
Hypercomplex processing of vector-valued seismic signals

by

Breno Figueiredo Bahia

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Geophysics

Department of Physics

University of Alberta

c©Breno Figueiredo Bahia, 2022



Abstract

Vector field data are becoming increasingly more common in several fields of signal process-

ing, such as electrical engineering and geophysics. Processing vector-valued signals, however,

has imposed a series of challenges on its practitioners. Many approaches can be taken to

carry out vector field data processing, one of which is adopting hypercomplex numbers for

its representation. In particular, quaternion signal processing is a growing research area

that has been gaining attention among researchers due to its natural ability to represent

multicomponent data. In that light, this thesis shows that quaternions offer a consistent way

to represent and fully exploit the information in vector field data. It explores how to extend

techniques currently used in scalar seismic processing to the case of multicomponent data in

a natural way and introduces the augmented second-order statistics of quaternion signals to

harness the second-order information within the vector-valued seismic data. Two techniques

are developed for processing multicomponent seismic data: the Quaternion Singular Spec-

trum Analysis (QSSA) and the quaternion frequency-space deconvolution (QFXDECON).

These methods have been applied to synthetic and field multicomponent denoising and re-

construction, showing clear gains in their formulation. Finally, denoising methods such as

the above can extend their applicability through the Regularization by Denoising (RED)

framework. The RED cost function is used to formulate the simultaneous source separation

problem and provides one way to leverage high-quality scalar and vector-valued denoising

methods in deblending. The software developed in this thesis is mostly based on the Julia

language, and it can be found in https://github.com/bbahia-phd/HCDSP.
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CHAPTER 1

Introduction

1.1 Seismic Exploration

The conventional seismic exploration method uses compressional (P) waves to obtain mean-

ingful images of the Earth’s subsurface. Reflection seismology uses scalar seismic sources,

such as dynamite shots or air guns, to generate signals that propagating into the subsurface,

which are reflected and recorded back at the surface by many receivers placed in a given

geometry. Reflections happen at geological interfaces, where there is a contrast in rock

properties, together with energy transmission to deeper layers, as shown in Figure 1.1(a) for

an acoustic medium. Each source-receiver pair defines additional sorting coordinates, such

as midpoint and offset, routinely used for processing the acquired data (Yilmaz, 2001).

The conventional processing of P-wave seismic data is well-known and usually includes static

corrections, coherent and random noise attenuation, deconvolution, stacking, velocity anal-

ysis, and migration. Static corrections aim at minimizing the effect of the slow weathering

layer on the near surface, and a noise attenuation stage follows it to obtain useful signals.

Only P-wave reflections are considered signals in P-wave seismology, and other waves must

be removed. This usually includes direct arrivals, surface waves, and multiple reflections.

The seismic pulse is then decompressed by deconvolution and follows with common-midpoint

(CMP) sorting, velocity analysis, and subsequent averaging of the traces with same CMP

(or stacking). Even though stacking is a powerful technique for random noise attenuation,

post-stack processing is not unusual before migration places the recorded reflections at their

correct depth position in the subsurface, thus generating a reliable reflectivity map for in-

terpretation. In addition, it is possible to perform seismic migration before stacking to deal

with lateral velocity variations, in a step coined prestack migration (Yilmaz, 2001).
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1.1.1 Multicomponent Seismology

Multicomponent seismology, on the other hand, is defined as the concurrent and combined

usage of compressional and shear-wave (S) energy to provide direct insights about subsurface

elastic properties (e.g., elastic moduli, density, and porosity) that are more difficult to obtain

in the conventional (P-wave only) analysis. Each of these seismic modes is described by its

particle-displacement vectors and provides complementary sensing of the subsurface that can

be used in applications such as seismic imaging through gas clouds and inversion of reservoir

properties (Tatham and McCormack, 1991; Garotta, 1999; Gaiser, 2016). Specifically, while

P-waves distort the media along its propagating direction, S-waves have particle motion

orthogonal to their ray (Figure 1.1(b)). Four waves are associated with a single incident

P-wave through mode conversion for elastic isotropic media: the reflected and transmitted

P-waves, along with their converted SV-wave companions. Fully recording the wavefield

generated by conventional P-wave sources requires vectorial receivers to sense its additional

components. The data is vector-valued and usually corresponds to the vertical and two

horizontal components of the displacement field acquired by three-component geophones

illustrated in Figures 1.2(a)-1.2(c).

Sources        Receivers           P-wave raypath           S-wave raypath           Particle motion

(a) (b)

Figure 1.1: Illustrative representation of multicomponent seismic data acquisition.

A complete multicomponent characterization of the subsurface involves both sources and

sensors, which must be vectorial. In other words, they respectively generate and sense

variations along three-orthogonal directions. For onshore acquisition (Figures 1.2(a) and

(b)), multicomponent data can have up to nine components (9C) if both vectorial sources

and receivers are used; these data provide a complete sampling of the seismic modes (P,

SV, and SH) when compared to three- or single-component data. In the marine acquisition
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(Figure 1.2(c)), such recording can be achieved by ocean-bottom seismic (OBS) systems

which record the three components of the propagating displacement field and, through a

hydrophone, the pressure component in four-component (4C) seismology. While this thesis

only considers 3C datasets, the methods presented can be formulated for 2C and 4C data.

(a) (b) (c)

Figure 1.2: Illustrative representation of 3C multicomponent (a) onshore (b) vertical
seismic profiling (VSP) and (c) marine seismic data acquisition where a vessel tows
arrays of airgun sources. Sources are represented by red stars. After Gaiser (1999).

In field coordinates, the multicomponent recorded data is a mixture of surface, P-, and

S-wave signals projected on each of the receiver axes. At this point, it is usual practice

to refer to multicomponent data as the vector components of the displacement field here

represented by ux, uy, and uz. These components can also be called in-line, cross-line, and

vertical components of motion, where the in-line component is defined according to some

reference, such as the receiver line. Assuming a 3D acquisition as illustrated in Figure 1.2(a),

sources placed at positions (sx, sy) and multicomponent receivers placed at (rx, ry) define a

data volume that depends on time (t) and four spatial dimensions for each component, such

as ux(t, sx, sy, rx, ry), uy(t, sx, sy, rx, ry), and uz(t, sx, sy, rx, ry), also defining the source-

receiver sorting domain. For these data, one of the most basic steps in its processing is

aligning its components to preferred reference frames through rotations.

Usually, the components are rotated to a shot-centred system where the in-line and cross-

line become the radial and transverse components, respectively, and can be represented by

ur(t, sx, sy, rx, ry), and ut(t, sx, sy, rx, ry). This step aligns the radial component along the

particle displacement of S-waves. Under the assumption of a vertical angle of incidence,

it should isolate different wave modes along different components. While isotropic media

ut should have no recorded energy, anisotropic media induce phenomena like shear-wave

splitting, which can be observed in the transverse component. Because of the asymmetric

raypath shown in Figure 1.1(b), CMP processing is not suitable for processing converted

SV-waves, which has its processing based on the common-conversion point (CCP) sorting.

Processing then follows, with each component being treated in a componentwise fashion.
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Componentwise processing is based on scalar techniques routinely used for P-wave data pro-

cessing. Arguably, adding the data’s horizontal components should not significantly change

the established seismic data processing workflow. However, the componentwise processing

of vector-valued data can be restrictive, especially when underlying assumptions for scalar

processing do not hold. For instance, the vertical incidence is an approximation mostly

valid at near offsets only, and rotating the displacement components generally does not

fully isolate the wavefields as expected. Moreover, componentwise processing disregards

any vector relationship between data components. Whereas the vectorial character of the

data is liable for the complexities of working with multicomponent datasets, it is also the

critical characteristic providing an opportunity for improvement over conventional scalar

processing. Specifically, this thesis discusses random Gaussian noise attenuation, trace re-

construction, and simultaneous sources separation for vector-field seismic data. A brief

scalar-based review of the topics is given in the following sections for completeness.

Random Noise Attenuation

Seismic random noise is usually described as the incoherent portion of the observed wavefield,

representing a long-standing issue in seismic processing. There are many sources of random

noise, such as poor receiver coupling, wind, and electrical cables nearby. The main task

of denoising methods is to remove as much random noise as possible while preserving the

useful, predictable from trace to trace, portion of the signal. There are several ways to

attenuate noise from seismic data, as briefly introduced below.

Traditional seismic data denoising methods include the band-pass and frequency-wavenumber

(f − k) filtering, which are based on the assumption that signal and noise are separable in

the Fourier representation of the data (Yilmaz, 2001). The frequency-space (f − x) de-

convolution (Canales, 1984; Gülünay, 1986) and projection (Soubaras, 1994) filters, on the

other hand, are based on the predictability of linear events in the frequency domain. They

are based on autoregressive models that explain the predictable portion of the data in a

least-squares sense. These filters can also be formulated as t − x prediction filters (Abma

and Claerbout, 1995). Rank-reduction techniques are also very effective in random noise

suppression, where matrix decomposition techniques, such as the Karhunen-Loéve transform

(KLT) (Jones and Levy, 1987) and Singular Value Decomposition (SVD) (Freire and Ulrych,

1988), suppress the incoherent portions of the signals. Rank-reduction methods in the f −x
domain include the Cadzow (Trickett, 2008) and the Singular Spectrum Analysis (Sacchi,

2009) filters, which are also based on the plane-wave model to justify the low-rankness of

Hankel matrices built from monochromatic frequency slices of the data. Finally, methods

borrowed from the field of image processing include nonlocal means (Bonar and Sacchi,

2012), vector median filters (Liu, 2013), and various modern methods based on machine
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learning (Saad and Chen, 2020).

Missing Data Recovery

Another pervasive issue, like random noise, is missing observations. Seismic acquisition

commonly has irregular patterns because of geographical and logistical constraints, and re-

construction algorithms attempt to estimate missing traces following prior models similar

to trace-to-trace predictability. Random noise attenuation and missing trace recovery are

often performed simultaneously since their formulation shares the same prior model. Im-

posing sparsity or low-rankness constraints in transform domains are common approaches

to seismic data reconstruction, and some examples are discussed below.

The methods for random noise suppression mentioned above are also useful for data recovery.

Their underlying model, usually that of plane waves, allows for data synthesis algorithms

that progressively reconstruct data. Prediction filters, in both t−x (Crawley et al., 1999) and

f − x (Spitz, 1991; Porsani, 1999) domains, can handle data interpolation beyond aliasing.

Similarly, the different formulations of the Singular Spectrum Analysis (SSA) filter can be

used for multidimensional reconstruction (Oropeza and Sacchi, 2011). The SSA has evolved

to be a fast and memory-efficient filter (Cheng and Sacchi, 2017) that can handle non-

Gaussian noise (Chen and Sacchi, 2014; Bahia and Sacchi, 2019a) and irregular geometries

(Carozzi and Sacchi, 2021). Rank-reduction methods for multidimensional seismic data

reconstruction can be performed via tensor completion (Kreimer and Sacchi, 2012) also for

non-Gaussian noise distributions (Carozzi and Sacchi, 2019). The multidimensional tensor

is unfolded in multi ways, where parallel matrix factorization is used to obtain its low-rank

approximation. Also related, sparsity-inducing methods also have remarkable performance

in seismic data reconstruction. These methods have close ties with compressive sensing

(Donoho, 2006), as shown by Hennenfent and Herrmann (2008) and Herrmann (2010).

Similarly, the Projection Onto Convex Sets (POCS) reconstruction (Abma and Kabir, 2006)

exploits sparse models in its formulation through the frequency-wavenumber thresholding.

The underlying idea behind sparsity constraints is that a limited number of basis functions

can represent observed signals. There are many options for sparse representation of the

data, including Fourier (Sacchi and Ulrych, 1996), Radon (Trad et al., 2003), and Curvelet

(Herrmann et al., 2008) domains.

Simultaneous Source Separation

Seismic data acquisition has seen fundamental changes to maximize its cost-effectiveness and

efficiency. To date, significant improvements have been published in the light of blended ac-

quisition strategies in which several sources are fired at short random time intervals (Beasley
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et al., 1998; Berkhout, 2008). In addition to its economic benefits, simultaneous-source

(blended) surveys allow for denser source sampling, which leads to higher quality subsurface

images. The most common option to process blended data is to first separate (or deblend)

its sources as if they were acquired via conventional acquisition. The most straightforward

deblending process entails extracting the contributions from individual sources in a blended

record. It is usually named pseudo-deblending (Berkhout, 2008), or combing (Abma and

Foster, 2020) since there is no attempt to reduce interference and the data still contains

the so-called blending noise. The different approaches usually taken in deblending can be

divided into two categories: deblending by denoising and deblending by inversion.

Unlike random Gaussian noise, blending interferences have amplitudes similar to the signal.

Given its spatial incoherency in sorting coordinates such as common-receiver, common-

offset, or common-midpoint domains, deblending via denoising approaches operates directly

on the combed (pseudo-deblended) data. Different filtering techniques, such as the classical

frequency-space prediction error filters (Spitz et al., 2008), low-rank filtering (Maraschini

et al., 2012), and vector median filters (Huo et al., 2012), are therefore useful for source

separation. However, deblending by denoising has limitations that can be minimized via

deblending by inversion. The goal is to obtain the separated shots that honor the blended

records while having features imposed by a regularizer. Usual choices for the regularization

term are sparsity-inducing transforms, such as wavelet (Lin and Herrmann, 2009), seislet

(Chen et al., 2014), Fourier (Abma et al., 2015), and Radon (Ibrahim and Trad, 2020)

transforms. Similarly to reconstruction, prior models associated with low-rank matrices

also provide alternative methods for deblending (Cheng and Sacchi, 2015; Kumar et al.,

2015). While these methods exploit the randomness in the source firing times, different

source encoding schemes lead to different deblending methods. Robertsson et al. (2016),

for instance, uses a periodic sequence of source signatures to perform wavefield separation

through signal apparition in the wavenumber domain. These and other methods are respon-

sible for the success of simultaneous sources in the seismic industry.

There is a close connection between the applications discussed above, as they can be solved

through similar models and methods. These problems also affect vector-valued data, but

the abovementioned methodologies are mainly developed for scalar data processing. In

multicomponent seismology, the components of the displacement vector-field are highly cor-

related. Such correlation can be exploited during processing to harness the full potential

of these datasets. Therefore, this thesis defines the seismic data based on the displacement

field’s x, y, z vector components rather than rotating them. Specifically, it studies how to

numerically represent these multivariate seismic measurements and exploit this data to its

full potential in the applications discussed above from a vectorial perspective.
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1.2 Vector-valued Seismic Data Processing

It is straightforward to notice that vectorial receivers offer a three-fold increase in data vol-

ume. However, one should not expect an equivalent increment in its processing complexity

since one must now consider and preserve the vector fidelity of the data. In other words,

processing the data components should follow an approach compatible with its vector na-

ture. One reason to seek such compatibility is that much of the value of multicomponent

seismic data lives in the differences and similarities among different components. It is com-

mon to read that a shift from scalar towards vector data processing should happen in the

multicomponent seismology literature. This thesis discusses one possible way for doing so.

In that light, one of the attractive features of the componentwise processing approach is

that the numerical representation of the data is trivially solved. Each component has its

data samples represented as single numbers (real scalars) without considering the correla-

tion of the data components, which represents a “waste” of valuable information. Such a

representation could suffice in the case of a scalar quantity, such as P-wave datasets, and it

is thus helpful in benchmarking. For vector-valued data, however, where more numbers are

needed, the question of how to represent such data in a computer promptly arises.

1.2.1 Review of Previous Work

The numerical representation of vector-valued signals can be accomplished in different ways.

One of such is to represent the vector-valued sample using the long-vector notation as

x̂1[n] =

xx[n]

xy[n]

xz[n]

 (1.1)

or

x̂2[n] =
[
xx[n] xy[n] xz[n]

]
, (1.2)

where n represents a sample index of an arbitrary discretized vectorial quantity x with x, y,

and z components composed of real (R) or imaginary (C) numbers. Examples in multi-

component seismology include Naghizadeh and Sacchi (2012) and Kamil et al. (2015), who

have employed equation 1.1 to represent 3C ocean-bottom cable seismic data already in

the frequency domain, and Zhang and van der Baan (2018) who used 1.2 to represent mi-

croseismic multicomponent samples in the time domain. Even though many contributions

have emerged from this non-unique representation of vector signals, it lacks clarity. It is

not clear, for instance, what sort of relation between components can be preserved or ex-

ploited during their processing. Moreover, many of data processing techiniques are based on
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frequency-domain representations of the data, obtained through the Fourier transform. The

long-vector notation might be restrictive in obtaining such a Fourier representation for these

signals. Although it is still possible to Fourier transform each of the components indepen-

dently, that introduces a scalar step in the vectorial processing of these signals. Therefore,

while the long-vector notation is useful, the complex and hypercomplex representations of

vector signals are known as natural and less restrictive signal representations.

It is important to realize that multicomponent seismology is one example of applied science

that deals with x, y, and z components of a given signal. Other fields, such as communi-

cations and atmospheric sciences, also encounter vector-valued signals in their applications.

For instance, while in the field of communications, the practitioner deals with x and y com-

ponents of the electromagnetic wavefield (Schreier and Scharf, 2010), atmospheric scientists

deal with the components of wind velocity profiles (Took and Mandic, 2009). It is then

possible to benefit from their experience in how to numerically represent and process their

data, where one shall encounter the concept of complex signals. For instance, an arbitrary

two-component signal (sx, sy) ∈ RN×1 is naturally represented by ŝ ∈ CN×1

ŝ[n] = sx[n] + sy[n]i, (1.3)

where i2 = −1 is the imaginary unit. Complex-valued signals arise in several applications,

and are mainly divided into inherent and designed (due to convenience of representation)

complex signals. The former signals are real-world problems naturally described by complex

numbers. The latter represent signals that, although real-world processes measured as real

numbers, are best expressed and processed through complex analysis.

1.2.2 Complex-valued Signal Processing

Complex-valued signals show up in different signal processing applications. Their process-

ing fuelled the development of complex-valued algorithms for the natural treatment of these

quantities directly in the complex domain. Some basic concepts are straightforward to

extend, as the statistical expectation operator (E(ŝ) = E(sx) + E(sy)i), and these are

well-discussed in textbooks such as Mandic and Goh (2009) and Schreier and Scharf (2010)

which provide theoretical rigour to complex-valued data analysis. It is still usual to find

that most complex-valued techniques represent a direct extension of their real-valued coun-

terparts based on real domain statistics. Such an approach can be optimal only under the

assumption that the signal is proper. Proper signals, also called second-order circular sig-

nals, are completely characterized by the standard covariance matrix (E{ŝŝH}) because of

their vanishing complementary covariance matrices (E{ŝŝT }). In the case of non-circular

(or improper) complex signals, on the other hand, it is possible to exploit the correlation
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between data components if the standard covariance matrix is completed with the pseudo-

covariance (complementary) matrices (Picinbono, 1994). This is referred to as augmented

statistics because the signals are analyzed on an augmented basis that fully describes the

second-order information of the data since both the standard covariance matrix and the

complementary covariance matrix characterize the complex signal.

1.2.3 Quaternion-valued signal processing

For the case of vector-valued data with more than two components, as the examples given

with 3C and 4C multicomponent seismology, the quaternion domain represents a valuable

alternative for their processing. Quaternions are hypercomplex numbers invented by Sir

William R. Hamilton (Hamilton, 1844, 1866) which, although defining a non-commutative

algebra, allow for the numerical representation of 3C and 4C signals in a concise way. For

example, using the quaternion signal model, a 2D-4C seismic dataset consisting of pressure

(P ∈ RNt×Nx) and three displacement components ((Ux,Uy,Uz) ∈ RNt×Nx) can be written

as the full quaternion matrix Û ∈ HNt×Nx (see chapter 2)

Û[it, ix] = P[it, ix] + Uxi[it, ix] + Uyj[it, ix] + Uzk[it, ix], (1.4)

where i2 = j2 = k2 = ijk = −1 are imaginary units, and [it, ix] represent discrete time and

space index. The natural ability of quaternions to represent multivariate signals has already

been recognized, and it has been increasingly used among the signal processing community.

The increased interest retools the field with new techniques based on its algebra, such as

the quaternionic versions of the QR decomposition (Bunse-Gerstner et al., 1989), Fourier

Transform (QFT) (Ell, 1992), and Singular Value Decomposition (QSVD) (Le Bihan and

Mars, 2004). Such extensions allow the formulation of further signal processing techniques

in the quaternion domain, and illustrate a shift from scalar towards vector signal processing.

Applications of quaternions in the geophysical literature can be traced back to the work

of Davies et al. (1989) with integral transforms for vector fields. They can also be used to

formulate Gabor filters helpful in detecting subtle differences in time-lapse analysis (Witten

and Shragge, 2006) and for enhancing the anisotropic inversion of cross-dipole sonic logs

(Zeng et al., 2018). The QFT is also a key tool in deblending scalar data via signal ap-

paration (Andersson et al., 2017). In the context of multicomponent seismology, Krieger

and Grigoli (2015) derive an optimal reorientation of multicomponent receivers based on

the natural ability of quaternions to represent rotations by minimizing the energy along the

transverse component. From the quaternion signal processing perspective, exciting applica-

tions have also been presented. For instance, Grandi et al. (2007) performs multicomponent

velocity analysis using the quaternion signal model in the common mid-point domain, si-
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multaneously obtaining velocity trends for different wave modes. Menanno and Mazzotti

(2012) extended the classic Wiener deconvolution of seismic traces, spiky and predictive, to

the case of multicomponent data through the quaternion model and least-squares theory.

Stanton and Sacchi (2013) extend the projection-onto-convex-sets (POCS) reconstruction

to the case of vector-valued multidimensional data by defining the radial and transverse

components as a full quaternion in the frequency domain. The method enhanced S-wave

splitting analysis and was expanded by Li et al. (2021) through the complexified QFT based

on the whole frequency domain 3C dataset rather than 2C only. Sajeva and Menanno (2017)

provides a two-component displacement model for Rayleigh waves and uses the QSVD to

extract these modes from the data through rank-reduction after signal alignment. Similarly,

Bahia et al. (2020) separates linear dispersive noise from reflection displacements using a 2C

quaternionic model and sparsity constraints to perform the inversion. Finally, Zhao et al.

(2020) introduces learned quaternion dictionaries for sparse representation of vector-valued

signals, which were helpful in 3C denoising applications.

Using complex and hypercomplex variables and analysis to model real physical phenomena

is an undeniable reality, but that also begs for clarity. It seems reasonable to wonder if it is

correct to take advantage of the imaginary to represent real measurements. However, using

a “unusual” algebra to analyze multivariate data also brings insights that usually do not

emerge in a conventional (real number) analysis. Augmented statistics, for example, is one

significant aspect that can be exploited using the complex or hypercomplex signal repre-

sentation. Similarly to the complex case, it has been shown that exploiting the correlation

between data components in a quaternion signal is also possible if complementary covariance

matrices are considered in its processing. However, such manipulation with its conjugate

is not possible for quaternion signals. In other words, if U is a quaternion signal, U and

its conjugate (U∗) are not enough to completely describe it, and a nontrivial extension of

augmented statistics has been developed for this case (Took and Mandic, 2011). Similarly,

the augmented quaternionic covariance provides a complete description of the second-order

statistics of quaternion signals. It paves the way to the definition of a Q-proper quaternion

signal, as discussed in later chapters of this thesis and summarized below.

1.3 Contributions of this Thesis

It is important to stress that this thesis does not suggest that quaternion-based techniques

should replace existing seismic data processing methods. Quite the contrary, it calls atten-

tion to the possibilities that live in the theory of quaternion-based signal processing. In this

light, this thesis contributes to the field of vector-valued seismic data processing in data

recovery and regularization, random Gaussian noise attenuation, and simultaneous sources
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separation from a quaternionic perspective. The hope is to benefit from existing method-

ologies in treating scalar seismic data and the novelties offered by quaternion-based signal

processing to propose suitable strategies to process vector-valued seismic data. As such, the

main contributions of this thesis are summarized as follows:

• Introduce a vector-valued seismic data processing framework that is physically mean-

ingful and, therefore, fully vectorial. The quaternion signal model and quaternion-

based signal processing provide the right environment for the development of a vector-

based processing framework. Further, this thesis contains the initial attempts to in-

troduce the use of augmented statistics in vector-valued seismic data processing to

harness the acquired data fully.

• Explore the developments in quaternionic matrix decomposition and rank-reduction

techniques in processing vector-valued seismic data. More specifically, the develop-

ments in Quaternion Singular Spectrum Analysis (QSSA) were extended to the case

of vector-valued seismic data for applications in denoising and reconstruction. As

rank-reduction is a known computationally-intensive problem, efficient quaternionic

formulations for rank-reduction of structured matrices are also presented.

• Building upon the low-rank methods proposed above, strictly- and widely linear ex-

tensions of predictive filters are also presented in the case of vector-valued seismic

data. These represent vector-valued versions of the classic frequency-space deconvo-

lution (FXDECON) and make the most out of the multicomponent data as it fully

exploits second-order information from the quaternionic signal. Denoising examples

show that the methods have promising signal preservation capabilities while superior

to their scalar counterpart.

• To further exploit the vast option of denoising techniques available, possibly including

the ones presented in this thesis, the Regularization by Denoising (RED) framework

was employed in solving the simultaneous source separation problem. The method can

incorporate many denoising methods, and its performance was analyzed in seismic data

deblending for both single and multicomponent common-receiver gathers.

1.4 Thesis Overview

Chapter 2 provides an overview of quaternion numbers, quaternionic signals, and their

properties. It thus discusses relevant aspects of quaternion-based signal processing, such as

augmented second-order statistics, and also includes the QFT and QSVD, which are crucial

to the developments in this thesis.
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Chapter 3 introduces the QSSA as a tool for vector-valued denoising and reconstruction

of multicomponent (3C) seismic data, which is represented as a quaternion signal in the

time domain. Its f − x representation is obtained through the QFT, and the low-rank

character of the Hankel matrices built from the quaternionic frequency slices is shown to be

preserved. Augmented second-order statistics in the QSSA (AQSSA) provide a clear way

to use second-order information from quaternionic signals, improving results over the SSA

and QSSA. Following the scalar case, it is possible to implement the QSSA filter efficiently.

Such implementation is based on the spectral convolution theorem, which has a nontrivial

extension to the quaternion domain. These efficient extensions were vital in reconstructing

multidimensional vector-valued seismic data through rank-reduction.

Chapter 4 uses quaternion auto-regressive (Q-AR) models, again in conjunction with the

QFT, to develop a hypercomplex version of the f − x prediction filter named the QFXDE-

CON. For complete second-order signal characterization, where the correlation between data

components can be fully exploited, augmented statistics is introduced through a widely-

linear predictive model of the quaternionic frequency slices. The contribution is introduced

as the WL-QFXDECON and includes additional useful information from the data compo-

nents in its formulation. The methods retain the FXDECON’s simplicity and efficiency and

exemplify the possibility of developing vector-valued data processing methods that are phys-

ically consistent and make the most out of the acquired data. Its underlying augmentation

step creates a four-fold redundancy in the data samples for signal and noise alike, which

provides better signal preservation in synthetic and field data examples.

Chapter 5 discusses general inverse problems and briefly focuses on the related Plug-and-

Play priors and Regularization by Denoising (RED) frameworks. RED is a unique framework

that explicitly employs denoisers in its cost function, but its gradient is only valid under some

conditions imposed on the denoisers. These conditions are summarized and discussed in

this chapter, along with first-order optimization methods used to minimize its cost function.

The RED framework is then introduced for scalar and vector-valued simultaneous sources

separation applications. The formulation leads to deblending algorithms that can use many

denoising techniques, including those developed in Chapters 3 and 4. The denoisers are used

to implicitly impose desired priors, such as sparsity or low-rankness in transform domains,

which are favorable to applications such as deblending and reconstruction. The denoisers

tested in this chapter are the frequency-wavenumber thresholding (FKT) and the SSA in

the scalar case and their respective quaternionic extensions in the case of vector-valued data.

The synthetic and field numerically blended examples show RED competitive performance

with leading methods for both scalar and vector cases.

Chapter 6 concludes this thesis and provides a summary of its contributions and limitations

that can be explored in future research.
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CHAPTER 2

Quaternions

2.1 Introduction

Quaternions are hypercomplex numbers of four dimensions (4D) introduced by Sir William

Rowan Hamilton in an effort to extend complex numbers to higher dimensions. Its inherent

4D structure provides an intuitive framework for representing three- and four-component

signals, yielding a unified processing approach for vector data processing. The following

introduces the necessary definitions of quaternion algebra to provide enough background

for defining quaternion signals and their subsequent processing techniques. To this point,

there are thorough descriptions of quaternions available in the literature, such as the work

of Hamilton himself (Hamilton, 1844, 1866) and Ward (2012), and focusing on signal and

image processing, Hitzer and Sangwine (2013) and Ell et al. (2014).

2.2 Quaternion Algebra

2.2.1 Fundamentals

The following description is based on Ell et al. (2014) for their use of quaternions to represent

the three components (red, green, and blue) of color images. A quaternion variable, q ∈ H,

can be defined as a four-dimensional hypercomplex number with Cartesian form given by

q = a+ bi + cj + dk , (2.1)
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where the 4-tuple {a, b, c, d} ∈ R are its components. A quaternion can be decomposed as

a scalar plus a vector part following

q = S(q) + V (q), (2.2)

where its scalar part corresponds to its only purely real component

S(q) = a, (2.3)

and its vector part, which consists of three imaginary components, as follows

V (q) = bi + cj + dk = q − S(q). (2.4)

A quaternion is said to be pure if S(q) = 0, and the set of pure quaternions can be denoted as

V (H). Quaternions with null vector part are simply identified as elements of R, which makes

it noticeable that the sets of real and complex numbers are special cases of quaternions, i.e.,

R ∈ C ∈ H. Similarly to the complex case, the imaginary units (i , j , k) follow the rules

i2 = j 2 = k2 = ijk = −1, (2.5)

and additional relations can be drawn from 2.5 through left- and right-sided multiplications

of ijk with other units (i , j , k), which are given by

ij = −ji = k,

ki = −ik = j,

jk = −kj = i. (2.6)

Notice how the imaginary units themselves are pure quaternions, e.g. i = 0 + 1i+ 0j + 0k,

and represent the orthogonal unit vectors in three dimensions (3D).

The algebraic operations of addition and multiplication of quaternion numbers are defined in

analogy to its complex counterpart. For instance, if q = a+bi+cj+dk and p = e+f i+gj+hk ,

their sum is given by

q + p = S(p) + V (p) + S(q) + V (q)

= (a+ e) + (b+ f)i + (c+ g)j + (d+ h)k ,
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and their product can be written as

qp = (S(q) + V (q))(S(p) + V (p))

= S(q)S(p) + S(q)V (p) + V (q)S(p) + V (q)V (p). (2.7)

Using the relations in 2.5 and 2.6, the product V (q)V (p) can be rewritten as

V (q)V (p) = (bi + cj + dk)(f i + gj + hk)

= bi(f i + gj + hk) + cj(f i + gj + hk) + dk(f i + gj + hk)

= −bf − cg − dh+ i(ch− dg) + j(df − bh) + k(bg − cf), (2.8)

where it is possible to recognize the inner (or scalar) product 〈V (q), V (p)〉 = bf + cg + dh

and the vector cross product V (q) ⊗ V (p) = i(ch − dg) + j(df − bh) + k(bg − cf). It is

also possible to conclude that the product of two pure quaternions usually results in a full

quaternion. More importantly, the quaternion product contains a vector product which is

known to be anticommutative. Its final expression is written as

qp = S(q)S(p)− 〈V (q), V (p)〉+ S(q)V (p) + V (q)S(p) + V (q)⊗ V (p), (2.9)

leading to the main difference between quaternion and usual algebra: multiplication in H
is, in general, noncommutative (qp 6= pq). Despite its noncommutativity, the quaternion

product is associative and distributive, as used to develop the expression in 2.8. Finally,

quaternions commute with real numbers, as V (q)S(p) = S(p)V (q) for instance, noticing that

the operators S(·) and V (·) extract the scalar and vector part of a quaternion, respectively.

Even though noncommutativity might have important implications in the development of

quaternion-based applications, once it is kept in mind and adequately accounted for, the

implementation of quaternion-based operations and techniques can be arguably straightfor-

ward. In that light, when manipulating quaternion numbers, it is common to hope that

classical definitions for real or complex numbers are trivial extensions to the quaternion

case. However, there are specific properties for the quaternion domain which do not arise

in its complex counterpart, and some extensions, albeit not straightforward nor trivial, are

worthy of being studied. The relevant ones for the scope of this thesis are presented next.
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2.2.2 Properties

Some properties of quaternions that are useful for future discussion of this thesis include

the conjugate of a quaternion, obtained by negating its imaginary part

q∗ = S(q)− V (q) = a− bi − cj − dk , (2.10)

thus paving the way to the definition of its norm (‖ · ‖) and modulus (| · |)

|q| = ‖q‖1/2 =
√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2. (2.11)

If |q| = 1, q is a unitary quaternion, as the example of the (i, j, k) imaginary units. A

related concept to conjugation that arises in the quaternion domain but has no counterpat

in the complex case is the concept of involutions, or self-inverse mappings, which will show

themselves to be crucial in future chapters. Unlike conjugation, quaternion involutions are

defined with respect to an arbitrary pure unitary quaternion µ, and it is written in general

form as

qµ = −µqµ,

with µ ∈ V (H) and |µ| = 1. The canonical case corresponds to setting µ as one of the

standard basis elements (i, j, k), and represent rotations along a single imaginary axis

qi = −iqi = a+ bi − cj − dk , (2.12)

qj = −j qj = a− bi + cj − dk , and (2.13)

qk = −kqk = a− bi − cj + dk . (2.14)

Notice how it is possible to linearly relate a quaternion, its conjugate and involutions by

q∗ =
1

2
(qi + qj + qk − q), (2.15)

as well as to uniquely express the four real components of q through the expressions

a =
1

2
(q + q∗) b =

1

2i
(q − qi∗) (2.16)

c =
1

2j
(q − qj∗) d =

1

2k
(q − qk∗). (2.17)

2.2.3 Representations

In addition to the Cartesian form of a quaternion given in equation 2.1, there are other

representations of quaternions that are particularly useful in the development and study
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of hypercomplex techniques. Examples are polar and Cayley-Dickson (CD) forms of a

quaternion, which are presented next.

Polar Form

The polar form of a quaternion is equivalent of the Euler formula, and is given by

q = |q|eµqφq = |q|(cosφq + µq sinφq) (2.18)

where its modulus (|q|) is given by 2.11, the phase (φq ∈ R+)

φq = arctan

(
|V (q)|
S(q)

)
, (2.19)

where φq = π/2 if S(q) = 0, and the eigenaxis (µq ∈ V (H)) is written as

µq =
V (q)

|V (q)|
, (2.20)

where, since |V (q)| =
√
b2 + c2 + d2, µq is a pure unit quaternion. For one such arbitrary

(pure and unitary) quaternion, the Euler representation given in equation 2.18 would be

written as

eµφ = cosφ+ µ sinφ, (2.21)

where its real part is given by cos φ and vector part µ sinφ. Since taking a quaternion

conjugate means negating its vector part, i.e. cos φ − µ sinφ = e−µφ, this can be achieved

by either negating its phase (φ) or reverting its axis (µ). Finally, it is also possible to obtain

the expressions cosφ = 1
2

(
eµφ + e−µφ

)
and sinφ = −µ2

(
eµφ − e−µφ

)
.

Other polar forms of quaternions can be devised, and although not the focus of this thesis,

some of these representations found useful applications in signal and image processing.

Since quaternions constitute a 4D algebra, their polar forms represent a signal in terms of

magnitude and phase. While the magnitude is a single real number, the phase can only

be fully described by three real numbers. For instance, one representation worthy of being

mentioned is connected to the Euler angle parametrization of quaternions following the

expression

q = |q|eηieκjeφk, (2.22)

where the angles of q, η ∈ [0, 2π), κ ∈ [0, π), φ ∈ [0, 2π), are identified as three phases.

Although useful, such polar representation of quaternions goes beyond the purposes of this

thesis, which mainly focuses on the Euler representation of quaternions as a hypercomplex

exponential given in equation 2.18. In the next subsection, another useful representation
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of quaternions is introduced, namely the Cayley-Dickson representation of a quaternion

number.

Cayley-Dickson Form

In their Cartesian form, quaternions are represented by four real components, and a similar

argument can be made to represent a quaternion as a pair of complex numbers. That

representation is known as the Cayley-Dickson (CD) form of a quaternion, and it splits the

quaternion into two different (orthogonal) complex planes where q is written as

q = z1 + z2j , (2.23)

where z1 = a + bi and z2 = c + di . Notice that {z1, z2} ∈ Ci , the set of complex numbers

defined with i2 = −1. Therefore, the CD form allows the interpretation of a quaternion

in terms of complex numbers. It is very convenient because it facilitates understanding

quaternions and their properties through better-understood complex algebra.

The CD representation can be generalized to the symplectic decomposition of quaternions

in which a quaternion q is still written as a pair of complex numbers. However, q is first

projected in a new basis of interest {1, µ, ν, µν} ∈ H to obtain q′ as

q′ = a′ + b′µ+ c′ν + d′µν, (2.24)

with decomposition is given similarly to that in equation 2.23 as

q′ = (a′ + b′µ) + (c′ + d′µ)ν. (2.25)

The complex units {µ, ν, µν} follow the same rules as in 2.5 and 2.6

µ2 = ν2 = (µν)2 = −1, (2.26)

and S(µν) = 0, which imples µ⊥ν, µν⊥µ and µν⊥ν (orthonormal basis in V (H)). Finally,

the new set of components {a′, b′, c′, d′} is obtained through the change of basis

a′ = ab
′

c′

d′

 =

 µ1 µ2 µ3

ν1 ν2 ν3

µν1 µν2 µν3


bc
d

 . (2.27)
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The quaternion given by 2.25 is decomposed into its simplex and perplex parts

q′ = qs + qpν, (2.28)

with qs = (a′ + b′µ) and qp = (c′ + d′µ). Both simplex and perplex parts of a quaternion

in its symplectic (and CD) form are isomorphic to complex numbers. This is significant

because, since {qs, qp} ∈ Cµ, many properties and insights from complex algebra are used

to facilitate the development of quaternion-based techniques (Ell and Sangwine, 2007).

Other Representations

There are other possible representations of quaternions that do not fit the scope of this work.

For instance, it is possible to define a polar Cayley-Dickson representation of quaternions

with complex-valued modulus and phase. These representations are said to be “scalar”

because they still work around representing a single number via parametrization by, for

instance, modulus and phase. That is in contrast with matrix representations where, for

instance, a quaternion number q can be written as the 4× 4 real matrix MR(q)

MR(q) =


a b c d

−b a −d c

−c d a −b
−d −c b a

 , (2.29)

or through its 2× 2 complex matrix representation MC(q)

MC(q) =

(
z1 −z∗2
z2 z∗1

)
. (2.30)

Therefore, the matrix representation makes it possible to explore quaternion algebra from

a known perspective as the quaternion product is equivalent to the regular matrix product

of their matrix representations. However, there are practical aspects to the matrix rep-

resentation of quaternions that make its adoption less attractive. For instance, while the

representation in equation 2.29 requires storing 16 real values, the cartesian form in equation

2.1 requires only four. Even more impactful is the increase in computational demand; while

the quaternion product in equation 2.9 already increases the number of real-valued mul-

tiplications and additions to 16 and 12, respectively, its real-valued matrix representation

increases it to 64 and 48. In both cases, an increase by a factor of four rules out the adoption

of matrix representations in the practical developments of this thesis. On the other hand, the

matrix representations of quaternions have their theoretical advantages when studying, for
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instance, matrices whose elements consist of quaternion numbers, as introduced in the next

section. As it will become clear, mappings between quaternion-valued and complex-valued

matrices are helpful when developing quaternion-based methods.

2.2.4 Matrices and Vectors of Quaternions

The definitions above facilitate the description of vectors and matrices of quaternions used

to represent signals recorded by vector sensors. However, it is necessary to clarify that

the elements of given matrices and vectors can be drawn from different sets, meaning that

matrices can arrange real, complex, or quaternion numbers. While matrices of real or

complex numbers are better known and understood, matrices of quaternion numbers do

not lag much behind, with studies going back to Wolf (1936). Of particular importance

for this section are the work of Zhang (1997) and Le Bihan and Mars (2004), for instance,

which bridge a considerable gap in understanding quaternion matrices mainly through their

complex representation. Again, while several classical definitions can be easily extended to

the quaternion domain, for instance, scalar product, norm, and the distance between two

vectors, some operations for real and complex arrays do not hold in the quaternion domain.

Intuitively, a matrix X ∈ HN×M has elements that belong to the set of quaternion numbers

(xi,j ∈ H, for i = [1, N ] and j = [1,M ]). One can write X = [x1 x2 . . . xM ], with

xi ∈ HN×1, i = [1,M ], defining a length-N column vector of quaternions. Similarly to the

complex case, the scalar product between two quaternion vectors x and y is defined as

〈x,y〉 = xHy, (2.31)

where the superscript H denotes the conjugate transpose of a quaternion vector. The `2

norm of a quaternion vector is then given by

‖x‖2 =
√

xHx, (2.32)

which allows for the definition of a distance measure between quaternion vectors x and y as

‖x− y‖2 =
√

(x− y)H(x− y). (2.33)

These definitions are straightforward extensions of real or complex matrix algebra routinely

used in signal processing. Further, it is also possible to exploit the representations of quater-

nions discussed in section 2.2.3 in the context of vectors and matrices of quaternions.

In particular, the complex representation (CD form) of vectors and matrices of quaternions

is rather useful. The CD representation of a quaternion vector x ∈ HN×1 is given by
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x = xs + xpj , where {xs,xp} ∈ CN×1
i , and its complex representation χx ∈ C2N follows

χx =

(
xs

−x∗p

)
. (2.34)

For a quaternion matrix X ∈ HN×M , the CD form is no different: X = Xs + Xpj , where

{Xs,Xp} ∈ CN×Mi . The complex representation is the most common way of studying

quaternion matrices through the definition of the complex adjoint matrix, χX ∈ C2N×2M ,

of the quaternion matrix X, which is given by

χX =

(
Xs Xp

−X∗p X∗s

)
. (2.35)

Such notation of quaternion matrices makes it possible, for instance, to employ complex

decomposition algorithms to manipulate quaternion matrices (Le Bihan and Mars, 2004).

The ability to decompose or transform quaternion matrices is fundamental to the definition

of quaternionic models to represent vector signals and their processing.

2.3 Quaternion Signal Processing

The discussion in Chapter 1 illustrated possible approaches to processing vector signals.

As stated before, this thesis avoids using componentwise or long-vector notation for vector

signal processing. Instead, quaternion arrays naturally define vector signals, allowing for

simultaneous and concise processing.

For the case of color images, as an example, where each pixel of the image represents

three orthogonal components, here denoted by (R,G,B) ∈ RN×M , at N and M discrete

positions, its possible to encode the three corresponding signals into the components of a

pure quaternion matrix Q ∈ V (HN×M ) such as

Q[n,m] = R[n,m]i + G[n,m]j + B[n,m]k , (2.36)

with n = [1, N ] and m = [1,M ]. As it is possible to notice, Q holistically represents the

color image, naturally accounting for the mutual information between data components. It

is also possible to use quaternion arrays to accommodate two pairs of complex signals, as it

follows from its symplectic decomposition, and process them simultaneously. In this case,

an arbitrary two-component signal, such as Ũx and Ũy ∈ CN×Mi , can be represented by

means of the Cayley-Dickson form of full quaternion matrices (S(Q) 6= 0) as

Q[n,m] = Ũx[n,m] + Ũy[n,m]j . (2.37)
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Above, for instance, {Ũx, Ũy} ∈ CN×Mi could have been obtained through the classical

Fourier transform of the real components, say Ux and Uy, for which the better understood

classic Fourier pairs separately hold for each of the signal components.

The quaternionic signal model can handle multicomponent signals, but it calls for the gen-

eralization of classical tools in signal processing, such as the Fourier transform, to their

hypercomplex versions. Such extensions also include theoretical developments in statistical

signal processing of quaternion-valued data, which, as might be expected, draws essential

lessons from the developments made in processing complex-valued signals. The most im-

portant, perhaps, is that the standard second-order quaternionic characterization of vector

signals does not fully characterize the quaternionic signal, and it needs to be augmented by

complementary covariance matrices obtained as a function of its involutions. The following

sections discuss the quaternionic extension of signal processing techniques commonly used

in their real and complex versions. In particular, the following discussion focuses on the

statistical description of quaternion signals, its corresponding versions of auto-regressive

models, Fourier Transforms, and matrix factorization techniques.

2.3.1 Augmented Second-order Statistics

Since quaternions are a (hypercomplex) extension of complex numbers, it is natural that

most of the quaternion signal processing theory is rooted in its complex counterpart. That

includes the developments on second-order statistics of complex-valued signals, with con-

tributions to the theory of improper signals by Picinbono (1994, 1996) and Picinbono and

Chevalier (1995), and the references cited therein. In the quaternionic context, the work by

Took and Mandic (2011) provides the theoretical rigor on which this thesis is based. The

authors point out that the standard covariance matrix of quaternion-valued processes does

not guarantee maximum use of the available information in a quaternion signal.

In the case of complex signals, for instance, it is possible to exploit the correlation between

data components if the standard covariance matrix is completed with the complementary

covariance matrices (Picinbono, 1996). This is referred as augmented statistics because the

signals are usually analyzed in an augmented basis where a length-N complex vector, say

x ∈ CN×1, is augmented with its complex conjugate as

xa =

(
x

x∗

)
.

Analyzing the augmented covariance matrix obtained from xa, one obtains

Ca = E{xaxaH} = E

{(
xxH xxT

(xxT )∗ (xxH)∗

)}
, (2.38)
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where E{·} represents the expectation operator. Notice that Ca fully describes the second-

order information of the signal because both the standard covariance matrix (E{xxH}) and

the complementary covariance matrix (E{xxT }) characterize the complex signal.

For quaternion signals, however, such manipulation with its conjugate is not possible, i.e.,

x and x∗ are not enough to completely describe x, if x is a quaternion signal. Never-

theless, it has been shown that one can exploit the correlation between data components

in a quaternion signal if complementary covariance matrices are considered in its process-

ing (Took and Mandic, 2011). By noticing that to fully express the four components of a

quaternion-valued signal one has to use its four involutions (see equations 2.17), Took and

Mandic (2011) propose its processing in an augmented basis such as

xa =


x

xi

xj

xk

 (2.39)

if x is a quaternion vector. Similarly to the complex case, the covariance matrix of the

augmented quaternion vector xa is then given by

E{xaxaH} = E




x

xi

xj

xk


(
x∗ xi∗ xj∗ xk∗

)
 = (2.40)


E{xx∗} E{xxi∗} E{xj∗} E{xxk∗}
E{xix∗} E{xixi∗} E{xixj∗} E{xixk∗}
E{xjx∗} E{xjxi∗} E{xjxj∗} E{xjxk∗}
E{xkx∗} E{xkxi∗} E{xkxj∗} E{xkxk∗}

 , (2.41)

where E{·} denotes the statistical expectation operator. It is relevant to mention that the

complementary matrices, given by E{xαxβH} (α, β = {1, i, j, k}, α 6= β), capture the cross-

correlation between the components of the vector signal. Thus, the augmented covariance

(equation 2.41) provides a full description of the second-order statistics of x. These matrices

pave the way to the definition of a Q-proper, or only proper, quaternion signal.

The concept of a proper signal in the complex domain refers to those signals with van-

ishing complementary covariance matrices (Picinbono, 1994). This implies two important

conditions for properness of complex-valued signals: the components of the signal are un-

correlated, and have the same variance. In the quaternion domain, by continuity, a proper

signal should also satisfy these conditions. Therefore, a Q-proper signal has uncorrelated

components (i.e., E{xαxβH} = 0; α, β = {1, i, j, k}, α 6= β), and each of its components
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has the same variance (Took and Mandic, 2011).

2.3.2 Linear Prediction and Autoregressive Modeling

Linear prediction theory allows determining the value of a signal at a sample n, say xn,

using linear combinations of its past K samples as

x̂(n) =
K∑
k=1

x(n− k)fk, (2.42)

which is usually written in vector form, assuming a real signal, as

x̂(n) = fTx(n− 1), (2.43)

for a vector x(n) = [x(n) x(n − 1) ... x(n −K + 1)]T , and a length-M prediction filter f .

The standard extension of this linear model to complex or quaternion numbers is written as

x̂(n) = fHx(n− 1), (2.44)

where it should be clear that the vectors, say x and f , now contain either complex or

quaternion numbers. However, following the discussion in subsection 2.3.1, it might not

be sufficient to replace the real variables in equation 2.42 by quaternion variables. Rather,

similarly to the complex case, augmented statistics suggests adopting linear models for

quaternion signals based on the use of its involutions, thus called widely-linear, as follows

x̂(n) = faHxa(n− 1) = fHx(n) + fHi xi(n) + fHj xj(n) + fHk xk(n). (2.45)

Here the notation in fi,j,k only denotes the filter associated with the given involution rather

than an index or, unlike xi,j,k, an involution itself.

A related concept to that of linear prediction is that of autoregressive (AR) models. For

instance, since equation 2.46 is a regression problem based on its own past samples, this

model can also be regarded as an zero-mean K-order AR model. More specifically, such a

model satisfies the difference equation

xn + xn−1f1 + xn−2f2 + ...+ xn−KfK = en, (2.46)

where en is an innovation term, here taken as white Gaussian noise, and fk are the filter
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coefficients to be determined in an optimal sense. Compactly, one can write

xn =
K∑
k=1

xn−kfk + en, (2.47)

which represents the convolution of the data sequence, xn−k, with the filter coefficients fk.

Equation 2.47 characterizes a K-order forward AR model since it can be used to recursively

obtain the predictable portions of the signal xn from the current sample n based on its

previous K samples. Similarly, one can define a backward recursion formula

xn =
K∑
k=1

xn+kbk + en, (2.48)

to predict the current sample n based on its future K samples, but now from the convolution

of the data sequence, xn+k, with the filter coefficients bk.

Assuming a signal of length N , equations 2.47 and 2.48 can be written in matrix form as

d = Xf + ε, (2.49)

where XM×K is a transient-free convolution matrix built from the data samples, dM×1 is

the data vector, fK×1 is the vector of filter coefficients (forward or backward), εM×1 is the

vector of innovation terms, and M = N −K + 1 (Ulrych and Sacchi, 2005).

Autoregressive models are of interest to many fields of science, and their extension to

complex- and quaternion-defined processes was natural step in signal processing. The stan-

dard extension from real to complex- or quaternion-valued AR models also follows equations

2.47 and 2.48, but this is already known to be suboptimal for improper signals as useful

additional information is being ignored. Similarly to the widely linear prediction model in

equation 2.45, a widely linear AR model is defined (Ginzberg and Walden, 2013) by allowing

additional linear operations on the quaternion involutions in equation 2.49 as

d = Xf + Xifi + Xjfj + Xkfk + ε, (2.50)

which can be recast as

d = Xafa + ε (2.51)

with Xa =
(
X Xi Xj Xk

)
and fa =

(
f fi fj fk

)T
. Note that X,Xi,Xj , and Xk are

transient-free convolution matrices; then the product XaHXa provides an estimator of the

augmented covariance matrix of the type given in equation 2.41.
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2.3.3 Matrix Factorization

Singular Value Decomposition

Quaternion singular value decomposition (QSVD) is a fundamental tool when treating vec-

tor signals. Proof of the existence of QSVD is given in Zhang (1997) or Loring (2012), and

it is based on the polar decomposition of quaternion matrices. Possible implementations of

the QSVD are discussed by Le Bihan and Mars (2004) and Sangwine and Le Bihan (2006),

which further allows the definition of quaternionic signal processing techniques based on sub-

space methods. To be specific, Le Bihan and Mars (2004) compute the QSVD through the

complex-adjoint representation of a quaternion matrix (equation 2.35), but its description

follows the real or complex case, as discussed below.

Similarly to real- or complex-valued matrices, the rank of a quaternion matrix X ∈ HN×M

can be defined as the maximum number of its linearly independent columns or rows, which

can be understood as the minimum number of rank-1 quaternion matrices that result in X

by linear combination. Formaly, a rank-k quaternion matrix X has SVD written as

X = UΣVH = U

(
Σk 0

0 0

)
VH (2.52)

where Σk ∈ Rk×k contains the k singular values of X, arranged in decreasing magnitude

order, on its main diagonal. As in the real or complex cases, U ∈ HN×N and V ∈ HM×M are

unitary quaternion matrices (so S(UUH) = S(VVH) = I, and V (UUH) = V (VVH) = 0)

which contain the left and right singular vectors of X, respectively. Hence, as mentioned

above, the QSVD can be used to write X as the sum of k rank-1 quaternion matrices as

X =
k∑

n=1

σnunvHn , (2.53)

where σn represents the n-th (real-valued) singular value associated with un (n-th column of

U) and vn (n-th column of V), the left and right singular vectors of X, respectively. Other

useful properties for discussing the QSVD in the following sections are (Zhang, 1997):

• The rank of a quaternion matrix X is k if X has k non-zero singular values, and the

QSVD is thereby said to be rank revealing, as follows from equation 2.52.

• The rank of a quaternion matrix X is k if and only if the rank of its complex adjoint

χX is 2k.

As already mentioned, it is possible to compute the QSVD using the equivalence between

quaternion matrices (HN×M ) and its complex adjoint matrix χX ∈ C2N×2M (Le Bihan and
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Mars, 2004), which allows the SVD of a quaternion matrix X to be obtained from the SVD

of χX (equation 2.35 ) using classical algorithms. The (classic) SVD of χX is given by

χX = UχX

(
Σ2k 0

0 0

)
(VχX)H =

2k∑
n′=1

σn′u
χX

n′ vχXH
n′ , (2.54)

with left and right singular vectors given by uχX
n ∈ C2N and vχX

n ∈ C2M , respectively. The

diagonal matrix Σ2k has a special structure where its singular values (σn′), which are also

the singular values of X, appear by pairs along its main diagonal written as

Σ2k = diag(σ1;σ1;σ2;σ2; ...σk;σk). (2.55)

Such redundancy happens given how χX is built to preserve quaternion properties. Once

computed the complex SVD of χX, obtaining the singular values and vectors of X is, there-

fore, a matter of associating the correct indexes: the n-th singular elements of X (σn,un,vn)

are associated with the n′ = (2n − 1)-th singular elements of χX (σn′ ,u
χX

n′ ,v
χX

n′ ). Notice,

moreover, that its singular vectors, uχX

n′ and vχX

n′ , have the especific structure (Zhang, 1997)

uχX

n′ =

(
uχX

n′s

−(uχX

n′p
)∗

)
and vχX

n′ =

(
vχX

n′s

−(vχX

n′p
)∗

)
, (2.56)

which are, in fact, quaternion vectors in their complex notation similarly to equation 2.34,

and have to be rewritten in quaternionic form following

un = uχX

n′s
+ uχX

n′p
j and vn = vχX

n′s
+ vχX

n′p
j. (2.57)

Having the (U,Σ,V) factors of a quaternion matrix X, it is possible to obtain a rank-r

(r < k) approximation of a given quaternion matrix, in a least-squares sense, through the

truncation of its first r singular elements in equation 2.53 (Le Bihan and Mars, 2004).

Not only linear prediction and matrix decomposition have been extended to their quater-

nionic counterparts. Although there is a recent increase in the application of hypercomplex

numbers in signal processing being documented, quaternion-based signal processing dates

back to the 1980’s, with applications of the quaternionic Fourier transforms in nuclear mag-

netic resonance imaging by Ernst et al. (1987) and Delsuc (1988). The following section

introduces the quaternion Fourier Transform and some of its particularities.
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2.3.4 Fourier Transform

The retooling offered by quaternion-based signal processing introduces noteworthy differ-

ences in the signal analysis due to the particularities of the quaternion algebra. In this view,

an excellent example is the quaternion Fourier transform (QFT), another natural extension

in the processing and analysis of quaternion-valued signals. A formal definition of hyper-

complex spectral transformations can be found in Ell (1992) albeit earlier applications had

already been documented, as aforementioned. Good references on the topic are Hitzer and

Sangwine (2013) and Ell et al. (2014).

The advent of the QFT allows signal processing techniques performed in the frequency

to be generalized to quaternion-defined datasets (Ell and Sangwine (2007); Ortolani et al.

(2017); Bahia and Sacchi (2019b)). However, the fact that quaternion multiplication is

noncommutative has important implications in the QFT definition. Specifically, due to

noncommutativity, the positioning of the exponential kernel in the transform definition is

meaningful; therefore, the QFT is not uniquely defined and requires the definition of a

side for the transformation. The QFT also requires the definition of an arbitrary pure

unit quaternion (µ2 = −1), called the eigenaxis of the transformation, which represents a

direction in the signal space to which the transform is being applied (Ell and Sangwine,

2007). Therefore, it defines a preferential association of the components’ axes. However,

this preferential association is application dependent and can be defined accordingly by the

practitioner.

Definition

Two 1D right-sided QFTs of a quaternion-valued function f : R → H can defined in the

continuous case as follows (Ell et al., 2014)

FR∓µ{f}(ω) = FR(ω) = κ−

∫ +∞

−∞
f(t)e∓µωtdt. (2.58)

The QFT is referred to as forward or reverse transform if the eigenaxis is set to −µ or µ,

respectively. The reverse transform is not the same as the inverse QFT, which given by

F−R∓µ {FR}(t) = f(t) = κ+

∫ +∞

−∞
FR(ω)e±µωtdω, (2.59)

where µ is an arbitrary pure unit quaternion (µ2 = −1), and κ+κ− = (2π)−1. This definition

is said to be the right-sided QFT because the exponential kernel is placed to the right of

the function to be transformed. In a similar fashion, therefore, one can define the left-sided
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QFT by plancing the exponential kernel to the left side of f(t) or F (ω) as

FL∓µ{f}(ω) = FL(ω) = κ−

∫ +∞

−∞
e∓µωtf(t)dt. (2.60)

with inverse given by

F−L∓µ {FL}(t) = f(t) = κ+

∫ +∞

−∞
e±µωtFL(ω)dω. (2.61)

In the 1D case, these already represent four possible left-right and forward-reverse transform

pairs. For vector signals of higher dimensions, such as color images, the number of QFT

definitions is even greater because noncommutativity also implies that eia+jb 6= eiaejb, and

two different kernels can be placed on either side of the function to be transformed. This

gives rise to sandwiched, factored, and unfactored multi-axis definitions of the QFT as shown

in table 2.1 for the forward 2D case (Hitzer and Sangwine, 2013).

Table 2.1: Possible definitions of Quaternion Fourier transform for 2D signals
f(x, y).

Left Right Sandwich
Single-axis e−µ(ωx+ηy)f(x, y) f(x, y)e−µ(ωx+ηy) e−µωxf(x, y)e−µηy

Dual-axis e−(µωx+νηy)f(x, y) f(x, y)e−(µωx+νηy) NA
Factored e−µωxe−νηyf(x, y) f(x, y)e−µωxe−νηy e−µωxf(x, y)e−νηy

Notice how defining generalized complex operators such as µ2 = −1 increases the number of

possible QFTs even further1. Furthermore, the eigenaxis generalizes the complex operator

(i2 = −1) in the classic definition of the Fourier transform, and therefore the well-known

FT is understood as a particular case of the QFT where µ = i.

Properties

An essential aspect of Fourier analysis is rooted in its properties and one’s ability to exploit

them properly. While several basic properties are easily extended to the QFT of quaternion-

valued signals, others deserve closer attention due to quaternion’s noncommutative algebra.

A fundamental property for this thesis is the spectral counterpart of the quaternion convo-

lution theorem, which is discussed in this subsection.

Due to noncommutativity, it is usual to expect that the sideness of the transform has to

be taken into account when using the QFT for processing quaternion signals. With that

1To infinity (since there are infinite square roots of −1 in V(H)).
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in mind, some basic relationships are somewhat straightforward extensions from the classic

Fourier transform pairs. For example, the time domain shift f(t− τ) is written as

f(t− τ) = FR−µ(ω)e−µωτ (2.62)

and

f(t− τ) = e−µωτFL−µ(ω) (2.63)

according to the side of the transform as right or left sided, respectively. Other properties,

as the convolution theorem, require more work when extended to the quaternion domain as

shown by Ell and Sangwine (2007).

The convolution of two signals corresponds to their elementwise frequency-domain multipli-

cation. This is known to be true for either real or complex-valued signals. In the quaternion

case, however, the same is not possible because noncommutativity plays its role. Still, Ell

and Sangwine (2007) show how to obtain a spectral-domain formulae for one-sided (left or

right) convolutions of two quaternion functions f and g along an eigenaxis µ as

FLµ {f ∗ g} = FLs ◦GL + FLp ν ◦GL+ (2.64)

and

FRµ {f ∗ g} = FR ◦GRs + FR+ ◦GRp ν, (2.65)

where “◦” represents the entrywise product of two arrays, “∗” represents the convolution

operation, the superscripts L (or R) and L+ (or R+) indicate left (or right) forward and

reverse QFTs, respectively, and the subscripts s and p indicate that the signal was decom-

posed, respectively, into simplex and perplex parts. Therefore, one can also exploit QFTs

to perform convolutions of quaternion-valued functions via the proper (regarding sideness

and eigenaxis definition) version of the quaternion convolution theorem, i.e., using the cor-

rect inverse QFT of equations 2.64 or 2.65. For that, it is important to understand the

implementation of the QFT, which is discussed next.

Implementation

The symplectic decomposition in equation 2.28 defines an important relationship between

complex and quaternions numbers which answers what are the criteria for quaternion func-

tions to be Fourier-transformable. For that, assume an eigenaxis µ for the transformation,

and take the symplectic decomposition of the function to be transformed f(t) along µ as

f(t) = fs(t) + fp(t)ν, (2.66)
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where fs(t), fp(t) ∈ Cµ, and ν is a pure unit quaternion perpendicular to µ. Following with

the left-sided (similarly for the right-sided) QFT of f(t) one obtains

FL(ω) = κ−

∫ +∞

−∞
e−µωtfs(t)dt+ κ−

∫ +∞

−∞
e−µωtfp(t)dtν

FL(ω) = Fs(ω) + Fp(ω)ν (2.67)

where Fs(ω) = κ−
∫ +∞
−∞ e−µωtfs(t)dt and Fp(ω) = κ−

∫ +∞
−∞ e−µωtfp(t)dt showing how the

QFT can be decomposed as the transform of two complex subfields. Therefore, given the

equivalence between Cµ and standard complex numbers, existence and invertibility of the

QFT are inherited from the complex case (Ell et al., 2014). In addition, numerical imple-

mentation is also greatly facilitated by the symplectic decomposition, which allows the use

of already existing Fourier transform libraries, such as the fast Fourier transform (FFT).

Regarding computational aspects of QFTs, it is first necessary to define the discrete QFT

(DQFT), as it is done for the 1D left-sided case2, assuming a length-N signal f

F [ω] =
1√
N

N−1∑
n=0

e−µ2π nω
N f [n], (2.68)

with inverse

f [n] =
1√
N

N−1∑
ω=0

eµ2π nω
N F [ω]. (2.69)

While it is possible to write a direct code for the computation of the DQFT by evaluating

the hypercomplex exponentials in equations 2.68 and 2.69, or even an FFT code for it, Ell

and Sangwine (2007) propose to take advantage of already existing FFT codes by using,

again, the symplectic decomposition of quaternions and equivalences with the complex case.

Equation 2.67 shows that it is possible to decompose the QFT along an eigenaxis µ as a pair

of complex-valued Fourier transforms. Since Fs(ω) and Fp(ω) ∈ Cµ, these transforms can be

obtained via complex-valued FTs by replacing the generalized operator µ by the complex

operator i in the function f to be transformed. Numerically, that is done by projecting

the quaternion-valued f onto a new 4D basis {1, µ, ν, µν} following equation 2.27, and

reverting the change of basis after the transform has been computed. The change of basis

allows interpreting µ as i in the complex-valued Fourier transforms employed in the QFT.

Furthermore, according to Ell and Sangwine (2007), the choice of µ and ν is arbitrary, but

these cannot be parallel to each other. If a user-defined ν is initially not perpendicular to

µ, an updated value for ν can be found by taking the vector cross product between µ and

2The superscripts are being dropped to avoid clutter. If necessary, a distinction shall be evident from
the context.
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µν. Having defined the 4D basis in H, the 1D DQFT can be computed as follows:

• Apply a change of basis from f to f ′ following equation 2.27.

• Decompose the function into its simplex and perplex parts following 2.28.

• Perform two 1D complex FFTs of fs and fp to obtain Fs[ω] and Fp[ω].

• Construct the full quaternion in frequency domain by F ′[ω] = Fs[ω] + Fp[ω]ν.

• Reverse the change of basis from equation 2.27 to obtain F [ω] from F ′[ω].

Therefore, from the generalization of FFTs to N-dimensional (ND) signals, the steps above

can be generalized to define an ND QFT (Stanton and Sacchi, 2013).

Coefficient Layout

It is now possible to describe the Fourier analysis of vector signals defined with quater-

nion numbers. Figure 2.1(a)-(c) shows three components of a source line extracted from a

common-receiver gather (CRG) synthesized in a 3D-3C vertical seismic profile (VSP) exper-

iment. An array of Nr = 31 vector sensors are placed downhole to record three orthogonal

displacement components, here denoted by (Ux,Uy,Uz) ∈ RNt×Nsx×Nsy , at Nt discrete

time samples and Ns = NsxNsy discrete shot positions. In particular, there are Nsx = 205

source lines, with Nsy = 205 source positions each, and the source spacing equals the receiver

spacing as ∆sx = ∆sy = ∆r = 16.67 meters. Figure 2.1(d)-(f) shows the corresponding

frequency-wavenumber (FK) spectrum obtained for each respective component in (a)-(c) on

a classical basis where only half of the spectra is needed to fully characterize the signal.

From the quaternionic signal model in equation 2.36, the three components are encoded as

the pure quaternion matrix Q ∈ V (HNt×Nsx×Nsy ) such as

Q[t, sx, sy] = Ux[t, sx, sy]i + Uy[t, sx, sy]j + Uz[t, sx, sy]k , (2.70)

with time t = [1, Nt] and source indexes sx = [1, Nsx ] and sy =
[
1, Nsy

]
. In this case, Q rep-

resents the multicomponent seismic data, where Ux, Uy, and Uz are the two horizontal and

vertical components, respectively, naturally accounting for the mutual information between

data components. Application of QFT along the time domain yields another quaternion

signal, usually a full quaternion, represented by the QFTed simplex and perplex parts of Q

Q̃[ω, sx, sy] = Q̃s[ω, sx, sy] + Q̃p[ω, sx, sy]j , (2.71)
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with Q̃ ∈ HNt×Nsx×Nsy obtained through the QFT with respect to time. Inhereted from

the complex case, the frequency domain coefficients in the hypercomplex spectrum have the

same layout as the classical spectrum, which is divided into positive and negative frequencies,

also including the DC and Nyquist terms, as usually defined (Ell et al., 2014). Therefore, a

symmetry of the coefficients indexes exists, and the same frequency component is represented

by the indexes N and Nt − N . As in the complex case, however, there are no conjugate

symmetries between the frequency components of the QFT of a quaternion signal.

Figure 2.1: Synthetic (a) Ux, (b) Uy, and (c) Uz, and their respective FK spectrum
in (d)-(f). The data is obtained via elastic finite-difference modeling, and the FK
spectra through classic (componentwise) Fourier analysis.
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A signal such as Q̃, which has been QFTed, is written in terms of cosinusoidal basis functions

(the hypercomplex exponentials) and hypercomplex amplitudes. It is possible, therefore, to

write the hypercomplex representation of the signal in terms of its amplitude and phase,

analogously to classical processing, and the additional concept of orientation (the eigenaxis),

as it follows from equation 2.18. The amplitude and FK spectra of the above seismic data

are shown in figure 2.2, where both of these are obtained using the polar representation of

quaternions, after applying the left-sided QFT with eigenaxis µ = 1√
3
(1, 1, 1) to the data.

Figure 2.2: (a) Amplitude spectrum and (b) FK spectrum of the quaternion-based
seismic signal.

On the one hand, the hypercomplex spectrum offers the advantage of representing the

amplitude of all of its elements in a single term given by its modulus (equation 2.11). As

it might be expected, this is not the same as summing the spectra shown in figure 2.1(d)-

(f). In addition, the frequency content shown in figure 2.2(a) is similar for both positive

and negative frequencies of the spectrum; notice how these are not equal since there are

no conjugate symmetries for quaternion signals in the frequency domain. As an important

implication, operations carried out in monochromatic frequency slices of seismic data, as in

classic frequency-space (f − x) filtering techniques, have to be separately applied to each

side of the spectrum when extended to quaternion-defined seismic data. Such is the case

for the techniques presented in the following chapters: the quaternionic extension of the

Singular Spectrum Analysis (SSA) and f − x deconvolution (FXDECON) filters.
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CHAPTER 3

Quaternionic Rank-Reduction Methods

for Vector-field Seismic Data1

3.1 Introduction

The extension of well-known techniques to the quaternion domain, as discussed in Chapter 2,

allows for the generalization of different signal processing methods to the case of quaternion

signals. For instance, the truncated QSVD has been used in rank-reduction applications

to perform random Gaussian noise attenuation (Le Bihan and Mars, 2004), multichannel

analysis of electroencephalograms (Enshaeifar et al., 2016), and wavefield separation (Sajeva

and Menanno, 2017). These applications illustrate the potential of quaternions in offering

a physically meaningful alternative treatment to the case of vector-valued data.

Random noise attenuation of scalar seismic data, together with seismogram (trace) recon-

struction, can be accomplished in different ways as, for instance, f − x prediction (Canales,

1984) and projection (Soubaras, 1994) filters, and Fourier methods (Liu and Sacchi, 2004).

Rank-reduction is yet another option in processing scalar seismic data, such as the Singular

Spectrum Analysis (SSA) filter. SSA belongs to the group of f −x methods in seismic data

processing, and its applications mainly entail random noise attenuation and missing trace

recovery (Oropeza and Sacchi, 2011; Gao et al., 2013).

The SSA theory was extended to the quaternion domain named QSSA (Enshaeifar et al.,

2016). Based on the augmented second-order statistics of quaternion signals, it is possible

to formulate the augmented QSSA (AQSSA), aiming to exploit the additional information

1A version of this chapter is published in Bahia, B., and Sacchi, M. D. (2019). Quaternionic rank-
reduction methods for vector-field seismic data processing. Digital Signal Processing, 87, 178-189.
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that lives in the correlation between signal components. This chapter illustrates applications

of the QSSA and AQSSA in simultaneous denoising and reconstruction of multicomponent

seismic data following a vector-consistent approach.

3.2 Theory

3.2.1 Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) is a data-driven subspace decomposition algorithm

where the original signal is represented as the sum of components classified as belonging to

signal or noise subspaces. This section follows Oropeza and Sacchi (2011) in the description

of the SSA applied to seismic data processing. The SSA operator can be represented by

P{·} = A{R{H{·}, k}} (3.1)

where the operations of Hankelization (H{·}), rank-reduction (R{·, k}), and antidiagonal

averaging (A{·}) are explained in what follows.

Consider a regularly sampled 2D scalar dataset, D[t, n], with t = [1, Nt] representing time

samples, and n = [1, N1] the seismograms in the spatial dimension. One monochromatic

frequency slice of the Fourier transformed data, D̃[ω, n] = F{D[t, n]}, can be represented

by the following N1 × 1 vector s

s =
(
s1 s2 . . . sN1

)T
, (3.2)

where “T ” represents the transpose operator. Note that the dependency on ω has been

omitted, and the analysis is performed for every frequency slice within a range [ωmin, ωmax].

In the case of 2D datasets, SSA reduces to a 1D problem since each frequency slice is

analyzed separately. Then, the Hankelization operation consists in the construction of a

single level-1 L1 ×K1 Hankel matrix, H(1) ∈ CL1×K1 . The columns of H(1) are one-sample

lagged versions of a length-L1 window of the frequency slice s. In the SSA literature, this

matrix is named the trajectory matrix, and it is given by

H(1) = H{s} =


s1 s2 . . . sK1

s2 s3 . . . sK1+1

...
...

. . .
...

sL1
sL1+1 . . . sN1

 (3.3)

where K1 = N1 − L1 + 1, with L1 such that the matrix H(1) is close to square.
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In a similar fashion, for 3D datasets, as D[t, n,m], with m = [1, N2] representing the seis-

mograms in the additional spatial dimension, the monochromatic frequency slice of the data

can be represented by the N1 ×N2 matrix

S =


s1,1 s1,2 . . . s1,N2

s2,1 s2,2 . . . s2,N2

...
...

. . .
...

sN1,1 sN1,2 . . . sN1,N2

 . (3.4)

The problem is now 2D, and the Hankelization operation consists in the construction of

a level-1 trajectory matrix (equation 3.3) for each row j = [1, N1] of S. In this case, one

constructs a sequence of N1 level-1 Hankel matrices, H
(1)
j , which are then organized into a

level-2 Hankel matrix H(2), where K2 = N2−L2 + 1, and following the same idea as before

H(2) = H{S} =


H

(1)
1 H

(1)
2 . . . H

(1)
K2

H
(1)
2 H

(1)
3 . . . H

(1)
K2+1

...
...

. . .
...

H
(1)
L2

H
(1)
L2+1 . . . H

(1)
N1

 . (3.5)

Following this same methodology, one would be able to construct higher-level Hankel ma-

trices (H(n)) for filtering seismic data that depend on more spatial dimensions (Gao et al.,

2013). Note that H(n) would be a block Hankel matrix of size L1L2...Ln×K1K2...Kn, and

its construction can be generally represented by the Hankelization operator as

H(n) = H{S}. (3.6)

Furthermore, the window lengths (Li with i = [1, n]) are chosen such that H(n) is the closest

to a square matrix, so Li = bNi

2 c + 1, where bc denotes the integer part of its argument.

Also, notice that H(n) can be used to compute the sample covariance matrix, C̃(n), as

C̃(n) =
1

L
H(n)H(n)H , (3.7)

where the superscript H denotes conjugate transposition of a matrix, and L = L1L2...Ln.

This matrix captures an averaged correlation of the elements in the level-n trajectory matrix,

and it can be used in the rank-reduction step in SSA (discussed next), yielding the same

orthonormal basis as H(n), but with squared eigenvalues (Broomhead and King, 1986).

In the seismology scenario, a data window that contains k linear events in the time domain

can be modeled by the superposition of k complex exponentials in f − x (Canales, 1984;

Oropeza and Sacchi, 2011). Using recursive models, one can show that the rank of the ideal
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Hankel matrix (noise-free and complete data) equals the number of complex exponentials

that form the data (Yang and Hua, 1996). Ideally, the trajectory matrix’s rank should equal

the number of linear events in the time domain of a seismic section. Random additive noise

and missing observations increase the rank of the ideal Hankel matrix (Oropeza and Sacchi,

2011; Gao et al., 2013). Hence, rank-reduction techniques have been successfully employed

in random noise suppression and missing observation recovery. SSA then follows with the

low-rank approximation of the trajectory matrix, usually done via the truncated singular

value decomposition of H(n), represented by

H
(n)
k = R{H(n), k} = UkΣkV

H
k , (3.8)

where k is the number of linear events in the time domain, Σk, Uk and Vk are the first

k singular values and vectors of the trajectory matrix. According to the Eckart-Young

theorem (Eckart and Young, 1936), this approximates H
(n)
k to H(n) in a least-squares sense.

Finally, the reconstructed data can be obtained from H
(n)
k by averaging the elements along

its antidiagonals, which is represented by the operator A

Ŝ = A{H(n)
k }. (3.9)

2D Denoise Example

In multicomponent seismology, three components might be simultaneously acquired (figure

3.1), referring to the two horizontal and the vertical components of the vector wavefield,

here represented by the displacements {Ux,Uy,Uz}.

  

Multicomponent sensors

Wave front

x

z

y

Source
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y
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Figure 3.1: Illustrative representation of multicomponent seismic data acquisition.
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The data shown in figure 3.2 exemplify these components. It corresponds to a spatial

slice view (Ux,y,z[1 : Nt, 10, 1 : N2]) of a synthetic 3C-3D shot gather generated via finite-

difference modeling assuming an isotropic elastic medium in a north-east coordinate frame.
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Figure 3.2: Inline view (Ux,y,z[1 : Nt, 10, 1 : N2]) of the 3D-3C synthetic data
components (a) Ux, (b) Uy, and (c) Uz.

When treating such data, one might adopt the usual approach of processing each component

separately. For instance, one could apply SSA to each component to attenuate random noise

via rank-reduction. To approximate the assumption of linear events in the time domain,

the data are usually divided into overlapping windows (figure 3.3), and SSA is applied to

each window separately. Of course, the components are likely to be corrupted by additive

Gaussian noise having different levels of signal-to-noise ratio (SNR2). In this example, the

SNRs are set to [SNRx, SNRy, SNRz] = [0.8, 1.0, 1.2].
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Figure 3.3: Windowed synthetic data corrupted with additive Gaussian noise in
components (a) Ux, (b) Uy, and (c) Uz.

2The SNR definition used here SNR =
A2

signal

A2
noise

., where A2
signal and A2

noise refers to the mean square

amplitude of the signal and noise, respectively.
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As only one quasi-linear event is observed in the window, the ideal rank of the trajectory

matrix should be one for each component. Since random noise disrupts its low-rank character

(figure 3.4), denoising can be posed as a rank-reduction problem. In general, however, the

rank selection is more complicated due to, for instance, the presence of non-linear events

and amplitude variations with source-receiver offset. One possible way to work around such

issues is to increase k to two or three times the number of expected events in the window

(Oropeza and Sacchi, 2011). Nonetheless, it is possible to denoise all components separately

using rank-reduction with k = 1 (figure 3.5).
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Figure 3.4: Singular value distribution at frequency of 20 Hz for each component.
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Figure 3.5: Componentwise results for 2D-3C synthetic data using rank k = 1 in
the SVD for each component (a) Ux, (b) Uy, and (c) Uz.

The componentwise approach takes no advantage of the complete information carried by

the vectorial data. The following section discusses how to apply the quaternionic version of

the SSA to the case of vector-valued seismic data, thus overcoming this issue.
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3.2.2 Quaternion Singular Spectrum Analysis

The quaternionic extension of the Singular Spectrum Analysis (QSSA) was first given by

Enshaeifar et al. (2016) who exploited the aforementioned advances in quaternion statistics

(Section 2.3.1) to define two quaternionic versions of the SSA. The first, called QSSA, is the

trivial extension of the SSA to the quaternion domain, with the proper replacement of real

or complex techiniques by its quaternionic counterparts. In other words, the same operator

in equation 3.1 can be used to describe the operations of Hankelization, rank-reduction and

anti-diagional averaging, as explained above. Of course, the rank-reduction operation, so far

given by the SVD of the trajectory matrix (H(n) in equation 3.6), is now done through the

QSVD (Section 2.3.3). The second quaternionic SSA, named augmented QSSA (AQSSA),

aims at exploiting the complete second-order information within the quaternion signal by

augmenting the trajectory matrix with its involutions as follows

H(n)a =


H(n)

H(n)i

H(n)j

H(n)k

 . (3.10)

Note that the sample covariance matrix obtained from H(n)a (equation 3.7) captures the

complete second-order information in the quaternion signal similarly to equation 2.41. Such

is the main difference between QSSA and AQSSA, which aims at explicitly exploiting the

correlation between data components in a vector-consistent approach, as is illustrated next.

2D Denoise Example

When applying QSSA or AQSSA to quaternion-defined seismic signals, the same description

given in section 3.2.1 follows. First, define the pure quaternion array

D[t, n,m] = Ux[t, n,m]i + Uy[t, n,m]j + Uz[t, n,m]k , (3.11)

in the time-space (t − x) domain, which has to be transformed to f − x via the QFT. In

this chapter, the QFT is applied from the left along µ = 1√
3
(i+ j + k).

As there are no conjugate symmetries in the frequency domain for quaternion signals, the

analysis is performed for every frequency slice within a range [ωmin, ωmax] on both sides of

the spectrum (i.e., positive and negative frequencies). Along with the augmentation step

in equation 3.10, that is a key difference between SSA and QSSA/AQSSA, as no significant

implication in the sideness and eigenaxis definitions of the QFT was yet found. Perhaps

more importantly, figure 3.6 shows that representing vector data as a quaternion signal does
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not affect the rank of the trajectory matrix. Its low-rank character can be demonstrated

through QAR models (Section 2.3.2), assuming processes with zero mean and no innovation.
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Figure 3.6: Comparison of singular value distribution at the frequency of 20 Hz for
each component and the quaternion signals. The QSSA and AQSSA singular values
are represented by Qstd and Qaug, respectively.

The augmentation step in AQSSA increases the rank of the trajectory matrix from 1 to 2 in

this case, possibly illustrating the additional information exploited by this approach. Also,

the singular values found via QSVD are of higher amplitude than those found via SVD for

each component (figure 3.6). Both approaches can simultaneously process multicomponent

seismic data, as the results show in figure 3.7.

3.2.3 Efficient Formulations

These simple examples illustrate how the SSA is a powerful signal processing technique.

However, one key point highlighted in several papers (e.g., Gao et al. (2013); Chiron et al.

(2014); Cheng and Sacchi (2017)) refers to the high computational costs associated with the

SVD of the trajectory matrix, as well as the memory requirements for its storage. Although

forming the trajectory matrix can be taken as computationally efficient, performing the SVD

of particularly big matrices is relatively slow, with a computational complexity of O(L2K)

in the case of a L ×K matrix. Therefore, despite its good performance, SSA might be an

unfeasible algorithm for large datasets because of high computational costs.

One option to improve rank-reduction efficacy in the case of scalar data entails replacing the

expensive SVD with other rank-reduction tools, as discussed in Appendix A. For instance,

the structure of the trajectory matrix can be exploited to improve the efficacy of the Lanczos
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Figure 3.7: QSSA denoising results using rank k = 1 for components (a) Ux, (b)
Uy, and (c) Uz, and (d)-(f) AQSSA using k = 2. Results were obtained via QSVD.

bidiagonalization using FFTs to perform matrix-vector multiplications. Other publications

addressing this topic point to randomization as a powerful tool to deal with such issues, as

it usually outperforms its deterministic versions in accuracy and speed (Liberty et al., 2007;

Halko et al., 2011). Some interesting applications of the randomized QR decomposition

include 5D scalar seismic data reconstruction via parallel matrix factorization (Carozzi and

Sacchi, 2017) and the efficient formulation of the SSA (Cheng and Sacchi, 2017).

Although the quaternion extensions of classic signal processing techniques bring the possi-

bility of taking better advantage of the information in the data, they also carry associated

drawbacks with them. Quaternion-based signal processing is known to be more compu-

tationally expensive than its real or complex counterparts since quaternion multiplication

(equation 2.8) requires more floating-point operations than classic (real or complex) multi-

plications. That imposes a challenge in developing multidimensional vector-valued seismic

data filtering via rank-reduction because computationally expensive matrix decomposition

techniques, such as the SVD, might suffer more in their hypercomplex versions. Fortunately,

published methods that improve rank-reduction efficacy in the case of scalar data can be

readily extended to the quaternion domain. Specifically, the structure of the trajectory ma-

trix can also be exploited to improve the efficacy of the quaternionic version of the Lanczos

bidiagonalization, and randomized QR algorithms, where both benefit from the quaternion

convolution theorem and QFTs discussed in section 2.3.4.

Figure 3.8 compares the processing time in QSSA based on QSVD, Lanczos bidiagonaliza-

tion, and randomized quaternion QR (rQQR) decomposition for a single frequency slice and

increasing array size. The rank used in the QSVD was k = 1, and the number of Lanczos
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iterations and random projections in the rQQR was k = 4. Notice how the Lanczos bidiago-

nalization and rQQR provide substantial gains in processing times, close to the order of 103

seconds. One of the advantages worth noticing when avoiding the SVD in the quaternion

domain for this specific application is that the particular transformations to real or complex

matrices are avoided. Therefore, the algorithms are implemented directly in the quaternion

domain, which reduces their computational complexity.

2 4 6 8 10
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QSVDs
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rQR

Figure 3.8: Comparison of the processing time for quaternionic rank-reduction al-
gorithms using QSVDs (line), Lanczos bidiagonalization (dashed line), and rQQR
(circles) in the QSSA. The Lanczos bidiagonalization and the rQQR were imple-
mented using efficient matrix-vector multiplication via QFTs. The array size grows
as 10n× 10n.

It is important to stress that, unlike the case of scalar datasets (Cheng and Sacchi, 2017),

the rQQR approach could not outperform the processing times given by the Lanczos bidiag-

onalization because the convolution of two quaternion sequences requires two QFTs and one

inverse QFT, as shown in equations 2.64 and 2.65. Since the implementation of the QFTs is

based on two complex FFTs, the processing times for the random projections in the rQQR

grow more rapidly than the matrix-vector multiplications in the Lanczos iterations for in-

creasing array size. Nevertheless, the gains obtained with any of the efficient formulations

of the QSSA make it possible to use these techniques iteratively for simultaneous denoising

and reconstruction of multidimensional vector-valued seismic data, as discussed next.

3.3 Examples

This section tests the methods to reconstruct synthetic vector-valued seismic data. The pre-

diction gain Rj is used to quantify (in dB) and evaluate the performance of the algorithms,
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which is given by

Rj = 10 log10

(
‖Uo

j‖22
‖Uj −Uo

j‖22

)
, (3.12)

where Uo
j and Uj are the true (noise-free and complete) and reconstructed data, respectively,

with j = (x, y, z) representing the component of the vector data.

3.3.1 Simultaneous Denoising and Reconstruction

In the case of missing seismograms, the same approach for data recovery can be used for

either scalar or vector-valued data. For each frequency slice in a given range, the following

POCS-like iterative reinsertion algorithm (Bro, 1997; Oropeza and Sacchi, 2011; Gao et al.,

2013) performs data recovery for both scalar or quaternion-valued data

Si = αSobs + (1− αT) ◦ P{Si−1}, (3.13)

where Sobs represents the observed frequency slice with missing entries, Si represents the

frequency slice at iteration number i, P{·} correspond to the filter operator (SSA, QSSA or

AQSSA) as given by equation 3.1, T is a sampling operator that identifies the presence of

a trace in the spatial position (n,m) of the data

T[n,m] =

1, if trace exists

0, if trace is missing
(3.14)

and 1 is a matrix of ones with the same dimensions as the input frequency slice. This way,

(1 − αT) represents an imputation operator where α ∈ (0, 1] controls the reinsertion of

reconstructed data. If α < 1, denoising is simultaneously performed with data recovery via

a weighted average of the original observations and the SSA results.

The Rank Reduction Tool

Since the SVD provides a least-squares solution in the rank-reduction problem, its recon-

struction gains are expected to outperform the quaternionic Lanczos and randomized QR

results. For scalar data, the QR decomposition is arguably more stable while also offering

relaxation in estimating the desired rank in terms of random projections (see Appendix A).

Figure 3.9 shows the reconstruction gains of the QSSA applied to a 3D-3C synthetic dataset

with three constant dips under different realizations of noise and trace decimation (10% to

90%). The ‘rank’ (random projections or Lanczos iterations) varied from 1 to 50, and the

imputation algorithm (equation 3.13) ran for 10 iterations with α = 0.5.

Compared to the QSVD and Lanczos bidiagonalization, the rQQR also offers a relaxation in
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Figure 3.9: QSSA reconstruction gains for each data component x, y, z with varying
levels of noise and data decimation as a function of (a) − (c) the rank in QSVD,
(d)− (f) Lanczos iterations, and (g)− (i) random projections in the rQQR.

terms of rank selection for vector data, as figure 3.10 shows for an example with p = 60% of

missing traces. For the remaining examples in this chapter, however, the Lanczos algorithm

was favored since it is the most efficient and best performing algorithm among these options.

Figure 3.10: Reconstruction gains for varying levels of data decimation as a function
of the rank in QSVD and random projections in rQQR for 60% decimated data.
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The same synthetic 3D-3C data above was used for comparing the SSA and its quaternionic

counterparts, QSSA and AQSSA, in seismic data reconstruction. The levels of data decima-

tion also varied from 10% to 90%, and α = 0.5 was used in as reinsertion parameter. The

number of Lanczos iterations was set to k = 8 for the SSA and QSSA and k = 15 for the

AQSSA, and this setup was reused over 20 realizations of the experiment. While the AQSSA

could marginally outperform the QSSA, both methods improved over the componentwise

application of the SSA as shown in Figure 3.11.

Figure 3.11: Reconstruction gains for varying levels of data decimation using k = 8
Lanczos iterations for the SSA and QSSA, and k = 15 for the AQSSA.

For a fixed level of trace decimation p = 60%, the number of Lanczos iterations was allowed

to vary from 1 to 22. Although outperforming the componentwise SSA, the QSSA and

AQSSA have similar peak performance as shown in Figure 3.12. The figure also shows the

increased subspace of the AQSSA since it requires additional iterations for better results.

However, similarly to the SSA and QSSA, quality decreases for a larger subspace since noise

is progressively inserted in the results.

Figure 3.12: Reconstruction gains for varying levels of data decimation using k = 8
Lanczos iterations for the SSA and QSSA, and k = 10 for the AQSSA.

47



5D-3C Linear Events

This section illustrates one 5D-3C example with planar events, extending the ones used in

figures 3.9 to 3.12. As explained in Chapter 1, a three-dimensional acquisition geometry

generates data volumes that depend on time and four spatial dimensions for each component.

In more detail, figure 3.13 shows traditional coordinate systems for sorting seismic data

that lead to 5D representations, such as midpoint and offset domains, which are useful for

applications such as denoising and reconstruction (Carozzi and Sacchi, 2019).

Figure 3.13: Map view of a seismic acquisition coordinate system defined by sources
(sx, sy) and receivers (rx, ry). Additional coordinates, such as azimuth (Θ), mid-
points (mx,my), and offsets (hx, hy) are also shown (after Carozzi (2021)).

The midpoint and offsets coordinates are given, respectively, as

(mx,my) =

(
sx + rx

2
,
sy + ry

2

)
and

(hx, hy) =

(
sx − rx

2
,
sy − ry

2

)
.

The azimuth can then be defined as Θ = arctan
(
hy

hx

)
, and the absolute offset as h =√

hx2 + hy2. After gridding, the discrete data for the vertical component, Uz, can be

sorted in several domains, such as the midpoint-offset Uz[t,mx,my, hx, hy], midpoint-offset-

azimuth Uz [t,mx,my, h,Θ], and the shot-receiver domain Uz[t, sx, sy, rx, ry]. Traces with

common coordinates are usually averaged before being assigned to the same poition in a

process named binning. Some bins, however, will have no traces assigned to it, and can

be estimated through SSA reconstruction. Binning in itself creates further issues with
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seismic data that go beyond the purposes of this thesis (see Carozzi and Sacchi (2021)),

which assumes regular data throughout its tests. Moreover, since CMP binning is only

appropriate for wave modes that have ideally symmetric raypaths around the midpoint, the

datasets used in these examples are assumed to be sorted in the shot-receiver domain to

attain maximum mode mixing in the field coordinate data components.

The ideal (noise-free and complete) data is shown in figure 3.14(a), and one example with

p = 90% of missing traces is shown in figure 3.14(b). The idealized data, albeit unrealistic,

has three dips, one dominating in each orthogonal component to illustrate pure P and SV

modes in a radial-transverse coordinate frame. To approximate the case of “mode mixing”

from one component onto the others, a rotation is used to map the data from its original

frame to the (mixed) north-east coordinate frame. Each component of the data represents a

regular tensor of size 100× 20× 20× 20× 20, which were synthesized with a Ricker wavelet

of central frequency fc = 20 Hz with ∆t = 0.004 ms. Each (pure) data component mainly

contains a distinct dip with a magnitude of 1, and the projection artificially mixes these

components, as shown below.

The SNRs in each component are still set to [SNRx, SNRy, SNRz] = [0.8, 1.0, 1.2]. As

above, the algorithm runs for 10 iterations with α linearly decreasing from 1 to 0 with

iterations for simultaneous denoising and reconstruction. For comparison, each component

is also reconstructed separately with the SSA filter, and all methods are applied in the

frequency range of 0 to 60 Hz. The number of Lanczos iterations is set to k = 10 for

SSA and QSSA, and k = 12 for the AQSSA given its increased signal subspace (figure

3.6). Figure 3.15 shows the reconstructed results for all components and methods. The

reconstruction gain (equation 3.12) for each method, shown in table 3.1, indicates superiority

in the AQSSA reconstruction. Both quaternionic approaches were more effective in denoising

and reconstructing the multicomponent data despite their visual similarity.

Prediction gain (dB)
Method Rx Ry Rz

SSA 54.53 55.25 56.02
QSSA 63.07 59.32 59.69

AQSSA 65.11 61.09 62.26

Table 3.1: Reconstruction prediction gains for the 5D-3C linear events using the
SSA, QSSA, and AQSSA.
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(a) (b)

Figure 3.14: The 5D -3C (Ux,Uy,Uz) linear events in its (a) ideal and (b) noisy
and decimated forms, respectively.
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(a) (b) (c)

Figure 3.15: The reconstructed 5D-3C (Ux,Uy,Uz) linear events with the (a)
SSA, (b) QSSA, and (c) AQSSA filters. The reconstruction quality (dB) for
each respective method method is (54.53, 55.25, 56.02), (63.07, 59.32, 59.69), and
(65.11, 61.09, 62.26) in x, y, z order.
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Synthetic 3D-3C VSP example

A 3D-3C common-receiver gather from the VSP data shown in figure (figure 3.16(a)-(c))

is used for comparing the SSA and QSSA. Each component of the data was corrupted

with Gaussian random noise following the same SNRs as above, and then decimated to

have 60 % of its traces missing (figure 3.16(d)-(f)). The observed data, originally of size

218× 205× 205, were patched into overlapping cubes of size 128× 32× 32 with 50% overlap

across each dimension. The algorithms run in the frequency range 0 to 50 Hz for all patches,

with k = 10 random projections for SSA and QSSA, and k = 15 for AQSSA. The imputation

algorithm runs for 50 iterations with a reinsertion parameter α = 0.5.

Figure 3.16: Time slice at 1.5s of noisy data decimated to have 50% of its traces
missing.

The prediction gains (equation 3.12) shown in table 3.2 indicate that AQSSA outperforms

SSA and QSSA in this test. Although the results obtained in this example are comparable,

the AQSSA provides cleaner results than the SSA and QSSA, as shown in figure 3.17 and

by the similar prediction gains. Figure 3.18 shows the difference between the reconstruction

results and the ideal data (figure 3.16(a)-(c)), and all have similar levels of signal leakage in

their residual panels. Even though the differences between the three approaches are arguably

not significant, the quaternion approaches seem to provide good options for simultaneous

trace recovery and random noise attenuation of vector-valued seismic signals.
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Prediction gain (dB)
Method Rx Ry Rz

SSA 28.73 27.64 28.86
QSSA 29.32 28.14 29.18

AQSSA 30.43 29.88 30.17

Table 3.2: Reconstruction prediction gains for the 3D-3C VSP using the SSA, QSSA,
and AQSSA.

Figure 3.17: Time slice at 1.5s of reconstruction results for (a)-(c) SSA, (d)-(f)
QSSA and (g)-(i) AQSSA.
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Figure 3.18: Time slice at 1.5 seconds of difference between reconstruction results
(figure 3.17) and ideal data (figure 3.16(a)-(c)) for (a)-(c) SSA, (d)-(f) QSSA and
(g)-(i) AQSSA.
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3.4 Final remarks

3.4.1 Discussion

The results obtained with the quaternionic rank-reduction methods were similar to those

obtained in the componentwise approach. Stanton and Sacchi (2013) discusses that the gains

provided by quaternions can be associated with the spectral overlap of the components in

the frequency domain. In practice, it was observed that if one component has very little to

no signal, it compromises the quality of the reconstruction of the remaining components.

However, if otherwise happens, the vector approach seems to be able to take advantage of the

redundant information present in the signal components, introducing a slight improvement

in its applications. Also, it is still unclear how to prove the increased rank of the augmented

Hankel matrix in AQSSA. Including the quaternion involutions suggests that widely linear

AR models (Ginzberg and Walden, 2013) should be used.

The number of Lanczos iterations is set following Gao et al. (2013), where a small subspace

can be retrieved by allowing a small number of iterations, say 4−10, in the case of simplistic

datasets. Of course, this is data-dependent, and more complex datasets, such as those

containing amplitude variations with source-receiver offset or curved events, might require

a higher number of iterations. Nevertheless, adopting a windowing strategy reduces the

effects of amplitude variations and curvature, which still allows one to set a small number

of iterations per window. Also, notice that the increased signal subspace in the AQSSA

requires more Lanczos iterations than SSA and QSSA. However, this parameter cannot be

overestimated to avoid noise leakage into the processed sections.

The approach adopted in this thesis intends to be physically meaningful. Therefore, the

seismic signal is represented by quaternions in the time domain. Note, however, that the

different representations of quaternions, such as its Cayley-Dickson form (equation 2.23),

can also be employed as a tool in the treatment of vector signals. For instance, it would

be possible to process 2C post-stack datasets using quaternions in the Cayley-Dickson form

following the approach given by Stanton and Sacchi (2013). However, there is no guarantee

that post-stack datasets have preserved the vector-fidelity of the wavefield after processing

and might not be suitable for the quaternion techniques. Further, another opportunity lies

in the employment of biquaternions3 for the representation of vector signals (e.g., Le Bihan

et al. (2007)). This approach is attractive because each component of the vector-valued

seismic data could be transformed to f − x using the classic FT, which preserves conjugate

symmetry in this domain and then be processed via biquaternion algebra.

3Biquaternions are quaternion numbers which have complex components.
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3.4.2 Conclusions

This chapter has discussed the application of rank-reduction methods for multicomponent

seismic data processing based on the natural ability of quaternions to represent vector-valued

data. The methods entail the extensions of the SSA algorithm to the case of quaternion

variables, and its main goal is to preserve and exploit the vector relationships in the data.

Using the quaternionic representation, quaternion-based signal processing techniques dis-

cussed in this thesis, such as QFT and QSVD, have to be employed in the data processing

steps, which illustrates a shift from scalar towards vector signal processing.

This chapter also extends the efficient formulations of the SSA to quaternion-valued seismic

signals. The matrix decomposition methods adopted here are the quaternionic versions

of the Lanczos bidiagonalization and the randomized QR decomposition. Both methods

are valuable alternatives to the prohibitive QSVD. The efficient formulations of the QSSA

made it possible to employ the method in the simultaneous denoising and reconstruction

of multidimensional vector-valued datasets. The results presented in this chapter indicate

that both QSSA and AQSSA offer reasonable alternatives to treating vector signals. In

particular, the AQSSA can exploit second-order information from the input components,

improving the final reconstruction results significantly.

One fundamental conclusion of this study is that the time-domain representation of vector-

field seismic data via quaternion arrays does not affect the rank of the standard Hankel

matrix built from its monochromatic frequency slices, which should be of low rank in the

ideal case. On the other hand, the augmented Hankel matrix has increased rank due to

the inclusion of the involutions in the process. However, it is still of low rank, and both

approaches are useful for vector-data processing. The low-rankness character of the trajec-

tory matrix in QSSA can be demonstrated through Q-AR models (Ginzberg and Walden,

2013) meaning that the quaternionic frequency slices of the data follow a predictive recur-

sion given by a Q-AR model. Such is the basis for classic prediction filters in the case of

scalar data. These filters, known as the f − x deconvolution (FXDECON) or prediction

filters, are widely used in the scalar seismic data processing. The next chapter introduces

the technique under the quaternionic perspective to offer their hypercomplex extensions.
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CHAPTER 4

Quaternion f − x Widely-Linear

Prediction Filters1

4.1 Introduction

Multicomponent seismology brought up the challenge of processing vector-valued seismic

signals. Correspondingly, as discussed throughout this thesis, random noise suppression

also gained a vectorial perspective and, although each of the acquired components could be

processed separately, several publications address the topic following a vectorial approach.

The shift in paradigm aims at exploiting the additional information available in the correla-

tion between the components of vector-valued seismic data. For instance, one approach for

random noise reduction of scalar seismic data is the frequency-space (f − x) deconvolution

published by Canales (1984), known as FXDECON (Gülünay, 1986).

The FXDECON is a complex Wiener filtering technique that estimates the predictable por-

tions of a given signal embedded in random noise via autoregressive (AR) models. Despite

being already well-known, the FXDECON theory still attracts attention among researchers

and practitioners. Recently, Gülünay (2017) examined the signal preservation ability of dif-

ferent formulations of the FXDECON on signal and noise sections. Moreover, Naghizadeh

and Sacchi (2012) and Kamil et al. (2015) show how one can extend the FXDECON to the

case of multicomponent seismic data through vector-autoregressive (VAR) models. Both

publications indicate better random noise suppression when compared with its scalar coun-

terpart due to the additional information exploited by VAR models.

1A version of this chapter is published in Bahia, B., and Sacchi, M. D. (2020). Widely linear denoising
of multicomponent seismic data. Geophysical Prospecting, 68(2), 431-445.
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The VAR-based methods assume that long-vectors can represent the components of the

vectorial signal in the frequency domain. Notice that each component is Fourier trans-

formed independently. This representation, however, can be regarded as restrictive to the

processing of vector-valued signals since it does not preserve vectorial relationships between

data components. As an alternative, vector signals can be numerically represented through

hypercomplex numbers, such as the quaternions. Thanks to the recent developments in

quaternion-based signal processing, one can now process vector-valued data following an

approach that is not only physically consistent but also offers the possibility of making the

most of the additional useful information acquired by multicomponent sensors.

In this chapter, following the advances in quaternion autoregressive (Q-AR) models intro-

duced in Section 2.3.2, a hypercomplex version of the FXDECON is proposed, referred to

as QFXDECON. This perhaps straightforward extension is based on the standard second-

order statistics of quaternion signals, which is optimal for the case of proper signals only

(Took and Mandic, 2009, 2011). In the case of improper signals, such as those sampled from

processes with different variances in data components, it is possible to exploit the complete

second-order statistics through widely-linear (WL) estimation of the underlying signal (Sec-

tion 2.3.1). For such, one has to consider the i−, j−, k− involutions of a quaternion signal

in the prediction context, giving rise to what is referred to as the WL-QFXDECON.

4.2 Theory

The FXDECON (Canales, 1984) is an established technique for random noise attenuation

from scalar seismic data. Its theory was best presented by Gülünay (1986) by combining the

works by Treitel (1974) and Canales (1984). FXDECON corresponds to a linear prediction

filter, which is based on autoregressive (AR) models. This section explains the theory of

prediction filters via AR models, and how to obtain optimum filter coefficients following the

least-squares theory (Ulrych and Sacchi, 2005).

4.2.1 f − x prediction via AR Models

Consider a noise-free scalar seismic section s(t, x) consisting of a single linear event of dip p

s(t, x) = u(t− px), (4.1)

where u(t) represents a source wavelet recorded in the data s(t, x) as a function of time t and

space x. The dip p = 1
v = ∆t

∆x represents the horizontal slowness (or ray parameter) of the

propagating wavefield. The Fourier representation of the data s(t, x) 
 S(ω, x) following
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equation 4.1 is given by the phase shift property

S(ω, n) = U(ω)e−iωpx (4.2)

where U(ω) represents the wavelet spectrum, and ω represents the temporal frequency. For

regularly sampled data, the spatial dimension x can be discretized as x = (n− 1)∆x, where

n = 1, . . . , N represents the trace index in space with sampling interval ∆x, then

S(ω, x) = Sn = U(ω)e−iωp(n−1)∆x, (4.3)

where the notation Sn was introduced for convenience, and the dependency on ω is omitted.

Notice that the change of variable n = n− 1 leads to

Sn−1 = Ue−iωp((n−1)−1)∆x (4.4)

= Ue−iωp(n−1)∆xeiωp∆x (4.5)

= Sne
iωp∆x. (4.6)

Equivalently, one can write a forward linear recursion relating neighboring traces as

Sn = Sn−1f1 (4.7)

where f1 = e−iωp∆x. Therefore, linear events in the time-space (t−x) domain are predictable

in f − x by means of recursive models such as that in equation 4.7, which represents an

autoregressive model of order 1 with zero-mean and no innovation.

In the more general case of the superposition of K dipping linear events in t− x, it is well

understood that these events correspond to the superposition of K plane waves in f − x.

Following from the discussion above, these waves are represented by a superposition of

complex exponentials written as

Sn(ω) =
K∑
k=1

Uk(ω)e−iωpk(n−1)∆x, (4.8)

where pk is the horizontal slowness of the k-th wave, and Uk(ω) is the Fourier transform

of the source wavelet of the k-th wave. For each frequency in a range [ωmin, ωmax], the

FXDECON represents the signal composed by these complex exponentials by a zero-mean

AR model of order K as

Sn =
K∑
i=1

Sn−ifi + en, n = K + 1, . . . , N. (4.9)
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Equation 4.9 can be used to recursively obtain the predictable portions of the signal Sn via

the convolution of the data sequence, Sn−i, and the filter coefficients, fi, where en is the

innovation term. The above equation characterizes a K-order forward AR model since it

predicts the current sample n based on its previous K samples. Similarly, the expression

Sn =
K∑
i=1

Sn+ibi + en, n = 1, . . . , N −K (4.10)

defines a backward recursion to predict the sample n based on its future K samples.

Least-squares Estimation of Filter Coefficients

Equations 4.9 and 4.10 can be written in matrix-vector form as (Ulrych and Sacchi, 2005)

d = Xf + ε, (4.11)

where XM×K is a transient-free convolution matrix built from the data samples, dM×1 is

the data vector, fK×1 is the vector of unknown filter coefficients (forward or backward),

εM×1 is the vector of innovation terms, and M = N −K + 1.

The optimum filter f̃ can be estimated in a least-squares sense by minimizing

J(f) = ‖ε‖22 = ‖d−Xf‖22, (4.12)

which represents the innovation energy. The solution to this problem is known to be

f̃ = (XHX)−1(XHd), (4.13)

where the superscript “H” denotes the transpose-conjugate of a matrix. For a more algo-

rithmic oriented description, the reader is referred to Gülünay (2017).

The enhanced complex exponentials can then be obtained by convolving the optimum

forward and backward filters with the data, and finally averaging its overlapping results

(Naghizadeh and Sacchi, 2012; Gülünay, 2017). The combination of forward and backward

prediction is of great interest as it reduces possible errors produced by the individual appli-

cation of forward (or backward) prediction, such as incomplete prediction of traces along a

given direction. Besides, the filter length plays an important role in predicting the signal to

avoid losses of useful information. For instance, for a noise-free single dipping event, i.e.,

a single complex exponential in f − x, an AR model of order 1 (K = 1) should be enough

to predict this event properly. For sections with more linear events, say K, the filter length

should be no less than K if a proper prediction is to be achieved. However, due to distortion
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in amplitudes caused by random noise K linear events cannot be accurately predicted by

AR models of order K. Therefore, one should favor larger prediction filters since they are

known to perform better in terms of signal preservation (Gülünay, 2017).

4.2.2 f − x prediction via Q-AR Models

The above illustrates why FXDECON has its place in the processing stage of scalar seismic

data. It is simple, computationally efficient, and effective in random noise suppression.

In the case of non-linear events in t − x, the assumption of dipping linear events can be

approximated by applying suitable windowing strategies to the data. This same technique

can also be implemented in 3D using 2D convolutions under the assumption of planar

events in time (Chase, 1992). Furthermore, one can attenuate random noise in the case of

multicomponent measurements via VAR models (Naghizadeh and Sacchi, 2012; Kamil et al.,

2015). The development of autoregressive models for quaternion signals (Q-AR) (Ginzberg

and Walden, 2013) introduces another opportunity in the treatment of vector-valued signals.

Review on quaternion-based signal processing

The 4D nature of quaternions facilitates the numerical representation of three- and four-

component signals, such as multicomponent seismic data, allowing real physical phenomena

to be modelled in the space they actually happen. For instance, recall that full quaternion

arrays can represent four-component signals as

q[n] = a[n] + b[n]i + c[n]j + d[n]k , (4.14)

and pure quaternion arrays can represent three-component signals

q[n] = b[n]i + c[n]j + d[n]k , (4.15)

where a, b, c, and d are the components of the quaternion signal q, and n = [1, N ] represents

temporal or spatial samples. Such models have been increasingly adopted for processing

vector-field seismic datasets as it allows one to naturally preserve and exploit the vector

relationships of the data (Le Bihan and Mars, 2004). The practicioner has to notice, however,

that quaternion-based signal processing tools have to be employed instead of their classic

versions if one has decided to define the data as a quaternion array. For formulating the

QFXDECON, this chapter uses the QFT and Q-AR models, which are discussed next.

Quaternion Fourier Transform Notice, first, that the quaternionic extension of the

FXDECON will require the data to be transformed to f −x, as usually done for scalar data
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by means of the classic Fourier transform. Similarly to the QSSA, therefore, the quaternion-

valued seismic data is to be transformed to f −x by means of the QFT, which allows signal

processing techniques performed in the frequency domain, such as the FXDECON itself,

to be generalized to quaternion-defined datasets (Ell and Sangwine (2007); Ortolani et al.

(2017); Bahia and Sacchi (2019b)). One key difference, as previously discussed, is the lack

of conjugate symmetries in the frequency representation of quaternion-valued signals. In

addition, quaternion algebra is non-commutative, and the QFT is not uniquely defined.

It requires the definition of a side and of an arbitrary pure unit quaternion (µ2 = −1),

called the eigenaxis, for the transformation (Section 2.3.4). The QFT is analogous to the

classical Fourier transform, and most of its properties are kept unchanged in both cases.

For example, following equations 2.62 or 2.63, application of the QFT to the quaternion-

defined seismic data composed of K dipping events gives rise to plane waves defined by

hypercomplex exponentials and amplitudes in f − x, similarly to equation 4.8.

f − x Predictability and Second-order Statistics In the quaternion domain, one can

show f − x predictability of linear events following the same steps as for equations 4.1-4.7,

now using equations 2.62 or 2.63 via the phase shifts property. In that sense, notice how

the most straightforward derivation starts with a right-sided QFT since it is conformant

with the matrix-vector notation adopted in equation 4.11. Therefore, in this chapter, the

QFT is always applied from the right using an eigenaxis µ = 1√
3
(i + j + k). Furthermore,

the predictability of linear events in the quaternion domain allows modeling vector-valued

seismic data composed of linear events synthesized by hypercomplex phase shifts. More

importantly, with the formalization of Q-AR models by Ginzberg and Walden (2013), the

f − x predictability in the quaternion domain can be further exploited in two different

formulations of the FXDECON to the case of quaternion-valued seismic data.

The first, in the case of proper quaternion signals (Section 2.3.1), corresponds to a strictly lin-

ear prediction scheme that is understood as the trivial extension of the procedure described

above. The method is named QFXDECON, and it requires the t − x quaternion-valued

seismic data to be transformed to f −x via the QFT. For each frequency slice in both sides

of the spectrum, the same process of filter estimation and data filtering takes place. Since

the Weiner solution for quaternionic predictive filters follows the same form as in equation

4.13 (Took and Mandic, 2009), the main difference between FXDECON and QFXDECON

is that the data-dependent variables (X and d) and filter coefficients (f ) are now quaternion

valued. However, such extension could lead to suboptimal performance as useful additional

second-order complementary information is being ignored.

In the context of linear estimation, as in the f − x prediction discussed earlier, taking full

advantage of the second-order information in quaternion signals is also possible. Hence, to
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exploit the second-order statistics of quaternion valued signals, one has to consider a quater-

nion WL model. This is done by allowing additional linear operations on the quaternion

involutions in equation 4.11 as

d = Xf + Xifi + Xjfj + Xkfk + ε, (4.16)

which can be recast as

d = Xafa + ε (4.17)

with Xa =
(
X Xi Xj Xk

)
and fa =

(
f f i f j fk

)T
. The Wiener solution for the widely-

linear model also has the general form of the standard solution given in equation 4.13, but it

is now based on the augmented data matrix Xa. Note that X,Xi,Xj , and Xk are transient-

free convolution matrices; then the product XaHXa provides an estimator of the augmented

covariance matrix of the type given in equation 2.41. In addition, the augmented filter to be

estimated is four times longer than before, but its action represents four different filtering

procedures each given by (f , f i, f j , fk). This is of great interest, as already mentioned, since

it allows for better signal preservation as it will be shown in the Examples section below.

4.3 Examples

This section describes the tests of the effectiveness of the techniques presented in this chap-

ter. Through 2D-3C synthetic examples and one shot gather of a 3C ocean bottom cable

survey (Naghizadeh and Sacchi, 2012), it is possible to show that widely-linear Q-AR mod-

els provide enhanced signal preservation when compared to its linear counterparts. The

datasets are composed of one vertical and two horizontal components, but the methods

could easily incorporate the pressure component in 4C datasets as well.

4.3.1 3C Synthetic Data Examples

The synthetic example consists of a 2D-3C dataset with 4 distinct dips in the time domain

(figure 4.1(a)-(c)), having 1 second of record length with temporal sampling ∆t = 2 ms,

and 100 traces spaced 10 meters apart. Notice how the three components show the same

reflection travel-time signatures, but have different polarities and amplitudes among them.

Since the data is composed of linear events only, it is not necessary to use any windowing

strategy. Also, notice that the figures display only one every four traces in the sections. One

can corrupt the data following the assumption of band-limited Gaussian noise such that each

component has different signal-to-noise ratios (SNR). Figure 4.1(d)-(f) shows the dataset

with added noise sequences having distinct SNRs as [SNRx, SNRy, SNRz] = [0.4, 0.3, 0.5].
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Figure 4.1: (a) Ux (b) Uy and (c) Uz ideal synthetic multicomponent data, and cor-
rupted with band-limited random noise with [SNRx, SNRy, SNRz] = [0.4, 0.3, 0.5]
in (d)-(f).
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Using a 4-th order AR and Q-AR models (K = 4), one can attenuate random noise from

the input sections shown in figure 4.1(d)-(f). The overall length of the augmented filter

is Ka = 16 in this case. All methods are implemented using transient-free forward and

backward prediction filters, and a prewhitening value of 0.01% was added to the main

diagonal of all techniques and tests presented here. Figures 4.2 and 4.3 show, respectively,

the filtering results and the estimated noise section (the difference between the input section

and the filtering result) for each method applied in the frequency range of 0 to 100 Hz.

As already mentioned, FXDECON is an efficient technique in random noise suppression,

as shown in figures 4.2(a)-(c). It is clear how the weaker events, especially in the Uy

component, could be recovered from its noisy background. From the differences shown in

figure 4.3(a)-(c), however, it is possible to notice portions of the predictable signal leaking

into the noise sections. As already previously discussed, this is a consequence of the random

noise present in the data, which introduces amplitude variations in the traces. Although

longer filters can achieve better results, the goal of this section is to compare the signal

preservation capability of each technique using the ideal optimum filter length.

Figure 4.2(d)-(f) show the results of the QFXDECON filtering. Qualitatively, one can point

to improvements in random noise suppression when compared with the FXDECON results

(figure 4.2(a)-(c)). However, the technique also has the drawback of signal leakage into the

noise space (figure 4.3(d)-(f)). On the other hand, the WL-QFXDECON (figures 4.2(g)-(i)

and 4.3(g)-(i)) could achieve enhanced signal preservation as a result of the additional in-

formation exploited from the correlation between data components, and due to the longer

filter estimated in its formulation. However, also notice that the WL-QFXDECON provides

higher levels of random noise in the filtered sections. This leakage happens because of the re-

dundancy created in the noise samples during the augmentation step in equation 4.16, which

induces the prediction of some noisy samples. Nevertheless, the WL-QFXDECON provides

the best signal preservation scheme among its linear and componentwise counterparts.

Due to the similarity of the results and for completeness in the comparison, it is rather

useful to assess the effectiveness of the denoising methods by means of the reconstruction

quality Ri (in dB) given by

Ri = 10 log10

(
‖Uo

i ‖2F
‖Ui −Uo

i ‖2F

)
, (4.18)

where Uo
i and Ui are the true (noise-free) and denoised data, respectively, with i = (x, y, z)

representing the component of the data. The subscript F represents the Frobenius norm of

a matrix. As defined, higher prediction gains Ri indicates better performance by a given

denoising methods.
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Figure 4.2: Denoising results with K = 4 for each component (Ux, Uy, Uz) in the
(a)-(c) FXDECON, (d)-(f) QFXDECON, and (g)-(i)WL-QFXDECON.
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Figure 4.3: Estimated noise sections with K = 4 for each component (Ux, Uy, Uz)
in the (a)-(c) FXDECON, (d)-(f) QFXDECON, and (g)-(i)WL-QFXDECON.
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The same example discussed above was run with varying levels of random noise and increas-

ing filter length from 1 to 10. The initial SNRs ([SNRx, SNRy, SNRz] = [0.4, 0.3, 0.5]) were

successively increased by unity also from 1 to 10. Figure 4.4 portrays the prediction gains

obtained by each method for each component following equation 4.18. This result indicates

that the widely-linear approach outperforms its linear counterparts in the case of lower SNR

and shorter prediction filters. Notice, however, that the performance of the FXDECON and

QFXDECON do approach that of WL-QFXDECON in the case of high SNR and longer

prediction filters. Not only this is due to the longer prediction filters being employed by

FXDECON and QFXDECON, but also because the augmentation step of the widely-linear

approach introduces noise in the final section which reduces its reconstruction quality de-

spite the higher levels of the signal being recovered. Besides, the QFXDECON provided

slightly better prediction gains when compared with the componentwise FXDECON.
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Figure 4.4: Prediction gains obtained after denoising the components Ux, Uy,
and Uz using (a-c) the FXDECON, (d-f) for QFXDECON, and (g-i) for WL-
QFXDECON.
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4.3.2 3C OBC Field Data Example

Figure 4.5 shows the two horizontal and the vertical components of an OBC dataset. Sur-

prisingly, the vertical component of this dataset has the most detectable levels of random

noise. Due to the presence of curved events, the whole dataset is subdivided into overlapping

patches as to approximate the assumption of linear dips in the time domain. All techniques

(FXDECON, QFXDECON, and WL-QFXDECON) are applied to each window separately,

which are then added back together to recover the processed data. The patches have 100

time samples and 50 traces each, with overlapping of 20% in both dimensions. The filter

length is K = 3 for all methods, which run in the frequency range [0, 100] Hz.

Figures 4.6, 4.7, and 4.8 display the results of the FXDECON, QFXDECON, and WL-

QFXDECON, respectively. Despite the higher levels of noise in the WL-QFXDECON results

being noticeable, it is arguable that all methods have good performance in eliminating

random noise from the vertical component. Thus, a more interesting analysis would be

devoted to their signal preservation capability. The estimated noise sections were computed

for all components, and are displayed in the bottom rows of its respective filtering results.

Once more, these results indicate that both FXDECON and QFXDECON have higher levels

of coherent energy leakage in the estimated noise sections than WL-QFXDECON.
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Figure 4.5: The 2D-3C OBC survey. (a) Ux (b) Uy and (c) Uz components.
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Figure 4.6: The results of componentwise FXDECON applied the OBC data. (a)
Ux (b) Uy and (c) Uz components. (d)-(f) Respective estimated noise sections.
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Figure 4.7: The results of QFXDECON applied to the OBC data. (a) Ux (b) Uy

and (c) Uz components. (d)-(f) Respective estimated noise sections.
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Figure 4.8: The results of WL-QFXDECON applied to the OBC data. (a) Ux (b)
Uy and (c) Uz components. (d)-(f) Respective estimated noise sections.
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For a more detailed view, figure 4.9 shows a zoom into the upper and lower windows high-

lighted in the raw vertical component (figure 4.5(c)). Notice that the figures display one

of every other trace in the horizontal axes for each window. Figures 4.10 and 4.11 show

the estimated signal and noise sections for the upper and lower windows, respectively, in

each method. The signal sections (top rows) for all methods are fairly clean, confirming the

efficiency of the FXDECON and its hypercomplex extensions. The noise sections (bottom

rows) show that signal leakage is still present in the linear prediction schemes, as indicated

by the red arrows. The WL-QFXDECON filtered sections (figures 4.10(c) and 4.11(c))

have higher levels of random noise, but its noise sections (figures 4.10(f) and 4.11(f)) show

very little signal leakage. Nevertheless, these results give further substance to the claims of

better signal preservation by the WL-QFXDECON. Though one can argue that a few events

are more coherent in the FXDECON than in its hypercomplex versions, one should bear

in mind that FXDECON has not been able to recover as many events as quaternion-based

algorithms. Figure 4.11 shows that signals have not been properly recovered by FXDECON;

these signal are present in the in the QFXDECON and WL-QFXDECON results.
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Figure 4.9: (a) Upper and (b) lower windows highlighted in the Uz component
(figure 4.5).
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Figure 4.10: Upper window filtering result for (a) FXDECON, (b) QFXDECON,
and (c) WL-QFXDECON. (d)-(f) Respective estimated noise sections.
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Figure 4.11: Lower window filtering result for (a) FXDECON, (b) QFXDECON,
and (c) WL-QFXDECON. (d)-(f) Respective estimated noise sections.
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4.4 Final Remarks

4.4.1 Discussion

It is essential to recall that the approaches presented in this chapter are consistent with

the physical space of the data acquisition. Thus, this chapter focused on using quaternions

to represent the multicomponent seismic signals in the pre-stack shot-receiver domain. Of

course, when working with quaternion-defined seismic data, it is necessary to employ pro-

cessing techniques based on the non-commutative quaternion algebra. Even though the

main steps in the processing stage remain the same, this particularity can introduce a few

differences.

Regarding processing times, the FXDECON technique is known to be computationally ef-

ficient. The same is true for its quaternion formulations, but these techniques have greater

computational complexity than its componentwise counterpart given the quaternion multi-

plication. Furthermore, quaternion-based processing of 3C or 4C datasets in the frequency

domain does contain all known and explored properties of the Fourier transform, such as

conjugate symmetries. Thus, the techniques have to be applied on both sides of the spec-

trum, increasing processing times. For instance, while applying the FXDECON in the

synthetic example using K = 4 takes on average 0.1 seconds for a single component, while

the QFXDECON takes 1.1 seconds, and the WL-QFXDECON takes 3.4 seconds for all

three. Finally, the additional parameters required by quaternion-based methods refer to

the application of the QFT, which requires the choice of a side and an eigenaxis for the

transformation.

For random noise reduction applications, it is possible to extend the FXDECON filter to

the case of multicomponent seismic data using Q-AR models. Likewise the FXDECON,

the techniques are relatively simple, easy to implement, and very useful in random noise

suppression. Widely-linear Q-AR models are introduced as a novelty in the treatment of

vector-valued seismic data, which provided encouraging results in signal estimation. The

advantages offered by widely-linear models are related to the augmentation step in equa-

tion 4.16, which increases signal redundancy and filter length. The main outcome of this

formulation is that the predictable portions of the signal could be better preserved in the

filtered sections. However, the WL-QFXDECON results also show higher levels of random

noise than the QFXDECON and FXDECON. This is also related to the augmentation step,

which increases redundancy in the noise samples as well.

Application of further filtering to the components, following an iterative filtering approach

(e.g., Canales (1984)), could lead to better results but this was not the focus of this chapter.

Also, one should bear in mind that all of the components are assumed to contain signal
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since noise-only components can degrade the final results of the quaternion components

(Bahia and Sacchi, 2019b). In such situations, one is likely to be dealing with uncorre-

lated components which will yield vanishing off-diagonal terms in the augmented covariance

matrix (equation 2.41). In that matter, componentwise techniques might better suited for

data processing. Finally, the literature on geophysical applications of AR models entails

not only denoising applications, but also data interpolation (Spitz, 1991; Porsani, 1999). By

extension, these applications can also be performed using the techniques presented in this

chapter.

4.4.2 Conclusion

We presented the extension of f −x prediction filters to the case of quaternion-defined seis-

mic data. The methods consist of the extension of a classical technique, the FXDECON,

to the case of quaternion-defined seismic data. The concepts of proper and improper com-

plex/hypercomplex signals, based on the definition of complementary covariance matrices,

were revised. It was discussed how the trivial extension of the FXDECON to its hyper-

complex version, named QFXDECON, might not take full advantage of the signals if those

are improper. In case of improper signals, such as those acquired in multicomponent seis-

mology, additional useful information can be exploited by employing widely-linear models

in the prediction context (WL-QFXDECON). Solving for the filter coefficients follows the

classical Weiner filtering theory, which maintains the simplicity of the FXDECON.

The main differences are the additional parameters required by the QFT to be applied

(sideness and eigenaxis), the fact that one would be dealing with quaternion (instead of

complex-valued) data and filter coefficients, and the additional augmentation step in the

widely-linear formulation. Such an augmentation increases sample redundancy of both

signal and noise allowing for a better prediction of the coherent portions of the data at the

cost of noisier results. We discuss that for an increasing filter length, the performances of

FXDECON and QFXDECON approach to that of WL-QFXDECON in terms of prediction

gains, and that longer filters could be detrimental to the final section of the widely-linear

approach due to the augmentation step. We apply the techniques to 3C datasets, but

applications to 4C datasets are also possible employing full quaternions. Extension to 3D

datasets is also straightforward. Through synthetic and field data examples, one can argue

that the WL-QFXDECON has better performance than QFXDECON and FXDECON when

concerning signal preservation, but it allows for higher levels of noise in the filtered section.
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CHAPTER 5

Regularization by Denoising

for Simultaneous Sources Separation

5.1 Introduction

Chapters 3 and 4 presented two classic and highly used techniques in seismic data processing

and their extension to vector-valued seismic data through quaternionic representations. In

applied seismology, the related denoising engines FXDECON and SSA have their roots going

back to the 1980s and 1990s, respectively, but they persist up to today. Since then, however,

the number of denoisers being developed has been overwhelming. Especially with the advent

of machine learning and its undeniable success through deep models, new denoisers are

expected to be developed by the day. Potentially, however, such denoisers become obsolete

at the same rate they are developed. That is not to say , however, that research on more

efficient and effective denoising engines, as presented in this thesis, should be halted. A

better idea is to adapt these denoising engines to other problems, as discussed in this chapter

through the Regularization by Denoising (RED) framework (Romano et al., 2017).

Amongst others options to be discussed, RED offers one way to exploit denoising algorithms

to solve inverse problems beyond denoising itself. However, it is essential to clarify that the

idea of combining inversion and denoising is not necessarily new. Other similar approaches

to RED exist, such as the pioneering work of Venkatakrishnan et al. (2013) in the Plug and

Play Prior (P 3), as well as other recent approaches that use denoisers within the projected

gradient descent (PGD) algorithm (Mahdad et al., 2012; Cheng and Sacchi, 2015). These

approaches use the priors imposed by a given denoising engine, such as predictability, low-

rankness, or sparsity, in the implicit or explicit regularization of a given inverse problem.
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5.1.1 Inverse Problems

The Bayesian approach to inverse problems combines a prior distribution for a model x, with

its measured version y, to obtain a posterior conditional probability, P (x|y), in order to

infer x. Assuming the Maximum aposteriori Probability (MAP) model, Bayes’ rule implies

an optimization problem of the form

x̂ = arg max
x

P (x|y) = arg max
x

P (y|x)P (x)

P (y)
, (5.1)

which can be rewritten through a log transformation as

x̂ = arg min
x
− log{P (y|x)} − log{P (x)}. (5.2)

since P (y) is independent on x, and the function − log{·} is monotonically decreasing.

The term− log{P (y|x)} is known as the log-likelihood term, and it describes the relationship

between the desired model parameter x and its measurements y, under the assumption that

x is known. This term describes the data fidelity, and it is usually written in the form of a

loss or cost function `(y,x) = − log{P (y|x)}. Under the assumption of Gaussian noise e of

unitary variance, a common expression used for the loss function is given as the `2 norm

`(y,x) =
1

2
‖Ax− y‖22, (5.3)

referring to the case where y = Ax + e, where A is a linear operator mapping the solution

x to the observation space y. The case of other noise distributions can be handled through

alternative cost functions other than the classic `2 (Maronna et al., 2019).

The second term in equation 5.2, − log{P (x)}, is called the prior. It mathematically de-

scribes an statistical belief over the unknown x. Such a term is also usually referred to as

the regularization term of an inverse problem, and it is highly used to condition the overall

inversion to obtain unique and useful solutions. It is also usual to express it as

µ

2
R(x) = − log{P (x)} (5.4)

with the scalar µ > 0, the trade-off parameter, controlling the relative confidence of the

regularization term. One can now rewrite the MAP estimation problem in equation 5.1 as

the optimization problem

x̂ = arg min
x
`(y,x) +

µ

2
R(x) (5.5)

thus defining a much broader class of inverse problems that will be exploited in this chapter

under the applications of simultaneous sources separation (section 5.2). Choosing an appro-
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priate prior R(x) is paramount, as this is the term resposible for driving the most recent

breakthroughs in image and signal processing.

5.1.2 Classical Denoising

Noise attenuation (denoising) plays an important role in image and signal processing; it is

the process of removing noise from a signal while minimizing the loss of useful content in the

signal. From the applied seismology context, two denoising methods have been discussed,

the SSA and FXDECON, which recover the underlying harmonics within the observed

frequency slices of the seismic data. For completeness, it is helpful to introduce the classical

image denoising problem and discuss their solution through approaches termed “variational

denoising methods.” These methods, building upon the Bayesian approach discussed above,

use a suitable prior and seek to minimize an appropriate cost function, for a given observed

(noisy) image y. In this case, the linear operator corresponds to an identity matrix, A = I,

in the `2 norm (equation 5.3) that turns the cost function in equation 5.5 to

x̂ = f(y) = arg min
x

1

2
‖x− y‖22 +

µ

2
R(x). (5.6)

Above, f(·) represents the denoising engine associated with the prior R(·). The remaining

task is to select a proper prior for obtaining the best possible solution x̂ under such criteria.

Remarkably useful priors include sparsity, low-rankness, and, more recently, deep learning

methods.

5.1.3 Plug and Play (PnP)

The PnP prior (or P 3) is the one possible framework that allows the combination of generic

inversion routines with state-of-the-art denoising methods. It provides an elegant and

straightforward way to introduce denoising engines to solve more general inverse problems.

For these reasons, the P 3 method has drawn much attention in many applications.

The PnP method is known for being closely tied to the Alternating Direction Method of

Multipliers (ADMM) to solve an inverse problem as equation 5.5

x̂ = arg min
x

1

2
‖Ax− y‖22 +

µ

2
R(x). (5.7)

ADMM uses variable splitting and the Lagrange multipliers method to solve smaller prob-

lems in an alternating fashion. The method is known to converge for convex misfit and

regularization terms; more on its theoretical developments and guarantees can be found in

Boyd et al. (2011). Following Venkatakrishnan et al. (2013), one can decouple the data
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fidelity and prior terms by splitting x into two variables (x,v), and reformulating equation

5.7 as a constrained optimization problem

x̂, v̂ = arg min
x,v

1

2
‖Ax− y‖22 +

µ

2
R(v) (5.8)

subject to x = v.

The solution to this problem can be found through the scaled ADMM, by introducing the

Lagrange multiplier u, and completing squares to formulate the cost function

x̂ = arg min
(x,v,u)

1

2
‖Ax− y‖22 +

µ

2
R(v) +

γ

2
‖x− v + u‖22 −

γ

2
‖u‖22, (5.9)

where γ is a user-provided ADMM parameter. The algorithm consists of repeatedly solving

the following sub-problems in an alternating fashion

x̂ = arg min
x

1

2
‖Ax− y‖22 +

γ

2
‖x− v̂ + û‖22 (5.10)

v̂ = arg min
v

µ

2
R(v) +

γ

2
‖x̂− v + û‖22 (5.11)

û = u + x̂− v̂. (5.12)

First, one can solve for x̂ via methods such as conjugate gradients (CG) as this is a damped

least-squares problem. The update of the v variable, however, depends only on the choice

of the prior R(·), similarly to equation 5.6. It can, hence, be interpreted as a denoising step

over the update x̂+ û, and Venkatakrishnan et al. (2013) suggest replacing the optimization

step for obtaining v̂ by the action of a denoiser of choice. Such a step implicitly imposes the

previously defined by the denoising engine, as shown below in the PnP-ADMM algorithm.

Algorithm 1 PnP-ADMM

Inputs:A, AT , f(·), y, µ, γ, K
Initialize x0,v0,u0

for k = 1 : K do
xk = arg min

x

{
1
2‖Ax− y‖22 + γ

2 ‖x− vk−1 + uk−1‖22
}

vk = f(xk + uk−1)
uk = uk−1 + xk − vk

end for
Output: xK

While the PnP scheme is a solid and attractive approach, some comments are in order. First,

the method is not accompanied by a clear definition of a cost function since the regularization

term used is only implicit, given by the activation of the denoising engine. Second, using

arbitrary denoisers within ADMM might induce a non-provable convergence regime for the
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method. The parameter tuning of the ADMM algorithm thus becomes nontrivial. Since the

PnP is intimately coupled with the ADMM, it does not offer much flexibility in replacing

the iterative procedure. These points are discussed in more depth by Romano et al. (2017)

when introducing the Regularization by Denoising (RED) framework, which is discussed in

the next subsection as a plausible alternative to the PnP approach.

5.1.4 Regularization by Denoising

The RED method (Romano et al., 2017) offers a framework that systematically uses denois-

ing engines in the definition of the regularization term of any inverse problem (e.g., equation

5.24). No other approach suggests a regularization term explicitly employing denoisers in its

cost function as RED does. Under the so-called “RED conditions,” the RED cost function

is convex and optimal solutions can be obtained via first-order optimization methods.

In RED, the regularization term is defined as

R(x) = xT (x− f(x)), (5.13)

where f(·) is a denoising engine of choice. Notice that the denoiser is applied to the candidate

solution (in this case, x), and the regularization is proportional to the inner product between

this candidate and its denoising error. The overall cost function is therefore written as

J(x) =
1

2
‖Ax− y‖22 +

µ

2
xT (x− f(x)). (5.14)

Minimizing the above cost function has an important interpretation. The first term, un-

changed from usual inversion approaches such as equation 5.24, still ensures data fidelity.

The second term, however, can be understood as the unnormalized cross-correlation be-

tween the solution (x) and its residual (x− f(x)). Hence, having xT (x− f(x)) ≈ 0 enforces

orthogonality between the data and its residuals, a concept highly exploited in the normal

equations of least-squares problems. More specifically, small values of R(x) can either mean

that the residual does not contain features from the solution, which means these are uncor-

related, or that x ≈ f(x) and the candidate solution is a fixed-point of the denoiser, as in

xk+1 = f(xk) (Gezerlis, 2020), and there is nothing else to be filtered out. Either way and

also owing to the uncorrelated character of the blending noise in given domains, it is highly

desirable to minimize such term.

RED Conditions

For those who deal with denoising and inverse problems daily, the framework proposed by

RED seems to offer the possibility of achieving the goal of obtaining denoised solutions to
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any inverse problem. In the face of grand promises, RED has been shown to deliver state-

of-the-art results in different applications, including image deblurring and super-resolution

(Hong et al., 2019; Sun et al., 2020; Mataev et al., 2019), tomography reconstruction (Perelli

and Andersen, 2019), and phase-retrieval (Wu et al., 2019). More specifically, in geophysics,

its potential has already been recognized in non-linear inverse problems such as traveltime

tomography (Vargas, 2020) and full-waveform inversion (Anagaw and Sacchi, 2019).

Although its practical success has been demonstrated in various applications, the formula-

tion for RED as initially proposed by Romano et al. (2017) currently lacks strong theoretical

guarantees of convergence. Not surprisingly, more attention has been paid to explaining the

undeniable success of such a framework, and other publications have clarified, interpreted,

and extended RED even further (Reehorst and Schniter, 2018). The need for such clarifi-

cation arises from the so-called RED conditions, which consist of specific properties that a

denoiser of interest has to fulfill. These properties rely on the differentiability of the denoiser

f(·) and are necessary to facilitate RED derivations. Romano et al. (2017) state that the

choice of the denoiser has to follow two primary conditions: local homogeneity and strong

passivity. Shortly after, Reehorst and Schniter (2018) further clarifies RED by showing that

possible denoisers to be used within it must fulfill an additional condition: Jacobian symme-

try. Appendix B discusses numerical tests provided by Romano et al. (2017) and Reehorst

and Schniter (2018) that ensure a given denoiser satisfies the conditions introduced below.

The conditions can be summarized as follows:

• Local homogeneity states that the denoiser applied to a scaled version of the input

should result in a scaled version of the denoised input. Specifically, f((1 + ε)x) =

(1 + ε)f(x) for small ε.

• Strong passivity restricts the denoiser to not magnify the norm of a given input.

This means that the Jacobian of the denoising engine is stable, i.e., η(∇f(x)) ≤ 1

(where η(M) is the spectral radius of a matrix M and ∇ represents the differentiation

operator). A weaker form of this condition means ‖f(x)‖ ≤ ‖x‖.

• Jacobian symmetry states that the denoiser has a symmetric Jacobian, i.e., ∇f(x) =

∇f(x)T .

One can promptly argue that differentiability is yet a fourth condition to be satisfied by a

prospective denoiser. However, as differentiability is the basis of the strong passivity and

Jacobian symmetry conditions, one may opt to leave this condition as implicitly defined

but definitely not as satisfied. The reason is that, under the assumption that all of RED

conditions are satisfied by a given denoiser, the regularization term given in equation 5.13
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is differentiable and convex. Thus, one can obtain the gradient of equation 5.14 following

∇J = AT (Ax− y) +
µ

2
∇(xT (x− f(x)))

= AT (Ax− y) +
µ

2
∇xTx− µ

2
∇xT f(x)

= AT (Ax− y) + µx− µ

2
(f(x) +∇f(x)x).

(5.15)

Because the term ∇f(x)x can be replaced by f(x) based on the local homogeneity property

(Appendix B), one arrives to the following gradient

∇J = AT (Ax− y) + µ(x− f(x)). (5.16)

Finding the minimum of equation 5.14 entails setting ∇J = 0 and imposing it as a fixed-

point condition on the solution x. Such a condition is the basis for all algorithms that can

be used as solvers for RED, but it is highly dependent on the gradient of the regularization

term being equal to the denoising residual, i.e., ∇R(x) = x− f(x).

The need for clarification in RED was first pointed out by Reehorst and Schniter (2018), who

thoroughly discussed the condition of Jacobian symmetry and how several classical denois-

ers, such as median filters and non-local means, actually lack it. Interestingly, even though

the above gradient rule is only valid under the assumptions discussed earlier, denoisers that

fail to satisfy the Jacobian symmetry condition have yielded excellent results in different

applications of RED. It is promptly noticeable that even though RED’s theoretical justifi-

cation is an ongoing scientific development, its practical application is a concrete reality. In

that light, Reehorst and Schniter (2018) also introduced the framework of score-matching

by denoising that explains RED algorithms for generic denoisers that may not satisfy the

local homogeneity and Jacobian symmetry properties.

RED Algorithms

Romano et al. (2017) provide options for using RED when solving general inverse prob-

lems: steepest descent (RED-SD), fixed-point (RED-FP) iterations, and alternating direc-

tion method of multipliers (RED-ADMM). Given its increased attention, several publica-

tions have already proposed improvements to the existing solvers and even new solvers for

RED (e.g., Reehorst and Schniter (2018); Hong et al. (2019, 2020)). In all cases, the so-

lutions are found iteratively, and together with other simple steps, the denoising engine is

applied once or more per iteration, as discussed in this section.
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RED-SD

The simplest option, usually the first to be employed, would be the steepest descent. The

algorithm follows the usual gradient descent recipe. It iteratively updates the solution

using the gradient in equation 5.16 and a given step-size, which might be obtained via

backtracking. It is crucial to notice that RED-SD has the same drawbacks as any steepest

descent algorithm, and it might take longer to converge than RED-FP and RED-ADMM.

RED-ADMM

As already discussed, ADMM uses variable splitting and the Lagrange multipliers method

to solve smaller problems in an alternating fashion, and it is known to converge for convex

misfit and regularization terms. For brevity, ADMM is given in Algorithm 2 for arbitrary

regularization R(·) and a user-provided ADMM parameter γ.

Algorithm 2 Alternating Direction Method of Multipliers: minimizes equation 5.24.

Inputs:A, AT , R, y, µ, γ, K
Initialize x0,v0,u0

for k = 1 : K do
xk = arg min

x

{
1
2‖Ax− y‖22 + γ

2 ‖x− vk−1 + uk−1‖22
}

vk = arg min
v

{
µ
2R(v) + γ

2 ‖v − xk − uk−1‖22
}

uk = uk−1 + xk − vk
end for
Output: xK

In Algorithm 2, there are two optimization problems. Again, one can solve for xk via many

methods as this is a damped least-squares problem. Now, focus on the update of the v

variable and assume the RED framework (equation 5.13). Setting its gradient to zero leads

to a fixed-point condition on v as

µ(vk − f(vk)) + γ(vk − xk − uk−1) = 0, (5.17)

and the following refinement rule can be used to obtain an approximation to vk

zi =
µ

γ + µ
f (zi−1) +

γ

γ + µ
(xk + uk−1) , (5.18)

where z0 = vk−1, and i = [1, I] an inner iteration variable. It becomes visible that RED-

ADMM allows one to estimate vk by activating the denoising engine I times, which stands

as a particularity of the RED-ADMM solver. However, since denoisers tend to be com-

putationally expensive, iterating many times is impractical and perhaps even redundant
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(Reehorst and Schniter, 2018). Finally, if one uses the update rule given in equation 5.18

to estimate vk, Algorithm 2 corresponds to what was referred as RED-ADMM.

RED-FP

Similar to the argument above, another possibility exists for solving RED using a fixed-point

strategy on the gradient given in equation 5.16 to yield

AT (Axk − y) + µ (xk − f(xk−1)) = 0, (5.19)

which can be handled by linear solvers if written as

(
ATA + µI

)
xk =

(
ATy + µf(xk−1)

)
, (5.20)

with I an identity matrix of appropriate dimensions. Unlike RED-ADMM, equations 5.19

and 5.20 above only need one activation of the denoiser, which is followed by a step also

closely related to the solution of a damped least-squares problem (Algorithm 3).

Algorithm 3 Fixed-point iteration strategy for RED: minimizes equation 5.14.

Inputs:A, AT , f , y, µ, K
Initialize: x0, G =

(
ATA + µI

)
for k = 1 : K do

x̃k = f (xk−1)
Define b =

(
ATy + µx̃k

)
Solve Gxk = b

end for
Output: xK

The current section is an introduction to RED, based on both Romano et al. (2017) and

its clarification proposed by Reehorst and Schniter (2018). Both publications still carry

significant levels of detail that do not fit the purpose of the present work, which now follows

with RED-ADMM and RED-FP analysis for seismic data processing applications such as

simultaneous source separation and reconstruction. Although the PnP prior has already

seen recent applications in seismic data processing (Xu et al., 2022), the benchmarking

presented in the next section uses more established methods within the seismic processing

community, such as the Projected Gradient Descent (PGD) algorithm. The PGD represents

yet another way to introduce classic denoisers in iterative inversion procedures, and it has

been used for deblending (Cheng and Sacchi, 2015) and data reconstruction (Carozzi and

Sacchi, 2021).
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5.2 Simultaneous Source Separation

Seismic data acquisition has seen fundamental changes to maximize its cost-effectiveness and

efficiency. To date, significant improvements have been published in the light of blended ac-

quisition strategies in which several sources are fired at short random time intervals (Beasley

et al., 1998; Berkhout, 2008). In addition to its economic benefits, simultaneous-source

(blended) surveys allow for denser source sampling, which leads to higher quality subsurface

images. That, however, assumes one can suppress interference caused by overlapping shots.

Indeed, the advent of high-quality source separation (or deblending) techniques has been a

critical factor in implementing blended acquisition practices in the industry.

Given recorded blended data, the main goal of deblending algorithms is to obtain shot

records as if they were acquired via conventional acquisition. Blended data are equivalent

to time-shifting the data generated from separated sources, followed by a summation over

the source index. Let d(t, s) represent a common-receiver/channel gather (CRG) of a con-

ventional seismic experiment, with t = [1, Nt] and s = [1, Ns] representing time and source

numbers, respectively. Assuming a blended towed-streamer marine acquisition, the response

recorded by a receiver can be written as

db(t) =
∑
j∈S

d(t− τj , sj), (5.21)

where db(t) is the blended data, τj represents the random time delay for the j−th source,

and S represents all sources fired in a blended gather. Equation 5.21 can be compactly

represented as

db = Bd, (5.22)

with B a matrix of size Ntb × Nt · Ns representing the blending operator, d is a vector of

length Nt ·Ns × 1 representing the desired CRG, and db is a vector of length Ntb × 1 that

represents the blended CRG. For future reference, the ratio β = Nt·Ns

Ntb
defines the blending

factor. It is understood that these represent the forward operator previously presented as

A, the observed data y is given by db, and the solution of interest x is represented by d.

The simplest deblending process entails extracting the contributions from individual sources

in a blended record. It is usually named pseudo-deblending (Berkhout, 2008), or combing

(Abma and Foster, 2020), since there is no attempt to reduce interference. One can write

d̃ = BTdb, (5.23)

where d̃ is the combed data having the same dimensions as d (i.e., Nt ·Ns×1), BT represents

the pseudo-deblending operator, and the superscript “T” denotes matrix transposition. In
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practice, forward and adjoint blending operators are implemented in implicit form without

creating matrices. In other words, B and BT are linear operators designed to pass the

dot product test (Claerbout, 1992) so that they behave as matrix-vector multiplication.

In addition, one should notice that the pseudo-deblending operation does not remove the

interference resulting from the simultaneous sources, i.e., the combed data still contains the

so-called blending noise. Different approaches can be taken to better achieve the deblending

goal by tackling this interference. These can be divided into two categories: deblending by

denoising and deblending by inversion.

Deblending via denoising approaches operates directly on d̃, usually relying on the spatial

incoherency of the blending noise in different domains such as common-receiver or common-

offset gathers. In this case, one will likely run into variant formulations of filtering tech-

niques, such as the classical frequency-space prediction error filters (Spitz et al., 2008; Peng

et al., 2013) and low-rank filtering (Maraschini et al., 2012, 2016; To et al., 2018; Jeong et al.,

2020). Variants of median filters have also shown remarkable success in removing blending

interference (Huo et al., 2012). Finally, different formulations of the sparse Radon transform

also have notable efficacy in simultaneous source separation (Akerberg et al., 2008; Ibrahim

and Sacchi, 2013). These examples represent a limited set close to the options available

in the literature, and this fuels the argument that powerful denoisers are being developed

each day, having great performances in their applications and conceivably also applicable

for simultaneous-source data processing.

Although delivering satisfactory results, deblending by denoising has limitations related

to signal distortions in the pre-stack data volume (Abma et al., 2015). Thus, aiming for

high quality pre- and post-stack results, deblending by inversion approaches are introduced.

Basically, one can pose deblending as an inverse problem similar to equation 5.5 or 5.7

minimize J =
1

2
‖Bd− db‖22 +

µ

2
R(d), (5.24)

where R(d) is a regularization term and µ is a trade-off parameter. Minimizing equation

5.24 means solving for the deblended data (d) that honours the blended records (db) while

having features imposed by the regularizer R(d). As in any inverse problem, the choice

of an appropriate regularizer depends on the features of d that one wants to attenuate.

Usual choices for the regularization term are those that induce sparse solutions (Lin and

Herrmann, 2009; Chen et al., 2014; Abma et al., 2015; Li et al., 2019; Ibrahim and Trad,

2020) or associated to low-rank matrices (Cheng and Sacchi, 2015; Kumar et al., 2015).

Advances in deblending, by both denoising and inversion, are critical to the motivation of

the current work. In the following sections, the central idea is to bring these efforts together

through RED. In contrast with the existing methods for deblending that already combine

inversion and denoising, such as Mahdad et al. (2011) and Doulgeris et al. (2012), the novelty
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of such a framework derives from in its cost function through which it is possible to define a

deblending by inversion approach that explicitly employs denoising engines in the definition

of the regularization term; one can refer to such a method as REDeblending.

State-of-the-art: Sparse Inversion

The relation between deblending and compressive sensing can be quickly drawn since a

blended record is much more compressed than its corresponding unblended or deblended

record. The state-of-the-art approach for separating sources is that of sparse inversion.

Having the above in mind, a short introduction to deblending via sparse inversion is in

order. The main publication to follow is Abma et al. (2015), which discusses simultaneous

sourcing in depth. Song et al. (2019) also provide a comprehensive example of sparse

inversion in deblending. The idea is to induce sparsity in an auxiliary domain by means of

the `0 pseudo-norm (‖ · ‖0). This amounts to defining R(d) = ‖Fd‖0 in equation 5.24 if

one chooses to induce sparse solutions in the frequency-wavenumber domain, and minimize

it via an iterative hard-thresholding algorithm (Blumensath and Davies, 2008)

dk = FHHµ

{
F
(
dk−1 − λ

[
BT (Bdk−1 − db)

])}
, (5.25)

where λ is a step-size to downscale the gradient, F and FH represent the multidimensional

forward and inverse Fourier transform pair, and Hµ is the element-wise hard thresholding

operator (the proximity operator of the `0 pseudo-norm)

Hµ{yi} =

0, if |yi| ≤ µ0.5

yi, if |yi| > µ0.5
. (5.26)

The level of desired sparseness is controlled by µ, and it is usually set as a decaying function

of the iteration number and maximum input amplitude (Song et al., 2019). Moreover, the

Fourier transform is one possible option to induce sparsity in an auxiliary domain, and

several others are applicable, such as curvelet (Wason et al., 2011), seislet (Chen et al.,

2014), or Radon (Lin and Sacchi, 2020) transforms.

From a more general and preferred perspective, one can define the frequency-wavenumber

thresholding (FKT) operator P (·) = FHHµ{F(·)} as a spatial coherency constraint being

applied to the data. Such is the approach presented by Mahdad et al. (2011) and Doulgeris

et al. (2012), which allows for more flexibility in how one imposes the spatial coherency con-

straint. Several denoisers can be considered projection operators to enforce coherency, such

as the transform-domain thresholding denoisers mentioned above or reduced-rank filtering

with the singular spectrum analysis (SSA) filter (Cheng and Sacchi, 2015). It is also usual
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for projection operators to be patch-based denoisers, meaning that they act on overlapping

patches of data and reconstruct the output by averaging the denoised patches. Algorithm

4 describes a projected gradient descent (PGD) algorithm with a projection operator P (·)
to be a denoiser such as the frequency-wavenumber thresholding operator of Abma et al.

(2015), used to benchmark the results obtained with RED.

Algorithm 4 Projected Gradient Descent

Inputs:B, BT , P , db, λ, K
Initialize d0

for k = 1 : K do
d̃k = dk−1 − λ

[
BT (Bdk−1 − db)

]
dk = P

(
d̃k

)
end for
Output: dK

On the Denoisers

One should remember that both frameworks studied in this chapter, RED and PGD, require

the definition of either a denoiser or a projection operator. Since both are used for noise

removal, the term “denoiser” will be used to refer to either operation, i.e. f(·) ≡ P (·).
A critical point for RED is the denoising engine of choice. There exist several options

that one might choose from, and this is a crucial argument favoring RED. However, it

might be redundant to deploy several denoising engines at once here, so two denoisers, the

frequency-wavenumber thresholding (FKT) and singular spectrum analysis (SSA), should

suffice for supporting the presented claims. These denoisers are well-known and commonly

used in seismic data processing applications. For further reference, specifically on the topic

of simultaneous sources separation, the interested readers are referred to Abma et al. (2015),

and Cheng and Sacchi (2015) for detailed descriptions of the FKT and SSA, respectively.

Turning to RED conditions, Romano et al. (2017) provides numerical tests to ensure a given

denoiser satisfies the local homogeneity and strong passivity conditions, while Reehorst and

Schniter (2018) discuss how to investigate its Jacobian symmetry. In these tests, discussed in

Appendix B, the FKT operator shows insufficient local homogeneity only for large threshold

values (i.e., more restrictive thresholding), and it passes the numerical tests for the strong

passivity and Jacobian symmetry conditions. When testing RED conditions, the SSA satis-

fies the local homogeneity and strong passivity tests but lacks Jacobian symmetry. However,

as one should keep in mind, even if denoisers have insufficient local homogeneity and Jaco-

bian symmetry, RED solvers still deliver high-quality results arguably explained under the

score-matching by denoising framework (Reehorst and Schniter, 2018).
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The denoisers have to be appropriately set to be applied in each iteration of PGD or RED

because their optimality is expected to rely upon how the denoiser has been designed.

However, although mentioned in the following sections, this work is not discussing the best

setup for any denoiser since it mainly focuses on exploring RED as a suitable framework for

solving geophysical inverse problems.

5.2.1 Synthetic 3D VSP Example

In this example, the 3D-3C synthetic VSP dataset (O’Brien, 2010)1, was used to model

simultaneous sources for single and multicomponent receivers numerically. The data was

originally modeled as a 9C dataset, but only the vertical sources are considered here. In

this case, 31 receivers are placed down a well from 1350.0 to 1850.0 meters in depth. At

the surface, 42025 sources are split into 205 source lines with 205 sources each. A Ricker

wavelet of central frequency 15.4 Hz was used to model about 2.5 seconds of data with time

sampling ∆t = 0.012 s, whereas both source and receivers spacing are set to 16.67 m. The

final data is obtained as a regular tensor (Nt ×Nsx ×Nsy ×Nr) = (218, 205, 205, 31).

The sources were blended following equation 5.21, where two different source vessels were

assumed to perform a blended acquisition with blending factor β = 2. In this example, the

second vessel shoots randomly with respect to the first as to cover its half of the acquisition

grid simultaneously. Figure 5.1a shows a time slice at 1.5 seconds of a CRG at depth 1550

m, and 5.1b its corresponding pseudo-deblended (equation 5.23) time slice. Figure 5.2a

shows the recordings for a conventional source, and 5.2b its pseudo-deblended counterpart.

Figure 5.1: Time slice at 1.5 seconds for the (a) ideal and (b) pseudo-deblended
(β = 2) vertical component of a CRG at 1550.0 m.

1Avaiable at https://wiki.seg.org/wiki/3D_9C_synthetic_VSP_data.
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Figure 5.2: Common-shot-gather for the (a) ideal and (b) pseudo-deblended (β = 2)
vertical component of the data.

Different first-order algorithms can be designed to minimize RED’s cost function. However,

using RED-SD as a solver for deblending is detrimental since the gradient in equation

5.16 has a noise-add-back term corresponding to the regularization gradient. Specifically,

the noise term refers to blending noise that would be mapped back to the solution space,

which leads to cross-talk since this interference fits the blended data (To et al., 2018).

Therefore, although a noise-add-back term might be useful in other applications, RED-

SD is likely to not perform well in deblending, thus making RED-ADMM and RED-FP

more attractive solvers. Each algorithm will require different parameter settings for each

application, such as selecting the trade-off parameter µ for RED or the step-size λ for the

PGD. Moreover, although these parameters are important in any inversion, their estimation

might be cumbersome. The tests presented here favored a heuristic approach for its selection,

such as constraining step sizes and trade-off parameters according to the blending factor.

Both the FKT and SSA are coupled with the PGD and RED, and each algorithm runs for

K = 100 iterations. A convergence criteria of
∣∣∣J(dk−1)−J(dk)

J(dk)

∣∣∣ < 10−6 was not met in any

case. The prediction gain is computed at each iteration k as

R(k) = 10 log10

(
‖do‖2F

‖d̂k − do‖2F

)
, (5.27)

where do and d̂ are the ideal (noise-free) and denoised data, respectively.
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Scalar Case: FKT Denoiser

The FKT was applied to overlapping patches of size 128× 32× 32 samples, having overlaps

of (10, 20, 20)% along each dimension. In addition, an exponential schedule is adopted to

reduce, at each iteration, the amplitude thresholding from 99.9% to 0.01% of the maximum

Fourier coefficient across the patched data. The FKT setup was held constant across all

tested methods, and it allows recovering finer details of interest in the final section. Figure

5.3a shows the results obtained with the PGD and a step-size λ = 1
β = 0.5, and 5.3b and 5.3c

the results with RED-FP and RED-ADMM, respectively. The regularization and ADMM

parameters were set as µ = λ = 0.2. While all results are of good quality, RED-ADMM

delivered better source separation as indicated by the difference with respect to the ideal

data in Figure 5.1a. The RED-FP residuals (Figure 5.3e) show signal leakage not present in

the results obtained with the PGD and RED-ADMM (Figures 5.3d and 5.3f). All of these

differences have been scaled by 5.0 for visualization.

Figure 5.3: Deblended (β = 2) CRG using the FKT denoiser in (a) PGD, (b) RED-
FP, and (c) RED-ADMM (I = 1). Their scaled difference with respect to the clean
data in Figure 5.2a is shown in panels (d)-(f), respectively. The difference scale is
5.
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Figure 5.4a-5.4c compares one CSG after separating all receivers. Again, RED-FP shows

small levels of signal residuals (Figure 5.4e) which are not present in the results obtained

with PGD and RED-ADMM (Figures 5.4d-5.4f). The final reconstruction gains obtained

with the PGD, RED-FP, and RED-ADMM were, respectively, 84.5, 82.59, and 90.19 dB.

Figure 5.4: Deblended (β = 2) CSG using the FKT denoiser in (a) PGD, (b) RED-
FP, and (c) RED-ADMM (I = 1). Their difference with respect to the clean data
in Figure 5.2a is shown in panels (d)-(f), respectively. The difference scale is 5.
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Scalar Case: SSA Denoiser

The SSA filter was employed in the same examples as the FKT above, where the patching

and inversion parameters were kept the same across the tests. A Lanczos-based SSA filter

runs over the frequency range of 0 to 50 Hz in all cases, and the number of Lanczos iterations

was set to 5. Notice that one might employ any more sophisticated rank-selection strategy.

Examples entail adopting an increasing rank with iteration to recover details beyond the

linear moveout assumption or a more restrictive rank for noisier conditions.

The analysis follows with the SSA filter as a denoiser within PGD and RED. The results

in Figure 5.5a show good attenuation of blending interference, but it is also noticeable from

its difference sections in Figure 5.5d that the method did not recover finer details of interest

such as diffractions. Such might be the action of adopting a constant rank for the inversion,

especially for later iterations when blending noise is expected to be attenuated (Cheng and

Sacchi, 2015). When used as the denoising engine within RED, the SSA also attenuates

blending interference with RED-FP and RED-ADMM, obtaining slightly superior results

than the PGD algorithm. The final reconstruction gains obtained with the PGD, RED-FP,

and RED-ADMM were 47.67, 53.17, and 54.27 dB.

Figure 5.5: Deblended (β = 2) CRG using the SSA denoiser in (a) PGD, (b) RED-
FP, and (c) RED-ADMM (I = 1). Their difference with respect to the clean data
in Figure 5.2a is shown in panels (d)-(f), respectively.
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Using the SSA filter, the process was repeated for the same 31 blended common-receiver

gathers as before. Figures 5.6a-5.6c show the separated common-shot gather obtained by

each method. The results show small levels of detail still being retrieved in each separated

shot despite having higher levels of signal leakage in comparison with the FKT denoiser, as

shown in the difference sections (Figures 5.6d-5.6f).

Figure 5.6: Deblended (β = 2) CSG using the SSA denoiser in (a) PGD, (b) RED-
FP, and (c) RED-ADMM (I = 1). Their difference with respect to the clean data
in Figure 5.2a is shown in panels (d)-(f), respectively.
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It is noticeable, nevertheless, that RED could improve the final reconstruction gains for

all cases, as summarized in Table 5.1. To avoid redundancy, the denoiser was activated

only once with RED-ADMM (I = 1). Further contrasting the denoisers employed in the

inversion, the FKT denoiser could better solve for the separated sources than the SSA. It is

arguable, in this case, that the SSA denoising setup can be tunned to improve the inverted

results further, as the difference section in Figure 5.5 suggests room for improvement.

Scalar case
f(·) FKT SSA

PGD 84.50 47.67
RED-FP 82.59 53.17

RED-ADMM (I = 1) 89.95 54.27
Table 5.1: Final prediction gain obtained with the FKT and SSA denoisers within
the PGD and RDB.

The examples presented so far focused on a componentwise deblending of the vertical com-

ponent obtained from the 3D-3C synthetic VSP data. The next section of this chapter

provides an example of multicomponent simultaneous sources separation using the whole

3C dataset. Arguably, the denoising step in the PGD and RED can exploit the additional

information in the correlation between data components through quaternion-based tech-

niques, as presented in chapters 3 and 4. Although a rigorous theoretical attempt to derive

a quaternionic RED framework goes beyond the purpose of this thesis, the practical example

presented here shows value in such an approach. More important for the context of this

thesis is the extension of high-quality deblending techniques to multicomponent datasets,

which is of great value because continuous records, for instance, facilitate recording later

converted-wave reflections. Since the length of a separated shot record becomes a processing

parameter in the deblending routines rather than being a constraint coming from acquisition,

obtaining the slower converted and S-wave modes becomes convenient. What motivates the

following section on vector-valued deblending through quaternion-based inversion.

Vector Case

Figure 5.7 shows the time slice in 5.1a-5.1c for all displacement components (ux, uy, uz),

and its pseudo-deblended counterparts in 5.1d-5.1f. Notice that obtaining a quaternionic

pseudo-deblended operator follows from equation 5.21, as each data component can be

pseudo-deblended separately. Assuming pure quaternion arrays and with some abuse of
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notation, its time domain formulation can be written as

db(t) =
∑
j∈S d(t− τj , sj) (5.28)

=
∑
j∈S(uxi+ uyj + uzk)(t− τj , sj),

=
∑
j∈S ux(t− τj , sj)i+ uy(t− τj , sj)j + uz(t− τj , sj)k

where db(t) now represents the longer multicomponent record, and d(t, s) represent a mul-

ticomponent CRG of a conventional (not blended) seismic experiment. Both are now

quaternion-valued functions, i.e., (db(t), d(t, s)) ∈ H with components related to the dis-

placements fields (ux(t, s), uy(t, s), uz(t, s)). In the frequency domain, using a left-sided

forward quaternion Fourier transform with eigenaxis µ, equation 5.28 is written as

Db(ω) =
∑
j∈S

e−µωτjDL
−µ(ω, sj) (5.29)

based on the time-shift property discussed in equation 2.63. As mentioned, obtaining its

time-domain counterpart requires consistency in terms of sideness and eigenaxis of the in-

verse QFT. Both equations 5.28 and 5.29 provide a quaternionic linear forward model for

multicomponent blended data that can be compactly represented in matrix-vector form as

db = Bd, (5.30)

with B ∈ HNtb×Nt·Ns representing the quaternionic blending operator, d is a HNt·Ns×1 vec-

tor representing the desired CRG, and db is a HNtb×1 vector that represents the blended

CRG. Unlike the adjoint operator given in equation 5.23, its quaternionic version is repre-

sented by its conjugate transpose

d̃ = BHdb, (5.31)

and their adjointness, for instance, is still given by the dot product test provided the scalar

and vector parts of the products are equal within a small tolerance.

Given the hypercomplex nature of the problem, the quaternionic RED cost function would

be written as

J(d) =
1

2
‖Bd− db‖22 +

µ

2
dH(d− f(d)), (5.32)

where f(·) represents a quaternion-based denoiser. The data-fitting term is a real function of

quaternion varabiales, but RED’s regularization is a quaternion function. In other words, as

it is written, J(d) represents a quaternion function of quaternion variables J : HN×1 → H.

One option is to follow the developments of Flamant et al. (2021), and use a real-valued inner

product to define the regularization term to obtain a real function of quaternion variables

J : HN×1 → R. The framework of generalized HR calculus given by Xu et al. (2015)
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extends complex calculus (CR) to the case of quaternion variables and offers a sound way

to develop and solve quaternionic optimization problems as done by Flamant et al. (2021).

These publications bridge the theoretical gap of many quaternion-based applications arising

in the literature, including the development of the quaternionic projection-onto-convex-sets

already exploited in vector-valued seismic data reconstruction by Stanton and Sacchi (2013).

Further developing a quaternion-based RED inherits all of its conceptual difficulties already

from the real domain, and the approach followed can be described as finding a fixed-pont

to the gradient in equation 5.16.

Figure 5.7: Time slice at 1.5 seconds of a multicomponent (a)-(c) ideal and (d)-(f)
pseudo-deblended CRG at 1550.0 m.
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Vector Case: QFKT Denoiser

The frequency-wavenumber thresholding denoiser has a straightforward extension to the

quaternion domain (Stanton and Sacchi, 2013). Its threshold schedule is obtained based on

the QFT of the data, here taken from the left with µ = i, and its amplitudes are again set

to decrease from 99.9% to 0.01% of the maximum (quaternion) Fourier coefficient. Figure

5.8a-5.8c shows the results obtained with the PGD, and 5.3d-5.8f and 5.8g-5.8i the results

with RED-FP and RED-ADMM, respectively, for all data components.

Figure 5.8: Time slice at 1.5 seconds of the deblended components (β = 2) with
(a)-(c) PGD, (d)-(f) RED-FP, and (g)-(i) RED-ADMM using the QFKT denoiser.
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While all results are of good quality, RED delivered excellent source separation as indicated

by the difference with respect to the ideal data in Figure 5.9. For matters of brevity, Figure

5.10a-5.10c compares the vertical component CSG obtained after separating all receivers

using the vector-valued approaches. Again, the PGD method shows small levels of signal

residuals (Figure 5.10d) which are not present in the results obtained with RED (Figures

5.10e-5.10f). The final reconstruction gains obtained with the PGD, RED-FP, and RED-

ADMM were, respectively, 87.71, 88.99, and 95.83 dB.

Figure 5.9: Difference time slice at 1.5 seconds of the deblended components with
(a)-(c) PGD, (d)-(f) RED-FP, and (g)-(i) RED-ADMM, using the QFKT denoiser,
with respect to the clean data in Figure 5.9a-5.9c, respectively.
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Figure 5.10: The vertical component of the deblended (β = 2) CSG using the QFKT
denoiser in (a) PGD, (b) RED-FP, and (c) RED-ADMM (I = 1). Their difference
with respect to the clean data in Figure 5.2a is shown in panels (d)-(f), respectively.
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Vector Case: QSSA Denoiser

The tests with the QSSA as a denoiser in PGD and RED followed similarly to the SSA

tests, and the same parameters were employed. The QSSA was also based on the Lanczos

bidiagonalization, which uses spectral quaternion convolutions to obtain an efficient rank-

reduction formulation, as discussed in Appendix A. The number of Lanczos iterations is set

to k = 5 in the QSSA, and the separated results are shown in Figure 5.11 for all methods.

Figure 5.11: Time slice at 1.5 seconds of the deblended components (β = 2) with
(a)-(c) PGD, (d)-(f) RED-FP, and (g)-(i) RED-ADMM using the QSSA denoiser.
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Compared to the QFKT, similarly to the scalar case, the QSSA still has room for improve-

ment. All methods, for all components, have higher levels of leaking signals into the residual

panels, as shown in Figure 5.12. This is also observable in the common-shot-gathers shown

in Figure 5.13, but only focusing on the vertical component for brevity. The final recon-

struction quality gains for each method were 51.88, 52.26, and 52.69 dB. Therefore, in the

vector case, RED could improve upon the results of the PGD marginally.

Figure 5.12: Difference time slice at 1.5 seconds of the deblended components with
(a)-(c) PGD, (d)-(f) RED-FP, and (g)-(i) RED-ADMM, using the QSSA denoiser,
with respect to the clean data in Figure 5.9a-5.9c, respectively.
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Figure 5.13: The vertical component of the deblended (β = 2) CSG using the QSSA
denoiser in (a) PGD, (b) RED-FP, and (c) RED-ADMM (I = 1). Their difference
with respect to the clean data in Figure 5.2a is shown in panels (d)-(f), respectively.
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5.2.2 Numerically Blended Scalar Example

For this numerical experiment, 790 shots of the Mississippi Canyon data were numerically

blended, having different blending factors. Each conventionally acquired shot has Nt = 1751

time samples with sampling interval ∆t = 0.004 ms, and a total of 7 s of data. Figure 5.14a

displays a patch of the desired clean common-receiver gather of the Mississippi Canyon

data, while Figure 5.14b-5.14d show the combed data for blending factors 2, 4, and 8 where

the increasing level of interference is obvious. These data are deblended using RED-FP and

RED-ADMM, and the results are benchmarked against the PGD to determine its suitability.
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Figure 5.14: A patch of the desired CRG (a), and combed data for blending factors
(β) 2 (b), 4 (c), and 8 (d). The increasing level of interference is evident.
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Examples: FKT Denoiser

The best results with the FKT denoiser were obtained by applying it on overlapping patches

of size 512× 64 samples, having overlaps of 50% in both dimensions. Again, an exponential

schedule is adopted to reduce, at each iteration, the amplitude thresholding from 99.9% to

0.01% of the maximum Fourier coefficient in the data. Figure 5.15 displays the deblended

results of the same patch of data shown in Figure 5.14 for all methods and blending factors.

Each row shows the results obtained with a different method, and columns are used to

display the same blending factor. Figure 5.15a-5.15c show the results obtained from the

PGD algorithm with the FKT denoiser for all blending factors. While it is evident that

higher blending factors make it harder to recover the underlying signal of interest in Figure

5.14c, the results show better signal detail than its combed counterparts.

RED provides a valuable alternative to the Fourier sparse inversion approach. Using RED-

FP (Figure 5.15d-5.15f), one obtains similar results as compared with those of the PGD

method where the FKT denoiser obtained great levels of recovered detail. Particularly for

RED-ADMM, the denoiser is allowed I internal activations at the expense of running time.

Two sets of tests were performed with RED-ADMM, allowing I = 1 and I = 2 using the

FKT denoiser. As it will become apparent, the second denoising iteration was helpful for

the FKT operator for all blending factors. Therefore, for matters of room and brevity, only

the results for I = 2 are shown in Figure 5.15g-5.15i. The pattern of signal recovery among

different blending factors is also consistent with the previous results. Signals highly masked

by blending interference, especially due to high blending factors, are still hard to recover,

as shown in the difference panels (Figure 5.16). Note that the difference panels for blending

factors 2, 4, and 8 have been scaled by 5.0, 3.0, and 1.0, respectively, for better visualization.

Table 5.2 displays the final prediction gain when the FKT denoiser is used in each of the

methods above. Here one can easily notice how all methods follow each other closely.

Such an observation is key to the claim that RED can achieve state-of-the-art deblending

results, and therefore provides an attractive framework to solving other geophysical inverse

problems.

FKT
Blending factor 2 4 8

PGD 19.12 10.47 5.84
RED-FP 19.39 10.61 5.83

RED-ADMM (I = 1) 19.45 10.28 5.12
RED-ADMM (I = 2) 19.57 10.69 5.66

Table 5.2: Final prediction gain obtained with the FKT denoiser within the PGD
and RDB. The table containst results for all blending factors.
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Figure 5.15: Deblending results with the FKT filter for blending factors (β) 2, 4
and 8 using the (a)-(c) PGD, (d)-(f) RED-FP and (g)-(i) RED-ADMM (I = 2).

108



65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(a) PGD, =2

65 96 128
Shot index  

2.0

2.6

3.1
Ti

m
e 

(s
)  

(b) PGD, =4

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(c) PGD, =8

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(d) RED-FP, =2

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(e) RED-FP, =4

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(f) RED-FP, =8

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(g) RED-ADMM, =2

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(h) RED-ADMM, =4

65 96 128
Shot index  

2.0

2.6

3.1

Ti
m

e 
(s

)  

(i) RED-ADMM, =8

Figure 5.16: Difference between deblending results in Figure 5.15 and clean patch in
Figure 5.14a. Blending factors (β) 2 and 4 and scaled by 5.0 and 3.0, respectively,
for better visualization.
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The above deblending process was repeated for 183 blended common-receiver gathers using

the same solvers and denoisers. To avoid redundancy, the remaining analyses focus on the

data with a blending factor of 2. Figure 5.17a and 5.17b show the 120-th common-shot

gather in conventional and combed forms, respectively. Similarly, Figure 5.18a and 5.18b

show the clean and combed common-receiver gathers, respectively. Figure 5.19a-5.19c show

the separated shots, except for RED-ADMM with a single denoiser activation. The results

resemble each other while also being in good agreement with the desired data in Figure

5.17a. The same is also visible from the difference panels in Figure 5.19d-5.19f, obtained

with respect to the desired data and scaled 5.0 times for visualization. Further quantitative

analysis also indicates similar results by the methods through their prediction gains. Figure

5.20 shows the result obtained with the FKT operator in the PGD, RED-FP, and RED-

ADMM with I = 1 and I = 2 internal iterations. Figure 5.21 follows the same layout as

before and shows the difference sections between the clean and deblended common-receiver

gather after scaling by 5.0. The results are similar, although the prediction gains indicate

improvement using RED.
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Figure 5.17: Common-shot gather view of the (a) conventional data, (b) pseudo-
deblended data.
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Figure 5.18: (a) Clean common-channel gather and (b) combed data for blending
factor 2.
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Figure 5.19: Common-shot gather view of the deblended results with the FKT
denoiser in (a) PGD, (b) RED-FP, and (c) RED-ADMM (I = 2). The respective
difference with the ideal data are scaled by 5.0 and given in panels (d)-(f).
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Figure 5.20: Deblended CRG results using the FKT operator in (a) PGD, (b)
RED-FP, and RED-ADMM with (c) I = 1 and (d) I = 2 internal iterations.
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Figure 5.21: Difference sections between ideal data and deblending results using the
FKT operator in (a) PGD, (b) RED-FP, and RED-ADMM with (c) I = 1 and (b)
I = 2 internal iterations. All figures have been scaled 5.0 times for visualization.
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Examples: SSA Denoiser

In its applications, the SSA had better performance with patches of size 256 × 32 in signal

preservation, arguably because it better approximates the linear moveout assumption in the

SSA theory. Finally, the SSA filter runs over the frequency range of 0 to 150 Hz in all cases,

and it achieved the best results with decreasing ranks for increasing levels of interference;

specifically, the rank was set to 7, 5 and 4 for blending factors 2, 4, and 8, respectively.

The results in Figure 5.22 show good attenuation of blending interference, but it is also

noticeable from its scaled difference sections in Figure 5.23 that the method did not recover

finer details of interest. RED could improve the final reconstruction gains shown in Table

5.3. Similar to the FKT operator, a second activation of the SSA denoiser in RED-ADMM

was useful to obtain faster convergence towards the final solution. However, as it will become

clear, its second application was redundant for the final results in all blending factors.

SSA
Blending factor 2 4 8

PGD 14.11 8.75 5.04
RED-FP 15.54 9.30 5.27

RED-ADMM (I = 1) 16.56 9.53 5.36
RED-ADMM (I = 2) 16.56 9.53 5.36

Table 5.3: Final prediction gain obtained with the SSA denoiser within the PGD
and RDB. The table containst results for all blending factors.

The process was repeated for the same 183 blended common-receiver gathers as before, and

the remaining analyses are again focused on the data with a blending factor of 2. Figure 5.24

shows the common-receiver gathers obtained in each method. As indicated by the prediction

gains, the results have higher levels of remaining noise than those obtained with the FKT

denoiser (Figure 5.20), and lower levels of detail are being retrieved. That is also observed

in the difference sections, shown in Figure 5.25, where one can observe fine signals leaking

into the noise space after scaling by a factor of 5.0. Figure 5.26a-5.26c show common-shot

gathers obtained with the SSA denoiser in PGD and RED. One can observe small levels

of remaining blending interference in the results, and the comparison with the ideal data

(Figure 5.17a) shows this interference more evidently in Figure 5.26d-5.26f.
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Figure 5.22: Deblending results with the SSA filter for blending factors (β) 2, 4 and
8 using the (a)-(c) PGD, (d)-(f) RED-FP and (g)-(i) RED-ADMM (I = 2).
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Figure 5.23: Difference between deblending results in Figure 5.22 and clean patch
in Figure 5.14a. Blending factors (β) 2 and 4 and scaled by 5 and 3, respectively,
for better visualization.

117



0 100 200 300 400 500 600 700
Shot index  

0

1

2

3

4

5

6

7

Ti
m

e 
(s

)  

(a) PGD

0 100 200 300 400 500 600 700
Shot index  

0

1

2

3

4

5

6

7

Ti
m

e 
(s

)  

(b) RED-FP

0 100 200 300 400 500 600 700
Shot index  

0

1

2

3

4

5

6

7

Ti
m

e 
(s

)  

(c) RED-ADMM (I=1)

0 100 200 300 400 500 600 700
Shot index  

0

1

2

3

4

5

6

7

Ti
m

e 
(s

)  

(d) RED-ADMM (I=2)

Figure 5.24: Deblended CRG results using the SSA operator in (a) PGD, (b) RED-
FP, and RED-ADMM with (c) I = 1 and (b) I = 2 internal iterations.
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Figure 5.25: Difference sections between ideal data and deblending results using the
SSA operator in (a) PGD, (b) RED-FP, and RED-ADMM with (c) I = 1 and (d)
I = 2 internal iterations. All figures have been scaled 5.0 times for visualization.
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Figure 5.26: Common-shot gather view of the deblended results with the SSA
denoiser in (a) PGD, (b) RED-FP, and (c) RED-ADMM (I = 2). The respective
difference with the ideal data are scaled by 5.0 and given in panels (d)-(f).
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5.3 Final Remarks

5.3.1 Discussion

The computational running times of REDeblending (RDB) are not primarily affected by

the inner linear problems in each of its solvers, being mainly dictated by the number of

activations of the denoiser. For instance, a second application of the FKT filter is not

noticeable as it is an efficient filter based on fast Fourier transforms. In contrast, when

running experiments with two applications of the SSA filter in RED-ADMM, the difference

in running times is noticeable. In the case of vector-valued datasets, this goes beyond the

fact that the volume of data is three times larger; the quaternionic formulations suffer more

for being based on a heavier algebra, as discussed throughout this thesis.

The separation results obtained with RED are arguably superior to those obtained with the

PGD algorithm for both scalar and vector-valued datasets. This difference is more noticeable

in the 3D synthetic examples, although the 2D application using numerically blended field

data also shows superior results with RED. For both cases, however, the differences in

the final results are more visible when contrasting denoisers than the solvers being used.

Namely, compared with the SSA and QSSA filters, the FKT and QFKT results also turn out

to be superior in deblending quality. This conclusion can also be drawn from quantitative

inspections using the prediction gains (equation 5.27).

One worthy difference between the solvers is how the prediction gains evolve per iteration,

as shown in Figure 5.27a and 5.27b for the FKT and SSA denoisers, respectively. These also

compare the scalar and vector-valued deblending quality of the data’s vertical component,

which improved all the results obtained with the QFKT denoiser. It is also visible that

RED outperformed the PGD in all instances of this particular example.

Figure 5.27: The prediction gain evolution with iteration for the vertical component
of the 3D-3C VSP data using (a) and (b) FKT and QFKT and (c) and (d) SSA
and QSSA denoisers, respectively. Notice the difference in scale between the plots
(a)-(b) against (c)-(d).

Using the 2D numerically blended field dataset, on the other hand, smaller differences were

observed. Still, as shown in Figure 5.28a-5.28c and 5.29a-5.29c for the FKT and SSA
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denoisers, respectively, it is possible to observe superior performance in the prediction gains

obtained with RDB at each iteration. In this case, for the FKT denoiser, the PGD could

marginally outperform RDB only for the blending factor of 8. Also, it is possible to notice

how the second activation of the denoising engine was beneficial in all blending factors for

the FKT. The same was not valid for the SSA filter, in which the second application of the

denoiser was redundant for all blending factors, although the method converged towards

the final solution using fewer iterations. An additional marker was used to indicate the

overlapping curves in Figure 5.29 for better visualization. Finally, when used with the SSA

filter, the PGD algorithm was constantly outperformed by RED.

0 25 50 75 100
Iteration number (j)

5.0
7.5

10.0
12.5
15.0
17.5
20.0

R
=

10
lo

g (
do

2 F

d j
do

2 F
)

(a) = 2

RED-ADMM (I=1)
RED-ADMM (I=2)
RED-FP
PGD

0 25 50 75 100
Iteration number (j)

2

4

6

8

10

R
=

10
lo

g (
do

2 F

d j
do

2 F
)

(b) = 4

RED-ADMM (I=1)
RED-ADMM (I=2)
RED-FP
PGD

0 25 50 75 100
Iteration number (j)

0

1

2

3

4

5

6

R
=

10
lo

g (
do

2 F

d j
do

2 F
)

(c) = 8

RED-ADMM (I=1)
RED-ADMM (I=2)
RED-FP
PGD

Figure 5.28: The prediction gain evolution with iteration for all solvers using the
FKT operator. The blending factors (β) are 2 (a), 4 (b), and 8 (c). Note the
difference in vertical scale.
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Figure 5.29: The prediction gain evolution with iteration for all solvers using the
SSA operator. The blending factors (β) are 2 (a), 4 (b), and 8 (c). Note the
difference in the vertical scale and the additional marker for RED-ADMM (I = 2).

Even though there are numerous similarities between RED and the PGD, these approaches

are conceptually different. In the light of existing work in deblending, such as that of

Mahdad et al. (2011), the PGD algorithm solves a constrained inversion problem in which

the projection operator is implemented as the action of a denoiser. RED, however, solves a

regularized inverse problem in which the regularization term explicitly exploits a denoiser
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in its definition. Consequently, the algorithms devised for solving either problem differ

significantly; RED-ADMM is the clearest example of such differences. It should be expected,

however, that the results obtained with PGD and RED to be similar for a given denoiser

because, after all, it is the action of the denoiser that imposes prior information onto the

solution. The FKT, for instance, encourages sparse solutions in the frequency-wavenumber

domain for all methods, thus performing well in applications such as simultaneous source

separation. Overall, just like PGD, RED is a general framework for solving inverse problems

with great value to the geophysics community since denoising engines have been developed

to a great extent already, and more are expected to come.

5.3.2 Conclusions

This chapter exploits the regularization by denoising (RED) framework in simultaneous

sources separation of scalar and vector-valued datasets. RED proposes a regularization term

in its cost function that employs denoising engines of choice in its definition. Such a cost

function has a clear interpretation of data fitting coupled with strong noise attenuation.

Minimizing the RED cost function can be achieved via first-order optimization methods.

Underlying this rather desirable workflow are the RED conditions, which a denoiser of

interest would have to satisfy to validate its gradient. Together with differentiability, the

conditions are local homogeneity, strong passivity, and Jacobian symmetry.

RED is a topic of active research, as it is clear from recent interest in signal processing

and inversion communities. The last condition, Jacobian symmetry, was recently added to

the list to make the gradient valid for a suitable denoiser. This is a potential setback on

RED because many highly in-use denoisers lack Jacobian symmetry, sometimes even being

non-differentiable with respect to the model of interest. Nevertheless, RED can still deliver

high-quality results with such denoisers. For example, a classic denoiser such as the FKT

used here, which does not fully satisfy the local homogeneity condition, still could perform

well in RED for simultaneous sources separation.

RED could achieve excellent performance in simultaneous sources separation, comparable

to Fourier sparse inversion results. One can use arbitrary denoisers in RED if compliance

with its conditions is assumed. The second example adopted in this paper was the SSA

filter, which was also employed as a spatial coherency constraint for deblending within

the projected gradient descent algorithm. RED could achieve good performance in all

instances, and the results are satisfactory. When comparing the results among denoisers,

the FKT operator outperformed the SSA filter, but one can relate it to the denoisers’ setup.

As discussed, the performance of both PGD and RED highly depends on the denoiser of

choice, and a smartly formulated denoiser is likely to perform better too.
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CHAPTER 6

Conclusions

6.1 Summary

Multicomponent seismology offers a better characterization of the subsurface as it samples

the three orthogonal components of the vector-valued wavefield. The acquired components

still suffer from all issues faced in classic (scalar) seismic data processing, such as noise

and missing observations. Processing vector-valued datasets impose a series of physical

constraints onto the data that are usually ignored in the commonly used componentwise

processing, which treats each component as its scalar entity. Such an approach completely

disregards any possible relationship between the acquired data components. Vectorial pro-

cessing approaches aim to include all possible useful information from the data components

into steps such as data denoising and recovery. This thesis exploited the noncommutative

quaternion algebra to formulate vector-valued data processing techniques for multicom-

ponent seismic data. The methods developed here exploit the correlation between data

components following physically meaningful vector-valued approaches. For such, Chapter

2 provides the necessary introduction to quaternion numbers and their algebra, along with

the extension of well-known data processing techniques, such as the Fourier transform (FT)

and Singular Value Decomposition (SVD), which pave the way to quaternionic signal pro-

cessing methods. Also importantly, the second-order statistics of quaternion random vectors

were introduced to exploit the correlation between quaternion components through the basis

augmentation given by the quaternion involutions.

Multidimensional seismic data reconstruction is a common problem in seismic data process-

ing. There are several methods to perform seismic data reconstruction, one of them being

the frequency-space (f −x) Singular Spectrum Analysis (SSA) filter, extended in Chapter 3
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to the case of multicomponent datasets using its quaternionic version (QSSA). The exten-

sion requires defining quaternion-valued seismic data in the time domain through the vector

components of displacement fields. Its frequency-domain representation is obtained using

the Quaternion Fourier transform (QFT), which requires the definition of an eigenaxis and

side for the transformation. Following the advances in augmented statistics, an augmented

version of the QSSA (AQSSA) can exploit the additional information between data com-

ponents. The usual SSA steps are still the same in its quaternionic formulation, but the

classically expensive SVD has to be replaced by the prohibitive QSVD. The efficient formu-

lations of rank-reduction can be readily presented in the quaternion domain as in Appendix

A of this thesis. Given the Hankel structure of the matrices used by the SSA method,

spectral-domain convolutions in the quaternion domain can also be used to increase the

feasibility of these approaches for demanding applications such as multidimensional seismic

data reconstruction. The methods were tested in reconstructing multidimensional synthetic

datasets, thus showing the effectiveness of the vector approaches. Both QSSA and AQSSA

could improve upon the results from the componentwise reconstruction.

Chapter 4 exploits the underlying models explaining the low-rank character of the Hankel

matrices in Chapter 3, known as auto-regressive models. These models are used to de-

fine classic seismic data processing techniques, such as the so-called prediction filters (or

FXDECON), known to be efficient and effective denoisers. The low-rankness of quaternion

Hankel matrices thus suggests that a low-order quaternion-valued auto-regressive model can

be used to develop a quaternionic predictive filter for vector-valued seismic data. Similar to

the QSSA, the method is defined in the frequency-space domain, and the data is required

to be quaternion Fourier transformed. Each frequency slice is processed independently on

both sides of the spectrum, giving rise to a technique named QFXDECON. For complete

second-order characterization of the quaternion signal, a widely-linear auto-regressive model

is used to define the WL-QFXDECON capable of exploiting additional useful information

from the correlation between data components. In their applications to synthetic and field

multicomponent data examples, the methods were effective in signal preservation.

While Chapters 3 and 4 introduce denoising and reconstruction methods based on the low-

rankness and predictability of plane waves in the frequency-space domain, Chapter 5 argues

that those priors persist in the definition of many denoising algorithms that can be further

exploited with the Regularization by Denoising (RED) framework in diverse applications.

As an example, Chapter 5 solves the simultaneous sources separation problem through

RED in a formulation that permits developing deblending algorithms where the user can

select any denoising engine that satisfies RED conditions discussed in Appendix B. Two

popular denoisers in the seismic processing community are tested: frequency-wavenumber

thresholding (FKT) and singular spectrum analysis (SSA). The results show that RED can

deliver high-quality results for scalar and vector-valued seismic deblending, comparable or
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superior to those obtained by state-of-the-art techniques such as sparse inversion.

6.2 Contributions

One of the contributions of this thesis consists of the implementation of physically mean-

ingful vector-valued data processing techniques tailored for multicomponent seismic data.

Thanks to the developments in quaternion-based signal processing, no intermediate scalar

steps were necessary to formulate the techniques presented in this thesis. These were for-

mulated based on the quaternionic counterparts of classic data processing techniques, which

are discussed in Chapter 2. This chapter provided an overview of quaternion numbers,

quaternionic signals, and their processing. Altogether, it represents the description of a

fully vector-based signal processing framework upon which many techniques can be based.

One example of such techniques is the extension of the QSSA to the case of vector-valued

seismic data presented in Chapter 3. The classic (scalar) SSA filter operates in the f − x
domain and exploits the low-rank character of Hankel matrices built from the frequency slices

of the data. It can be shown that the rank of these matrices corresponds to the number

of plane waves present in the time domain data. The quaternion-signal model represents

the multicomponent seismic data in the time domain, thus avoiding any scalar processing

of vector quantities. Its f − x representation is obtained through the QFT, and the low-

rank character of the Hankel matrices built from the quaternionic frequency slices is shown

to be preserved. The QSSA can thus be used for multicomponent seismic data denoising

and reconstruction. However, there is no guarantee that the direct extension of classic

signal processing techniques to their quaternion counterparts will exploit the correlation

between data components. The inclusion of augmented second-order statistics in the QSSA

represents an essential contribution to processing vector-valued seismic data. The resulting

AQSSA provides an explicit way to exploit second-order information from quaternionic

signals, improving results over the SSA and QSSA. One known drawback of rank-reduction

techniques, however, is their computational requirements. With the heavier quaternion

algebra, developing seismic data processing methods based on rank-reduction is further

challenging. Following the scalar case, one possible solution is to exploit the structure of

the Hankel matrix to implement the QSSA filter efficiently. Such implementation is based

on the spectral convolution theorem, which has a non-trivial extension to the quaternion

domain. Fast Fourier transforms (FFTs) significantly improve the method’s efficiency in the

vector case. These efficient extensions were vital in making it possible to apply the method

to multidimensional vector-valued seismic data reconstruction.

As for the SSA, the scalar FXDECON is a classic seismic data processing technique com-

monly present in industrial workflows. Using quaternion auto-regressive (Q-AR) models,
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again in conjunction with the QFT, a hypercomplex version of the f − x prediction filter,

the QFXDECON, was formulated for the case of vector-valued seismic data in Chapter 4.

Again, the method is fully vectorial and does not require intermediate scalar steps. For com-

plete second-order signal characterization, where the correlation between data components

can be fully exploited, augmented statistics have to be considered. Similar to the AQSSA,

the quaternion involutions are used as an additional basis for describing the observations,

thus leading to a widely-linear model of the quaternionic frequency slices. The contribution

is introduced as the WL-QFXDECON and includes additional useful information from the

data components in its formulation. Its underlying augmentation step creates a four-fold

redundancy in the data samples for signal and noise alike, which can be helpful for better

signal preservation. However, as the noise is augmented, the results will look noisier than

their strictly linear counterpart. The methods retain the FXDECON’s simplicity and ef-

ficiency and exemplify the possibility of developing vector-valued data processing methods

that are physically consistent and make the most out of the acquired data.

Chapter 5 introduces RED for applications in scalar and vector-valued seismic data process-

ing. More specifically, RED was used to solve the simultaneous sources separation problem.

The formulation leads to deblending algorithms that can explicitly employ denoising tech-

niques, including those developed in Chapters 3 and 4 of this thesis, capable of delivering

solutions comparable to state-of-the-art methods. The denoisers are used to implicitly im-

pose desired priors, such as sparsity or low-rankness in transform domains, as exploited in

this chapter through the FKT and SSA, respectively. Their choice is steered by the un-

derlying character of plane waves described by low-rank, predictable, and sparse models in

transform domains. These are favorable priors to applications such as deblending and recon-

struction. Given the extension of quaternion-based denoising and reconstruction techniques

for vector-valued data, Chapter 5 also presents synthetic applications of vector-valued de-

blending in an ad-hoc fashion. Notice that defining a quaternion-based RED cost function

inherits its conceptual difficulties already from the real case, which are discussed here in

the light of the RED conditions. These conditions and their corresponding numerical tests

are summarized and discussed for the real case only. Arguably, RED is still a developing

method, and this chapter summarizes its developments, from its conception up to its clar-

ification. Such a contribution is expected to drive further interest in using RED for other

applications. The examples with synthetic and real numerically blended data showed that

RED performs competitively with leading current methods for both scalar and vector cases.
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6.3 Future Work

The recent development in quaternion-based signal processing has equipped the field with

enough tools to fuel a range of applications in processing color images and other vector-

valued signals. These tools introduce additional parameters to the processing routines, such

as the eigenaxis and side of the QFT. The techniques presented in this thesis did not explore

any particular way of defining them. Further efforts can be made in that direction to boost

quaternion-based techniques further. The methods presented here are extensions of classic

scalar seismic data processing techniques to their vector-valued case. Therefore, they are

defined based on plane-wave assumptions which are approximated by data windowing. No

other multicomponent processing was conducted for futher appraisal, and the assessment was

based on the reconstruction quality as routinely done in the signal processing community.

Futhermore, many quaternion-based extensions can be proposed to process multicomponent

seismic data. For example, in the case of irregular vector-valued seismic data, a quaternionic

anti-leakage Fourier transform (Xu et al., 2005) can be promptly proposed. Likewise, the

I-MSSA proposed by Carozzi and Sacchi (2021) also has a trivial quaternionic extension

that can be exploited to reconstruct irregular multicomponent traces. Projection filters

(Soubaras, 1994), which represent an improvement over the FXDECON, also stand as a

direction for future research with quaternions since the predictive models were particularly

effective in signal predictability. These filters provide a possible way to reduce the noise levels

in the results obtained with widely-linear prediction models used in the WL-QFXDECON.

Simultaneous source separation and seismic data reconstruction can be solved through sim-

ilar methods based on the related sparse and low-rank priors developments. For instance,

both problems can be solved through the projection-onto-convex-sets (POCS) algorithm as

given by Abma and Kabir (2006) and Abma et al. (2015) for reconstruction and deblending,

respectively, which exploits sparsity priors in its formulations. In addition, it is also usual

for these problems to be solved simultaneously (Cheng and Sacchi, 2015). In this thesis,

RED was introduced as a flexible framework that allows the inclusion of well-established

denoising techniques within the regularization term of the cost function for general inverse

problems. RED was tested in different blending noise conditions, but examples presented

here do not include issues such as strong first arrivals that highly mask weaker signals from

earlier sources. While a Gaussian fidelity term is still welcome to fit the blended observations,

the denoisers employed require stronger noise attenuation and signal recovery capabilities.

Methods based on robust statistics and redescending operators (Maronna et al., 2019) have

shown good performance in these conditions and also represent a further point of improve-

ment for the methods presented in this thesis. Finally, the priors mentioned above, being

successful in REDeblending, also suggest RED as a powerful reconstruction framework.
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APPENDIX A

Efficient Formulations of the QSSA Filter

A.1 Introduction

The increased computational time in the quaternionic processing of vector signals imposes

a challenge in its development because computationally expensive techniques, such as SVD

might suffer more in their hypercomplex versions. However, published methods that improve

rank-reduction efficacy in the case of scalar data (Gao et al., 2013; Cheng and Sacchi, 2017)

can also be readily extended to the quaternion domain.

A.1.1 Lanczos Bidiagonalization for Structured Matrices

For a m× n, with m ≥ n, general matrix X, the Lanczos bidiagonalization can be used to

find a decomposition of the form

X = UBVH , (A.1)

where U and V are orthogonal matrices of size m×m and n× n, respectively, and B is a

real upper bidiagonal matrix, of same size as X, with entries given by

Bi,i = αi, i = 1 . . .m, Bi,i+1 = βi, i = 1 . . .m− 1. (A.2)

Equation A.1 can be used to find a low-rank approximation to the matrix X as

Xk = UkBkV
H
k , (A.3)
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where U and V are truncated to its first k columns, and the elements in Bk are given by

Bi,i = αi, i = 1 . . . k, Bi,i+1 = βi, i = 1 . . . k − 1. (A.4)

Here k refers to the number of Lanczos iterations to be performed which, although correlated

to, it is not the same as the desired rank. The columns of the unitary matrices, Uk and Vk,

and the diagonals of Bk can be computed iteratively via algorithm 5.

Algorithm 5 Lanczos bidiagonalization with selective orthogonalization

Set: z1 6= 0, v1 = z1

‖z1‖ ,

y1 = Xv1, α1 =‖ y1 ‖, u1 = y1

α1

for i = 1 to k − 1 do
zi+1 = XHui − αivi
!Reorthogonalize
zi+1 = zi+1 − (zHi+1vj)vj , j = i, i− 1, . . . , i− s
βi =‖ zi+1 ‖
vi+1 = zi+1

βi

yi+1 = Xvi+1 − βiui
!Reorthogonalize
yi+1 = yi+1 − (yHi+1uj)uj , j = i, i− 1, . . . , i− s
αi+1 =‖ yi+1 ‖
ui+1 = yi+1

αi+1

end for

Notice that the orthonormal vectors in U and V suffer from loss of orthogonality due to

floating point arithmetic inaccuracies and have to be reorthogonalized to ensure numerical

stability to the Lanczos algorithm. The Lanczos Algorithm given in 5 uses selective orthog-

onalization, where s refers to the number of preceding vectors used in the orthogonalization

step. However, in this paper, complete orthogonalization (j = i, . . . , 1) was preferred since

only k vectors are being computed.

The computational cost of algorithm 5 is mainly dictated by the matrix-vector multipli-

cations. Fortunately, the structure of the trajectory matrix can be exploited to improve

the efficacy of the Lanczos bidiagonalization using FFTs to perform these operations. The

efficiency gain comes from the fact that the result of the product of a circulant matrix C

by a vector x can be treated as the convolution of two sequences c and x, where c denotes

the first column of the circulant matrix C. The Hankel structure of the trajectory matrix

can then be exploited by reversing its columns to form a Toeplitz matrix which can be

expanded into a circulant matrix. In the case of real or complex arrays, the convolution

theorem allows one to perform this matrix-vector multiplication much faster and with lower

memory requirements via FFTs. This efficient methodology can also be used for higher-level

Hankel/Toeplitz matrices using multidimensional FFTs (Gao et al., 2013).
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Quaternionic Extension

Finally, the extension of the Lanczos bidiagonalization algorithm to the quaternion domain

is rather straightforward, where only the definition of the norm has to be updated to accom-

modate the additional components of a quaternion. In the quaternion domain, the efficient

matrix-vector multiplication can be accomplished via QFTs and the spectral-domain for-

mulae discussed in Chapter 2, section 2.3.4, thus allowing one to exploit the structure of

multilevel block Hankel/Toeplitz matrices with quaternion entries. Furthermore, notice that

in AQSSA X would be replaced by the augmented trajectory matrix Xa = [X; Xi; Xj ; Xk]

(equation 3.10). This matrix has a block-Hankel structure since the involution matrices are

still Hankel. Therefore, the same routine for the efficient product of Hankel (or Toeplitz)

matrices by vectors can be repeatedly used to perform the products Xavi+1 and XaHui+1.

The efficient formulation of the matrix-vector products for quaternion matrices provided

a substantial gain in processing time (figure 3.8). For instance, the processing time for a

80×80 frequency slice through the QSVD with k = 1 is 738.94 seconds, and through Lanczos

bidiagonalization with k = 4 iterations is 1.59 seconds.

A.1.2 Randomized QR Decomposition

Computing the rQR of a given matrix entails projecting it over a set of p random unit vectors,

usually denoted by Ω, as to reduce the dimension of the initial matrix. For instance, the

level-n Hankel matrix (H(n)) of size L1 . . . Ln×K1 . . .Kn is projected over the set of random

vectors (Ω) of size K1 . . .Kn × p as

W = H(n)Ω, (A.5)

where p� K1 . . .Kn. Of course, the matrix W, of size L1 . . . Ln × p, is much smaller then

H(n), and represents a subsampling of the matrix associated with the data. The resulting

matrix W is then decomposed via the QR decomposition

[Q,R] = qr(W), (A.6)

yielding a reduced-rank orthonormal basis of H(n), the matrix Q (of same size as W). The

low-rank approximation H
(n)
p is obtained by

H(n)
p = QQHH(n), (A.7)

which is a projection of H(n) on the orthonormal basis Q. Notice that this is a rank-

p approximation to the initial matrix, which correlates to the rank-k approximation that
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would be obtained with the SVD methodology. In fact, the number of random projections

p is usually interpreted as relaxation of the rank k used in SVD, as a wider range of p is

still able to recover accurate low rank approximations to the given matrix (Chiron et al.,

2014; Cheng and Sacchi, 2017). However, notice that the SVD provides a least-squares

approximation to H(n), and that this is the optimum result that could be obtained.

Further improvements might still be accomplished if one employs FFTs to perform the

projections given in equations A.5 and A.7. The procedure refers to the matrix-vector

products involving the Hankel matrix, similarly to the Lanczos bidiagonalization above.

Notice that the fast Hankel matrix product has to be used p times in equation A.5, and it

can also be used to perform the product QHH(n) in A.7 efficiently. Finally, the reader can

refer to Chiron et al. (2014) or Cheng and Sacchi (2017) for a proof that equation 3.9 can

also be computed through convolutions, which is efficiently carried out via FFTs.

Quaternionic Extension

The extension of the QR algorithm to quaternion matrices given by Bunse-Gerstner et al.

(1989) relies on its associated complex adjoint matrix (Zhang, 1997). Its computation,

however, can be obtained via the Householder transformations, as in the QSVD (Sangwine

and Le Bihan, 2005). One can perform the stochastic version of the QR decomposition

of quaternion matrices by following the description given earlier in this paper. For com-

pleteness, it is important to mention that there was no noticeable difference when making

the random projection vectors, Ω, as real or quaternion numbers, but real numbers were

preferred due to their lower computational requirements when compared with quaternions.

Also, one can promptly employ the quaternionic convolution theorem given above to per-

form the matrix-vector products and anti-diag averaging via QFTs, similarly to the complex

case.
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APPENDIX B

Testing for RED Conditions

B.1 RED Conditions

As previously discussed, one needs to ensure that RED conditions are satisfied for the RED

gradient to hold. Romano et al. (2017) and Reehorst and Schniter (2018) provide numerical

tests to ensure a given denoiser of choice satisfies the conditions, validating its gradient.

The tests are numerical and relatively simple, as discussed below.

B.1.1 Numerical Tests

For the local homogeneity condition, one can test a given denoiser by scaling the input data

by c = 1+ε, where ε is a small perturbation here set to 0.01. The denoiser is applied to both

original and scaled inputs, and the output of the original image is then scaled by the same

factor c. If local homogeneity holds, a scatter plot of the outputs delivers a straight line.

The FKT denoiser was tested for variable thresholding levels, where the first 99.9% of the

Fourier coefficients are thresholded, followed by 80%, 60%, 40%, 20% and 0.01%. The results

are shown in Figure B.1, where it is possible to see that while FKT does satisfy the local

homogeneity condition except for more restrictive thresholding of 99.9% of its coefficients.

The SSA filter was also tested in similar conditions, where the rank varied as 1, 2, 5 and 10,

as shown in Figure B.2. Unlike the FKT, SSA fully satisfied the local homogeneity tests.

For the Jacobian symmetry condition, another numerical test was given by Reehorst and

Schniter (2018). It consists in obtaining the Jacobian of the denoiser f(·) via a central dif-

ferenciation approach, followed by a comparison of the obtained Jacobian with its transpose.
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Figure B.1: Local homogeneity test results for the FKT filter with threshold per-
centages (a) 99.9%, (b) 80%, (c) 60%, and (d) 40%, (e) 20%, and (f) 0.01%.
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Figure B.2: Local homogeneity test results for the SSA filter with rank (a) 1, (b)
2, (c) 5, and (d) 10.
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The Jacobian can be numerically approximated as

∇f(x)i,j =
fi(x + εej)− fi(x− εej)

2ε
, (B.1)

with ε a small perturbation and ej a basis to modify the j-th sample. Its symmetry can be

quantified by

δf =
‖∇f(x)−∇f(x)

T ‖2F
‖∇f(x)‖2F

. (B.2)

Such a test is more demanding than the previous conditions since each sample j in the

image to be denoised has to be perturbed. The FKT denoiser was tested with the 99.9% of

thresholding values, since it failed the local homogeneity property for it. As given by Table

B.1, estimated in single precision, the FKT satisfies the Jacobian symmetry condition.

Moreover, Reehorst and Schniter (2018) already clarify that transform-domain thresholding

denoisers satisfy the Jacobian symmetry condition analytically. The aforementioned test is

thus useful for those denoisers whose symmetry one cannot easily study its symmetry, such

as the SSA filter. For the latter, the Jacobian symmetry test was not positive regardless of

the rank used (the reported value corresponds to rank of 3).

Jacobian symmetry
f(·) FKT SSA
δf 0.0 0.403

Table B.1: Output results for the Jacobian symmetry tests for the FKT and SSA
denoisers.

Finally, for the strong passivity condition, the test entails a power method iteration to

determine the denoiser’s spectral radius. For further details, the reader is pointed to Romano

et al. (2017). The test should converge to a spectral radius smaller than, or equal to, 1.

Both the FKT and SSA denoisers satisfied this condition using the same threshold and rank

values as above.

B.1.2 The RED Gradient

By assuming a denoiser that satisfies the Jacobian symmetry condition, one can use local

homogeneity to derive the RED gradient shown in equation 5.16. Recall that the denoiser

applied to a positively scaled image should result in a scaled version of the original output,

i.e.

f(cx) = cf(x),
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for c close to 1. The direct implication of this property relates to the directional derivatives

of f(·) along x as

∇f(x)x = f(x+εx)−f(x)
ε (B.3)

= f((1+ε)x)−f(x)
ε , (B.4)

and by invoking the local homogeneity condition, one rewrites

∇f(x)x =
(1 + ε)f(x)− f(x)

ε
(B.5)

∇f(x)x = f(x). (B.6)
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APPENDIX C

Software for Quaternion Signal Processing

The developments in this thesis are based on the Julia language (Bezanson et al., 2012),

and it relies on the SeismicJulia packages (Stanton and Sacchi, 2016) for tools for reading

and processing seismic data. The quaternionic development presented here is mainly based

on the Quaternion Toolbox For MATLAB (QTFM) (Sangwine and Le Bihan, 2005), which

is a wonderful contribution. Chapter 4 was developed using the QFTM in conjunction with

the SeismicLab toolbox.

The QTFM is a convenient way to explore quaternion-based signal processing, but the Julia

language allows the definition of abstract data types with more ease. Defining a quater-

nion data type that inherited many methods already defined for complex-valued data was

convenient thanks to Julia’s multiple dispatch. There are packages1 that define quaternion

functionalities which were useful when extending key QFTM functions to the Julia language,

as the Quaternion Fourier Transform which was the main algorithmic tool used throughout

the whole thesis. Finally, some examples used in this thesis for Chapters 3 and 5 can be

found in https://github.com/bbahia-phd/HCDSP.

1 Such as https://github.com/JuliaGeometry/Quaternions.jl and https://github.com/peakbook/

Quaternions.jl
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