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ABSTRACT

The polynomial representations of the general linear, symplectic, and quantum 

general linear groups are studied. Three methods which yield spanning sets for the 

irreducible polynomial GL(n, fQ-module L(A) are discussed. It is shown that the 

spanning sets given by the first two methods are the same, up to sign, and are 

related to the third spanning set by the Desarmenien matrix.

A symplectic version of the Desarmenien matrix is defined and it is shown that 

this matrix gives a symplectic straightening algorithm. A standard basis is given for 

the symplectic Weyl module and as a corollary to this basis theorem, a spanning set 

for the irreducible polynomial Sp(2m, AT)-module, L (A), is obtained. The basis given 

for the symplectic Weyl module is shown to be related to the basis for the symplectic 

Schur module by the symplectic Desarmenien matrix.

Quantum analogues of these results are also given. In particular, a quantized ver­

sion of the Desarmenien matrix is defined which proves to give a quantum straight­

ening algorithm. A new proof of the standard basis theorem for the q-Weyl module 

is given and it is shown that the standard basis for the g-Weyl module is related to 

the basis for the g-Schur module via the quantized Desarmenien matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A C K N O W L E D G E M E N T S

I would like to express my deep gratitude to my supervisor Dr. Gerald Cliff whose 

guidance I am so fortunate to have had throughout my studies. Dr. Cliff was happy 

to discuss mathematics with me at any time and I have benefited immensely from 

his extensive breadth of knowledge. I have great admiration for him and I will miss 

our conversations very much.

For financial support during the preparation of this thesis, I would like to thank 

Dr. Gerald Cliff, Dr. Alfred Weiss, and Dr. Rene Poliquin.

Finally, I would like to thank my dear husband Ross for his unconditional love 

and support and, most importantly, for always making me laugh.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 In tro d u c tio n  1

2 P re lim in arie s  4

2.1 Young ta b le a u x .............................................................................................  4

2.2 The Schur algebra and polynomial GL(n, .ft')-modules.........................  6

2.3 The Schur module ....................................................................................... 9

2.4 Weights and weight s p a c e s .......................................................................... 14

2.5 The Weyl module  .......................................................................................  15

3 D e te rm in in g  irred u c ib le  GL(n, A ^-m odules 18

3.1 In troduction ....................................................................................................  18

3.2 The first spanning s e t .................................................................................... 19

3.3 The Pittaluga-Strickland m e th o d .............................................................  24

3.4 A third spanning set and the Desarmenien m a t r ix ................................  35

4 T h e  sym plectic  W eyl m odu le  39

4.1 In troduction ....................................................................................................  39

4.2 The hyperalgebras for GL(n, K)  and Sp(2m, K ) ...................................  41

4.3 The symplectic Desarmenien m a trix ..........................................................  45

4.4 A basis for the symplectic Weyl m odule............................................   52

4.5 A spanning set for the irreducible ?7^-module L(A ) .............................  59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 A q u a n tu m  version  of th e  D esarm en ien  m a tr ix  61

5.1 In troduction ...................................................................................................  61

5.2 The quantized h y p era lg eb ra ......................................................................  62

5.3 A quantum version of the Desarmenien m a tr ix ........................................ 67

5.4 The standard basis theorem for Ag(A)..................................................... 81

B ib liography  88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

Polynomial representations of GL(n, C) were first studied by Isaai Schur in his doc­

toral thesis of 1901, [S]. There he proved that the irreducible polynomial repre­

sentations of GL(n, C) of homogeneity r are in one-to-one correspondence with the 

partitions of r into at most n parts. Many others have worked to give characteristic- 

free versions of his results. One of the first major works in this direction was that 

of Carter and Lusztig [CL], There they work over an infinite field K  and use the 

hyperalgebra for GL(n, K )  to construct for each partition A of r > 0 a GL(n, K)-  

module A(A), called the Weyl module, which is a subspace of tensor space. Each 

Weyl module A (A) possesses a unique maximal submodule M  so the quotient mod­

ule L(A) =  A(A) /M  is irreducible. Aloreover, the set of G L (n ,K )-modules L(A), 

where A is a partition of r into not more than n parts, forms a complete list of non­

isomorphic irreducible polynomial GL(n, JT)-modules. When K  has characteristic 

zero, A(A) and L(A) are isomorphic and Weyl’s dimension formula ([H], §24.3 ) gives 

the dimension of A (A). When K  has non-zero characteristic the dimensions of the 

irreducible GL(n, W)-modules L(A) are in general not known.

In the celebrated work of Green [G], Green maps out the entire polynomial repre­

sentation theory of GL(n, K )  without the use of the hyperalgebra. There he replaces 

Carter and Lusztig’s hyperalgebra with certain finite dimensional JT-algebras called 

Schur algebras. The Schur algebras may be used to study polynomial representations

1
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of GL(n, K),  where K  is any infinite field, from a combinatorial perspective.

Throughout this thesis, we assume that K  is an infinite field of arbitrary charac­

teristic. We begin with a preliminary chapter, which follows [G], where we discuss 

the theory of Young tableaux and polynomial representations of GL(n, K).  In Chap­

ter 3 we address the problem of finding the dimensions of the elusive irreducible 

GL(n, JT)-modules L{A). We give three different methods which yield spanning sets 

for L (A). We prove that the first two spanning sets coincide up to sign and show 

that they are related to the third via an upper triangular, unimodular matrix known 

as the Desarmenien matrix. Various versions of this matrix play a significant role 

throughout this dissertation.

From there we shift our attention to the symplectic group, Sp(2m, K). Using 

the hyperalgebra for GL(n, K)  and semistandard Young tableaux of shape A, Carter 

and Lusztig proved the standard basis theorem for the Weyl module, A (A), in [CL]. 

There are also Weyl modules for the symplectic group Sp(2m, K),  but a symplectic 

version of the standard basis theorem has not been given. In Chapter 4 we provide a 

standard basis theorem for the symplectic Weyl module using the symplectic tableaux 

of R. C. King [K] and operators in the hyperalgebra for Sp(2m, K).

To accomplish our goal, we develop a symplectic version of the Desarmenien 

matrix. The Desarmenien matrix is defined in [De] and [DKR] using what they call 

Capelli operators, which can be viewed as elements of the hyperalgebra for G L(n , K). 

This matrix is interesting in its own right and may be looked at from three different 

viewpoints. It is a combinatorial object in that the entries of the matrix may be 

determined in a purely combinatorial manner, it provides a straightening algorithm 

for writing a given bideterminant as a linear combination of bideterminants given by 

semistandard A-tableaux, and it provides the connection between the Carter-Lusztig 

basis for the Weyl module, A(A), and the basis of bideterminants for the Schur 

module, V(A). We prove that our matrix is upper triangular and unimodular, and 

that it gives a straightening algorithm for bideterminants in the symplectic Schur 

module. We proceed to employ this matrix to prove our symplectic standard basis

2
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theorem and our proof shows, as in the original setting, that the basis we give and 

the basis of semistandard symplectic bideterminants for the symplectic Schur module 

are connected via our matrix. We close the chapter by giving a spanning set for the 

irreducible polynomial representation, L(X), of Sp(2m,K).

In Chapter 5, we work in the quantized version of the hyperalgebra for GL(n, K). 

Given an indeterminate q, we have the C(g)-algebra U<c{q) , called the quantized uni­

versal enveloping algebra. Let A  denote Z[q, g_1], the ring of Laurent polynomials 

in q. There is an integral form Ua  for Uc(q), where Ua  is an *4-subalgebra of UC(q) • 

The quantum hyperalgebra, Uq, is defined by base change; Uq =  Ua  ®a  K . This is 

an interesting object of study and when one sets q = 1, the classical theory is recov­

ered. Thus, results about the classical hyperalgebra for GL(n, K )  are special cases of 

results about the quantized hyperalgebra. Even more interesting is the case where q 

is taken to be a pth root of unity in K,  a field of characteristic zero. In this case, the 

representation theory of Uq bears a striking resemblance to the representation theory 

of the classical hyper algebra for GL(n, F) when F  has characteristic p. Thus, it is 

natural to see if our results in the previous chapters quantize.

We begin by defining a quantized version of the Desarmenien matrix. Our ma­

trix is an upper triangular, invertible matrix and gives a straightening algorithm for 

quantum bideterminants in the g-Schur module. We also use this matrix to prove 

the standard basis theorem for the g-Weyl module. This is not the first proof of this 

theorem; it was proved previously by Dipper and James [DJ] and by R. Green [Gr]. 

Our proof is substantially different from the former two and as a consequence of our 

proof, we see that the basis of semistandard quantum bideterminants for the g-Schur 

module is related to the standard basis for the g-Weyl module by our quantized 

Desarmenien matrix. We conclude the dissertation with a discussion of the spanning 

set for the irreducible Uq-module L q(A) that arises as a consequence of the standard 

basis theorem.

3
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Chapter 2

Preliminaries

2.1 Young tableaux

Throughout the thesis we take K  to be an infinite field and n  and r fixed positive 

integers. If m  is a positive integer, let m  =  { 1 , . . . ,  m}. Most of this chapter follows 

Green [G].

A partition of r is a fc-tuple A =  (Ai,. . . ,  A*,) where A* € N, Ai > A2 >  . . .  >  A*,, 

and 1 — r - Throughout the chapter we work with a fixed partition A of r.

The Young diagram of shape A is the set

[A] =  {(*, j)  : * >  1,1 <  j  < A,}.

The Young diagram of shape A is usually depicted in the plane by an arrangement of 

r boxes in k left-justified rows with the ith  row consisting of Aj boxes.

E x am p le  2.1

If r = 5, then A =  (2,2,1) is a partition of r and the Young diagram of shape A is

The conjugate of A is the 5-tuple p, =  (/ri,/X2, ■.. , n s) where Hi is the length of 

the ith  column of the Young diagram of shape A. As can been seen by examining 

Example 2.1, the conjugate of the partition A =  (2,2,1) is n = (3,2).

4
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A A-tableau is a map T  : [A] —> n  depicted in the plane by filling the boxes of the 

Young diagram of shape A with numbers from the set n. The map T  is not necessarily 

bijective.

E xam ple  2.2

If A =  (2,2,1), the following are A-tableaux:

1 1 3 1
2 4 9 4 C

O

3 O
S

The content of a A-tableau T  is the n-tuple a  =  (au, . . . ,  a n) where is the 

number of entries equal to i in T. In Example 2.2, if we let n  =  6, the first tableau 

has content a  =  (2 ,1 ,1 ,1 ,0 ,0) and the second has content a  =  (1 ,0 ,2 ,1 ,0 ,1).

D efin ition  2.1 A X-tableau is called semistandard if the entries in each row increase 

weakly from left to right and the entries in each column increase strictly from top to 

bottom.

In Example 2.2, the first tableau is semistandard while the second is not.

A basic X-tableau is a bijection T  : [A] —> r. There are many choices for T ; in
■x-s

this work we shall always take T  to be the A-tableau which is obtained by filling the 

Young diagram of shape A with the numbers 1 , . . . ,  r canonically across the rows. For 

a given partition A of r, we denote this basic A-tableau by T\.

Let I(n,  r) denote the set of r-tuples I  =  ( i i , . . . ,  ir) with ip G n  for 1 < p < r. 

Each I  G /(n , r) is in fact a function I  : r  —> n. Given a A-tableau T, we will 

sometimes associate a unique I  G /(n , r) with T  where T  = I  o T\. We denote T  by 

Tj in this case. Thus, Tj is the A-tableau that arises from filling the Young diagram 

of shape A canonically across the rows with the numbers in I.

E x am p le  2.3

5), then Tj =

5
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Let Sr denote the symmetric group on r letters. We define a right action of Sr on 

J(n, r) by

I  • <J — (v i, . . . , ior). (2.1)

Then Sr acts on the set of A-tableaux with entries from n  by Tjo — Ti.a. The column 

stabilizer of T\, denoted C(T\), is the set of a  € Sr which preserve the columns of T\ 

under this action and the signed column sum for T\ is the sum

( C ( f A)} =  sgn(a)a.
<reC(Tx)

E xam ple  2.4

Let A =  (2,2). Then T\ 1 2
3 4

and C{T\) =  {(1), (13), (24), (13)(24)}.

2.2 The Schur algebra and polynomial GL(n, K)- 

modules

Let 1 < i , j  < n  and define Xij : GL(n, K)  —> K  to be the function which associates 

each matrix g =  {gij)i<ij<n with its i j th  entry The function is called the i j th  

coordinate function of GL(n, K).

D efin ition  2.2 Define A(n) to be the K-algebra generated by the n 2 coordinate func­

tions x^ ,  1 < i, j  < n.

Since K  is infinite, we may regard A(n) as the algebra of all polynomials over K  in 

the n2 indeterminates x ^ ,  1 < i, j  < n. Let ^4(n, r) be the subspace of A (n ) consisting 

of polynomials in the x ^  which are homogeneous of degree r. The iL-algebra A (n ) 

has grading

A(n) =  ®r>oA(n, r)

where A(n, 1) — K 1.

6
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Given I  — (ii, and J  = ( j i , .. - , j r) in I{n ,r),  we let x ItJ denote the

element x ^ x ^  ■ • ■ Xirjr in A(n, r). The symmetric group Sr acts on I(n, r) x /(n , r) 

by (/, J )  • cj =  ( I  ■ a, J  ■ a) where I  • a  is the right action defined in (2.1). Given 

I, J, I', J' 6 I{n, r), we write /  ~  J  if there exists a permutation a Q ST with J  — I - a  

and (/, J )  ~  ( / ', J ')  if there exists a permutation a € Sr with (/', J ') -a  = [I, J). Let 

T be a set of representatives of the 5r-orbits of I(n, r) x J(n, r). Clearly =  x p ^  

if and only if (I, J )  ~  (/', J ')  and the set

is a K -basis of A(n, r).

The 1G algebra A(n) is a coalgebra with comultiplication 6 : A(n) -> A{n)®KA(n) 

given by

and A(n, r) is a sub-coalgebra of A(n). Since the dual of a coalgebra is an associative 

algebra, the dual of A{n, r) is a finite dimensional associative JGalgebra.

D efin ition  2.3 The Schur algebra S (n ,r ) is the dual space of A{n,r);

{%i,j ’■ h J £ r}

n

p- 1

and counit e : A{n) —» K  given by

S(n ,r)  — (A(n,r))* = HorriK(A{n,r), K).

Multiplication in S {n ,r ) is given by

£ • £ ,t}€  S (n ,r),  I , J  e  I(n ,r) .
M£l (n , r )

For I , J  € I(n , r), define

0 otherwise

7
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Then the set

{ & , ; : ( i . J ) e r }  (2.2)

is the dual basis for S(n, r).

We now discuss some of the important GL(n, K)-modules. All of the modules in 

this thesis are assumed to be finite dimensional.

D efin ition  2.4 A GL(n, K)-module V  with basis v x , . . . , v n is said to afford a poly­

nomial representation of GL(n, K ) i f  for each g G GL(n, K),

m
9vj =  E Cij(g)vi, where each Cij(g) G A(n). (2.3)

i=l

We say that V  is a polynomial module of degree r if each Cij(g) in (2.3) is in A(n, r ). 

Let M (n) denote the category of left polynomial G L(n , AT)-modules and M(n, r) the 

category of left polynomial GL(n, i'Q-modules of degree r. The following theorem 

([G], 2.2c.) shows that it is enough to study polynomial GL(n, A")-modules of degree 

r.

T h eo rem  2.1 Let V  be a polynomial GL{n, K)-module with V  G M(n). Then

V  =  ©r>oW

where each submodule Vr o fV  belongs to M (n,r).

Given A  G GL(n, K),  define ea S ( n ,r ) by e^(P) =  P(A) where P  G A (n ,r) .

One can extend the map A —)• linearly to get a map e : KG L(n, K)  -> S(n, r)

which is a morphism of iGalgebras. Let mod(S(n,r))  denote the category of left 

S(n, r)-modules. A module V  in either of the categories M(n, r) or mod(S(n, r)) can 

be studied as a module of the other category via the rule

kv =  e(/c)w, for all k  G KGL(n, K ), v G V. (2.4)

We have the following theorem ([G], Proposition 2.4c)).

T h e o rem  2.2 The categories M (n, r) and m od(S(n ,r)) are equivalent.

8
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Exam ple 2.5

Let V  be an n-dimensional vector space with basis V i,. . .  ,vn. Then GL(n, K )  

acts on V  by

Thus V  is a polynomial GL(n,K)~module of degree one; that is V  G M(n, 1). The 

GL(n,K)~module V  is called the natural module. By (2.4), the S(n, r)-action on V  

is given by

Let V®r denote the r-fold tensor power V  <8>V<S>- • -® V  (r times). For I  G 7(n, r), 

we let vi denote the element <g> • • • <8> vir G V®r. The following set is a K -basis for
y ® r .

{Vl =  Vil ® ■ • • ® vir : I  = (»!, — , ir ) G /(n ,r )} .

We define a GL(n, i7)-action on Vr®r by extending the action in (2.5):

gvj = (gvh ) ® ® (gvjr)

n n

g v j  =  Y ^ g i j V i  =  y i X i j ( g ) v i , g  € G L (n ,K ). (2.5)
i=1

n

l £ l (n , r )

l £ l (n , r )

Thus y ® r G M(ra, r ) .  The 5(n, r)-action on is given by

=  J ]  ^ 5 (n ,r), J  G I (n ,r) .
r e i (n , r )

□

2.3 The Schur module

The general linear group GL(n, K )  acts on A(n) by

p P ( X )  =  P ( X g ) ,  g G G L (n ,K ), P  G A (n ) ,  X  =  ( ^ ) i< i , i< n -

9
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Moreover, A(n, r) belongs to M (n,r).

Given an n x  n  matrix A = (dij)i<ij<n, and subsequences / ,  J  of (1 ,2 , . . . ,  n) 

let A j  denote the determinant of the minor of A  whose rows are indexed by I  and 

columns indexed by J. If I  =  (*i, 1%,..., ik), J  =  ( j i ,h ,  • • •, jk), we shall also denote 

by

Jl yj“2)-'’i3k

Suppose that Ai =  s, so the Young diagram of shape A has s columns. For a tableau 

T, let T(j)  denote its j th  column. Given two A-tableaux S  and T  the bideterminant 

(S :T )  E A(n, r) is given by

( c  . 'TO   y S { 2) y s is)
. 1 ) — ■A-j’(l) T ( 2) ^ 2

E xam ple  2.6 

Let A =  (2,1). Then

4 1
2

  V"2,3 v “4
—  a 4 ) 2 a 1

=  (x2iX32 -  X22X34)xAi-

□
Let Tx denote the A-tableau whose entries in the ith  row are all Vs. In this dis­

sertation, we shall mainly be concerned with bideterminants (Tx : T)  and we let 

[T] — (T\ : T). In this notation, [I*] =  (Tx : Tx) is then the product of the determi­

nants of the principal minors of X  of sizes /q , /x2, • • ■, /xs where /x =  (n i , /x2, . . . ,  /xs) is 

the conjugate of A.

E xam ple  2.7

Let A =  (3,2). Then Tx — 

If T =  then

[T]

1 1 1
2 2

and [Tx] = 1 1 1 . 1 1 1
2 2 2 2

2 3 4
5 6

(Tx : T)

Y 1’2 y 1’2 Y 1 A 2,5^3,6^4

(X12X25 — ^15^22) (^13^26 ~  ^16^23)^14 

10
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Let A be a partition of r such that the Young diagram of shape A has at most n 

rows. Let g =  (&j)i<y<n € GL(n, K)  and J  =  U1J 2 , ■ ■ -,jr) I (n ,r) .  It can be

shown that

9  • [Tj ] — 9i ,j [Ti ] =  x i ,j (9)[Ti ]- (2.6)
l £I (n , r)  l e l (n , r )

Thus the if-span of the bideterminants [T] where each T  is a A-tableau is a non-zero 

GL(n, K )-invariant submodule of A(n, r) which belongs to M(n, r).

D efin ition  2.5 The Schur module V(A) is the K-span of the set

{[T] : T  is a X-tableau}.

There is a very nice basis for V(A) given by the set of bideterminants which 

come from semistandard A-tableaux. The proof of this result involves a so-called 

straightening algorithm which allows one to write a bideterminant [T] as a K - linear 

combination of bideterminants [S] where each S  is a semistandard A-tableau with 

the same content as T. There are a number of versions but we shall use the method 

given in [F], §8.1, p. 108 - 110, (see also [To], p. 420) which we now describe.

T h e o rem  2.3 (S tra ig h ten in g  a lg o rith m ) The following relations hold in V(A):

1. I f  T  is a X-tableau with two repeated entries in a column then [T] =  0.

2.  Suppose that I  E  I(n ,r ) .  Then if a E  C(T\) we have \Tia\ =  sgn(a)[Ti\.

3. Let J  be a fixed subsequence of column j  + 1 of a X-tableau T, and let I  be a 

subsequence of column j  o fT ,  having the same size as J; we denote this size by 

|/ | .  Let T*(I, J) be the tableau obtained by interchanging the elements in I  and 

J , maintaining the ordering of the elements. Let T (I ,  J) be the column increas­

ing tableau obtained from T*(I, J) by applying a suitable column permutation; 

we will denote this permutation by aj, since we keep J  fixed and vary I . Then 

we have

m =  E  \t ’ (j j )}=  E  w m p v v ) ] ,  (2 .7)
FM-d \i\=\J\
ICT(j )  ICT(j )

11
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where the sum runs over the subsequences I  of the j th  column T ( j)  of T  with 

the same cardinality as J .

Proof. Since [T] is the product of determinants corresponding to each of its columns, 

it suffices to prove 1. and 2. for a one-column tableau. Both follow immediately from 

the definition of bideterminant. If [T] has repeated entries in a column then [T] is 

the determinant of a matrix which has two identical columns so clearly [T] = 0. To 

see 2., suppose that [Tj] is the determinant of the matrix A. Then if a  is a two- 

cycle with a  G C(T\), TIa is the same as Tj except that two distinct column entries 

have been interchanged. Thus [Tia] is the determinant of B  where B  is the same 

as A  except that two columns have been exchanged. Since detA = —detJB, we have 

[TIa] =  sgn(cr) [Tj] and the result for a general permutation a  now follows.

Part 3. of the theorem follows from a linear algebraic identity that was proved by 

Sylvester in 1851, see [F], §8.1. Namely for k x k matrices A  and B,  we have

det A ■ det B  =  det^4' • det!?'

where the sum is over all pairs (A1, B') of matrices obtained from A  and B  by inter­

changing a fixed set of m  rows of A  with m rows of B  preserving the ordering of the 

rows. □

To derive a straightening algorithm, order the set of A-tableaux by S  y  T  if, in 

the right-most column which is different in the two tableaux, the lowest box in which 

they differ has a larger entry in S. If T  is column increasing but not semistandard, 

suppose that the entry in the kth  row of the column j  is larger than the entry in 

the kth. row of the column j  + 1. Then if J  is taken to be the sequence of entries in 

column j  of T  which occur in rows 1 through k, and I  is any subsequence of column 

j  having the same size as J, we have

T (I,  J) y  T. (2.8)

Combined with (2.7), this gives a straightening algorithm, by downward induction

on >~.

12
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Exam ple 2.8

1 C
O

1.....

I--
---

-

5
1 2 3
4 5

+ 1 3 5
4 2

1 2 3
4 5

1 2 3
4 5

2 1 5
3 4

1 2 3
4 5

+ 1 3 5
2 4

□
We now state the basis theorem for V(A). There are several proofs, see for instance 

[G], 4.5a, [F], Theorem 1, p. 110, or [DKR], p. 78.

T h eo rem  2.4 (B asis th eo re m  for V(A)) The Schur module V(A) has K-basis con­

sisting of bideterminants [T] where each T  is a semistandard X-tableau.

When the characteristic of K  is zero, V(A) is irreducible. When K  has non-zero 

characteristic, this may no longer be the case. The Schur module V(A) does, however, 

possess a remarkable GL(n, i f  )-submodule.

D efin ition  2.6 Let L{A) denote the GL(n, K)-submodule of V(A) generated by [T\].

We shall study L(A) in more detail in Chapter 3. For a proof of the following, see 

[G], 5.4c, 3.5a, where L(A) is denoted by Dffff or [Ma], Theorem 3.4.1, where V(A) 

is denoted by M(A).

T h eo rem  2.5 The submodule L (A) is the unique irreducible GL(n, K)-submodule of 

V(A). Moreover, every irreducible polynomial representation of GL(n, K ) is afforded 

by L(A) for some partition A.

13
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2.4 Weights and weight spaces

Let D (n ) C GL(n, K )  be the subgroup of diagonal matrices and B (n ) C GL(n, K)  

the subgroup of upper triangular matrices. If V  is a polynomial representation of 

GL(n, K), v £ V  is called a weight vector of weight x  — (Xi; • ■ ■, X n ) ,  X i  £  No> if

d - v  = df1 -- -d * l-v

for all d — diag(dn, • • • , dnn) E D(n).

E xam ple  2.9

A bideterminant [T } in V(A) has weight x  =  (Xi> • • • > Xn) where x  is the content of 

T; that is Xi is equal to the number of f s  in T. This can easily be seen using (2.6), 

for if d =  d iag(dn , . . . ,  dn„), we have

d • [Tj] =  ^   ̂ djiji • • • =  dj1j1 • • • djrjr [Tj].
I€l (n, r)

For instance, d • 1 2 2
4

di 1^2^44 2 2 □

D efin ition  2.7 Let V  be a GL(n, K ) -module. A vector v E V  is a highest weight 

vector if  B(n) • v = K* • v.

E x am p le  2.10

Let A =  (2,1). Then [T\] = is a highest weight vector since

9 ' [T\] — ^ 2  9hi9i2i9i32[Ti\ — gn9n922[Tx\,
I e l (n , r )

if g E B(n). □

In general, equation (2.6) shows that the bideterminant [T\] E  V(A) has weight A 

and is the unique highest weight vector in V(A), up to multiplication by a non-zero 

scalar.

14
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Given a polynomial GL(n, lT)-module V  and an n-tuple x  =  (Xi; • • • ? Xn) of non­

negative integers, the weight space associated to x  is defined as

V x = {v £ V  : d ■ v =  dx{ • • • w for all d £ D{n)}.

We have the following theorem; see [G], Proposition 3.3f.

T h eo rem  2.6 A polynomial GL(n, K)-module V  is the direct sum ®XV X of its weight 

spaces.

2.5 The Weyl module

In this section we give Green’s definition of the Weyl module, see [G], 5.1. The Weyl 

module may also be defined using the hyperalgebra for G L (n ,K ).  We will discuss 

this equivalent definition in Chapter 4. We first discuss contravariant duality.

The dual space V* of a module V  £ M (n, r) becomes a left GL(n, i4T)-module in 

the usual way by defining (g • f )(v )  =  f i g ^ v ) ,  for g £ GL(n, K ), f  £ V*, v £ V, 

but V* equipped with this action will not necessarily belong to the category M(n, r). 

Instead, we define

(g - f ) (v )  =  f t f v ) .  (2.9)

where gf denotes the transpose of the matrix g. The dual V* equipped with this new 

action, denoted V°, is called the contravariant dual to V . The contravariant dual of 

a module V  £ M(n, r) does belong to M (n,r).

To express the action (2.9) in terms of the action of S(n, r), define an involutory 

anti-automorphism J  : S ( n ,r ) —>• S(n ,r )  by

I , J  e  /(n ,r ) .

Then the contravariant dual V° is the S(n,r)~module with action 

(£ • f ) (v )  = £ € S(n, r), /  e  V°, v £ V.

15
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Given modules V  and W  in M(n, r), a if-bilinear form (,) : V  x W  —» K  is 

contravariant if

=  (n, J(f)w ),  £ £ S(n ,r), v £ V, w £ W.

We have the following basic result.

T heo rem  2.7 Tei F  and W  be modules in M(n, r). There is a one-to-one correspon­

dence between contravariant forms ( , ) : F  x W  -> K  and morphisms ip : V  —> W° 

given by

ip(v)(w) = (v,w), v £ V, w £ W.

The form is non-degenerate i f  and only if ip is an isomorphism.

Our aim is to define the contravariant dual of the Schur module, V(A). To do so, 

we begin with an S(n,r)~module epimorphism <p : F®r -» V(A) defined by

H vi)  =  [Tr].

Let N  denote the kernel of (p.

Given I , j £  I(n, r) define — 111=1 $ikj k- Define the canonical form

{,) : F®r x F®T -> K

by

{ v i , v j )  =  5 i }j .  (2 .10)

The form (,) is contravariant and non-degenerate so the orthogonal complement to 

N  with respect to (,) is an S(n, r)-invariant submodule of V®T.

D efin ition  2.8 The Weyl module A(A) is the orthogonal complement to N  with re­

spect to (,);

A(A) = { x £  F®r : ( x ,N ) =  0}.

16
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Now define a form (,) : A(A) x V(A) —> K  by

(x,<i>(y)) = (x,y)> x  ̂A(A), y e v®r.

The form (,) is non-degenerate and contravariant, so by Theorem 2.7,

A(A) s  (V(A))°.

When the characteristic of K  is zero, A(A) =  V(A) and A(A) is irreducible. If the 

characteristic of K  is not zero, this is not necessarily the case. However, the Weyl 

module A (A) has a unique maximal submodule M  and the irreducible GL(n, K )- 

module L(A) of Definition 2.6 is isomorphic to A(A) /M.

Define a right action of Sr on V®r by vjo  =  vi.a where I  €. I(n, r) and a € S r.

Let /(A) e  I(n, r) denote the r-tuple which satisfies Tq\) =  T\  and define

vx =  vIW { C ( f x)}. (2.11)

For example, if A =  (2,1), then T\  =  Tj^\) where /(A) =  (1,1,2), so

V\ =  Vi ® Vx ® V2 — V2 <8> Vi <E> V\.

We now state Green’s version of the standard basis theorem for A (A). The theo­

rem was originally proved by Carter and Lusztig in [CL]. In the form given here, it 

appears in [G], Theorem 5.3b.

T h eo rem  2.8 The set

{£/,/(\)V\ : I  E I (n ,r) ,  Tj semistandard}

is a K-basis for A(A).

17
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Chapter 3

Determining irreducible 

GL(n, iC)-modules

3.1 Introduction

If K  has characteristic zero, it is well known that the Schur modules V(A) are irre­

ducible; that is V(A) =  L(A). The dimension of V(A) is given by Weyl’s dimension 

formula. When the characteristic of K  is p > 0, L(A) may or may not be isomorphic 

to V(A), and in general the dimension of L( A) and the dimensions of its weight spaces 

are not known.

In this chapter we discuss three methods which yield jT-spanning sets for L(A) 

from which its dimension may be determined. We first give a new method which is 

based on the Binet-Cauchy formula for expanding the minor of a product of matrices. 

The second method we discuss is due to Pittaluga and Strickland [PS]. The third 

spanning set we give, originally due to Clausen [C], consists of the set of sums R(T)  

where T  is a semistandard A-tableau and R{T)  denotes the sum of bideterminants 

corresponding to tableaux S  which are row equivalent to T.  The proof we give

The results in this chapter were obtained in collaboration with Gerald Cliff and a version of this 

chapter shall appear in [CS].
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that these elements form a spanning set is different from Clausen’s and uses the 

Schur algebra and Green’s version of the Carter-Lusztig standard basis theorem for 

the Weyl module A(A). In Section 3.3 we show that the first two spanning sets are 

the same up to sign and in Section 3.4 we show that the first two spanning sets 

are related to the third by a triangular, unimodular matrix called the Desarmenien 

matrix, Q [De].

3.2 The first spanning set

Fix A =  (Ax,. . . ,  Ak) a partition of r  and suppose that n — ( /i i , . , . ,  jj,s) is the conjugate 

of A. In this section we present a new method for obtaining a spanning set for L(A) 

which is based on linear algebraic techniques.

We know tha t L(A) is if-spanned by all A  • [T\] where A  varies over GL(n, K).  

In [Mu], §222 a formula is given for evaluating a minor of a product of matrices. In 

particular, if I  and J  are two subsequences of (1 ,2 , . . . ,  n) of size m, then

(X  A)'j = ^ X ^ A f
H

where H  varies over all subsequences of (1 ,2 , .. . ,  n) of size m. This follows from the 

Binet-Cauchy formula, [P], 2.3, p. 10 or [Mu], §217. Let X  — (£ij)i<j,j<n. Then

4 . [ T i ](x )  =  [TA] ( ^ )  =  n ( X A ) g :;;;:~  =  n E
k = 1  k = 1 I k

=  E  ( i W  "‘ H i P f e  « )
I i J i f - J s  k = X  1

where for each k, varies over all subsequences of ( 1 ,2 , . . . ,  n) of size /i&. For 

each s-tuple (Ii, / 2, . . . ,  Yll=i X i f ’"',Pjk is a bideterminant [T] = (T\ : T ), and 

Ofe=i A \$ ^  is a bideterminant (T : T\) evaluated at the matrix A; we denote the 

latter object by T'{A).  (We have written T'  because the rows and columns of the 

bideterminant T  are switched in evaluating (T : T\) at A.) So

A ■ Pa] =  X > J ' T'(A) (3.1)
T
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where T  varies over the set C\ of all column increasing A-tableaux T.

Write the bideterminant [T] as a iWlinear combination of bideterminants given 

by semistandard tableaux;

p i  =  X ^ 'W 'S i
seTx

where T\ denotes the set of semistandard A-tableaux. Apply the /f-algebra automor­

phism on A{n) which takes Xij to Xji. Then we get

T ' ( A )  =  £  7 t S S ' ( A )

S&Tx

where S'(A)  is the bideterminant (S  : T\) evaluated at A. Then A  • [T\] can be 

written as

A ■ p y  = E (E (E 1tu U '(A ))  =  £  C7'(.4) ( E iTUlTS [S]).
t e c x seTx ueTx uerx Tecx,seTx

(3.2)

Define

^tu1t s [S] : U £ T \ }  ■ (3.3)| XZ 1 t u 1 t s [ S ] ■ U £ 7a 1
lreCx,5erA J

We have shown that every element of L(A) is a iWlinear combination of elements of 

B. Let M(A) be the iL-span of the set B. We have

L(A) C  M(A) C  V(A).

We want to show that L(A) =  M(A). Define

Pu — x: 1 t u 1 t s [ S ] ,  U e T x .
Tecx,seTx

We must show that for each semistandard A-tableau Uq, Pu0 is a linear combina­

tion

y ' c AA-{Tx] = y ' c AU'(A)Pu ,
A A,U

for some elements A  of GL(n, K)  and some scalars ca £ K.

20
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L em m a 3.1 Suppose that / i ,  f 2, - ■ ■, fk are linearly independent polynomials, over 

K ,  in variables x x, x 2, ■ ■ - , x m. Then there exist m-tuples Ai,  A 2, . . . ,  Ak G K m such 

that

det (/j (̂ 4j)l<i,j'<A:) 7̂  0 .

Proof. We use induction on k. Suppose that for every linearly independent set of r 

polynomials with 1 < r  < k there exist m-tuples Ai, . . . , A r with

det(/j(A^)i<jj<r) 7̂  0

and assume that

det ( /j ( ^ j ) ^  0

for all m-tuples T i, A2, .. •, A k G K m. Expand this determinant along the last row. 

Let Gj be the (k — 1) x (k — 1) matrix obtained from (/,(A j)) by deleting the last 

row and j- th  column. Then

^ ( - l y + ^ C W d e t G ,
j

is the zero polynomial in A k. The set {/_,• : j  =  1 , . . .  k} is linearly independent so 

each det Gj = 0, for all choices of m-tuples Ai, A 2, . . . ,  1. However, by induction,

there exist A t , A 2, . . . ,  A k- i  such that det Gi ^  0 . This is a contradiction, and the 

proof is complete. □

L em m a 3.2 Suppose that { /1, f 2, . . . ,  f k } and {pi,p2, ■ ■ -,Pk} are sets of polynomials 

in m variables over K ,  and that {fi}i<i<k is linearly independent. Then for each I, 

there exist m-tuples A i , A 2, ■ ■ ■ , A k G K m and scalars Ci,c2, . . .  ,ck & K  such that

Pl= ^ 2  cifj(Ai)pj.
1 <i,j<k

Proof. Prom the previous lemma there exist Ai, A 2, . . .  A m satisfying det (fj(Ai)) ^  0. 

Consider the system of k equations in the ^-unknowns q , 1 < i < k:
k

Y^Cif j iA i)  = 0 , j ^ l  
i—1 

k 
Y ^ ° i f l ( A i) = L 
»=1
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Since de t(fj(Ai))  ^  0, this system has a (unique) solution Ci, e2 . . .  c*, G 7T. Multiply 

the j th  equation by p.,- for each 1 < j  < k and add, giving

Pi = E  c i f M i ) P j -

□

T h eo rem  3.3 The set B is a spanning set for L (A).

Proof. We must show that for each Uq G 7 a, there exist elements A G GL(n, K)  and 

scalars ca E K  such that

Pu0 = J 2 CaA' = E cau>(A)Pu,
A A,U

where the sum runs over the U  G 7 a , by (3 .2 ) and the definition of Pj j.  Enumerate 

the elements of T\ as U \ ,  U 2 , ■ ■ ■ U Then for integers i, 1 <  i < k define

Pi =  Pui — E lT U ilT s[S ]-  
T£Cx,S£T\

Let fi — (Ui  : T a ). The set is linearly independent, so applying the previous

two lemmas, we find Ai and scalars c* such that for each I,

Pi = E  c i f j ( A i ) P j
l < i , j < k

and det(fj(Ai))  ^  0. Each fi  and Pi are polynomials in the n2 variables Xij so each 

Ai can be regarded as an n x n matrix A^  We want the Ai to be in GL(n, K).

First suppose that pi =  n so that A is a partition of r > n. Since det (fj(Ai))  ^  0, 

for each i there must exist j  such that fj(Ai) ^  0. By definition

f j  =  ( U j : T J  =  X [ \ t  ........

where I \ , . . . ,  I s are the columns of Ui. Since pi = n, we have

j =  (A )i’...’n =  det(Aj) ^  0 .
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Thus

Pi =  £ L(X)

which proves that L(A) =  M(A) in this case.

In the general case, let A' be the partition obtained from A by placing a column 

of length n  to the left of the Young diagram of A; thus the conjugate p! of A' is 

(n, //i, /i2, . . . ,  jit*). Consider L(A') C M(A') C  V(A'). Since p[ =  n, it follows from 

the previous paragraph that L(A') =  M(X'). But all the elements in each of L (A) 

and M(A) can be obtained from those of L{A') and M(A'), respectively, be dividing 

by det(X). Hence L(A) =  M(A) and the proof is complete. □

The spanning set B  is well adapted to the weight space decomposition of L(A). 

Each bideterminant [T] has a well defined weight y, and if T  is not semistandard, 

the straightening procedure gives us [T] as a linear combination of semistandard 

bideterminants, each of which also has weight y. Let be the set of semistandard 

A-tableaux of weight y, and define

»* =  { Y  1t v 1ts[S \-.U  £!<!■}.
Tecx,serA

The following result follows by projecting onto weight spaces.

C o ro lla ry  3.4 The weight space L(A)x has spanning set Bx .

E x am p le  3.1

Take n  =  4, A =  (2,1).

A -[ T X] = (XA )\${X A) \

— (^ 1 ,2 ^ 2  +  -^1,3^ l ’2 +  ^1,4 ̂ 2  +  ^2,3^P2 +  ^ 2 ,4 ^ 2  + ’

{X\A\  +  X ^A i  A  X \ A \  +  X \ A \ )

Let y  =  (1, 1,0 ,1) and consider the projection {A • [T\])x of A  • [TA] onto the y-weight 

space of L(A).

{ A - m x = 1 4
2

1 4
2

A\*A\  + 

Al*A\  +

1 2
4

1 2
4

A l$A \  + 

A $ A l

2 1
4

A 2 ’4 A 1 
1,2 1
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+

+ 2

Thus the weight space L(X)X is spanned over K  by the elements

2 11 1 4 1 -  1 j_l , -  1 ,.j 4J + 21 4 1 2 1 4
2 . 4 . 2

1 2
4

Note that these two elements are linearly independent unless the characteristic of K  

is 3, when they are equal; so dimL(A)x is 1 if the characteristic of K  is 3, and is 2 

otherwise. □

3.3 The Pittaluga-Strickland method

In this section we present a method due to Pittaluga and Strickland [PS] for finding 

a spanning set for L(A). Our use of rows and columns of tableaux is reversed from 

that in [PS].

Let A =  (Ax, . . . ,  Afc) be a partition of r with conjugate jj,~ (/q, • • •, //«). Define J1 

to be the partition given by /q =  n — n s, . . . ,  Jis — n — /q, and let A be the conjugate 

of /L For example, if A =  (3,2) and n ~ r  = 5, then p  =  (2 ,2 ,1), so ju =  (4,3,3) and 

A =  (3,3,3,1). Pictorially, the Young diagrams for A and A form a n n x s  rectangle 

when placed side by side with A rotated by 180°.

n

s

We shall define an SL(n,  if)-equivariant map from the dual V(A)* to V(A). 

Since Hom#(V(A)*, V(A)) is naturally isomorphic to V(A) <g> V(A), we first find an 

SL(n,  JT)-invariant element of V(A) ® V(A).
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Consider the rectangular-shaped Young diagram with n  rows and s columns; the 

top part of this is the Young diagram associated to A and the bottom is associated 

to A. Fill column k of the A part of the diagram consecutively with the numbers 

1 ,2 , . . . ,  iik', fill each column of the A portion consecutively with the numbers n  +  

1, n  +  2 , . . . ,  2n — This gives us a rectangular tableau R. In the following example 

n — 4, A is the partition (3,1), and R  is

1 1 1
2 5 5
5 6 6
6 7 7

In this section we replace our n x n  matrix X  of indeterminates by a 2n x n  matrix 

X  =  (xij)i<i<2n,i<j<n- Let C(n)  be the polynomials K[xij : 1 <  i <  2n, 1 < j  < n]. 

Then GL(n, K)  acts on C(n) by g -p(X) = p(Xg), for p G C(n), g G GL(n, K).

Let R{k) denote the determinant of the minor of X  whose rows are indexed 

by column k of R, and whose columns are 1 ,2 , . . . , s. Expand R{k) using Laplace 

expansion on the first fik rows (see [Mu], P. 80 or [P], 2.4.1, P. 11):

h

where R  varies over all subsequences of (1, 2 , . . . ,  n) of size Hk, R  is the complement 

of Ik  in (1, 2 , . . . ,  n), and

i€lk
Now define

S

a  =  Y [ m -

k = 1

Then
$ S

a  = ( n ^ 1- 2- 2̂ ) • (3.4)
k = 1 fc=1

Let A'(n) be the polynomials K[xij : n + 1 < i < 2n, 1 < j  < n] which again is 

a GL(n ,K )-module via right translation. There is a GL(n, K ) -isomorphism o  from 

C(n ) to A(n) 0  A'(n) given by cr(xij) =  Xij 0  1 if 1 < i < n and a(xij) =  1 0  Xij if
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n  +  1 <  % <  2n. There is also a GL(n, K )-isomorphism r  : A'(n) —> A(n ) given by 

r(xi+n>j ) =  Xjj. Applying a and then 1 ® r  to n  we get the element

5  S

h,h,-h  fc=l fc=1

in A(n) ® A(n).

r r '  v .For each s-tuple (Ii, I2, • • • I s), Y l l - i  is a bideterminant [T] such that
1,2,...,71 (1k is athe j th  column of the A-tableau T  is Ij = T(j).  As well, f |/U  i X l
k

bideterminant [T] where T  is a A-tableau whose j th  column is I's_y  

Define

=  5 > p m
k = 1

Then
=  Jf| ( _ 1)KrW) =  (_ x )E U  AT(k ))  =  ( _ i y ( T )  and

k - 1 k - 1

/? =  ] T  ( - l ) KT)[r] 0  [T] e  V(A) ® V(A). (3.5)

Suppose that the entries in column k of R  are r 1? r 2, . . . ,  r n. Then for g E GL(n, K)  

we have

«/ • R(k)  =  ( X ^ C / "  =  =  (det5 )J?(fc).

Hence g-a =  (det g)sa, and g-j3 =  (det Now ft gives us <p in HomK-(V(A)*, V(A)) 

given by

w )  = E (-irm/([r])[n / s v(a)*.
T€Cx

Since gf3 =  (det g)8/3, then

= E (-i)"(t)/(9“i[t])[t] = g  5 2  <,)->«/)■
recA tgca

Thus the image of <f> is a GL(n, X)-submodule of V(A). It can be shown, as in [PS], 

that im 4> is L(A); this also follows from Theorem 3.9 below.

In the sum (3.5) for f3, write the tensor factors in [T] <g> [T] as linear combinations 

of semistandard bideterminants. Let 7^ denote the set of semistandard A-tableaux.
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Then

P =  asu[S] ® [U] e  V(A) ® V(A)
seTx
uer~x

for some integers a$u regarded as elements of K.  The basis {[U] € 7y} of V(A) gives 

rise to the dual basis {[U]* : U € Ty} of V(A)*, and

<j>([U]*) =  ^
sen

Define

S = mm ■ v  e Tj},

which is a spanning set of im 4>.

Let C\ denote the set of all column increasing A-tableaux of weight x ■ For T  € C\ 

the bideterminant [T] where T  is a A-tableau has a certain weight, which we shall 

call x • Define

PX = Y 1  ® I?) e  V(A)* <g> V(A)T
Tec*

Straightening [T] gives us a linear combination of semistandard bideterminants of the 

same weight x> hence

£  flsir[S] <S> [U] e  V(A)X <g> V(A)5
serf
uerf

and if [17] with U € has weight x  then

H i m  =  E
serf

Define

5 * =  m m  ■ v  e  7?} ,

which is a spanning set for (im 4>)x .
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Exam ple 3.2

Suppose that n  =  4 and A =  (2,1). Then

R
1 1
2 5
5 6
6 7

j v"i,2 v îfi v5,6 i i vb2 v̂ i® v-®’® vb^ v®>®N
a  —  V - A - 1 , 2 ^ 3 , 4  ~ ~  - A - 1 , 3 - A - 2 , 4  +  ^ 1 , 4 ^ 2 , 3  +  ^ 2 , 3 ^ 1 , 4  ^ 2 , 4 1 , 3  +  ^ 3 , 4 ^ 1 , 2 J  '

/  v l  y 5 , 6 , 7  y l  x ^ 5 , 6 , 7  , y l  y 5 , 6 , 7  - < y i  ■ y 5 , 6 , 7 \

l A l A 2,3,4 A 2 A  1,3,4 ' 3 1,2,4 A 4 A l,2 ,3 i

Expand a  as a sum of monomials in X ] ' J X \ X ^ cX ^ e where {i, j, d, e} = {k, a, b, c} 

{1,2,3,4}; consider the sum of the monomials for which { i, j ,  k} = {1,2,4} that 

consider the sub-sum a x where x  =  (1, 1, 0 , 1), giving

a* =  X g i - X D X W X I *  + X l } ( - X l ) X $ i X %  + ( - X ^ ) X l X ^ l

Then

/3X

Hence

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<i> 1 4 -  2 1 2
2 . 4

So S x consists of the two elements 

- 2 1 4
2

+ 1 2
4

-  2 1 2
4

Compare with Example 3.1 □

We want to show that the elements of S  are the same, up to sign, as those in B  of

(3.3). In the expression (3.5) for fi, we want to examine what happens to [T] when 

we write [T] as a linear combination of semistandard bideterminants. Consider the 

following example.

E xam ple  3.3

Let n — 4. If T  = 1 4
2

, then T  = . The first column T (l)  of T  is the

complement of the second column T(2) of T  and T(2) is the complement of T (l). 

Both tableaux are semistandard. □

We first show that T  is semistandard if and only if T  is.

T h eo rem  3.5 I f  T  is a semistandard A-tableau, then T  is a semistandard A-tableau.

Proof. It is enough to prove the result for a two column tableau. Suppose that the 

entries in columns one and two of T  are ax < G2 < . . .  <  am and 6X < 62 < . . .  <  ir­

respectively. Since T  is semistandard, % < bj for 1 < j  < r .  Let fix < fiz <■■■ < fin-r 

and ai < a  2 < . . .  < a n_m be the entries in columns one and two of T.  By definition, 

T(2) is the complement of T (l)  and T (l) is the complement of T(2).

We shall use induction to show that fij < <Xj for 1 <  j  < n — m. Suppose 

that fix > ay and let ckx =  I. By definition of T, a x is the minimal entry in T (2), 

ax =  1, a2 =  2 , . . .  ai-i = I—I, and ai > I (since I does not occur in T (l)). The minimal 

number which does not occur in T(2) is fix > a x =  I, so b% =  1,62 =  2 , . . . ,  bi^x = I — 1, 

and bi = l > ai. Since this contradicts the fact that T  is semistandard, fix < ctx-
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Now assume that /3j_i <  i and suppose that fij > otj. Then, since fij- i  <  

<x,_i <  <  /3j, Q'j must occur in T(2) for there is no number which is in T (l)  th a t

falls between fij-i  and f i j .  Since there are j  numbers less than or equal to a j  in T (2), 

there are s = aj — j  numbers less than aj  which are not in T (2). These s numbers 

must occur in the first s rows of T (l). Since aj  is not in T (l), as+i > aj. We will 

show that bs+i =  aj.

Since <  a j  <  f3j, there are j  — 1 numbers less than or equal to a j  — 1 

which occur in T (l) , so there are s = aj — j  numbers less than aj which occur in 

T (2). Again, they occur in the first s rows of T (2). Since aj  occurs in T(2), so 

bs+1 =  aj  <  as+i which contradicts the fact that T  is semistandard. Consequently, 

fij < aj.  This completes the proof. □

Next, if T  is not semistandard, we apply the straightening algorithm described in 

(2.7) to [T]. We want to see what then happens to [T] in the sum (3 when we straighten 

[T], so we consider tableaux of the form T (I, J)  and determine what happens to T  

when I  and J  are interchanged in T.  We first illustrate with an example.

E x am p le  3.4

Let n = 4 and let T  =

and [T]
1 2

C
O 3

2 1
4

1

CO

2 4CO

. Then T . Also, [T]

. If we write [T] =  [1\] -  [T2], then [T] =  [7\] -  [T2],

L em m a 3.6 Suppose that T  is a tableau with two columns and that I  and J  are 

subsets of the same cardinality of the first and second columns of T  respectively.

1. I f  I  n  J  ±  0, then T(I,  J) = T ( I  -  I  n  J, J  -  I D J).

2. I f  o and 9 are permutations such that T*(I, J) =  sgn(a)T(I,  J) and T* (I, J)  =  

sgn(9)T(I, J) then sgn(a) =  sgn(9).

Proof, (i) We will show that if I  n  J  ±  0, then T (I, J )  =  T ( I  -  I  n  J, J  -  I  D J). 

Suppose that I  n  J  =  {a;}, I  = ( i \ , . . . ,  im, x , . . .), and J  =  ( j i , . . .  , j k, x , . . .). Since
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the entries in T  which are not members of I  or J  are irrelevant to our proof, we 

consider the following tableaux where T* =  T*(/, J) and T** — T*(I — {a;}, J  — {x}):

k  h  ii k  j i  k

k  jk jk k  3k k

rp _  k+1 X rp* _  X k+1 ^  _  jk+2 %

Im 3m 3m ^m 3m+1

X Jm-fl jm+1 X X *to4-1

Now, T*(I, J) = sgn(a)T*(I — { x } , J  — {a:}) where a  is the product of the two 

permutations which make T*(I, J) and T*(I — {x},  J  — {a:}) identical. It is clear from 

the above tableaux that these permutations have the same length, so sgn(a) — 1, 

and T*(I, J) = T*(I — {a;}, J  — {a;}). By induction on the size of I  D J, T(I ,  J)  =  

T ( I  — I f )  J, J  — I n  J) where /  fl J  is of any size.

(ii) By part 1 we may assume that I f ) J  = 0. Then, I f \T(2)  = 0 and J n T ( l )  =  0, 

for otherwise T(I ,  J) = 0. It follows that I  C T (l) and J  C T(2) so T*(I, J) is well- 

defined. We will show that if |/ | =  \ J\ =  1, then the permutations under consideration 

have the same sign. The result then follows for subsets I  and J  of any size since one 

may interchange the corresponding elements in I  and J  one at a time.

Let I  -  {a}, J  = {h}, T* -  T*(I, J) and T* =  T*{I, J). Suppose that T*(l) is 

not column increasing and suppose that there is an x  G T*{ 1) with x > b but x < a. 

(The argument is essentially the same if there is an x € T*(l) with x < b but x > a). 

Let X\ =  {x G T*(l)|x  >  b but x  < a} and suppose that

Ot-s < «s+1 < ■ ■ ■ < Oit

are the elements of X\. Then T*(l) becomes column increasing after one applies the 

cycle o\ which places b in the row in which occurs and moves down a row for 

s < i < t. There is a similar cycle o<i which makes T*(2) column increasing, and
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cycles a i and a 2 which make T*(1) and T*(2) column increasing.

Let A =  {re € : x £  T}  so that X x — (Xx f l T ) u A  Let X x = {x £ T*(l) : x >

b but x  < a} and B  = {x £ X \  : x T}.  Then, X \  — (Xx n  T)  U B,  and if o\ ^  a2, 

then A ^  0 or B  ^  0, or both.

Suppose that A /  0 and let x £ Ai, x £ T .  Then x £ T*(2), and since x > b but 

x < a, T*(2) is not column increasing. It follows that x £ #2 =  {x G T*(2) : x > 

b but x < a} and X2 =  (X2 fl T)  U A. Similarly, if B  ^  0, the set X 2 = (x  £ T*(2) : 

x > b but x < a} = (X2 D T) U B.

Let \Xx f lT | =  lx, and \X2 PlT| =  l2. Then the length of a x is l(ax) = h  +  |A| and 

l{a2) = l2 + \A\. Since l(o\) = h  +  \B\ and l(ai) =  l2 +  \B\, sgn(aio2) = sgn(oi ai). 

□

L em m a 3.7 I f  T  is a two-column tableau, and J  is an ordered subset of the second 

column of T, then

[T] =  Y ,  s g n M W d a ) } -
\I\=\J\
ICT(1)

Proof. We will prove that

sgn(ai)[T(I, J)\ =  ^  sgn(ai)[T(I,  J)\,
\i \=\j \ | / |= | j |
ICT(  1) IQT(1)

from which the statement follows, since the right-hand side is certainly equal to [T] 

by (2.7) applied to T  .

Applying Lemma 3.6, part 1 to T,  we may assume that I  D J  =  0. As noted 

at the beginning of the proof of Lemma 3.6, part 2., we have J  C T ( 2) if and 

only if J  C T (2), and I  C T (l) if and only if /  C T (l)  so T (I, J) is well-defined. 

Furthermore,

{ I : |/ | =  |J |,  /  C  T (l), I  n  J  = 0} =  { / : |/ |  =  | J\, I  C  T (l), /  fi J  =  0}.

Since /  n  J  =  0, T ( I , J ) =  T ( I , J ) .  Since the permutation which makes T*(I, J) 

column increasing has the same sign as the permutation which makes T*(I, J) column 

increasing, the two sums are identical. □
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Theorem  3.8 Suppose that {Tj : 1 < i < m ] is the set of semistandard X-tableau.

!f\T} =  E £ i “ipi] , the n [T] =  Y Z

Proof. We apply downward induction on the ordering y  given in (2.7). If T  is 

semistandard, then so is T  by Theorem 3.5, so the result holds in this case. In

particular it holds for the largest tableau T  in the ordering, since if this T  were not

semistandard one could write [T] as a sum of bideterminants [T'] with each T' y  T  

by (2.7) and (2.8).

Suppose that the conclusion holds for all S  y  T. Suppose that T  is not semistan­

dard. Write

[ T ) =  £  sgn(a, ){T(I,J)]  (3.6)

m=M
/c r ( fc - i)

where J  is a subsequence of T(k),  chosen as in (2.7). Then, by Lemma 3.7,

[ ? ]=  £  s g n ^ l W T ) ] -
Id= 1*6

ICT(fc-l)

Write each [T(I, J)] in the right side of (3.6) as a sum of semistandard bideterminants:

[T (7 ,7 ) ]  =  £ o , , i [Ti ].
i

From (2.8), each T (J, J) in (3.6) satisfies T(7, J) y  T, so by induction, for each 

T (I ,  J) on the right of (3.6) we have

[ « = x> ,ipa .
i

so that
m m

tT3 =  Y  Y  sgn(crI )aIii[Ti}, [T] =  £  £  sgnia^a^jfTi}.
i =X |/ |= |J |  i= 1 | / |= |J |

I<ZT{k—l) I C T ( k - 1)

This completes the proof. □

Due to the above theorem, we may write /? as follows:

p = £ ( - ir < T>pr] ® [T] = £ ( - i r (T)( £ 7 r S[S ])® £7T t,[c7!
T  T e c x \ S e T x  /  UtTx

— Yl ( Y, (-V^TrsTru) [5] 0 [U].
S,U £T x \T e C x  J
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We know that {U :U  £ 7 f}  is the set of semistandard A-tableaux. Hence

m r ) =  E
s,uen Tecx

We now have that

S  = { (—l ) v^ ' y Ts7Tu[S] : U £ 7a}-
Tecx,seT\

The following theorem explains the relationship between the two spanning sets.

T h eo rem  3.9 The elements of the Pittaluga-Strickland spanning set S  are, up to 

sign, the same as those in the first spanning set B.

Proof. Note that we need only show that for each U £ 7 a, the sign (—1 )" ^  is 

the same for each T  £ C\. Then ]£ (—I Y ^ I t s I t u I S ]  — ±  1ts1tu[S)  which is 

the same as the element Py £ B  up to sign. Given T  £ C\, T  — YLseTx 7rs|>>], 

where all bideterminants [S] in the sum have the same weight as [T]. So, for each 

U £ 7a, each [S] in the sum Y^Tecx 'JtuItsIS] has the same weight as [T]. If suffices

to prove, then, that if [T] and [S] are two bideterminants with the same weight, then
seTx

S

since [S] and [T] havesince [S] and [T] have the same weight

5

=  = V(s)

from which the result follows. □
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3.4 A third spanning set and the Desarmenien ma­

trix

Suppose that S  and T  are two A-tableaux. We say that S  and T  are row equivalent, 

denoted S  ~ r T  if they are equal up to a permutation of the rows. Define

R(T) =  £  [S].
Ŝ jtT

The following theorem is also proved in [C], 6.7(2). The proof we give here uses 

the Schur algebra and the Carter-Lusztig standard basis theorem, Theorem 2.8, for 

the Weyl module, A(A).

T h eo rem  3.10 The set A  =  {R ( T ) : T  is a semistandard A-tableau} is a spanning 

set for L(A).

Proof. Since { ^ j  : (J, J)  G F} forms a basis for S(n, r), L(A) is generated by the set

{C/,J • Pa] : (7, J)  e  r}. But if I,  J  G I(n, r), then

&,j P a] =
M€l (n ,r )

and £ i ,j ( x m ,i ( \ ) )  = 0 unless J  /(A). If J  =  I (A)cr for some a  G 5r then

& ,/(A )trp A ] =  &<r,/(A) Pa] 

so {£/,jPa] : J  G J(n, r)} is JF-spanned by the set {£/,/( a) Pa] : F £ F(n, r)}. But

£/,/(A) Pa] =  ^  6 , /(A) (xm,u A)) Pm]
M

and C/,/(A)(%m ,i (\)) =  0 unless /  =  Mcr where a  G is such that F(A)cr =  /(A). But

this is true if and only if cr permutes the entries in the rows of Tj. Thus,

« W )P U ]=  £  W(A) : T«) =  R(T,).
TM~rT!

This shows that L(X) is JT-spanned by the R ( T ) where T  is a A-tableau.
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We know that A(A) has a unique maximal submodule M  and A(A) /M  is irre­

ducible with A(A) /M  = L(A). Thus we have an S(n,r)~isomorphism 4>: A(A) / M  —> 

L(A). Since 4> must preserve weight spaces and [T\] is the unique vector (up to 

a scalar) in L(A) with weight A, using the Carter-Lusztig basis for A (A), we have 

a  +  M )  =  ^ / , / ( a ) [ T a ] .  Since <i> is surjective and { & , / ( A ) « a  '• T j  semistandard} 

is a basis for A(A), {£/,/(a)[T\] : Tj semistandard} =  {R(T)  : T  semistandard} gener­

ates L(A). □

E xam ple  3.5

Let n  =  3, A =  (2 ,1) and x  =  (1,1,1). There are two semistandard A-tableau which

give bideterminants of weight x; =  

spanning set A  are

1

C
M

and T9 — 1 3
3 2

. The elements in the

R(Ti) = 

R(T2) =

1 2
3

1 3
2

+

+

2 1 -  9. 1 2
3 - 3

3 1 = 2 1 3
2 2

+ 1 3
2

and

□
In order to investigate the relationship between A  and B  we introduce a definition 

and lemma. Given T  € C\ and S  € 7 a, let 7t s  denote the straightening coefficient of 

[S] in the straightening decomposition of [T]. Define

9(S) =  Yl Trs[T].
T£Cx

For example, if A =  (2,1) and x  =  (1,1,1), there are three column increasing A- 

tableaux:
1 2 1 3 2 1
3 ... 5

2
5

3
Then since

to 1
3 -

1 3
2

1 3
2
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L em m a 3.11 Each element in the spanning set B corresponds to a g(S) where S  G

Tx;

B = { g ( S ) - . S e T x}.

Proof. We showed in (3.1) that A  ■ [Tx] = X/recAP1 'T'(A). Write T'(A)  as a if-linear 

combination of semistandard bideterminants. This yields

Tecx

= E i 7!'
T eC x \S £ T x

= E s ‘ w  (E y r s i n

se n  \Tecx

= E  S'(A)g(S)
sen

It follows that A  = {g{S) : S  e  Tx}- □

To prove our next result, we state some results from [De]. Let RT  (respectively 

CT)  be the tableau obtained by writing T  so that its rows (respectively columns) 

are weakly increasing (respectively increasing). If CU is the image of U under the 

action of the permutation a, then let s(U) = sgn(a). Given two column increasing 

A-tableau T  and T'  define

t t{T,T') = : °U  = T, RU = T'}.

E xam ple  3.6

Consider the tableaux

(3.7)

T  =
1 2 2

3

C
O 4

5 5

There are exactly two tableaux U which satisfy °U  = T  and RU =  V . They are as 

follows:
1 ! 2 J 4

U -  K R 9 , and U' =
1 2 4
3 5 2
5 3
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Since s{U) =  s{U') = 1, fi(T, T') = 2.

Write each A-tableau T  as Tj for some I  € I(n, r). We order the set of A-tableau 

by declaring

T/ < T j  if I  < J  with respect to the lexicographic order on I(n, r ) . (3.8)

In other words, Tj < Tj  if the first entry in the first row in which they differ is 

smaller in T/ than in Tj.  Let T\  =  { I  € /(n , r) :T j  is a semistandard A-tableau}. 

The Desarmenien matrix is the matrix

fi =  [Q(Ti,Tj)]l!j€Xx.

It is proved in [De] that Q is a unimodular triangular matrix. Moreover, if S' is a 

column increasing tableau, then fi bears the following relationship to the straighten­

ing coefficients of [S] (recall that j s t j  is the coefficient of \Tj] in the straightening 

decomposition of [S]):

( 1 s Tj ) j <eI x ■ ^  =  ( Q ( S ,  T i ) ) j ez x . (3 .9 )

T h eo rem  3.12 The spanning sets B and A  are related via the Desarmenien matrix. 

In particular,

B - D  =  A .

Proof. Fix S G 7a- It will be shown that YLu&Tx 7 ( ^ ) ^ ( ^  S) =  R(S).  By definition, 

R(S)  =  J2u'~rs[U']’ and for each U1 in the sum we have [U'] =  sgn(au>)[U] where U 

is a column increasing tableau. So we may write

R ( S )  =  5 3  [ U ' \  =  5 3  s g n ( a u , ) { U ] ,

U '~ r S U '~ rS
U '~CU

where all U in the sum are column increasing. Let T  be a column increasing tableau, 

and let ar be the coefficient of [T] in R(S).  Then

0r P 1 =  £  s j n M P I  = n(T,S)[r].
T '~ rS
T '~CT

On the other hand, if hr is the coefficient of [T] in the sum Yhu&Tx 9 (U)Q(U, S) — 

R(S),  then =  YlueTx S) — fi(T, S), by (3.9). Hence, or = hr, and the

result now follows. □
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Chapter 4 

The symplectic Weyl module

4.1 Introduction

In this chapter, we work with the symplectic analogues of the Schur and Weyl 

modules. Following [Dl], we place a bar over a GL(n,  fF)-module to represent its 

symplectic analogue. The symplectic Schur module for instance is denoted V(A).

In Section 2.5 we discussed Green’s version of the Weyl module for GL(n, K).  In 

[G], Green works exclusively with the Schur algebra to give results about polynomial 

GL(n,  .ff)-modules and his version of the standard basis theorem for the Weyl module 

is given in terms of the Schur algebra. A symplectic version of the Carter-Lusztig 

standard basis theorem for the symplectic Weyl module has not been given and one of 

our goals in this chapter is to provide one. There is a Schur algebra for the symplectic 

group (see [D3] or [Do]) but the theory surrounding it is not fully developed. For 

instance, there is not a nice combinatorial description of the basis elements as there 

is in the traditional Schur algebra. Thus we cannot give a symplectic analogue of the 

standard basis theorem using the symplectic Schur algebra.

There is an alternative approach to using the Schur algebra for the study of the 

representations of the classical groups. Many authors work with the hyperalgebras 

of GL(n, K )  or Sp(2m, K)  to study their representations. There is an equivalence of 

categories similar to that given in Theorem 2.2. Let V  be a module for GL(n, K)
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with basis v\ , . . . ,  vm. Then V  is said to be a rational module if for each g e  GL{n, K)

9vj =  Y  cM v i
i

where each %(<?) is a rational function in the n2 indeterminates x^,  1 <  i , j  < n. 

Let Uk  denote the hyperalgebra for GL(n,K).  The category of finite dimensional 

[/^-modules is equivalent to the category of finite dimensional rational GL(n, K)-  

modules. Furthermore, every finite dimensional rational GL(n,  iL)-module is isomor­

phic to a polynomial module tensored with a suitable negative power of the deter­

minant representation. There are symplectic analogues of these results as well. This 

explains why the hyperalgebras for GL(n, K)  and Sp(2m, K)  play such a critical role 

in the theory of their representations.

Carter and Lusztig define the Weyl module in [CL] using the hyperalgebra for 

GL{n, K)  and the standard basis theorem they give involves certain elements from 

the hyperalgebra of GL(n,K).  To give a symplectic version of the standard basis 

theorem it is natural then to work with the hyperalgebra for the symplectic group.

Although we use the hyperalgebra instead of the Schur algebra, we are still able 

to use an approach similar to that taken by Green in the case of the general linear 

group to prove a symplectic standard basis theorem. The main tools in the proof 

of Green’s version of the standard basis theorem are the Carter-Lusztig Lemma, the 

Desarmenien matrix, and the fact that V(A) has a basis consisting of bideterminants 

given by semistandard A-tableaux. In [Dl], a symplectic version of the Carter-Lusztig 

lemma is given. It is also shown in that work that the symplectic Schur module, V(A), 

has K -basis consisting of bideterminants given by semistandard symplectic King- 

tableaux. Thus if one defines a symplectic version of Green’s module Vx, many of 

the tools needed to prove the symplectic basis theorem are already at one’s disposal. 

The missing piece in the puzzle is the Desarmenien matrix so we develop a symplectic 

version of this matrix along the way.

The Desarmenien matrix is defined in [De] and [DKR] using operators which they 

call Capelli operators. The Capelli operators are actually elements of the hyperal­

gebra, although the authors do not make use of this fact. We use operators in the
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hyperalgebra for Sp(2m, K)  to define a symplectic version of the Desarmenien matrix. 

As is the case with the usual Desarmenien matrix, our matrix may be used to give a 

straightening algorithm for bideterminants in V(A). Donkin provides an alternative 

symplectic straightening algorithm in [Dl].

We define an Sp(2m,  iL)-module V \  which is the symplectic analogue of Green’s 

V\ in Section 4.4. Namely, the module we define is the contravariant dual to the 

symplectic Schur module V(A). The symplectic Weyl module A (A) is usually defined 

in terms of the symplectic hyperalgebra. We prove that the module V \  we define is 

isomorphic to A (A) in Corollary 4.12. We use the symplectic Desarmenien matrix 

and the symplectic Carter-Lusztig lemma to give a symplectic version of the Carter- 

Lusztig standard basis theorem in Theorem 4.11. As in the original setting, the 

symplectic Desarmenien matrix is the connection between this basis and the basis of 

bideterminants given by semistandard symplectic A-tableaux for V(A).

4.2 The hyperalgebras for GL(n, K) and Sp(2m, K)

We begin by defining the hyperalgebra for GL(n, K).  A nice reference for this 

section is [JK], §8.2. Let the matrix X ^ ,  1 < i , j  <  n, in the Lie algebra gl(n, C) 

denote the n x  n  matrix with a 1 in the i j th  position and zeros elsewhere. The 

universal enveloping algebra, Uc, of gl(n, C) is the associative C-algebra generated by 

the set { X ^  : 1 < i , j  < n}  subject to the relations

X^Xhi  XkiXij — SjkX a buXf-j, 1 £  i, j , k , l  < n .

Define elements e^, /„ ,  and hi, where 1 <  i , j  < n, in Uc  by

Cy Xij fij .'= Xji hi Xu

Cj -=  fi :== fi,i+l hij .— hi hj. (d-l)

Given X  G Uc,  and a  a positive integer, let

=If “d ( ! ) = -  w  ~2)■■■{x-a+*)■
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Kostant’s Z-form  for Uc, denoted U%, is the subring of U<c with Z-basis given by

{ n  <%>) n  ( « ‘)  n  a ? 1' <4 .2)
V. l<i<j<n l<i<n '  ^ l<i<j<n J

The first product is ordered * • • 4 ^  • • • ' ' '  ei3 ^ er2 ^  and the order

in the third is the opposite of this. This basis is known as the PBW-basis for U%. 

D efin ition  4.1 The hyperalgebra of GL(n, K ), denoted Uk , is defined as

Uk  =  Uz  ® z K .

We write u e  Uk  to mean the image in Uk of the element u £ Uz under the map 

<f): Uz —» Uk  defined by <j)(u) — w® 1. Note also that if V  is Cg-module, then V  ®z K  

is a Uk -voodule, and we often drop the tensor when discussing L^-modules.

The operators in Uk  act as derivations on V®r, the r th  tensor power of V, with 

eij, fij, and hi acting as follows

^ i j ^ k  —  b j k V i . f i j V k  —  S i k V j ,  h i V k  =  5 { k V k (4-3)

and u(vil ® ■ • • ® Vir ) =  (uvh ) ® • • -®vir + vh ® (uvi2) •■■0 vir-i-------1- vh ® • • • ® {uvir)

where u € Uk-

We may define a similar [/^-action on A(n, r);

OijXlk — SjkXlii fijXlk — b{kX[j > hiXlk — bikXlk, (4-4)

and u(xhkl- . . .-x irkr) = (uxhkl) - . . .-xirkr +  t-xhkl •.. .-{uxirkr) where u 6  UK- The

Schur module V(A) is a [/^-invariant submodule of A(n, r). Indeed, if [T] G V(A), 

then eifiT] =  ^2k[Tk] where the sum runs over the distinct A-tableaux Tk which 

are obtained from T  by replacing a j  in T  by an i. The operator fij acts on a

bideterminant [T] in a similar manner and hfiT] =  a[T] where a  is the number of i ’s

in T.

Recall from (2.11) that /(A) denotes the subsequence which satisfies TIW = Tx 

and vx = vi(\){C(Tx)}. Let A(A)z be the left Uz-module generated by vx. We now 

state the definition of the Weyl module as given by Carter and Lusztig.
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D efin ition  4.2 The Weyl module, A(A), is the left Ux-module defined as

A(A) =  A(A)z K.

Green proves in [G], 5.2b, that the module V\ of Section 2.5 and A (A) coincide. 

To give the Carter-Lustzig version of the standard basis theorem we define certain 

operators in Uk - Let T  be a semistandard A-tableau. Define Ft  6  Uk  by

f r  n  4 "'1 (4-5>
1 <i<j<n

where 7^ is the number of entries equal to j  in row i of T  and product is ordered as 

in (4.2);
IP —  A ' M )  A 7 1 3 )  A l i n )  A 1 2 3 )  A l i n )  A l n - 1 , n )

r T ~  J 12 J 13 ’ ’ J In J 23 ‘ ‘ ‘ J2n * ' ' Jn - l ,n  •

We now state the Carter-Lusztig standard basis theorem, [CL], P. 118, Theorem. 

T h eo rem  4.1 (S tan d a rd  basis th eo rem ) The set

{Ft v\  : T  is a semistandard A-tableau}

is a K-basis for  A(A).

To define the symplectic group, we let n  =  2m where m is  a positive integer and 

introduce symbols 1, 2 ,m .  Following [Dl], we let m  =  {1, 2 , . . . ,  m}. Through­

out the remainder of the chapter, we shall identify the set n  =  {1, . . . ,  n} with the 

set m  U m  via the map </> : n  —» m  U m  defined by 4>{i) =  i and +  i — 1) =  i,

1 <  i < m.

Let V  be a finite dimensional vector space over K  with dim F =  n and let

{ « ! ,... vm, Vm, . . . ,  Up} be a basis for V. Define a non-degenerate bilinear form

(,) : V  x V  -4 K

by

(vi, vj) =  1 =  — (v--,Vi), 1 < i < m, and (vi} vj) — 0 otherwise.
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The symplectic group, Sp(2m, K),  is as follows:

Sp(2m, K )  =  {g G GL(2m, K)  : (gx, gy) =  (x, y) for all x j e K } .

Note that there are other forms that can be used to define Sp(2m, K).  We are, for 

instance, using a different form than the one used in [H].

The Lie algebra sp(2m, K )  is the subalgebra of gl(n, K)  given by

sp(2m, K ) = {(/) £ gl(n, K )  : (<fi(v), w) = - ( v ,  4>(w))}.

If i , j  e  m  with j  /  i, then X q , X q  and X ^  do not belong to sp(2m ,K).  For 

instance,

(XijVjXi) =  (vi,vj) =  1

while

(vj, XijVj) 0 .

However, X q  +  X q  does belong to sp(2m, K).  The above problem is remedied since

{{Xq +  X qjvj,  vj) =  1

and

~(F j’ d- Xji)v^) (Vj, Vj) 1.

It can be shown that sp(2m ,K)  is generated by the matrices X q  € gl(n, K ),  1 < 

i , j  < m, where

~Y - = X - X -  =  X -

X ii = X i i - X Ti X q  = X q  + Xjj, j ± i

X i j  X q  X ji, j  ̂  i X  j% Xj% d~ X q , i  ^  f*

The universal enveloping algebra, Uc, for sp(2m, K)  is the subalgebra of Uc generated

by the above elements.
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We adopt similar conventions to those in (4.1) for labelling elements of Uc",

f'ij '= X ij  f  ij X ji  hi .— X a

d t,i+ l / i f i j + l  h i j  • h j

where i , j  £ m  U m. Kostant’s Z-form for Uc, denoted Uz, has PBW-basis as in 

(4.2), simply bar all operators in the product.

D efin ition  4.3 The hyperalgebra of Sp(2m, K ) is defined a s U ^  —

The modules V®r and A(n, r) are both U^-modules via the actions (4.3) and 

(4.4).

4.3 The symplectic Desarmenien matrix

In order to define the concept of a semistandard symplectic A-tableau, we reorder the 

set m  U m  by

l < l < 2 < 2 < - - - < f n < m .  (4.6)

A version of symplectic X-tableaux were introduced by King, [K]. A symplectic A- 

tableau T  is obtained by filling the boxes of the Young diagram of shape A with 

elements from the set mUm. A symplectic tableau T  is called semistandard symplectic 

if it is semistandard in the usual sense (with respect to the ordering given in (4.6)) 

and satisfies the additional property that the elements of row i are all greater than 

or equal to i for each i.

E xam ple  4.1

1 2 1 2
Let A =  (2,2,1), T  = 2 3 , and S  = 1 2

3 3

Then T  is a semistandard symplectic A-tableau, while S  is not. □

The coordinate ring K[Sp(2m, K)} is the restriction to Sp(2m, K)  of the algebra 

of polynomial functions K[GL(n, K)\ on GL(n, K).  The symplectic Schur module,
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denoted V(A), is a subspace of K[Sp(2m, K)] defined as the restriction of V(A) to 

Sp(2m ,K ).  Given a symplectic tableau T, the bideterminant [T] in V(A) is the 

restriction of the bideterminant [T] to Sp(2m, K).  We refer to the bideterminant [T] 

where T  is a symplectic tableau as a symplectic bideterminant. We will omit the bar 

on [T] and it shall be understood that unless we state otherwise, we are working with 

symplectic bideterminants in this chapter. As one would hope, we have the following 

theorem.

T h eo rem  4.2 The set

m  : T  is a semistandard symplectic A-tableau} 

forms a K-basis for  V(A).

A version of Theorem 4.2 was first proved by DeConcini in [Dc] where he used 

his own version of symplectic tableaux. In [B], the theorem is proved using the King 

tableaux in the case where K  has characteristic zero. The result was later shown to 

hold true for arbitrary infinite fields in [Dl].

Given a semistandard symplectic tableau T  with k < m  rows, we define operators 

E t  and F t  in Uk  as follows:

where 7^ is the number of entries equal to j  in row i of T  and the product runs over 

all j  G m U m .  Note that for a fixed i, we must have i < j  or j  =  i for all j  G m U  m  

since T  is semistandard symplectic. We order the product E t  as

Given a semistandard symplectic A-tableau T  and a column increasing tableau S, 

we may write E t [ S ]  as a unique linear combination of semistandard bideterminants 

[U] by Theorem 4.2. We make the following definitions.

£7  - I f  and ' t  H  E " ’

K i < k

-(7mm.)
mm A 7 1 2 )- (7 l2 ) -A 7 u )

and we order F t  in the opposite way.
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D efin ition  4.4 Let S  and T  be X-tableaux and suppose that T  is semistandard sym­

plectic. Define Q(S,T) = c where c is the coefficient of [T\] in the sum Et[S) .

E xam ple  4.2

ThenLet T  = 1 2 2
2 2

and let S 1 1 2
1 2

E t [S] —  e2%ei2el2[S]

~  e 2 2 (e 12 ~  e 2 l ) ( e 12 +  e 2 l)

— e22(e12 — e2l)

2 1
*-22 1 2

= 2 1 1
1 2

|i—1 1 2
1 2

=  -  [r>],

□so Q(S,T) = -1 .

We order the symplectic A-tableaux as in (3.8); that is T/ < T j  if I  < J  with 

respect to the lexicographic order on I(n ,r) .  Let

T \  = { I  I(n , r) : T/ is a semistandard symplectic A-tableau}.

D efin ition  4.5 The symplectic Desarmenien matrix is the matrix

We want to prove that the matrix Q is a unimodular upper triangular matrix. 

The following example should serve to motivate Theorem 4.4.

E xam ple  4.3

• Then E t  =  ZfffivLEyi =  e2 2 (e i 2 — ^n ) (ei2 +  e 2l )  and

=  [n i

Let T  — 1 2 2
2 2

E t [T] =  e23(ei2 -  egi) 

so U (T,T)  =  1.

1 1 2
2 2 -22

1 1 1
2 2

1 1 1
2 2

□
In the proofs of the theorems that follow, we will often make use of the following 

lemma which we state without proof. Its validity may easily be shown using a simple 

inductive argument.
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L em m a 4.3 Suppose that X =  (r) and suppose that the one-row X-tableau T  contains 

only j ’s. Then e^[T ] =  [5] where S  is a one-row X-tableau which contains only i ’s.

T h eo rem  4.4 I f T  is a semistandard symplectic X-tableau, then £l(T, T) — 1.

Proof. We need to prove that Et[T] =  [T\]. Since T  is semistandard symplectic, 

there are exactly 7 ^  l ’s in T  and they all occur in the first row. By Lemma 4.3, 

g(7u) j-rpj _  j-jjj w ]iere u  is identical to T  except that the entries in the first 7 ^  columns 

of the first row of U are equal to one. Let k  G m  U m  with k < m  and suppose that

e^ lK') • • -e^n )[T] =  [U] where the first 7n  +  7xi +  F 71K columns of the first row

of U contain ones while the remainder of the tableau is identical to T. Note that 

there are no T’s in U as they were all changed to ones by the operator Let rj be 

minimal i n m U m  with rj > k  so that occurs in the product E t  directly after 

e ^ 1̂ . If 77 =  j  G m, then eiv — epj +  and since there are no l ’s in U , any product 

of operators which contains takes [U] to zero. Thus (ep- +  — e?j3 \u ] .

Since U is semistandard symplectic, any j ’s which appear in U below the first row 

must occur in the first 7 ^ 4  h 71k columns. Since a one occurs in the first row of U

above each of these j ’s, changing any of them to a one results in a zero bideterminant.
(7  “0So by Lemma 4.3 e^ 3 [U] =  [U1] where U' is identical to T  except that the entries 

in the first 7 -  ̂+  711 +  * • • +  7 i« +  71  ̂ columns of the first row of U' are equal to 

one. If rj =  j  G m, then e1?? =  — ejj and we form the same conclusion. By

induction we have shown that • • -e7u [̂T] =  [U] where U is identical to

T  except that the first row of U consists entirely of ones. A similar argument shows 

that • • • e722̂ • • • e7u [̂T] =  [U] where the first two rows of U coincide with

T \  and the remainder of the tableau coincides with T .  Inductively, we get the general 

result.

□

Let V  be a Uk - module and let x  =  (Xi> • • • > X n )  be an n-tuple of non-negative 

integers. The weight space V x is defined

V x  =  { v  G  V  : hiV =  X i v ,  i  =  1 ,  • • • ,  n}.
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The vectors in V x are called weight vectors of weight %. If [T] G V(A) and xr,i denotes 

the number of f s  in T, the weight of [T] is x  = (xr,i -  Xt,T, • ■ • > X t ,m  -  X r , m ) -  For 

instance, if m  =  2, the bideterminant [T] where T  is as in Example 4.3, has weight 

X =  (1,0). Up to multiplication by a non-zero scalar, the bideterminant [T\] is the 

unique vector of weight A in V(A).

Given a symplectic A-tableau T  with k rows, the row sequence associated to T  

is the subsequence I  which satisfies T  =  Tj. The tableaux T  and S  in Example 4.1 

have row sequences Ii =  (1, 2 , 2,3 ,3) and J2 =  (1, 2 , 1, 2 ,3) respectively so we see 

that S  < T .

T h eo rem  4.5 Suppose that S  and T  are symplectic X-tableaux and that T  is semis­

tandard.

1 . I fQ ( S ,T ) 0 then [S] and [T] have the same weight.

2. I f  S  is semistandard and Q(S, T) ^  0 then S  < T .

Proof. If [U] is a bideterminant with weight % =  (xi, • • •, Xm) then it is easy to see
Q;

that e-j — e^  +  takes [U] to the weight space V(A) where

a  =  (Xi> ■ ■ ■, X* +  1,  • • • > X j  +  1,  • • • ,  X m ) ;

that is every bideterminant in the sum e-[U] has weight a. Similarly, =  e — ejj

takes [U] to V(A)a where a = (xi, • • •, Xi + E • • • ? Xj - •  • • > Xm) and clearly e - takes 

[U] to V(A)° where a  =  (xi, • • •, Xi+2, • ■ ■, Xm)- So if [Ti] and [T2] are bideterminants 

that do not have the same weight, and 1 <  i <  k, k G m U m , then e,K[Ti] and ejre[T2] 

lie in different weight spaces. To prove 1., suppose that [S] and [T] do not have the 

same weight. Inductively we see that E t  takes [S] and [T] to different weight spaces. 

But E t [T] = [7A] by Theorem 4.4, so [T\] does not appear in the sum E t [S]. Thus

n(s, t ) = o.
To prove 2., we may assume by 1. that [S'] and [T] have the same weight. Suppose 

that S  > T  and let the first place in the row sequences where the two tableaux differ be 

at t in T  and s in S  where t is in the «th row of T. We shall consider two cases. Suppose
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first that t =  i. Then since S  and T  are identical in the first i — 1 rows, an argument 

similar to that used to prove Theorem 4.4 shows that e^m "^  • • •e^11̂ [5'] =  [U] where 

the first i — 1 rows of U are identical to T\  and the remainder of U coincides with S. 

Since s > i, S  contains fewer i ’s than T  in the ith  row; that is S  has fewer than 

in the ith  row. But S  is semistandard symplectic so contains no i’s below the ith  

row. Thus the only i ’s in U are those that occur in the ith  row so U contains fewer 

than 7 - i ’s. Thus e?u\u }  =  0 and it follows that E t [S] =  0.

Now suppose that t > i. We first argue that t i. Suppose that t = i so that 

the two row sequences first differ at i in the ith  row of T  and at s > i in the ith  

row of S. Then T  contains more i ’s than S  and since [S] and [T ] have the same 

weight, T  also contains more i ’s than S. Since both are semistandard symplectic, 

this contradicts the fact that S  and T  are identical in their row sequences prior to 

i > i in T. So we may assume that t > i. Let k £ m  U m  be maximal with k < t so 

that E t  = ■ ■ • Since S  and T  are identical in their row sequences

prior to t in T  we have that • • •e^11̂ [S'] =  [U] where the first i — 1 rows of U 

coincide with T\,  the first 7^ 4—  • +  7iK columns of the ith row of U contain i ’s and 

the remainder of U is identical to S. The next operator to appear in the product E t  

is eit. Since S  is semistandard symplectic and t > i, there are no i ’s in U. Thus we 

may assume that Indeed, if t =  j  e  m, then eu =  e -  +  e - and the

latter operator plays no role since U contains no i ’s. We form the same conclusion 

if t = j  £ m. Again, we see that there are less than 7it f  s in the ith  row of U and 

since S  is semistandard symplectic, any f s  which appear below the ith row of U must

appear in the first 7^ +  7^ H f- columns. Since each of these columns contains

an i, changing such a t to an i results in a zero bideterminant. Thus, e ^ %t\u ]  = 0 

from which it follows that E t [S] =  0 . □

We have the following immediate corollary to Theorems 4.4 and 4.5.

C o ro lla ry  4.6 The matrix 0  is an upper triangular unimodular matrix.
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Proof. By Theorem 4.4, Q has ones on the diagonal and by Theorem 4.5, the entries 

below the diagonal are zero. □

As in the case of the usual Desarmenien matrix, this matrix does provide an 

algorithm for writing a symplectic bideterminant as a linear combination of bideter­

minants given by semistandard symplectic tableaux. Before deriving the algorithm, 

we prove the following lemma.

L em m a 4.7 Suppose that S  is a column increasing X-tableau and T  a semistandard 

X-tableau and suppose that [S'] and [T] have the same weight. Then

E t [S]=II(S,T)[Tx}.

Proof. Since [S] and [T] have the same weight, E T takes [S] and [T] to the same weight 

space. By Theorem 4.4, E t [T] =  [Tx], so every bideterminant in the sum E T[S] has 

weight A. Since [Tx] is the unique vector of weight A in V(A) up to multiplication by 

a scalar, we have E t [S] =  c[Tx] =  fl(S, T)[T\]. □

We now discuss a method for “straightening” a symplectic bideterminant. If S is a 

symplectic A-tableau then by Theorem 4.2 we can write [S] as a sum of semistandard 

bideterminants, and it can easily be shown that these bideterminants must have the 

same weight as [S]. Let x  be the weight of [S] and let

l xx = { I  e l \ :  [Ti] has weight x}-

Let Qx =  [0(T /,T j)]J]Jgjx. Then [S’] =  YhieTx ailTi] and given J  e  Tx we have

uiE t j[Ti ] = Y 2  aitt{Ti,Tj)[Tx] by Lemma 4.7.
ieTl i& ’i

But

B T,[s ]  =  n ( s ,2 » p r i ]

so we have

t t (S ,T j ) {Tx\ =  J 2  * M T i ,T j )[Tx}.
ieTi
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Thus Q(S,Tj)  — J2iexl G/^ (T /, T j )  for all J  € I* .  It follows that

\ - i

[ Q ( S , T i ) ) I e J x — 

and since Qx is invertible by Corollary 4.6, we have

lai\ie i\ ~  Ti)]Iejx(Q,x)

E xam ple  4.4

Let m =  2, A =  (2,1). We would like to apply the straightening algorithm to

[T] = 1 1
2

. There are two semistandard symplectic A-tableaux which yield

T2 =bideterminants of weight x  =  (0, —1); Tx =

E t 2 — 5 ( e i 2 + e 2l ) 2 a n d  E t 2 [T i]  — — [Tx] ,  so 0 (T i,T 2) =  —1. Thus, 0^
1 - 1

0 1

Also E Tl[T] =  [Tx] and E t 2[T] =  0 so  0(T ,T i) =  1 and fi(T ,T2) =  0. If ai is the 

coefficient of [Ti] in the straightening decomposition of [T] and a2 that of [T2] then

(a i,a2) =  (1, 0)
1 1 

0 1
( M ) -

□

4.4 A b a s i s  for the symplectic Weyl module

Define A(A)Z to be the left U^-module generated by vx, where vx is as defined in 

(2 .11).

D efin ition  4.6 The symplectic Weyl module is the left Uk -module defined as

A(A) =  A[A)Z <S>z K .

We now construct the contravariant dual of the Schur module V (A) which we will 

call Vx since it is the symplectic analogue of Green’s G L (n ,K )~module Vx, defined
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in Section 2.5. The eontravariant dual of V(A) was also defined in [W], where it is 

denoted W\, using a somewhat different approach. It can be shown using the theory 

of algebraic groups that V(A) =  A (A). We will show this directly in Corollary 4.12 

so we refer to V\ as the symplectic Weyl module throughout the remainder of the 

chapter.

Define an anti-automorphism J  : Uk  Uk  by J(ey) =  and

J(hi) =  hi. The dual module V* becomes a left f/^-module via the action

(S /)M  =  f Ws ) v ) ,  f £ V ' ,  g e U K, v £  V.

The left f/^-module V* with the above action is the eontravariant dual to V, denoted 

V°.

Given two Uk ~modules V  and W ,  a iGbilinear form (,) : V  x W  K  is called 

Sp(2m, K)-eontravariant if

(u v ,w ) =  (u, J(u)w), for all u £ Uk, v  £ V, w £ W.

As in Section 2.5 define the map <j): V®T —>• V(A) by (p{vi) =  [Ti], Let

ip : V®r V(A)

denote the composition of (p with restriction to Sp(2m, K).  Then ip is a well-defined 

Uif-epimorphism so N  =kerip is a [/^-module.

Let (,) : V®r x V®r —)■ K  be the canonical form on V®T defined in (2.10);

(vi, v j)  =  5jj

where I  =  (ix, . . . ,  ir), J  =  (ju £ I(n, r) and 8 U  =  H^=i Kdp-

Define V\ to be the orthogonal complement to N  =kerip in V®r with respect to 

the above form. In other words,

V P = { x £ V ® r : (x ,N )  = 0}.

It is easy to see that (e^u, w) — (v, f ^ w ) and (fijU, w) = (v, hxw) for all v,w  £ V®r, 

so the form (,) is Sp(2 m, iQ-contravariant. Furthermore, if m € UK, v £ V\, and
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x  G N ,  we have

(■uv , x ) — (v , J{u)x) = 0 

since J(«)x  G N.  Thus V\ is a U^-submodule of V®r. The form

( , ) : V x x V ( X j ^ K

defined by

(®, 'fiiy)) = {x,y), X G Fa, y € F®r (4.7)

is a non-degenerate, Ujf-contravariant form since (,) is non-degenerate and Uk ~ 

contravariant. To see that the form is U^-eontravariant, let u G Uk , x G V\, and y G 

F®r . Then (ux,ip(y)) = {ux, y) — (x, uy) =  (x, ip{uy)) — (x,u-ip(y)) since 'ip is

a {7#-epimorphism. It follows from a symplectic analogue of Theorem 2.7 that

f : ^  (v (a))°.

In [Dl], Donkin proves a symplectic version of the Carter-Lusztig lemma ([CL], 

Lemma 3.3 or [G], 4.6a.). The Carter-Lusztig lemma is usually stated in terms of 

a so-called Garnir identity as in [G], 4.6a. In the following version of the lemma, 

we replace this condition with one which comes from Sylvester’s identity. Recall 

from (2.7) that if J  is a fixed subsequence of column j  + 1 of a A-tableau T, and I  

a subsequence of column j  of T, having the same size as J  we let T*(/, J) be the 

tableau obtained by interchanging the elements in I  and J , maintaining the ordering 

of the elements. We let T(A) denote the set of A-tableau.

L em m a 4.8 (C arte r-L u sz tig  L em m a) Let f  : T(A) —>■ F  he a map into an abelian 

group F  which satisfies the following conditions:

1. f ( T )  =  0 i f T  has equal entries at two distinct places in the same column.

2. f ( S )  — —f ( T )  if S  is obtained from T  by interchanging two distinct entries in

the same column.

S. For any subsequence J  of column j  + 1 of T, we have

/ ( r )  =  ^ / ( r * ( / ,  j ) )
I
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where the sum is over the subsequences I  of the j th  column o fT  that have the 

same cardinality as J.

Then the image o/T(A ) under f  is contained in the set

l f ( T ) : T  is semistandard }.

Proof. The lemma follows immediately from the argument in (2.8). □

The symplectic version of the Carter-Lusztig lemma that is proved in [Dl] does 

involve the traditional Garnir identity, but replacing this identity with the one we give 

above does not require alteration of the proof given there. Before stating the lemma, 

we define the necessary notation. In order to avoid confusion with the notation 

used in (2.7), we use different notation from that used in [Dl]. In particular, if 

Q — (qx, q2, ■.., qk) is a fixed subsequence of a fixed column of T  and I  — («i, i%,. . . ,  if.) 

is a subsequence with entries from m  U m  with the same cardinality as Q, we let 

T{Q, I)  denote the tableau which arises by replacing the elements in Q with those in 

I  maintaining the ordering of the elements.

E xam ple  4.5

and let Q = (2 ,2 ,3,3) be the subsequence of the first column of T.Let T  =

I f / =  (1, 1,4 ,4), then T(Q, I)  =
1 2
1 3
4
4

Let T(A) denote the set of symplectic A-tableau.

L em m a 4.9 (S ym plectic  C a rte r-L u sz tig  L em m a) Let F be an abelian group and

let f  : T(A) —» F  be a map satisfying 1 - 3 of Lemma 4-8 and the following additional 

condition:
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4- For any subsequence Q ~  (qi, qx, . . . ,  qa, qa) of even cardinality of the j th  column

of T, with Qfc € m  for 1 < k < a, and qx < q2 < ■ • • < qa we have

/ ( r )  =  ( - 1)“ E m -0
I

where the sum runs over all sequences I  =  (ix, ix, . . . ,  ia, ia) with ik 6  m  and 

i\ < %2 < - •■< ia which are disjoint from Q.

Then the image of T(X)  under f  lies in the subgroup of F  generated by

{ f ( T)  : T  is semistandard symplectic}.

We give an example to illustrate property 4.

E xam ple 4.6

Suppose that m  = 4 and A =  (1, 1, 1, 1). For a map /  : T(A) -> F  to satisfy property

4. of the lemma, we need for instance

/ 1 \ /
3 \ 1 1 \ / 2 \ / 3 \ / 4 \

/ 1
=  /

3
, / 1

=  - / 2 - / 3
- /

4

2 4 2 2 2 2 J\ 2 / \ 4 / \ 2 / V 2 / \ 2 / \ 2

/ 1 \ / 1 \ I 1 \ / 1 \
1 =  - / 1 - / 1 - /
2 3 4 T

\ 2 / \ 3 / \ 4 J \ /
□

The symplectic Carter-Lusztig lemma allows us to describe N  =  kerip more pre­

cisely. We give a brief proof of the next result which follows the proof of [G], 5.2a.
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T h eo rem  4.10 The Uk -module N  is the K-span of the subset R  = R i URqURzURz

of V®r where

1 . R i consists of all vi such that Ti has equal entries in a column.

2. i ?2 consists of all Vi — sgn(a)via where a  G C(T\).

3. Rz consists of all elements vk — Yhi vL(i) where if J  is a fixed subset of the 

(j + 1 )th column o f T k , the sum runs over all L(I)  G I ( n , r ) for which Tl(i ) — 

T'k {I , J) for some subset I  of the j th  column of Tk  with the same cardinality

as J.

4 . Ra consists of all elements vk  — (—1)“ Y h  vL(i) where if Q — (gT, qi, . . . ,  q4 , qa) 

is a fixed subsequence of a fixed column of TK with q  ̂ G m  for 1 < k < a and 

Qi < <?2 < • • • <  Qa then the sum runs over all L(I)  G I (n, r)  with Tl(i) — 

T{Q, I) for some sequence I  — . . . ,  ia, ia) which is disjoint from Q and 

satisfies ik G m  and i\ < i2 < ■ ■ • < ia-

Proof. It follows from Theorem 2.3 that R\ U R 2 U Rz is contained in ker(j). Since if is 

the composition of <f> with restriction to V(A), the K-span of R\ Ui?2Ui?3 is contained 

in ker0 =  N.  Donkin shows in [Dl], Theorem 2.3b, that [Tk] — (— 1)° ^2i[T(Q, /)] =  0 

where Q and I  satisfy the hypotheses of part 4. of Lemma 4.9, so i?4 is contained 

in ker^ as well. Thus if A  denotes the K-span of Ri U i?2 U Rz U i?4, we have 

A C  N  = ker ip.

Define an epimorphism g : T ( A) —>■ V®r/A  by g(Tj) = vi + A. Then g satisfies 

1 — 4 of the symplectic Carter-Lusztig Lemma, so the image of g is contained in the 

K -span of {vi + A  : Tj  semistandard symplectic}. Since the bideterminants given by 

semistandard symplectic tableaux form a basis for V(A) and the map p : V®r/A  -» 

V(A) defined by p(vi +  A) =  ip(vi) maps {vi + A : Ti semistandard symplectic} onto 

{[Ti] : Tj semistandard symplectic}, p is injective. Thus N  C A. □

Note that the argument above can be modified to show that ker^ is equal to the 

JL-span of R\ U R 2 U Rz- Simply let A  be the iCspan of R\ U R 2 U Rz in the above
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proof, use Lemma 4.8 and the fact that the bideterminants given by semistandard 

A-tableaux form a basis for V(A). We will use this fact in our proof of the symplectic 

standard basis theorem below.

T h eo rem  4.11 The set {F t V\ : T  is a semistandard symplectic X-tableau} forms a 

K-basis for V\.

Proof. We first show that v\ G V\. In [G], 5.3a, it is shown that (v\, x) =  0 if x  G ker</>. 

Since kerf  is the if-span of Ri U U we have (v\,x)  =  0 if x  G Ri  U R 2 U R 3 . 

If x  E R 4 , then x  =  v k  — (—1 )aY 2 ivL(i) where by definition, each K  and each L(I)  

contain at least one i for some i £ m .  Thus (v \,x)  — 0 which shows that v\ E V\.

Since V\ is the eontravariant dual to V(A), V\ and V(A) have the same dimension 

(see [G], Proposition 3.3e). Since {[T] : T  is a semistandard symplectic A-tableau} 

is a basis for V(A), we need only show that the set under consideration is linearly 

independent. Consider the non-degenerate {/^-eontravariant form

( ,  ) : Va x V(A) —» K

defined in (4.7). Let T \  =  { I  E I(n , r) : Tj semistandard symplectic}. Given / ,  J  € 

I \ ,  we have

(FtjV\, ip(vj)) =  (vx, E Ti ^ { vj ))

— (v\ , E tj[Tj ])

M

where for each M, um € K  and [TM\ has weight different from A. But

(v\, Q{Tj, Ti)[T\] + y j QmPm]) =  Pm])
M    M

By Corollary 4.6, [Q(Tj, 2 /)]j is a triangular, unimodular matrix so the matrix

[(FTi vx, [Tj])]IjJeTx = [{FTlvx^{ v j ) ) ] IJej x is as well. We now have that {F T]vA : 

I  E 1 \ }  forms a basis for V\. □

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C oro llary  4.12 The U k -module V\ is the symplectic Weyl module; V\ =  A(A).

Proof. Due to the above theorem, Vx is a submodule of A (A). In [Dl], it is shown 

that the dimension of V(A) is given by Weyl’s dimension formula. But V\ and V(A) 

have the same dimension, and it is well known that the dimension of A(A) is also 

given by Weyl’s dimension formula. This completes the proof. □

4.5 A spanning set for the irreducible Uk ™ m odule

m
The Weyl module A(A) has a unique maximal U^-submodule M  (symplectic version 

of [G], 5.4b) so the quotient module A(A) /M  is irreducible. It can also be shown that 

V(A) has a unique minimal submodule L{A) which is generated as a t/^-m odule by 

[Tx] and A(A) /M  = L (A) (see [G], 5.4c, 5.4d). Furthermore, the set

{L(A) : A is a partition of r  into not more than m  parts}

forms a complete list of irreducible non-isomorphic Uk -modules. We can use the 

argument we used in the proof of Theorem 3.10 to get a spanning set for the irreducible 

[/^-module L(A) as a corollary to our standard basis theorem. In that case, we 

simplified the elements of the spanning set using the basis for the Schur algebra. 

There is a symplectic version of the Schur algebra (see [D3]), but a combinatorial 

basis for this algebra like the one in (2 .2) has not been given so were are unable to 

apply the same argument here. We can, however, get a spanning set by applying the 

elements F t  to [Tx].

C oro lla ry  4.13 The set { F t [Tx] : T  is a semistandard symplectic X-tableau} is a 

K-spanning set for L (A).

Proof. The map

(j) : A(A) /M  -4 1(A)
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defined by 4>(Ft V\ + M) = F t [T\ ] where T  is semistandard symplectic is a surjective 

Uk -homomorphism. Since the set {F t V\ : T is a semistandard symplectic A-tableau}

is a basis for A(A), the set { F t [T\] : T  is a semistandard symplectic A-tableau} is a 

spanning set for L(A). □

E xam ple  4.7

Let A =  (2,1), m  =  2, x  — (0,1). There are two semistandard symplectic tableaux 

which give bideterminants of weight x\

Ti = 1 1
2

and T2

Now,

f li

+

+

1 1
2

1 1
2

+ by the straightening algorithm

1 1 + 2 2
2 . to

and

FtATx) = ( / i5 +  / 2i ) ( / i2 - / e )

=  i f  12 +  /2l) 1 2

to -

1 2
. T -

I  1
2

+ 1 1
2

, by the straightening algorithm

and the above two elements give us a spanning set for L (\)  .
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Chapter 5 

A quantum version of the 

Desarmenien matrix

5.1 Introduction

In this chapter, we work in the quantized version of the hyperalgebra for GL(n, K).  

Given an indeterminate g, we define a C(g)-algebra ?7c(?) called the quantized univer­

sal enveloping algebra. Let A  =  Z[g, g-1]. There is an integral form Ua  of U<c(q) due 

to Lusztig [L] which is an A-subalgebra of Uc(q) ■ As in the classical case, the quantum 

hyperalgebra Uq is defined by base change; Uq =  Ua ®a K. When we let q =  1, we 

recover the classical theory so results about Uq give results about the classical case. 

When q is taken to be a pth root of unity in K ,  where K  is a field of characteristic 

zero, the representation theory of Uq is similar to that of Ui when L has characteristic 

p. There are many conjectures regarding this similarity (see [CP] Conj. 11.2.13).

Our main aim is to define a quantized version of the Desarmenien matrix using 

elements in Uq. There are quantum analogues of the familiar Schur and Weyl modules 

called g-Schur modules and g-Weyl modules and we discuss these modules in some 

detail. Our quantized Desarmenien matrix gives an algorithm for writing a quantum 

bideterminant in the g-Schur module as a K -linear combination of quantum bideter­

minants given by semistandard A-tableaux. We give a quantum version of Green’s
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Weyl module in Section 5.4. This requires the introduction of a £/g-contravariant 

form since the canonical form used in the previous chapter proves not to be U q-  

contravariant. We use our matrix and the techniques from Chapter 4 to prove the 

standard basis theorem for the Weyl module. The standard basis theorem was

ferent approach, but the proof we give is substantially different from the former two. 

A consequence of our proof is that the bases for the g-Schur and g-Weyl modules are 

connected by the quantized Desarmenien matrix. We conclude the chapter by dis­

cussing the spanning set for the irreducible £/g-module L q ( A) that arises as a corollary 

to the standard basis theorem.

5.2 The quantized hyperalgebra

In this section, we construct the quantum analogue Uĝ  of the hyperalgebra for 

GL(n, K). We then discuss the quantum analogues of the Schur and Weyl modules. 

Further details may be found in [J], [CP], or [Ta].

Let q be an indeterminate and let C (q) be the field of rational functions of q with 

coefficients in C. The quantized enveloping algebra, denoted Ua^q), is the associative 

C(g)-algebra with generators E i ,  F i ,  K j ,  K j l with 1 < i < n, 1 < j  < n, subject 

to the relations that follow. We let denote K i K ^ v

proved previously by Dipper and James [DJ] and then by R. Green [Gr] using a dif-

K iK r 1 =  K ^ K i  =  1

KiEj =  q5i’i~Si'i+1EjKi 

E i E j  =  E j E i  i f  \i -  j\ > 1

Ki Kj  = K jK i

KiFj = FjKi

F i F j  =  F j F i  i f  \i — j\ > 1

FI

Ef Ej  - ( q  + q~1)EiEjEi +  EjE? = 0 if \i -  j\ =  1 

FfFj  -  (q + q~l )FiFjFi +  FjFf  =  0 i f  \i -  j | =  1.

The algebra Uc{q) is a Hopf algebra over C(q) with comultiplication

A : U C(q) ->■ Uc(g) ® U C(q)
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defined by

A(Ei) — l® E i  + Ei<8>Kiti+i, A {F i) =  K ~ 1+ l <3>Fi +  Fi ® l ,  A{Ki) = K i ® K i. (5.1)

Note that Uc(q) possesses other comultiplications which are preferred by some authors. 

Given a, e £ N, we define

The quantum factorial is defined as

[a]! =  [a][a -  1] •••[!].

Given X  e  f7qg) and a  £ N, let denote the divided power M! and define

( K j \  A  9 - +1Kj  -  q - ' K - '

\ a )  h i  _ r '

Let A  = TL\q, q~x] be the ring of Laurent polynomials in q. The integral form Ua  of 

Uc(q) is the Hopf .A-subalgebra of C/q9) generated by the set

| E\a\ F l a\  Kj, K j \  ^  : a  £ N, 1 < i < n, 1 < j  <  n | .

If we consider our arbitrary field K  with q a unit in K ,  we may regard K  as 

an ^4-algebra with q £ A  acting as multiplication by q in K. Thus Ua  ®a  K  is an 

.4-algebra.

D efin ition  5.1 The quantum hyperalgebra is defined as Uk,q =  Ua <8 >a K.

We shall drop the K  and write Uq for f/jy9- We write u £ Uq to mean the image of u 

in Uq via the map :Ua ~^ Uq defined by <j){u) = u ® 1.

Let Va  be the .4-module generated by vi, • • • , vn. Then Va  is a [ /4-module, called 

the natural module, via

EiVj — FiVj KiVj q J Vj.

The coassociative comultiplication A defined in (5.1) defines a [ /4-module action on 

V®T. Thus V®r 0^4 K  is a Uq-module. We drop the A  and write simply V  and V®r.
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Exam ple 5.1

Suppose that V  has dimension 3 and let u3 0  v2 € V  0  V. Then

E2 (u3 0 V2 ) =  V3 0 £ ^ 2  + E 2 v 3 0 ^ 2 ,3 ^ 2  = q v 2 0 V2.

□
Define za € V®r by

Y1 A)-<t
<reC{Tx)

where /(cr) denotes the length of the permutation a € Sr and, as always, 1(A) € I(n , r) 

is the subsequence that satisfies T\ — 2j(x). Define A(A)^ to be the left [ /4-submodule 

of V®r generated by Z \ .

D efin ition  5.2 The q- Weyl module is the left Uq-module

A,(A) = A(X)a  ®a K.

There is also a quantum analogue of A(n). An n x n matrix A  with entries in an 

^4-algebra is a q-matrix if its entries satisfy the following relations:

aikau =  q~laiiaik 1 < i <  j  < n

dikdjk q Q'jkQ'ik 1 "A k <L I “A TI
(5.2)

auttjk =  eijkCLu 1 < « < j  < ?7., 1 < k < I < n

dikCiji — djidik — {q~l — q)dudjk 1 < i < j  < n, 1 < k < I < n.

Define A q{ n) be the ,4-algebra with generators X{j subject to the relations which

require X  =  to be a g-matrix.

E xam ple  5.2

We have the following relations in A q(2):

1̂1̂ 12 = q ^ x u x n  x2ix22 = g_1 ̂ 22̂ 21

^ 11^21  =  q ~ l X  2 l X \ l  X 12X22 =  q ~ l x 22x l2

X12X21 =  2:212:12 x u x 22 -  2:222:11 =  (9-1 -  9 ) 2:122:21 •
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It can be checked (see [Ta] ) that Ag(n) is a U_4-module with action 

EiXkl — 3i+l,l%ki) Ei%kl — ^ik^k,i+lj Q tl%kl

and E i ( P Q )  = P { E i Q )  + F^PQ) =  ( K ^ P ^ p Q )  + ( F i P ) Q ,

Ki(PQ) = (KiP)(KiQ) where P,Q & Aq(n). These Leibniz formulas come from 

(5.1). An inductive argument shows that

Ei(PlP2---Ps) =  P1P2---(EiPs) + P1---(EiPs^ ) ( K i,i+lPs)

+ ••• + (EiPl )(Ki,i+1P2) - - - (K i,i+1Ps) and (5.3)

F i ( P 1 P ,  ■ ■ ■ P . )  =  ( K y U P i ) ' '  • ( K & f . - 1 )  ( F i P . )

+  ■ ■ ■  +  { K - ^ P M F i P , )  ■ ■ ■ P ,  +  ( F i P i ) P j  ' '  ■ P . ,

where P i , . . . ,  Ps e  A g(n) and 1 < i < n. The C/4-module Ag(n) becomes a Uq-module

via base change.

E xam ple  5.3

Take x\2 G A g(2) and £ f  G C/4. Then

E \x  12̂ 12 =  Ei {x\2Xn +q~lx i ix t2)

=  ^ 11̂ 11 +

=  (9 +  9-1)aai

□
The quantum determinant of the matrix X  =  (:% )i<y<n lies in A q(n) and is 

defined by

detqX  =  ^  ( 9)  ̂ ^lcr(l) ' ' ' %ncr(n) •
<r£Sn

If I, J  G I(n,r),  the quantum minor detqX j  is the quantum determinant of the 

submatrix of X  with rows indexed by I  — ( i i , . .. , ir) and columns by J  =  ( j i , . . . ,  j r);

detqX j  -  Y l ( ~ q^ KtT)xhi-i • --x ir3.r-
cre sT
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Exam ple 5.4

Let X ^ { x  Then detqX (U1T 23 q '̂13 2̂1 ■ □
Given A-tableaux S  and T, the quantum bideterminant (S : T) e  A?(n) is defined

as

where s is the number of columns in the Young diagram of shape A and T(i)  denotes

the subsequence corresponding to the entries in the ith  column of T.  As always, we 

are only interested in bideterminants of the form (T\  : T)q and take [T] to represent 

such a bideterminant. All bidetermiants [T] in this chapter are taken to represent 

quantum bideterminants. Using (5.3), we may determine the action of Ei, Fi or Ki  

on a bideterminant [T]. Suppose that T  is a A-tableau with s columns. Let [Tj] be 

the bideterminant which is given by the one-column tableau that corresponds to the 

ith  column of T  so that [T] =  [TiJpTy ■•■[%], where s is the number of columns in 

T. Then

A proof of the following theorem can be found in [NYM]. It is also a consequence 

of (5.4) combined with Lemma 5.5 which we prove in the following section.

T h eo rem  5.1 The K-span of the quantum bideterminants [T], where T  is a X- 

tableau, is a Uq-invariant submodule of A q(n).

D efin ition  5.3 The q-Schur module, denoted V q(X), is the K-span of the quantum 

bideterminants [T] determined by X-tableaux T.

In the following section, we will construct the eontravariant dual to V 9(A) as we did in 

the symplectic case and, as stated in the following theorem, the module we construct 

will be isomorphic to A?(A). For a proof see [D2], Proposition 4.1.6.

Ei[T] =  [Ti\ • • • (Ei[Ts]) +  [Ti] • • • (Ei[Ts-i])(Kiti+i[Ts])+

■ ■ ■ + ( E i p y H J W T j i )  • • ■ ( f C i + i p y ) , (5.4)

cm = (iq-yc]) ■ ■ • (#qi1[r.-1])(Fipr.l) + • • • 
+ ( c „ i+1m ] ) ( c m ] )  • ■ • m i +  ( e m i x m i ) . . .  [T,\.
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T h eo rem  5.2 The q-Weyl module is the contravariant dual to V9(A); that is

(V,(A))° es A,(A).

We shall also use the following quantum analogue of the basis theorem for V q(X) 

in Section 2 . There are several different proofs of this result; see for instance [Hu] or 

[HZ],

T h eo rem  5.3 The set {[T] : T  is a semistandard X-tableau} forms a K-basis for 

V,(A).

5.3 A quantum version of the Desarmenien matrix

In this section we use operators in Uq to define a quantum version of the Desarmenien 

matrix. We introduce a number of technical lemmas which will ease our task. Our 

first lemma may be proved using the relations (5.2).

L em m a 5.4 Let T  a one-column X-tableau.

1. I f  T  contains two entries which are equal, then [T] =  0.

2. Let S  be a X-tableau which is the same as T  except that two of the entries have 

been interchanged. Then [T] +  (—g)_1[5] =  0.

Proof. See [TT], Proposition 2.1. □

L em m a 5.5 Let T  be a one-column tableau for which [T] ^  0.

1. I f  T  contains an i + 1, we have Ei[T] =  [S] where S  is the X-tableau that is 

identical to T  except that the i +  1 has been replaced by an i. I f  T  does not 

contain an % +  1, then Ei[T] = 0.

2. I f  T  contains an i, then Ki[T] =  q[T] and Ki[T] =  [T] otherwise.
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Proof. Let T  — T j  where J  =  ( j € I{n ,r ) and j x < j 2 < • • • < j r. By 

definition,

If T  does not contain an i +  1, then none of the jk is equal to % +  1 so Ei[Tj\ =  0  

since Ei(x\jal • • • x =  0  for all a £ Sr. So suppose that T  does contain an % +  1 

and let j t = i + 1 where 1 < I <  r. Since [T ] is non-zero, this is the only element in 

the subsequence which is equal to i +  1. If none of the jk is equal to i for 1 <  k <  r, 

k I, then K^i+ijk — jk for k ^  I, so Ei[Tj] = [Tm], where M  is identical to J  except 

that ji = i, since E{ simply changes an i +  1 to an i in each of the summands of Tj.

Suppose that one of the jk = % and ji =  i +  1 for 1 <  k, I < r. We will show that 

in this case Ei[Tj] = 0 .  To accomplish this, we prove that for each a £ Sr there is a 

unique 9 £ Sr for which

Prom this it certainly follows that E{ YlcresS~'cfi~~1̂ XlE i ‘ ' ' x rjar =  0.

Fix o £ Sr and suppose that j as =  i and j at =  i + 1- Assume s < t for the

alternative case is proved similarly. Let 6 be the unique permutation in Sr with

jes = i + l, jet = h and j Bm =  j cm for s,t.  Then

so the sum of the two is zero. It follows that Ei[Tj\ =  0 and the proof of 1. is 

complete.

To prove 2., note that since [T ] is non-zero, there can be at most one i in J . The

creSV

Ei(-q)  l{a)x ljal ■ • • x rjar +  Ei(—q) m x ljei ■ • ■ xjr6r = 0.

Ei( q)  ̂ x̂ l j e i  ‘ ’ ’ x s,i+l ' ' ' x ti ' ' ' x j$T — ( 0 )   ̂ ' ' ’ (EiXsj+i) * • • (Ki^iXti)

=  ( -g ) _(i{<T)+1)gxlj(rl ■■■xsi- - - x t i ---Xjar 

=  - ■■■xsi- - - x t i - - -x jar 

=  - E i ( - q ) ~ l{a)xij„i -■■Xsi--- x t,i+i ■ ■ ■ x jtrr,

result then follows easily from the definition of [Tj] and the fact that KiXki =  q5ilXki.

□
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Remark. By altering the proof of 1., we can prove that if T  is a one-column tableau 

that contains an i, then F*[T] =  [S] where S  comes from T  by changing the i in T  to 

an i +  1 and Fi[T] — 0 otherwise.

Using Lemma 5.5 and (5.4), we can compute the action of an element of Uq on a 

bideterminant [T].

E xam ple  5.5

E-12

+  E- 

=  Q

2 2
3 3

2
IV

3

E \2

Kx, 2

+

Kia
to 1 1

3 3
+ q l q

E-12 K ia

□

We are interested in working with operators in Uq which serve as the quantum 

analogues of the operators and in Uk- Let Ei = E iti+i and Fi — F^i+i and for 

1 < i < j  < n  with ji — j  | > 1, define operators Eij and Fij inductively as follows:

Eij — q E iE i^ ij  Ej+ijEi and F^j — q F^x^Fi F^Fi-i-ij.

E xam ple  5.6

E u  — q lEiE24 — E 24E 1

— q 1Ei(q 1£ l2^34 — E34E2) — (q 1E,2^34 — EmE ^ E i

□
Due to the recursive nature of the operators E ^  where \i — j\  > 1, it can be 

quite difficult to compute E i j [ T ] for an arbitrary A-tableau T .  Fortunately we will 

frequently be encountering tableaux for which the task becomes simplified. We illus­

trate the type of tableau in which we are interested in the next example and prove a 

general result about such tableaux in Lemma 5.6.
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Exam ple 5.7

Let T
1 1 1 1 1

to 2 2 2
3 3 6 oo

4 5

. Then

Em [T} ( q - ' E A  -  E ^ E Z)[T] 

= q 1E%E^[T], since E$[T] — 0 

=  q~lE z{q-lEAE,  -  E,E^)[T]

=  since =  0 .

L em m a 5.6 Suppose that T  is a column increasing X-tableau that coincides with T\ 

in the first i — 1 rows. Suppose also that if m  is an integer with i < m  < j ,  then m  

does not appear in the ith row of T. Then

EifiT] =  qi- j+1EiEi+1 ■ ■ ■ E j - X[T}.

Proof. We f i x  j  and induct on i. For the case where i =  j  — 1, the result is trivial. 

Now assume that the conclusion holds for all k with i < k < j  — 1; that is if U is a 

tableau that coincides with T\  in the first i — 1 rows and the ith  row of U contains 

no entries between k and j ,  then Ekj[U] =  qk~i+lEkEk+\ • • • Ej-i[U]. Since the ith 

row of T  contains no i  +  l ’s and the first i rows of T  are identical to T\, any i +  l ’s 

which occur in T  must occur below the ith  row. Since T  is column increasing and 

each of 1, . . . ,  i — 1 appear in the first i — 1 rows above such an i, there must be an i 

above each so we have Ei[T] = 0. Thus,

Eij[T] =  q - 'E i E i + u f f l - E i+ u E i l T ]

= q~1Ei(qi+1- i +1Ei+1 -- -E j ^)[T}

= q T ^ E i ’ - ’E j ^ T } .

□
The following example should help to motivate Theorem 5.7. Note that a special 

case of the type of tableau that satisfies the hypotheses of Theorem 5.7 is a one-row 

tableau with all entries equal to j .
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Exam ple 5.8

Let T  = 5 5 Then

El[T]  =  E 25q~2E 2E 3 Ei[T] by Lemma 5.6

=  (f 2E 2$E2 E 3 ^ 5 4 + 9  4 5 )
=  q 2 E 25 (  | 5 1 2 1 +  9 11 2 1 5 l)

=  (g- 2)2E 2E 3E4 ([~5~[~2i+ g ^ i r n n )

=  (9~2f ( 9  +  f 1) | 2 [ 2  

=  (9-2)a[2]!f2T2l.

□

For the proof of our next theorem, we introduce some notation. Given I  £ I(n , r), 

define d(I) to be the number of pairs (a, b) which satisfy a < b and ia < For 

instance, if J  — (1,2 ,1,4 ,3), then d(I) = 7. In our proof, all r-tuples I  contain only 

z’s and j ’s where i < j .  For example, if /  =  (i,j, i, i, i, i , j ,  i), then d(I) =  6 .

T h eo rem  5.7 Let T  be a semistandard X-tableau that coincides with T\ in the first 

i — 1 rows. Suppose that T  contains r j ’s in the ith row and if m  is an integer with 

i < m  < j  then m  does not occur in the ith row o fT .  Then

E ^ T ]  = (9‘-’+1r(rj![S]
where S  is identical to T  except that the r j ’s in the ith row of T  have been replaced 

by i ’s.

Proof. We want to consider £+[T] for 1 < s < r and we first argue that in doing 

so, we may assume that T  is a one-row tableau which contains r  j ’s. By Lemma 5.6, 

EifiT] = qi"j+lE iEi+i • • -Ej-i[T}. Suppose that the j ’s in the ith  row of T  appear 

in columns p through p' = p +  r. Only the integers 1, . . .  , i  — 1 appear in the first 

i — 1 rows and T  is semistandard, so if m  > p' there are no entries between i — 1 

and j  +  1 in the mth column T(m )  of T. So if m  > p' and i < I <  j  — 1, we have
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Krf+l[T(m)} = [T (m )]. Thus the operators E^ - ■ ■ , E j- \  have no effect on any of the 

columns T(m)  for m >  p'.

We now claim tha t the only non-zero bideterminants in the sum EiE i+1 • • • Ej_i[T] 

are those that come from applying the operators to the j ’s in the ith row of T. If 

m  is an integer with % < m  < j  and if m  appears in T  then by hypothesis, m  must 

appear below the ith  row. Furthermore, since T  is column increasing and the integers 

I , . . .  , i  — 1 appear in the first i — 1 rows above m and no integer between i and j  

appears in the ith  row of T, there must be an i in the ith  row of T  above m. Now 

if [S'] is a bideterminant in the sum Fy_x[T] that comes from changing a j  below the 

ith  row of T  to a j  — 1 then we claim that EiEi+i • • • £ ’j_2[S] =  0. Since there are no 

j  — l ’s in the ith  row of S, any bideterminant in the sum E j^ iS ]  arises from changing 

a j  ~  1 below the ith  row of S to a j  -  2 , either the j  -  1 that came from changing 

the j  below the ith  row to a j  — 1 or some other j  — 1 that appears below the ith 

row. Either way, there is an i in the ith  row of S  above this j  — 1. Continuing, we see 

that any bideterminant in the sum EiEi+i • • • E j^ x[S] comes from changing an i +  1 

below the ith  row to an i in a bideterminant [S'] in the sum Ei+1 • • ■ Ej^i[S) which 

appears below the ith  row. Since there is an i in the ith  row above such an i, we have 

Ei[S'} =  0 so EiEi+i ■ - • E j - 2 [S] =  0. Thus, we may assume that all bideterminants 

in the sum Ej_i[T] come from changing a j  in the ith  row of T  to a j  — 1.

We then apply the same argument to see that any non-zero bideterminant [S] in 

the sum E j- 2Ej-i[T]  that comes from a bideterminant [T1] in the sum Ej-i[T] by 

replacing a j  — 1 below the ith  row of T' with a j  — 2 satisfies EiEi+% • • • E ^ f S ]  =  0. 

Inductively, we see tha t every bideterminant in the sum EiEi+i ■ • • £j_i[T] comes 

from changing a j  in the ith row to an i and so the operator E ^  effects only the 

portion of T  in columns p through p' of T. We apply the same argument to Efj[T]; 

that is if [U] is a bideterminant in the sum Eij [T], then it is enough to consider what 

E ^  does to the entries in columns p through p' of the ith  row of U and inductively we 

see that in considering Efj[T], it is enough to see what happens when T  is a one-row 

tableau which contains r  f  s; that is [T] =  x\j.
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We will show that E?j[T] = (ql~i+1)s[s]\ q~d̂ [Ti]  for 1 < s < r  where the 

sum runs over all r-tuples I  which contain s i ’s and r — s f  s. This will prove the 

statement, for when we let s — r, the only r-tuple I  that satisfies the hypotheses of 

our claim is that which contains r  j ’s and no j ’ s and for this I  we have d(I) =  0. 

Then we will have E ^ T ]  = ( g ^ +1)r [r]![5].

We first let s =  1. By Lemma 5.6, Eij[T] =  ql~i+1EiEi+i • • • Ej_i[T] and

Ej-i[T] = fij-_ ixru +q~1xir --xU-iXl j -\----+
=  5 3  [TM],

M

where the sum runs over all r-tuples M  which contain one j  — 1 and r — 1 j ’s. Thus

£«P1 =

=  q‘- i+1E,Ew  ■ ■ -E j- t  5 3 r a(M)[T«].
M

Since K i ^ X i j  — x\j  for i < I < j  — 1 , we have

t f - i ^ E i E i + i  • • • E j—2 < fd{M)[TM] =  < T ' + 1  < T ‘*(J r ) [ T J ] ,

M  J

where the sum runs over the r-tuples J  which contain one i and r  — 1 j ’s.

Now suppose that for all 1 < m  < s we have E™[T] =  (q% J+1)m[ra]! 9 P7]

where the sum runs over all r-tuples I  which contain m  i ’s and r  — m j ’s. Then

r j m  =  EijE*~l [T] =  -  1]! 5 3  (5.5)
/

where the sum is over the r-tuples I  which contain s — 1 i ’s and r — (s — 1) j ’s. Since 

for each I, every tableau in the sum Eij[Ti] =  ql~^+lEiEi+i ■ ■ • £j_i[T/] results from 

changing a j  to an * in Tj, we have

5 3  E ^ T ,]  =  5 3  7 „ p > ] (5.6)
/  J

where 7/7 € K  and the sum runs over all J  which contain s i ’s and r  — s j ’s. 

Furthermore, 7/7  =  0 in case J  cannot be formed by changing a, j  in I  to an i. We 

will examine the coefficients 7/7 a little later in the proof.
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Substituting (5.6) into (5.5) we have

I

I J

=  ( g ^ +1)s[s -  1]! E E  q-A'h u [T j] ,
J I

where the sum runs over all J  which contain s i ’s and r  — s  j ’s. To complete the 

induction, then, we need to prove that for each J  with s i ’s and r  — s j ’s, we have

Y ^ € d{I)l u  = [s}q~d{J),
i

where the sum is over all I  which yield J  when a j  in I  is changed to an i. For a 

fixed J  with s  i ’s and r  — s  j ’s, , let I x in the sum J2i be the r-tuple that

comes from changing the first i from the right in J  to a j ,  / 2 the r-tuple that comes 

from changing the second i from the right in J  to a j ,  etc.

Then

q~~d{I)i u  =  ^ 2 < l~ d{Ik)l h J -
I k-1

Let OiX be the number of j ’s to the right of the right-most i in J , a 2 the number of j ’s 

to the right of the second i from the right in J,  etc., so that d ( J )  = Yll=i Then 

since the place in which the k t h i from the right in J  occurs is a j  in Ik, we have

d{Ik) =  « !  +  • • •  +  otk-i  +  (afc+i +  1) +  h ( a s +  1)
S

-  y ^ctj -  ctk +  (s -  k)
1=1

— d(J)  -  a k +  (s -  k).

Now, to examine 7ikj  E K  we apply EiEi+x ■ • • E j - X to [T/J and look at the 

coefficient of the portion of this sum that gives J.  By definition of Ik, this is the 

portion of the sum which changes the j  in I k which is in the same position as the 

kt h  i from the right in J  to an i. We write 7Vk(Ei)[T] to mean the portion of the sum
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Ei[T] that effects the entry in this position of Tjfe. Then since there are a* j ’s to the 

right of this j ,

^ ( E J M E i + i )  ■ ■ ■**(Ei -i)[Th ] =  M E i ) M E i + i )  ■ t (Ej . 2)g-°"[Tr]

where I' is the r-tuple obtained by changing the j  in question to a j  — 1. Now,

7rk{Ei)i:k{Ei+l) • • • ^ { E j ^ q ^ T p  = q - ^ E ^ T j n

where I " is the r-tuple that corresponds to changing the j  to an i +  1 and

q~ah^k(Ei)TIti =  q~akqk~1TJ

since there are k — 1 i ’s to the right of the j  by definition.

Thus we have

l i kJ  =  q ~ a k q k~ X

for each k. Then

q ~ d^ ' J Ikj  =  q ~ d^ k ) q ~ a k q k - l  _  ^ - d { J ) + a k- { s - k )  ̂ - a k(^k- 1 _  q - d ( J ) q - s + 2 k ~ l

Recall that

H H k= 1

It follows that

Y ^ q ~ d{h)l l kj  = q-d{J)q-s+2k-i =  ^ g ~ d(J)[s]
Jfc=l k=1 fe=l

and this completes the proof. □

We now define operators E r,q and Fr,q in Uq which are the quantum analogues 

of the operators ET and F t  that were defined in Chapter 4. The operators Ft,q also 

appear in [Gr] and we note that our definition is slightly different than R. Green’s 

since our definition of Fij differs from the one used there.

Given a semistandard A-tableau T  with k < n  rows, define

e t ,< =  n  £ b ,i) “ a =  n  E " ' ’
1 <i<k l<i<k
i<j<n i<j<n
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where 7^  is the number of entries equal to j  in row i of T. The product Er,q is 

ordered

771 _  j p ( rYk~l , k)  ]ni(7fc~2,fc) r p ( l 2k)  r p i ^ )  T ? ( l l k )  1?(713) e i(7 1 2 )
E T ,g  — & k - l , k  k —2,k ' ' ‘ 2k ' ' ' * 2 3  * 1  k ' ' ' * 1 3  * 1 2  5

and we order Ft# in the opposite way.

We are now ready to give quantum analogues of the definitions and theorems we 

gave in Chapter 4.

D efin ition  5.4 Given a semistandard X-tableau T  and a column increasing X-tableau 

S, define ilq(S ,T ) = c where c is the coefficient of [T>] in the sum Ex,q[S].

D efin ition  5.5 The quantized Desarmenien matrix is the matrix

Dq =  \Dq{Tl,Tj)]Itj<zXx

where T \  =  { / € /(n , r) :T i is a semistandard X-tableau}.

We begin with an example to motivate the next theorem.

E xam ple  5.9

Let T  = 1 1 6
5 5

hypotheses of ’heorem 5.7. Thus,

« r4£ g ’

r—H
1,

1 1
5 5

4  ip  2
9  roTji * 2 5[2]f

1 1 1
5 5

g -4pjy(g~2)2[2]!

<rV 2)2 1 1 1
2 2

by Theorem 5.7

Thus Qq(T,T) = q - \ q ~ 2 ) 2 □

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T h eo rem  5.8 Suppose that the Young diagram of shape A has s rows and let T  be

a semistandard X-tableau. Then

S2, (T ,T ) =  n  (®‘^ +1)70
1 < i < s  
i < j < n

where 7^ is the number of entries equal to j  in row i of T.

Proof. By Theorem 5.7, we have E™  [T] =  [712ML] where U is the single tableau that 

results from changing the 712 2’s in the first row of T  to ones. Thus, E\ff2 'i \T\ =  [U]. 

Suppose that E[Jj f ^  • • • E ^ 12\T ]  — (g1_m+1)7lm [U] where the first 711 +  712 +

• • • +  7 i j - i  columns of the first row of U contain ones while the remainder of U is 

identical to T. By Theorem 5.7, we have

m = 1 IT t? J ' m =  i
j - 1

1 J J  [7l .]![[/']
m—1

j
=

m= 1
where the entries in the first 711+712 H------ 1-71 j columns of the first row of U1 are ones

and the remainder of U coincides with T.  This proves that E {^n  ̂ • • • E ^ 2̂ [T] = [U] 

where the first row of U consists entirely of ones and the remainder of V  is identical 

to T.  The general result follows by repeating the argument for each of the rows in 

T. □

If V  is a Uq-module and % =  (%i, • ■ •, Xn) an n-tuple of non-negative integers, the 

weight space associated to x is the subspace

V x = {u € V : KiV = qXiv, 1 <  i < n}.

A vector v G V x is a weight vector of weight x- It is easy to see, using Lemma 5.5, 

that the weight of a bideterminant [T] in V 9(A) is x  =  (xi> • • • ? Xn) where Xi 1S equal 

to the number of i ’s that occur in the tableau T.  (In other words, x  is the content 

of T.)  In particular, [ T \ ]  is the unique bideterminant in V 9(A) with weight A, up to 

multiplication by a scalar.
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L em m a 5.9 Let T  be a X-tableau. Then Eij[T] =  Ylk ak[Uk\ where each X-tableau 

Uk in the sum has one less j  and one more i than T  and ak € K.

Proof. Fix j .  The result is trivial for the case j  = i — 1. Suppose that E mj[T]  satisfies 

the hypothesis if i < m  < j  — 1. Then

E ^  [T] =  q 1 EiEi+ij[T] — Ei+ijEi[T]

=  q - 1Ei ' £ i at {Ut ] + Ei+1J' £ , b‘W

where each Uk has one less j  and one more i + 1  than T  by the induction hypothesis, 

each Si has one more i and one less i +  1 than T, and a*, bi € K .  But then for 

each k, Ei[Uk\ — Yhr a r[U'kr] where each [U'kr] has one more % and one less i + 1 than 

Uk, so one less j  and one more i than T,  and ar € K.  By the induction hypothesis, 

Ei+ijlSi] — ^2 fis[S'si] where each [S'sl] in the sum has one more i + 1 and one less j  

than Si. The result now follows. □

T h eo rem  5.10 Suppose that S  and T  are X-tableaux and suppose that T  is semis­

tandard.

1 . I f  Clq(S, T)  ^  0 then [S'] and [T] have the same weight.

2. I f  S  is semistandard and Qq(S ,T ) ^  0 then S  < T .

Proof. By Lemma 5.9, E ^  takes a bideterminant of weight y  =  (yi, ■ • • ,Xn) to the 

weight space V a where a = ( x i , . . . ,  Xi +  1, • * • > Xj ~  1, • • • > X«)- So if [S] and [T] 

do not have the same weight, E?A takes [S'] and [T ] to different weight spaces, by 

induction. But lies in the weight space V9(A)a by Theorem 5.8 so there is no

bideterminant in the sum E^qlS] with weight A and Qq(S,T)  =  0. This proves 1.

Now to prove 2. we may assume that [S] and [T] have the same weight. Suppose 

that S  > T  and let t be the first entry in the row sequence of T  which differs from

the corresponding entry in the row sequence of S. Suppose that the corresponding

entry in S  is s so that s > t. Let i be the row of the Young diagram in which t 

occurs in T. Suppose that the number of tfs in the ith row of S  is equal to k. Since
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S > T, we have lit > k. Thus ET,q[S] = ■■■ E {ffu~k) E ^  • • • ^ S 12)[5] where l i t - k  > 0. 

Repeatedly applying Theorem 5.7 we have Eft • • • E f^  E f^iS]  =  [k]\ • • • [713]![712]

where the first i — 1 rows of U and the first ju  + 7^+1 +  i- k columns of the ith

row of U coincide with Tx and the remainder of U coincides with S. Now, since S  is 

semistandard, there are no f  s in the ith row of U and any which appear below the

ith  are in the first 7a +  7*^+1 H------1-k  columns. Since each of these columns contains

an i in a row above such a t, we have =  0 and it follows that E t>q[S] =  0 . □

C oro lla ry  5.11 The quantized Desarmenien matrix is an invertible upper triangular 

matrix.

Proof. Theorem 5.8 shows that the entries on the diagonal of Qq are powers of q, so 

are non-zero. The entries below the diagonal are zero by Theorem 5.10. □

The following lemma allows us to deduce a straightening algorithm for quantum 

bideterminants. For an alternative straightening algorithm, see [LT].

L em m a 5.12 Suppose that S  and T  are X-tableaux and that T  is semistandard. 

Suppose also that [5] and [T] have the same weight. Then

Sr,,[5 ] = n,(s,r)[rA].
Proof. Since [S'] and [T] have the same weight, Er,q[S] and ET>q[T] lie in the same 

weight space. By Theorem 5.8, they both lie in the weight space V9(A)a. Since any 

bideterminant with weight A is a scalar multiple of [T\], we have

ET,q[S} = c[Tx} = Dq(S,T)[Tx}.

□

The method that the quantized Desarmenien matrix gives for writing a quantum 

bideterminant as a linear combination of semistandard bideterminants works in es­

sentially the same way as the method we discussed in Chapter 4. Let Q,qtX be the 

submatrix of Qq that runs over the Qq(S,T)  where [S] and [T] have weight x- Let
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X \  =  { I  € Xx : Tj has weight x}- If U is & A-tableau such that [U] has weight x 5 

then [U] = Y .iexl aATA- If J  e  Xl  then

Qg(U,Tj)[Tx\ = ETj,q[U] by Lemma 5.12 

=  aIE Tj,q[Tl]
I€T*

/€Z*

Thus t tg(U,Tj) =  Yhiex$ ai^q (T i,T j)  for all J  € X%. In other words,

[fig({7,T/)]/exx = [a/]j6Xx09iX 

and since flqiX is invertible, we have

[fl/]/eiJ — [fI9( ,̂T/)]/eXx(fI9iX)-1.

E xam ple  5.10

Let A =  (2,1), n — 3, and x  =  (1,1,1). There are two semistandard A-tableaux 

which give bideterminants of weight x;

and T2 =T\ 1 2
3

1

C
O

to

By Theorem 5.8, we have Qq(Ti,Ti) =  1 and 0 9(T2,T2) =  g x. To find f2g(Ti,T2), we 

compute E r2j5[Ti] =  Ei^Ti] — (q* 1 E 12E 23 — £'23-E'i2)P i] =  0. Thus,

1 0

0 q 1

Let T  — D. Then ETl:q[T] =  E ^ E u ^ T ] =  qTx, so f29(T ,7\) — q. Furthermore, 

ET2,q['E] =~\^~lE u E 2z — E 2zEi2 )\T] =  —q[Tx], so flg(T,T2) =  —g. Let oxi and ay2 

be the coefficients of [I)] and [T2] respectively in the straightening decomposition of 

[T], Then

(«Ti, «t2) = (g, -g) j j =  (q, - 92), and
0 q

[T] =  g [T i] -g 2[T2],

□
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5.4 The standard basis theorem for A q(X)

A quantized version of the Carter-Lusztig basis theorem has been proved by R. Green, 

[Gr]. We shall prove the standard basis theorem using the quantized Desarmenien 

matrix in Theorem 5.15. Our proof also shows that the standard basis for A q(X) and 

the basis of bideterminants for V q(X) are connected by the quantized Desarmenien

matrix.

We first construct the contravariant dual to V9(A). As stated in Theorem 5.2, 

Ag(X) =  (Vg(A))°. We begin with the map <j> : V®r —> V 9(A) as defined in the 

classical case.

P ro p o s itio n  5.13 The K-linear map <j> : V®r —> V9(A) given by <j>(vi) =  [Tj] is a 

Uq-epimorphism.

Proof. It is clear that <j> is an epimorphism, so we need only prove that <p(uvj) =  u[Tj] 

for each r-tuple J  and each u e  Uq. Suppose first that A =  V  so that <f>(vj) =  [Tj] 

where T j  is a one-column tableau for each J . We will prove that <j>(KiVj) =  K 4 ( v j )  

and 4>(EiVj) — E 4 (v j )  for each J  and 1 < i < n. The proof that 4>(FiVj) =  Fi4>(vj) 

is similar to the proof of the latter. If J  contains more than one i then by Lemma

5.5 [Tj] — 0 since [Tj] has one-column, so if a denotes the number of i ’s in J  (a > 

2) then <p(KiVj) = qa[Tj] — 0 =  K 4 ( v j ) .  If J  contains less than two i ’s then 

<p(KiVj) — qa[Tj] (a = 0 or a =  1), but Ki<j>(vj) =  Ki[Tj] = qa[Tj] as well, so indeed 

4>(KiVj) =  K 4 {v j) .

We now prove that 4>{EiVj) =  E 4 (v j ) .  If J  does not contain an i +  1, then 

EiVj =  0 =  Ei[Tj], so we suppose that J  contains at least one i +  1. If J  also 

contains an i, then E^vj = ^  o-m ^m where £ K  and each r-tuple M  contains at 

least two i ’s. But then E 4 ( vm) — 0 for each M  and EffTj] =  0 as well, since [Tj\ 

is a one-column tableau that contains two i +  l ’s. Further, if J  contains more than 

two i +  l ’s, we also have <f>(EiVj) =  0 =  Ei[Tj] since E ^ j  =  where each

vm in the sum contains at least two i +  l ’s. So the only remaining case is when J  

contains no i ’s and one or two i H- l ’s. If J  contains exactly one i-f  1, then E ^ j  — vM
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where M  is identical to J  except that the i + 1 has been replaced with an i. Thus, 

<p(EiVj) =  [Tm] = Ei[Tj]. Now suppose that J  contains exactly two i +  l ’s and no 

F s. Since Ei<f>(vj) = Ei[Tj] =  0, we need to prove that 4>{EiVj) =  0 as well. Suppose 

that J  = ( j i , . . .  + I , . . .  , i  + 1 , ,  j r). Then

EiVj = vi+i 0  • • • 0  Vi 0  • • • 0  Vjr + q~lVh 0  ■ ■ • 0  *4 0  • ■ • 0  wi+1 0  • • • 0  vjr

so (fi(EiVj) — [Tm ] +  where the tableaux Tm and Tm < are the same except

that an i and an i + 1 have been interchanged. But [TM\ +  9“ 1[Tm‘/] =  0 by Lemma 

5.4. Thus, (j){EiVj) — 0.

For the general case, let fi =  (//1, . . . ,  jus) be the conjugate of the partition A =  

(Ax, . . . ,  Afe). Given I  G I{n ,r),  let I  =  (in , i12, * - - ,*i - , v J  and let

h  — (*11; *12; • • • ; Hm), h  =  (*21; *22; ‘ - ‘ j*2jU2)> * • ' > ^  =  (Sll) S12; ' ’ ' ; Spil) SO that 

vi = vjt 0  v/ 2 0  • • • 0  vja. It is now easy to check that the map

9 :V®r -> V,(//x) 0  V q(n2) 0  • • • 0  V ,(aO

defined by • -0 U/J =  is a {7,-homomorphism.

As well, the map ^  : V,(/ix) 0  V ,(/i2) 0  • • • 0  V ,(//a) -*• V,(A) given by

^ ( P / J  0  [T/a] 0  • • • 0  [T/J) =  [T7l][T/2] • • • [TjJ

is a {7,-homomorphism. Thus, 4> = ip o 6  is a {7,-homomorphism as well.

□
We have an anti-automorphism J  :Uq —» Uq defined by

J (E i) = Fi, J(Fi)  =  E u J ( K i) = K i

which is a iL-algebra homomorphism. If V  and W  are two {7,-modules, a bilinear 

form (,) : V  x W  —>■ K  is said to be {7,-contravariant if for all u G Uq, v G V, and 

w G W,  we have

(uv, w) =  ( v , J{u)w).

The canonical form (,) on V®T defined in (2.10) is not a {7,-contravariant form. For 

instance,

{Fi(vi 0  v2 ) ,v 2 0  v2) = (v2 0  v2, v2 0  v2) — 1,
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while

(vi 0  v2, Ei(v2 0  v2)) -  (vi 0  v2, v2 ® v 1 +  q~l Vi 0  v2) =  q~l .

Thus, if we are to define the quantum analogue of Green’s Weyl module, we must 

define a new form on V®T which is I/9~contr avariant. To do so, we introduce the 

following notation. Given I  G I (n ,r ) ,  define /?(/) to be the number of pairs (a, b) 

for which a < b and ia ^  i*. For example, if I  = (1,3,2,1) then /?(/) =  5. Define a 

bilinear form (, )q : V®T x V®T —> K  by

(vi, v j)q =  qm Su.

For example, (tq ® v3 ® v2 ® v i,v i ® v3 ® v2 ® tq) =  q5.

T h eo rem  5.14 The form (v i ,v j)q : V®r x U®r K  is a Uq-contravariant form.

Proof. It suffices to prove that (KiVi,vj) — (vj, KiVj) and {FiVi, vj) = (iq, EiVj) for 

single tensors vj and v j  where / ,  J  G I(n ,r) .

Let I, J  G I(n, r) and let a be the number of i ’s in I  and b the number of i ’s in 

J. Using (5.1) we have K^vj = qaV[ and KiVj =  qbvj. Thus (KiV[, vj) =  qa(vj, vj) 

and (vj, K{Vj) = qb(vi, vj). Both are equal to zero if I  ^  J  and if I  =  J  then a — b 

so (KiVi, vj) = (vj,KiVj).

Applying (5.1), we have

F i ( v h  0 «i2 • • • ®  v i r )  =  ( K ^ l + l v h )  0 • • • ®  { K l l + l v i r _ x )  0 ( F iV i r )

+  (K r,i+ lVh) ® ® (K r,i+ lVir-l) ® (FiVir-J ® Vir

+  h (FiVit ) ® vi2 ® • • • ® vir and

Ei{v^ ® v j2  0  • • •® v jr) — vjx ® vh  ® • • • ® (EiVjr)

+ vj r _ 2 ® (£*%_,) 0  (Kiji+1vjr)

+  • ■ • +  (EiVh ) 0  (Ki'i+lvh ) 0  • • • 0

For a fixed A: with 1 <  k < r we will prove that

(^tTi+i^i ® • • • 0  ^ 7/+xUfc_1 0  FiVik 0  • • • 0  vir, vh  0  • • • 0  vjk 0  • • • 0  is equal to
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(vh ® • • • <g> vik <g> • • • <g> vir, vh  ® • • • <8> EiVjk ® K ij+iVjk+1 ® • • • <g> K ij+ivjr)q.

Since {, )q is bilinear, this will complete the proof. We may assume that the r-tuples 

I  and J  coincide before and after the kth  place for otherwise both forms above are 

equal to zero so we replace all such i/’s in the first form by ji s. Furthermore, we may 

assume that vik = Vi and Vjk = for again both forms are zero if this is not the 

case. Suppose that oi i ’s occur in the r-tuple J  prior to the Mh place and suppose 

that there are a2 i +  l ’s in J  prior to the kth. place. Let bi denote the number of i ’s 

which appear in J  after the kth  place and b2 the number of i +  l ’s that appear after 

the Mb. place. Then

• -®Kll+lVjk__1 ®Fivi® -■ •®vjr,vh ® -■ • •<8 >vjr)g = q~aiga2g^(J,),

where J' = (j i , . . . ,  j k- 1, i + l , . . . , j r) and

• ■®EiVi+i®Kij+iVjh+1®-- -®Kiti+iVjr)q =  gblg~b2g^J)

where J  =  (ju  .. . , j k- i ,  i, • • -,jr)- But P(J') = /3(J) + a1 + b1 - a 2 - b 2 so

q - a l q a2g P(J') =  q b iq - h q p(j )^

as desired. □

We now take V\,q to be the orthogonal complement to iV =  ker<p with respect to 

the form {, )q. It is clear that VXtt} is a C/g-submodule of V®r and the form

( , ), : Vx* x V,(A) -> K

defined by

{x, <P{y))q =  (x, y)q, X  e Vx,q, y e  F®r (5.7)

is a non-degenerate contravariant form since (, )q is non-degenerate and contravariant. 

Thus Vx,9 =  (V9(A))° via the map ip : VXtq -4 (Vg(A))° defined by

x){y) =  (x ,y )q, x e  Vx,q, y e  V,(A).

By Theorem 5.2 VXs =  Ag(A).
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T heorem  5.15 The set {Fr,qz\ : T  is a semistandard X-tableau} is a K-basis for 

A q(X).

Proof. By definition z>, 6  Ag(A). Let Tj and T j  be semistandard A-tableaux and let 

( , )g be the non-degenerate contravariant form on A q(X) x V g(A) defined in (5.7). 

Then

=  (2a, ErIA\Tj\)q

= (2A,n,(TJ,r/)[rA] + E
M

where each a u  £ K  and each [Tm \ has weight different from A. But

(z\, [TM])q =  {z\,vM)q -  0

for such M, so

(z\, &q(Tj, Ti)[T\] + ^  om[Tm])? =  &q(Tj, Tj){z\, v^x))q
M

where by definition f3(J) is a non-negative integer. Thus for each J  € X\,

Since Qq = [ilq(Tj, Ti)]iexx is an upper triangular matrix and the set of semistandard 

A-tableaux forms a K -basis for V g(A), the set

{Fr,qZ\ : T  is a semistandard A-tableau}

is a K -basis for A9(A). □

As in the classical case, the g-Weyl module has a unique maximal submodule 

M  so the quotient module A q{X)/M  is irreducible. As well, A q(X)/M  is isomorphic 

to the irreducible submodule L q{A) of V 9(A) where L q{X) is generated by [T\]. All 

irreducible Uq-modules are obtained (up to isomorphism) in this way. The proof of 

the following corollary is similar to that of Theorem 3.10.
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C oro lla ry  5.16 The set {Fr,q[T\] : T  is a semistandard X-tableau} is a K-spanning 

set for Lq(A).

We close with an illustration of this corollary.

E xam ple  5.11

Let A =  (2,1), n =  3, and x =  (1,1,1). There are two semistandard tableaux which 

give bideterminants with weight x- They are T\ =

following two elements form a spanning set for Lq(X)x : 

Fti —  — — Ft ̂  Ft,

and T2 = . The

1 1
2

=  <T

= q

23
1 1

2

1 2 +
3
1 2

3

=  (q +q) 1 2

CO

1 2 - q 2
1 3

3 2

- q 2 1 3 and
2

by Example 5.10

F,t 2
1 1
2

1 1
2

F is

(q xFizFi2 — F12F23)

«-■ f«

- q

1 CO

2

1 1
2
1 2
3 (q- 1 +  q) -  q 1

CO

2

1 2
3 + (q- 2 + q2)

Note that if q — 1, we get back the spanning set for L(X)X that we calculated in 

Example 3.5. The more interesting case is when we let q be a cube root of unity. 

Then we have

q2FT2 +  (1 +  g4)

=  ( q ^  + q) 1 2

CO = FTx

Thus the two vectors are linearly dependent as in the case where we consider the 

irreducible f/^-module L(A) over a field K  of characteristic 3. It is common for this
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sort of phenomena to occur and it is conjectured (see [CP], Conjecture 11.2.13) that 

the representation theory of Uq when q is a pth root of unity (and K  has characteristic 

zero) behaves like the representation theory of Ul over a field L of characteristic p 

under certain conditions.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[B]

[C]

[CS]

[CL]

[CP]

[Dc]

[De]

[DKR]

[DJ]

A. Berele, Construction of Sp-modules by tableaux, Lin. and Multilin. Alg. 19 

(1986), 299-307.

M. Clausen, Letter place algebras and a characteristic-free approach to the 

representation theory of the general linear and symmetric groups I, Adv. in 

Math. 33 (1979), 161-191.

G. Cliff and A. Stokke, Determining irreducible GL{n, K)-modules, Math. 

Proc. Camb. Phil. Soc., to appear.

R. W. Carter and G. W. Lusztig, On the modular representations of the 

general linear and symmetric groups, Math. Z. 136 (1974), 193-242.

V. Chari and A. Pressley, A guide to quantum groups, Cambridge University 

Press, Cambridge, 1994.

C. De Concini, Symplectic standard tableaux, Adv. in Math. 34 (1979), 1-27.

J. Desarmenien, An algorithm for the Rota straightening formula, Discrete 

Math. 30 (1980), 51-68.

J. Desarmenien, J.P.S. Kung, G.-C. Rota, Invariant theory, young bitableaux, 

and combinatorics, Adv. in Math 27 (1978), 63-92.

R. Dipper and G. James, q-tensor space and q-Weyl modules, Trans. Am. 

Math. Soc. (1991), 327:251-282.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Dl] S. Donkin, Representations of symplectic groups and the symplectic tableaux 

of R. C. King, Linear and Multilinear Algebra 29 (1991), 113-124.

[D2] S. Donkin, The q-Schur algebra, London Mathematical Society Lecture Note 

Series 253, Cambridge University Press, Cambridge, 1998.

[D3] S. Donkin, On Schur algebras and related algebras I, J. Algebra 104 (1986),

310-328.

[Do] S. Doty, Polynomial representations, algebraic monoids, and Schur algebras

of classical type, J. Pure Appl. Algebra 123 (1998), 165-199.

[F] W. Fulton, Young tableaux, London Math. Society Student Texts 35, Cam­

bridge University Press, New York, 1997.

[G] J. A. Green, Polynomial represenations of GLn, Lecture Notes in Mathemat­

ics 830, Springer 1980, Berlin/Heidelberg/New York.

[Gr] R. M. Green, q-Schur algebras and quuantized enveloping algebras, Ph.D.

thesis, Warwick University, 1995.

[Hu] J. Hu, A combinatorial approach to representations of quantum linear groups,

Comm. Algebra 26(8) (1998), 2591-2621.

[H] J. E. Humphreys, Introduction to Lie algebras and representation theory, 

Springer-Verlag, New York, 1972.

[HZ] R.Q. Huang, J.J. Zhang, Standard basis theorem for quantum linear groups,

Adv. Math. 102 (1993), 202-229.

[JK] G. James, A. Kerber, The representation theory of the symmetric group, En-

clyclopedia of Mathematics and its Applications, Addison-Wesley, 1981.

[J] J.C. Jantzen, Lectures on quantum groups, volume 6 of Graduate studies in

math, Am. Math. Soc., 1996.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[K] R. King, Weight multiplicities for classical groups, Group Theoretical Meth­

ods in Physics (Fourth International Colloquium Nijmegen 1975), Lecture 

Notes in Physics 50, Springer 1975, Berlin/ Heidelberg/ New York.

[LT] B. Leclerc and J. Thibon, The Robinson-Schensted correspondence, crystal

bases, and the quantum straightening at q = 0, Electron. J. Combin. 3(2):R11 

(1996).

[L] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal

enveloping algebras, J. Am. Math. Soc. (1990) 3:257-297.

[Ma] S. Martin, Schur algebras and representation theory, Cambridge University

Press, Cambridge, 1993.

[Mu] T. Muir, A treatise on the theory of determinants, Macmillan, London, 1882.

[NYM] M. Noumi, H. Yamada, K. Mimachi, Finite dimensional representations of

the quantum group GLq(n, C) and the zonal spherical functions on Uq{n — 

1 )/Uq(n), Japan. J. Math. 19 (1993), 31-80.

[PS] M. Pittaluga and E. Strickland, A computer-oriented algorithm for the deter­

mination of the dimension and character of a modular irreducible S L (n ,K ) -  

module, J. Symbolic Comput. 7 (1989), 155-161.

[P] V. V. Prasolov, Problems and theorems in linear algebra, Translations of

Mathematical Monographs. 134, American Mathematical Society, Provi­

dence, RI, 1994.

[S] I. Schur, Uber eine Klasse von Matrizen die sich einer gegeben Matrix zuord-

nen lassen, Inaugural-Dissertation, Berlin, 1901.

[TT] E. Taft and J. Towber, Quantum deformation of flag schemes and Grassman

schemes I-A q-deformation of the shape algebra for GL(n), J. Algebra, 142 

(1991), 1-36.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Ta] M. Takeuchi, Some topics on GLq(n), J. Algebra 147 (1992), 379-410.

[To] J. Towber, Young symmetry, the flag manifold, and representations of GL(n),

J. Algebra 61 (1979), 414-462.

[W] B. W. Wetherilt, A note on a module in tensor space for the symplectic group, 

J. Algebra 103 (1986), 294-301.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


