
TupleRank: Ranking Relational Databases using

Random Walks on Extended K-partite Graphs

Jiyang Chen 1, Osmar R. Zäıane 1, Randy Goebel 1, Philip S. Yu 2

1Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8

1{jiyang, zaiane, goebel}@cs.ualberta.ca

2Department of Computer Science, University of Illinois at Chicago
851 S. Morgan St., Rm 1138 SEO, Chicago, IL 60607

2
psyu@cs.uic.edu

No Institute Given

Abstract. The significant increase in open access digital information
has created incredible opportunities for modern database research, es-
pecially in exploiting significant computational resources to determine
complex relationships within those data. In this paper, we consider the
problem of analyzing relational databases and explaining relationships
between entities in order to rank tuples based on a notion of relevance.
For this purpose, we propose a solution of a class of link analysis algo-
rithms known as the random walk, which can be deployed to discover
interesting relationships amongst partial tuples of relational databases
that would otherwise be hard to expose. We focus on a shortcoming of
the absence of a special kind of relationship, which we call “returning
relationship”. We demonstrate our ideas on the DBLP database, where
we exploit structural variations on relationships between authors, con-
ferences, topics, and co-authorships. We show how a distinction between
normal relations and returning relations on objects within that database
provides the basis for structuring a random walk algorithm to determine
interesting relevance measures. We also show how structural changes in
the organization of the random walk can produce novel results that are
not attainable with previous database ranking methods.

1 Introduction

Ranking, i.e., a process of positioning entities on an ordinal scale in relation to
others, is an important task that has a significant role in many applications.
In large databases, users would prefer the top-k partial tuples that are most
related to their queries rather than a long list of tuples in a random order. Note
that the query result ranking proposed here goes far beyond the functionality
of the ORDER-BY operator, which can only sort values of specified attributes
in numerical or alphabetical order. In social networks, the ordering task is also
challenging. One typically measures closeness of related entities in the network

by a relevance score, which is computed with certain similarity metrics based
on selected relationships between nodes in a graph. Ranking is also a common
notion that has appeared in the context of web search applications. Web pages
are ranked and returned as the result of a user query, such that the more relevant
the page is to the query, the higher it is ranked. The random walk approach is a
popular method for ranking in this context, and has received increasing interest
after the undeniable success of the Google search engine, which uses a random
walk approach to rank web pages in its search results as well as its list of visited
pages to re-index [1]. Simply put, a random walk is a sequence of nodes in a graph
such that when moving from one node N to the subsequent one in the sequence,
one of N ’s neighbours is selected at random but with consideration for an edge
weight. The relevance of a node, or the importance of a node B with respect to
a node A, is the static steady state probability that the sequence of nodes would
pass by B when the random walk starts in A. This probability, often estimated
by a relevance score, is computed iteratively until some convergence (i.e. when
no further changes in the probabilities are observed). A variation of this idea,
which we advocate in this paper, is the random walk with restart. Given a graph
and a starting point A, if at each step, we select a neighbour of the current point
at random proportionally to the edge weights and move to this neighbour, or
with probability Prestart go back to the initial node A, the sequence of points
selected is a random walk with restart (RWR) on this graph. RWR has many
applications including neighborhood formulation, automatic image captioning,
etc. [2].

In this paper, we are particularly interested in assigning relevance values to
categorical data in relational databases. We can then generate useful ranked lists
of entities based on this relevance assignment. More specifically, we first construct
a database graph based on the relational database, then apply a random walk
approach on the graph to obtain rank values for node tuples. Since the random
walk algorithm has a start point, the ranking we obtain is only for one specific
entity: the starting point in the graph. Here we mainly focus on how to obtain
accurate ranking values for one given entity. However, by combining rankings
of different starting entities using the methods proposed in [3], we can easily
generate a more “global” ranking if necessary, e.g., when there are multiple
entities that match the query.

Before applying random walk approaches to compute the relevance score, we
need to transform entities in the relational database to a weighted graph which
we call the database graph. Intuitively, seeing the web as a database, there are
two tables, one for page entities and the other for hyperlink relations, which
correspond to nodes and edges in the web graph, respectively. Using this ob-
servation, we can transform arbitrary relational databases to graphs based on
the Entity-Relationship Model (ERM): each entity table is represented as a par-
tition of the graph, where no edges exist within the partition. Each relation
table is represented as a set of edges that connect two partitions of the graph.
The edge weight is the number of relation tuples that connect two entities in
different partitions. (For relations between entities in the same partition, we

2

Mike Milk

John

.

.. .
.. .

..
Customer
Partition

Product
Partition

Transaction ProductCustomer

Bread

Juice

Transaction

5
5

6

4
3

1

Fig. 1. Create Database Graph based on ERM

can simply create a duplication of the partition.) Figure 1 is an example: the
purchasing database of a supermarket can be represented as a bipartite graph,
with customers and products as separate partitions and transactions as edges.
The edge weight shows how many times one customer bought a product. Note
that this has absolutely nothing to do with association rules. Other databases,
such as the DBLP bibliography database1, can also be represented as a bipartite
graph, with authors and conferences as graph partitions and paper submissions
as edges. These kinds of relations connect one database partition to another,
thus we call them cross-relations. Unfortunately, on many occasions simple bi-

Transactions

Mike {Milk, Bread}(5), {Juice}(1)

John {Milk}(4), {Bread}(3), {Juice}(6)

Table 1. Product Purchasing Transactions. For example, {Milk,Bread}(5) means Mike
bought these two products together five times.

partite representations are deficient in the sense that they cannot capture some
important relationships. For example, a bipartite graph can well represent the
purchasing relations between customers and products, but the relation that de-
scribes how several products are bought in one transaction is missing, e.g., the
graph model in Figure 1 fails to show that milk and bread are actually bought
together five times by Mike (Table 1). Moreover, if we create a duplicate prod-
uct partition and use edges between two product partitions to represent these
in-the-same-transaction relations, we miss the information of the customer who
purchases these products in that transaction, i.e., we capture the fact that milk
and bread are bought together five times, but there is no way we can tell the
customer is Mike, John or even both. Other simple methods, such as modeling

1 http://www.informatik.uni-trier.de/ ley/db/

3

them by adding directional edges, are not practical in the case of a random walk
as the approach would hinder the random walk itself and compromise its results.
Since these kind of relations describe relations between two nodes A and B in
the same partition via one node C in another partition, we call them return-
ing relations : the relation from A returns to B via C, which is in a different
partition from A and B. Returning relations are common but easy to omit in
relational databases. For example, in bibliography data, the co-authorship rela-
tion between authors is a returning relation since every co-authorship happened
in a particular conference. In a Peer-To-Peer(P2P) environment, the returning
relation represents the connection between peers via different seeds. For e-mail
senders and recipients, recipients of the same e-mail form a returning relation.
Another example comes from microarray data analysis where genes and condi-
tions form a bipartite graph. If we have multiple microarray data sets, the genes
activated by a given condition in each microarray data set form a returning re-
lation. Conceptually, the returning relation is a relationship from one partition
to itself via another partition, e.g., product to product via customer, author to
author via conference, gene to gene via protein or other conditions.

To model returning relations in the database graph, we propose the construc-
tion of a virtual layer acting as surrogate nodes to replace the original nodes,
then define a random walk algorithm for this extended graph. Our solution is to
provide the random walk with effective means to take into account information
within these returning relations. Our approach, which is generic to multi-partite
graphs with as many intra-partite relations as necessary, consists of two main
ideas. One is to introduce the surrogate or virtual nodes to constrain traver-
sal based on the flow control, i.e. the proper connectivity to support a random
walk calculation. The other is to capture the returning relations by introducing
additional links (including not only reverse links but also special forward links
capturing returning relations) to/from the surrogate nodes and assign the proper
weights.

Our work has the following contributions:

– We identify novel types of relations in a relational database, model them
and extend the bipartite graph model to include various relations between
entities. We present an iterative random walk algorithm to compute what
we call relevance scores, which rank tuples with regard to a given tuple (or
node in the database graph). Our ranking scheme considers implicit semantic
relationships that are ignored by previous database ranking systems; implicit
in the sense that the relationships are not explicitly expressed in the database
but inferred by some mechanism such as the random walk.

– We adapt our approach to relational databases with multiple relations and
investigate the influence of different random walk directions on a k-partite
graph model. The proposed two algorithms can be used in different situations
to obtain accurate ranking.

– While ranking results are very difficult to compare and evaluate, we use
historical data as ground truth to evaluate our rankings by means of a rec-

4

ommender system. The idea of using recommendation accuracy to evaluate
ranking is novel.

The rest of the paper is organized as follows. We discuss related work in
Section 2. Section 3 introduces database graph for relational databases. Random
walk algorithms for computing the relevance ranking are described in Section 4.
The ranking result and evaluation are reported in Section 5. Finally the study
is concluded in Section 6.

2 Related Work

The problem of ranking tuples in the relational database is closely related to
the problem of ranking web pages. In the web domain, iterative algorithms [4,
5] on the web graph have been proposed to compute “importance” scores for
web pages. Results show that the use of structure can significantly improve the
performance of web search engine. Specifically, Page-Rank [5] learns ranks of
web pages, which are N-dimensional vectors, by using an iterated method on the
adjacency matrix of the entire web graph. In order to yield more accurate search
results, Topic-Sensitive PageRank [6] precomputes a set of biased PageRank
vectors, which emphasize the effect of particular representative topic keywords
to increase the importance of certain web pages. Those are used to generate
query-specific importance scores. Alternatively, SimRank [7] computes a purely
structural score that is independent of domain-specific information. The Sim-
Rank score is a structure similarity measure between pairs of pages in the web
graph with the intuition that two pages are similar if they are related by similar
pages. Unfortunately, SimRank is computationally very expensive since it needs
to calculate similarities between many pairs of objects. According to the authors,
a pruning technique is possible to approximate SimRank by only computing a
small part of the object pairs. However, it is very hard to identify the right pairs
to compute at the beginning, because the similarity between objects may only be
recognized after the score between them is calculated. Similarly, a random walk
algorithm is usually applied on graphs that represent data models in different
fields after structural context has been taken into consideration. For example,
the Mixed Media Graph [2] applies a random walk on cross-modal correlation
discovery. He et al. [8] propose a framework named MRBIR using a random walk
for content-based image retrieval. Sun et al. [9] detect anomaly data in bipartite
graphs using the random walk with restart algorithm. Tong et al. [10] proposed
a fast solution for applying random walk with restart on large graphs, to save
pre-computation cost and reduce query time.

Ranking or top-k query processing for databases are important in many situ-
ations such as joining ranked lists or combining scoring functions [11], and have
recently attracted much research attention. Most of the available solutions are
in the middleware scenario [12, 13] or in relational database systems (RDBMS)
setting [14–16], where ad-hoc top-k aggregate queries can also be supported [17].
While these above mentioned works focus on extending the relational algebra

5

and query optimization to support ranking as a first-class database construct
such as the operator rank-join[11], we concentrate on ranking tuples based on
the original structure and implicit relations deduced from the data.

The idea of representing a relational database as a graph and ranking the
tuples based on relational links has appeared in the context of keyword search
in [18–20]. In their respective work, the nodes in the graph are database tuples
that are found as query results and the relationships between the nodes are
induced by foreign key or other given constraints. The ranking values of tuples
are computed based on the path distance and types of the connections between
these tuples. The main difference is that we naturally transform entity tables
into graph partitions and represent relation by edges between partitions to build
the database graph.

A similar random walk approach to ranking on structured data is ObjectRank
[3]. In this approach, the database graph construction is heavily dependent on
the presence of semi-structured data. The random walk is applied based on the
schema graph of the database. The probabilities of authority transfer from one
type of tuple to another is given by the database administrator or a domain
expert. However, the ranking quality of ObjectRank depends on the authority
transfer probability setting between every pair of related tuples, which can be
hard to find. Another related application work that applies random walk on
relational database for ranking is proposed in [21]. In their work, the authors
focus on ranking partial tuples instead of tuples, and the database graph is gen-
erated based on queries that connect the tuples. Neither of these two approaches
considers returning relations in their random walk ranking.

Here in this paper, we build database graphs based on the original relational
structure, extend the random walk approach on bipartite graphs to k-partite
graphs, and increase the potential of the random walk by expanding the graph
with virtual nodes that materialize the semantics of returning relations to obtain
a global ranking of the entities, as explained in the following sections.

3 The Database Graph

As mentioned in the Introduction, we can consider the web as a database over a
binary relation between pages. It can be well represented by a bipartite graph,
where two partitions contains the page set and edges between partitions represent
the hyperlinks that connect corresponding pages. We now generalize this idea to
arbitrary databases.

Given a relational database D = (X,Y,RX↔Y), where entity table X =
{xi|1 ≤ i ≤ n} and Y = {yj |1 ≤ j ≤ m} (there are n tuples in X and m
tuples in Y), RX↔Y is the relation table between X and Y : r(xi, yj) ∈ RX↔Y

if xi and yj are related, e.g., if xi represents a customer and yj represents a
product, r(xi, yj) could mean that the customer xi has bought product yj in a
transaction. We refer to RX↔Y as the cross relation between entity sets X and
Y . These are the inter-entity-set relations.

6

E’’

Cross Relations:

.
. ..z 1 z 2 z 3 z 5 z l

y m

5y

4y

3y

2y

1yx 1

x 2

x 3

x 4

x 5

x n

z 4

Entity Set X Entity Set Y

Entity Set Z

Fig. 2. Tripartite Database Graph for Multiple Cross Relations

3.1 Bipartite Database Graph

Based on the ERM, a relational database D = (X,Y,RX↔Y) can be easily
transformed to a undirected bipartite graph G = (X,Y,E), where node set
X = {xi | 1 ≤ i ≤ n}, node set Y = {yj | 1 ≤ j ≤ m} and edge set E =
{e(xi, yj) | r(xi, yj) ∈ RX↔Y }, i.e., each partite represents an entity set and
edges represent relations between entities. We assume the edges are undirected,
but they can also be directed for some databases, such as the web. The weight
of edge e(xi, yj) is w(xi, yj), which can be 1 for an unweighted graph, or non-
negative value for a weighted graph, where the weight is the number of tuples in
the relation table that connect the two entities. Figure 4 (a) shows an example
of the bipartite database graph. The bipartite model provides a structure for
important information about relations between entities, e.g., nodes in X that are
similar to each other usually connect to similar nodes in Y . One can compute
the similarity ranking between nodes and the result can be applied to various
applications. One possible way to achieve the ranking is to generate the adjacency
matrix of graph G and apply a random walk algorithm on that matrix starting
from a given node. Similar methods have been applied in [9] to calculate object
relevance for anomaly data detection. However, in their approach, they did not
take into consideration the returning relations, which is important for object
ranking. For example, in the bipartite graph model of customers and products,
it may be adequate to only measure cross relations to detect anomalies, but
for the problem of similarity ranking between products, how often products are
bought together in one transaction, and by which customer must also be taken
into account.

7

Conferences Authors

Random Walk Direction 2:

Topics
Random Walk Direction 1:

Fig. 3. Random Walks on Tripartite Database Graph

3.2 K-partite Database Graph

We have presented the bipartite database graph for relational database D =
(X∪Y), which has only one type of cross relation, namely RX↔Y . However, real
world application databases usually have multiple cross relations between several
types of entities. For example, there are seeds, peers and file types (multimedia,
text, etc.) for P2P system data; conferences, authors and research topics for
research publication data; books, readers and categories for a library system;
customers, movies, genre and actors for a movie purchase database. We may have
more correlated entities in other fields, however, in this paper, we experiment
on databases that have cross relations between three types of entities, database
graphs for more can be achieved by extending the graph model and applying the
proposed method.

We consider a relational database D′ = (X ∪ Y ∪ Z), and we have RX↔Y ,
RY ↔Z and RX↔Z as cross relation tables between these three different types
of entities. We naturally use an undirected tripartite graph G′′ = (X,Y, Z,E′′)
to model the data: two entity nodes are connected if they are related. Figure 2
shows the tripartite database graph.

Applying random walk algorithms on a k-partite graph can be interesting,
since the direction of the random walk need also to be taken into consideration.
For example, assume we have a tripartite database graph representing relations
between conferences, authors and topics (Figure 3), there are two possible ways
to apply a random walk: assuming we start from authors, walk from author to
conference to topic and then back to author, or walk from author to topic to con-
ference and then back to author. Random walk algorithms with both directions
rank authors based on the frequency of sharing the same topics and conferences,
but there are slight differences due to the walking sequence. Nevertheless, start-
ing from an entity in a particular partition, the random walker need to walk
through all related partitions and then return to the beginning partition. By
that we no longer need to arbitrarily set the authority transfer probability [3],
however the sequence of involved partitions are required for the random walker
to jump among different types of entities. We investigate this problem with more
details in Section 5.

8

X1

X2

X3

X4

Xn

X5

1Y

2Y

3Y

4Y

5Y

Ym

......

Cross Relations: Returning Relations:

X1

X2

X3

X4

X5

Xn

X’31

X’32

X’33

X’34

X’35

1Y

2Y

3Y

4Y

5Y

Ym

...
...

...

...

X1

X2

X3

X4

X5

Xn

X’31

X’32

X’33

X’34

X’35

1Y

2Y

3Y

4Y

5Y

Ym

...
...

...

...

(c) Extended Graph

1

1

1

E

1
1

1

1

1

1

11

1

1

1

1

1

1

1

Entity Set X Entity Set Y

(a) Original Graph

1

E’X’

1 1

1 1

1

W’1

1

W’

W’ = p

Entity Set X Entity Set YE’X’

W’

1

W’

W’ = p

Entity Set X Entity Set Y

(b) Extended Graph

1
1

1

Fig. 4. Database Graphs for Cross Relations and Returning Relations

3.3 Returning Relation Challenges

The aforementioned bipartite and k-partite database graphs are capable of mod-
eling the cross relation RX↔Y . However, we may also have another relation set
SY which they fail to represent: s(yi, yj , xk) ∈ SY if yi and yj are related via xk,
e.g., product yi and yj are bought together in one transaction by customer xk

or author yi and yj have co-authored a paper that is published in conference xk.
We refer to SY as the returning relation of entity set Y . Returning relations are
intra-entity-set relations. For example, in Figure 4 (a), if y4 and y5 are related
through x3, i.e., s(y4, y5, x3) ∈ SY , there are no edges in the bipartite graph
that can be used to represent this returning relation: edge e(x3, y4) and e(x3, y5)
are both used by cross relations between X and Y . More specifically, let us take
the customer-product database shown in Table 1 as an example. According to
the transactions, Milk, Bread and Juice are all heavily purchased by customers.
However, Milk is always bought together with Bread by Mike, therefore, the
similarity between Milk and Bread, i.e., the ranking from Milk to Bread and
vice versa, should be much higher than other pairs, and that should be obtained
through Mike, not any other customer entities.

Several techniques that seemed sensible actually fail to represent returning
relations. As we have mentioned, creating a duplicate partition for products and
connecting entities which are in the same transactions will not suffice as it does
not capture the role of the customer (Figure 5 (a)). In this way, all transactions
from different customers are treated equal, but apparently the purchasing fre-
quency of different customers should also be considered in the ranking. Making

9

Milk

Product
Partition

Duplicate
Partition

Bread

.

..

Mike Milk

Product
Partition

.

.. .
.. .

..

Bread

Milk

.

.. .
..

Juice Juice

Bread

Juice

(b)

Customer
Partition

(a)

New Added Edges

Fig. 5. Attempts to represent returning relations

the link directional and adding reverse links connecting entities involved in re-
turning relations will not work either as one entity can branch to many other
nodes in the other partition making the random walk calculation infeasible. For
example, after we add two extra links from Milk to Mike and from Mike to
Bread, the random walker from entity Milk/Bread does have a higher probabil-
ity to hit Mike and then visit Bread/Milk, however, it also increases the chance
of a random walker from Juice that hit Mike to visit entity Milk and Bread,
which is wrong (Figure 5 (b)). Moreover, adding additional nodes to represent
each returning relation is impractical when there is a huge number of such rela-
tions. For instance, adding “Papers” between Authors and Conferences to make
a tri-partite graph would actually not only add a significant number of edges
since many authors have multiple papers per conference series, but also, this
scheme does not allow the random walk to favour co-athorship as any author or
co-author gets the same probability to be visited.

The challenge to capture the returning relation here is not only to provide
the connection or path between related nodes, but also control the connectivity
or branching from each node so the random walk calculation can be applied
while benefiting from the information embedded in the returning relations. A
more elaborate database graph is thus required for such a purpose.

3.4 Database Graph for Returning Relations

To solve the problem, we re-structure the bipartite graph by adding surrogate
nodes to replace the customer entity nodes and having them linked to both
product entity so that random walk calculation can be applied to all intents and
purposes.

In more detail, we extend the bipartite graph by adding a virtual level of
nodes to replace the partition that do not have returning relations, and add
direction to the edges. Figures 4 (b) and (c) show the details of node x3 for
returning relation s(y4, y5, x3) as an example. (For simplicity, we show only edges
related to node x′(3,4) and x′(3,5).) From Figure 4 (a), we know that r(x3, yj) ∈

RX↔Y if (1 ≤ j ≤ 5), s(y4, y5, x3) can not be expressed since all relevant edges
are used in the graph. First, we re-structure the X partition by replacing x3

with 5 nodes, i.e., the node number equals to the number of nodes that connect

10

to x3 (Figure 4 (b)). Since each of the 5 nodes represents the relation between
x3 and y1, y2, y3, y4, y5, respectively, the Y nodes connect to their corresponding
surrogate nodes with the original weight, e.g. edge e′(y4, x

′

3,4) (because we had
Rx3↔y4) and e′(y5, x

′

3,5) (because we had Rx3↔y5). Then we connect from X ′

nodes to yi nodes if yi has a returning relation with theX and Y node represented
by theX ′ node, the edge is weighted by the returning relation valueW ′, e.g., edge
e′(x′3,4, y5) and e′(x′3,5, y4). (W ′ = p for unweighted graphs, which is explained
in the following.) We can see in Figure 4 (b) that the returning relationship
s(y4, y5, x3), which is missing in the simple bipartite graph, is now represented
by extra weight W ′ of edge e′(x′(3,4), y5) and e′(x′(3,5), y4).

Although returning relations are well represented in the figure, the new
database graph still misses relevant information. For example, y1, y2, y3 are also
related to y4 since they all connect to x3. However, in the database graph shown
in Figure 4 (b), the random walker cannot visit y1, y2, y3 from y4 via surrogate
nodes of x3. Ideally, the random walker should get the chance to visit all nodes
that are related to y4 and hit the returning-related nodes with higher probabil-
ity, which is y5 here. Therefore, we connect from X ′ nodes to all yi in Y such
that we have Rx3↔yi

. The edge is weighted as the original (i.e., 1), e.g., edge
e′(x′3,4, y1), e

′(x′3,4, y2), e
′(x′3,4, y3), e

′(x′3,4, y4) shown in Figure 4 (c).

Formally, we create an extended bipartite graph model G′ = (X ′, Y, E′) based
on G. We replace each X node xi into k nodes where X ′ = {x′(i,k) | 1 ≤ i ≤

n, e(xi, yk) ∈ E}, i.e., |X ′| equals to
∑

i degree(xi). For edges, at first, each Y
node connects to its own representative X ′ node from different X nodes, i.e.
e′(yj , x

′

(i,k)) ∈ E′ iff k = j, the new weight w′(yj , x
′

(i,j)) = w(xi, yj). Then, we

connect edges from X ′ to Y : e′(x′(i,k), yj) ∈ E′ iff e(xi, yj) ∈ E. If s(yk, yj , xi) ∈

SY , w′(x′(i,k), yj) = p, where p is a parameter used to control the returning rela-

tion factor. Otherwise, if s(yk, yj , xi) /∈ SY , the weight w′(x′(i,k), yj) = w(xi, yj).

Note that w′(yj , x
′

(i,j)) = w′(x′(i,j), yj) = w(xi, yj) since one can never return to

itself via a relation, i.e, s(yj , yj , xi) /∈ SY . For example, one author can never
co-author with himself in a conference.

Publication Records

KDD(K) A(4), AB(1)

VLDB(V) AC(3), C(4), E(5)

SIGMOD(S) B(4), D(1), DE(2)
Table 2. Author Publication Records in Conferences. For example, A,B,C,D,E are
authors, AC(3) means that author A and C published three papers together in a certain
conference.

To show the necessity and effectiveness of the directed model for returning
relations in the database graph, we give a relational database of conferences and
authors as an example. Table 2 shows the number of publications of five authors
A, B, C, D, E in three conferences KDD VLDB and SIGMOD. Authors A and

11

K

S

K

B

C

D

E

A

Authors

B

C

D

E

A

Authors

...

V V

X’va

X’ve

W’vac W’vca

W’vac W’vca

S

E E’X’

5

1

3

7

5

3

2

4

Returning Relations:Cross Relations:

Conferences

KDD

SIGMOD

Conferences

KDD

SIGMOD

7

7

3

3

7
3

5

5

5
5

X’

.

.

=

VLDB VLDB

vc

= p

(a) Original Graph (b) Extended Graph

Fig. 6. Directed Model for Returning Relations in Conference-Author Database

C have co-authored 3 papers in VLDB, A and B co-authored 1 paper in KDD
and D, E co-authored 2 papers in SIGMOD. In the original database graph,
(Figure 6 (a)), author E seems more related to author C since the weights of
edges connecting them to VLDB are the heaviest (WV C = 7, WV E = 5). The
influence of the “very” related co-author A is neglected because the model only
considers publication frequency. On the other hand, in Figure 6 (b), co-author
relations are represented by weights of returning relations (W ′

vca = W ′

vac = p
where p is a parameter to control the returning relation factor) in the directed
model, which shows that author A is more related to C than author E through
VLDB due to their collaborations. The parameter p is used to emphasize the
co-author influence, we set p = w ∗ k (w is the co-authorship frequency and k
is the total author number of a particular conference) so that the random walk
probability from conference to authors will not change dramatically for different
author numbers. Note that the same extension can be applied on other relations,
e.g. co-existing keywords in a paper.

4 Proposed Method

In this section, we first define the relevance score and describe the random walk
approach in Section 4.1, then discuss the algorithm to rank the internal and
external entities in Section 4.2, finally present the ranking algorithm for entity
sets with multiple cross relations in Section 4.3.

4.1 Relevance Score based on Random Walk

Similar to SimRank [7], we believe that two objects are similar to each other if
they are related to similar objects for the problem of relevance ranking in the

12

relational database. Therefore, we consider that an entity is most related to itself
and can be assigned a score of 1. We denote the relevance score between entities
α and β by rs(α, β). We know that rs(α, β) ∈ [0, 1] and rs(α, β) = 1 iff α = β.
Now the problem of internal and external ranking in the database graph can be
described as follows:

Given a node α in partition X of the database graph, we want to compute a
relevance score for all nodes β ∈ X (internal ranking) and all nodes γ in other
partitions (external ranking). For each partition, the result is a one-column vector
containing all relevance scores of the entities with respect to α.

The basic intuition behind our approach is to apply random walks with
restart (RWR) from the given node α, and count the visitation frequency that
the walk does on each node in the bipartite database graph, i.e., the relevance
score of node β is defined as the probability of visiting β via a random walk
which starts from α and goes back to α with a probability c. In more detail,
RWR in a bipartite graph works as follows: assume we have a random walker
that starts from node α. For each step, the walker chooses randomly among the
available edges from the current node it stays. After each iteration, it goes back
to node α with probability c. The final steady-state probability that the random
walker reach node β is the relevance score of β with respect to α: rs(α, β). We
choose the random walk approach to compute the relevance score because it
gives node β high ranking if β and α are connected by many X nodes; this is
because the random walker has more paths to reach β from α. The purpose of
the periodic restart of the random walk is to raise the chance that close related
nodes are visited more often than other nodes.

In the following, we first propose an algorithm to do random walk ranking
on a bipartite database graph for returning relations, then present a general
algorithm for ranking on k entity sets. These two algorithms can be used in dif-
ferent situations. For example, if users are interested in products that are usually
bought together in the same transactions by different customers, algorithm for
returning relation can be used; if users want a more general ranking with all
related information included, such as product brand, supplier, origin, etc., the
general algorithm should be used to compute the ranking.

4.2 Relevance Ranking Algorithm for Returning Relations

At first, we model the entity sets with returning relations as a directed database
graph G′ = (X ′, Y, E′) (Recall that X has n nodes, Y has m nodes, X ′ is
generated based on X and RX↔Y , thus X ′ has |E| nodes). For better matrix
representation, we assume every node in X is replaced by m nodes (x nodes
extend with different k (k � m) in previous discussions). To form the adjacency
matrix, we simply put 0 for all rows representing edges that are not in the
database graph. Thus, we have n∗m nodes in X ′ and m nodes in Y . For example,
to form the adjacency matrix of an unweighted graph as Figure 4 (b), we first

13

form matrix A for edges from X ′ to Y :

A(n∗m)×m =





















...
1 1 1 1 1 ... 0
1 1 1 1 1 ... 0
1 1 1 1 1 ... 0
1 1 1 1 p ... 0
1 1 1 p 1 ... 0
...





















Then form matrix B for edges from Y to X ′:

Bm×(n∗m) =





















...

... 1 0 0 0 0 ... 0

... 0 1 0 0 0 ... 0

... 0 0 1 0 0 ... 0

... 0 0 0 1 0 ... 0

... 0 0 0 0 1 ... 0

...





















In matrix A and B, A(α, β) or B(α, β) denotes that there is a directed edge from
node α to node β in G′. If we want to initiate a random walk starting from a
node represented by row α in matrix A (the same applies to B), the probability
of taking the edge (α, β) is proportional to the edge weight over the weight of all
outgoing edges from α. Therefore, we normalize A and B: P (A) = Norm(A),
P (B) = Norm(B), such that every row in P (A) and P (B) sum up to 1. We can
then construct the adjacency matrix J of G′:

J =

(

0 P (B)T

P (A)T 0

)

We now transform the given node α into a (n∗m+m)×1 vector vα initialized
with all 0. If α ∈ Y , the vector value for α is set to 1. If α ∈ X , values for all X ′

node split from α are initialized as 1
k

(k is the total number of X ′ nodes out of
α). We need to achieve a (n ∗m+m)× 1 steady-state vector uα, which contains
relevance scores over all nodes in the graph model. The steady-state vector can
be computed based on the following lemma using the RWR approach.

Lemma 1 Let c be the probability of restarting random walk from node α. Then
the steady-state vector uα satisfies the following equation:

uα = (1 − c)P (A)uα + cvα

See [22] for proof.
Algorithm 1 applies the above lemma repeatedly until uα converges. For all

experiments, the restarting probability c is set to 0.15 and converge threshold ε
is set to 0.1, which give the best performance for RWR according to experiment
results in [9]. In step 3, the bipartite structure of the graph model is used to

14

Algorithm 1 Random Walk Algorithm for Returning Relations

Input: node α, bipartite graph model G, restarting probability c, converge threshold
ε.
Output: relevance score vector x and y for X and Y nodes.
1. Construct graph model G′ for returning relations based

on G. Compute the adjacency matrix J of G′.
2. Initialize vα = 0.

If α ∈ Y , set value for α to 1: vα(α) = 1.
If α ∈ X, set values for X ′ nodes split from α to 1

k
.

(k as defined in text)
3. While (∆uα > ε)

uα = (1 − c)(
P (B)T

uα(n∗m+1:n∗m+m)

P (A)T
uα(1:n∗m)

) + cvα

4. Compute vector x based on uα(1:n∗m):
x(i) =

∑

uα(1:n∗m)(j) if the X ′ node represented by
the jth row is split from node Xi.

5. Set vector y = uα(n∗m+1:n∗m+m)

6. Return x, y.

save the computation of applying Lemma 1. The result vector uα(1:n∗m) and
uα(n∗m+1:n∗m+m) respectively represent vectors of first n∗m and lastm elements
of uα, and contain the relevance score for X ′ and Y nodes. In step 4, we sum up
the scores of X ′ nodes that are split from the same node to compute relevance
scores of original X nodes and directly use uα(n∗m+1:n∗m+m) as the relevance
score vector of Y nodes.

4.3 Algorithm for Multiple Cross Relations

For a relational database with multiple cross relations, we first model the related
entities as an undirected k-partite graph. Without loss of generality, we present
our algorithm on a tripartite database graph G′′ = (X,Y, Z,E′′), it can be easily
extended to more complex databases. Assume we have n nodes in X , m nodes
in Y and l nodes in Z, we can represent all relations using three corresponding
matrices: Un×m, Vm×l and Wn×l. We normalize them such that every column
sum up to 1: Q(U) = col norm(U), Q(UT) = col norm(UT). We then construct
the adjacency matrices of G′′ after normalization:

JXY =

(

0 Q(U)
Q(UT) 0

)

JXZ =

(

0 Q(W)
Q(W T) 0

)

JY Z =

(

0 Q(V)
Q(V T) 0

)

Similarly, given a node α ∈ X , we want to compute a relevance score for all
nodes that are inX,Y, Z. We can transform the given node α into a (n+m+l)×1

15

Algorithm 2 Random Walk Algorithm for Multiple Cross Relations

Input: node α, tripartite graph model G′′, restarting probability c, converge thresh-
old ε.
Output: relevance score vector x, y and z for X,Y, Z nodes.
1. Compute the adjacency matrices JXY , JY Z and JXZ

of G′′.
2. Initialize vα = 0, set element for α to 1: vα(α) = 1.
3. While (∆uα > ε)

uα(n+1:n+m) = (Q(UT) ∗ uα(1:n))
uα(n+m+1:n+m+l) = (Q(V T) ∗ uα(n+1:n+m))
uα(1:n) = (Q(W) ∗ uα(n+m+1:n+m+l))
uα = (1 − c)uα + cvα

4. Set vector x = uα(1:n), y = uα(n+1:n+m),
z = uα(n+m+1:n+m+l).

6. Return x, y, z.

vector and compute the steady-state vector based on Lemma 1 using the RWR
approach on G′′. In algorithm 2, the random walk starts from X to Y , then to Z
and finally returns toX . The algorithm applies the random walk repeatedly until
the vector converges. The result vector contains the relevance scores for X , Y
and Z nodes. As mentioned in Section 3.2, there are several possible directions of
random walks in a k-partite database graph, which could lead to different ranking
results. Algorithm 2 describes the direction of X → Y → Z. The computation
sequence and involving matrices in step 3 of the algorithm would be different if
the random walk direction is changed. Here we present an algorithm for general
database graphs with multiple cross relations only, however, the database graphs
can be easily extended to include possible returning relations using the method
explained in Section 3.4.

5 Experiments

α SIGMOD PODS SAC VLDB DEXA

1 Database System Database System (1st) Genetic Algorithm (15th) Database System (1st) Database System (1st)

2 Relational Database Query Language (13th) Neural Network (6th) Relational Database (2nd) Information System (4th)

3 Management System Concurrency Control (17th) Web Service (5th) Information System (4th) Object-Orient Database (8th)

4 Information System Relational Database (2nd) Information Retrieval (12th) Management System (3rd) Expert System (> 20th)

5 Web Service Deductive Database (> 20th) Information System (4th) Data Modeling (10th) Management System (3rd)

6 Neural Network Query Optimization (11th) Data mining (9th) Data Management (7th) Information Retrieval (12th)

Table 3. Related Topics for Conference using bipartite model:
Conference→Topic→Conference ((x), x is the rank of the topic with respect to
SIGMOD

We tested our ranking approach on the DBLP database, the data structure
of which is shown in Figure 7. As a relational database, DBLP originally has

16

Author Name
Author ID

Author ID
Author ID
Author ID

...
Paper ID

Conf ID
Conf Name

Proc ID
Conf ID
Year

Paper ID
Proc ID
Title

Keyword ID
Keyword

Paper ID
Keyword ID
Keyword ID

...
Keyword ID

Publications

Authors

Conferences

Original Data Structure

Topics

Supplemented Topics

Fig. 7. Our Data Structure extracted from DBLP Database

only two entity types: conference and author. Papers are relations that connect
these two kinds of entities. In order to test our approach on k-partite database
graphs, we extracted a third type of entities from DBLP data, which is the
research topic. Details are explained below.

In the DBLP database, we safely discarded all journal publications since
they are only a small fraction compared to the whole database. We also observe
that authors in different research areas publish in a certain group of conferences
and seldom publish across multiple areas, i.e., the undirected author-conference
database graph can be partitioned into several nearly non-overlapping subgraphs,
where few edges between authors and conferences connect across partitions.
Therefore, it is unnecessary to run the algorithm on the whole graph, instead, we
applied a graph partitioning algorithm first and then performed random walks
only on the partition containing the given node. There are several algorithms
available for graph partitioning. Note that the proposed random walk approach
is independent of the selected partitioning algorithm. In our work, we used the
METIS algorithm [23] to partition the large graph into 10 subgraphs of about
the same size. We examined all our experiments on the biggest partition with
1,170 conferences and 35,926 authors. This partition includes most conferences
in the area of Database and Data Mining, e.g., KDD, SIGMOD and VLDB.

Since DBLP data provide paper titles as the only content-related information,
we obtained as many paper abstracts as possible from Citeseer 2, then extracted
topics based on keyword frequency from both titles and abstracts. At first, we
manually selected a list of stop words to remove meaningless but frequent words,
e.g., “approach”, “using”. Then we counted the frequency of every co-located
pairs of words (stemmed bi-grams) and selected the top k most frequent bi-grams

2 http://citeseer.ist.psu.edu/

17

as our topic (k=1000 in our experiments). We chose to represent topics by bi-
grams because most of the research topics can be well described by two words,
e.g., artificial intelligence, software engineering and machine learning. Moreover,
we added several tri-grams, e.g. Support Vector Machine, World Wide Web if we
observed both bi-grams from them (e.g. Support Vector and Vector Machine) to
be frequent.

On the performance level, calculating the ranking values in real time is com-
putationally expensive, especially when there are multiple ranking requests. For-
tunately, we are able to precompute and save the rankings for any entity in the
database. Note that although the graph model can be very large, there are known
solutions for a parallel random walk that would apply here [24].

5.1 Ranking for Conference Entities

After we extracted conference-author-topic data from the DBLP database to
build the database graph, we checked whether entities with high relevance scores
are truly related to the given node. In the following, we select related entities
with top 10 relevance scores for given conferences and verify that the result
makes sense in the academic context.

Tables 4 and 5 show the top 10 relevance ranked conferences for a given con-
ference α in the bipartite (without topics) and tripartite (with topics) database
graph, respectively. We do not make any claim on which list (Table 4 or Table
5) is better, since comparing ranking results itself is still an open problem. Ta-
ble 4 is based on a conference-author network, therefore, the result implies that
the given conference α shares researchers with these conferences who have high
relevance scores. One can observe that our ranking puts database conferences as
the most relevant conferences for SIGMOD and VLDB. For KDD and ICDM,
however, it appears that database conferences are the most relevant. This is
due to historical reasons since prominent data mining authors used to and still
publish in VLDB, SIGMOD and ICDE venues. The ranking changed in Table 5
since the database graph now includes topics, which increase relevance scores of
conferences that share the same research topics with the given conference. For
example, after the topic set is taken into account, PODS is no longer top 10
related to SIGMOD. Instead, we see SAC appear in the list due to the similarity
of covered research topics. As we can see in Table 3, the most related topics to
SIGMOD and VLDB (1st for SIGMOD in Table 5) are almost the same, while
SAC (6th) and SIGMOD share several topics as well. On the other hand, PODS
(ranked as 13th), which is surprisingly not in the top 10 related conferences
for SIGMOD based on a topic-included database graph, does not have many
topics in common with SIGMOD (except “relational database” and “database
system”). Another example is DEXA, which is ranked high for SIGMOD and
VLDB in both tables, we can see that the research interests overlap on quite a
few topics in Table 3. As mentioned before, topics in our experiments were ex-
tracted from paper titles and abstracts when available. A better topic extraction
means could lead to even better rankings.

18

Table 7 shows the top 10 related authors for SIGMOD and ICDM. All of
these authors are researchers in the database and/or data mining area, and have
a large number of publications in DBLP with attached topics related to the topics
of the conferences in question. Notice that our ranking tends to favor objects
center to the social networks. In other words, if an author is highly connected to
other authors related to a conference α, and is central in the social network of
topics and other conferences related to the conference α, tupleRank would tend
to rank this author high vis-à-vis this conference, which justifies why Jiawei Han
for instance is ranked the highest for SIGMOD.

α KDD ICDM SIGMOD VLDB

1 VLDB KDD VLDB SIGMOD

2 ICDE ICDE ICDE ICDE

3 NIPS VLDB PODS DEXA

4 ICML PAKDD DEXA PODS

5 SIGMOD SIGMOD EDBT CIKM

6 ICDM ICML CIKM EDBT

7 IJCAI SDM KDD KDD

8 AAAI IJCAI DASFAA BDA

9 PKDD PKDD SSDBM ER

10 CIKM NIPS ER DASFAA
Table 4. Top 10 Related Conferences for Conference using bipartite model:
Conference→Author→Conference

α KDD ICDM SIGMOD VLDB

1 VLDB VLDB VLDB ICDE

2 ICDE ICDE ICDE SIGMOD

3 SIGMOD KDD DEXA DEXA

4 NIPS NIPS CIKM SAC

5 DEXA SIGMOD DASFAA DASFAA

6 PAKDD PAKDD SAC CIKM

7 IJCAI DEXA ER ER

8 SAC IJCAI IJCAI IJCAI

9 ICML SAC SIGIR SIGIR

10 SIGIR ICML KDD KDD
Table 5. Top 10 Related Conferences for Conference using tripartite model: Direction
Conference→Topic→Author →Conference

19

Future Collaborator Path (degree of separation) Top Topic Top Conf.

Hans-Peter Kriegel Philip S. Yu→Jiawei Han→Martin Ester→Hans-Peter Kriegel (3) Similarity Search ICDE

Hector Garcia-Molina Philip S. Yu→Jun Yang→Hector Garcia-Molina (2) Database System ICDE

Elisa Bertino Philip S. Yu→Jiawei Han→Beng Chin Ooi→Elisa Bertino (3) Data Mining ICDE

Elke A. Rundensteiner Philip S. Yu→Yun-Wu Huang→Elke A. Rundensteiner (2) Data Stream CIKM

Divyakant Agrawal Philip S. Yu→Balakrishna R. Iyer→Divyakant Agrawal (2) Data Stream VLDB
Table 6. Top 5 Related Author for Philip S. Yu with most recommended Topic and
Conference to collaborate (A→ B means A and B are co-authors)

5.2 Ranking for Author Entities

We ranked various entities (conferences, topics, authors) with respect to a given
conference in previous experiments. However, the given entity to start the ran-
dom walk is not limited to one particular set, it can be any entity across the
k-partite database graph. For example, we can also rank related topics, confer-
ences and authors for a given author. Among these possibilities, ranking author
for author could provide promising potential collaboration recommendations for
researchers, i.e., high relevance score between authors implies that their research
topics and fields, which are represented by conferences, are very similar.

We applied our random walk algorithm on the conference-author-topic database
graph. We removed all the researchers that have already co-authored a paper
with the given author from the ranked list. Therefore, there are no direct collab-
oration connections between the given author and the listed authors. In Table 6,
we list the top 5 authors recommended as possible future collaborators for Philip
S. Yu. To validate our results, we show the paths between them, i.e. degree of
separation (A → B means A and B are co-authors) and their most frequent
topic and conference in common. Obviously, all recommended collaborators are
strongly connected, only one or two steps away via co-authorship, to Philip S.
Yu, and the listed topics and conferences are aparently all relevant to his re-
search interests. A more systematic validation of this kind of recommendation
using chronological data from DBLP is given in the next section.

5.3 Evaluating the Returning Relation Model

In the above, we validated the effectiveness of our approach in ranking simi-
lar entities in database graphs with cross relations. However, taking returning
relations into consideration can further improve the accuracy of the ranking.
Table 8 shows the top 10 related researchers (co-author included) for Jiawei Han
based on the bipartite database graph without the returning relation and the
database graph with the returning relation (RR). The number shown after the
name is the number of co-authored papers with Jiawei Han. It is obvious that
authors should be most similar, in terms of relevance score, to their co-authors,
i.e., collaborators should be ranked higher than other entities. In the table, most
of the authors that achieve high ranking in the first database graph never co-
authored with Jiawei Han. The reason is that the database graph is built based

20

α SIGMOD ICDM

1 Jiawei Han Jiawei Han

2 Hans-Peter Kriegel Philip S. Yu

3 Michael Stonebraker Jian Pei

4 Elisa Bertino Masaru Kitsuregawa

5 David J. DeWitt Wei Wang

6 Philip S. Yu Eamonn J. Keogh

7 Georges Gardarin Hans-Peter Kriegel

8 Elke A. Rundensteiner Hongjun Lu

9 Michael J. Carey Ming-Syan Chen

10 Hongjun Lu Osmar R. Zäıane
Table 7. Top 10 Related Authors for Conference using tripartite model: Direction
Conference→Topic→Author →Conference

on conference-author relations only, thus these authors are actually the ones
that have the most similar conference publication record as Jiawei Han. On the
other hand, in the results of the RR graph, we see that the ranking sequence
basically follows the frequency of the co-authorship, i.e., the more frequent an
author collaborates with Jiawei Han, the higher ranking s/he has. There are
exceptions, e.g., Philip S. Yu is ranked second with 15 collaborated publications,
which is only third in collaboration frequency. It happens because the RR graph
still considers conference-author relations, and Philip S. Yu is ranked first in the
first graph, which means he is most related to Jiawei Han regarding publication
at conferences. Therefore, our approach is more sensible to rank the entities by
considering not only cross relations between different kinds of entities, but also
returning relations between the same kind of entities.

Bipartite Database Graph RR Graph

1 Philip S. Yu(15) Jian Pei(22)

2 Hans-Peter Kriegel(0) Philip S. Yu(15)

3 Christos Faloutsos(0) Xifeng Yan(19)

4 Rakesh Agrawal(0) Dong Xin(14)

5 Hector Garcia-Molina(0) Ke Wang(10)

6 Raghu Ramakrishnan(0) Wei Wang(6)

7 Carlo Zaniolo(0) Xiaolei Li(9)

8 Surajit Chaudhuri(0) Osmar R. Zäıane(9)

9 H. V. Jagadish(0) Hong Cheng(7)

10 Hongjun Lu(5) Jianyong Wang(9)
Table 8. Compare Results for Jiawei Han of Original Model and Returning Rela-
tion(RR) Model ((x), x is the number of paper co-authored with Jiawei Han)

Unfortunately, since there is no ground truth for the ranking, it is difficult
to evaluate the performance of our ranking approach in comparison with other

21

rankings. However, in the special context of DBLP, we can use a time window on
the publication history to measure the accuracy of our ranking list if TupleRank
rankings are used to suggest potential close collaborators. More specifically, for
one given author, we compute the top-k ranked authors based on early records.
These are the recommended collaborators. Then measured the accuracy by the
actual collaborations that were obtained from later historical data. In more de-
tail, we applied our approach on database graphs that are built based on publi-
cation records that are prior to the year 2002 and used the rest (2002-2006) of
the records to test the ranking list, which contains the top k ranked authors that
are not co-authors of the given original author prior to 2002 (k=200 in our ex-
periments). We used the co-author distance or degree of separation η to measure
the closeness of any two authors, e.g., η = 1 for two authors that ever published
a paper together, η = 2 for two researchers if they have a co-author in common,
and so on. ∆η(i) represents the change of the distance of a recommended author
i between time periods:

∆η(i) = η(i)2002 − η(i)2006 >= 0

If a recommended researcher is getting closer to the given author, we believe
our approach is accurate in ranking highly-related entities. The recommender
system is not the purpose of this paper. It is solely used as a means to evaluate
our ranking.

Evaluation results for a few authors based on the RR database graph are
shown in Table 9, in which the first column shows the number of high-ranked
authors who did collaborate with the given author later (i.e. became co-authors
between 2002 and 2006). The second column is the number of authors that
become closer. The third is the total change of the co-author distance. However,
evaluating only based on these numbers is incomplete: it is always easier for
people with large η to get closer to the given author and is much harder for
strongly connected researchers to achieve shorter distance since they are already
very close. Therefore, we evaluate by ψ, which is the average distance reduction
over the sum of the distances of these recommended authors who did become
closer (prior to 2002).

ψ =

∑

∆η(i)
∑

η(i)2002

The last column of the table shows the ψ value. Surprisingly the ranking per-
formance, measured by ψ, is quite stable for all listed authors. Note that many
new co-authors appeared in 2002-2006 but did not exist in the database prior to
2002, thus are not participating in the ranking.

Therefore, we believe that our approach based on the RR database graph
not only achieves accurate ranking of co-authors for a given author, but is also
excellent in finding related researchers as possible future collaborators. One good
example is that David J. DeWitt is ranked 4th for Raghu Ramakrishnan based
on data prior to 2002. In fact, they have co-authored five papers after 2002 in
ICDE, KDD, VLDB and SIGMOD, according to DBLP.

22

η(i) → 1 n
∑

n
∆η(i) ψ

Hans-Peter Kriegel 0 36 39 0.267

Osmar R. Zäıane 0 56 88 0.314

Elisa Bertino 2 22 23 0.323

Jiawei Han 3 21 23 0.343

Jian Pei 6 38 44 0.346

Philip S. Yu 7 45 48 0.347

Rakesh Agrawal 2 6 6 0.352

Raghu Ramakrishnan 7 19 19 0.358

Table 9. Evaluate Ranking by Future Collaboration from Publication History: η(i) →
1 means becoming a co-author; n is the total number of authors that get closer;
∑

n
∆η(i) is the total ∆ distance; ψ is the average distance reduction.

ATC

AT

ACT

11 AC ACAT

30

Total Recommendation: AT=AC=ATC=ACT=200

88

9

46
86

4532

Fig. 8. Random Walks on Tripartite Model

5.4 Random Walk on tripartite Graph

As mentioned in Section 3.2, there are two possible directions of random walks
in a tripartite graph, (and C2

k options for a k-partite graph), which could lead
to different ranking results. To choose the most appropriate direction for a given
database graph is an interesting and unsolved problem. We experimented on
the conference-author-topic database from DBLP and present our result in the
following.

Assume we start from an author node to rank related authors for that au-
thor, the two possible random walk directions of the conference-author-topic
database are: author → conference → topic → author and author → topic →
conference → author (Figure 3). Each entity set affects the final ranking result
based on its cross relations, e.g., relation set conference↔author affects the rel-
evance score result since authors that published in the same conference as the
given author would have high ranking. Usually those relation sets are not equal
in significance, for example, one may think relations between topics and authors
are more important and should be emphasized more in the random walk than
other relations. We need to investigate influence changes of different directions
to find the appropriate sequence of entity sets that the random walker should
follow, based on the importance of these entity sets.

23

Given author “Jiawei Han”, we run the random walk algorithm on the bi-
partite database graph between authors and conferences (AC), on the bipartite
database graph between authors and topics (AT), on the tripartite graph fol-
lowing the direction author → conference → topic → author (ACT), and on
the tripartite graph following the direction author → topic → conference → au-
thor (ATC). We selected authors with top k (k=200) relevance score as a test
list for the given author. We show the result in Figure 8, where numbers in
the overlapping area of the circles represent the number of authors that these
ranking lists share. For both directions, most of the authors in the list (81.5%
of ATC, 82% of ACT) can be found in either AT or AC, which confirms the
initial observation that each entity set has influence on the result of the multiple
cross relation model. However, their influences change for different directions.
AT contributes 32 authors to ATC and that number increase to 46 for ACT .
On the other hand, AC’s contribution drops from 45 for ATC to 30 for ACT .
The experiment shows that, for author “Jiawei Han”, the influence of entity sets
on the ranking is increasing following the sequence of the random walk, i.e., top-
ics are more emphasized in ACT and conferences are more important in ATC,
as the last partition of the random walk. In order to investigate whether this
phenomenon is general, we run the same experiment on more random authors,
whose results all show similar characteristics. Therefore, we believe that the ran-
dom walk direction in a tripartite graph for the multiple cross relation model
can affect the relevance ranking result. The later the entity set is visited by the
random walk, the more influence it has on result scores and the more important
it should be. Similar behaviour is expected for k-partite graphs.

5.5 Discussion

Ranking entities in a relational database, where objects are cross-linked with
each other via multi-type links, is important in discovering the rich semantic in-
formation these links may contain and in identifying the paramount relationships
among objects. Due to limitations of the DBLP database, it is hard to extract
accurate topics for conference papers since the only available content-related
information are the title of the paper and incomplete abstracts from Citeseer.
In experiments where we used only single keywords as topics, we observed that
the majority of the entities of ACT or ATC (see Section 5.4) can be found in
AT , and the change of direction did not affect much AT ’s contribution. In other
words, inaccurate topic-author/topic-conference relations have an overwhelming
influence on the random walk in the tripartite graph model and the result rank-
ing score. Using bi-grams greatly improves the quality of relations and ranking
results. Better performance can be expected if the topics are extracted or pro-
vided more accurately. However, classifying topics is itself a huge research issue
and is out of the scope of this paper.

24

6 Conclusions

A wide range of databases can be described as related entities sets and can be
modeled as k-partite graphs, such as P2P networks, author-conference relation-
ships, customer-movie rental records, etc. This paper addresses two problems
for such models: firstly, a random walk algorithm is proposed for relevance score
calculation in models with returning relations; secondly, the model and algo-
rithm for multiple cross relations are presented and the consequences of different
random walk directions are investigated. These two algorithms can be used in
different situations. We validate results of the algorithms on existing publication
databases and evaluate our methods by predicting later collaborations based on
early publication records. Our experimental results confirm the accuracy and
effectiveness of the proposed methods.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: WWW, Brisbane, Australia (1998) 107–117

2. Pan, J.Y., Yang, H.J., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-
modal correlation discovery. In: KDD. (2004) 653–658

3. Hwang, H., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based key-
word search in databases. In: VLDB. (2004) 564–575

4. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings
of the Ninth Annual ACM-SAIM Symposium on Discrete Algorithms. (1998)

5. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. In: Technical report, Stanford University Database
Group. (1998)

6. Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW. (2002) 517–526
7. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD.

(2002)
8. He, J., Li, M., Zhang, H.J., Tong, H., Zhang, C.: Manifold-ranking based image

retrieval. In: MULTIMEDIA: Proceedings of the 12th annual ACM international
conference on Multimedia. (2004) 9–16

9. Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C.: Neighborhood formation and
anomaly detection in bipartite graphs. In: ICDM. (2005) 418–425

10. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its appli-
cations. In: ICDM. (2006) 613–622

11. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.:
Adaptive rank-aware query optimization in relational databases. TODS 31(4)
(2006) 1257–1304

12. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible
databases. In: ICDE. (2002)

13. Chang, K.C.C., won Hwang, S.: Minimal probing: Supporting expensive predicates
for top-k queries. In: SIGMOD. (2002)

14. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. In: VLDB. (2003) 754–765

15. Ilyas, I.F., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware
query optimization. In: SIGMOD. (2004) 203–214

25

16. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: Ranksql: query algebra and optimiza-
tion for relational top-k queries. In: SIGMOD. (2005) 131–142

17. Li, C., Chang, K.C.C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In:
SIGMOD. (2006) 61–72

18. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, S.S.:
Banks: Browsing and keyword searching in relational databases. In: VLDB. (2002)
1083–1086

19. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: A system for keyword-based search
over relational databases. In: ICDE. (2002)

20. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational
databases. In: VLDB. (2002) 670–681

21. Geerts, F., Mannila, H., Terzi, E.: Relational link-based ranking. In: VLDB. (2004)
552–563

22. Strang, G.: Introduction to linear algebra (Wellesley-Cambridge Press, 3 Edition,
1998)

23. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distriuted Computing 48(1) (1998) 96–129

24. Youssef, A.: A parallel algorithm for random walk construction with application
to the monte carlo solution of partial differential equations. IEEE Trans. Parallel
Distrib. Syst. 4(3) (1993) 355–360

26

