
 

 

 

 

SECURITY AUDIT OF DOCKER CONTAINER IMAGES IN CLOUD 
ARCHITECTURE 

 

Co-authored by Waheeda Syed Shameem Ahamed 

Pavol Zavarsky 

Bobby Swar 

 

 

Project report 

 

Submitted to the Faculty of Graduate Studies, 

Concordia University of Edmonton 

 

in Partial Fulfillment of the  

Requirements for the  

Final Research Project for the Degree 

 

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT 

 

Concordia University of Edmonton 

FACULTY OF GRADUATE STUDIES 

Edmonton, Alberta 

 

April 2020

 



 

 

 

 

SECURITY AUDIT OF DOCKER CONTAINER IMAGES IN CLOUD 
ARCHITECTURE 

 

Waheeda Syed Shameem Ahamed 

 

 

 

 

 

 

 

 

 

 

Approved:  

 

Pavol Zavarsky [Original Approval on File] 

Pavol Zavarsky    Date: April 14, 2020 

Primary Supervisor  

 

Edgar Schmidt [Original Approval on File] 

Edgar Schmidt, DSocSci   Date:  April 27, 2020 

Dean, Faculty of Graduate Studies

 



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Security Audit of Docker Container Images in 

Cloud Architecture 

Waheeda Syed Shameem Ahamed  
Information Systems Security and 

Assurance Management 
Concordia University of Edmonton 

Edmonton, AB, Canada 
wsyedsha@student.concordia.ab.ca 

 

Pavol Zavarsky 
Information Systems Security and 

Assurance Management 
Concordia University of Edmonton 

Edmonton, AB, Canada 
pavol.zavarsky@concordia.ab.ca 

 

Bobby Swar 
Information Systems Security and 

Assurance Management 
Concordia University of Edmonton 

Edmonton, AB, Canada 
bobby.swar@concordia.ab.ca 

Abstract—Containers technology has radically changed the 

ways for packaging applications and deploying them as services 

in a cloud environment. According to the recent report of 

TrendMicro security predictions of 2020, the vulnerabilities in 

container components that are deployed with cloud architecture 

have been ranked as one of the top security concerns for 

development and the operations teams in enterprises. Docker is 

one of the leading container technologies that automate the 

deployment of applications into containers. Docker Hub is a 

public repository by Docker for storing and sharing the docker 

images. These Docker images are pulled from the Docker Hub 

repository and the security of images being used from the 

repositories in any cloud environment could be at risk. 

Vulnerabilities in docker images could have a detrimental effect 

on enterprise applications. In this paper, the focus is on securing 

the docker images using vulnerability centric approach (VCA) 

to detect the vulnerabilities and developing a checklist of use 

cases compliant with NIST standards. This paper develops a 

checklist of use cases to verify the standards by systematic 

analysis of the docker image in compliance with OWASP CSVS. 

The paper has the following objectives (i) to identify and assess 

the vulnerabilities of docker images with their CVE details using 

VCA; (ii) to develop a checklist of use cases compliant with the 

NIST guidelines for securing container images; and (iii) to align 

the checklist with the requirements of OWASP Container 

Security Verification Standards. The proposed checklist can be 

used as a useful tool during the development, deployment, and 

maintenance of the microservice application. 

Keywords—docker, containers, OWASP, cloud, 

vulnerabilities. 

I. INTRODUCTION 

Containers are transforming the enterprise applications by 
allowing data centers to deploy their applications rapidly with 
reduced development overhead, lower cost, efficient use of 
resources and increased business agility. Microservices are 
developed in container technology as the applications are 
broken down into smaller components and independent of 
services. Docker is a containerization platform which is a 
Platform as a Service (PaaS) product that uses the operating 
system virtualization to deliver software applications as 
packages. Docker containers are easy to deploy in cloud 
infrastructure and are integrated with cloud providers like 
AWS, Microsoft Azure, Google, and Digital Ocean. 
Containers have direct access to the host kernel which is 
considered as one of the major security weaknesses of 
containers security and privacy management. According to 
Forester’s survey, 53% of the enterprises consider security as 
their biggest concern when developing their applications with 
container technology [1].   

Fig 1 describes a Docker architecture workflow for 
creating docker images using the docker registry and the 
deployment of images into containers with cloud providers. 

Docker operates as a client-server architecture and has three 
major components, docker client, docker host, and docker 
registry. As shown in Fig 1, the docker client is the primary 
component for interacting with docker daemon. The client 
uses the commands “docker build” to build the image, “docker 
pull” to pull the image from the docker host and “docker run” 
to execute and create an image. The Docker host, which is the 
server, gets the request from the docker client. The Docker 
registry is the public repository that stores the images. As 
shown in Fig 1, the Docker Registry pulls the image from the 
Docker trusted registry of Docker which could be a private 
registry created by an organization or an individual in any of 
the public cloud providers. The public cloud providers like 
Amazon Elastic Container Registry, Microsoft Azure 
Container Registry, and Google Cloud Container Registry, 
store the images by fetching the images from Docker hub 
which is the trusted Docker registry on Cloud. 

 
Fig 1: Docker architecture workflow 

The core components of Docker are the images, registries, 
containers and docker hosts, of which the containers and 
images are high-risk components. Docker on execution 
searches for a simple dockerfile that defines the steps needed 
to generate a Docker image, which is then used to instantiate 
the containers [2]. Dockerfile is the configuration file that is 
needed to create an image and each instruction in the 
dockerfile creates a layer in the image. As shown in Fig 2, the 
blocks of image layers are the result of the instructions 
executed in the Dockerfile. The topmost layer of the docker 
image is the read/write layer and the below layers are only 
readable layers. The base images are the operating system 
images like ubuntu and alpine that form the underlying layer. 

The Container Deployment's major concern is the stability 
and security of images. The vulnerability can be in the 
package version of the base image, configuration file issues, 
authentication, and authorization. The docker image is an 
initial step for developing an application in the container 



technology, identifying the vulnerabilities and mitigating or 
preventing those issues could be achieved by the checklist of 
use cases developed in this research. Container Security 
Verification Standards (CSVS) could be used as a blueprint 
for the organization to create a security checklist and the main 
objective of this research is to develop a checklist following 
the NIST guidelines and to align with the requirements of 
OWASP Container Security Verification standards. 

 

Fig 2: Container layer representation of an image 

This paper is organized as follows, Section II provides the 
related works in the security of docker images, Section III 
provides the methodology followed for developing the use 
cases and finally, Section IV concludes the paper. 

II. RELATED WORKS 

National Institute of Security and Technology (NIST) 
defined the application container security guidelines in 
NIST.SP.800-190. According to NIST container security 
guidelines, the primary data to protect in the container 
technology are the images and the containers as these 
comprise the files and dependencies required to run an 
application [4]. The research in Docker image security has 
focused on static code analysis of images, base image security, 
authentication, and authorization. 

Durante et al. performed a detailed analysis of Docker 
vulnerabilities and patches and applied a Static Code Analysis 
to understand how the vulnerabilities spread over time [5]. 
The findings indicate that image vulnerabilities could have 
been detected by analyzing the behavior of the software, 
through regression testing or robustness testing. In relation to 
[5], for performing the robustness and regression testing, our 
developed checklist could be used to verify the proper controls 
and configuration of an image during the development, 
deployment and testing phase of an application.  

Zerouali et al. analyzed the relation between the outdated 
containers and the vulnerable packages installed in the 
software to enhance container deployment [6]. The images are 
extracted from Docker Hub and analyzed to study the 
packages installed in them to compute a technical lag of the 
image based on their package versions. After the empirical 
analysis of the state of the packages in Docker containers, a 
conclusion was derived that outdated container packages in 
images are one of the reasons for the presence of bugs and 
vulnerabilities in the docker image. It is also observed that the 
Debian repository from the Docker is widely used due to its 
maturity and widespread, as it maintains the package version 
for several simultaneous releases [6].  

Shu et al. performed a study on the state of security 
vulnerabilities for both official and community images from 
the Docker Hub repository as they are considered as the base 
image for writing a Dockerfile. Shut el al. proposed a Docker 
Image Vulnerability Analysis (DIVA) framework to 
automatically discover, download and analyze the Docker 
images for its security vulnerabilities [7]. The experimentation 
analyzed a set of images and observed the following points, a) 
both official and community images contain an average of 
more than 180 vulnerabilities, b) many images had not been 
updated for hundreds of days, and c) vulnerabilities are 
commonly propagated from parent images or child images. 
Based on the observation by the research done, there is a need 
for systematic methods while analyzing the content of the 
Docker containers [7]. In relation to our research, the use case 
checklist could provide a systematic method for analyzing a 
Docker image during the development of an application.  

Tunde et al. evaluated a set of static and dynamic attack 
detection schemes using 28 real-world vulnerabilities. They 
compared the vulnerabilities detected through these detection 
schemes and provided a conclusion that dynamic anomaly 
detection schemes improve the detection rate of 
vulnerabilities compared to the static vulnerability schemes 
[8]. For static vulnerability detection scheme Clair, an open-
source tool for the analysis of static vulnerabilities in docker 
containers is used. For the dynamic vulnerability detection 
scheme, the evaluation is done with unsupervised anomaly 
detection schemes. The results state that dynamic anomaly 
detection schemes can effectively detect greater exploits with 
false-positive rates when compared to static vulnerability 
schemes [8].  

 OWASP Container Security Verification Standards were 
published in July 2019 to enhance the security of the projects 
deployed with containers. The Container Security Verification 
Standard defines security requirements or tests that can be 
used by architects, developers, testers, security professionals 
and even consumers to define a secure container with respect 
to its infrastructure [3]. Though there has been a lot of research 
on Container security related to the framework, performance, 
and vulnerability analysis, there is no proper standard and 
guidelines like a verification checklist based on standards to 
consider while developing a docker image. This research 
could help the organizations to align their applications with 
the OWASP Container Security Verification Standard 
requirements to avoid vulnerabilities in the docker image. 

III. METHODOLOGY FOR DEVELOPING USE CASES  

The aim of this research is to analyze the security of 
Docker images in containers and to develop a checklist of use 
cases to verify the security of the images based on the 
standards. The developed use cases are to assist the 
DevSecOps teams in an organization to test and verify the 
applications in compliance with the OWASP CSVS. Though 
there are integrated tools for finding the vulnerabilities in 
containers this checklist will be used by the DevSecOps teams 
in the organization while developing, testing their applications 
and verifying the standards that could avoid vulnerabilities in 
the applications. This section is divided into three sub-
sections, scanning the commonly used docker images in a 
cloud environment and identify its vulnerabilities, developing 
the use cases based on the NIST guidelines, and verifying the 
use cases with the OWASP Container Security Verification 
Standards. 



A. Scanning the images 

 In this section, we have scanned the commonly used 
images in five categories like operating system, database, 
language, web component, and application platform images. 
A Vulnerability Centric Approach (VCA) is applied for 
assessing the docker images by scanning the images and 
reviewing the configurations for vulnerabilities. Google 
Container Registry (GCR) a private container image registry 
that runs on Google Cloud and one of the cloud providers of 
Docker is used for scanning the images and it has a built-in 
API for scanning the image vulnerabilities, orchestration, 
performance measurement for the API. In Google Container 
Registry a Vulnerability Scanning API is enabled to 
automatically scan the images once it is pushed to the 
container registry and this could enhance the Continuous 
Integration/Continuous Delivery process. To scan the images 
in this registry the steps are as follows. 

1) A set of images is pulled from the Docker Hub 

Registry, a public repository for Docker images into the 

Google Container Registry under a project created.  

2) Once the images are pulled from the Docker Hub 

Registry repository, it is tagged with the project created in the 

google container registry 

3) The tagged image from the above step is pushed to the 

specific project in the google container registry. 

4) The images are automatically scanned for 

vulnerabilities once it is pushed to the container registry since 

the Vulnerability Scanning API is enabled. 

5) The vulnerabilities in the images are evaluated based 

on the Common Vulnerability Scoring System (CVSS) and 

for each image, the critical and high vulnerabilities are 

analyzed. 

From the data analyzed by scanning a set of images in 

each category, it is observed that the vulnerability of the 
images is due to package version issues, privileges given to 

the default user which could bypass the information to the 

attacker, configuration issues in Dockerfile. Considering the 

issues analyzed from the CVE Details it is important to 

harden the security of images as it could result in attacks like 

Denial of Service, Man in the Middle due to root privileges. 

To harden the security of the images, this research develops 

a checklist of use cases from the CVE details analyzed in the 

common images used in the applications.   

B. Developing the Use Cases 

This section is developing a checklist of use cases based 

on the vulnerabilities analyzed. Based on the vulnerabilities 

and their CVE details the docker image security use-cases 

have been classified into four phases. 

Phase 1: Docker base image inspection (Use Cases A1 – A5) 
  Docker image inspection is done for the dependent 
images required for an application. The Docker inspect 
command and the Docker Host Security tool which is an audit 
tool could provide a detail inspection of an image in the local 
repository. As the base image pull command is the first 
command in any  Dockerfile and it is mostly fetched from the 
Docker Hub Registry which is the repository for official 
images in docker, inspecting the top base images with their 
updated versions is essential. Trust is one of the key factors in 
security terms and when relying on any open-source data it is 
the consumer's responsibility to check whether the data is 
trusted. Docker Hub registry is a central repository and it 

depends on the publisher of the official images whether to sign 
the image or not. The base images need to be checked for their 
signed integrity before it is included in the application. To 
check the trust of the base images below are the use cases from 
A1 to A5 are to be followed. 

Use Case A1 - Check whether the image is an official image: 

This can be done by the docker command “docker search 

<image_name> --filter is-official=true”. Official images in 

the Docker repository are the certified and trusted images.  

Use Case A2 - Check the trust of the base image: The images 

in the Docker repository may be signed or not so it is the 

consumer's responsibility to check the integrity of the image 

which is being fetched from the public repository. Docker 

Content Trust provides the ability to use digital signatures 

when the data is sent and received from the repository [9]. 

This can be achieved by enabling the 

DOCKER_CONTENT_TRUST flag to 1 in the environment 

variables. When this flag is enabled and if an image is not a 

certified or a signed image, it would show an error 

mentioning that the image is untrusted and won't be able to 

extract the image from DockerHub. 

Use Case A3 - Check the content of the image: Docker images 

are comprised of a set of layers and we need to check the 

layers in the image to evaluate the space occupied by the 

image, its contents and other details. The content of the image 
can be checked through the docker inspect command which 

gives the details of network configuration, it's hash value and 

layer details of the image in a JSON format. The Dive tool 

could be used to check the unused spaces and the efficiency 

of a docker image [14]. This helps in uninstalling the 

packages which are not being used in the image as this could 

improve the performance of building the image. 

Use Case A4 - Uninstalling the unnecessary packages: The 

size of a docker image also involves the dependent packages 

used to build an image. Including unnecessary dependencies 

in the Dockerfile increases the size of the image. It would 

slow down the deployment process and also increases the 

possibility of the attacks. One way to do this would be to 

include a dockerignore file which consists of a list of patterns, 

the CLI modifies the context to exclude files and directories 
matching those patterns from the dockerignore file during the 

build process of a docker image [15]. 

Use Case A5 - Disabling the build cache: When an image is 

built through Dockerfile, it steps through each instruction 
mentioned in the Dockerfile, executing them in chronological 

order. When each instruction is executed it checks the cache 

for any existing image layer of that instruction and if present 

it uses that image. But this could cause issues when there is a 

change in the instruction of the Dockerfile and it uses the 

layer form cache. Therefore, it is always preferred to create 

each and every layer of the image whenever the Dockerfile is 

executed to build.  

Phase 2: Dockerfile Configurations (Use Cases B1 - B5) 

When developing an application, it is the responsibility of 

the developer to consider and the security aspects of an 

application. Configuration issues are the potential ways to 

avoid possible security threats through Dockerfile. Rapid 

development cycles reduce the focus of security and 

vulnerability testing to be done by the developers. Below are 

the configurations to consider while writing a Dockerfile in 
rapid development as recommended in [10]



TABLE I.  USECASE ID WITH DESCRIPTION AND MAPPING TO DEVSECOPS 

Phase Use Case ID Description DevSecOps 

Docker Base Image 
Inspection 

A1 Check whether the image is an official image Development, Security, Operations 

A2 Check the trust of the base image Operations, Security 

A3 Check the content of the image Security 

A4 Uninstalling the unnecessary packages Operations 

A5 Disabling the build cache Operations 

Dockerfile Configurations 

B1 Base image version Development 

B2 Running apt-get install and apt-get update Development 

B3 Using COPY instead of ADD Development 

B4 HealthCheck for container images Development, Operations 

B5 Secrets not stored in dockerfile Development 

Image Authentication 
C1 Image signing with DCT Development, Security 

C2 Registry Authentication Development, Security 

Image Authorization 
D1 Creating a user for each container Development and Operations 

D2 Permissions for user Id is removed Development, Security, Operations 

 

Use Case B1 - Base image version: The base image version 

is one of the reasons for the vulnerabilities. The usual ways 

to include the base image in the docker file are through the 
latest tag or through a version tag. When using the latest tag 

it violates the immutability of the image as it is frequently 

updated and changes the size and other features of an image. 

When using the specific version tag, for example, 1.0, it is 

just a name given by the publisher for that image and it may 

change or delete in the future. The best way to pull the image 

while mentioning in the Dockerfile is through hash value, the 

digest of an image. The image ID of an image is a SHA256 

hash value which is unique to each image. When the image 

tag changes or the latest tag gets updated, a new SHA256 is 

created but the SHA256 remains the same for the image 

which is considered as the immutable identifier for the image. 

Use Case B2 - Running apt-get install and apt-get update: In 

Linux terminology, the Advanced Package Tool (apt) is a 

command-line tool to interact with the package system. In 
docker, the packages are installed and updated using this tool. 

When writing the Dockerfile the apt-get command is used 

with the RUN command in the docker file and it can be with 

multiple arguments. The apt-get install and apt-get update 

methods are mostly used in the Docker file when the 

packages need to be installed are updated with the RUN 

command [10]. There are two ways to install and update the 

packages through Dockerfile. 

 apt-get update and apt-get install in a separate line: When 
the image is built all the packages are updated with the latest 
version, but it loses the immutability of an image [11].  

 apt-get update and apt-get install in the same lines: When 
the image is built it ensures that there is no intervention 
between the execution process as the cache is executed after 
all the packages are installed which is mentioned in the RUN 
command [11]. 

Use Case B3 - Using COPY instead of ADD: The commands 

which create the layers in the image are RUN, ADD and 

COPY command. Other commands create the intermediate 

layers but not the writeable layers.  

ADD: This command copies the files from source to the 
destination directory, and if the destination directory is not 

available it creates it implicitly. It is also used to fetch data 

from remote URL’s and it could result in the Man-in-the-

middle attack when there is a need to download data directly 

into a secure location and the attacker can modify the content 

of the file being downloaded [12]. The advantage of using 

ADD is when we need to extract any archive files or zipped 

files that are used. But this could also provide a risk for 
vulnerabilities in the archive files and most of the 

vulnerabilities in the images are through their inbuilt 

packages and libraries. 

COPY: When using COPY, it does not create the directory 

or file implicitly, and when the file is copied from a remote 

URL, it is connected with a secure TLS connection and the 

source is validated [12].In COPY the files are copied from 

local folders and from the host. When an external file is 

copied it needs to be authenticated, which is secured and the 

preferred method for file transfer. 

Use Case B4 - HealthCheck for Container Images: 

Healthcheck for container images is to determine the state of 

the services whether they are running or not. In this 

healthcheck, we can specify the interval time on how 

frequently the state of the container has to be checked. When 
the healthcheck is enabled, the container can have one of the 

three states, a) Starting - when the container is starting, b) 

Healthy - when the healthcheck command in the docker file 

executes successfully and the container is up in running state, 

and c) Unhealthy - If the container takes a long time to start, 

then we can also specify the timeout interval in the 

healthcheck command which will give the timeout error after 

a specified time.  

Use Case B5 - Secrets not stored in Dockerfile: A docker 

image is shared in different infrastructures and designed to 

run in any environment. If any of the packages need 

credentials it has to be passed in the runtime and it not be built 

into an image. When a Dockerfile contains any hardcoded 

secrets or configuration values it is not encrypted. A secret 

can be a certificate, SSH key, password which consists of a 
blog of data. Docker secrets can be created and invoked 

during initializing a container. The secrets are created and 

sent to the Docker engine through the TLS connection.  

Phase 3: Image Authentication (Use Cases C1 - C2) 

The integrity of an image assures that the image is not 
changed when it is pulled from the repository and not from 

any third-party resources. Below are the scenarios through 

which the integrity of the image can be assured. 

Use Case C1 - Image signing with DCT: Docker Content 

Trust is a feature of Docker which is used to verify the client-

side or runtime verification for the integrity of an image, and 



the publisher of specific image tags through digital signature. 

An image can also be signed and pushed to the Docker 

registry with the docker trust command and it is built on top 

of the Notary feature in Docker. For signing an image, the 

Docker registry with the attached Notary server is required. 
Notary in Docker is a collection of trusted content that 

includes the sign collections of the consumers and the 

publishers of the images. The trust collections in Notary is 

used with Globally Unique Names (GNU). It is responsible 

for the operations necessary to create, manage, and distribute 

the metadata of the images to ensure the integrity and the 

freshness of the content of the image. 

Use Case C2 - Registry Authentication: Registry stores the 

container images and it should be authenticated before being 

accessed by a user. DockerHub provides the option of 

creating private registries for the organizations where they 

can store their internal images. This registry is integrated with 

the cloud environment like Google Container Registry so that 

when there is a need to integrate our code with any other tool 

it can be done with ease. Authentication is an important step 
to consider in the process as the images are stored in the 

registry and if an illegitimate user gets accessed to the 

registry, there is a risk of exploiting the image with malicious 

content. If the image is configured as private, the registry 

access should be given to the users who are working on the 

applications. The effective way to authenticate the registry is 

to provide the account credentials through encrypted 

dockercfg config file. This file secures your credentials when 

we push or pull the images from private registries. 

Phase 4: Image Authorization (Use Cases D1 - D2)  

Use Case D1 - Creating a user for each container: Images 

which are created as container should not be created with a 

root user as this might cause access restriction bypass by any 

external users. This is to harden the container and securing 

the container with restricted access. By default when base 

image is pulled from the Docker Hub in the FROM command 

of the Dockerfile it is by default given the root privileges. 

Containers provide isolation, but it has a direct interaction 

with the host kernel, from the underlying operating system. 

To avoid the potential risk, containers should always run 

under non-privileged user. Users can be created based on 
groups working on the application or an individual user for 

each container. 

Use Case D2 - Permissions for user Id is removed: The user 
Id is referred to as UID and its managed by the Linux kernel. 

The kernel system calls to determine whether the requested 

user has privileges to access the container. This is achieved 

by creating a user under a group and providing the privileges 

for the specific user to run the container. The unwanted 

permission for a user should be removed to prevent the 

escalation attacks, which means if an illegitimate user can 

access the container resources with UID, it can provide access 

to other containers on the host resulting in the Denial of 

Service attack. 

C. Verifying the use cases with OWSAP CSVS. 

The third section is to verify the standards of OWASP 

Container Security Verification Standards and to assign 

which role of users can use the use cases to verify the 

standards in their workflow process. Tailoring the CSVS with 

the use cases will increase the focus on the security 

requirements that are most important for the projects and 

environments in organizations. The OWASP Container 

Security Verification Standards is to establish a framework of 

security requirements and controls that focus on normalizing 

the functional and non-functional security controls required 
when designing, developing and testing container-based 

solutions [3]. The main goals of CSVS are a) help 

organizations to maintain and secure container infrastructure, 

and b) allow security services and consumers to align their 

requirements and offerings [3]. A checklist of use cases has 

been developed based on the critical vulnerabilities in the 

images. In OWASP there are 3 levels of Container Security 

Verification Security Standards as mention in the guidelines 

of the standards. 

Level 1: This is the minimum requirement of security 

needed for all containers. A container-based infrastructure 

achieves the CSVS level 1 if it adequately defends against 
well-known security threats that are easy to discover and easy 

to abuse [3]. 

Level 2: This is for the projects which handle sensitive 

information. A container-based infrastructure achieves this 

level when it adequately defends against most of the risks 

associated with the containers. This level is imperative 

especially for a financial business organization as they 

implement business-critical and sensitive functions [3]. 

Level 3: This is the highest level of the verification 

standard. This is for the container-based solutions which 

require significant levels of security verifications, such as in 
military defends, health and safety, critical infrastructure [3]. 

The failure to achieve this level in the organization could 

result in a significant impact on the organization's operations. 

Therefore, the checklist developed int this research is 

used to explain how the verification of OWASP Container 

Security Verification Standards can be done, and each 

verification rule is mapped with the use case as shown in 

Appendix B. The organizations could be benefited by this use 

case checklist during the development, testing and audit of an 

application. 

IV. CONCLUSION 

In this paper, critical vulnerabilities of Docker 
images are identified, and a checklist of use cases is 

developed to ensure the security of Docker images by the 

development, operations and security teams of an 

organization. In addition to that, the main objective achieved 

could be to verify the OWASP Container Security 

Verification Standards with the developed use-cases 

checklist, which can be used by the enterprises for increasing 

the focus of security requirements on their projects. The 

checklist could be extended for vulnerabilities in the 

orchestration of containers which is important for container 

interactions. 

REFERENCES 

[1] J. Shetty, “A State-of-Art Review of Docker Container Security Issues 
and Solutions”. American International Journal of Research in Science, 

Technology, Engineering & Mathematics, 2017. 

[2] T. Yarygina, A. Bagge, “Overcoming Security Challenges in 

Microservice Architectures”. 11-20. 10.1109/SOSE.2018.00011, 2018. 

[3] OWASP, “OWASP Container Security Verification Standards”, July 

2019. 

[4] M. Souppaya, J.Morello, K. Scarfone, “Application Container Security 

Guide”, NIST Special Publication 800-190, September 2017. 



[5] A. Duarte, N. Antunes“An Empirical Study of Docker Vulnerabilities 
and of Static Code Analysis Applicability”. 27-36. 

10.1109/LADC.2018.00013, 2018 

[6] A. Zerouali, T. Mens, G. Robles, Jesus M.Gouzalez-Barohana, “On the 

Relation Between Outdated Docker Containers, Severity 

Vulnerabilities, and Bugs”, 2018. 

[7] R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities on 

Docker Hub”, 7th ACM Conference on Data and Application Security 

and Privacy. ACM, 2017, pp. 269–280. 

[8] O. Tunde-Onadele, J. He, T. Dai and X. Gu, "A Study on Container 

Vulnerability Exploit Detection," 2019 IEEE International Conference 
on Cloud Engineering (IC2E), Prague, Czech Republic, 2019, pp. 121-

127. DOI: 10.1109/IC2E.2019.00026. 

[9] “Content Trust in Docker”, Available at: 

https://docs.docker.com/engine/security/trust/content_trust/. 

[10] Jorge Silva, “9 Common Mistakes in Dockerfile”, runnable, Available 

at : https://runnable.com/blog/9-common-dockerfile-mistakes. 

[11] Docker Documentation, “Best Practices for writing Dockerfile”. 
Available at:https://docs.docker.com/develop/develop-

images/dockerfile_best-practices/ 

[12] Liran Tal, “Why you should use COPY instead of ADD when building 

Docker image”.Available at: https://dev.to/lirantal/why-you-should-

use-copy-instead-of-add-when-building-docker-images-5fkj 

[13] “The New Norm: TrendMicro Security Predictions for 2020”, 

TrendMicro,Available at 
:https://www.trendmicro.com/vinfo/us/security/research-and-

analysis/predictions/2020. 

[14] “How to analyze and explore the contents of docker images”, October 
2019, Available at:https://www.ostechnix.com/how-to-analyze-and-

explore-the-contents-of-docker-images/. 

[15] “DockerFile Reference”, Available at: 
“https://docs.docker.com/engine/reference/builder/#dockerignore-

file” 

APPENDIX A 

This appendix is divided into two sections. The first 

section provides the results of the images being scanned 

through vulnerability centric approach in Google Container 

Registry (GCR). The second section provides the results of 

each use case developed in section III of this paper.  

A. Scanning the images in GCR 

The images are pulled from the docker repository and pushed 

to the GCR repository created with a project name. The below 

screenshot shows the project id being set gcloud registry and 

the images being pulled and pushed to the gcloud registry 

which is the google cloud registry. 

 
Fig 3: Setting the project id for the google cloud 

 
Fig 4: Docker images being tagged and pushed to the google cloud 
container registry 

 
Fig 5: List of images in the google cloud container registry 

Once the images are pushed to the registry it automatically 
scans for the vulnerabilities in the images using the Vulnerability 
Scanning API. 

 
Fig 6: The latest version of the image without vulnerabilities. 

 
Fig 7: An older version of the image which has vulnerabilities. 

 
Fig 8: Vulnerabilities based on severity index. 

B. Results of the Developed Use Case 

This section is to provide the result of each use case identified 

and tested. A project is created in the Google container 

registry to do the experimentations. All the images we pushed 

to the registry will be stored in the gcr.io/[PROJECT_ID] and 

when we list all the images in our google container registry 

are listed as shown in the below screenshot. 

 
Fig 9: List of images from google container registry in the project. 

Use Case A1 - Check whether the image is an official image 

 This is to check whether the dependent images we 
use in the Dockerfile are the official images. The is-official 

filter is added to check the official and unofficial images by 

setting the value as true and false. The below screenshot 

shows the list of official and unofficial Ubuntu images from 

the docker registry. 

 
Fig 10: Listing the official and unofficial open-source images. 

Use Case A2 - Check the trust of the base image  

The trust of the base images is checked by enabling 

the variable DOCKER_CONTENT_TRUST value as 1 in the 

environment variables. The below screenshots show when 

the variable is set to one and an older version of the ubuntu 

image is pulled from the docker registry it shows an error as 
“No valid trust data for 16.01” which means no trust for the 

specified image. Whereas when we pull the updated and the 



latest image from the repository it is being fetched from the 

repository. 

 
Fig 11: Enabling Docker Content Trust and trying to pull a trusted 
and untrusted image from the repository. 

Use Case A3 - Check the content of the image 

To check the content of an image we can use docker 

inspect which shows the configuration details of an image. A 

Dive is an open-source tool that allows to traverse through 

the packages and also specifies the unused spaces being used 

by a specific package. This helps in uninstalling the 

unnecessary packages in the next use case. The below 

screenshot shows the details of an ubuntu image in which a 

dive tool shows the efficiency and unused space of an image. 

 
Fig 12. Analyzing the content of a docker image. 

Use Case A4 - Uninstalling the unnecessary packages 

In a docker image, the unnecessary packages are 

uninstalled to reduce the complexity in the image, which also 

reduces the chances of vulnerability and exploits. The 

dockerignore file is placed in the root directory and contains 

a list of patterns, the CLI modifies the context to exclude files 
and directories matching those patterns from the 

dockerignore file [15]. It is one of the ways to optimize the 

docker image. Below is the sample dockerignore file to 

remove unnecessary files and packages while building a 

docker image. 

  
Fig 13: A sample Dockerignore file to avoid including the sensitive 
and unnecessary files to reduce the image size and avoid complexity. 

Use Case A5 - Disabling the build cache 

When each instruction is executed it checks the 

cache for any existing image layer of that instruction and if 

present it uses that image. But this could cause issues when 

there is a change in the instruction of the Dockerfile and it 

uses the layer form cache. Therefore, when we build the 
image from a Dockerfile a no-cache tag fetches the latest 

version from the repository and does not fetch from the cache. 

The below screenshot shows the image pulled without cache 

and with the cache. 

 
Fig 14: A build that uses the cache from its previous build of an 
image. 

 
Fig 15: A build that does not use cache and keeps the packages up 
to date to avoid vulnerabilities. 

Use Case B1 - Base image version 

The image version may also lead to vulnerability in the 

applications. When using the latest tag, it violates the 

immutability of the image as it is frequently updated and 

changes the size and other features of an image. The best way 

to pull the image while mentioning in the Dockerfile is 

through hash value, the digest of an image. The below 

screenshot shows how the image is pulled when we mention 

a Sha256 value in the Dockerfile to pull an image. 

 
Fig 16: A sample Docker file that uses the digest of an image to be 
immutable at any stage of its build. 

 
Fig 17: A build of an image with SHA256 digest of an image 



Use Case B2 - Running apt-get  install and apt-get update 

When executing the apt-get update and apt-get 

install as separate instructions, it fetches the image layers 

form the cache and the changes are not reflected. To avoid 

this it is recommended to create instructions for apt-get install 

and apt-get update as a single instruction as there would not 
be any intervention in between for the cache and the changes 

also would be executed and the new layer is created for the 

changed instruction in the Dockerfile 

 
Fig 18: Using apt-get update and apt-get install together to avoid 
cache. 

Use Case B3 - Using COPY instead of ADD 

Using the COPY command instead of ADD is to 

ensure that the files being copied from external sources are 

authenticated for the secure transfer. ADD command does not 

provide the authentication when a file is copied from a local 

or remote location. 

 
Fig 19: An image build from Dockerfile which uses COPY instead 
of ADD. 

Use Case B4 - HealthCheck for Container Images 

The Health check command is used to monitor the 
status of the container when the image is built and run as a 

container. When the health check is mentioned in the 

Dockerfile only then it will be enabled for the container.  

 
Fig 20: The Health Check of container images. 

Use Case B5 - Secrets not stored in Dockerfile 

The secrets refer to the password or any configuration 

information required to build an application from a docker 
image. These details could be passed during runtime while 

the image is executed instead of storing in Dockerfile which 

is vulnerable to attack through improper access controls. The 

below screenshots show how a secret can be created and 

passed to the image during its build. 

 
Fig 21: Creating a password to be passed for the MySQL database 
image during its build operation. 

 
Fig 22: A MySQL image build and using the secret in runtime which 
was created. 

Use Case C1 - Image signing with DCT 

The image signing is to maintain the integrity of the 

image when we are pushing our image, or we pull an image 

from a public repository. The below screenshot shows an 
image which pulled and inspected for its integrity. 

 
Fig 23: An image pulled from a user repository and inspected for its 
trust 

As it is noted form the above image there is no 

signature or trust for that image. So, we can create a sign of 

the image with a trusted sig key we have created. We have 

created a trusted key trsutkey.pub and the image is going to 

be signed with a secured key by a passphrase so that whoever 

tries to pull the image from the public repository needs to 

know the signing key to pull the image. 

 
Fig 24: A signing key created with trustkey.pub 

 
Fig 25: The image signed with the trust key 

 
Fig 26: Signing the image and pushing with the private key into the 
repository 



 
Fig 27: Inspecting the image to check it is signed with the right key. 

 
Fig 28: The signed image is being pushed to the repository. 

 
Fig 29: The image is pulled again from the repository and the 
SHA256 Digest key is compared. 
 

Use Case C2 - Registry Authentication 

The registry authentication is required to provide 

access only to specific users to access the image. In an 

organization, a group of users would be given access to a 

project registry in which they are working, and the other users 

won’t be able to access the images from the registry. 

 
Fig 29: Admin User and Object viewer email id assigned for the 
project authentication. 

 
Fig 29: A private Key assigned for the project registry. 

 

 

Use Case D1 - Creating a user for each container 

This is to create a user for each container for authorizing the 

services. The below screenshot shows the project details, its 

members assigned for each role. 

 
Fig 30: Adding members with specific roles to the project 

 
Fig 31: Project Details with Owner Permission Details 
 

 
Fig 32: Authentication Consent for the project 

Use Case D2 - Permissions for user Id is removed 

 
Fig 33:   Remove the user from the project if not needed.



APPENDIX B: MAPPING OF THE DEVELOPED USECASES TO THE REQUIREMENTS OF CONTAINER SECURITY VERIFICATION STANDARDS (CSVS) 

This Appendix section describes the verifications done for the OWASP 

Container Security Verification Standard with the developed use cases. The OWASP 

CSVS are created based on the Application Container Security Guidelines by NIST 

for securing the containers from host to the daemon. The verifications of OWASP 

CSVS are the verification rules of CSVS standards [3]. Below are the details of the 

column in the Appendix table. 

Verification of OWASP CSVS: The verification to be done for Docker images as per 
the OWASP Container Security Verification Standards. 

Levels of OWASP: The level of security needed for each use case 

 L1: A basic requirement of security needed for all containers. 

 L2: Requirements for the containers which are developed for sensitive 

business logic that requires additional protection and ensures whether the security 

levels are in place and tested. 

 L3: The highest level of verification that requires significant levels of 

security verifications, which are appropriate for processes in defense departments, 

health and safety departments, etc.  
 

 
  

 Verification of OWASP CSVS 

Levels of OWASP 

CSVS 

 

Use Case ID 

L1 L2 L3 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 D1 D2 

Verify that within each container image, a new user is 
created, which is then used to perform all operations within 
the containers. 

   

✔ 
   

          

✔ 

 

Verify that all base images are explicitly specified, using 
their hash instead of name and tag. 

  ✔    
  ✔         

Verify that the signature of each image is verified before 

productive usage. 

  ✔  ✔  
       ✔    

Verify that only required software packages are installed in 
the images. 

✔ ✔ ✔    ✔           

Verify the Dockerfile uses the COPY directive instead of the 
ADD directive unless the source is fully trusted. 

✔ ✔ ✔    
    ✔       

Verify that Docker’s health checking functionality is used 
for all containers and their status is monitored. 

 ✔ ✔    
     ✔      

Verify that garbage collection is enabled on image registries 
and running on a regular basis. 

   
   

           

Verify that after a container has been actively accessed (e.g., 
for troubleshooting), it's deleted and replaced by a new 
instance (container) of the image 

  

✔ 

 

✔ 
   

           

Verify Docker Content Trust is enabled and enforced.     ✔         ✔    

Verify that Dockerfile or Docker-Compose file does not 
contain any sensitive information like API keys and 
passwords. 

   
   

       

✔ 

    

Verify that an odd number of image registries (e.g., DTR) 
with a minimum of three registries is used. 

  ✔    
           

Verify that containers are always created based on the most 
recent corresponding image and not local caches. 

✔ ✔ ✔    
 

✔ 
 

✔ 
       

Verify that all images are using tags whereas only 
production/master is allowed to use the default latest tag. 

 ✔ ✔    
  ✔         

Verify that the CI/CD tools and systems are connected to the 
Docker infrastructure to enable changes in nodes, images, or 
the network to be tested and rolled out fully automated. 

  

✔ 

 

✔ 
   

           


	Ahamed, Waheeda Syed Shameem - 140053 - MISSM - Title Page
	Ahamed, Waheeda Syed Shameem - 140053 - MISSM - Signature Page
	Ahamed, Waheeda Syed Shameem - 140053 - MISSM - Capstone Project

