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Abstract

This thesis utilizes a combined numerical and machine learning approach to explore

the performance of an alumina ceramic tile undergoing high-velocity impact. The fi-

nite element model is established by incorporating a user-defined Johnson-Holmquist-

Beissel (JHB) material model within the framework of smoothed particle hydrody-

namics (SPH) in LS-DYNA finite element software. The computational framework

is validated across a range of conditions by matching the simulation results from

both plate impact experiments and ballistic testing from the literature. Once vali-

dated, the model is used to generate training data sets for an artificial neural network

(ANN) to predict the residual velocity and projectile erosion of an alumina ceramic

tile undergoing high-velocity impact in the SPH framework. The ANN is then used to

perform a sensitivity analysis involving exploring the effect of mechanical properties

(e.g., strength and shear modulus) and impact simulation geometries (e.g., the thick-

ness of ceramic tile) on material performance (i.e., residual projectile velocity and

erosion). Overall, this study shows the capability of the hybrid FEM-ANN approach

in studying the high-velocity impact on ceramic tiles and is applicable to guide the

structural-scale design of ceramic-based protection systems
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“You are what you think; you become what you believe; you turn out to be what you

have always been.”

- Matshona Dhliwayo
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Chapter 1

Introduction

1.1 Motivation

Advanced ceramics, such as alumina, have been incorporated into the design of var-

ious armor systems as frontal layers, mainly owing to their relatively high strength,

hardness, and low cost-to-performance ratio [1–3]. To make efforts towards designing

and improving armor systems, many experimental and numerical studies have sought

to understand the role of mechanical properties (e.g., strength and modulus), geome-

tries, and governing failure physics (e.g., shock physics [4, 5] and granular physics [6])

on the dynamic ballistic performance of ceramics [7–10]. Compared to experimental

approaches, numerical approaches enable a wider range of material constants and

design parameters to be explored, with improved temporal and spatial resolutions,

especially under extreme loading conditions where experimentation and field testing

are difficult and costly (e.g., ballistic impact [11], laser shock [12]). Hence, future

design strategies and materials development will be largely guided by advancements

in numerical approaches after careful verification and validations [13–16].

Numerical simulations informed and validated by experiments form a powerful en-

gineering tool for the optimization and design of structures subjected to complex

loading conditions (e.g., impact loads [17]). The choice of the material model and

computational framework are important because they influence the accuracy of pre-

dictive results. The material model has constitutive relations that allow describing
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material behaviors with consideration of how the material strengths soften from an

intact state to a failed state. For example, the Johnson-Holmquist-Beissel material

model enables a better characterization of a catastrophic failure of ceramics by con-

stituting a piece-wise strength-pressure and damage-pressure envelope compared to

other JH models, leading to a more realistic representation of the response of ce-

ramics subject to impact loading [18, 19]. An appropriate physics-based numerical

framework is crucial because it can better approximate the system solution and rea-

sonably simulate the response of ceramics under high-velocity impact [16, 20]. For

example, smoothed particle hydrodynamic (SPH) method provides an alternative to

the traditional finite element method (FEM) for ballistic impact problems [17, 21,

22] as they are able to overcome limitations caused by element distortion existing in

FEM and better simulate the fragmentation process of ceramics under dynamic load-

ing [23–25]. In addition, given the considerable computational cost associated with

the increasingly sophisticated numerical models and boundary conditions, machine

learning (ML) techniques have been employed recently to improve the computational

efficiency and, more importantly, enable the possibility of statistical analysis of the

behavior of materials across large amounts of input conditions [26, 27]; To the au-

thors’ best knowledge, there have been limited impact-related studies to date where

artificial computer analysis techniques are used to develop statistical models for de-

scribing the performance and properties of materials [28, 29]. This thesis study will

pursue those efforts.

1.2 Thesis objectives

Understanding the influences of the mechanical properties of alumina ceramic on its

impact performance under dynamic loading is crucial for designing a ceramic-based

protection system. Specifically, to address this, the data-driven approaches (e.g.,

machine learning-assisted computational modeling) are utilized to inform on the rela-

tionship between property and performance and understand the behaviors of ceramic
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material under dynamic loading. The data-driven approaches rely on a robust com-

putational framework (material model and numerical methods) and machine learning

algorithms. Specifically, the computational framework is developed by incorporating

the Johnson-Holmquist material models within the framework of SPH in LS-DYNA

modeling software. The developed numerical models are validated against experi-

mental data from literature and then used to generate training data sets to train

the machine learning algorithms that can inform us of the performance behavior of

materials across large amounts of input conditions. Overall, one vision is that the

data-driven approaches enable an accelerated identification and quantification of the

property-performance relationships of ceramic material to support rapid design and

optimization of ceramic materials in protection system design.

The outcome of this thesis will be important to: (i) provide valued contributions

to our fundamental understanding of dynamic behaviors of ceramic under impact

loading and serve as a foundation for further development of multi-scale numerical

models, (ii) provide insights into factors (e.g., mechanical properties) that govern

advanced brittle materials performance under ballistic impact loading and guidance

for future structural scale design and optimization of armor systems.

1.3 Thesis goals

The objectives of this thesis will be accomplished by completing the following research

goals:

1. Implement a user-defined subroutine of the JHB material model within the

framework of SPH in LS-DYNA to simulate the response of alumina under

impact loading. The subroutine is programmed within the FORTRAN environ-

ment in LS-DYNA modeling software. A test simulation of a single element is

carried out to verify the implementation of the JHB model into finite element

code of LS-DYNA [30]. The subroutine enables the finite element code of the
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JHB material model to run within the LS-DYNA platform.

2. Validate the developed computational model in predicting outcomes of alumina

subjected to plate and ballistic impact, focusing on particle velocity profile for

plate impact and the damage patterns, residual mass, and residual velocity of

the projectile as a measure of ballistic performance for high-velocity impact [19,

31].

3. Develop a multi-layer perceptron (MLP) model to statistically explore the non-

linear relationships between inputs (e.g., shear modulus, material strength, tile

thickness, and impact velocity) and performance (i.e., residual velocity and mass

of the projectile) in the situation of a projectile impacting a single alumina tile.

The developed MLP aims to ultimately achieve an accelerated prediction and

optimization of the performance.

Altogether, the investigations inform the design ideas and provide guidance for

future structural scale design and optimization of armor systems.

1.4 Thesis contributions

The contributions from this thesis are summarized below:

1. Made novel contributions to better physics-based modeling and predicting the

outcomes of ballistic impact for alumina-based ceramics. The developed com-

putational framework has well simulated and captured the failure mechanisms

of ceramics during the impact penetration process, enabling a better under-

standing of their role in contributing to impact performance.

2. Made novel contributions in informing the designer of the large-scale fracture

behaviors of ceramics and providing guidance for future structural scale design

and optimization of ceramic-based armor systems. The ANN model provides
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insights into ballistic impact problems from a statistical view, achieving high-

throughput identification and quantification of property and performance re-

lationships. The developed model enables further structural scale design and

optimization of armor systems.

1.5 Thesis structure

The ultimate objective of the thesis work is to investigate the influences of mechanical

properties of alumina ceramic on its impact performance under dynamic loading and

utilize the investigations to inform the design ideas of the protection system. The

thesis’ structure is organized as follows:

1. Chapter 1 introduces the motivation, objectives, goals, contributions, and struc-

tures of this thesis study.

2. Chapter 2 focuses on studying the influence of mechanical properties and ge-

ometries of intact ceramic tile under the high-velocity impact through a combing

SPH and machine learning approach.

3. Chapter 3 ends with concluding remarks on the research as well as recommen-

dations for future research.
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Chapter 2

High-velocity impact study of an
advanced ceramic using finite
element coupling with a machine
learning approach

Part of this Chapter was published as Alex Yang; Dan Romanyk; and James Hogan.
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2.1 Introduction

Advanced ceramics, such as alumina, have been incorporated into the design of various

armor systems as frontal layers, mainly owing to their relatively high strength, hard-

ness, and low cost-to-performance ratio [1–3]. To make efforts towards designing and

improving armor systems, many experimental and numerical studies have sought to

understand the role of mechanical properties and geometries on the dynamic, ballistic

performance of ceramics [7–10]. Comparing with experimental approaches, numerical

approaches enable a wider range of material constants and design parameters to be

explored, with improved temporal and spatial resolutions, especially under extreme

loading conditions where experimentation and field testing are difficult and costly

(e.g., ballistic impact [11], laser shock [12]). For example, ballistic testing in the lit-

erature are often conducted within a rather narrow impact velocity range [24], which

limits the systematic study of both ballistic (e.g., dwell and penetration [32, 33])

and material responses (e.g., change of mechanisms). Hence, future design strategies

and materials development will be largely guided by advancements in numerical ap-

proaches after careful verification and validations [13–16], and these will be pursued

in this study.

Numerical simulations informed and validated by experiments is a powerful engi-

neering tool for the optimization and design of structures subjected to complex load-

ing conditions (e.g., impact loads [17]). The choices of the material model and the

numerical framework plays a key role in the accuracy of predictive results [16]. In the

literature, phenomenological models have been extensively implemented to study the

behavior of ceramics under the high-velocity impact, such as the Johnson-Holmquist

models which considers the strain rate, pressure, bulking, and phase change effects

(JH1, JH2, and JHB) [30, 34, 35]. A recent study conducted by Islam et al.[18]

compared these three models for silicon carbide under ballistic simulations, and it

was found that the JHB model resulted in a better prediction of the response of the
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ceramic than two others (e.g., crack propagation and the cone fracture zone). The

improved accuracy by using the JHB model stems from two perspectives: 1. it com-

bines the characteristics of the JH1 and JH2 models in describing material behaviors

with consideration of how the material strengths softens from intact state to failed

state [30];2. it enables a better characterization on catastrophic failure of ceramics by

constituting a piece-wise strength-pressure and damage-pressure envelope leading to a

more realistic representation of the response of ceramics subject to impact loading [18,

19]. Accordingly, to better simulate the failure and catastrophic response of ceramics

within a computational scheme, this study implements the JHB material model as

a user-defined subroutine into the finite element code of LS-DYNA in literature to

simulate the response of alumina ceramic tiles under high-velocity impact.

Next, selecting an appropriate physics-based numerical framework is crucial be-

cause it can better approximate the system solution and reasonably simulate the

crack initiation, propagation, and coalescence in ceramics [16, 20]. Mesh-free meth-

ods provide an alternative to the traditional finite element method (FEM) for ballistic

impact problems, and theses have been implemented by many researchers in the lit-

erature [17, 21, 22]. For example, smoothed particle hydrodynamics (SPH) is suited

for large deformation problems as they are able to overcome limitations caused by

element distortion existing in FEM due to their mesh-less discretization feature [23–

25]. In conjunction to the proper numerical framework, a comprehensive parametric

study and sensitivity analysis of numerical settings in SPH is critical to enhance the

simulation accuracy when modeling impacts of brittle solids [36–38]. Large sensitivity

of the SPH parameters on impact simulation results have been noted before but not

comprehensively studied [18, 36, 39], such as particle spacing [17], artificial viscosity

coefficients [36], and constant applied to smooth length [21]. In this work, parametric

studies of these SPH settings are conducted.

In addition, given the considerable computational cost associated with the in-

creasingly sophisticated numerical models and boundary conditions, machine learning
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(ML) techniques have been employed recently to improve the computational efficiency,

and more importantly, enable the possibility of statistical analysis of the behavior of

materials across large amounts of input conditions [26, 27]. To the authors’ best

knowledge, there have been limited impact-related studies to date where artificial

computer analysis techniques are used to develop statistical models for describing the

performance and properties of materials [28, 29]. Among various techniques (e.g.,

Bayesian’s regression [40] and deep learning [41]), the multilayer perceptron (MLP)

approach is the most commonly applied neural network in the field of mechanics [42,

43]. More recently, in the field of impact mechanics, Liu et al. [44] used MLP in combi-

nation with a conjugate gradient method to optimize the design of functionally graded

metal/ceramic materials. They showed that the neural network possessed good ca-

pacity in describing and handling the non-linearity between the design parameters

and objective optimization parameter (e.g., depth of penetration) [44]. In a separate

study, Bobbili et al. [43] developed a predictive tool based on the MLP method to

determine the residual velocity of a projectile impacting an aluminum 1100-H12 thin

plate, and they found a good agreement between the experimental and MLP results.

Motivated by these limited studies are numerically studying and linking the property

and geometrical variables to material performance [43, 44], the present work explores

the use of a predictive MLP model coupled with SPH impact simulations to inform

the effect of mechanical properties and geometries on impact performance of alumina

ceramic tiles, which can then serve as a computationally-efficient tool for material

and system design.

In the present study, we first develop a computational framework by combining

the user-defined JHB material model and SPH method in LS-DYNA. The compu-

tational code was verified through single-element simulation, and the computational

framework was simulated by comparing with the experiment’s results of plate im-

pacts and ballistic impacts for an alumina ceramic tile [19, 45]. Then, the sensitivity

of numerical settings of the SPH method on predicted results (e.g., particle velocity,
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residual velocity and mass of projectile) are investigated through parametric studies.

The results are then used to guide the selection of parameters values for the fully

validated and verified models. Lastly, we train an artificial neural network (ANN)

with the training datasets obtained from ballistic simulations, which is then applied

to study the ballistic performance (e.g., residual projectile velocity) of single alumina

ceramic tiles considering both material variation (e.g., strength) and geometry (e.g.,

tile thickness). The contributions of this work are re-articulated within the following

sections: 1. A comprehensive and robust implementation of the JHB material model

within the SPH framework in LS-DYNA and the determination of corresponding ma-

terial constants for alumina are demonstrated (Section 2.2), followed by verifying the

model implementation with a single-element test simulation (see Appendix B). As

far as we are aware, this is the first time in the literature where the JHB has been

implemented via user subroutine in LS-DYDA. We will make the sub-routine acces-

sible in the supplementary files, thus contributing to future usage [24, 31, 46] and

modification in the LS-DYNA solver [17, 24, 47]. 2. Parametric studies on the SPH

numerical settings reveal the sensitivities of the settings on key model performance

metrics (e.g., residual velocity) (Section 2.3.1). 3. Structural-scale simulation cases,

including plate impact experiments, [19] and ballistic testing [45] are conducted and

shown to be in good agreement with the literature (Section 2.3.2). Finally, an MLP

algorithm is then constructed and coupled with the JHB material model to investigate

the sensitivity of both material properties and geometries on the ballistic performance

of alumina tiles undergoing high-velocity impact (Section 2.4), followed by discussions

of the implications for the current study (Section 2.5).
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2.2 Determinations of material constants

The detailed descriptions of the used Johnson-Holmquist-Beissel (JHB) material model

is provided in the Supplementary Material (see Appendix). Table 2.1 summarizes all

the JHB model parameters for the alumina material used in this work. Specifically,

the model constants for alumina are obtained based on the existing experimental data

in the literature [48, 49], and calibrated against the shock and ballistic impact valida-

tion data (Section 2.3.2). The initial density, shear modulus, and bulk modulus are

obtained from Scazzosi et al. [24], Alexander et al. [48], and Simons et al. [50]. For

pressure constants, Alexander et al. [48] examined the dynamic response of alumina

under shock loading and generated the test data of pressure vs. relative volume, as

shown in Figure 2.1 (a). The fitted pressure parameters k1= 265.5 GPa, k2=181.6

GPa, and k3= 171.4 GPa are extracted from the fitted curves of the experimental

data following the equation noted in the sub-figure and from Equation (A.23). Ac-

cording to the description in Johnson et al. [30], materials that exhibit phase change

shows three distinct response regions under shock loading in their pressure-volume

relationship, where the phase transition manifests at a relatively low-pressure state.

Figure 2.1 (a) indicates that the alumina ceramic does not undergo the phase change

subjected to high-shocked pressures up to 100 GPa, and as noted by Alexander et al.

[48]. As an outcome, the phase change effects are not considered in this work.

For strength constants, Subhash, et al. [49] provided the testing data on a variety

of brittle materials that employed a wide range of confinement conditions beyond the

HEL (i.e., shock, triaxial compression, and impact experiments). The test data of

alumina ceramic are extracted from their work [48] and re-fitted with the constitutive

law of the JHB model in Figure 2.1 (b) using the gradient decent algorithm in Matlab.

The values of the intact strength model parameters are determined from the fitted

curve: T= 0.20 GPa, σi=1.82 GPa, Pi=2.23 GPa, and σmax= 6.83 GPa. The values

of the failed strength model parameters are directly extracted from the JH2 curve
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provided by Bavdekar et al. [49] and then calibrated as: Pf=1.35 GPa, σf=1.35

GPa, and σf
max= 2.7 GPa. The damage constants are provided by Toussaint et al.[17]

and then calibrated as D1=0.03 and n=1. More importantly, to illustrate the im-

provements in the JHB model, the JH2 intact strength model [34] is also re-plotted in

Figure 2.1 (b). It is observed that the gradually increasing JH2 strength model (i.e.,

assuming the plot begins at T= 0.20 GPa) deviates from the data points when the

stress exceeds the HEL, while the JHB model traces the data points in much better

agreement. In summary, the selection of the JHB model describes the three stages of

material strength-pressure response with a single curve: 1. linearly at low pressure; 2.

non-linearly at higher pressures up to the HEL; and 3. pressure-independent beyond

the HEL.
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Figure 2.1: Experimental data from literature [48, 49] with noted curve fits for obtain-
ing the pressure and strength constants of alumina ceramic for the JHB model. (a)
Pressure vs. volumetric strain with curve fits for JHB model parametrizations (solid
purple) [49], and (b) Equivalent strength vs. hydrostatic pressure with JHB (solid
purple) and JH2 (dashed pink) curves fit, demonstrating noted differences between
the two models [48].
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Table 2.1: Johnson-Holmquist-Beissel material constants for alumina ceramic.

Model Parameters Notation Value

Density (kg/m3) ρ 3890 [51]

Shear modulus (GPa) G 152 [24]

Bulk modulus (GPa) K 265 [51]

Elastic modulus (GPa) E 360 [50]

Hydrostatic tensile strength (GPa) T 0.2 [17]

Intact strength constant (GPa) σi 1.816 [48]

Intact pressure constant (GPa) P i 2.228 [48]

Max intact strength σmax 6.83 [48]

Strain rate coefficient (s−1) C 0.0665 [50]

Failure strength constant (GPa) σf 1.35 [48]

Failure pressure constant (GPa) P f 1.35 [48]

Max failure strength σf
max 2.7 [48]

Reference strain rate (s−1) ϵ0 1 [52]

Bulking factor B 1 [52]

Elastic bulk modulus (GPa) K 1 265 [48]

Coefficient for 2nd degree term in EOS
(GPa)

K 2 181.6 [48]

Coefficient for 3rd degree term in EOS
(GPa)

K 3 171.4 [48]

Damage coefficient D1 0.03 [52]

Damage exponent n 1 [52]

2.3 Simulation results and discussions

This section provides the parametric studies on the effects of the numerical settings

of SPH within the context of both plate impact (see Figure 2.2) and ballistic (see

Figure 2.3) testing cases, including the particle spacing, applied constant to smooth

length, and artificial viscosity parameters. A better evaluation of these parameters
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is important given their noted sensitivities in the literature to simulations of various

problems [18, 36], and our desire to guide other researchers in the future. The best

combinations of SPH parameters for each testing case are identified by matching ex-

perimental results in the literature [19, 45], the detailed discussions on a quantitative

and qualitative comparison with the experimental data provided in Section 2.3.2.

Figure 2.2: Configuration of the compressive plate impact experiment with an alumina
plate impacting on the alumina sample backed by a lithium fluoride block. This
configuration is used to conduct parametric studies of SPH numerical settings and
parameterize the Johnson-Holmquist-Beissel model by comparing the shock response
measured at point B at the center of the back surface of sample. The geometry in this
study follows the work by Grady and Moody [19]. Note that the dimensions of the
impactor, sample, and block is varied in our simulations based on the ones reported
in Grady and Moody [19].
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Figure 2.3: Configuration of the simulation setup of a tungsten long rod impacting
on an alumina ceramic tile. The geometries and dimensions of the setup follow the
study by Nemat-Nasser et al. [45].

2.3.1 Parametric studies of the smoothed particle hydrody-
namics numerical settings

The effects of particle spacing

Known from literature [23], the shock profile predicted by SPH (particle velocity) is

affected by the particle spacing when the applied constant to smooth length (CSLH)

is fixed because the history variables at a particle (e.g., stress, strain, pressure, and

particle velocity) are averaged based on the particle approximation. Figure 2.4 (a)

shows the effects of particle spacing (pc) on the particle velocity profile, with pc

selected between 0.3 and 1.0 mm. The minimum particle spacing is limited to 0.3 mm

considering the exponentially increase in computational time when using a particle

spacing of 0.2 mm or smaller. In Figure 2.4 (a), the particle spacing of 0.4 mm shows

the closest prediction to the experimental measurement when compared to the lower

and higher values. The maximum deviations at the peak velocity for pc = 0.3 mm, pc

= 0.4 mm, pc = 0.6 mm, pc = 0.8 mm and pc = 1 mm from the experimental result, are
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0.5%. 0.1%, 7%, 17%, and 18%, respectively. Without considering the computational

efficiency, a finer particle spacing trend results in a more accurate prediction of the

particle velocity, which is consistent with other studies [18]. From Figure 2.4 (a), it

is also observed that a larger particle spacing tends to shift the overall shock velocity

profile towards the left, indicating a delay of the particle response. As a result,

the obtained particle velocity is affected by the size of particle spacing with a fixed

CSLH. To better illustrate the influence of the CSLH on the shock profile response,

the observed trend for CSLH is shown in Figure 2.4 (b) with a fixed particle spacing

of 0.4 mm. Figure 2.4 (b) shows the shock profile response is slightly affected by

the CSLH at the Hugoniot state when the values of smooth length is less than 1.2.

Lastly, it is noted that there is a seven times increase in computational time when

the particle spacing decreases from 1 mm to 0.3 mm, as shown in Figure 2.4 (c).
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(a)

(b)
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(c)

Figure 2.4: Sensitivity analysis of particle spacing and constant applied to smooth
length and computational cost analysis of particle spacing used in the SPH framework
for the impact configuration of Figure 3 at the striking plate velocity of 1070 m/s. (a)
Sensitivity analysis on particle spacing with fixed CSLH=1.2: 0.3 0.4, 0.6, 0.8, and 1
mm. (b) Sensitivity analysis of constant applied to smooth length. (c) Computational
cost for varying particle spacing with fixed CSLH=1.2. Experimental results are taken
from Grady and Moody [19].

To assess the effects of particle spacing on the predicted results of ballistic simula-

tions, a series of particle spacing values covering the recommended range of 0.4 mm to

1.2 mm [17] are used with a fixed CSLH of 1.2. Figure 2.5 (a) shows the effect of par-

ticle spacing on the predicted residual mass and velocity of the projectile in ballistic

impact simulations. In Figure 2.5 (a), the associated error bar at each particle spac-

ing reflects the difference between the simulated and experimental results. Figure 2.5

(a) confirms that a reasonable prediction of residual velocity and mass of projectile

can be reached when using a particle spacing between 0.4 mm and 1.2 mm, where a
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particle spacing of 1.0 mm gives the most accurate prediction with an associated error

bar of 0.2%. The maximum deviations of the velocity for pc = 0.4 mm pc = 0.5 mm,

pc = 0.8 mm, pc = 1 mm, and pc = 1.2 mm from the experimental results, are 15.2%

13.5%, 5.4%, 0.2%, and 0.8% for the residual velocity prediction, respectively, and

11%, 10%, 8%, 0.3% and 0.7% for residual mass prediction, respectively. Generally,

the trend demonstrates that the predicted projectile residual velocity and mass de-

crease with increasing particle spacing, and this trend is consistent with observations

in other FEM simulations from the literature [17]. In previous simulations performed

in an FEM framework, the mesh sensitivity has been mainly attributed the strain

softening behavior which is widely observed in brittle materials [53, 54]. Such strain

softening behavior leads to the strain and damage localization in a reduced volume

after the mesh is refined [35]. In the SPH framework, the non-local effect is reduced

with decreasing particle spacing, which leads to the strain and damage becoming more

localized, resulting in less global damage and resistance of the projectile penetration.

This is evident in Figure 2.5 (a) where decreasing the particle spacing results in an

increased residual velocity and mass of the projectile. A similar trend is observed

for the CSLH where a decrease in the CSLH constant results in an increased resid-

ual velocity and mass of the projectile by fixing the particle spacing at 1.0 mm (see

Figure 2.5 (b)). Finally, a trade-off should be often sought between computational

efficiency and accuracy when choosing an appropriate particle spacing. For example,

a twenty times increase in computational time is recorded when the particle spacing

decreases from 1.2 mm to 0.4 mm (see Figure 2.5 (c)).
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(c)

Figure 2.5: Sensitivity analysis of particle spacing and constant applied to smooth
length and computation cost analysis of particle spacing used in the SPH framework
for the impact configuration of Figure 4 at the projectile at an impact velocity of 901
m/s. (a) Sensitivity analysis on particle spacing with fixed CSLH=1.2: 0.4 0.5, 0.8,
1.0, and 1.2 mm. (b) Sensitivity analysis of constant applied to smooth length with
fixed particle spacing of 0.4 mm=1.0, 1.2, 1.1, 1.3, 1.4, and 1.5. (c) Computational
cost for varying particle spacing with fixed CSLH=1.2. Experimental results are taken
from Nemat e t al . 2002 [45] .

The effects of artificial viscosity

Known from literature [23, 36], the predicted results are effected when strong discon-

tinuities occur under the shock loading process. In SPH framework, artificial viscosity

terms are introduced into the momentum and energy governing equations to prevent

large unphysical oscillations and numerical instability under shock loading conditions

[23]. Thus, the magnitude of artificial viscosity can affect the final simulation solu-

tion. In the current study, the effect of artificial viscosity on the numerical solution
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stability is investigated in the context of the plate impact simulations, with experi-

mental data taken from Grady and Moody [19]. In the SPH framework, the artificial

viscosity is defined as two terms: (1) the quadratic artificial viscosity term, Q1, which

is primarily introduced to handle shocks generated at high Mach numbers [36], and

(2) the linear artificial viscosity term, Q2, which is used to handle low gradient regions

in the SPH simulations [36].
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(b)
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(c)

Figure 2.6: Sensitivity and computation cost analysis of artificial viscosity terms
used in the SPH framework for the impact configuration of Manuscript Figure 3 at
the striking plate velocity of 1070 m/s. (a) Sensitivity study on artificial viscosity Q1
parameters: 0.8, 1.0, 1.2, 1.5, 1.6, and 1.8 with fixing Q2 at 0.06 (default value in
LS-DYNA). (b) Artificial viscosity Q2 parameters: 0.4, 0.8, 1.2, 1.5 with a fixed Q1
of 1.5 (default value in LS-DYNA). (c) Computation cost for varying Q2 with fixed
Q1=1.5.Experimental results are taken from Nemat et al . 2002 [45]

In this work, various combinations of Q1 and Q2 around the default LS-DYNA

values (i.e., Q1 =1.5 and Q2 =0.06) are explored by fixing one value while varying

the other to examine their effects on the plate impact simulations. Figure 2.6 (a) and

(b) show the effects of Q1 and Q2 on the simulated shock profiles. It is observed that

the simulated particle velocity is more sensitive to the Q2 values. The Q1 values only

become dominant when the shock velocity becomes significantly large when compared

to sound speed in material, where the current simulations have a peak velocity range

from 800 m/s to 1300 m/s in comparison with the sound speed of 10740 m/s [55,
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56]. It is also noted that the computational time increase three times when changing

Q2 from 0.06 to 2 (with Q1 fixed), and hence, a trade-off must be sought between

computational efficiency and accuracy (see Figure 2.6 (c)).

A similar approach is used to examine the sensitivity of the artificial viscosity

terms for the ballistic impact simulations (see Figure 2.7a). It is observed that the

results for an impact velocity of 901 m/s have less than 4.4% of difference when

varying Q1 from 0.4 to 1.5, where varying Q2 from 0.06 to 1.4 results in a difference

up to 26.6% for both residual velocity and mass prediction. This confirms that the

effect of artificial viscosity on both residual velocity and mass is greater affected by

the linear artificial viscosity term Q2. For residual velocity, the simulated projectile

residual velocity tends to decrease as Q2 increases (black curve with triangle on it

in Figure 2.7a), where Q2 of 0.06 gives the most accurate prediction when compared

to the experimental result [45] with an associated error of 0.5%. This trend is at-

tributable to a enhancement of strength when Q2 increases, leading to more energy

been dissipated, and resulting in a decreasing residual velocity [23]. For residual mass,

the projectile residual mass increases with increasing Q2, and this is consistent with

the trend observed in Xiao et al. [21], where the residual mass tends to increase as

Q2 increases. Overall, these observed trends demonstrate that projectile erosion is a

complicated process and the ability for the material to erode the projectile may be

related with fragment morphology [57, 58], friction between projectile and plate [57],

and material strength [59, 60], and some of these link to energy dissipation. Finally,

the computational time increase four times when changing Q2 from 0.06 to 2 (with

Q1 fixed), and hence, a trade-off must be sought between computational efficiency

and accuracy (see Figure 2.7b).
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(a)

(b)

Figure 2.7: Sensitivity and computation cost analysis of artificial viscosity terms
used in the SPH framework for the impact configuration of Figure 4 at the projectile
at an impact velocity of 901 m/s. (a) Sensitivity study on artificial viscosity Q1
parameters: 0.8, 1.0, 1.2, 1.5, 1.6, and 1.8 with fixing Q2 at 0.06 (default value in
LS-DYNA). (b) Artificial viscosity Q2 parameters: 0.4, 0.8, 1.2, 1.5 with a fixed Q1
of 1.5 (default value in LS-DYNA). (c) Computation cost for varying Q2 with fixed
Q1=1.5.Experimental results are taken from Nemat et al . 2002 [45].27



2.3.2 Plate impact and ballistic impact simulations

The plate impact test is an experimental technique used to study the shock response

of ceramics and inform the values of the Hugoniot elastic limit (HEL), spallation

strength, and equation of state (EOS) parameters [48, 55, 61, 62]. Figure 2.2 shows the

simulation setup of a typical plate impact test, following the configuration provided

in Grady and Moody [19], with dimensions varying in our simulations according to

Grady and Moody [19] in order to generate different shock velocities. In this study, a

particle spacing of 0.4 mm is used in our simulations (e.g., 2015254 particles involved

when impact velocity is 1070 m/s), where this value is chosen based on the results

from sensitivity studies (see Section 2.3.1 for details). Here, the responses of the

alumina impactor and target are characterized using the same material constants of

the JHB model as shown previously in Table 2.1. The response of the lithium fluoride

(LiF) block is defined using a Steinberg-Guinan material model and Mie-Grüneisen

EOS [15]. In the Steinberg-Guinan model, the reference yield strength (As) and the

shear modulus (Gs) of the lithium floride block was chosen as As=0.36 GPa, and

Gs=49 GPa at Ts = 300 K, Ps = 0 GPa, and ϵpls = 0, where the subscript S is added

because of repeated notations. The other material constants of LiF and computational

parameters are provided by Sukanta et al.[63], and these are summarized in Table 2.2.
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Table 2.2: Steinberg-Guinan material model constants for lithium fluoride window
block in plate impact simulation [63].

Model Parameters Notation Value

Density (kg/m3) ρl 3890

Bulk modulus (GPa) K l 265

Strength parameter (GPa) dG/dp 2.45

Strength parameter (GPa) dG/dT 0.0303

Melting temperature (K) Tml 1480

EOS Parameters

Gruneisen coefficient Gc 1

Linear Hugoniot slope coefficient S 1 0.005

Bulk speed of sound (m/s) C 1 5150

Figure 2.8 shows the comparisons between the experimental and simulated plate

impact results with striking plate velocities of 1070 m/s, 1551 m/s, 1573 m/s, and

1911 m/s. The plate impact experimental results are provided by Grady and Moody

[19], and three different geometric configurations of the experimental setup are inves-

tigated in this study (configurations denoted in the caption of Figure 2.8). Figure 2.8

(a) labels the critical stages of the typical material response during a plate impact

experiment: (1-2) elastic response up to HEL; (3-4) inelastic response up to the

Hugoniot state, where the Hugoniot state describes the locus of all final shocked

states (pressure–volume relationship) in a material for various maximum pressure

values [4]; and (4-5) the shock release undergoes unloading where tensile stress are

built up during the elastic unloading, leading to spalling of the material [4]. From

Figure 2.8 (a)-(d), it is observed that the model reasonably captures the shock profile

from Grady and Moody [19], with some differences noted in the stage (1-2) up to HEL

and the plateau at peak velocity, where differences likely stem from the numerically-

introduced artificial viscosity in the SPH framework [25]. The experimental results
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are reasonably validated when compared with other such approaches made in the lit-

erature [18], where it has been observed that impact velocity does not greatly affect

the HEL [64, 65], and increasing impact velocity results in greater amplitude and

slope of the plastic front [64, 65].

Figure 2.8: Comparisons between experimental and simulated plate impact results :
histories of the particle velocity captured at Point B (see Figure 2.2) for the striking
plate velocity = 1070 m/s (a), 1551m/s (b), 1573 m/s (c), and 1911 m/s (d) based
on JHB model. The experimental data is taken from Grady and Moody [19]. (a,b):
alumina sample D: 76.2 mm, T: 10 mm, alumina impactor D: 87.5 mm, T: 5 mm,
lithium fluoride window block D: 50.8 mm, T: 25.4 mm, (c): alumina sample D: 76.2
mm, T: 4.762 mm, alumina impactor D: 76.31 mm, T: 2.475 mm, lithium fluoride
window block D: 38.1mm, T: 25.4 mm. (d): alumina sample D: 76.3 mm, T: 2.478
mm, alumina impactor D: 76.2 mm, T: 2.477 mm, lithium fluoride window block D:
38.1mm, T: 25.4 mm.

In addition, the implementation of the Johnson-Holmquist-Beissel model along

with the best combination of SPH parameters is also quantitatively and qualitatively
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matched and compared with ballistic impact data from the literature [45]. Specif-

ically, the quantitative data is in the analysis of the residual velocity and mass of

the projectile after penetration, while the qualitative comparisons are performed by

matching time resolved X-ray images provided in Nemat-Nasser et al. [45]. Figure 2.3

shows the configuration of the SPH-based model corresponding to the ballistic ex-

periment performed by Nemat-Nasser et al. [45] involving a tungsten alloy long rod

impacting on a single alumina tile. In this setup, the ceramic tile is made of 99.5%

purity alumina and has dimensions of 101.6 mm×101.6 mm×12.7 mm. The tungsten

heavy alloy projectile has a diameter of 6.14 mm and a length of 20.86 mm (see the

front view in Figure 2.3), and the impact velocities of the projectile are 901 and 904

m/s. The alumina tile is described using the same JHB model parameters provided in

Table 2.1. The Johnson-Cook strength and damage model constants of the projectile

are provided in Table A.1 [31] (See Appendix).

Table 2.3 summarizes the results of the simulated and experimental impact data,

including the residual velocities of projectile, the mass, and relative error between

the simulation results and experimental measurements. The residual velocity of the

projectile in the simulation is taken at the resultant rear center node of the projectile.

The residual mass of the projectile in the simulation is calculated as the difference

between the initial projectile mass and mass of the fully damaged projectile parti-

cles upon penetration. The damaged projectile particles are simulated by setting

(EROD=2) in the (*CONTROL_SPH*) card of LS-DYNA. Here, the “smooth” option is

selected in LS-DYNA PrePost to distinguish between the activated and deactivated

particles. From Table 2.3, for both impacting velocities, the model predictions show

good agreements with the experimental results by Nemat-Nasser et al. [45], with rel-

ative errors within 6% for both residual velocities and masses. The proposed model

performs significantly better than those reported in the literature for similar impact

conditions [31], where most of them showed relative errors of greater than 20% for

the residual mass prediction [31]. For example, Bresciani et al. [31] showed 33% error
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against experimental results with a cohesive model for the same impact case.

Table 2.3: Comparisons between experimental results from Nemat-Nasser et al. [45]
and simulated results in predicting the residual velocity and residual mass for the
projectile impacting an alumina tile with the implemented Johnson-Holmquist-Beissel
model [30]

Experiments Impact velocity
(m/s)

Residual velocity
of the projectile
(m/s)

Residual mass of
the projectile (g)

Experiment 1
[45]

901 671 6.49

LS-DYNA 901 686 6.11

Error (%) 2.23 5.84

Experiment 2
[45]

904 682 6.42

LS-DYNA 904 689 6.1

Error (%) 1.02 4.98

32



Furthermore, the nature of the mesh-less feature of the SPH method allows to

simulate severe deformations and fragmentation of both the projectile and ceramic tile

without defining element erosion [31, 50] and the use of cohesive elements [31]. In turn,

these advantages of the SPH method allow more accurate qualitative replication of the

ballistic events (e.g., debris cloud [50] and back-face spallation [66]). Figure 2.9 (a)

shows the simulated residual velocity vs. time curve for the impact condition of initial

velocity of 901 m/s with times denoting selection of still frames from experiments by

Nemat-Nasser et al. [45](X-ray images) and models shown in: Figure 2.9(b) for 7

µs with a residual velocity of 840 m/s, and Figure 2.9(c) for 15 µs with a residual

velocity of 779 m/s. Overall, the computational framework implemented in this work

can reasonably capture the damage evolution process and failure modes when the

projectile penetrates the ceramic target. For example, deformation and erosion of

the projectile, target spallation, material pulverization into fine powder, and ejection

of the debris cloud occurs from both front and rear target surfaces. More simulated

damage evolution images of ceramic tile and projectile are provided in Figure A.2 of

the Appendix.
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Figure 2.9: Comparisons between the simulated results and time-resolved experimen-
tal flash X-ray images [45] during a long rod impact at 901 m/s. Plot of residual
velocity of projectile vs. time with noted time points identified for comparing simu-
lation and experimental results of the tile and projectile are compared at: (b) 7 µs
and (c) 15 µs.

2.4 Multi-layer perceptron model and sensitivity

analysis

In this section, a multi-layer perceptron (MLP) model has been developed to sta-

tistically explore the non-linear relationships between inputs (e.g., shear modulus,

material strength, thickness, and impact velocity) and performance (i.e., residual ve-

locity and mass of the projectile) in the situation of a projectile impacting a single

alumina tile. Here, the residual mass and velocity are two common performance met-

rics used in literature [24, 31, 46, 67]. Other performance metrics such as dwell and

penetration may also be used, although the literature is much more limited [59, 68].

34



2.4.1 Architecture of the neural network

The topology of the proposed MLP model (see Figure 2.10) is characterized by group-

ing neurons in the input layer (1), hidden layers (4), and output layer (1) following

the work by Parsazadeh et al.[69]. The input layer consists of the most influential

variables which are thought to have significant effects on the material performance

during ballistic impact events (e.g., tensile strength), and this will help gain a better

understanding of the physical phenomenon during impact. Specifically, important

characteristics such as the thickness of the ceramic tile, impact velocity of the pro-

jectile, and material strength parameters for both ceramic and projectile that may

affect the ballistic performances (i.e., residual mass and velocity) are included in the

training of the MLP model. For geometries (e.g., thickness of ceramic tile, impact

velocity of projectile), these represent simple and standard considerations based on

literature [68, 70, 71]. Additional geometric variables could be considered for the

target (e.g., hexagonal geometries [72], spatial arrangements [10], lattice structures

[73, 74]) and projectile (e.g., nose and fin geometries [75], sphere [76] vs. rod [31])

in future works. For mechanical properties (e.g., compressive and tensile strength

of ceramic, shear modulus), these represent simple and physically significant choices

that have been studied previously in the literature [70, 71, 77]. Additional properties

could be considered (e.g., Poisson’s ratio, damage constants [30, 35]), including those

that are dependent on the FEM scheme of choice (e.g., fracture toughness in discrete-

element framework [78], defect populations and crack speeds in micro-mechanical

models [79]). Each input parameter has a range associated with them, which is sur-

veyed from literature and demonstrates both the material variability in properties

(e.g., max intact strength) and typical configurations of ballistic impact experiments

(e.g., impact velocity) [80]. Figure 2.10 illustrates a complete list of the inputs and Ta-

ble 2.4 summarizes the references for the ranges. Four hidden layers with 32 neurons

at each layer have been determined through the trial-and-error approach given the
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Figure 2.10: Architecture schematics of multiple perceptron model showing the all
the input variables considered for ballistic impact case (left) associated with identified
parameter range from literature (middle), and construction of the MLP with output
of residual velocity and mass of the projectile (right).

accurate prediction and then assigned to the ML model [69]. In this study, the MLP

model is trained using the forward and backward propagation algorithms. The Relu

function is adopted in the forward algorithm as the activation function to output the

non-linearity at each layer. The Relu function is chosen because of the nature of its

differentiation form which allows the computation to overcome the vanishing gradient

problem by keeping high computational efficiency [81]. In conjunction with forward

propagation, the Bayesian regularization back-propagation is used for computing the

gradient in the weight space of the MLP model with respect to a loss function [81].

Finally, the RMS-propagation algorithm is then used to minimize the error by up-

dating the weight and bias values of the MLP model [82]. Relevant equations for the

MLP were described previous in Appendix A.
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Table 2.4: Input variables for MLP model associated with a range that is identified
from the literature.

Model Parameters Notation Value Range

Ceramic thickness (mm) t 7 to 23 [17, 51]

Impact velocity (m/s) V i 700 to 1000 [24]

Tensile strength of ceramic (GPa) T 0.2 to 0.6 [66, 83]

Maximum intact strength (GPa) σmax 3 to 12 [50, 84]

Shear modulus (GPa) Gp 90 to 140 [17, 66]

Initial mass of projectile (g) m i 7.51 to 35.1 [31]

Projectile length (mm) l 15 to 24.5 [31]

Projectile diameter (mm) Dp 6.14 to 15 [31]

Yield strength of projectile (GPa) A 1.2 to 1.6 [21, 85]

Rate dependent hardening coefficient of projectile
(GPa)

Bp 0.14 to 0.171 [21, 85]

2.4.2 Training, validation, and testing of the multi-layer per-
ceptron neural networks

Next, we train, validate and test the MLP model within the Python environment. The

sample size covers the ranges shown in Table 2.4. The required number of samples

for training, validation, and testing is determined through a trial-and-error approach

until the prediction variation is less than 10% for convergence. The total required

sample size for training, validation, and testing started with 188 samples with bad

prediction performance for interesting ranges of input parameters. We gradually

increased the sample size to 320 and a good prediction performance was obtained

because of the generalization of sample size. The sample size of 320 is generated

to train, validate and testing the MLP model using the validated SPH model by

randomly varying any input parameters while keeping others fixed within the defined

ranges shown in Figure 2.10. This approach is common in literature [42, 43, 86]. Then,

the generated data are randomly assigned into training, validation and testing sets
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by following the training-validation-testing split method with a ratio of 80:10:10 [86].

The training-validation process uses the Mini-Batch RMS-propagation algorithm [87]

to achieve the best training stability and generalization performance with normalized

inputs and output. The batch size is defined as 32 [88], along with epochs of 200.

A batch size of 32 is commonly recommended in literature because it is practically

efficient in computing the matrix-matrix products over matrix-vector products [88,

89]. The RMS-propagation algorithm run with default values of learning rate = 0.001,

gradient moving average decay factor (rho) = 0.9 [88]. The training and validation

performance is evaluated using the mean square error loss function [88]. An early

stopping criterion is also considered during the training process for stopping the ML

model overfitting. The model will stop for training if a bad degraded performance is

observed (mean sqaure error goes up) during the validation process [88]. Figure 2.11

shows the results of training, validation, and testing capabilities of the proposed MLP

model. Figure 2.11 (a) and (b) shows the mean squared error vs. epochs plot for

training and validating the MLP model, with a continuous and rapid decrease in

the mean square error (MSE) close to zero for the predicted residual velocity and

residual mass, respectively. Both of these plots indicate a well trained and validated

MLP model has been achieved [42]. Figure 2.11 (c) and (d) are predicted values

vs. actual values plots showing the comparable accuracy of the MLP model to SPH

simulation in predicting the residual velocity and mass of projectile based on testing-

split data (experimental and numerical data). In the figures, the center diagonal line

indicates a perfect match between the predicted and true values, and the more points

close to the diagonal line indicates a better prediction. From the figure, it is observed

that the proposed MLP model can predict both residual mass and residual velocity

with less than 7% of absolute percentage error compared to the SPH model (purple

dots), with simulation results of experimental data shown in green (see Figure 2.11

(c) and (d)). The computational time for MLP prediction is only 800 ms, and this

is compared to approximately of two hours for the SPH simulations. The observed
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outliers in the plot (e.g., two points in Figure 2.11 (c) and three points in Figure 2.11

(d)) suggests further detailed error analysis on data-noise and model architecture

needs to be performed to improve model prediction. Altogether, the MLP model in

the current work showcases a clear path that can be used to develop such efficient

machine learning models for generating accurate predictions for a specific loading case

encompassing wide ranges of conditions.
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Figure 2.11: Training, validation, and testing of the multi-layer perceptron model.
(a) The mean squared error plot shows the well-trained and validated multi-layer
perceptron model for the residual velocity. The model is trained and validated through
train-validation-split datasets with a ratio of 80:10:10. (b) The mean square error plot
shows the well-trained and validated multi-layer perceptron model for residual mass.
(c) A prediction vs. actual plot for the residual velocity shows the capability of
the model in predicting the residual velocity of projectile based on the testing-split
dataset. (d) A prediction vs. actual plot for the residual mass shows the capability
of the model in predicting the residual mass of projectile based on the testing-split
dataset (the diagonal line represents an excellent match).

2.4.3 Sensitivity analysis using multi-layer perceptron

Next, parametric studies are carried out to investigate the effects of mechanical prop-

erties (e.g., strength and shear modulus) and geometries (e.g., tile thickness) of the

40



alumina ceramic tile on its ballistic performance by using the well-trained MLP model.

Typical parameters, including impact velocity of the projectile, thickness, tensile

strength [90], maximum intact strength [59, 60], and shear modulus [90] of the alu-

mina ceramic tile are selected to be analysed in this work because of their noted

influences on ballistic performance [59, 71].

Shown in Figure 2.12 are the results of the parametric studies on residual velocity

(a) and residual mass (b) of projectile by varying the corresponding parameters over

the assigned range (see Table A.1). Note that the inputs are normalized on the x-axis

based on the average of values for the ease of comparison. Data points are plotted

as averages with standard deviations from five simulations using the MLP model for

given parameters of interest. Trends in Figure 2.12 (a) demonstrates that the resid-

ual velocity decreases with the increase of thickness, maximum intact strength, and

tensile strength of the ceramic tile, with a higher sensitivity for the intact maximum

strength and thickness parameters. These trends and sensitivities are consistent with

the experimental results from literature (i.e, tensile strength [70, 77], intact maxi-

mum strength [71], and thickness [90]). For example, the intact maximum strength

(i.e., compressive strength) often plays an important role in the ballistic performance

of ceramics because of the compressive and shock waves generated failure during

impact [4]. Similarly, Figure 2.12 (b) shows the sensitivity of residual mass to thick-

ness, impact velocity, maximum intact strength, shear modulus, and tensile strength.

Residual mass is a metric of projectile defeat through erosion [91]. From the plot, a

clear trend of decreasing residual mass is seen for an increasing impact velocity and

thickness, which is consistent with the literature (i.e. impact velocity [68] and thick-

ness [68]. Note that a similar trend for the tensile strength is observed for the residual

velocity (see Figure 2.12 (a)) and residual mass (see Figure 2.12 (a)), and further in-

vestigations are needed to identify the roles of possible physical phenomena (e.g., the

commonly denoted fracturing from the reflected tensile waves at the free surface of

the ceramic tile [84]) and numerical effects. Regardless, the residual mass appears to
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be less sensitive to tensile strength with no previous literature available to confirm

this observation. Finally, the shear modulus exhibits non-linear decreasing-increasing

trends for both the residual velocity (Figure 2.12 (a)) and mass (Figure 2.12 (b)),

which is either: (1) associated with the interplay between impact physics (e.g., dwell

[32, 33], wave propagation [4], and damage accumulation [52, 91, 92]); (2) the con-

stitutive model construction (i.e., see Equation (A.26) in the JHB material model).

Further experimental data and explicit failure modeling of impact phenomena [93–95]

are needed to unravel individual effects of these input parameters.
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Figure 2.12: Sensitivity analysis for studying the effects of mechanical properties (ten-
sile strength, maximum intact strength, and shear modulus) of the alumina ceramic
tile and geometries (thickness and impact velocity) on the: (a) residual velocity and
(b) mass of the projectile by using the multilayer perceptron model.
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2.5 Conclusions

This study has developed a combined computational framework based on the smoothed

particle hydrodynamics (SPH) and machine learning algorithms for investigating im-

pact responses of an alumina ceramic, in which the Johnson-Holmquist-Beissel (JHB)

material model was implemented into the LS-DYNA through a user-defined subrou-

tine to account for high pressure, high strain rate, and damaged behavior during plate

impact and ballistic loading. The implementation of the JHB model was verified by

comparing the equivalent stress-pressure plots through a single element simulation

test. The JHB model material constants were inferred and calibrated based on data

from the literature. The developed computational framework demonstrated a good

agreement between the numerical and experimental results, both quantitatively (e.g.,

particle velocity signal, residual velocity, and residual mass of the projectile) and

qualitatively (e.g., debris, spall, cone, mushrooming deformation, and erosion of the

projectile). A comprehensive sensitivity analysis on the SPH numerical settings was

then conducted and revealed that the change of particle spacing could result in 12%

and 17.2% change in residual velocity and mass of projectile, respectively, but with a

six times increase in computational time. Lastly, the developed neural network model

as an alternative to SPH model demonstrated that an accelerated prediction and op-

timization of the performance characteristic for ballistic impact case with reasonable

accuracy. Overall, the proposed combined SPH-MLP approach and the associated

analysis provide an alternative path for high throughput identification and insights

into the property and performance relationships, which is applicable to structural-

scale design of ceramic-based protection systems.
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Chapter 3

Conclusion and future works

3.1 Implications

This thesis explored the relationships between material properties, geometries, and

dynamic impact performance of alumina through a data-driven approach.

The main contributions of this thesis are summarized below:

1. This thesis simulates an alumina ceramic tile undergoing the ballistic and plate

impact loading using the user-defined JHB model in LS-DYNA software. The

JHB model enables better characterization of catastrophic failure of ceramics

by constituting a piece-wise strength-pressure and damage-pressure envelope

compared to other JH models, leading to a more realistic representation of the

response of ceramics subject to impact loading. As far as we are aware, this

is the first time in the literature that the JHB has been implemented via user

subroutine in LS-DYDA to simulate ceramic material behavior.

2. This thesis presents a novel SPH-based computational framework that enables

improved physics-based modeling and predicting the outcomes of the plate and

ballistic impact. The developed computational framework can accurately sim-

ulate the response of ceramic (e.g., residual velocity and mass of projectile)

and capture the failure mechanisms of ceramics (e.g., target spallation, pulver-

ization, and ejected debris) during the impact penetration process, enabling a
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better understanding of their role in contributing to impact performance.

3. The sensitivity and computational cost analysis on the SPH numerical settings

were conducted. The evaluation of these parameters is important given their

noted sensitivities in the literature to simulations of various problems [18, 36,

39]. The outcomes of sensitivity and computational cost analysis can be used

to guide other researchers who study the impact problems in the future.

4. This thesis has developed a hybrid numerical approach by coupling SPH with

a machine-learning approach. Such a hybrid approach enables efficient high-

throughput identification and quantification of property and performance re-

lationships using a machine learning model. Such a computationally efficient

framework can be applied to structural scale design and optimization of armor

systems.

3.2 Future work and recommendations

To build upon the current work of this thesis, possible research directions in future

work may include:

• Alternative numerical method for simulating crack initiation and propagation of

ceramic - The current SPH framework implemented in this thesis can robustly

simulate the response of ceramics (e.g., spallation and debris) under impact

loading. However, some inherent drawbacks of the SPH method may result

in an unrealistic simulated response of ceramic as the SPH applies the kernel

functions to control particle separations (e.g., crack initiation and propagation)

without linking it with material properties. To improve the model, the finite

discrete element method (F-DEM) can serve as an alternative numerical method

to SPH for simulating the response of ceramic material (e.g., fragmentation) to

better account for crack initiation and propagation under dynamic loading [78,

96].
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• Modifying the rate-dependent functional forms of the JHB model - The current

JHB model considers strain rate dependency on the material strength, and the

material strength is updated through a defined linear formulation by fitting the

experimental data in the literature [52, 97]. A new functional formulation (e.g.,

mixed linear and power law formulations) can be proposed while a wider range

of strain rate data is available under quasi-static and dynamic loading condi-

tions. On the other hand, recent data from our group demonstrates the tensile

strength of alumina ceramic is strain rate sensitive, where the tensile strength

is currently defined as constant in the JHB model. Therefore, a modification on

the hydrostatic pressure tensile strength constant needs to be made to account

for the strain rate effect, and this could be achieved through a user-defined

subroutine.

• Considering the stress-state dependency of JHB model - Developing a bet-

ter understanding of the stress-state dependency behavior of ceramic mate-

rial strength and damage accumulation is important to computationally design

better-performing ceramic structures. In the current JHB model, the plastic

behavior of the material is described based on the von Mises criteria, where

the material strength and damage evolution are defined in terms of the equiv-

alent stress and plastic strain, respectively. Thus, there are no constitute laws

in the JHB framework that enable distinguishing plastic behavior of the ma-

terial under different stress states (e.g., compressive, tensile, and shear). The

Lode angle parameter as a function of the third deviatoric stress invariant- J3

proposed by Polanco-Loria et al. [98] and Liu et al.[1] can be introduced into

the strength and damage constitutive law of the JHB model to incorporate the

effect of shear behavior between the tensile and compressive meridians. With
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that we may decompose the strength and damage constitutive law as:

σeq,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f {Dt, r

′(θ, ψ)} , P < 0

f {DtDC , r
′(θ, ψ)} , } , 0 < P < P1

f {DtDC , r
′(θ, ψ)} , } , P1 < P

D = f {DC , Dt)

(3.1)

where σeq,i is equivalent stress, Dt is damage accumulation under tensile load-

ing, DC is damage accumulation under compressive loading, P is hydrostatic

pressure, P1 is hydrostatic pressure constant, r
′ is denoted to describe the third

invariant effect on the yielding and damage surface of the JHB model, θ is lode

angle, and ψ is denoted to describe the ratio between tensile and compressive

meridians.

• Stress-state constitutive laws of JHB model informed by coupling experimental

and numerical techniques- Recent efforts in the literature studying the stress-

dependent behavior (e.g., strength and damage) of ceramics under dynamic

loading mainly rely on the controlled experiments under simplified loading con-

ditions (e.g., uni-axial compression [99, 100], tensile, and shear-compression

experiments) coupled with imaging techniques. However, experimental tech-

niques are costly, and difficult to directly measure the damage of ceramics under

different stress-states. A numerical framework validated against experimental

data can serve as an alternative to experimental techniques for direct quantita-

tive measurement of damage inside the material. Such a validated framework

also enables damage parameters (e.g., cracks volume) to be explored with im-

proved temporal and spatial resolutions. A rate-dependent finite element dis-

crete model (F-DEM) is currently being developed and validated against exper-

imental data by the authors for compressive, indirect tension, and compression-

shear stress states. The developed framework will be then used to provide

insights into the stress-state-dependent crack damage evolution behavior of ce-

ramics. The generated data and insights will be served as important inputs to
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develop strain rate and stress-state-dependent constitutive laws for the damage

evolution of ceramics.

• Granular physics in ballistic impact- Shockey et al.’s [101] work demonstrates

that granular flow of material generates significant penetration resistance and

often results in penetrator rebound during ballistic impact (resulting from fric-

tional flow characteristics of fine fragments and fragment abrasiveness). The

penetration resistance could depend upon the fragment morphology and fric-

tion between the target and projectile [101]. However, simulating fragmentation

in terms of crack branching and coalescence is challenging in computational me-

chanics at the structural scale [1]. Therefore, more effort must be devoted to

developing a computational framework that can adequately simulate the frag-

mentation process of the ceramic during ballistic impact. A rate-dependent

F-DEM framework is currently being developed by authors at the mesoscale

and validated against compressive, indirect tension, and compression-shear ex-

perimental data. In the F-DEM framework, Cohesive Zone Modelling (CZM)

combined with finite discrete element (F-DEM) algorithm showed a capability of

accounting for both physical continuities of material properties and discontinu-

ity of cracks [78] can successfully simulate the fragmentation of ceramic sample

under dynamic loading. The successful implementation of such a framework at

the mesoscale will be further linked to the structural scale to simulate ceramic

fragmentation during the ballistic impact process.

• Informing constitutive law of material through deep learning neural networks

- A deep learning neural network model can be used to learn the nonlinear

constitutive laws (e.g., damage evolution law) for brittle materials. The training

data can be generated based on experimental data, material properties, and

the developed numerical model to incorporate more physics. Such a neural

network-based framework will provide a convenient and general methodology
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for constitutive modeling.
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Appendix A: Appendices for
Chapter 2

A.1 Numerical methods

In this work, a finite element model has been implemented in LS-DYNA software

within the framework of smoothed particle hydrodynamics (SPH) by adopting the

Johnson-Holmquist-Beissel (JHB) constitutive model for ceramics, the Johnson-Cook

(JC) material model, and Gruneisen equation of state for a tungsten long rod projec-

tile. LS-DYNA software has been chosen in the present study as it is better suited

for large-scale dynamic simulations with consideration of inertia effects for dynamic

impact problems [102]. Even though LS-DYNA has a large variety of material models

(e.g., explicit dynamic models) and contact algorithms (e.g., eroding contacts and tied

surfaces contacts) [102], the JHB model is currently not available in the LS-DYNA

software and has to be written through a user-defined sub-routine. Hence, the proper

implementation and verification of the subroutine is essential before carrying out any

impact simulations. A flow chart used for defining the implemented computer code

for the present study is included (see Figure A.1). Lastly, this section presents the

structure of an artificial neural network tool based on multi-layer perceptron (MLP)

method for predicting and investigating the effect of mechanical properties and ge-

ometries on material performance.
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Smoothed particle hydrodynamics method

The SPH method utilizes a set of particles to represent a system [23]. In solving the

partial differential equations of solid mechanics, the SPH method approximates the

partial differential equations by discretizing a physical domain into the particles. In

particular, a function at a particle is approximated with the average of the function’s

values at all neighboring particles in the support domain weighted by the kernel

functions [21]. The SPH method has been widely adopted in the literature [17, 36,

66] to solve problems that are large-scale, highly-deformed, and dynamic in nature,

given it is a mesh-free approach and described in a Lagrangian frame of reference [23,

24]. To obtain the particle approximation of a continuous field function u(x), the

kernel approximation of the field function is firstly defined as [21, 23]:

∏︂
u(x)h =

∫︂
Ω

u(x′)W (x− x′, h)dx′ (A.1)

where x represents a particle, W is the smoothing function, h is the smoothing length,

and Ω is the support domain of the smoothing function.

The most widely used smoothing function is the cubic B -spline function, which is

defined as [21, 23]:

W (x− x′, h) =
C

hd

⎧⎪⎨⎪⎩
1− 3

2
∗ ζ2 + 3

4
∗ ζ3 x ≤ 0

1
4
∗ (2− ζ)3 0 ≤ x ≤ 100

0 100 ≤ x

(A.2)

where d is the number of space dimensions, ζ = r
h
, and r = x − x′ is the distance

between particles x and x′. C is a constant that depends on the space dimension (n

= 1, 2, or 3), which is defined as [21, 23]:

C =

⎧⎪⎨⎪⎩
2
3
, n = 1

10
7π
, n = 2

1
10π
, n = 3

(A.3)

For the particle approximation of a specific particle xi, the field function is obtained

as [21, 23]:
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∏︂
u(xi)

h =
N∑︂

n=1

mj

ρj
u(x′W (x− x′, h) (A.4)

where N is the number of neighboring particles, m is the mass, and ρ is the density.

Through a similar procedure, the particle approximation of the partial derivative

of the field function u(x ) is [21, 23]:

∏︂ ∂uxi
∂xα

=
N∑︂

n=1

mj

ρj
u(x′(Aij)

α (A.5)

where α is the space index, Aij
α is the αth component of the vector Aij, that is given

by [21, 23]:

Aij = A(xi, xj) =
xi − xj
rij

∂w(xi − xj, h)

∂rij
(A.6)

The commonly used SPH equations for the conversion of mass, momentum, and

energy are expressed as [21, 23]:

dρ(xi)
dt

=
N∑︂
j=1

mj (ui
α − ui

α)Aij
α

dUα(xi)

dt
=

N∑︂
j=1

mj[
σαβ (xi)

ρi2
Aij

β − σαβ (xj)

ρj2
Aij

β]

dE(xi)

dt
=

N∑︂
j=1

mjUij[
σαβ (xi)

ρi2
Aij

β − σαβ (xj)

ρj2
Aij

β]

(A.7)

To reduce the instability of the SPH-based model, an artificial viscosity term is in-

troduced into the energy and momentum equations, and this results in:

dUα(xi)

dt
=

N∑︂
j=1

mj[
σαβ (xi)

ρi2
Aij

β − σαβ (xj)

ρj2
Aij

β − ΠijI]

dE(xi)

dt
=

N∑︂
j=1

mjUij[
σαβ (xi)

ρi2
Aij

β − σαβ (xj)

ρj2
Aij

β − Πij]

(A.8)

In this research, the artificial viscosity Πij term introduced by Monaghan [103] is used

as:

Πij =

{︄−α∗
cjλij+β∗

ij
2

ρij
uij · xij < 0

0 uij · xij ≥ 0
(A.9)
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λij =
hijuij · xij

|xij|2 + 0.01h2
(A.10)

c̄ij =
1

2
(ci + cj) (A.11)

ρ̄ij =
1

2
(ρi + ρj) (A.12)

hij =
1

2
(hi + hj) (A.13)

uij = (ui − uj) (A.14)

xij = (xi − xj) (A.15)

where the parameters α∗ and β∗ are artificial viscosity constants and they vary with

applications [36]. The quadratic viscosity term α∗ is only dominant in high gradient

regions such as shock fronts, while the linear viscosity term β∗ dominates in low

gradient regions [36].

Johnson-Holmquist-Beissel model for alumina ceramic

The Johnson-Holmquist-Beissel model (JHB) [30] has been selected to describe the

mechanical responses of the alumina ceramic in this work. The JHB model consists of

three main components: (1) a strength material model, (2) a damage model, and (3)

an equation of state model that considers the phase change of materials [18, 30]. When

compared to the previous JH models [34, 35], the differences of the JHB model are

[30]: (1) a piece-wise strength-pressure and damage-pressure envelope is included, (2)

the pressure and strain-rate independent response beyond the Hugoniot elastic limit

(HEL) is included, and (3) phase change effects are considered. Experimental data for

alumina ceramics reported in the literature [84, 104–109] indicated that the material

strength softening formulation in the JHB model is more representative of experiments

when compared to the JH1 and JH2 models by demonstrating a linear response at

low pressures, nonlinear response at higher pressures up to HEL, and pressure and

strain-rate independent response when the pressure level drove the material over the
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its HEL (see Figure 2.1(b)). All these improvements over the previous JH models

are important when modelling shock and impact conditions, as we do in this study.

A brief summary of the JHB model is presented below, and a detailed explanation

of parameterization is described later in Section 2.3. The associated parameters and

units of the JHB model are shown in Table 2.1, and this will be revisited later.

*JHB strength model

In the JHB model, the material strength is dependent on hydrostatic pressure,

equivalent strain rate, and the accumulation of damage in the material. In the JHB

strength model, the strength of the material is represented by a linear curve up to a

pressure value of P1 (intact strength constant), where the corresponding strength is

σ1. Prior to P1, the equivalent material strength is σ = 0 at P = 0. After the P1, the

intact strength of the material is expressed in von Mises equivalent stress as [30]:

σeq,i = σ1 + (σmax − σ1) [1− e−α1(p−p1)] (A.16)

α1 =
σ1

(σmax − σ1)(P1 + T )
(A.17)

where σmax is the maximum intact strength of the material (i.e., compressive) and

T is the hydrostatic tensile strength. Similarly, the strength of the failed material

(when D=1) is expressed as [30]:

σeq,f = σ2 +
(︁
σmaxf − σ2

)︁
[1− e−α2(p−p2)] (A.18)

α2 =
σ1

P2(σmaxf − σ2)
(A.19)

Considering the strain rate effect on strength, the strength of the material is ex-

pressed as [30]:

σeq = σeq,0[1 + ˜︁cln(︃ ε̇

ε̇0

)︃
] (A.20)

where ˜︁c is the strain rate effect coefficient, ε̇ is the equivalent strain rate, and ε̇0 = 1

s−1 is the reference strain rate.

* JHB damage model
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The accumulation of damage in the material is represented by a form that is similar

to the Johnson-Cook fracture model [30]:

D =
∑︂

∆εp/εpf (A.21)

where ∆εp is the incremental equivalent plastic strain during a computational cycle,

and εpf = f(p) is the plastic strain at fracture and is defined as [30]:

εpf = D1 (P
∗ + T ∗)n (A.22)

where both D1 and n are material constants. P ∗ is the dimensionless pressure and

P ∗ = P/σmax. T
∗ is the dimensionless hydrostatic pressure and T ∗ = T/σmax. The

εpf increases as P ∗ increases, and the material does not undergo any plastic strain at

P ∗ = −T ∗.

*JHB pressure-volume relationship with bulking

It is worth noting that the phase change effect of alumina ceramic is not considered

in this work given the lack of proof in the literature of such phenomenon in alumina

[48] (see Section 2.3 for details). Without considering the phase change effect, the

hydrostatic pressure begins to accumulate before failure and is defined as [30]:

P = k1µ+ k2µ
2 + k3µ

3 (A.23)

µ =
ρ

ρ0
− 1 (A.24)

where k1 (bulk modulus), k2, and k3 are material constants. ρ and ρ0 is the cur-

rent density and reference density, respectively. For tensile stress states (µ < 0),

Equation (A.23) is replaced by P = k1µ.

The model [30] also considers the bulking effect when the material fails (D = 1)

[30]. The effect of bulking results in an increase in the pressure and volume [110].

The bulking effect is represented by having an incremental pressure ∆P adding to

Equation (A.23) [30]:

P = k1µ+ k2µ
2 + k3µ

3 +∆P (A.25)
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The bulking-induced pressure increment is determined from energy considerations.

When the material fails, the material strength decreases, and this corresponds to a

decrease in the deviatoric stresses, further resulting in a decrease in the incremental

internal elastic energy. The loss of incremental internal elastic energy is converted to

potential hydrostatic energy by incrementally increasing ∆P . The general expression

for the elastic internal energy is [30]:

U =
σ2

6G
(A.26)

where G is the shear modulus of elasticity.

The incremental energy loss is computed as [30]:

∆U = Ui − Uf (A.27)

where Ui is the internal energy of the intact material before failure and Uf is the

internal energy of the material when it is failed. The conversion between the pressure

and elastic internal energy is [30]:

∆Pµf +∆P 2/ (2k1) = β∆U (A.28)

where µf is the value of µ when the material is failed, and β is the fraction (0 ≤ β ≤ 1)

of the internal (deviator) energy loss converted to potential hydrostatic energy. The

first term (∆Pµf ) is the approximate potential energy for µ > 0, and the second term

(∆P 2/ (2k1)) is the corresponding potential energy for µ < 0. The ∆P is given by

[30]:

∆P = −k1µf +

√︂
(k1µf )

2 + 2βk1∆U (A.29)

The bulking pressure is computed only for failure under compression (µf > 0). Note

that ∆P = 0 for β = 0 and that ∆P increases as ∆U increases and/or µf decreases.

Johnson-Cook material model for tungsten alloy projectile

In this study, the Johnson-Cook (JC) plasticity model is selected to define the ma-

terial behavior of the tungsten alloy projectile [31] (see Figure 2.3). The JC model
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reasonably captures the material response when subjected to high strain rate loading

[31, 50]. In addition, the JC model is commonly used in ballistic impact simulations

due to its uncoupled approach in calibrating material parameters [17, 111]. In this

section, a brief summary of the model is provided. *Johnson-Cook strength model

The flow stress-equivalent plastic strain relation of the JC model is given as [17]:

σy = (A+B(εp)n)(1 + C ln ε̇p
∗)(1− TJC

m) (A.30)

where σy is the yield stress, εp is the equivalent plastic strain, ε̇p is the equivalent

plastic strain rate, and A, B, and C are the material constants. The ε̇∗p and TJC are

obtained from:

ε̇p
∗ =

ε̇p
ε̇0

(A.31)

TJC =
T − T0

Tmelt − T0
(A.32)

where ε̇0 is the reference strain rate, T is the current temperature, Tmelt is the melting

temperature, and T0 is the reference temperature.

*Johnson-Cook damage model

Similar to the JH models, the JC fracture model is used to describe the fracture

behavior of the projectile material. The fracture criterion in the JC model is based

on the accumulation of effective plastic strain [17]:

D∗ =
∑︂

(∆εp∗/εpf
∗) (A.33)

where ∆εp∗ is the incremental equivalent plastic strain during a computational cycle,

and εpf
∗ = f(p) is the effective plastic strain at fracture, which is expressed as [17]

εpf
∗ =

[︂
D∗

1 +D∗
2e

D∗
3
σm
σ̄

]︂
[1 +D∗

4 ln ε̇
∗] [1 +D∗

5T
∗] (A.34)

where σm is the mean stress, σ̄ is the equivalent von Mises stress, and D∗
1 to D∗

5 are

the material damage constants.
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Multi-layer perceptron neural networks

The multilayer perceptron (MLP) approach is a useful tool in solving non-linear

classification and regression problems [112], and it has been employed in this work

to develop statistical models for impact performance optimization. The MLPs in

this study are trained using forward and backward propagation algorithms. In the

forward algorithm, a linear activation function is used to map the weighted inputs to

the output of each neuron, and each layer in the MLP is described mathematically

as [113, 114]:

a
(l)
i = f

(︄
n∑︂

j=1

a
(l)
i θ

(l)
ij + θ

(l)
0,j

)︄
, 1 ≤ l ≤ L (A.35)

where the a
(l)
i is the activation of the ıth neuron in the lth layer, θ

(l)
ij represents the

weight that is used to send the input to the ith neuron, from the jth neuron in layer

l, and θ
(l)
0,j represents the bias in lth layer.

The Relu function is chosen for nonlinear activation for this work, which is de-

scribed as [113, 114]:

f(x) = max(0, x) (A.36)

For the back-propagation training, all the weights and thresholds are updated using

the root mean squared propagation (RMS-prop) algorithm [113, 114]:

θi := θi +∆θi (A.37)

∆θi = −η∂J(θ)
∂θi

(A.38)

where η is the learning rate factor, and ∂J(θ)
∂θi

is the partial derivatives of the cost

function with respect to weights. The partial derivatives of the cost function with

respect to all of the parameters that feed into the current layer and the output layer

δ(L− 1) are computed as [113, 114]:

∂J(θ)

∂θ
(l)
ij

=
(︁
δ(l+1)

)︁T
a(l) (A.39)
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∂J(θ)

∂θ
(L−1)
ij

=
(︁
δ(L)
)︁T
a(L−1) (A.40)

The error term δ for the output layer and the hidden layers are computed as [113,

114]:

δ(L) =
1

m

(︁
y − a(L)

)︁
f ′ (︁a(L))︁ (A.41)

δ
(l)
j = f ′ (︁a(l))︁ n∑︂

i=1

δ
(l+1)
i θ

(l)
ij (A.42)

Finally, the overall performance of the MLP is measured by the mean squared error

(MSE) which is expressed by [113, 114]:

J(θ) =
1

2m∗

m∗∑︂
i=1

(︁
hθ
(︁
x(i)
)︁
− y(i)

)︁2
(A.43)

where m∗ is the number of training samples, hθ(x
(i)) is the vector of predicted values

based on the training samples, and y(i) labels the vector of actual values.
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Figure A.1: The flowchart for writing the subroutine code of the JHB material model
in LS-DYNA.
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Table A.1: Johnson-Cook material constants of the tungsten alloy long rod projectile
that is taken from Bresciani et al. [31].

Model Parameters Notation Value

Density (kg/m3) ρp 17600

Shear modulus (GPa) Gp 152

Elastic modulus (GPa) E p 314

Quasi-static tensile yield strength (GPa) A 1.6

Hardening exponent (GPa) Bp 0.1765

Thermal softening exponent C p 0.016

Strain rate sensitivity coefficient N 0.12

Temperature exponent M 1

Melting temperature (K) Tmelt 3695

Room temperature (K) T 0 291

Heat capacity (J/Kg*K) cp 384

Damage Parameters

Damage coefficient 1 D∗
1 0

Damage coefficient 2 D∗
2 1

Damage coefficient 3 D∗
3 -1.5

Damage coefficient 4 D∗
4 0.042

Damage coefficient 5 D∗
5 0

Equation of State Parameters

Gruneisen coefficient G2 1.67

Linear Hugoniot slope coefficient S 1 1.237

Bulk speed of sound (m/s) C 1 4030

A.2 Ballistic impact simulation results

Figure A.2 shows the damage evolution images for both the alumina ceramic tile

and the projectile under a ballistic impact velocity of 901 m/s. In Figure A.2, the
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conical damage starts to form on the front surface of the ceramic as it is impacted

by projectile at 8 µs. Next, the fractured cone starts to develop in the ceramic from

the contact surface and propagates towards the back surface between 8 µs and 30 µs,

and the completed perforation and erosion of projectile is observed at 72 µs.

Figure A.2: Damage evolution in alumina ceramic tile undergoing penetration of
tungsten long rod projectile at time of 1 µs, 8 µs, 30 µs, and 72 µs under ballistic
impact.

A.3 Single element verification

The JHB material model has been implemented into the finite element code of LS-

DYNA through a user-defined subroutine. To demonstrate the accuracy of the code,

a single-element model has been developed and utilized to verify the implementation

of the JHB material model in LS-DYNA following the approach outlined by Johnson

et al. [30], where the loading history of the element interrogates high deviatoric and
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hydro-static pressures in this verification. The material constants used in the single

element simulations are based on the material constants provided in the original paper

by Johnson et al. [30] for aluminum nitride. The material constants for the alumina

studied here are validated in Section 2.3 for plate and ballistic impact cases that

exhibit the high strain rate and high-pressure behavior. The single-element model

is established in LS-DYNA with the dimension of 1 m × 1 m × 1 m, as shown in

Figure A.3 (a). The confined boundary conditions are employed to constrain the

element to displace at four sides and bottom (fixed), and thus, the element is only

allowed to displace vertically along the z-direction. Next, the element is subjected to

external load via displacement control on the top surface. For each simulation, the

element is compressed to a strain of nearly 14%, then unloaded to allow recovery to

its initial length. The verification of the subroutine codes is achieved by comparing

the equivalent stress-pressure curve provided in Johnson et al. [30]. Figure A.3 (b)

shows the equivalent stress vs. pressure plot of the single element under loading and

unloading conditions in comparison with the response reported in Johnson et al. [30].

The main critical stages of the material under compressive loading followed by tensile

loading are identified on the plot with inserted numbers (Figure A.3 (b)): (1-3) the

material undergoes elastic deformation up to yielding followed by plastic deformation

with damage accumulation; (3-4) the material failure lead to an abrupt increase in

the pressure due to bulking, where the bulking phenomenon as a consequence of the

decrease in axial stress due to the decrease in the deviatoric stress (i.e., degradation

in material strength); and (4-8) the material undergoes phase transformation and

reversal of loading. Overall, it is observed that the resultant curves generated from

the implemented code in this work is in reasonable agreement with the one reported in

the literature [30], as demonstrated in Figure A.3(b), with slight deviations occurring

at the end of the first and third stages. These deviations are likely caused by the

differences in software and numerical algorithms between the studies.
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Figure A.3: Verification of the implemented user-defined sub-routine of the Johnson-
Holmquist-Beissel model through a single element simulation under uniaxial loading-
unloading condition, where the element is constrained from displacing of sides and
bottom with an external prescribed displacement acts on the top surface. (a) Single
element model configuration.(b) Predicted equivalent stress vs. pressure plot com-
pared to the numerical result published by Johnson et al. [30].
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