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When studying animal behaviour within an open environment, movement-related data are often
important for behavioural analyses. Therefore, simple and efficient techniques are needed to present
and analyze the data of such movements. However, it is challenging to present both spatial and
temporal information of movements within a two-dimensional image representation. To address this
challenge, we developed the spectral time-lapse (STL) algorithm that re-codes an animal’s position
at every time point with a time-specific color, and overlaid it over a reference frame of the video, to
produce a summary image. We additionally incorporated automated motion tracking, such that the
animal’s position can be extracted and summary statistics such as path length and duration can be
calculated, as well as instantaneous velocity and acceleration. Here we describe the STL algorithm
and offer a freely available MATLAB toolbox that implements the algorithm and allows for a large

degree of end-user control and flexibility.
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Studies of animal behaviour in open environments
yield rich datasets. While behaviour can often be sum-
marized through simple measurements (e.g., first tar-
get approached within an array, sequence of targets ap-
proached, timings of these behaviours), these measures
are not always sufficient. A widely-used solution to
this problem was introduced three decades ago, with
a methods paper describing the use of video record-
ings to study animal behaviour (Godden & Graham,
1983). Although some researchers use commercial track-
ing equipment, movements are often recorded using stan-
dard video cameras without markers on the animal and
the data are manually scored. Using simple pre-recorded
video recordings, we sought to summarize both spatial
and temporal information of movements within a two-
dimensional image representation. Specifically, we de-
veloped spectral time-lapse (STL) images that code the
animal’s position with a time-specific color, overlaid on
a frame of the video, to produce a summary image (Fig.
1A). We also incorporate automated tracking of the an-
imal’s path and provide summary statistics (Fig. 1B),
as well as plotting velocity and acceleration over time
(Fig. 1C). Here we describe the algorithm and offer a
MATLAB toolbox that implements it, while allowing for
substantial end-user control.

* Copyright (¢) 2013 Madan & Spetch. This is an open-access arti-
cle distributed under the terms of the Creative Commons Attri-
bution License (CC-BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or
licensor are credited and that the original publication is cited,
in accordance with accepted academic practice. No use, distri-
bution or reproduction is permitted which does not comply with
these terms.

T Corresponding author:
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The challenge of visualizing movements within a two-
dimensional image is not new. Although many solutions
have been discussed (Jensenius, 2012, 2013), none pre-
serve both spatial and temporal information within a sin-
gle image. Time-lapse images (illustrated in Jensenius,
2013, Fig. 1) concatenate a series of still images ad-
jacently, and do not present the images within the same
spatial frame. Motion history and motion average images
(illustrated in Jensenius, 2013, Figs 4-7) show movements
within the same spatial frame, but lose temporal infor-
mation. Our solution was to color images of the target
using a time-specific color, and overlay these on the back-
ground, see Fig. 1A.

Our second goal was to obtain path data, specifically
x- and y-coordinates of the animal at each time point.
While solutions for this purpose already exist, many have
drawbacks. EthoVision (Noldus et al., 2001, 2002; Spink
et al., 2001), a widely used movement-tracking software
package, needs to be adjusted to each set-up (e.g., ani-
mal to track and type of arena) and costs several thou-
sand dollars. Other methods include requiring markers
on the animal during video acquisition (e.g., Chen et al.,
2008), specification of templates of the animal’s shape
(e.g., Kalafati¢, 2003; Xu et al., 2009), or can only process
low-resolution videos (reducing precision; e.g., Crispim
Junior et al., 2012). Although solutions exist that do not
have these limitations (e.g., Kahn et al., 2006; Perner,
2001; Tort et al., 2006; Tweed & Calway, 2002), our im-
plementation of the STL toolbox in MATLAB allows the
end-user to easily extract path data within the MAT-
LAB environment, e.g., Fig. 1B. To glean additional in-
formation from the path, we also calculate instantaneous
velocity and acceleration, see Fig. 1C.
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FIG. 1. Visualizing and quantifying movement data from a single trial of a pigeon navigating an arena with four food cups. (A)
Spectral time-lapse (STL) image of the trial, sampled at 1 pps. First bar in bottom left corresponds to 10 seconds; second bar
illustrates which frames highly overlapped with adjacent frames; third bar shows time-color mapping used. (B) Path overlaid
on the STL image, sampled at 6 pps. (C) Velocity-acceleration plot of same movement data.

MATERIALS & METHODS

Here we present a spectral time-lapse (STL) image and
describe the algorithm. Fig. 1A illustrates a single trial
of a pigeon (Columba livia) entering an arena, moving
to and eating from four food cups, and returning to the
starting box. The STL image allows the researcher to
observe the behaviour (e.g., sequence of cups visited, effi-
ciency of path taken) without needing to watch the video.
This is particularly useful as videos are often longer in
duration than the movement; in this particular trial, the
raw video lasts 45 s, while the pigeon is only visible for
25 s. The STL image in Fig. 1A was generated to show
one position-per-second (pps), in other words, one col-
ored position (i.e., pigeon) is plotted for each second.

Video data was acquired using a standard video cam-
era connected to a computer and recorded as a MPEG-
2 transport stream file using the WinTV hardware and
software package (Hauppauge Computer Works Inc.,
Hauppauge, NY)!. We converted the video to an uncom-

1 It is not necessary for the STL method that that the videos be
recorded with WinTV or that the videos be saved as MPEG-2
transport stream files, this was just how we chose to digitize our
video recordings.

pressed AVI format using MPEG Streamclip (Squared 5
S.R.L., Rome, Italy), but other software could be used.
These uncompressed AVI files can be read directly into
the STL toolbox.

I. THE STL ALGORITHM

The steps comprising the STL algorithm are illustrated
in Fig. 2. Settings that can be easily adjusted by the end
user are noted in parentheses and italicized throughout.
These names refer to the variable names within the STL
toolbox and are found within the configuration file (con-
fig.m, see Supplemental Materials).

A. Loading the raw video

The raw video file is read in and only every i-th frame is
sampled (sampling), as video is often acquired at higher
rates than needed for the STL image. For instance, the
animal’s position might be sampled at 1 pps, whereas
video cameras often record at 24 or 30 frames-per-second
(fps). If the original video speed has been adjusted,
such as videos originally from a high-speed camera, then
this can be accommodated and calculations adjusted
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FIG. 2. Illustration of the STL algorithm, it’s component stages, and examples of images at each stage. (A) Loading the raw
video. (B) Pre-processing. (C) Colorizing the frames. (D) Creating the STL image. (E) Outputting the STL image. (F) Path

analysis method. (G) Velocity-acceleration plot.

(videospeed). The STL toolbox reports the video’s origi-
nal acquired fps and the STL’s pps. The sampled video
frames are converted to grey-scale, as color will be used
to code for time. The folder containing the raw video
must be specified in the configuration file (path_raw).

To allow the STL images to be based on only a portion
of a video, start and end frames can be specified, (start-
Frame, endFrame). An additional MATLAB function
called showFrameK is included to facilitate in determin-

ing start and end frames.

In this stage, the reference frame is also defined, which
is often either the first or last frame of the video, or a
‘moving average’ (refFrame). The reference will be sub-
tracted from all other frames to isolate the target animal,
i.e., the change in the video frame, in the next stage. A
moving average is useful when the background changes
over time (e.g., lighting, bedding materials; refSmooth).
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B. Pre-processing

The STL algorithm implements a pre-processing stage
to isolate movement data and reduce noise. Here five
pre-processing calculations were done for each frame:

First, the reference is subtracted from the given frame,
to isolate changes in the frame that corresponds to the
target.

Second, the difference image is spatially smoothed to
reduce noise. This is implemented by convolving a two-
dimensional Gaussian kernel with the given frame. Ide-
ally, the user will calibrate the kernel size to the image,
based on the animal’s size, as viewed by the camera, and
video resolution (smooth).

Third, if the animal is lighter colored than the back-
ground, intensity values are negative. To produce con-
sistent color mapping in the next stage, we reverse these
values so that intensity of the target is always positive.

Fourth, irrelevant portions of the frame are masked
out to improve the signal-to-noise ratio and later target
detection. Two approaches are used to do this, a pre-
made static mask (doMask) and a dynamic detection of
an overlay (cleanWhite). For the pre-made mask, the file-
name to the mask image must be provided (maskName).
For the overlay, any pixels with an intensity above a set
threshold are ignored (white). This is useful if a times-
tamp or other overlay is hard-coded into the video, as in
Fig. 1A.

Fifth, we trim frames from the start and end of the
video that did not contain the target; this feature can be
disabled by the end user (disableTrim). Frames are only
retained if they are sufficiently different from the refer-
ence, based on thresholds (threshMask, threshTrim). At
this point, only frames containing temporal information
about the movement are retained.

Fig. 2 shows example images of the frames after these
calculations.

C. Colorizing the frames

A mapping of time-to-color is created for each of the
retained frames. This mapping is adjustable, but usually
corresponds to one or two color cycles (¢cmap). A mask is
then created such that only pixel intensities that surpass
a threshold are retained (threshMask), further removing
noise. At this point, the spatial information correspond-
ing to the target has been isolated. The color specific to
the given frame is then applied, see Fig. 2.

D. Creating a spectral time-lapse (STL) image

All colorized frames are averaged to produce a single
frame that is essentially the STL image. To improve color
visibility after averaging, the saturation of the averaged
frame is amplified (oversatCol).
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E. Outputting the spectral time-lapse (STL) image

To produce the final STL image, we overlay the aver-
aged frame on the reference (refFrame). To further im-
prove visibility of the colors, we increase the saturation of
the reference (oversatRef). Legend bars are added to the
image to show (a) actual time, (b) indicate overlapping
frames as would occur if the target pauses, and (c) time-
specific color mapping. The actual time bar denotes the
length, relative to the other bars, of a fixed amount of
time, e.g., 1 second (timeBar). The overlap bar is white
if the frames overlapped more than a threshold amount
(threshAdjac), and is otherwise black. The size of all
three bars can also be adjusted (barSize).

The final STL image is exported as an image file to the
specified folder (path_out). The image can also be viewed
immediately (showSTL).

F. Path analysis method

If path analysis is enabled (doPath), the STL tool-
box uses a simple but efficient method to obtain x- and
y-coordinates of the target at regular intervals (pathSam-
pling), which is often a higher sampling frequency than
used for the STL image. In our example (Fig. 1B) we
used 6 pps. These positions are plotted in a separate path
image, which can either be overlaid on the STL image or
the reference frame (pathBack).

The path analysis method takes advantage of the same
thresholds used in the STL algorithm to isolate the target
and remove spatial and temporal noise. The coordinates
of the target are determined by calculating the x- and
y-coordinates for the center of the largest centroid, after
the image has been intensity thresholded (threshTrim).
A minimum area for the largest centroid (areamin) is
also used to re-determine the start and end frames for
the path analysis.

The obtained x- and y-coordinates for the target across
all retained frames can be plotted over the STL or ref-
erence image. A color map is applied, along with the
STL image, and the marker’s border and arrows can be
modified in the configuration (pathCol; usually black or
white, depending on the background). The path image
is saved in the same folder as the STL image (path_out).
Along with the x- and y-coordinates for each frame, two
summary statistics are calculated: total path length and
duration. If the pixels-to-meters conversion is specified
(pz2m), coordinates and path length will be outputted
in meters.

G. Velocity-acceleration plot

Using the distances travelled between time points, as
calculated for the path analysis, we can readily also calcu-
late the instantaneous velocity and acceleration (do Vel).
To reduce noise in these measures, a weighted average
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is taken across adjacent values (velSmooth). The plot is
saved in the same folder as the STL image (path_out).

II. GENERALIZABILITY OF THE STL
ALGORITHM

So far we have described the STL algorithm (Fig. 2)
and presented images for one trial of a pigeon study (Fig.
1). To demonstrate the generalizability of the method,
we tested it on videos of other animals.

The first video, of a mouse in a radial-arm maze
(http://www.youtube.com/watch?v=y7zQgz0vmWo),
was downloaded as a MPEG-4 file from YouTube
and converted to an uncompressed AVI with MPEG
Streamclip. We cropped the video to isolate the maze.
As the video represented multiple trials, we chose a
video segment from after the mouse had been trained,
spanning from 1:46 to 1:59; this temporal trimming was
done through the STL toolbox by specifying the start
and end frames (3178 and 3568, respectively). Several
settings were modified to suit the video, such as the
smoothing kernel size, color map cycles, and the target
being lighter than the background. We sampled the
mouse’s position at 3 pps for the STL image and 30
pps for the path analysis. We plotted the path over the
reference frame. The resulting images are presented in
Figs 3A-C.

The second video was of an ant in a simple open
environment demonstrating scanning behaviour, where
the ant is searching for visual landmarks (http://www.
youtube.com/watch?v=u7LaPjMtmYM). The video was
also downloaded from YouTube and converted. Note that
this video was recorded using a high-speed camera and
had been slowed down by a factor of 10 (as stated in the
video’s description). Settings were customized for differ-
ences in the video resolution and speed, as well as target
size. Here we sampled the ant’s position at 10 pps, for
the STL image and 100 pps for the path image. The
resulting images are presented in Figs 3D-F.

RESULTS & DISCUSSION

Here we presented a novel method of visualizing and
quantifying animal movement from pre-recorded videos
acquired with standard video equipment. The spectral
time-lapse (STL) images accurately summarize an an-
imal’s position at a given time, within a single two-
dimensional image representation, and allow researchers
to observe movement patterns without needing to watch
full videos for every trial. We incorporated a simple but
efficient path analysis method into the algorithm to quan-
tify properties of the movement, including instantaneous
velocity and acceleration. The STL toolbox implement-
ing the STL algorithm in MATLAB is available freely
from the authors. (For an introductory guide to MAT-
LAB, see Madan, 2013.)
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As the path analysis method implemented in the STL
toolbox is fairly simple, it has a few limitations: the
method can only be used for a single target and it can-
not correct for partially occluded targets or lens distor-
tions. Several methods could be incorporated to allow for
the tracking of multiple targets, such as placing unique
markers on each target (e.g., Sakiyama et al., 2006), iden-
tifying separable targets and calculating movement vec-
tors or ‘limited-radius’ searches for each (e.g., Perner,
2001; Tort et al., 2006; Xu et al., 2009), using shape
templates (e.g., Kalafati, 2003; Xu et al., 2009), or us-
ing a particle-based approach (e.g., Kahn et al., 2006;
Tweed & Calway, 2002). Future versions could use meth-
ods to correct for occlusions (e.g., Perner, 2001), which
can include video artifacts such as timestamps embed-
ded in the video (as in Fig. 1). Estimates of path length
may also be affected by lens distortions, e.g., if a fish-
eye lens was used. These distortions can be corrected
by combining manually-acquired known distances (i.e., a
calibration grid) with the observed video data. Lind et
al. (2005) provide equations to compensate for lens dis-
tortions. Nonetheless, the path analysis method imple-
mented here efficiently tracks a single target and requires
no markers or shape templates.

Other fields have also demonstrated interest in
movement-tracking methods. Most notably, many pa-
pers outlining methods for tracking movements have been
published in the Journal of Neuroscience Methods, driven
by interest in how neurological lesions or pharmacologi-
cal manipulations influence movement. Our methods of-
fer a simple, readily-available tool to complement exist-
ing techniques. These methods may also prove useful in
other domains such as tracking humans from stationary
surveillance cameras (e.g., Buono, 2011) or tracking ve-
hicles over large areas (e.g., van Dommelen et al., 2013).
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FIG. 3. Application of the STL algorithm to videos of other animals. (A) STL image of a mouse in a radial arm maze, sampled
at 3 pps. First bar in bottom left corresponds to 1 second; second bar illustrates which frames highly overlapped with adjacent
frames; third bar shows time-color mapping used. (B) Path of same movement data as shown in panel A, overlaid on the
reference frame, sampled at 30 pps. (C) Velocity-acceleration plot of same movement data as panels A and B. (D) STL image
of an ant in an open environment, sampled at 10 pps (after adjusting for use of high-speed camera). First bar in bottom
left corresponds to 10 seconds; second bar illustrates which frames highly overlapped with adjacent frames; third bar shows
time-color mapping used. (E) Path of same movement data as panel D, overlaid on the STL image, sampled at 100 pps. (F)
Velocity-acceleration plot of same movement data as panels D and E.

6



Madan & Spetch (2013)

REFERENCES

Buono, P. (2011). Analyzing video produced by a sta-
tionary surveillance camera. In Proceedings of the In-
ternational Conference on Distributed Multimedia Sys-
tems (DMS 2011), pp. 140-145.

Chen, Y.-J., Li, Y.-C., Huang, K.-N., Jen, S.-L., Young,
M.-S. (2008). Video tracking algorithm of long-term
experiment using stand-alone recording system. Rew.
Sci. Instrum. 79, 085108.

Crispim Junior, C. F., Pederiva, C. N., Bose, R. C. Gar-
cia, V. A., Lino-de-Oliveira, C., & Marino-Neto, J.
(2012). ETHOWATCHER: Validation of a tool for be-
havioral and video-tracking analysis in laboratory ani-
mals. Comput. Biol. Med. 42, 257-264.

Godden, D. H., & Graham, D. (1983). ‘Instant’ analysis
of movement. J. Exp. Biol. 107, 505-508.

Jensenius, A. R. (2012). Evaluating how different video
features influence the visual quality of resultant motion-
grams. In Proceedings of the Sound and Music Com-
puting Conference, pp. 467-472.

Jensenius, A. R. (2013). Some video abstraction tech-
niques for displaying body movement in analysis and
performance. Leonardo 46, 53-60.

Kahn, Z., Blach, T., & Dellaert, F. (2006). MCMC data
association and sparse factorization updating for real
time multitarget tracking with merged and multiple
measurements. [IEEFE Trans. Pattern. Anal. Mach.
Intell. 28, 1960-1972.

Kalafati¢, Z. (2003). Model-based tracking of laboratory
animals. In Proceedings of EUROCON 2003: Comput-
ers as a Tool, pp. 175-178.

Lind, N. M., Vinther, M., Hemmingsen, R. P., & Hansen,
A. K. (2005). Validation of a digital video tracking
system for recording pig locomotor behaviour. J. Neu-
rosci. Meth. 143, 123-132.

Madan, C. R. (2013). An Introduction to MATLAB for
Behavioral Researchers. Thousand Oaks, CA: Sage.
Noldus, L. P .J. J., Spink, A. J., & Tegelenbosch, R. A. J.
(2001). EthoVision: A versatile video tracking system

Technical Report STL-2

for automation of behavioral experiments. Behav. Res.
Meth. Instr. 33, 398-414.

Noldus, L. P .J. J., Spink, A. J., & Tegelenbosch, R.
A. J. (2002). Computerised video tracking, movement
analysis and behaviour recognition in insects. Comput.
Electron. Agr. 35, 201-227.

Perner, P. (2001). Motion tracking of animals for behav-
ior analysis. In Proceedings of the International Work-
shop on Visual Form (IWVF-4), pp. T79-786.

Sakiyama, Y., Sujaku, T., & Furuta, A. (2006). A new
automated method to estimate behavioral responses of
a small animal using multicolor detection technique. In
Proceedings of the SICE (Society of Instrument and
Control Engineers)-ICASE (Institute of Control, Au-
tomation, and Systems Engineers) International Joint
Conference, pp. 2905-2910.

Spink, A. J., Tegelenbosch, R. A. J., Buma, M. O. S.,
& Noldus, L. P .J. J. (2001). The EthoVision video
tracking systemA tool for behavioral phenotyping of
transgenic mice. Physiol. Behav. 73, 731-744.

Tort, A. B. L., Neto, W. P., Amaral, O. B., Kazlauckas,
V. Souza, D. O., & Lara, D. R. (2006). A simple
webcam-based approach for the measurement of rodent
locomotion and other behavioural parameters. J. Neu-
rosci. Meth. 157, 91-97.

Tweed, D., & Calway, A. (2002). Tracking multiple ani-
mals in wildlife footage. In Proceedings of the Interna-
tional Conference on Pattern Recognition, pp. 20024—
20027.

van Dommelen, W., van de Laar, P., & Noldus, L. P. J.
J. (2013). Extending track analysis from animals in the
lab to moving objects anywhere. In Situation Aware-
ness with Systems of Systems, pp. 89-103. Springer:
New York.

Xu, J., Yu, H., & Liu, Y. (2009). A method to quan-
tify movement activity of groups of animals using au-
tomated image analysis. In Proceedings of the Interna-
tional Conference on Photonics and Image in Agricul-
ture Engineering (PIAGENG 2009), pp. 74891C.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY: without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
http://www.gnu.org/licenses/.




Madan & Spetch (2013) Technical Report STL-2

SUPPLEMENTAL INFORMATION

Sample text feedback from running the STL toolbox (stltool) on video

file

“S-Video 20110718.1132.avi”, the video of the single trial from the pigeon study. The out-

putted images are shown in Figure 1. (Output is text wrapped to fit on page.) citeautoscript

1 >> data = stltool ('S—Video 20110718.1132.avi');

3 Processing video file "S—Video_20110718_.1132.avi"
4+ Reading from raw video (46 Frames)

6 Video is being sampled at one position per 1.00 seconds (1.0 pps)
7 Checking frames for motion (46 Frames)

9 Colorizing frames (25 Frames)

10 o o o o o o o o o o o s o o o o o s o s o s o oo

11 Calculating spectral timelapse (STL) image

12 STL generated ("STL_S—Video_20110718_1132.tif")

13 STL summarizes 25.02 seconds of video

14 Processing video file "S—Video.20110718_1132.avi"

15 Reading from raw video (228 Frames)

16 o o o o o o o o o o o o o o o s o s o s o o o s o s o s o s o s o s o s o s e s 6 s e s e s e s e s e s e s e s e s e s e s e s e s
17 o o o o o o o o o o o o o s s s o o o s o o o s o o s o s s o o s o s s s s s s s s s s s s s s s s s s s s s s e s s e s e s e e e
18 o o o o o o o o o o o o o o o o o o o o o o o o o o o s o o o o o o s o s s e o o s 0o s s o e s e s e s e s e s e s s s e s e s e s e
19 o o o o e o s o o o o o s o o s o 06 s s 0o 0 0 0 s o

20 Video is being sampled at one position per 0.20 seconds (5.0 pps)

21 Checking frames for motion (228 Frames)

22 4 e e o s o o o s o o s s s s s s s s s s e s s s s s s s s e s s s s s s s s e s s s s s e s s e s s s s s e s s e s s s s e s e s e
23 4 6 o o s o o s s o o s o s s s s s e s s o s s s s s e s s e s s s s s e s s s s s s s s s s s s s s s s s s e s s s s s e s s e s s
24 o o o o s o s o o e s o s o s o s e s e s e s o s o s s s e s e s e s e s o s e s e s e s e s e s e s e s e s e s e s e s e e e s e
25 o e e o o o s o o o s e e e s s s e s e s e s e s e o

26 Detecting path

27 Path calculated ("STLpath S—Video_20110718_.1132.tif")

2s Total path length measured at 5.5423 m

20 Total path took 24.22 s

30 Velocity—acceleration plot generated

31 ("STLvel S—Video_20110718_1132.pdf")
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Data output from same example.

Technical Report STL-2

1 >> data

2 data =

3 config: [1xl struct]

4 fname: 'S—Video_20110718_1132.avi'’
5 framesPathKept: 121

6 framesPathSampled: 228

7 framesSTLKept: 25

8 framesSTLSampled: 46

9 pathLength: 5.5423

10 pathTime: 24.2239

11 ppsPath: 4.9951

12 ppsSTL: 0.9990

13 trackXY: [121x2 double]
14 velAcc: [1x118 double]
15 velVel: [1x119 double]

16

17

18

19

vidCDepth: 1

vidFPS:

29.9704

vidHeight: 480
vidWwidth: 640

Legend of the outputted data’s structure.

8

10

11

12

13

14

16

17

18

19

20

21

22

23

24

config:

fname:
framesPathKept:
framesPathSampled:

framesSTLKept:
framesSTLSampled:

pathLength:
pathTime:
ppsPath:
ppsSTL:
trackXY:

velAcc:
velVel:
vidCDepth:
vidFPS:

vidHeight:
vidWidth:

backup of all config settings

(from config.m and configCustom.m)

file name of video

number of frames retained in path analysis

total number of frames sampled for path analysis
(framesPathKept will always be a subset of this)
number of frames retained in STL image

total number of frames sampled for path analysis
(framesSTLKept will always be a subset of this)
total length of path (in pixels or meters)

total duration of path (in seconds)
positions—per—second for path analysis
positions—per—second for STL image

x— and y—coordinates of path at each

sampling point (in pixels or meters)
instantaneous acceleration

(from velocity—acceleration plot)

instantaneous velocity

(from velocity—acceleration plot)

color depth of video

(1 = grayscale; 3 = color
frames—per—second of video
height of video

width of video

[rgbl)
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Example configuration settings code (config.m).

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

o\°

Config settings for spectral time—lapse generation code (stltool)
Written by Christopher R Madan

Last edited 20131102 [CRM]

Requires Statistics Toolbox (nanmean,normpdf)

Requires Image Processing Toolbox (imresize,regionprops)

o° o oo

o\°

[o)

% general settings

debug on? (activates 'interactive' mode at end of STL code)
debugOn = 0;

is the target lighter or darker than the background area?
set to 1 for lighter, —1 for darker

target = —1;

plot position from every i—th frame

most videos are at 30 frames per second (30 Hz; NTSC)
sampling = 30;

video speed

has the video frame rate been adjusted relative to the original
recording?

set to 1 if not

set to .1 if used high—speed camera and slowed down by 10x

o

o\

o\

o

o\

o\

o° o oo

o° oo

videospeed = 1;

% threshold for detecting change in frame

% if this is too low, there will be lots of 'speckle' (random noise)
% if this is too high, too few/no usable frames will be detected

threshMask = 50;

[o)

% block size of legend bars (height/width of each block, in px)
barSize = 8;

o)

% length of time bar (in seconds)

timeBar =1;

% display STL image? (will be saved regardless)
showSTL = 0;

% paths for input raw videos and output ot STL images
path_raw = '../raw/"';

path_out = '../output/"';

%% frame range

% starting frame, used to manually remove the first i frames

% must be in quotes

startFrame = '1";

% last frame, use 'lastFrame' for the last frame of the video
% must be in quotes

endFrame = 'lastFrame';

% reference frame for subtraction (usually 'l' or 'end')

% must be in quotes

% use 'move' for a moving average, can be a bit slow

refFrame = 'end';

% 1f using moving average, how should frames be weighted

% (temporal smoothing)

% list of values should be odd in length

% middle value should be 0, so weight for 'current' frame is 0
% absolute values don't matter, will be normalized to sum to 1
refSmooth = [ 4:—-1:1 repmat(0,1,5) 1:1:4 ];

10
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% frame spatial (masking)
mask out a region of the frame if desired

56

o
°
)

°

57

s5s doMask = 1;
so $ 1f using doMask, specify mask filename (within path_raw)
60 maskName = 'mask.tif';

auto—mask white?
E.g., i1f there was a hard—coded timestamp

61

62

63 cleanWhite = 1;
64 $ lower end of what to trim as 'white'
65 white = 120;

66

67

68

% frame temporal settings (trimming, change detection)

disable auto—trimming of start and end frames

71 disableTrim = 0;

threshold for automatically trimming start and end frames

checks for differences between start/end frames and reference frame
if there little difference, removes the frames

(proportion of total frame)

76 threshTrim = .004;

threshold for detecting changes between adjacent frames

used for the white/black bar to detect differences between adjacent
79 frames

so threshAdjac = 0.4;

81

)
69 °

o)
70 °

72
73

T4

o° o o oP

75

77

78

o® o oP

82
% STL colorization settings
set color map

83

84

o® o o o o°

85 'hsv' — recommended, one color cycle

86 'dhsv' — custom colormap for two cycles of hsv

87 (dhsv = double hsv)

88 CIap = 'dhsv';

89 % 1lncrease brightness of reference image (refFrame) by x
90 oversatRef = 2;

91 % 1ncrease saturation of colorized frames by x

92 oversatCol = 20;

93 % smoothing kernel range

94 % improves detection of change, reduces effects of random noise
95 smooth = —1:1;

96

97

% path analysis settings

99 calculate path image?

100 doPath = 1;

101 % background image for path

% 'stl' or 'ref'

98

o
°
)

°

102

103 pathBack = 'stl';

104 % color for arrows and marker circles
105 % usually 'k' or 'w' (black or white)
16 pathCol = 'k';

107 different sampling rate for path analysis?

for same rate just type: O

for double the STL sampling frequency: sampling/2
110 pathSampling = 30/5;

111 minimum area for tracked

112 set to 0 for no minimum

113 areamin = 200;

,_‘
)
&

o° o oo

%
%

11
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114

115

116

117

118

o\

path output units

how many px in a meter

% set to 0 to report as pixels
px2m = 0;

o\

%% velocity—acceleration plot settings
% calculate velocity—acceleration plot?
doVel =1;

% smooth instantaneous velocity/arousal with a kernel

velSmooth = —3:.2:3;

Technical Report STL-2
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Example custom configuration code (configCustom.m).

1 % put custom settings for specific videos here

3 1if strcmp (fname, 'ant.avi')

4 threshMask = 80;

5 cmap = 'hsv';

6 sampling = 30;

7 pathSampling = 3;

s px2m = 100/(5/393); % 393 px == 5 cm
9 videospeed = .1;

10 timeBar = 1;

11 doMask = 0;

12 cleanWhite = 0;

13 elseif strcmp (fname, 'radial.avi')

14 target = 1;

15 cmap = 'hsv';

16 startFrame = '3178";

17 endFrame = '3530";

18 sampling = 10;

19 refFrame = '1";

20 smooth = —2:2:2;

21 threshMask = 30;

22 pathSampling =1;

23 pathBack = 'ref';

24 pathCol = 'w';

25 px2m = 100/(100/330.5); % 330.5 px == 100 cm
26 timeBar = 1;

27 doMask = 0;

28 cleanWhite = 0;

20 elseif strfind(fname, 'S—Video')

30 timeBar = 10;

31 px2m = 100/ (32/68.56); % 68.56 px == 32 cm
32 end

13




