we simply pick the
most likely next tile, we output levels similar to Figure 5.1(c) even with the
VGLC representation. We cannot sample from an LSTM trained on either
tile embedding, as the LSTM would output the closest tile embedding, not a
probability distribution. To remedy this, we present a two-step level generator

which discretizes CTE.

5.2.2 Two Step Level Generation

The two steps of this level generator are to first generate levels in a discrete
representation, allowing sampling to occur. Then we have a secondary trans-
lation model that converts the levels in this discrete representation back into
our CTE representation, so that we can visualize them and extract the pre-
dicted affordances. This two-step level generation process naturally requires
training two distinct models, one for each step. For both models we use the

same LSTM architecture used throughout this paper.

Step 1. Training LSTM on Cluster Levels:

To obtain the discrete representation of each level, we leverage the latent
structure imposed by the clustering-based loss function. We first begin by
converting each level to the CTE representation and then feed all the CTE
embedding vectors to the density-based clustering algorithm, DBSCAN [11].
Unlike partitioning-based and distribution-based clustering algorithms, DB-
SCAN has a number of benefits for clustering in a latent space [27], which
makes it highly relevant to this task.

Figure 5.2 shows the overview of our system architecture. If we consider an
SMB level of 150x 16 VGLC tiles, and replace each tile with its 256-dimensional
embedding, we get the 150x16x256 dimensional CTE representation. Further,
if each of these embeddings is assigned to a cluster we can simply represent
a 256-dimensional embedding by a cluster identifier to get a 150 % 16 % K
discretized representation, where K is the optimal number of clusters. We

refer to this as our cluster representation. For SMB, the optimal number of
47

clusters (K) detected by DBSCAN was 11 with a silhouette score of 0.91. We
note that we recalculate these clusters for each new game, unlike the clusters
used to inform the CTE cluster loss. We note that we do this to learn a discrete
representation as we cannot use the VGLC level representation directly or

generating levels for games outside the VGLC corpus would be impossible.

Step II. Translation Model:

The generated output of the previous step is in the cluster representation and
cannot be used directly. A cluster may consist of many member tiles, thus
a cluster identifier may not be adequate for accurate visual and affordance
reconstruction. Therefore, we need a translation mechanism to convert the
cluster representation of a level to its associated CTE representation. We
train an LSTM network to translate from the cluster representation to CTE.
Such a translation mechanism requires the knowledge of context as well as
affordances. For instance, to rebuild a solid red brick tile pattern, red bricks
cannot be followed by blue bricks even though they may belong to the same
cluster. Therefore, as illustrated in Figure 5.2, a CTE representation of column
¢, depends on: a) the underlying cluster representation of column ¢ and ¢ — 1,
b) the CTE representation of column ¢ — 1. With this approach, we observed
instances where the translation model did not output CTE tiles from the
correct clusters. Thus, we replace translated CTE output with its nearest
neighbour from the correct cluster. Translated SMB test dataset levels are

shown in the Appendix.

5.3 Experiments

We evaluate our two-step level generation pipeline and CTE representation
by sampling levels for Super Mario Bros., a game with a skewed tile distri-
bution. We employ commonly-used PCGML metrics to assess the quality of
our outputs in comparison to the outputs of an LSTM trained on the VGLC
representation, original tile embeddings, and CTE. Additionally, we test our

approach’s ability to represent and generate levels for two unannotated games:

48

Bugs Bunny Crazy Castle and Genghis Khan. In this section, we describe our

experiments and report our results.

Dataset | LSTM Two-step LSTM LSTM on
on level gen- on CTE original
VGLC eration
tile em-
beddings
Leniency -0.0069 | -0.0096 -0.0054 -0.0021 -0.0130
+0.0084 | £0.0077 +0.0102 +0.0078 +0.0155
Density 0.1315 0.1669 0.1625 0.0485 0.0721
+0.0642 | £0.0654 +0.0600 £0.0310 £0.0172
Linearity 0.0515 0.0362 0.0466 0.7234 0.8208
+0.0729 | £0.0514 +0.0737 +0.3540 £0.3435
Interestingness 0.0254 0.0279 0.0227 0.0002 £ 0.0002
+0.0133 | £0.0114 40.0082 0.0005 +0.0003
Enemy Spar- 42.0036 | 34.6699 32.3738 025 £+ 0.0+0.0
sity +17.512 | £7.7747 +10.4389 0.25
Playability 86.4864 | 54.0 40.0 100.0* 0.0%*

Table 5.1: Comparative study of SMB generators based on PCGML tile met-
rics. Bold indicates mean values nearest and [talic indicates values farthest
from the original mean dataset values. Asterisks indicate theoretical values.

5.3.1 Level Generation for SMB

The training corpus for this experiment consists of the 37 levels from Super
Mario Bros. and Super Mario Bros. 2 (Japan) from the VGLC Corpus [61].
We analyze the performance of our two-step level generator for SMB level
generation and compare it against the results of LSTMs trained directly on
the original tile embeddings, CTE, and the VGLC representation [24], [60].
For all the level generation models the history sequence is maintained at 200
tiles and the network consists of three layers each comprised of 512 LSTM
cells. We partition the data as 80-10-10% train, test and validation split.
LSTMs trained directly on the original tile embeddings and CTE output the
continuous embedding vector of the next tile whereas the LSTMs trained on
discrete CTE (two-step level generation) and the VGLC output a distribution
over tiles with softmax activation at the final layer. This makes sampling

possible. The new levels are sampled tile by tile by generating rows left to

49

right then bottom to top.
Ideal output levels would match the style of existing SMB levels. [49]
suggested several metrics to assess the style of generated content in comparison

to the dataset.

e Leniency captures the difficulty of the level. Values closer to one indi-
cate more lenient levels [49]. We compute leniency as,

2r — (0.5%g) —e
T

leniency = (5.2)

where r, g, and e represent the counts for rewards, gaps, and enemies

respectively, and T is the total number of tiles in a level (I x w).

e Linearity measures how well a level fits to a line. It is calculated as the
mean squared error between the centre points of each platform and its

projection on the linear regression line [49].

e Interestingness is an important metric especially for evaluating gen-
erators for skewed tile distributions because the most probabilistic tile
is unlikely to be interesting. It measures the fraction of tiles that bring

visual variety to the level [58].

e Density is the proportion of solid tiles in the level. Density is a relevant
here, as we observe that it is possible for SMB generators to produce only

empty tiles because of their high probability [58].

e Enemy Sparsity measures the horizontal spread of the enemies across
the level [58]. Because SMB levels include lines of enemies, it is possible
for a generator to get stuck generating a continuous string of enemies.
We calculate enemy sparsity as:

ZEEE [z(e) — 7
|E|

EnemySparsity = (5.3)

where z is the z-position of an enemy, = the average x-position of ene-

mies, and |E| the total number of enemies.

20

e Playability measures the percentage of playable levels generated. We
run an A* agent provided in the VGLC to check for the existence of path
in a level [61].

As illustrated in Figure 5.1, we observe a notable improvement in the quality
of levels generated by our proposed two-step level generator with CTE in
comparison to the LSTM on original tile embeddings and LSTM on CTE.
Compared to the good examples of level generation, the bad ones are fairly
empty and consist of unreachable sections because of large platform gaps or
height (Figure 5.1(e)). Meanwhile, the good examples show the presence of
more interesting tiles and have a coherent structure better matching the style
of the dataset (Figure 5.1(d)). But these are only two examples.

Table 5.1 shows the results of the metrics-based evaluation between 50
output levels generated by our two-step level generator, LSTM on VGLC
representation, LSTM on original tile embeddings, LSTM on CTE and the
original SMB dataset. Level generation using discrete representations (VGLC
and discrete-CTE) consistently outperforms level generation using continuous
representations (original tile embedding and CTE) across all tile metrics. The
distribution of levels generated by the LSTM trained on the original tile em-
beddings and the LSTM trained on CTE is nowhere close to the distribution of
the original dataset. This is also evidenced in Figure 5.1 (b) and (c). We take
this to indicate that the two-step generation process allows CTE to compete
with the hand-authored VGLC representation.

These results reinforces the importance of a discrete representation and
sampling in level generation for levels with skewed tile distributions. Further,
our two-step level generator’s levels more closely resemble the training dis-
tribution compared to the VGLC generator levels in Leniency, Density and
Linearity. In a similar vein, although the VGLC generator outperforms our
approach for the other two metrics, we find the performance comparable. The
playability results are an oddity, since there are levels the provided A* agent
cannot complete in the original dataset but the LSTM on CTE levels (because
they only include flat ground) can always be completed. On the other hand,

o1

the VGLC and discrete-CTE level playability values are comparatively close.
We find these results valuable as unlike discrete-CTE, the VGLC benefits from
being human-authored.

Approximating the actual distribution of game levels accurately is diffi-
cult given the limited size of the test split. Therefore the Dataset column
summarizes metrics across the entire dataset. To provide evidence that the
model is not overfit, we report the minimum tile edit distance between clus-
ter representations of generated levels and the dataset levels of games in the

Appendix.

5.3.2 Level Generation for Unseen Games

We train our two-step CTE level generator to generate levels for two unseen
games: Bugs Bunny Crazy Castle (BBCC) and Genghis Khan. We down-
loaded 20 levels of BBCC and 41 of Genghis Khan as our training corpus?.
We chose these particular games because of their contrasting degree of struc-
ture variance, with BBCC being comparatively higher. For both games the
affordance information is missing. In such cases, the clustering relies on visual
and edge data.

BBCC is an action-puzzle Nintendo Entertainment System (NES) game
where the player moves Bugs through rooms collecting carrots. It has a set of
representative tiles consisting of solid brick patterned background B; boxing
gloves M, invincibility potions B, safes B, crates &, and ten thousand-pound
weights ® that can be used against the enemies in the game; and solid tiles
B 8 B M on which bugs can stand. Genghis Khan is a turn-based strategy
game. Its tiles exhibit comparative similarity in structure as well as colour.
Thus, generating levels for both games allows us to study the impact of struc-
tural variance in our learned representation.

We train a two-step level generator on both games by employing a simi-
lar process as for SMB. The only difference is that we pass a zero vector for
the affordances when extracting the CTE representation. We found the op-

timal number of clusters for the two-step generator was 8 and 24 for BBCC

Shttps://vgmaps.com/
52

https://vgmaps.com/

and Genghis Khan respectively. Examples of output levels are given in the

Appendix.

Bugs Bunny Crazy Castle === Generated levels Dataset

012
010
008
006
004
002

linearity

000

-0.02

-0.04
00100 00125 00150 0.0175 0.0200 0.0225 00250 0.0275 0.0300 00100 00125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300 -004 -002 000 002 004 006 008 010 012

interestingness interestingness linearity

Figure 5.3: Expressive range analysis for the unseen game: Bugs Bunny Crazy
Castle.

To evaluate the performance of the generator, we employed expressive range
analysis on the generated content in comparison to their respective datasets
[49]. Due to the limited size of test split, we use the entire dataset to estimate
the true distribution. We perform expressive range analysis on Interestingness,
Linearity and Density for BBCC. For Genghis Khan, we approximate only
Interestingness and Leniency. We do not calculate Linearity and Density since
it is not a platformer game. The BBCC metrics remain unchanged, as the
game is sufficiently similar to SMB. Interestingness in BBCC is calculated
as the frequency of tiles representing the items. Similarly, interestingness in
Genghis Khan is measured as the proportion of tiles that bring visual variety
to levels such as mountains &, forests &, towns #| and castles . Further,
we use the movement cost associated with each tile to calculate the Leniency.
We assign negative costs to tiles that are difficult to move across such as -5 for
mountains and castles, -6 for deserts, and -8 for rivers. In comparison, it costs
less to move across regular land, forests and towns thus we assign movement
costs of 3, 3, and 4 respectively. We calculate Leniency by summing these
movement costs normalized by the total number of tiles in a level.

Figure 5.3 and Figure 5.4 shows the expressive range analysis performed on
the generated levels of unannotated games in comparison to the entire original
datasets. As seen in Figure 5.3, for BBCC, our model covers a considerable
amount of the generative space, with a large amount of overlap with the orig-

inal levels. However, we found lower output interestingness than the true
53

distribution. For BBCC, the density of levels increases as linearity decreases,
this is due to the fact that as more platforms are generated vertically, levels

become denser due to the presence of platforms and stair tiles.

Genghis Khan

125 1 Dataset = Generated levels

leniency

00 02 04 06 08
interestingness

Figure 5.4: Expressive range analysis for the unseen game: Genghis Khan.

In comparison to BBCC, the Interesting-Leniency expressivity analysis for
Genghis Khan (Figure 5.4) does not match the training distribution as closely,
though there is still significant overlap. We find that the generated outputs
have more challenge, more difficult terrain, compared to the training dataset.
Although these results can be improved, we find them promising, indicating
the capability of the generator to design levels for games based only on image

data.

o4

Chapter 6

Conclusion

Procedural Level Generation via Machine Learning (PLGML) involves training
machine learning models on existing data to generate novel game levels. While
different level generation techniques have been studied in this domain, data
scarcity and lack of a consistent data representation across different games
remain core challenges in the PLGML community.

This thesis presented an initial approach to learn an initial set of tile em-
beddings and a more specialized representation, clustering-based tile embed-
dings (CTE). We initially employed a two-branch autoencoder network that
compresses a tile’s visual, behavioural and contextual information into a 256-
dimensional embedding vector. Our original tile embedding representation
demonstrated its ability to reasonably approximate unseen tiles’ behaviour
and to serve as a representation for the level generation of annotated and
unannotated games. However, we found that our initial tile embedding rep-
resentation performed poorly at generating levels for games with skewed tile
distributions, such as Super Mario Bros. (SMB). A majority of a SMB level
is occupied by empty tiles. The continuous nature of tile embeddings does
not allow a tile embedding-based level generator to approximate a probability
distribution over the next possible tiles. Therefore, a tile embedding-based
level generator adopts a greedy sampling strategy, generating tiles with the
highest probability of occurrence. This led to the generation of empty levels
for Super Mario Bros..

To address this issue, we employed clustering to learn a discrete counterpart

95

of the continuous tile embedding representation. In cases where the affordance
information is missing, we observed a lack of clear separation between types of
tiles. The clustering decisions were predominantly based on the RGB repre-
sentation of a tile. Therefore, tiles of similar colour were clustered together. To
discourage this, we made two modifications to our original approach. We pre-
sented a modified tile embedding representation by incorporating edge feature
information and introduced a cluster-based loss to our autoencoder training.
We refer to the new 256-dimensional embedding vectors as clustering-based
tile embeddings (CTE), and their discrete counterpart as our discrete CTE
representation. We then presented a novel two-step level generation pipeline
that can leverage the benefits of our discrete representation for sampling new

levels and can take advantage of the expressivity of persistent tile embeddings.

6.1 Limitations

The CTE representation and our two step level generation pipeline demon-
strated improved performance in generating levels for Super Mario Bros., and
the ability to generate levels for unannotated games. Notably, our approach
also shows potential in generating levels of non-platformer games such as
Genghis Khan, a turn-based strategy game. However, we can still improve
our pipeline further, especially for games with structurally similar tiles and
missing affordances. We employ Silhouette Score and the Structural Similar-
ity Index to evaluate the performance of the Clustering and Translator modules

in the two-step level generation pipeline.

Clustering Translation

Number of Clusters Silhouette Score Structural Similarity Index

SMB 11 0.91 0.9976 + 0.0014
Genghis Khan 8 0.39 0.8689 £ 0.01
BBCC 24 0.53 0.9792 £ 0.0079

Table 6.1: Evaluating clustering and translation modules of our two-step level
generation pipeline.

Table 6.1 shows the results of these evaluations. We find that clustering is

a crucial component of our level generation pipeline and the performance of
56

the translation model improves with the quality of the clustering. For Genghis
Khan, the missing affordances and lack of structural variability between rep-
resentative tiles yielded a low silhouette score. A low silhouette score is an
indication of arbitrary clustering. If the cluster participants have no particular
structure, the translation model struggles to map cluster numbers to embed-

dings and hence does not converge well.

6.2 Future Work

Our tile embedding representation can support level generation tasks for both
annotated and unannotated games, greatly expanding the set of possible do-
mains where we can apply PLGML. We propose the following avenues for
future research to learn stronger embedding representations: (1) Variational
Autoencoders (VAE) are an advancement over regular autoencoders that ap-
proximate a distribution for each latent variable and thus can effectively be
used as a representation learning model. A recent trend has been towards opti-
mizing the latent space of a VAE for clustering, commonly referred to as Deep
Clustering [31]. In a similar vein, a Gaussian Mixture Variational Autoencoder
(GMVAE) is a type of VAE imposing a mixture of Gaussians as a prior on the
latent space [10]. While in the presented work, we approximate the mixture
of Gaussians before training an autoencoder, Deep Clustering or a GMVAE
could be used to learn a more robust representation [68]. (2) Discrete rep-
resentations have benefits over continuous representation for several PCGML
tasks. A Vector Quantized VAE is a variant of the VAE that quantizes the
latent space to learn a discrete latent representation [41]. Leveraging a VQ-
VAE could potentially simplify our current level generation pipeline. Such an
implementation opens the possibility to having a common discrete represen-
tation across multiple games and thus learning a generalized level generator.
Before applying a VQ-VAE to learning tile embeddings, we would need to ad-
dress a number of caveats. In our current work, we reflect on the idea that
continuous and discrete representations are both needed for level generation.

While discrete representations are a natural fit for many applications, learn-

o7

ing only discrete representations can limit the expressivity of the generator.
Further, these representations cannot be applied directly in tasks based on
interpolating between points in a learned latent space. For example, in gener-
ating novel tiles. This might be relevant in another future application of CTE:
the PLGML task of level blending [42]. (3) In our current implementation,
we use a weighted binary cross-entropy loss on reconstructed affordances to
tackle dataset imbalance. While this provided a significant improvement, we
need to generalize better over the distribution of labels with fewer instances.
To address this challenge, future research could investigate data augmentation
and employ data sampling techniques. We also suggest expanding the affor-
dances as a set of 13 labels is fairly limiting for the model to be able to express
any 2D tile-based game level. If we expand the affordances, we can include
additional games of different styles and genres, which will enrich the training

corpus.

6.3 Takeaways

The PLGML community has made great strides in designing level generation
and blending techniques. However, most of the work is limited to academia.
A primary reason for this is the limited availability of high-quality represen-
tations of game levels. As a result, a significant percentage of PLGML studies
draw on a select few games for which clean annotations are available. Through
our presented work, we aim to push the boundaries of PLGML research by
introducing tile embeddings, a general representation of game levels. Tile em-
beddings have the potential to represent game levels across various domains
without human effort, allowing us to build much more generalisable PLGML
models. Therefore, we encourage PLGML researchers to play a part in making
them stronger. We hope the PLGML community benefits from our contribu-

tion and look forward to seeing their application in future research.

o8

References

1]

[10]

G. Alain and Y. Bengio, “What regularized auto-encoders learn from
the data-generating distribution,” The Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 3563-3593, 2014.

S. Alvernaz and J. Togelius, “Autoencoder-augmented neuroevolution
for visual doom playing,” in 2017 IEEE Conference on Computational
Intelligence and Games (CIG), IEEE, 2017, pp. 1-8.

S. Beaupre, T. Wiles, S. Briggs, and G. Smith, “A design pattern ap-
proach for multi-game level generation,” in Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, vol. 14, 2018.

G. R. Bentley and J. C. Osborn, “The videogame affordances corpus,”
in 2019 Experimental AI in Games Workshop, 2019.

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern recognition, vol. 37, no. 9, pp. 17571771,
2004.

J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on pattern analysis and machine intelligence, no. 6, pp. 679-698,
1986.

Y. Chen and M. J. Zaki, “Kate: K-competitive autoencoder for text,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 85-94.

K. Cho, B. Van Merriénboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXw preprint arXiw:1409.1259, 2014.

S. Clinchant and F. Perronnin, “Aggregating continuous word embed-
dings for information retrieval,” in Proceedings of the workshop on con-
tinuous vector space models and their compositionality, 2013, pp. 100—
109.

N. Dilokthanakul, P. A. Mediano, M. Garnelo, et al., “Deep unsuper-
vised clustering with gaussian mixture variational autoencoders,” arXiv
preprint arXiw:1611.02648, 2016.

29

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, ser. KDD’96, Portland, Oregon: AAAIT Press,
1996, pp. 226-231.

[12] G. Finley, S. Farmer, and S. Pakhomov, “What analogies reveal about
word vectors and their compositionality,” in Proceedings of the 6th joint
conference on lezical and computational semantics (* SEM 2017), 2017,
pp. 1-11.

[13] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in Proceedings of the IEEE international confer-
ence on computer vision, 2017, pp. 5736-5745.

[14] E. Giacomello, P. L. Lanzi, and D. Loiacono, “Doom level generation
using generative adversarial networks,” in Proceedings of the 2018 IEEE
Games, Entertainment, Media Conference (GEM), IEEE, 2018, pp. 316
323.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[16] M. Guzdial, J. Reno, J. Chen, G. Smith, and M. Riedl, “Explainable
pcgml via game design patterns,” arXiv preprint arXiv:1809.09419, 2018.

[17] M. Guzdial and M. Riedl, “Game level generation from gameplay videos,”
in Proceedings of the AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, vol. 12, 2016.

[18] D.Haand J. Schmidhuber, “World models,” arXiv preprint arXiv:1803.10122,
2018.

[19] D. M. Hawkins, “The problem of overfitting,” Journal of chemical in-
formation and computer sciences, vol. 44, no. 1, pp. 1-12, 2004.

[20] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clus-
tering: Discriminative embeddings for segmentation and separation,”
in Proceedings of 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016, pp. 31-35. borL: 10.1109/
ICASSP.2016.7471631.

[21] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” science, vol. 313, no. 5786, pp. 504-507,
2006.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[23] S. Toffe and C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015. arXiv: 1502 .03167
[cs.LG].

60

https://doi.org/10.1109/ICASSP.2016.7471631
https://doi.org/10.1109/ICASSP.2016.7471631
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

[24]

[25]

[26]

[27]

28]

[29]

[30]
[31]

[32]

[33]

M. Jadhav and M. Guzdial, “Tile embedding: A general representation
for level generation,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 17, 2021, pp. 34—
41.

R. Jain, A. Isaksen, C. Holmgard, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016, p. 9.

I. Karth, B. Aytemiz, R. Mawhorter, and A. M. Smith, “Neurosymbolic
map generation with vg-vae and wfc,” in The 16th International Con-
ference on the Foundations of Digital Games (FDG) 2021, 2021, pp. 1—
6.

H. Keller, H. Mollering, T. Schneider, and H. Yalame, “Balancing qual-
ity and efficiency in private clustering with affinity propagation,” in
Proceedings of the 18th International Conference on Security and Cryp-
tography, SECRYPT 2021, July 6-8, 2021, S. D. C. di Vimercati and
P. Samarati, Eds., SCITEPRESS, 2021, pp. 173-184. por: 10.5220/
0010547801730184. [Online|. Available: https://doi.org/10.5220/
0010547801730184.

N. Y. Khameneh and M. Guzdial, “Entity embedding as game represen-
tation,” arXiv preprint arXw:2010.01685, 2020.

S. W. Kim, Y. Zhou, J. Philion, A. Torralba, and S. Fidler, “Learning
to simulate dynamic environments with gamegan,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1231-1240.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiw:1312.6114, 2013.

K.-L. Lim, X. Jiang, and C. Yi, “Deep clustering with variational au-
toencoder,” IEEFE Signal Processing Letters, vol. 27, pp. 231-235, 2020.

G. Liu, O. Schulte, P. Poupart, M. Rudd, and M. Javan, “Learning agent
representations for ice hockey,” in Proceedings of the Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020,
pp. 18 704-18 715. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/d90e5b6628b4291225cbalbdc643c295-Paper .
pdf.

J. Marino, W. Reis, and L. Lelis, “An empirical evaluation of evalua-
tion metrics of procedurally generated mario levels,” in Proceedings of

the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 11, 2015.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXww preprint arXiv:1301.3781,
2013.

61

https://doi.org/10.5220/0010547801730184
https://doi.org/10.5220/0010547801730184
https://doi.org/10.5220/0010547801730184
https://doi.org/10.5220/0010547801730184
https://proceedings.neurips.cc/paper/2020/file/d90e5b6628b4291225cba0bdc643c295-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d90e5b6628b4291225cba0bdc643c295-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d90e5b6628b4291225cba0bdc643c295-Paper.pdf

[37]

[38]

[39]

[40]

[41]

[42]

M. Nissim, R. van Noord, and R. van der Goot, “Fair is better than
sensational: Man is to doctor as woman is to doctor,” Computational
Linguistics, vol. 46, no. 2, pp. 487-497, 2020.

K. Park, B. W. Mott, W. Min, K. E. Boyer, E. N. Wiebe, and J. C. Lester,
“Generating educational game levels with multistep deep convolutional
generative adversarial networks,” in 2019 IEEE Conference on Games
(CoG), IEEE, 2019, pp. 1-8.

L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks of
the trade, Springer, 1998, pp. 55-69.

M. Ranzato, Y.-L. Boureau, Y. Cun, et al., “Sparse feature learning
for deep belief networks,” Advances in neural information processing
systems, vol. 20, 2007.

D. A. Reynolds, “Gaussian mixture models.,” Encyclopedia of biomet-
rics, vol. 741, no. 659-663, 2009.

P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53—65, 1987.

A. Saravanan and M. Guzdial, “Pixel vg-vaes for improved pixel art rep-
resentation,” CoRR, vol. abs/2203.12130, 2022. DOI: 10.48550/arXiv.
2203 .12130. arXiv: 2203.12130. [Online|. Available: https://doi .
org/10.48550/arXiv.2203.12130.

A. Sarkar and S. Cooper, “Generating and blending game levels via
quality-diversity in the latent space of a variational autoencoder,” in
Proceedings of the 16th International Conference on the Foundations of
Digital Games (FDG) 2021, 2021, pp. 1-11.

A. Sarkar, A. Summerville, S. Snodgrass, G. Bentley, and J. Osborn,
“Exploring level blending across platformers via paths and affordances,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, 2020, pp. 280-286.

A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blending between
games using variational autoencoders,” arXiv preprint arXiv:2002.11869,
2020.

G. Schwarz, “Estimating the Dimension of a Model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461-464, 1978. DOI: 10.1214/a0s/1176344136.
[Online]. Available: https://doi.org/10.1214/a0s/1176344136.

S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K.
Soman, “Stock price prediction using Istm, rnn and cnn-sliding win-
dow model,” in 2017 international conference on advances in computing,
communications and informatics (icacci), IEEE, 2017, pp. 1643-1647.

62

https://doi.org/10.48550/arXiv.2203.12130
https://doi.org/10.48550/arXiv.2203.12130
https://arxiv.org/abs/2203.12130
https://doi.org/10.48550/arXiv.2203.12130
https://doi.org/10.48550/arXiv.2203.12130
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136

[47]

[48]

[49]

[50]

[51]

[55]

[56]

N. Simidjievski, C. Bodnar, I. Tariq, et al., “Variational autoencoders for
cancer data integration: Design principles and computational practice,”
Frontiers in genetics, vol. 10, p. 1205, 2019.

G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of 2d
platformer levels,” in Proceedings of the 2008 ACM SIGGRAPH sympo-
sium on Video games, 2008, pp. 75-80.

G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Con-
tent Generation in Games, ser. PCGames 10, Monterey, California: As-
sociation for Computing Machinery, 2010, 1SBN: 9781450300230. DOTI:
10.1145/1814256.1814260. [Online|. Available: https://doi.org/10.
1145/1814256.1814260.

G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha,
“Launchpad: A rhythm-based level generator for 2-d platformers,” IEEE
Transactions on computational intelligence and Al in games, vol. 3, no. 1,
pp. 1-16, 2010.

S. Snodgrass, “Towards automatic extraction of tile types from level
images,” in Joint Proceedings of the AIIDE 2018 Workshops co-located
with 14th AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE 2018), Edmonton, Canada, November 13-
14, 2018, J. Zhu, Ed., ser. CEUR Workshop Proceedings, vol. 2282,
CEUR-WS.org, 2018. [Online|. Available: http://ceur-ws.org/Vol-
2282/EXAG}%5C_119.pdf.

S. Snodgrass and S. Ontanén, “Generating maps using markov chains,”
in Ninth Artificial Intelligence and Interactive Digital Entertainment
Conference, 2013.

——, “Procedural level generation using multi-layer level representations
with mdmcs,” in 2017 IEEE conference on computational intelligence
and games (CIG), IEEE, 2017, pp. 280-287.

K. Sorochan, J. Chen, Y. Yu, and M. Guzdial, “Generating lode runner
levels by learning player paths with Istms,” in The 16th International
Conference on the Foundations of Digital Games (FDG) 2021, 2021,
pp. 1-7.

M. S. Sorower, “A literature survey on algorithms for multi-label learn-
ing,” Oregon State University, Corvallis, vol. 18, pp. 1-25, 2010.

A. Summerville, “Expanding expressive range: Evaluation methodologies
for procedural content generation,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,

vol. 14, 2018.

63

https://doi.org/10.1145/1814256.1814260
https://doi.org/10.1145/1814256.1814260
https://doi.org/10.1145/1814256.1814260
http://ceur-ws.org/Vol-2282/EXAG%5C_119.pdf
http://ceur-ws.org/Vol-2282/EXAG%5C_119.pdf

[57]

A. Summerville, M. Behrooz, M. Mateas, and A. Jhala, “What does
that?-block do? learning latent causal affordances from mario play traces,”
in Workshops at the Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

A. Summerville, J. R. H. Marino, S. Snodgrass, S. Ontanén, and L. H. S.
Lelis, “Understanding mario: An evaluation of design metrics for plat-
formers,” in Proceedings of the 12th International Conference on the
Foundations of Digital Games, ser. FDG 17, Hyannis, Massachusetts:
Association for Computing Machinery, 2017, 1SBN: 9781450353199. DOTI:
10.1145/3102071.3102080. [Online|. Available: https://doi.org/10.
1145/3102071.3102080.

A. Summerville, S. Snodgrass, M. Guzdial, et al., “Procedural content
generation via machine learning (pcgml),” IEEE Transactions on Games,
vol. 10, no. 3, pp. 257-270, 2018.

A. J. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via Istms,” in Proceedings of the First Joint International
Conference of Digital Games Research Association and Foundation of
Digital Games, DiGRA/FDG 2016, Dundee, Scotland, UK, August 1-6,
2016, S. Bjork, C. O’Donnell, and R. Bidarra, Eds., Digital Games Re-
search Association/Society for the Advancement of the Science of Digital
Games, 2016. [Online]. Available: http://www.digra.org/digital-
library/publications/super-mario-as-a-string-platformer-
level-generation-via-1lstms/.

A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontanén, “The
vgle: The video game level corpus,” in Proceedings of the 7th Workshop
on Procedural Content Generation, 2016.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learn-
ing with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

S. Thakkar, C. Cao, L. Wang, T. J. Choi, and J. Togelius, “Autoencoder
and evolutionary algorithm for level generation in lode runner,” in 2019
IEEE Conference on Games (CoG), IEEE, 2019, pp. 1-4.

L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Jour-
nal of machine learning research, vol. 9, no. 11, 2008.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-

ceedings of the 25th international conference on Machine learning, 2008,
pp- 1096-1103.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: Lessons
learned from the 2015 mscoco image captioning challenge,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 39, no. 4,
pp. 652-663, 2016.

64

https://doi.org/10.1145/3102071.3102080
https://doi.org/10.1145/3102071.3102080
https://doi.org/10.1145/3102071.3102080
http://www.digra.org/digital-library/publications/super-mario-as-a-string-platformer-level-generation-via-lstms/
http://www.digra.org/digital-library/publications/super-mario-as-a-string-platformer-level-generation-via-lstms/
http://www.digra.org/digital-library/publications/super-mario-as-a-string-platformer-level-generation-via-lstms/

[67]

X.Yang, D. Lo, X. Xia, L.. Bao, and J. Sun, “Combining word embedding
with information retrieval to recommend similar bug reports,” in 2016

IEEE 27Th international symposium on software reliability engineering
(ISSRE), IEEE, 2016, pp. 127-137.

7. Yang, A. Sarkar, and S. Cooper, “Game level clustering and generation
using gaussian mixture vaes,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 16,
2020, pp. 137-143.

65

Appendix A
Additional Outputs and

Discussions
Game Train Test
SMB 768.92 + 140.98 743.06 + 101.67
Genghis Khan 39.32 + 3.93 40.98 £ 5.18
BBCC 192.39 + 22.30 201.84 4+ 19.24

Table A.1: The edit distances observed between the generated cluster rep-
resentations and the training and test data suggests that the model is not

overfitting.

Super Mario Bros Lode Runner
Tile Example Tile Sprite Median | Tile Example Tile Sprite Median
- || 88.33% . || 58.09%
E & 0 [726% | E [21.59%
S 0.99% | G = 8.52%
X 0.55% | b | 4.11%
< i1} 0.51% | # =] 3.26%

Table A.2: Median percentages of top five tiles occurring in a level. This table
illustrates skewed tile distribution in Super Mario Bros and comparatively

balanced tile distribution in lode runner tiles.

66

ve0e00

(a) Test Level

(b) Translated output

9
87888 a9

(a) Good Examples

@
EEEEElNSNEEENEEENNENEEE SESEEEEEEEE
L]

(b) Bad Examples

Figure A.1: Figure (a) shows a test SMB dataset level and Figure (b) shows
its translated output obtained using the second step of our two-step genera-
tor. The differences between the two are highlighted in yellow. To get this
translated version we convert the dataset levels of a game to: 1) their cluster
representation using the DBSCAN and 2) their CTE representation using our
newly trained autoencoder. We use these cluster representation and their cor-
respoding CTE representation of dataset levels to train the translation model
as discussed in the two-step level generation process. Figure (c¢) and (d) show
more examples of SMB level generation output with the two-step level gener-
ator trained on our CTE representation.

67

Test Level

£
°
3
3
5
%
2
o
8
3
o

(b) Good Examples

(c) Bad Examples

Figure A.2: Level Generation for Bugs Bunny Crazy Castle : (a) Test dataset
level (left) and its corresponding translated output (right) with differences
highlighted in yellow (b) Examples of good generation output (¢) Examples
of bad generation output. Unlike good examples as in shown in (b), bad
examples in (c¢) show the presence of unreachable level sections due to the lack
of portals/doors, and inconsistency in level structure.

(a)

Test Level

(b) Good Examples

(c) Bad Examples

Figure A.3: Level Generation for Genghis Khan : (a) Test dataset level (left)
and its corresponding translated output (right) with differences highlighted
in red (b) Example of good generation output(c) Example of bad generation
output. The dataset levels of Genghis Khan only have one pair of town and
castle tiles each whereas examples of bad generation (c), have multiple pairs.
The bad levels also contain randomly placed mountain and forest tiles, instead
of the clustered appearance found in (b) and in the original dataset.

68

	Introduction
	Background Material
	Artificial Neural Networks
	Autoencoders
	Undercomplete Autoencoders

	Recurrent Neural Network
	Long Short Term Memory Network

	Clustering
	Gaussian Mixture Models
	Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

	Common Video Game Terminology
	Platformer Games
	Level Design

	Literature Review
	Autoencoders
	Level Representation
	Embedding Vectors

	Tile Embedding: Initial Approach
	Data Preparation
	Local Pixel Context
	Semantic Context and Unified Affordances

	Model Architecture
	Evaluation
	Cross-fold Affordances Analysis
	LSTM for Level Generation-Annotated Game
	LSTM for Level Generation- Unannotated Game

	Results
	Cross-fold Affordances Analysis
	LSTM for Level Generation-Annotated Game
	LSTM for Level Generation-Unannotated Game

	Discussion and Takeaways

	Clustering-based Tile Embedding: Dealing with games having skewed tile distribution
	CTE: Cluster-based Tile Embeddings
	Incorporating Edge Information
	Introducing Clustering Loss

	Level Generation for Super Mario Bros.
	The Curious Case of SMB Level Generation:
	Two Step Level Generation

	Experiments
	Level Generation for SMB
	Level Generation for Unseen Games

	Conclusion
	Limitations
	Future Work
	Takeaways

	References
	Appendix Additional Outputs and Discussions

