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Abstract

A Real-Time Optimizer is an on-line steady-state model-based optimizer that aims to
improve the process profitability by adjusting operations in response to process
changes. Optimizer effectiveness depends on such factors as parameter estimation
technique and measurement selection for parameter updating. This thesis evaluates
parameter estimation techniques in terms of parameter quality, and develops Sensor
System Design Cost as a tool for sensor selection.

Back-substitution (the solution of p equations in p unknowns) remains a common
parameter estimation technique because it is simple to implement. This thesis shows
that a least squares technique can substantially reduce parameter uncertainty, while
being more robust to measurement error and sensor failure.

Available methods for sensor selection focus on parameter variance. This thesis
analyzes sensor selection in terms of the cost of setpoint variance and bias. The
significance of the Sensor System Design Cost is that the expected performance of

various sensor systems can be compared in terms of dollars.
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Chapter 1

Introduction

Economic optimization of process operations is important as industries strive to achieve
or maintain their competitive advantage by producing a product at minimum cost [Cutler
and Perry, 1983]. This thesis will be concerned with steady-state, model-based On-line
Optimization, or Real-Time Optimization (RTO). On-line process optimization is used to
continuously monitor process performance and make appropriate operating adjustments
to improve plant profitability.

As shown in Figure 1-1, RTO is the link between process planning and scheduling,
and process control. The purpose of an RTO system is to maintain an economically opti-
mal operations policy for processes with time-varying behaviour [Forbes, 1994]. Process
behaviour can vary for a number of reasons. For example, changes in ambient condi-
tions may affect cooling water temperatures, air cooler efficiencies and heat loss from
equipment. In addition, catalysts decay, heat exchangers foul, distributors plug, and
feedstocks may vary. There are economic benefits to be had when the process is operated
to account for such process changes [Cutler and Perry, 1983]. The degree to which these
benefits are realized will depend on the design of the RTO system [de Hennin et al.,
1994; Forbes, 1994]. RTO design decisions include model selection, data validation tech-
niques, parameter estimation method, measurement selection, optimization algorithm,

and so forth. In this thesis, a statistical approach is used to evaluate current parameter



estimation techniques, and to develop a new tool for making sensor selection decisions.

Planning and Scheduling

Real-Time Optimization

Control

Pracess

Figure 1-1: Plant decision-making hierarchy.

This chapter presents an overview of process optimization, and RTO in particular.
[t also serves to review the current state of RTO design technology, as a motivation for
the work included in this thesis. A description of the thesis contents and conventions is

given in the final sections.

1.1 Approaches to Process Optimization

There are two general categories for steady-state process optimization: direct search and
model-based methods [Garcia and Morari, 1981]. Direct search methods involve actual
plant experimentation to examine the process response surface directly, so that a direc-
tion for improved performance can be identified. An example of direct search method is
Evolutionary Operations (EVOP) [Box and Draper, 1969]. In this method, experimenta-
tion is performed by repeatedly making a number of very small deviations from current
process operation, and the resulting effect on process performance is determined. Once

a direction for improved plant performance is identified, the plant operations are moved

2



to a new point in that direction. The experimentation is repeated at the new point,
and iteratively the process operations are improved until an optimum is found. More
recent direct search methods involve plant experimentation to identify a dynamic model
of the process (whose structure is pre-determined), and then use this dyuamic model
to estimate steady-state behaviour for the evaluation of process changes that yield im-
proved economic performance [Bamberger and Iserman, 1978; Garcia and Morari, 1981;
MacFarlane and Bacon, 1989).

The benefits of direct search techniques are that the methods are simple and well
understood, and can be effective when very little is known about the process. These
methods can be difficult to justify in large plants with many degrees of freedom available
for optimization. For example, in EVOP the number of plant experiments that must
be performed increases geometrically with the number of variables to be optimized [Box
and Draper, 1969|. Further, steady-state must be achieved for each experiment, which
may be extremely time-consuming in processes with large settling times. Meanwhile,
operating conditions are constantly changing so that the true optimum itself is moving.
It therefore seems possible that an optimum may never be found.

The main drawback of direct search methods, and the reason substantial plant ex-
perimentation is required, is that no a priori process information is used. In theory, if
a process model is used for optimization, plant experimentation could be reduced such
that only a few key model parameters be determined. The more accurately the model
represents the data, the less experimentation required. The model can then be used to
predict plant behaviour over a wide range of operations, and to estimate the location of
the plant optimum. Once operations are moved to the approximate optimum, experi-
mentation is repeated. As model fidelity improves, the number of iterations required to
reach the true plant optimum decreases.

Model-based optimizers may use either steady-state or dynamic models. Since this
thesis is concerned with optimal steady-state operations, the following discussion will be

limited to steady-state models. A Real-Time Optimizer (RT O) or On-line Optimizer is



a steady-state model-based optimizer.

1.2 Overview of Real-Time Cptimization

A general schematic for an RTO system is shown in Figure 1-2. The component sub-
systems are Measurement, Data Validation, Model Updating, Optimization, Command
Conditioning (also called Results Analysis), and Control. A description of these subsys-
tems is given below.

Measurement. In order to track process changes, measurements must be taken.
These measurements will be used to update the process model.

Data Validation. This subsystem includes steady-state detection, gross error de-
tection, and data reconciliation. Since steady-state models are used, measurement data
should represent steady-state conditions. To detect steady-state, automated examination
of operation statistics over a recent time interval is generally performed [White, 1997].
The steady-state measurements may contain errors such as sensor malfunction or leaks
(gross errors), as well as random process noise. These errors can cause inaccuracies in the
model-based predictions of the plant optimum, because measurement error propagates
to parameter error. This contributes to plant-model mismatch and results in erroneous
setpoints being calculated by the optimizer. Therefore, the gross errors must be detected
and removed or corrected. Gross error detection techniques use statistical tests to com-
pare measurement deviations with random behaviour [Crowe et al., 1983 ; Crowe, 1986;
Crowe, 1988; Mah and Tamhane, 1982; Rosenberg et al., 1987; Tong and Crowe, 1995|.
Data reconciliation is the process of using statistical principles to allocate the remaining
random errors across the measured variables in an attempt to obtain the best possible
estimate of actual plant operation [Crowe et al., 1983; Crowe, 1986; Crowe, 1996). Gen-
erally, gross error detection and data reconciliation are performed sequentially, but Tjoa
and Biegler [1991] have developed strategies for solving the two problems simultaneously.
Albuquerque and Biegler [1996] extended the simultaneous strategy to dynamic systems.



Model Updating. By using measurements to estimate current model parameters
(such as heat transfer coefficients or reaction rate constants), real-time model updating
permits realistic models to be used by the optimizer [Cutler and Perry, 1983).

Optimization. Steady-state model-based optimization is performed on the updated
process model, to determine the feasible operating point that generates the maxiinum
profit.

Command Conditioning (Results Analysis). The optimizer will produce set-
point estimates that correspond to the model-based optimal plant operation. However,
there will be uncertainty associated with these setpoints due to various sources of error
throughout the RTO loop. Command conditioning examines the optimizer output to en-
sure that it represents meaningful changes in plant operations and expected improvement
in profitability.

Control. To capture the expected profit, the optimizer needs a control system that

can reliably move the plant to the optimum [Scott, 1996] .

., Command Plant and
Optimizer Conditioning Controllers
Measurements
Model
Parameter Data
Update validation [*

Figure 1-2: Real-Time Optimization loop.



1.3 RTO Design

As shown in Figure 1-2, RTO is a closed-loop system, and therefore the reliability of
its results will depend on the performance of each of the subsystems. Catler and Perry
[1983] have expressed the probability of success of optimization in terms of the accuracy
of the model parameters as well as the models themselves, the accuracy of the economic
information, and the performance of the process control system. Anything that improves
the accuracy of these factors will enhance the expected improvement in process profitabil-
ity through on-line optimization. On the other hand, sufficient inaccuracies in even one
of these areas can lead to results that can decrease the profitability of plant operation
[Cutler and Perry, 1983].

A number of researchers have done work related to the improvement of RTO system
design. Of central importance to model-based optimization is the quality of the process
model. In testing model quality, Durbeck [1965] and Biegler et al. [1985] have shown
that a model is adequate for optimization if the derivatives of the objective function
with respect to the optimization variables match those of the process. Forbes [1994] has
presented various measures for assessing model fidelity, while taking the closed RTO loop
into consideration.

The problem of selecting which model parameters to update on-line has also been
addressed. Krishnan et al. [1992] suggest that those parameters that have the greatest
effect on the objective function or alter the active constraint set should be updated on-
line. Once the parameters have been chosen, other important design decisions include
the parameter estimation technique, and the selection of which measurements to use in
the parameter update. These items are the focus of this thesis, and are discussed in

detail in the following sections.



1.3.1 Parameter Estimation

Although it is generally understood that the parameter estimation technique used in
the model update will have a significant effect on the parameter estimates, little work
has been done to assess these effects in an RTO framework. Parameter estimation is
a particularly difficult problem under current RTO practices for two important reasons.
First, the estimation is usually performed using a single set of corrupted steady-state data
at the current operating point. Second, since computational efficiency is an important
consideration, the size of the RTO problem can limit the possible parameter estimation
technique alternatives. For a complete ethylene plant the model may contain 200,000
equations and variables [White, 1997].

There are many parameter estimation schemes available, such as back-substitution,
least squares, or error-in-variables estimation. A number of researchers have combined
data reconciliation and parameter estimation into one problem [Kim et al., 1991; Liebman
et al., 1992; Pages et al., 1994; Tjoa and Biegler, 1992]. The most widely used parameter
estimation technique for RTO is back-substitution, in which p equations are solved for
p unknown parameters. This method, though simple to implement, is the least robust
method in terms of the transmission of measurement error to the parameters [Dahlquist
and Bjorck, 1974]. Any method that is more robust to random measurement error will
give more reliable parameter estimates and hence a more reliable optimizer.

When selecting a parameter estimation scheme, observability issues are also impor-
tant and have received some attention. Krishnan [1990] defined parameter observability
for steady-state systems as whether or not model parameters can be uniquely determined
through a steady-state process model. Singh [1997] identified the importance of includ-
ing the estimation scheme within the framework of observability, since the structure of
the estimator may not allow for the unique mapping of measurements to parameters.
Further, Singh [1997] shows the importance of considering the degree of parameter ob-
servability when selecting an estimation scheme. In addition to estimation technique,

the measurements used to update the parameters can have a significant effect on their



quality as well.

1.3.2 Measurement Selection

As stated above, it is important that the parameters be observable through the pro-
cess model, estimation scheme, and process measurements. Krishnan et al. [1992] have
presented a method for measurement selection based on parameter observability and
accessibility, and the statistical properties of the parameter confidence region. Mea-
surements are accessible to the parameters if they contain some information about the
parameters. That is, the measurements change when the parameters change [Krishnan
et al., 1992]. When a measurement is deemed inaccessible, it is excluded from consider-
ation for parameter estimation. Once inaccessible measurements are removed from the
set of possible measurements, the measurements for model updating are chosen based on
their contributions to parameter uncertainty. The method uses the singular values of the
parameter covariance matrix (which are indicative of the variance associated with the
parameter estimates), and chooses measurements that minimize the overall parameter
uncertainty.

Although parameter variance is an important factor when selecting measurements for
on-line parameter updating, Krishnan et al. [1992] have only considered the model updat-
ing portion of the RTO loop. Figure 1-2 shows the closed-loop relationship between the
measurements, the parameters, and the setpoints. Clearly the choice of measurements
will impact not just the model parameters, but the estimated setpoints and overall RTO
performance. Rather than choose measurements based on parameter quality, it would
seem beneficial to incorporate the knowledge of the optimization algorithm and the profit
function to choose measurements based on setpoint quality and expected process prof-
itability. Setpoint quality can be defined in terms of variance and offset from the expected
plant optimum. In upfront design work, a measurement set can then be chosen for max-
imum economic benefit. In an operational RTO system, it would be useful to identify

where an additional sensor should be installed for the maximum improvement in prof-



itability. This thesis develops such a measurement selection criterion in terms of both

bias and variance measures in setpoint uncertainty, as well as expected RTO profitability.

1.4 Thesis Scope

This thesis focuses on the selection of parameter estimation technique for model updat-
ing, and the selection of measurements to be used for parameter estimation. As was
discussed in the previous sections, there has been little work done in the evaluation of
parameter estimation techniques for RTO. Since the RTO parameter estimation problem
is poorly conditioned to begin with, it is important to find a robust yet computationally
practical method to ensure that the best possible parameter estimates are being sent
to the optimization portion of the RTO loop. Measurement selection plays an impor-
tant part in the quality of the parameter estimates as well. Although Krishnan et al.
[1992] have established a method for measurement selection based on parameter variance
measures, the method suffers because it considers the parameter updator in isolation,
separate from the overall RTO loop. Since the goal of RTO is increased profitability, it
seems that the practical approach to measurement selection is to find the sensor system
that is expected to give the maximum RTO profitability.

Chapter 2 investigates various parameter estimation techniques, in terms of the qual-
ity of the parameter estimates and the robustness of the methods to measurement error
and sensor malfunction. It also examines the computational requirements of the dif-
ferent methods. Once the method has been chosen, another important factor is the
measurements selected for the parameter estimation. Chapter 3 takes two approaches
to measurement selection, which result in similar sensor selection criteria. First, D-
and T-optimal design of experiments criteria [Kiefer and Wolfowitz, 1959; Atkinson and
Federov, 1975| are used to develop criteria that will identify sensor systems to meet
specific parameter quality objectives, and weighted D- and T-criteria are introduced to
incorporate expected profitability. Secondly, a Design Cost [Forbes and Marlin, 1996]



approach is applied to the measurement selection problem, to meet both setpoint quality
objectives and include expected profitability. The resulting Sensor System Design Cost
criterion is a combination of the D- and T-optimality criteria, which may be used to make
sensor selection decisions for RT'O. Chapter 4 presents a case-study that demonstrates
how the new sensor selection tool may be used to solve a practical problem.

Throughout this thesis, the following assumptions have been made:

1. All process measurements are taken at steady state.

2. All the gross errors have been removed from the data; only normally distributed

random noise is associated with the measurements.

3. The control system is able to implement the setpoints computed by the optimizer,
in order to guarantee feasible operation regardless of optimizer output. The control

structure is not considered in the process model.

1.5 Thesis Conventions

This section covers terms and conventions used in this thesis.

The process model refers to the system of equations describing the material and
energy balances, the physical phenomena, as well as operating constraints.

Process variables are divided in a number of ways. First, they may be manipu-
lated or dependent. The manipulated variables are the ones that can be independently
adjusted to optimize plant performance, while the dependent variables are uniquely deter-
mined once the manipulated variable values are set. With respect to measurements, the
process variables can be measurable or unmeasurable. Measurable variables are those
that can be measured: flows, temperatures, etc., for which a sensor may be installed.
The measurable variables are those involved in sensor selection decisions, and may be
measured or unmeasured. A complete measurement set refers to the case where

all measurable variables are actually measured. Unmeasurable variables are those that
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cannot be measured, either because the sensor does not exist, or it cannot be installed
for some physical reason. These variables are not involved in sensor selection decisions.

The term nominal refers to a zero-noise situation. The nominal values of the mea-
surements are thus the true values of those measured variables. The nominal parameter
values are those obtained using the nominal measurements. The nominal calculated set-
points are those found by the optimizer when the nominal parameter values are used
in the model. Unless otherwise specified, the reader is to assume the measurements
are corrupted by random, normally distributed noise. A single set of measurements,
or parameter estimates, or setpoints, is one sample from the distribution of possible
measurements, parameter estimates, or setpoints, respectively, at the current state of
operations.

Throughout this thesis, all terms are explained on first usage. The nomenclature
section lists all the symbols used.
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Chapter 2

Parameter Estimation for RTO

The parameter estimation portion of the RTO loop was introduced in the previous chap-
ter. For a given measurement set z, and the model equations f, the parameters 3 are
found using a given estimation scheme. Using the parameter estimates, the optimizer
attempts to find a more profitable operating region. The accuracy of the parameter es-
timates is important since parameter error may cause the optimizer to send the plant
to a less profitable operating region [{Cutler and Perry, 1983|. Therefore, the estimation
scheme should be chosen such that the error in the parameter estimates is minimized.
The purpose of this chapter is to investigate three parameter estimation techniques:
back-substitution, least squares estimation, and the error-in-variables method, and to
show that the common practice of back-substitution is not as robust as the alternative
methods, with respect to the transmission of measurement error and random process
noise. The chapter begins with a discussion of parameter observability, including the
importance of examining the degree of observability. The three parameter estimation
techniques investigated in this thesis are discussed in Sections 2.2 and 2.3. The chapter
concludes with a case study that illustrates the advantages and disadvantages of the

parameter estimation techniques.
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2.1 Parameter Observability

For parameter estimation, observability refers to whether or not model parameters can be
uniquely determined using a set of measurements [Sorenson, 1980|. Consider the simple

example:
AB=b (2.1)

where Anx, and by, are functions of the measurements. A unique set of parameters
can be determined if and only if A is rank p, where p is the number of parameters.
Equivalently, a unique set of parameters can be found if and only if ATA is positive
definite [Sorenson, 1980].

Observability was first introduced by Kalman [1960] to describe state-output rela-
tionships in linear dynamic systems. It was used to determine whether the states of a
system could be uniquely determined through a given set of measurements. Stanley and
Mah [1981] define state observability for nonlinear steady-state systems as whether or
not changes in the states can be determined through a set of measurements and a steady-
state process model. Krishnan [1990] expanded this definition of observability to apply
to parameter observability, as well as state observability. According to her definition, a
system is observable if all of the states and model parameters can be observed through
a set of process measurements and the process model.

For practical purposes, the model parameters must be observable through the estima-
tor, as well as the measurements and process model. There are a number of estimation
procedures that may be used to determine the unknown quantities, and a poorly designed
procedure may not allow for the unique mapping of measurements to unknowns. Singh
[1997] extended the definition of parameter observability to include the effects of the
estimation scheme, by using the statistical properties of the parameter covariance matrix

Q;. She stated that:

For any updating procedure where parameter estimates (3) (assumed to be
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locally normally distributed) are to be determined using measurements (z),
the parameters are observable if all the eigenvalues of ng' are strictly positive
(positive and nonzero), where Q; is the covariance matrix of (3 estimated at

~

B.

This definition provides a point-wise binary test for whether the parameters are ob-
servable through the measurements and the estimation procedure. Singh [1997] also
recognized a need for considering the degree of observability in parameter estimation.
She considers the degree of observability to be the quality of the estimates that can be
obtained from a given set of measurements through the updator. Here, quality refers to
both size and shape of the parameter confidence region.

The size and shape of the parameter confidence region are related to the eigenvalues
of the parameter covariance matrix [Sorenson, 1980]. Assume that the p parameter esti-
mates can be locally approximated by a multivariate normal distribution 8~ N, (8,Qg),
where 3 are the true parameter values and Qg is the positive definite parameter covari-

ance matrix. The probability density function for 3 is given by:

N 1 1/. T -
f{B =—'—g——1€XP[—— B-B8) Q; ﬁ—ﬂJ (2.2)
( ) (2m)7 |Qgl? 2 ( ) s ( )
This distribution is characterized by the quadratic form that appears in the exponent:
¢=(8-8) Q' (3-8) (2.3

For a given value of ¢?, Equation (2.3) defines the surface on which the probability density
function has a constant value. This surface is a p-dimensional ellipsoid that characterizes
the joint confidence region of the parameter estimates. The semi-axes of the ellipsoid have
magnitudes c¢?);, and have directions defined by T;, where ); and 7; are the eigenvalues
and corresponding eigenvectors of Q [Sorenson, 1980]. As an eigenvalue of Qg increases,
the confidence region elongates in the direction of the corresponding eigenvector. In the

limit, when an eigenvalue approaches infinity, the confidence region becomes unbounded,
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rendering the parameters unobservable. Figure 2-1 shows the confidence region for a

two-dimensional case.

B2

B

Figure 2-1: Parameter confidence region.

A common measure of confidence region volume is the determinant of the covariance
matrix [Box and Lucas, 1959; Box and Hunter, 1965 |, since the determinant is the
product of the eigenvalues. Large eigenvalues indicate a large confidence region, and give
a large determinant. Shape is also important, and the condition number of Qs may be
used as an indicator of shape. The condition number is defined to be the ratio of the

largest to smallest eigenvalue of the covariance matrix:

Amax (QB)
Ky = ——~—~ 24
5= Ain (Qp) 24)
A perfectly spherical confidence region would mean that the eigenvalues of Qg are all
equal and therefore the condition number would be unity. As the confidence region
elongates, the difference between eigenvalues increases, causing the condition number to
increase. Using these quality measures, Singh [1997] gives the following guidelines for

choosing a parameter estimation scheme:

1. For ‘strong’ observability, small |Q;| and «; are required, where Qj is the param-

eter covariance matrix estimated at 3.
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2. Among regions of similar volumes, the one yielding the smallest value for k5 would
be preferred, while among regions with similar conditioning the one encompassing

the smallest volume (for a given confidence level) should be chosen.

2.2 Parameter Estimation Techniques

Given a set of measurements and a process model, one would like to estimate the model
parameters using a scherme that minimizes the transmission of measurement noise through
to the parameter estimates. The concept of parameter observability, and the degree of
observability in particular, may be used to choose among parameter estimation techniques
for RTO. According to Singh’s [1997] guidelines, a good parameter estimation scheme
is one that gives a small and/or spherical parameter confidence region. There are a
number of methods used for estimating the unknown quantities in process models, and

this section will present three methods: back-substitution, least squares, and error-in-

variables estimation.

2.2.1 Back-Substitution

Back-substitution is the preferred practice in industrial RTO applications, because of its
simplicity [Tsang, 1998|. To illustrate this method, consider the set of n independent

equations:
£(8,2) =0 (2.5)

where B €RP is a vector of unknown parameters to be determined, and z € R™ is a
vector of measured process variables. To back-calculate the parameters, one requires p

independent equations such that [Krishnamurthy and Sen, 1986):

rank ,:%J =p (2.6)
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For the case where n = p, all the equations are used, and in the case where n > p, a
subset of the available equations must be chosen.
When the equations are affine in the parameters, the system of independent equations

may be written as:
AB=b (2.7

where A =g, (z) is a p x p invertible matrix, and b = g, (2) is a p-dimensional vector.

The unique solution for the p parameters is simply [Householder, 1964|:
B=A"'b (2.8)

Generally, the equations will be nonlinear. There are methods generally available
for solving nonlinear equations, which are iterative and have efficient local convergence
[Krishnamurthy and Sen, 1986]. Global convergence cannot be guaranteed due to non-
linearity of the response surface. A common method for solving p nonlinear equations
in p unknowns is Newton’s method, which converges on the solution by linearizing the

model equations about the current parameter estimate [Krishnamurthy and Sen, 1986).

2.2.2 Least Squares Estimation

In order to reduce the influence of random errors on the parameter estimates, it is useful to
have a greater number of equations than unknowns, rendering the system over-determined
[Dahlquist and Bjorck, 1974]. The unknown parameters are found by attempting to
satisfy as many equations as possible, if only approximately.

The least squares model is usually forrulated as [Bates and Watts, 1988| :
y=f£f(8,x)+¢ (2.9)

where y are the measured response variables and x are the independent variables. The
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term (3, x) is called the ezpectation function, and € represents the measurement noise.
The least squares estimate of the parameters, 3, is the one that minimizes the sum of

squares of the residuals:

min e’e (2.10)
subject to:
y =f(B,x) +e

where e represents the residual of the model. The least squares estimates are only
appropriate when the model and the assumptions on the noise are valid. The assumptions

involved in least squares estimation are [Box et al., 1978:
(i) The expectation function f (ﬁ, x) provides an adequate fit of the data.
(%) The model takes the form of Equation (2.9).
(iii) The values of the independent variables are perfectly known.
(iv) The measurement noise € is independent of the expectation function.
(v) ¢ is distributed N (0,02) V i.
(vi) cov (e e;) =0V i#j.

A possible least squares formulation for RTO follows the formulation of Box [1970],
which uses the following model:

f(B,z)=¢ (2.11)

This formulation of the problem is used for two reasons. First, in RTO, the so-called

response variables may not be measured directly, but are computed from other variables
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that are actually measured. Secondly, the models represent relationships between a num-
ber of measured quantities that cannot be rigidly classified as dependent or independent
variables: there is error associated with every variable.

The least squares solution is the value for 3 such that eTe is a minimum, i.e.:

mine’e (2.12)

A

subject to:

e=1f(08,2)
When the equations are linear in the parameters, Equation (2.11) can be written as:
AB-b=c¢ (2.13)

where A is 2 n x p matrix, and b a n-dimensional vector, with A and b both functions
of the measurements z. Problem (2.12) is then formulated as:

mine’e (2.14)
B

subject to:

e=AB-b
The least squares solution is [Sorenson, 1980):
B=(ATA)'ATb (2.15)

which may be compared with the estimates found by back-substitution in Equation
(2.8). Generally, rigorous process models are nonlinear in the parameters. Finding the
least squares parameter estimates is difficult and requires iterative methods. A common

method is the Gauss-Newton method, which iteratively converges on the solution by
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linearizing the model about the current parameter estimate B(k), and moving to a new
. ~(k+1 e e .

estimate 3 ) that minimizes the sum of squares of the approximated residuals [Bates

and Watts, 1988]:

(k)

B

~ (k+1) _

<] + 6% (2.16)

where

ofTof)” ofT .
ag°>=-[ } 0 ® 2 (2.17)

% 6_ﬁ‘ B(k) %B(k)f(ﬁ

is the Gauss-Newton increment.

Another iterative method that should be mentioned is the Newton-Raphson method
[Sorenson, 1980]. This method is similar to the Gauss-Newton method except it uses a
quadratic approximation to the objective function rather than first order approximation.

The simple least squares solution is appropriate when it can be assumed that all
residual terms have the same variance. However, according to the model of Equation
(2.11), the assumptions on the residual terms are no longer valid. Each residual term
will depend on the errors associated with each measurement appearing in the particular
equation. Therefore it cannot be assumed that these terms are independent, or that their
variances are identical. In this situation, a weighted least squares approach should be

used [Box et al., 1978]. In the linear case, the expression for the parameters is [Sorenson,

1980}:
B=(ATWA) ' ATWD (2.18)

where W is the weighting matrix. In order to obtain the best, linear, unbiased estimators

(BLUE), the weighting matrix is chosen to be the inverse of the covariance matrix of the
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equation residuals [Sorenson, 1980):
W =Q;! (2.19)

The weights are inversely proportional to the variance terms, so a high variance means
the corresponding relationship will be given less weight than one with a smaller variance.
That is, the more likely an equation residual is near zero, the more influence it has on

the solution.

2.2.3 Error-in-Variables

In RTO, the model parameters are estimated while all variables are subject to error.
Therefore, the best treatment of the problem is a method that formally recognizes no
distinction between dependent and independent variables, but treats all variables equally.
This method is known as the error-in-variables method (EVM) [Britt and Luecke, 1973|.
EVM provides both parameter estimates and reconciled data estimates that are consistent
with the model [Kim et al., 1990]. Deming [1943] introduced the original formulation
of the problem of parameter estimation when there is error in all measured variables.
Only approximate solutions could be made at that time. Although other researchers
presented exact methods for fitting straight lines or polynomials [York, 1966; Williams,
1968; O’Neil et al., 1969; Southwell, 1969|, a general EVM algorithm was not presented
until 1973, by Britt and Luecke. Further work has been done by Reilly and Patino-Leal
[1981], Schwetlick and Tiller [1985], Valko and Vajda [1987] , and Kim et al. [1990]. A
brief outline of Britt and Luecke’s {1973] EVM algorithm is given below, further details
can be found in Appendix A.

Britt and Luecke [1973] formulated the problem by considering the n-equation model:

f(z,8)=0 (2.20)

where z* and B are the true values of the m measured variables and p parameters re-
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spectively. The measurements z are corrupted by noise:
z=2"+¢ (2.21)

where € represents the measurement error. In this formulation, both 8 and z* are un-
known quantities since z* represents the true values of the measured variables. Therefore,
in order to find a maximum likelihood estimate of B3, it is also necessary to simultaneously

estimate z*. The following assumptions are made [Britt and Luecke, 1973):

(i) £(z*,3) is twice continuously differentiable with respect to each argument.
(ii) The Jacobian matrix g—; has rank p, and the Jacobian matrix & has rank n.

(iii) The error € is normally distributed having zero mean and a known positive definite

covariance matrix Q..

The joint probability density function for the measurements is:
-m - 1 Y - .
9(s) = @r) ™ Qe exp | 3 (a-2)7 Q7 (2 - ) (2:22)

The likelihood function is found using the joint probability density function, by consid-

ering the measurements z as known, and the unknowns (z*,3) as the variables:
(5"8) = ) IR e -3 -2V Q- 7))
The unknowns (z*, 3) must obey the following constraint:
f(z',8) =0 (2.24)

Any solution of Equation (2.24) that maximizes the likelihood function with respect to
all other solutions, is a maximum likelihood estimate of (z*,3). Therefore the EVM
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problem can be expressed as:

mig > (2~ 2)7 Q7" (- 2) (2.29)
subject to:
£(s',8) =0

Using a Lagrange multiplier approach to solve the problem (see Appendix A for de-
tails), a system of m + p + n nonlinear equations must be solved to obtain reconciled
measurements and parameter estimates. Generally the number of measurements alone
make the problem impractical, if not impossible to solve. Britt and Luecke [1973] there-
fore used a first order Taylor approximation of the constraint Equation (2.24) about the
most recent estimate of (z*,3), in an iterative scheme. The details of the development
can be found in Appendix A. The final result is an iterative solution using the following

equations:

a6
. [f (z<'°>, ,3"") + g—: (z - z‘("’)] (2.26)

afT<an afT)“ afJ°l afT(af af’f)“
0z 0z

B-p% =— [% 2B aQe'a—z

ofT rof _ ofT\ !
_prk) — 5 _ k) _ hufnd 0. =
z'—z zZ—12 Qea (6 Q‘a )

. [f (z-(k)7 ﬂ(k)) L of

55 (8-8%) + gg (z— z‘('“))J (2.27)

The method is:

1. Compute (z*, 3) using Equations (2.26) and (2.27).

2. Set (z‘("“),ﬂ("“)) = (z*, ), relinearize the objective function about this new
point, and find a new estimate (z“"*”, ﬁ"‘+2)).
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3. Continue iterations until tolerances on “ﬁ("“) - ﬂ(")“ and |z**+1) — 2*®)|| are

met.

2.3 Robustness and Computational Requirements

For RTO, one desires a parameter estimation scheme that will give a small, spherical
parameter confidence region, as well as minimum offset between the true parameter val-
ues and their expected values. Another important consideration is the computational
requirements of the scheme, because some schemes may be too expensive to be practi-
cal, especially given the size of the RTO problem. The following discussion highlights
some of the issues involved in each parameter estimation technique, and provides some
modifications that have been made to the methods.

The first issue to be addressed is parameter error, which may result from both the
model used for parameter estimation, and the numerical solution technique. Dahlquist
and Bjorck [1974] have stated that the influence of random errors on the parameter
estimates is reduced by having a greater number of equations than unknowns. The
fewer equations, the larger the effect of random errors. Therefore, the effect of random
measurement error will have less influence on the parameter estimates when a least
squares or EVM technique is used instead of back-substitution (i.e., when all n equations
are used rather than just p equations).

Another benefit to having more equations than unknowns is the robustness to sensor
malfunction. With back-substitution, if a sensor fails, the system of p equations has p+1
unknowns, and there is no longer a unique solution. With conventional least squares and
EVM, the missing measurement becomes an additional unknown, and the parameters
and missing measurement can be estimated simultaneously.

The second issue to be addressed is computational requirements. In general, RTO
systems require the solution of very large parameter estimation problems. A complete

ethylene plant model may contain 200,000 equations and variables with hundreds of
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parameters to be estimated [White, 1997). The computational efficiency of the param-
eter estimation technique is therefore extremely important. In EVM, the simultaneous
estimation of parameters and true values for measured variables can yield very large
problems that cannot be efficiently solved using current computing technology. Tjca
and Biegler [1992] indicate that the computational effort required to solve for both true
measurement values and parameters in a nonlinear model often increases with the square
or even with the cube of the number of equations. A number of modifications to EVM
have been proposed. One approach is to nest the measurement correction step within
the parameter estimation step [Reilly and Patino-Leal, 1981], which reduces the size of
the estimation problem. Another approach is to separate the steps into a two-stage cal-
culation [Schwetlick and Tiller, 1985; Kim et al, 1990}, again reducing computational
requirements but there is no convergence guarantee. Therefore, it seems that EVM re-
mains an impractical technique for use in typical RTO schemes. For this reason, it will
not be considered further in this thesis. It may, however, become a useful technique once
computing technology advances.

Back-substitution and least squares techniques appear to be the only practical alterna-
tives for RTO. With respect to computational efficiency, it is clear that back-substitution
is the least expensive to implement, since the number of equations involved is always
equal to the number of parameters, and the solution is direct rather than an optimiza-
tion. Least squares estimation, while giving more reliable parameter estimates, requires
more computation than back-substitution. In the linear case, back-substitution requires
p* (for the matrix inversion) plus p? (for the multiplication A~'b) operations. The simple
least squares method requires an additional énp(p + 3) operations in order to compute
ATA and ATb [Dahlquist and Bjorck, 1969]. For the weighted least squares method,
the computation of the weighting matrix will generally be too difficult to be practical.

When the model is nonlinear, much of the computation is involved with evaluating the

Jacobian matrix _a_g. A modification to Newton’s method, to reduce this computation, is
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to only update the Jacobian occasionally [Dahlquist and Bjorck, 1974, using;

B+ — gk _ [ﬁ] T em (2.28)
3,3 A=8 .

where k = q, ..., + 7. Another modification for both back-substitution and least squares
techniques is to use difference approximations to the derivatives rather than actual deriva-

tives in the Jacobian [Dahlquist and Bjorck, 1974):

OLLE) o 1Bt he) 1B 229
where e; is the jth coordinate vector and h; # 0, 4,5 = 1,2,...p. Substituting the
approximate derivatives in for a%';—, the result is a p-dimensional discretized Newton'’s
method. This method requires f (3) to be evaluated at (p + 1) points, so the amount of
computation is similar to that of Newton’s method if the evaluation of f;(3) takes as
much work as that of ‘5’% (Dahlquist and Bjorck, 1974]. The trade-off in using difference
approximations is poor accuracy, and the use of numerical derivatives usually increases
the computing time required for convergence [Bates and Watts, 1988].

In summary, EVM seems to be an impractical and expensive parameter estimation
technique for RTO, given the current state of computing technology. Among the practical
alternatives, back-substitution appears to be the poorer choice with respect to parameter
error and system reliability when sensors are subject to failure. In the next section,
parameter estimation by back-substitution is compared to estimation by least squares in

a series of case studies.

2.4 Williams-Otto Reactor Case Study

In this series of case studies, parameter estimation by back-substitution is compared to
estimation by least squares under various situations. The first study compares the two

methods during normal process operation, the second incorporates a bias into one of the
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measurements, and the third considers the case where a sensor fails completely. It is
shown that least squares is a superior method to back-substitution in all cases. In com-
parison to back-substitution, the least squares approach reduces the size of the parameter
confidence region, and is more robust to measurement noise and bias. Furthermore, the

method does not fail when a sensor fails.

2.4.1 Process Description

The Williams-Otto reactor [Williams and Otto, 1960] is modelled as a continuously stirred
tank reactor, with temperature T and volume v = 4640 b, in which three simultaneous

reactions involving six chemical species are taking place:

A+B — C
B+C — P+E
C+P — @G

The reactions rate coefficients have Arrhenius temperature dependencies:
ki = Aiexp(—Bi/Tr) (2.30)

where ¢ = 1,2,3. The details of these reactions are given in Table 2.1. There are two
entering flows, F4 and Fp, of pure reactants A and B respectively. The exit flow Fjy
contains all six species. There are ten measurable variables (flows, temperature, exit
species concentrations), and the parameters updated on-line are the frequency factors A;

in Equation (2.30). The activation energies B; are assumed to be known. The steady-state

Reaction Frequency Factor (hr~') | Activation Energy (R) [ Basis
A+B-C 5.9755 x 10° 12 x 10° Ib of A
B+C—=P+E 2.5962 x 10!2 15 x 10° lb of B
C+P—-G 9.6283 x 10% 20 x 103 Ibof C

Table 2.1: Reaction data
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model consists of seven independent mass balance equations - an overall flow balance plus

six species balances:

FrR—Fy—Fg = 0 (2.31)

Fy—vki X Xg - FpX4 = 0 (2.32)

Fg — vk, X, X5 — vko XpXe — FaXg = 0 (2.33)

Wk XpXc — FrXg = 0 (2.34)

vks XpXc — %uksxcxp —FrXp = 0 (2.35)

2k, X Xp — 20ky XpXc — vksXoXp — FrXe = 0 (2.36)
1.5vk3 XcXp — FrXg = 0 (2.37)

2.4.2 Method

The first step in each case is to generate process data about a nominal operating point
by adding random, normally distributed noise. The chosen nominal operating point and
measurement covariance matrix can be found in Appendix B. One thousand sample data
sets are used in each study.

Parameter estimates are obtained for each set of data. In order to estimate the
three unknown parameters by back-substitution, three equations must be chosen from
the seven available equations. Since Equation (2.31) does not contain any parameters it
is not used. To minimize the transmission of measurement error to the parameters, a
well-conditioned set of equations is desired. For this reason, Equations (2.32), (2.34), and
(2.37) are selected. These equations form a linear, diagonal system in the parameters,
meaning the equations are orthogonal and well-conditioned. To estimate the parameters
by least squares, Equations (2.32) through (2.37) are used. Again, the flow balance is
omitted because there are no parameters in that equation.

After completing the parameter estimation step, the results from back-substitution

and least squares estimation are compared. Two measures are used to compare the
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parameter estimates from the two methods. First, to measure the transmission of noise
from the measurements to the parameters, the size of the parameter confidence regions
are compared. A common method for quantifying the volume of a confidence region is
simply the determinant of the covariance matrix of the daia |Qz| [Wald, 1943; Box and
Lucas, 1959; Kiefer and Wolfowitz, 1959] . To measure the transmission of measurement
bias to parameter bias, the sum of squared deviations between the true parameter values
and the parameter estimates based on noise-free biased data, “ B — ﬁl |2, are compared.

In the first of the three studies, all process measurements are available and unbiased, to
simulate normal process operation. For the second study, a 10% bias in the measurement
of Fj is introduced, so that its nominal value reads 57,500 Ib/hr rather than its true
value of 52,500 Ib/hr. The third study considers the case in which the Fr measurement
fails completely.

2.4.3 Results

The problem was scaled such that the true values of the unknown parameters are:

Al = 10
A2 = 15
Ay = 20

This allows for a more reliable solution, and effectively reduces the scale of the covariance

matrix, its determinant, and the bias measure given below. The results are as follows:
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Case | Method 1Qz| x 1073 lﬂ‘ - B”T
1 Back-substitution | 2066 0.0037802
Least Squares 25.01 0.0036608
2 Back-substitution | 2997 5.5808
Least Squares 25.45 0.55815
3 Back-substitution | fail fail
Least Squares 2.337 0.0036853

Table 2.2: Results Summary

2.4.4 Discussion

The results of this study show that least squares estimation outperforms back-substitution
in all cases. In each case, the least squares method results in a substantially smaller con-
fidence region for the parameters, giving the parameters a higher degree of observability
as defined in Section 2.2. When a bias is introduced in the measurement of Fp (Case
2), the least squares method outperforms back-substitution by reducing the transmis-
sion of the bias to the parameters. Thus it is shown that, in this example, the least
squares method not only reduces the effects of random process noise, it also reduces the
impact of measurement bias caused by malfunction or miscalibration. When a sensor
fails completely, as in Case 3, the back-substitution method also fails. The reason is the
back-substitution model has three equations but four unknown quantities, and no unique
solution exists. Least squares, on the other hand, has six equations in four unknowns,
and a locally optimal set of parameter estimates can be found. It is possible, however,
to use heuristics in a back-substitution scheme to select an alternate set of equations
on-line.

It was pointed out in Chapter 1 that RTO is a closed-loop application, and the
performance of the system will be adversely affected by the propagation of various noise
sources through the loop. The motivation behind suggesting the use of a least squares
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parameter estimation technique over the preferred method of back-substitution is to
reduce the transmission of error through the model updating portion of the RTO loop. In
this case study it is demonstrated that error transmission may be reduced by using a least
squarcs technique instead of back-substitution, thus confining the parameter estimates to
a smaller region and reducing the effects of measurement bias. One might therefore expect
that these robust parameter estimates will lead to robust setpoints calculated during the
optimization portion of the RTO loop. The first logical extension of this study, then, is
to examine the transmission of noise from measurements through the RTO loop beyond
parameter estimates, to calculated setpoints, since the setpoints will ultimately determine
the plant profitability. Recognizing that the goal of RTO is increased profit, a second
extension is to consider the relationships between profit and setpoint variance. A third
direction of study may consider the selection of measurements used for the parameter
update. It was shown in Case 3 that the determinant measure actually decreased an
entire order of magnitude from the Case 1 results, for least squares estimation, while the
bias measure increased only marginally. It is therefore questionable whether F should
be measured at all. While adopting a least squares parameter estimation technique, these

issues will be addressed in Chapter 3.
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Chapter 3

Optimal Sensor Selection for

Setpoint Determination

Since RTO is a closed-loop control system, error propagation is an important considera-
tion in its design. Chapter 2 examined parameter estimation techniques, and found that
least squares estimation is more effective than the preferred method of back-substitution
with respect to filtering out the effects of process noise and measurement error. The
case study of Section 2.4 indicated that with a least squares estimation, it may not be
necessary to measure every possible variable in the process model.

This chapter continues the analysis of error propagation through to the setpoints
determined by the optimizer. Given a least squares parameter estimation scheme, the
goal is to find a sensor system that minimizes bias and variance in the calculated setpoints.
The chapter begins with an overview of D- and T-optimal experimental design criteria
and how they may be applied to sensor system selection in RTO. Recognizing the need to
combine the two criteria, the second part of the chapter develops Sensor System Design
Cost., which effectively balances D- and T-optimality criteria and allows the designer to
compare various sensor systems with respect to uncaptured profit due to setpoint bias
and variance. The final section of this chapter revisits the Williams-Otto reactor [1960],
as a demonstration of how the Sensor System Design Cost may be applied in RTO design.
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3.1 Optimal Design of Experiments and RTO

Since the parameter update portion of the RTO loop is a model-fitting procedure, DOE
criteria may be used to determine which measurements should be taken to meet the
chosen objectives. In this particular case, the desired objectives are to minimize bias and
variance in the calculated setpoints, which result from the parameters estimated using
process measurements.

In regression analysis, statistical models are developed to represent the observed rela-
tionship between experimental conditions and measured variables. In a typical situation,
a practitioner may be faced with a number of candidate model representations. Fur-
thermore, depending on the amount of noise and the availability of informative data,
it may be difficult to estimate model parameters with certainty. In both cases, further
experimentation must be performed.

Optimal DOE criteria have been developed for the analysis of regression models.
D-optimal experimental design [Kiefer and Wolfowitz, 1959] has been developed to de-
termine the experimental conditions that will most likely minimize the uncertainty in
parameter estimates. T-optimal design [Atkinson and Federov, 1975| is used to decide
which measurements to take such that one can discriminate between rival models, and is
based on prediction error. In this section, the basic theory of D- and T-optimal design
is presented, and the application of DOE theory to RTO is developed.

3.1.1 D-Optimal Design

The basis for D-optimal experimental design was first introduced by Wald [1943], and is
a design used to minimize the uncertainty in the parameter estimates found when fitting

a model to data. Consider the linear statistical model:

AB-b=c¢ (3.1)
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where the noise terms € ~ N (0,0°I). For a linear regression model, the parameter esti-
mates 3 have a Jjoint confidence region whose volume is proportional to IATA|_'/ 2 [Box
and Lucas, 1959]. The entries in A depend on the experimental design conditions: tem-
perature, pressure, and so forth. A D-optimal design, A, is a design that minimizes the
volume of the parameter inference region. Equivalently, the design is chosen to maximize
the D-optimal design criterion, [ATA/[, also called the determinant criterion. In a statis-
tical sense, a D-optimal design is said to maximize the determinant of the information
or, equivalently, minimize the generalized variance of the parameter estimates.

Box and Lucas [1959] extended the application of the determinant criterion to non-

linear models:
f(B,z) =¢ (3.2)

where 8 are the model parameters and z are the measured variables. Assuming the
existence of a representative set of prior estimates of the parameters, ,3, one can write a

first order Taylor series expansion of the model about 3 and E [z] = z:

of - of
=f ﬂ, ~ [—J ﬂ—ﬁ + l:—} — 4o 3.3
e=f(B2)~ |53 ﬁ'zn( )+ |5 . -z (3.3)
Equation (3.3) is equivalent to Equation (3.1) if:
of
A = [%] . (3.4)
of of A
> = [, 0o [3),. 2 6

Box and Lucas {1959] have demonstrated that a locally D-optimum design can be

7., [5)
985, 198 Bz,
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The difficulty with this particular design is that D-optimality is lost as soon as a new
design forces parameter estimates to move away from their nominal point. In practice,
this phenomenon requires a sequential approach where locally D-optimal designs are

iteratively generated and implemented [Box and Hunter, 1965|.

3.1.2 T-Optimal Design

T-optimal experimental designs were introduced by Atkinson and Federov [1975], to
provide designs that yield maximum discrimination between rival models. Consider the

following problem, which in general need not be linear:
f.(z,8)=¢ (3.7)

where z are the measured variables and B are unknown parameters. The noise terms
€ ~ N (0, 0°I) are assumed to be independently and identically distributed. The function
f. (z,B) is one of two known functions f, (z,,3,) and f, (z2,8,) where the unknown
parameters 3, and B, € RP* and RP? respectively. The purpose of the experiment is
to determine which of the two models is true. Assuming that the first model is true,
f. (z,8) = f\(z1,8,), the T-optimal experiment is designed to maximize the sum of
squares lack of fit of the second model [Atkinson and Federov, 1975]:

sup A (£) (3.8)
where:
. - 2
A©) =igf | (21,8) — £ (22.5) (3.9)

In these expressions, £ is the experimental design belonging to a class of designs =.
For linear models nA (£) /o® is the noncentrality parameter of the x? distribution of
the residual sum of squares for the rival model. The T-optimum design provides the most
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powerful F-test for lack of fit of the second model when the first is true. If the models are
nonlinear in the parameters, the exact F-test is replaced by an asymptotic one [Atkinson
and Federov, 1975].

3.1.3 DOE for RTO

Both D- and T-optimal designs may be applied to the measurement selection problem for
setpoint determination in RTO. In this section, D- and T-optimal designs are extended to
sensor selection for RTO. Further, weighted D- and T-optimal criteria are developed to
include the effects of expected RTO profitability. The section concludes with a discussion
of the calculation involved and the methods available for performing these calculations.

In conventional D-optimal design, the experimenter can choose the variables to mea-
sure, their settings, and the number of replicates of each variable, in order to minimize
the uncertainty in the parameters in a given model. In the current RTO design, however,
the settings for the variables cannot be chosen, and replicate measurements are not taken.
Therefore, in this thesis, the sole decision to be made is the best choice of model variables
to measure. The goal is to choose a measurement set, among the possible alternatives,
which minimizes the variance associated with the calculated setpoints (confidence region
volume).

This problem can be easily re-stated as a D-optimal design problem that aims to
minimize the volume of the setpoint confidence region. The D-optimal design criterion
requires the selection of a set of measurements that minimize the determinant of the

. In order to use the proposed D-optimal criterion for

setpoint covariance matrix, |Qx-
sensor selection, the setpoint covariance matrix must be approximated. A method for
approximating Qx- can be found in Appendix C.

In RTO, it is desirable for the process models to be rigorous, first-principles models.
These more rigorous models permit more accurate coverage of a much wider operating
region than is possible with empirical models [White, 1997]. Rigorous models contain

a large number of process variables, some of which can be measured. There are two
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obvious reasons why certain variables may not be measured. First, it may be physically
impossible to install the required sensor. Second, the number of sensors that can be
purchased may be limited by a budget. For these reasons, RTO designers may require
an alternate, simpler model, so that the desired parameters can be estimated using
the available measurements. The T-optimal sensor system for RTO is the one that
corresponds to the model giving a minimum sum of squared deviations between the
nominal setpoints X* found with this sensor system, and the setpoints x;, determined
using the most rigorous model and a complete and perfectly known set of measurements.

The problem is stated as:
min [|x;, — %;,[I3 (3.10)
where s is the set of potential sensor systems.

Weighting

The D- or T-optimal criteria ensure that the volume of the confidence region of the
setpoints, or the bias in the setpoints, is minimized. However, the topology of the profit
surface may cause setpoint deviations in one direction to be much more costly than
deviations in another direction. Since the primary concern of RTO is economics and not
necessarily setpoint deviation, it would be desirable to weight the two criteria such that
variance or bias in the more costly directions is penalized more than variance or bias in
the less costly directions. In this way, a weighted D-optimal or T-optimal criterion would
aim to minimize lost dollars caused by setpoint variance or bias, rather than minimize
setpoint variance or bias directly.

This weighting may be accomplished through the use of the reduced Hessian of the
profit function to be maximized, VfP. The reduced Hessian is the symmetric matrix

of second derivatives of the profit function P (x*), in the space of the setpoints used for
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optimization [Edgar and Himmelblau, 1988|. In a two-dimensional case:

2p a2p
Vip = g:;, 3;;*::’ (3.11)
Azre0zy -;7_:3-

Generally, the RTO problem is formulated as:

max P (x) (3.12)
subject to:

f(8,z)=0

h(8,2) < 0

Since this is a2 maximization problem the reduced Hessian will be negative definite at the
optimum, and therefore the negative reduced Hessian is positive definite.

The goal of the weighting procedure is to transform the setpoint variables to a co-
ordinate system based on dollars, so that in the new coordinates, variance or bias in
any direction has the same cost associated with it. Assuming that, in some small neigh-
bourhood about the nominal setpoint values, the setpoints follow a multivariate normal

distribution, the following linear transformation can be made:
n =Rx* (3.13)
where:
-v2p=R"R (3.14)

is the Cholesky decomposition of the positive definite reduced Hessian, —V2P. Since
x" is assumed to be N (x},,Q,.) in some small neighbourhood about x!,, the linear
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transformation of Equation (3.13) means that [Chatfield and Collins, 1980]:

n ~ N (Rx;,, RQ,.R") (3.15)

The D-optimal criterion can then be applied to the covariance matrix of n:
min [RQ,.RT| (3.16)
Equation (3.16) is the weighted D-optimal criterion. The effect of the weighting can be

seen in the following simple example.

Example 1 Suppose a setpoint covariance matriz:

15 0
Qx‘ = [ :l
0 4

Let the negative reduced Hessian of the profit function be:

T
wip_ |2 0| _[L1em 0 1.414 0
i 0 64 0 8 0 8

In the unweighted problem the z} variance contributes the most to the determinant, as
shoun in the Q. matriz. Any minimization of the determinant would primarily aim
to reduce the variance associated with this variable. The negative Hessian of the profit
surface, however, indicates that variance in the z3 variable causes a much larger loss of
profit than variance in the z7 variable. It would be beneficial to weight the optimization

problem to recognize this. Using Equation (3.16), the weighted covariance matric becomes:

T
RQURT = 1414 0| [15 0| {1414 0| {30 0
* 0 8 0 4 0 8 0 256

With this transformation, variance in the z3 variable contributes the most to the deter-
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minant, and hence an optimization would aim to reduce the variance in z3, rather than

Zj, since variance in I; is more costly.

A weighted T-optimal criterion can be developed in a similar fashion. Using the

transformation of Equation (3.13), the weighted bias in the new variable 7 is written as:

(1 — ) = R(X" - x;,) (3.17)

The weighted sum of squared bias is:

I =l = |& = x3) " RTR(%" ~x3,) (3.18)
= |& - %) (-V?P Ix,,) & - x3)
and the weighted T-optimal criterion is:
m;n‘(i - %) (VPP |x,) (R — x},) (3.19)

3.1.4 Discussion

D- and T-optimality criteria have been developed to apply to the sensor selection issue
within the RTO system, with respect to setpoint determination. The D-optimal crite-
rion can be used to find the semsor system that will minimize the uncertainty in the
calculated setpoints, while the T-optimal criterion may be used to find the system that
gives the least amount of bias between the nominal calculated setpoints (using the chosen
sensor system), and those that would be calculated on a complete and perfectly known
measurement set. Further, both criteria may be modified to exploit the geometry of
the problem using the reduced Hessian of the profit function. These optimality criteria,
however, will not necessarily give the same results. Since both objectives are important,
a compromise must be made between the D- and T-optimality criteria. The evaluation
of Sensor Network Design Cost will provide this function.
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3.2 Sensor System Design Cost

The Sensor System Design Cost (SSDC) is defined to be the expected lost profit due to
deviations between calculated setpoints x;, and x*:

C=E[P(x;) - P(x’)] (3.20)

where E is the expectation operator, and P (x*) represents the plant profit at setpoints x*.
The setpoints x;, are those that would be obtained through a rigorous process model and a
complete, perfectly known measurement set z;. The setpoints x* are determined through
a particular model that is based upon a particular sensor system with measurements z.
There will be two types of lost profit. The first is due to variance, which exists because of
random process noise. The second type of lost profit is bias cost, which exists because of
deviations between the predictions based on the rigorous model and those based on the
alternate model. Figure 3-1 [Forbes, 1994] depicts the bias and variance cost associated
with the setpoint predictions. In this section, the SSDC criterion is developed based
on statistical principles. Further, the SSDC criterion combines the D- and T-optimal

criteria into one diagnostic tool for sensor selection.

Plant Profit (P)

Figure 3-1: Bias and variance cost associated with setpoint predictions.
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The development of the SSDC follows the Design Cost work of Forbes and Marlin
[1996]. The primary difference in this work is the assumption that the rigorous process
model closely approximates the true plant, and hence identifies a reasonable approxi-
mation of the true plant optimal operation. Therefore, this optimum is taken to be the
benchmark to which all other predicted setpoints, possibly from simpler RTO models, are
compared. Any deviation in setpoints, and hence loss of profit, from the benchmark opti-
mal operation is a result of model simplification due to the elimination of measurements,
and random process noise, as well as plant/model mismatch. The detailed development

may be found in Appendix D. The final SSDC equation is:
(x5 = %) V2P |, (x5 = %) + W7 [V2PoQelw|  (3:21)

where X" are the nominal setpoints found with a particular sensor system, V2P is the
reduced Hessian of the profit function, Q- is the setpoint covariance matrix, and w =
[ 11 ... 1 ]T-

The goal of sensor selection is to minimize the design cost with respect to the available

sensor system alternatives s

min — (65, = %) V2P L, (35— %) + W' [V2P 0 Q] W] (3.22)

x 2

which may be rewritten as:

) (K — &) + W [-V2Po Qe w (3.23)

min (x, — %*)7 (- V2P
Since —V2P and Q. are positive definite by definition, Equation (3.23) is equivalent to:

+|wT [~ V2P o Qx| W] (3.24)

min |(x;, — %) (~ViP

xi) (X — X°)

Problem (3.24) includes the Hessian of the model-based profit function. Although it

may be possible to evaluate the Hessian, the profit surface curvature of the model may
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not accurately represent the true plant profit behaviour. In this case, Problem (3.24)
can be modified so that the Hessian is removed and an upper bound on the SSDC is
minimized instead. Using the Cauchy-Schwarz Inequality [Ortega, 1987], upper bounds
may be placed on each of the two terms in Problem (3.24):

< “—VfP |x:,.”2 (< — ’?)“g (3.25)

|5, = %) (2P |ay,) (o, = &)
and

W7 [~V2PoQu] w] < s ~VEPo Qe |, < 3| V2P |y

2 1Qx-1l2 (3.26)
where s is the number of setpoints. The upper bound on the SSDC is therefore:

C < ||V2P s, [l (e = %)z + 5 Q- Il2) (3.27)
The minimization of Equation (3.24) is now expressed in terms of upper bounds:

min [~ V2P L, ||, (I1(x5 = %) + 5[ Qu-[l,) (3.28)

Since ||~ V2P||, evaluated at x;, is a constant, positive, scalar quantity, Equation (3.28)

reduces to:
min [|(x;, — %)z + 5 [Qx-l, (3.29)

Problem (3.29) is the unweighted point-wise criterion for sensor system selection. It
can be seen immediately that the first term in Problem (3.29) is the T-optimal criterion
of Problem (3.10). The second term in Problem (3.29) contains the largest eigenvalue of
Q.-, which is proportional to the length of the largest semi-axis of the setpoint confidence
region. It is also the largest contributor to the D-optimal criterion. Since all of the

eigenvalues of Q- are less than or equal to ||Qx-[|,, Problem (3.29) aims to minimize
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the sum of the T-optimal criterion and the worst case D-optimal criterion.

The SSDC Problems (3.24) and (3.29) represent sensor selection at a given operating
point. The model-based plant optimum x;, will change however, depending on the values
of the measured variables z;. So, the model optimum is drawn from a space S of all
possible optima. There is a frequency function < (z;,v) associated with the optima in S,
which describes the occurrence rate of a particular plant optimum. The total uncaptured

model-based profit for a particular sensor system, for all possible disturbances, is:

Cr = / [E[P(x,‘,,)]—- / P(8) f(i‘—&,Qx.)d\Iqu(z;,v) iS  (3.30)

where P and ¢ are both Lebesgue integrable on S, and f (X* — 4, Q,.) is the probability
density function associated with the predicted setpoints x*. The maximum theoretically

attainable model-based plant profit is:
Pr= /P (x.) s (22,v)dS (3.31)
So Equation (3.30) can be re-written as:
Cr=Pr—- / / P(8) f (% — 6,Q,.) 5 (2, v) d¥dS (3.32)

The goal is to minimize the total loss in profit by selecting the appropriate sensor system

from the set of choices 5. This is equivalent to:
min — / / P(8) f (X — 8,Q..)< (25, v) d¥dS (3.33)

It is unlikely that ¢ (z}, v) would be known, thus the minimization of Problem (3.33) will
have to be approximated by a sum over an expected set of values for z;.

If changes in the measurements are considered to occur as steps, Problem (3.33)



becomes:
min} |- [ P)7 (& - 6,Q,)0] < a2 (3.34

The objective in Problem (3.34) is to minimize the weighted sum of the solutions to
the point-wise SSDC Problem (3.29), for the set of possible measurement values. Then
using the developments for the point-wise design cost problem, the total weighted SSDC

problem is:

+ W [-V2P o Qy] w|] c(z) (3.35)

min Y ||, — %) (V2P |y, ) (x5 = %)]

The unweighted SSDC is:
min ) [lI(xr, = %73 + 8 Qe llo] < (2:) (3.36)

The solutions to Problems (3.35) and (3.36) provide the minimum weighted and un-
weighted SSDC for the expected set of measurable variable values. The RTO designer
can then compare sensor system alternatives for the complete range of operations, rather

than one point at a time.

3.2.1 Discussion

Sensor System Design Cost was developed to find a criterion that could be used to
select a sensor system among alternatives, with the goal of simultaneously minimizing
both variance and bias costs. The result is a minimization problem that combines both
D-optimal and T-optimal experimental design criteria, as developed in Section 3.2 for

setpoint determination. Consider the point-wise Problem (3.24):

+|WT [-V2Po Q] w|}

min {|(x;, = %)7 (- V2P |s;) (x, — %)
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The first term in this expression is the weighted T-optimal criterion from Problem (3.19).
The upper limit on the second term is simply a multiple of the upper limit of the weighted
D-optimal criterion. Recall the weighted D-optimal criterion:

min |RQ,.R7| (3.37)
where:
-V:P=R"R (3.38)

is the Cholesky decomposition of the negative reduced Hessian of the profit function.
The upper bound on the determinant of RQ,.R7 is:

IRQ-R"| < Rl 1Qu [l [RT[|, = = VIP lxs. ||, 1Qx-l, (3.39)

while the upper bound on the second term of Problem (3.24) is:

W' [-V2Po Qx| w| < s||-V2P B (3.40)

2 ”Qx'

Xim

Therefore the weighted SSDC aims to minimize the sum of the weighted T-optimal cri-
terion and the worst case weighted D-optimal criterion. That is, it aims to minimize the

lost dollars caused by both setpoint variance and bias.

If the profit surface curvature of the model does not accurately represent the true
plant profit behaviour, the reduced Hessian can be removed from the problem as in

Problem (3.29):
min [|(x}, = %°)[I2 + 5 | Qx- |

Again the first term is the T-optimal criterion, while the second term is a multiple of

the largest eigenvalue of Q.. Hence the SSDC aims to minimize bias and worst case
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variance in the setpoints.

There are two important issues to be recognized if the SSDC criterion is to be used
for sensor selection. First, in order to use the weighted SSDC and minimize lost profit
due to variance and bias, the reduced Hessian of the profit function must adequately
describe the curvature of the plant profit surface. Secondly, the SSDC criterion includes
an upper bound on the determinant criterion, rather than the determinant criterion
directly. Therefore, it aims to minimize the worst possible volume of the confidence
region rather than the actual volume.

The reduced Hessian of the profit function describes the local curvature of the profit
surface, with respect to the setpoint variables. If the true plant profit curvature is not
accurately represented by the Hessian, the weighted SSDC results may be inaccurate. An
alternate approach is to remove the Hessian from the problem, and use the unweighted
SSDC. Note that when using the unweighted SSDC criterion, the goal is to minimize
variance and bias in the setpoints directly, rather than lost dollars due to variance and
bias.

The SSDC includes the largest eigenvalue of the setpoint covariance matrix, which
is representative of the largest possible determinant rather than the actual determinant.
Therefore the optimization aims to minimize the largest eigenvalue, ignoring the remain-
ing eigenvalues. The true volume of the confidence region is thus ignored. By minimizing
the largest eigenvalue, it is possible that the entire confidence region is becoming smaller.
But it is also possible that while the longest axis is becoming shorter, the shorter axes are
becoming longer. So, by decreasing the largest eigenvalue, the volume of the confidence
region is not necessarily decreasing. It would be beneficial to rework the SSDC so that

the actual determinant of the setpoint covariance matrix can be used.
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3.3 Sensor Selection Procedure for RTO

The developments of this chapter lead to a structured method for choosing sensors for
RTO. This method can be broken down into the following steps:

1. Determine the process model, adjustable parameters, and the possible sensor system
alternatives. The parameters to be updated on-line must be observable through the

sensor systems, process model and chosen updating scheme.

2. Compare the performance of each alternative sensor system by calculating the

SSDC for each. This will involve:

(a) approximation (or calculation) of the following sensitivity matrices: %, %‘3,
ax

(b) knowledge of measurement covariance matrix Q,.

(c) approximation (or calculation) of the reduced Hessian of the profit function,
V2P

(d) evaluation of the expected setpoint bias for each sensor system, using the

process model and the nominal values of the process measurements.

The case study of the next section demonstrates the use of the SSDC method for
sensor selection in the Williams-Otto reactor [Williams and Otto, 1960].

3.4 Williams-Otto Reactor Case Study

This case study revisits the Williams-Otto Reactor [Williams and Otto, 1960 that was
studied in Section 2.4. Chapter 2 concluded with the suggestion that it may not be
necessary to measure every model variable in order to achieve good RTO results. In
particular, it was shown in Section 2.4 that for a least squares parameter estimation, the

measurement of the variable Fir adversely affected the quality of the parameter estimates.
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In this chapter, the Sensor System Design Cost criterion was developed for the purposes of
evaluating various sensor systems with respect to the quality of the setpoints each system
generates. Further, the concept of weighting the criterion was introduced, so that each
sensor system may be evaluated in terms of uncaptured profit caused by implementing
each system. The purpose of this study is to find the optimal sensor system with respect
to calculated setpoints, based on the weighted and unweighted SSDC criteria.

3.4.1 Process Description

The process and system model are the same as described in Section 2.4. The available

Sensors are:
1. Flow of feed A to the reactor.
2. Flow of feed B to the reactor.
3. Flow of reactor exit stream.

4. Reactor temperature.
5. Weight fraction of component G in the reactor exit stream.

6. Weight fractions of components A, B, E, P and C in the reactor exit stream,

obtained simultaneously.

Measurement noise is given in Appendix B. The profit function to be maximized is:
P =(0.30Xp + 0.0068Xg) Fr — 0.03Fg — 0.02F, (3.41)

This function assumes that products P and E may be sold at $0.30/1b and $0.0068/1b re-
spectively, and the cost of feeds A and B are $0.02/1b and $0.03/1b respectively [Williams
and Otto, 1960].
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3.4.2 Method

The first task is to find the sensor system alternatives. First consider the parameter
estimation portion of the RTO loop. The model consists of seven equations, containing
ten measurable variables and three parameters to be estimated (A,, Az, and Az). As-
suming linear independence of the model equations, at least six of the ten measurable
variables must actually be measured in order to perform a parameter update by back-
substitution or least squares. Now consider the optimization portion of the RTO loop.
Again, there are seven model equations, and ten process variables. As in Williams and
Otto [1960], F, is fixed. Therefore, for the system to be completely determined, two
setpoint variables must be chosen from the remaining nine. That is, once the values
for these two setpoints are chosen, the remaining process variables in the steady-state
model can be uniquely determined. A common choice for setpoint variables are feed low
(Fp) and reactor temperature (Tg), since they are more easily measured and controlled
than component weight fractions. It will be assumed that the setpoint variables must be
measured in order for them to be controlled.

To summarize, the sensor system choices must contain at least six variables, including
Fg and Tx. Further, the measurements of X,, Xg, Xg, Xp, and X¢ occur simultaneously

in one sensor. There are eight possible sensor systerms, given in Table 3.1.

Sensor System, 3¢ Measured Variables, z
F, Fg Fr Th X¢ Xa Xg Xc Xg Xp
Fg Fr Tr Xg Xa Xg X Xg Xp
Fy Fg Tp X¢ X4 X Xc Xg Xp
Fy Fg Fr T X4 X Xc Xg Xp
Fg Th X¢ Xa X Xc Xg Xp
Fg FrR Th X4 Xg Xc X Xp
Fy Fg Th Xqo Xg Xc Xg Xp
Fg Tp X4 X Xc Xeg Xp

O[] AW N

Table 3.1: Sensor System Alternatives
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The unweighted point-wise design cost problem is:

min {[|(x;, — &)1z + s 1 Qx- I} (3.42)

and the weighted point-wise design cost problem is:

min { |(xp, = )7 (~ V2P |x;,) (x5, = %)

+ W' [-V2Po Qe w|} (3.43)

The design cost will be calculated for the sensor system design alternatives, and the
system that gives the lowest design cost will be chosen as the optimal design. In order to
calculate the SSDC, x,, X*, Qx-, and —V?P must be calculated. The following methods

were used:

1. To calculate x},, the known true values of the parameters were used to find the
optimal setpoints by minimizing Equation (3.41), subject to the model equations.
These setpoints were used to find the nominal values of the measurable variables

at the optimum, z;.

2. To calculate X*, the noise-free measurements z* were used. A least squares param-
eter estimation was performed, using all model equations, and only those measure-
ments corresponding to the particular sensor system under consideration. These
parameter were used to find the optimal setpoints X* by minimizing Equation (3.41)

subject to the model equations.

3. To linearly approximate the closed-loop Q-, Equation (C.1) of Appendix C was
used [Forbes, 1994]:

_y(0x080s\  (0x0B
Qe =3 ('a? 9z ax) (aﬂ az)[,.'z. Q

i=0 x',ﬂ‘,z'
. T
ox" 9B 0z \' ox" 0P
' [( ap E&) e (aa E) ﬂ.,,.] (3.44)
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In this equation, Q- is expressed as an infinite weighted sum in the powers of
the products of RTO subsystem sensitivities, as well as the sensitivities of process
variables to setpoint changes. Although this is an infinite sequence, it was possible
to approximate Q- with just one term, each element having an accuracy of five
significant digits. Since the model equations are linear in the parameters, and the
problem is small, all the required derivatives were computed analytically using the
methods of Appendix C.

4. To calculate — V2P, the analytical method of Ganesh and Biegler [1987] was used.

The above calculations give an approximate design cost. Because of nonlinearity in the
process, particularly the exponential temperature dependence in the reaction equations,
there will be mismatch between the approximate Q- and the Q,. found through process
simulation. Therefore, for comparison, the SSDC for the available sensor system choices
was also found through simulation. For each simulation, normally distributed random
noise was added to the measurements, according to the variances and covariances given
in Appendix B. One thousand sets of setpoints were generated, closed-loop, from which

the covariance matrix was calculated.

3.4.3 Results

The known true values of the (scaled) parameters are:
T
B= [ 10 15 20 ]
T
where 8 = [ Al Ay, A ] . The optimal setpoints found using Equation (3.41):
T
x,, = | 0.37987 0.65314 |

T .
where x = [ Fg Tg ] . Note that all flows are scaled by a factor of 10~ and the

temperature by 1073. The nominal values for the measurable variables, which result
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from the implementation of these optimal setpoints are:

[ 0.145 0.37987 0.52487 0.65314 0.10754

*
zc

0.087449 0.38963 0.015306 0.29062 0.10946 |*

T
wherez=[FA Fg Fg Th X¢ X4 X Xc Xe XP} :

At the optimum, the negative reduced Hessian was evaluated as:

9 0.14684 —0.45627
~-V:P =
—0.45627 3.3913
In this expression the profit is scaled by 1073, to correspond with the scaled flows. The

profit at the process optimum (in actual units) is $397.68/hr.

SSDC Estimation

Table 3.2 summarizes the nominal setpoint values, maximum eigenvalue for the expected
setpoint covariance matrix, and the sensor design costs for each sensor system. The
complete Q- matrices can be found in Appendix B, along with the derivative matrices

used in the computation of Q,., evaluated at the optimum.

Sensor Fp Th 1Qx-l, x 10* | SSDC x10* | Weighted SSDC
System | 10° Ib/hr | 10* R $/hr

1 0.37987 | 0.65314 29111 5.8223 10.23

2 0.37987 | 0.65314 2.9212 5.8424 9.61

3 0.37987 | 0.65314 29171 5.8342 10.16

4 0.37987 | 0.65314 7.9867 15.973 26.84

3 0.37987 | 0.65314 2.9075 5.8152 9.40

6 0.37987 | 0.65314 6.6912 13.382 20.39

7 0.37987 | 0.65314 6.7997 13.599 22.66

8 0.37987 | 0.65314 6.6107 13.221 20.52

Table 3.2: SSDC Results by Estimation
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SSDC by Simulation

Table 3.3 shows the results found by simulation. Again, the complete Q. matrices can

be found in Appendix B.

Sensor F} Tp | I|Qx-|l, x 10* | SSDCx10* | Weighted SSDC
System | 10° Ib/hr | 10° R $/hr

1 0.37987 | 0.65314 2.8629 5.7259 9.60

2 0.37987 | 0.65314 2.8071 5.6142 8.98

3 0.37987 | 0.65314 2.8125 5.6249 9.53

4 0.37987 | 0.65314 7.7213 15.443 25.95

5 0.37987 | 0.65314 2.9158 5.8317 9.14

6 0.37987 | 0.65314 6.6815 13.363 20.26

7 0.37987 | 0.65314 6.5160 13.032 22.20

8 0.37987 | 0.65314 6.3911 12.782 19.86

Table 3.3: SSDC Results by Simulation

3.4.4 Discussion
The SSDC analysis shows the following:
1. The bias cost in all cases is zero.

2. Sensor system #1, which contains all possible measurements, is not the optimal

choice.
3. In both the weighted and unweighted cases, sensor system #35 (which excludes both

F, and Fp) is optimal when Q- is linearly approximated, while sensor system #2
(which excludes F,) is optimal when Q. is found by simulation.

4. The linearly approximated results capture the trends observed in the simulation

results.

The first observation can be explained by the fact that the linear least squares pa-
rameter estimates are unbiased [Bates and Watts, 1988|. Therefore, with noise-free mea-

surements each sensor system allows the true parameter values to be calculated, which
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in turn allows the profit optimizer to find the true optimal setpoints. Bias cost might
appear if the model was nonlinear in the parameters [Box, 1971]. For the current study,
the differences in the design costs among the various sensor systems can be attributed
to variance alone. The weighted SSDC can therefore be considered the ezpected lost
profit due to setpoint variance for each sensor system. This variance is caused by the
transmission of measurement error through the RTO loop.

The second item is quite significant, since it shows that it is not necessary to measure
every variable to get similar RTO results. In all cases, the results from sensor systems #1,
#2, #3 and #3 are very similar. This is contrary to the general feeling that measuring
every possible variable is a good idea. In fact, the weighted results from both the linear
approximation and simulation studies show that the process is more profitable when F,
and/or Fp is not measured.

The closeness in SSDC values for sensor systems #1, #2, #3 and #5 may not allow
one to distinguish which is the most profitable. It is clear, however, that the values for
these systems are much better than those values for the remaining four sensor systems.
One can conclude that sensor systems #4, #6, #7 and #8 should not be implemented,
given the other alternatives.

Weighting of the SSDC had an effect on the optimal sensor systems found in this
study, and the difference lies in the economic considerations. The reduced Hessian shows
that there is more cost associated with variance in Tg than in Fg, and this influences the
weighted SSDC. Any sensor system that reduces variance in T will have a lower weighted
SSDC. For example, the unweighted SSDC (by simulation) shows that sensor system #5
is less desirable than systems #1 and #3. But the covariance matrix associated with
#5 has a smaller variance in Tr (see Appendix B), and therefore the weighted SSDC is
smaller.

The results of this study have some powerful implications. Consider the following
problem. The reactor currently has sensor system #7 (which excludes Fr and X¢)
installed for RTO. Management has decided to invest in another sensor, and the RTO
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designer must decide which additional sensor to purchase: Fg or X;. The simulation
results show that the expected lost profit with system #7 is $22.20/hr. If the Fy sensor
is then added, the expected lost profit becomes $25.95/hr, an additional loss of $3.75/hr.
Alternately, if the X sensor is purchased, the expected lost profit is only $9.53/hr, and

there is a $12.67/hr return on the investment.

3.4.5 Conclusions

The SSDC criterion is an alternative approach to sensor selection that examines the
RTO loop as a whole rather than looking at the parameter updator in isolation. More
importantly, as shown in this case study, the SSDC criterion can be a powerful tool
for sensor selection, because it expresses the sensor selection problem in terms of the
expected lost profit resulting from various sensor system alternatives. Since the goal
of RTO is profitability, it seems appropriate to include a profitability measure in RTO
system design.

The accuracy of the SSDC results will be a function of model accuracy and the
nonlinearity present in the model. Since the entire SSDC analysis is model-based, it is
crucial that an appropriate plant model be used so that actual results will be similar to
the expected results. In addition, the profit function and the economic data should also
be accurate. An accurate process model will rarely be linear. Therefore, when possible,
an SSDC analysis by simulation will be preferable over an analysis that estimates Q-
as a function of the first order system derivatives: %, %g and g—-‘"':

Although this case study demonstrated the application of the SSDC criterion for
sensor system design, it is a rather small process in terms of RTO. Further, it was
assumed the reactor model was perfectly known. The next chapter will examine the use
of the SSDC criterion for sensor selection in a larger, integrated plant, while incorporating

both structural and parametric mismatch between the RTO model and the true plant.
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Chapter 4

Case Study: Williams-Otto Plant

Chapter 3 introduced the SSDC criterion as a tool for a structured approach to sensor
system selection in RTO. The Williams-Otto [1960] reactor case study demonstrated
how the SSDC criterion may be used to identify good and bad sensor systems in terms
of expected profit. The case study of Chapter 3 did not present a very realistic RTO
situation, since there was a single unit that was perfectly modelled. The purpose of this
chapter is to demonstrate the use of the SSDC criterion for RTO sensor selection in a
larger, integrated plant. In this study, plant-model mismatch is incorporated by using
one set of equations to represent the plant, and using a different set of equations for the

model that forms the basis for the RTO system.

4.1 Williams-Otto Plant

The Williams-Otto [1960] plant was chosen for this case study. Originally posed as a
test problem for comparing various control strategies, it has since been studied by many
researchers (Krishnan et al. {1992}, MacFarlane and Bacon [1989], and Roberts [1979)).
Figure (4-1) shows the flow diagram of the plant. The major pieces of equipment are
a reactor, a heat exchanger, a decanter, and a distillation column. The stream naming

convention conforms to that used in Williams and Otto [1960].
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Figure 4-1: Williams-Otto Plant

Three streams enter the reactor: pure reactants A and R, plus the recycle from the
distillation column bottoms. The reactor is a continuously stirred tank reactor with
constant hold-up by weight. There are three exothermic reactions taking place in the

reactor, and their reaction rate coefficients have an Arrhenius temperature dependence:

ki = A exp(—B;/Tk) (4.1)

where A; and B; are the frequency factors and activation energies respectively, i = 1,2, 3.
The details of the reactions are given in Table 4.1. The reactor temperature is maintained
by heating and cooling tubes within it. The heating and cooling media are steam and
cooling water respectively. The molecular weights of components A, B and P is 100, for

components C and E it is 200, and for component G it is 300.
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Reaction Frequency | Activation | Heat of Basis
Factor, hr~! | Energy, R | Reaction, Btu
A+B—-C 5.9755x10° | 12,000 -125 Ibof A
B+C— P+ E |2.5962x10" | 15,000 -50 Ib of B
C+P-G 9.6283x 10 | 20,000 -143 Ib of C

Table 4.i: Reaction Data

The heat exchanger cools the reactor effluent in order to stop the reaction and to
bring the effluent temperature below the point where the undesirable product G becomes
insoluble (100°F). A decanter is used to remove this product G from the distillation
column feed. The desired product P is concentrated by the distillation column in the
overhead stream. The bottom stream is split into a recycle stream that returns to the

reactor, and a purge stream that can be burned for fuel. Table 4.2 gives the physical

specifications for the equipment.

Equipment Specifications
Reactor Capacity=4640 Ib
Reactor Cooling Coils | Effective cooling area=100 ft?

U= 0.01947 F°8 Btu/h/ft?/R

Reaction Cooler

Area=569 ft?
U=0.005856 F°* Btu/h/ft?/R

Distillation Column | Ideal stages=21

Relative Volatility=2.8
Reboiler Area=2770 ft*

U=0.004063 F°® Btu/h/ft?/R
Condenser Area=4940 ft* (max)

U=0.0054316 F*® Btu/h/ft?/R

Table 4.2: Williams-Otto plant equipment data

The Real-Time Optimizer will be used to maximize the percentage return on invest-
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ment, given by Williams and Otto [1960]:

% return = 0778 X

~168F — 252Fp + 50.03712F), — 84F¢ + 2207.52Fp — 1.27173Fp— w2)
0.0336538(Fow + Faw + Fxw) — 8.4Q esoiter — 2.76 '

where Fpw, Frw, Fxw and Fps represent the flows of water to the distillation column
condenser, the reactor, the reaction cooler, and the flow of steam to the distillation col-
umn reboiler, respectively. The heat capacity of water is Cp,,, and Qesoiter represents the
reboiler duty. Equation (4.2) includes the costs of feed streams and the prices of prod-
ucts, plus the charges associated with the disposal of waste product G. It also includes
fixed charges (depreciation, labour, etc.), utility charges, charges associated with sales,
administration, research and engineering, and the total capital investment involved.

In this study, the plant is represented with one set of equations, while the model is a
different set of equations. The plant is modelled according to the original paper, but for
the following modifications [Forbes, 1994]:

1. steady-state simulations were performed,
2. the heat exchangers were modelled with a log-mean temperature driving force,

3. all heat transfer coefficients were made flow dependent with flow exponents set to

0.8 [Holman, 1972],

4. the heat transfer coefficient for the reaction cooler was set at 0.42414 Btu/h/ft?/R
to match the nominal operating conditions given by Williams and Otto {1960],

5. the distillation column was modelled using tray-by-tray equilibrium relationships
[Luyben, 1973| and assuming constant molal overflow,

6. the separation in the distillation column was represented as pseudo-binary with

constant relative volatility,
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. the relative volatility was set at 2.8 in order to match the nominal operating con-

ditions given by Williams and Otto [1960],

. the distillation column hes a partial condenser, with the heat transfer rate controlled

by both liquid level and coolant flow,

. the minimum acceptable concentration of product component P in the distillation

column overhead stream is 95 wt%.

The plant operating constraints consist of:

1. a maximum production rate for the distillation column overhead stream of 4,763

Ib/hr,

. a minimum concentration of product component P in the distillation column over-

head stream of 95 wt%,
. a maximum available distillation column condenser heat transfer area of 4940 ft2,

. no by-product component G present in the distillation column feed stream and any

subsequent process streams.

The feed rate of reactant A to the reactor is fixed by upstream processes. The

manipulated variables available in the plant are the feed rate of reactant B to the reactor,

recycle flow rate from the distillation column bottoms, reactor operating temperature,

flow rate of by-product G from the decanter bottoms, flow rate of the column overhead

product stream, condenser heat transfer area, and cooling water and steam flow rates in

the heat exchange equipment.

Given the nominal value of feed stream F)4, there are five degrees of freedom available

for plant optimization, once all of the operating constraints, thermodynamic relation-

ships, mass and energy balances are satisfied. For this study, the five independent ma-

nipulated variables selected for optimization were the flow of reactant B to the reactor,
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the recycle flow rate from the distillation column to the reactor, the reactor operat-
ing temperature, the flow of product from the top of the distillation column, and the
concentration of component P in the product stream.

Through the solution of the optimization problem using the equations used to repre-
sent the plant, the optimum operation exists at the operating point shown in Table 4.3.

At this operating point, the optimum flow of reactor cooling water is zero, reducing the

Fs 929461.1 Ib/hr
FL 63357.7 Ib/hr
Tr 635.759 R

Fp 4763.0 1b/hr
X,sp | 095

Return | 56.663%

Table 4.3: Plant Optimum

degrees of freedom available for optimization. Further, the table shows that at this op-
erating point, the overhead product constraints are active. Therefore, this study focuses
on the setpoint variables Fig and Tk, leaving F, as a manipulated variable for the control

of reactor temperature.

4.2 Sensor System Design Problem

Suppose the Williams-Otto plant is in operation, and a RTO system is being designed to
improve the profitability of the plant. For this purpose a model has been built, and the
key parameters to update on-line have been identified. The currently available sensors are
insufficient to perform the desired parameter update, and therefore an additional sensor
must be installed. The sensor system design problem is to determine where the sensor
should be located. In the following sections the details of the plant model, adjustable

parameters, and sensor system alternatives are outlined.
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4.2.1 Model

Section 4.1 outlined the set of equations used to describe the plant. From this point on,
the term plant refers to that set of equations, which would normally be unknown. The
term model will refer to the set of equations to be described in this section. This model
will be used in the RTO system, and will incorporate mismatch with the plant.

Since component C is a reaction intermediate, it is possible to represent the three

original reaction equations by a simpler two-reaction model:

A+2B — P+FE
A+B+P - G

‘These reactions have Arrhenius temperature dependencies. Since these equations do not
include intermediate product C, all sensor selection work in the SSDC analysis does not
consider this component.

Plant-model mismatch also exists in the heat exchanger models. All heat transfer
coefficients were made flow dependent with flow exponents set to 0.7 rather than 0.8 as
in the true plant. Additional mismatch is incorporated by representing the distillation
column by Smoker’s equation [Jafarey et al., 1979] rather than a complete tray-by-tray
model:

ln Zp(l-zw)
(1-zplzw

N = e (4.3)
In ;m.
=y

where zp, zw, and zr are the mole fractions of component P not in the azeotropic

mixture for the distillate, bottoms, and feed streams respectively, R is the reflux ratio

and « is the relative volatility.
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4.2.2 Adjustable Parameters and Sensor System Alternatives

During RTO system design, it has been determined that the following parameters B will
be updated on-line:

A, | Arrhenijus pre-exponential factor, reaction 1

Az | Arrhenius pre-exponential factor, reaction 2

U, | Heat transfer coefficient, reaction cooler

a | Relative volatility of P to mixture of other components

The current process measurements are the flows and temperatures of all process and
utility streams, and the composition of product stream P. These sensors are insufficient
to perform the desired parameter update because, about the reactor in particular, there
are more unknown variables than available equations. Therefore, in order to perform
RTO, a gas chromatograph (GC) must be installed. There are two possible locations for
the additional GC: on the recycle stream L (sensor system alternative #1), or on the
reactor exit stream R (sensor system alternative #2). The SSDC criterion will be used
to decide which sensor should be installed.

The problem is complicated by the fact that the RTO system does not yet exist, and
therefore there is no way to validate the results of the SSDC analysis for the closed loop
system. Further, because of the plant/model mismatch, there is no way to know what
operating point the RTO system will converge to. For this reason, the problem is posed
as a one-step-ahead problem stated as: Given the process measurements at the current

operating point, find the sensor system with the minimum SSDC for the next RTO step.
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4.3 Method

Recall the unweighted and weighted SSDC criteria from Chapter 3:

and

min fi(x;, — %113 + 5 Q-

(X = )" (=ViP |xs,) (370 — &) + |[W" [~ V2P 0 Q] w]|

min
b 4

In order to evaluate the SSDC criteria, the following steps were taken for each of the two

sensor system alternatives:

Find the setpoints x;, that would be calculated if every measurable variable was
perfectly measured (all flows, temperatures and compositions). This serves as the
benchmark that would be achieved if one could perfectly measure all process vari-
ables. It represents the limiting best case RTO result given the plant model, to

which the possible sensor systems may be compared.

Find the setpoints X* that are calculated using perfect measurements from each
sensor system alternative. These setpoints may have some deviation from x;,, a

result of not having perfect measurements of all process variables.

Approximate the one-step-ahead parameter and setpoint covariance matrices, based

on each sensor system alternative.

Approximate the reduced Hessian of the profit function at x),. The Hessian de-

scribes the curvature of the profit surface as the setpoints deviate from x;,..

Evaluate the Sensor System Design Costs.

The first two steps are straightforward, since they involve passing noise-free mea-

surements to the parameter updator, and passing the resulting parameter values to the
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optimizer to calculate setpoints. It must be emphasized that even with perfect mea-
surements, each sensor system may calculate different parameter estimates and hence
different optimal setpoints. The reasons for this are plant/model mismatch, the non-
linear nature of the process model, and the behaviour of the parameter estimation and
optimization algorithms. Flowsheet (4-2) shows the sequence of calculations, where the

subscripts represent the sensor system alternatives.

= Parameter B*u .. -
—_— Updator Optimizer |—u--——o»

Figure 4-2: Calculation sequence for nominal setpoints.

The open-loop parameter covariance matrices are approximated as:

98, 98"
Qs = ngE (4.4)

Since this is an open-loop analysis, an open-loop approximation of the setpoint covariance

matrix for each sensor system is made:

Bz

This is the first term of the closed-loop approximation used in Chapter 3 (see Appendix
).

In order to evaluate Equations (4.4) and (4.5), two sensitivity matrices must be ap-
proximated for each of the two sensor system alternatives. The RTO model was used
to numerically estimate the sensitivity matrices 2 and 2¢ for each case, using central

difference approximations. For each matrix %g, small perturbations were made to the
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available measurements about their values z* at the assumed plant optimum. For each
matrix g"ﬁ, small perturbations were made to the nominal parameter values 3* found at
the assumed plant optimum. Again note that each sensor system will not necessarily
produce the same nominal parameter values. The measurement covariance matrices Q.
for each sensor are available in Appendix E.

To approximate the reduced Hessian of the profit surface, second order difference

approximations were used. The equations are:

&P I:P(:z:,‘n‘l + Az, )~ 2P (z;, ) + P (5, —Az,’n‘l)J (46)
9 (x;n.l)z (A-'Br'n.l)2 i .
92P P(z;, , + Az, ,) — 2P (z),,) + P (x5, — Az}, 2)
—= & —=5 : : 4.7)
6 (Em'z) (A.’L‘m'z) 1:""'l
?p 1
oz;, 10z, - T4 (Azy, ) (Azp, )
P(zy,, + Az;, 200 + AL o) = P (25, + Az, 2h 5 — Az, ,) - (4.8)

- L ] . » - -
P (xm,l - A:cm,li Zm2 + A"L‘m.2) + P (Im,l - Ax:n.hz:n,Z - Azm,‘l)

where Az;, | and Az;, , are small perturbations about z;, |, and z7, , respectively.

The SSDC analysis is based on linear approximations of the setpoint covariance ma-
trix. In order to test the validity of the results, an open-loop simulation is performed
using each of the two sensor system alternatives. The method is:

1. Generate measurements that have random, normally distributed noise associated

with them, using the measurement covariance matrix.

2. Use these measurements in the parameter updator to produce a distribution of

parameter estimates, Qg.
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3. Use the distribution of parameter estimates in the optimizer to produce a distri-
bution of setpoints, Qx.. This setpoint covariance matrix will be based on the

nonlinear nature of the model rather than a linear approximation.

4. Evaluate the SSDC based on this Q..

Figure (4-3) shows a schematic for the open-loop simulation.

* * *
22 Q, Parameter B*2. Qp,, - 12 Qa5
—_——p ———
Updator Optimizer

Figure 4-3: Covariance calculations.

4.4 Results

Table 4.4 shows the true optimal plant setpoints, the setpoints that would be found
if all process variables were perfectly measured, and the setpoints found using perfect

measurements from the two sensor system alternatives.

< *

Variable | x* x5 x] x5
Fg, lb/hr | 29461 | 27871 | 27782 | 27576
Tr, R 635.76 | 628.709 | 629.93 | 628.94

Table 4.4: Optimal Setpoints.

The sensitivity data can be found in Appendix E. Using these sensitivities and the

measurement covariance matrices, the setpoint covariance matrices were approximated
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Q 2.5002 x 10 1.7615 x 103
x*,1 =
1.7615 x 10° 4.4527

0 e 1.9215 x 10° 1.3674 x 10?
* 13674 x 100 1.8657

where the rows and columns correspond to Fg and Tk. The reduced Hessian at x;, was

approximated as:

o2p _ | ~5:8560 x 10> —0.0037680
’ —-0.0037680  —0.36080

Table 4.5 shows the calculated SSDC criteria for each sensor system alternative.

Sensor System | SSDC Weighted SSDC, $/hr
1 5.0082 x 10° | $161.48
2 3.9301 x 10° | $128.08

Table 4.5: SSDC results by linear approximation.
By simulation, the open-loop setpoint covariance matrices are:

3.3404 x 105 2.8510 x 10*
2.8510 x 10° 6.0068

| 29707 x 105 2.6970 x 10°
2.6970 x 10° 3.6059

Using these matrices, the data in Table 4.4, and the reduced Hessian, the simulated
SSDC results are:
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Sensor System | SSDC, unscaled | Weighted SSDC, $/hr
1 6.6886 x 10° $219.45
2 5.9492 x 106 $195.77

Table 4.6: SSDC results by simulation.

4.5 Discussion

In this section the following issues were addressed: plant/model setpoint mismatch, set-
point bias cost, variance cost, SSDC results, and sensor cost. Table 4.4 shows there is
some deviation between the plant optimum, and the optimum found by the optimizer
when all process variables are perfectly known. This may suggest that the model is in-
adequate for RTO [Forbes, 1994]. In fact, it is possible for the model to produce the
true plant optimal setpoints by adjusting the parameter values. The problem is that at
the plant optimum, these parameter values are not calculated by the parameter updator
given the model and the measured variables. Therefore, setpoint mismatch results in the
optimizer. The mismatch is 5.4% for Fjg, and 1.1% for Thr.

The best possible situation is to have perfect knowledge of all the process variables.
The RTO results from the sensor system alternatives are therefore compared to this
benchmark. Table 4.4 shows that there is some bias between the nominal setpoint values
found when all the measurable variables are perfectly known, x;,, and those found using
each of the two sensor system alternatives, X} ,. These deviations are small, and therefore
the bias costs will be relatively small when compared to variance cost.

The variance cost is a result of measurement variance, which is translated to param-
eter variance and setpoint variance through the parameter updator and optimizer. The
setpoint covariance matrices show that the second sensor system alternative (with the
GC on stream R) gives a smaller setpoint confidence region than the first alternative.
This may be explained through the parameter covariance matrices (refer to Appendix

E for the matrices). The approximated parameter covariance matrices show that the
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second alternative gives a tighter confidence on parameters A; and A4,. Since the set-
point variables exist about the reactor, one would imagine that higher confidence in these
two parameters would translate to a smaller confidence region in the setpoint variables.
An additional point of interest is that some of the signs associated with the parameter
covariances are different depending on the sensor system. For example, Qg,1 shows a
positive covariance between A; and A, while Qg , shows this relationship to be negative.

The reduced Hessian shows that the profit is most sensitive to T. This makes sense
since the temperature of the reactor has the largest effect on the product distribution.
Therefore, one would expect that the sensor system that has the smallest variance in
Tr would be the better choice in terms of SSDC: sensor system #2. Table 4.5 indicates
that the weighted SSDC is $161.48/hr for sensor system 1, and $128.08/hr for sensor
system 2. That is, compared to the best possible case in which all process variables are
perfectly known, sensor system #1 gives an expected loss of $161.48/hr, while sensor
system #2 gives an expected loss of $128.08/hr. Therefore the analysis indicates that
the GC on stream R should be chosen over the GC on stream L. Even when the reduced
Hessian is not used, the unweighted SSDC gives the same conclusion. The open-loop
simulation results also indicate that sensor system #2 should be chosen over sensor
system #1, although the magnitudes of the SSDC criteria are larger than in the linearly
approximated analysis. Table 4.7 shows the ratios between the predicted and simulated
SSDC results, both weighted and unweighted. Table 4.8 shows the ratios of the system
#1 results to the system #2 results for each test.

Unweighted SSDC | Weighted SSDC
Pred./Sim., System 1 | 0.749 0.736
Pred./Sim., System 2 | 0.661 0.654

Table 4.7: Ratio of predicted SSDC to simulated SSDC.

The cost of the sensors has not been addressed in this case study. Sensor cost is a
very important issue, and may alter the conclusions from the SSDC analysis. This case
study has assumed equal sensor costs. Suppose that the cost of the GC on stream L
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Unweighted SSDC | Weighted SSDC
System #1/System #2, Predictions | 1.2743 1.2608
System #1/System #2, Simulation | 1.1243 1.1210

Table 4.8: Ratio of system 1 results to system 2 results.

was much cheaper to purchase, install and maintain. In this case there would be some
trade-off between the SSDC and sensor costs, which may be addressed separately, or can
in fact be included in the return on investment function.

For this case study, the SSDC analysis shows that the GC should be placed on stream
R rather than stream L. This placement allows for more accurate estimation of two key
reaction rate parameters and hence more accurate setpoint estimation when compared

to the best case benchmark. The simulation results lead to the same conclusion.
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Chapter 5

Summary and Conclusions

In the competitive marketplace, many industries are striving to be the low-cost producer
by operating their processes in an economically optimal fashion. Among the on-line
optimization alternatives, model-based optimization has enjoyed its popularity because
of the reduction in plant experimentation and the increased speed of convergence. This
thesis is concerned with such on-line model-based optimizers, commonly called Real-Time
Optimizers or On-line Optimizers. Using a statistical approach, this thesis evaluated
current parameter estimation techniques in terms of parameter quality, and developed a
new tool for making sensor placement decisions by considering the RTO loop as a whole.

It is generally understood that the choice of numerical technique used in the parame-
ter estimator will affect the quality of the parameter estimates, but industry continues to
back-substitute rather than take a least squares approach. Although back-substitution is
a simple method to implement, the trade-off in terms of RTO performance can be sub-
stantial. Chapter 2 discussed various estimation techniques, and showed through a case
study that adopting a simple least squares estimation scheme over a back-substitution
scheme can dramatically reduce the size of the parameter confidence region. Further, in
the study, the least squares method was shown to provide increased robustness to mea-
surement error and sensor failure. The error-in-variables method would further improve

the quality of the parameter estimates, but current computing technology makes this
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method impractical for RTO.

Chapter 3 investigated the issue of sensor selection. The available literature provides
some design methods for choosing sensors [Krishnan et al., 1992, but that research
considers the problem in ierms of parameter confidence region. That is, it treats the
updator as an isolated system rather than examining the effects of sensor selection on
the RTO system as a whole. Since the goal of RTO is increased profitability, this thesis
analyzed sensor system design in terms of profit by examining variance and bias in the
calculated setpoints, and the plant profit surface. Chapter 3 began with a discussion of
optimal design of experiments criteria, and developed two independent criteria that can
be used for sensor selection in terms of variance cost and bias cost. These criteria were
the weighted D-optimal and T-optimal design criteria, respectively. Recognizing the need
to combine the two criteria in a single design tool, a measure called the Sensor System
Design Cost (SSDC) was developed. The SSDC criterion effectively balances the D- and
T-optimality criteria and allows the RTO designer to compare various sensor systems
with respect to uncaptured profit due to setpoint bias and variance. The most practical
benefit to analyzing sensor system alternatives, in terms of profit, is that it provides a
tangible measure of expected RTO performance. It would be much easier to justify the
purchase of an additional sensor to management when additional profit can be associated
with it, rather than merely associating some improved confidence in a particular model
parameter.

The case study of Chapter 4 demonstrated how the SSDC criterion may be used to
choose among sensor system alternatives for RTO. It should be noted that the analysis
need not be restricted to choosing among sensors to be installed. In the case where there
are a multitude of measurements available in the plant, the SSDC may instead be used
to decide which subset of the available measurements to use for RTO calculations. For
example, if certain sensors are inherently noisy it may be beneficial to exclude those
measurements for improved parameter and setpoint accuracy.

Although this alternative approach to sensor selection has its merits, it also has its
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shortcomings. The primary issue is that the analysis is based on linear approximations
of the plant model at a particular operating point. There will always be error caused
by plant/model mismatch. Further error is introduced because the nonlinearities in
the model will limit the region in which linear approximations are valid. There are no
guarantees that any conclusions drawn at one operating point will hold at some nearby
operating point. However, using the SSDC may be justified since it is a knowledge-based
approach to choosing sensors. Without the use of a design tool based on some process
knowledge and expected RTO results, the RTO designer has no information for choosing
among sensor system alternatives.

An additional point that was discussed in Chapter 3 but should be restated, is that the
SSDC criterion aims to minimize the largest eigenvalue of the setpoint covariance matrix.
Effectively, this minimizes the longest axis of the setpoint confidence region. This does
not guarantee that the total volume of the confidence region is minimized, because as
the longest axis becomes smaller, other axes may become larger. It would be beneficial
to develop an alternative SSDC measure that explicitly involves the minimization of the

determinant of the covariance matrix.

(6]
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Appendix A

Error-In-Variables Method

Chapter 2 briefly outlined a number of parameter estimation techniques, including the
error-in-variables method. This appendix provides further details about this method.

In RTO, the model parameters are estimated while all variables are subject to error.
Therefore, the best treatment of the parameter estimation problem is a method that
formally recognizes no distinction between dependent and independent variables, but
treats all variables equally. This method is known as the error-in-variables method (EVM)
[Britt and Luecke, 1973|. EVM provides both parameter estimates and reconciled data
estimates that are consistent with the model [Kim et al., 1990]. Britt and Luecke [1973]
formulated the estimation problem by considering the n-equation model:

f(z',8)=0 (A.1)

where z* and 3 are the true values of the m measured variables and p parameters re-

spectively. The measurements are corrupted by noise:
z=2"+¢ (A.2)

where € represents the measurement error. In this formulation, both 3 and z* are un-

known quantities since z* represents the true values of the measured variables. Therefore,
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in order to find a maximum likelihood estimate of 3, it is also necessary to simultaneously
estimate z*. The following assumptions are made [Britt and Luecke, 1973):

(i) £(z", B) is twice continuously differentiable with respect to each pair of arguments.
(#i) The Jacobian matrix gf; has rank p, and the Jacobian matrix &f has rank n.

(ii1) The error € is normally distributed having zero mean and a known positive definite

covariance matrix Q..

The joint probability density function for the measurements is:
-m -1/ 1 . - L
(o) = )N e |3 -2 ) Qe -2)| (A9)

The likelihood function is found using the joint probability density function, by consid-

ering the measurements z as known, and the unknowns (z*, 3) as the variables:
{5"8) = (2n) I e [ -2 Q7 - 2)| (4
The unknowns (z*, 3) must obey the following constraint:
f(z:,8)=0 (A.5)

Any solution of Equation (A.5) that maximizes the likelihood function with respect to
all other solutions, is a maximum likelihood estimate of (z*,3). Therefore the EVM

problem can be expressed as:

min 2 (2 - 2)7 Q" (2~ 27) (A.6)
subject to: (A.T)
f(z',8)=0
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To solve the problem, Lagrange multipliers are used to establish the ob jective func-

tion:
P BN =3 (5 - ) Q7 (- 2) + ATE (2", B (A8)

The necessary conditions for a stationary point of Equation (A.8) are that the first
derivatives of ¢ with respect to each of (z*, 3, A) are all equal to zero, which leads to the

following system of equations:

T
—Q;‘(z—z)+§£ A =0
ofT
55 * =0 (A.9)
f(z8) = 0

Unfortunately, this system of m + p + n nonlinear equations is quite large for solution
by usual methods. Generally the number of measurements alone make this problem
impractical, if not impossible, to solve. Britt and Luecke [1973] therefore used a first
order Taylor approximation of the constraint equation about the most recent estimate of
(z*, B), in an iterative scheme. The objective function becomes:

R TR T

AT [f(z,:,ﬂk) (BB + 2 (= —zk)] (A.10)

a8

where & is the iteration number, and the Jacobian matrices are evaluated at (z}, 8;).
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The necessary conditions for a stationary point are:

T
—Q;‘(z—z)+? A =0
of”
3> =0 (A.11)

f(z¢, Bc) + _63_; (B-PB)+ % (z°-2z;) = 0O

from which Britt and Luecke [1973] derived the following equations:

o _af(af afT)“af“ggT<af of T
B-p"= [6ﬁ %% ) 9| 9 \% %o )

. [f (z‘“‘),ﬂ‘k)) + g (z - z‘“‘))] (A.12)

ofT rof  of T\
. a(k)= _ (k) _
z-z Z-z Q‘ 0z (queaz )

r(re%) + g5 (8-8%) + L a-a )] (arg

The method is as follows:

1. Compute (z*, 3) using Equations (A.12) and (A.13). This will be a stationary point
of Equation (A.10), which is just an approximation of the true objective function.

2. Set (z‘("“),ﬂ("“)) = (z*,0), relinearize the objective function about this new
point, and find a new estimate (z""“), ,B("+2)).

z-(Ic-i»l) _ zc(k)” are

3. Continue iterations until tolerances on “,B“‘“) - ﬁ"‘)” and

met.

This algorithm is a simultaneous m x p search, and involves the inversion of an

n X n matrix as well as a p x p matrix. Britt and Luecke [1973] point out that the
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matrix %Q,%T will usually be sparse, and therefore easy to invert. Note that as-
sumption (%) on f (z*, 8) and the positive definiteness of Q, ensures that %QE%T and
%T (%Qe%ﬂ)—l % are nonsingular. Also, if the procedure converges, condition (i)
ensures that the final result is a stationary point of Equation {A.8). However, as in
any nonlinear problem, it is possible that the result is a stationary point other than the
absolute minimum. It is also possible that the minimum occurs at more than one point.

In EVM, the simultaneous estimation of parameters and true values for measured
variables can yield very large problems that cannot be efficiently solved using current
computing technology. A number of modifications to EVM have been proposed. One
approach is to nest the measurement correction step within the parameter estimation
step [Reilly and Patino-Leal, 1981], which reduces the size of the estimation problem.
Another approach is to separate the two steps into a two-stage calculation [Schwetlick
and Tiller, 1985; Kim et al., 1990|, again reducing computational requirements but there

is no convergence guarantee.
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Appendix B

Case Study Data

B.1 Williams-Otto Reactor Study, Section 2.4.

The nominal operating point used in the case study of Section 2.4 is given in Table B.1.

Random, normally distributed measurement noise was added to component measure-

Fy | 14,500 Ib/hr
Fg | 38,000 Ib/hr
Fr | 52,500 Ib/hr
Tr | 653.2 R
X¢ | 0.1075
X, | 0.0874
Xp | 0.3896
Xc | 0.0153
X, | 0.2907
Xp | 0.1095

Table B.1: Nominal operating point, Section 2.4 study.
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ments according to the chosen covariance matrix:

o -

00001 —0.00005 0 0 0 0
—0.00005  0.0001 0 0 000003 0
o~ 0 0 00001  -0.00005  —0.00001 0
- 0 0  —0.00005 00001 -548x10-° 0
0 —0.00003 —0.00001 —-548x 10~  0.0001 0
|0 0 0 0 0 0.0001

where the columns and rows correspond to [ Xy Xg Xc Xg Xp Xc ] The vari-
ances on flows and temperature were chosen so that 3¢ = 5% error on flows, and

30 = 0.5R for temperature.

B.2 Williams-Otto Reactor Study, Section 3.4

The variance and covariance information is the same as given above.

B.2.1 Approximation of Q,
Sensitivity Matrices

The sensitivity of the setpoints to the parameters is given by:

dx 0.0050246 0.0057398 —0.0047359
ap —0.0014235 0.0018218 —0.0016640

The sensitivity matrices %‘zi were dependent on the measurement set. In the following set

of matrices, the subscript refers to the associated sensor system. For sensor systems #1
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through #8, the following matrices are obtained:

g’

dz1

-dﬁ’l‘
dz 2

[ 23123
28.418
_7.8023
~281.06
8.6149
_126.51
~40.585
13.782
5.5580

—0.039561

19.025
5.2819
—281.32
9.7242
-121.21
—42.502
14.633
6.2737
| —0.10357

10.334
33.757
1.3418
—526.67
-3.2539
—-5.4652
-56.151
—990.19
24.585
13.357

29.509
7.2197
-527.47
—2.7512
—-3.0605
—57.046
—990.86
24.863
13.348

89

97.773
46.591
—11.445
—934.12
149.64
—30.554
—24.540
—-1328.9
-11.737
—237.64

23.086
21.397
—937.62
152.02
—17.095
—29.195
—-1329.7
-9.9141
—238.33 ]




@T
dz 3

B’
dz 4

[ 16.652
19.967
~981.32
9.0802
~126.46
~39.505
13.508
6.4853
0.21679

36.610
39.289
—19.498
—281.31
—133.58
-46.290
6.5878
2.8121

-13.118

11.413
35.128
—927.47
—3.32581
—5.4222
-56.367
-991.70
24.384
13.301

5.2211
29.586
5.7214
—527.48
—2.7420
—54.029
—989.20
25.577
18.268

90

48.250

34.233
—937.62

149.92
-30.211
—22.839
-1333.1
-10.357
—237.85 |

291.62
235.18
-212.67
—937.43
—-153.16
—123.45
—1444.3
-59.251
—464.08 |




g’ _

dzs

dB”

dze

B’

dzr

26.323
—281.32
9.5254
—119.40
—44.520
14.531
5.3583

—0.49496

-

25.635
0.49793
—281.31
—126.10
—50.861

8.0478

3.4353
-16.026

21.235
18.217
—281.31
—134.54
—44.255
7.1328
4.9096
—-14.198

39.484
—-527.47
-3.0229

—0.58283
—-59.804
—991.00

23.612

12.813

27.639
8.5732
—527.48
-1.6758
—54.681
—989.00
25.666
17.853

9.7328
35.769
—527.48
—2.4616
—54.626
—-989.36
24.962
18.585
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52.650
—-937.63

151.21
—9.7514
-37.370
-1330.1
—13.622
-239.91 j

126.41
—-53.389
—-937.44
—93.604
—159.86
—1432.6
—54.287
—487.24 ]

123.92

5.3451
—937.42
—163.58
—101.26
—1438.3
—36.372
—475.86 |




and

- -

26.322 39.484 52.645
—-281.31 -—-527.48 -937.44
—-125.92 14873 -113.30
= | —51.038 —-57.736 —140.84
8.0509 -988.94 -1433.0
3.3529  24.248 —-45.457
| —16.032 17.744 —486.56 |

dg”

dzs

The sensitivities of the measurements to the parameters is given by the following matrix:

- -

S o o

0
1
1
0 1
—0.42239 2.3665
-0.20771 -1.3575
1.0094 -2.1139
-0.027751 -0.37527

—0.32828 1.5127
—0.023283 —0.032475

&I &

where:

-
B=[a 4 Aa]T
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and for 4

-y

T
z=[FA FB FR TR XC XA -XB XC XEJ XP]

In the matrices ‘—fgi, the measurement set z corresponds with sensor set 7. For the different

sensor systems, only the necessary rows of % are included in the estimation of Q...

Setpoint Covariance Matrices Q,.

The following matrices are the power series approximations of the setpoint covariance
matrices for the alternate sensor systems. They were obtained using Equation (C.1)
of Appendix C. Each covariance value is accurate to 5 significant digits using just one
term of the power series. The number in the subscript corresponds to the sensor system
number. Note that these matrices are expressed such that z; = Fj is scaled by 10~%, and
T3 = T is scaled by 10~3. For sensor systems #1 through #8, the approximate setpoint

covariance matrices are:

0.00026481 8.1187 x 10~

Qx,l = .
8.1187 x 10-5 4.0537 x 10~°
q 0.00026617 8.1106 x 10~
" | 8.1106 x 10~ 3.8644 x 10~
0.00026529  8.1484 x 10-5

Qx,.’l -

8.1484 x 107> 4.0396 x 10~
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0.0002681

0.00069255 0.0002681
Qx,4 =

0.00026529

0.00012129 :’

8.0258 x 103 }

Qx,s =
8.0258 x 10~° 3.7837 x 10~5

0.00059098
- |

0.00021241 J

0.00021241 9.1701 x 107"

Qx,?' =

0.00059371
0.00022344

and

0.00058220
Q.5 =

0.00022344
0.00010123

0.00021180 }

0.00021180 9.2299 x 105

B.2.2 Setpoint Covariance Matrices Q- by Simulation

The following results were obtained through a closed-loop RTO simulation, as described

in Section 3.4.

0.00026304
Qx,l = _
7.6080 x 10~

0.00025833
2 = .
* 7.4123 x 10-3

94

7.6080 x 10~
3.7391 x 10—

7.4123 x 1073
3.5234 x 107



0.00025778
7.5663 x 1073

Qx,3 = [

0.00067533
Qx,4 =
0.00025218
0.00026743
Qx,5 =
7.8492 x 10
0.00059339
Qx.ﬁ =
0.00020791
Q.. | 000057431
" | 0.00020716
and
0.00056613
Qx,s =
0.00020055

7.5663 x 1073
3.7296 x 10-3

|

7.8492 x 1075
3.6502 x 1075

|
|

|

|

0.00025218
0.00011514

|

0.00020791
8.9982 x 10~

0.00020716
9.6350 x 103

0.00020055
8.8024 x 1073

In all cases, the covariance matrices found by the power series approximation are very

similar to those found by simulation.
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Appendix C

Setpoint Covariance Approximation

C.1 Setpoint Covariance Approximation

Since the closed-loop setpoint covariance matrix will not be known for the various sensor
system alternatives, it must be approximated. Assuming that setpoint variance is pri-
marily the result of measurement noise propagating through the RTO loop, it is possible

to approximate the covariance matrix using an equation given by Forbes [1994]:

_S~(x 0802\ (0x08
Qe =D, (aa 0z ax)[, (aﬂ az)‘,.',. Q

1=0
. T
0x* 6B dz \' ox* 9B
‘ [(aﬁ 9z ax)x.,‘,.‘,. (6ﬂ az)ﬂ.'z.] (€1)

This equation is developed by considering the RTO system as a series of nonlinear maps,

and representing them by linearizations for small deviations from the plant optimum
[Forbes, 1994]. In this expression, the process noise is assumed to be a random sam-
ple from a Gaussian distribution, having zero mean and covariance matrix Q,. This
assumption is appropriate when process disturbances are stationary and approximately
normally distributed. In Equation (C.1), Qx- is expressed as an infinite weighted sum in

the powers of the products of RTO subsystem sensitivities, as well as the sensitivities of
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process variables to setpoint changes. Although this is an infinite sequence, it is usually

possible to approximate Q- with a small number of terms, provided that:

<1 (C.2)
2

ox 98 0a
0B 0z dx

As this norm approaches unity, a large number of terms would have to be included in
the estimation of Q.. The norm must be less than unity for Equation (C.1) to be true.

In order to evaluate Equation (C.1), the sensitivity matrices must be determined.
Methods for obtaining these matrices analytically are outlined in the next sections. Usu-
ally, however, they are difficult to compute analytically and must be approximated using
numerical techniques.

When it is impossible to obtain the derivatives of the process variables with respect
to the setpoint variables, %, a one step-ahead approximation of the setpoint covariance
matrix can be obtained through an open-loop approximation [Forbes, 1994]:

Qe ~ 2o 2" (©3)
Here, Q; is the known measurement covariance matrix, and z are the measured variables.
In the open-loop case, measurement variance only propagates through the parameter

estimator and profit optimization, so % can be decomposed as:

ox* _9x* 9B
9z~ 9P 9z (C4)
and Equation (C.3) can be rewritten as:
_ox"9B, (ox 9B\’
-~ 5592 (aﬂ 5) (C5)

This expression for Q- is the first term in the power series of Equation (C.1). If higker

order terms are significant, Equation (C.5) will underestimate the variance contribution

97



to the SSDC criterion.

C.2 Sensitivity Calculations

The sensitivities of the setpoints to the model parameters, %"B—', may be found using the

method of Ganesh and Biegler [1987]. Consider the general optimization problem:

miny) (a, B) (C.6)
subject to:

f(a,B)=0

g(a,pB)<0

where 9 is the objective function for the setpoint calculation problem, a = {x*,d}
where x* are the setpoints to be calculated (decision variables), d are tear variables
(dependent), and B are the parameters supplied by the model updator. The model
equations are given by f and the inequality constraints by g. At the optimal solution the
Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Vi (a°,8°) + Vg (a°, B°) u’ + VE (a°, B°)v° = 0
uwTg(a’,6) = 0
w > 0 (C.7)
g@,8°) <0
f@,8) = 0

where a° is the base case optimal solution and u® and v° are the KKT multipliers at the
base case optimum. That is, for the supplied parameters 8°, a° is a local minimum of
the optimization problem with KKT multipliers u® and v°. The first order sensitivity of
the optimal setpoints with respect to the parameters is desired. Assume the following:
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(i) The functions defining the optimization problem are at least twice continuously

differentiable in a and at least once in 8 for a neighbourhood of (a°, 3°).

(i) The constraint gradients are linearly independent at (a°, 8°) and strict complemen-
tary slackness holds for the problem at (a°,3°) with unique KKT multipliers u®

and v°.
(iti) The second-order sufficiency conditions are met.

The KKT conditions at the optimum a° state:

VouL(a®,8°) = 0
gz\(aoaﬂo) =0 (C8)
£(a%8°) = 0

where L is the Lagrange function and g, are the active inequality constraints. To sat-
isfy these conditions for a perturbation A@ in the parameters about 8°, the first order

corrections are found by noting that:

d[VaL(a®,8°)] = V3L°da+ V.g du+V.fdv+ V,,L7°dB =0
dga(a’,0°) = Vag'°da+ Vsg'°dB =0 (C.9)
df (a°,8°) = Vaf™da+ Vuf™dB=0

Rearranging these expressions and partitioning a gives the following system of linear

equations:
[ Vo LT | [ VAL Vedl® Vegs Vef | [ VaxeTo
VoL Vax-L° VAL Vagd Vaf° VdT (C.10)
Vsgh° Vg Vagh® 0 0 Vul®
VﬁfT° ] onfT° VdfTo 0 0 J VgVTo
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The derivative matrix on the right hand side of Equation (C.10) contains the desired
matrix Vgx*T° (or %"—‘;T). For small problems, it may be possible to obtain the ele-
ments of this system of equations analytically. For large problems, however, numerical
approximations would have to be used.

It may be possible to calculate the sensitivities of the model parameters to the pro-
cess measurements ‘-353, when the problem is small. Consider a least squares parameter

estimation scheme. The objective function is:

¢ = e’e (C.11)
= £7(8,2)£(8,2)

where 3 are the p parameters to be determined, and z are the process measurements. At

the optimum:

g—g = 2f" (B, z) % =0 (C.12)
Define:
F(B,2) = [fT (8,2) ﬁ] g 0 (C.13)
B
Using the Implicit Function Theorem [Gillett, 1984]:
ggdﬂ+g—:dz =0 (C.14)

Recognizing that F (83, z) is a square p x p matrix, and with some rearrangement:

B _ [aFr oF (C.15)

dz~ |9B8] oz

Again, a numerical approximation may be more practical if the problem is large.
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Without considerable plant knowledge, it is impossible to determine the process gain
matrix 5—3: These sensitivities of process variables to the setpoints would have to be found
through plant experimentation. For simulation purposes, a process model is assumed,
and % can be computed analytically when the problem is small. Assume the system is
completely determined. That is, once the setpoints are calculated, the resulting model

consists of n equations in n unknown dependent process variables. Partition z such that:
T
z= [ <* d} (C.16)

where x* are the setpoint variables and d are the dependent variables. It is clear that

axa
6x‘

=1 (C.17)
and -(%:l. may be calculated similarly to ‘-ig. The process model for simulation is:
f(B8*,d,x")=0 (C.18)

where 3° are the perfectly known process parameters. Again using the Implicit Function
Theorem [Gillett, 1984]:

of .. of
il — .1
agdd+zdx'=0 (C.19)

Noting that in this case 2% is a square, full-rank matrix:

ad of ' of

dx* od Ox* (C-20)
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where % represents the steady-state process gain. Therefore, the complete sensitivity

matrix is;

) I
a:- = [ - J (C.21)

e
C.2.1 Central Difference Approximation

A common numerical approach for approximating the sensitivity matrices is the central
difference approximation [Krishnamurthy and Sen, 1986], and the method is demon-
strated here for the estimation of i—f’;. While keeping all other variables constant, the
parameter f; can be written as some function of measurement z;, 5, (z;), whose deriva-
tives are single-valued, finite, and continuous functions. The following Taylor expansions
can be written:

o8, A6, D5,

Bi(z; +Az;) = ,Bi(Zj)+AZj52_j+ 5T 322 TR +...
P94 PY%

- 08, A5, Az 8B,
Bi(z; — Az;) = B;(z;) — Az 3z, + o 0z 30 523 +... (C.23)

(C.22)

for some small Az;. Ignoring third order terms and higher, and subtracting Equation

(C.23) from Equation (C.22):

9B _ Bi(z +Azj) - Bi (2 — Azy)
a—zj = 24z, (C.24)

which has an error O (Azf). Equation (C.24) can be used to approximate any of the
required sensitivities involved in the estimation of Q- , using process models and/or plant

experimentation.
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Appendix D
Design Cost Development

The developments of this appendix follow the Design Cost work of Forbes and Marlin
(1996]. Forbes and Marlin {1996] introduced Design Cost as a measure of the loss of
RTO performance due to imperfect optimization. The benchmark was the true plant
optimum, and RTO performance was assessed in terms of uncaptured profit with respect
to the benchmark. This development is similar to Forbes and Marlin’s [1996] work, in
that it quantifies the performance of a particular RTO system in terms of uncaptured
profit. The difference lies in the benchmark. Forbes and Marlin's [1996] benchmark was
the true plant optimum, which is generally unknown. Here, the benchmark is the best
possible performance of the RTO system, given the model and the process variables which
can be measured. RTO performance based on a particular sensor system is compared to
this benchmark.

The Sensor System Design Cost (SSDC) can be expressed as the expected difference
between the profit at the closed-loop RTO benchmark setpoints, x;,, and the profit at

the nominal setpoints x*, which are based on a particular sensor system:
C = E[P(x},) - P (x)] (D.1)

where C represents the unrealized profit caused by the use of an alternate model. E is
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the expectation operator, and P(x) is the plant profit at setpoints x.

The uncertainty in the predicted setpoints x* can be expressed by the probability
density function f(X* —4,Q,.), where Q- is the covariance matrix of the predicted
setpoint values. If both P and f are Lebesgue integrable on the domain of interest, the
expected profit of the RTO system is:

E[P(x") = [p P(6)f (%" - 6,Q,.)ds (D2)

where 4 is an integration variable defined on ¥, the space of possible predicted opti-
mum setpoints for the given measurement set and external variable values. Substituting

Equation (D.2) into Equation (D.1), the model-based uncaptured profit at x;, is:
C=EIPx) - [ PO)& -5,Q0) 8 (D3)

Assume that there are excess degrees of freedom in the optimization problem, so
that the reduced space of the profit maximization problem has at least one dimension.
Further, assume that the profit surface is at least twice differentiable in the reduced
space, so the reduced Hessian exists. The profit function can then be represented by the

truncated Taylor series expansion:

P(8) = P(x3,) + VP |, (5 = 8) + 5 (x5 = 8)7 V2P | (x5 = 6)

+0 (lIx, - 61°) (D.4)

The reduced gradient will disappear at x;,, and ignoring terms third order and higher,

Equation (D.4) can be re-written as:

P(8) = P(xi) + 5 (065, — %) + (& ~ O V2P |y, [0, %) + (& ~8)] (D)
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Rearranging:

P(8) = P(x3,) + 5 (xh — ¥)T V2P g, (x5, — %)

+ (x5 =K VP g, (8 = 0) 45 (8~ 8) V2P |y, (X ~8) (D)

Equation (D.6) can be substituted into Equation (D.3), and the result simplified through
the following developments. By definition:

E[x*-4d]=0 (D.7)
therefore:
[ = %)V L, (k- 0)F (R - 6,Qu) a8 =0 (D8)
Now consider the second order term in (X* — 4):
[ & =07 VEP g (% - 8) F (& ~8,Qu0) 8 (D9)
Expanding term-wise, this expression may be re-written as:

eyl 4 2 o oo d2P 2 s
L(x —8)TVP |y, (X" —8) f (X —J,Qx.)d6=Z;dZidzja;j x*)  (D.10)

Since Qx- = [0%], Equation (D.10) can be re-expressed using the Hadamard product of

the reduced Hessian of the profit function and the setpoint covariance matrix:

/ (& — 8)T V2P |y, (% —8) (X" — 6,Q.)d6 = w™ [V2Po Qu]w  (D.11)
v

wherew=[1 1 ... I}T.
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Now P(x;,) is constant at the given operating point, and by definition
A f® —6,Q.)d6 =1 (D.12)
so that:
A P(,)f (%" - 6,Q,.) db =P(x2,) (D.13)

By combining the results from Equations (D.8) and (D.11), an expression for the expected

profit is obtained:

AP(é)f(fc'—«s,Qx-)aw=

P(x) + 5 (5 = ) V2P |y, (x5, — ) + 2w [V2P0 Qo] w (D.14
Since £ [P(x},)] = P(x;,) the SSDC is given by:

C = —5 [ = %) V2P g, (ki = &) + w7 [V2P 0 Q] w] (D.15)

N =

The goal of sensor selection is to minimize the design cost with respect to the available

sensor system alternatives s

min —3 [ ~ )7 V2P |, (x5, — &) + w7 [V2P o Que] w] (D.16)

b 4

Taking the negative sign inside each expression and eliminating the factor of 1/2, Equa-

tion (D.16) can be re-written as:
min (x;, ~ %*)" (=ViP |x,) (x;, = &) + W7 [-V2Po Qe ] w (D.17)

For a RTO problem with a unique optimum the reduced Hessian is negative definite, so

the negative of the reduced Hessian is positive definite. The covariance matrix of the
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calculated setpoints is positive definite by definition. Since the Hadamard product of two
positive definite matrices is itself positive definite [Horn and Johnson, 1991] the minimum

possible value of Problem (D.17) is zero. Problem (D.17) can therefore be rewritten as:

T(=VIP |x,) (35, — %) + W [-V2P 0 Qy.] w' (D.18)

The terms in Equation (D.18) can be separated using the triangle inequality, which states
that:

=X (~ViP ) (6, - %) + 3 [VIP e Qu] <

i=

s, — %) (- v2P lx,,,)

T[-V?PoQx]w| (D.19)

All of the matrices in this expression are at least positive semi-definite, so the quadratic
terms are positive or zero by definition and Inequality D.19 becomes an equality. Now
Problem (D.18) can be expressed as:

T [-V2Po Q-] w| (D.20)

min (5, — )7 (=V2P b ) (e

Problem (D.20) includes the Hessian of the model-based profit function. Although it
may be possible to evaluate the Hessian, the profit surface curvature of the plant may
not be accurately represented in the model. In this case, Problem (D.20) can be modified
so that the Hessian is removed and an upper bound on the SSDC is minimized instead.
Using the Cauchy-Schwarz Inequality [Ortega, 1987], upper bounds may be placed on
each of the two terms in Problem (D.20):

V2P | ||, (x5 — )13 (D.21)

| = %) (- V2P Ix,) (x5, — %
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and

|WT [-V2P o Qu] w| < s||-V2P o Qe |, < 3]|V2P |xs |

2 ”QX‘

L (D2)
where s is the number of setpoints. The upper bound on the SSDC is therefore:

C < [[VEP ls, ||, (06 = %)z + 5 11Qu- ) (D.23)

The minimization is therefore:

min |~ V7P s, [, (1065 = %)1I3 + s 1Qx- ) (D.24)

but, recognizing that the reduced Hessian is fixed, the problem can be reduced to:
min [|(x;, — %)l + 5 [ Qx- Il (D.25)

Problem (D.25) is the unweighted point-wise criterion for sensor system selection.
It can be seen immediately that the first term in Problem (D.25) is the T-optimal
criterion of Problem (3.10). The second term in Problem (D.25) contains the largest
eigenvalue of Qy., which is proportional to the length of the largest semi-axis of the
setpoint confidence region. It is also the largest contributor to the D-optimal criterion.
Since all of the eigenvalues of Q- are less than or equal to [|Qx-[|,, Problem (D.25) aims
to minimize the sum of the T-optimal criterion and the worst case D-optimal criterion.

The SSDC Problem (D.25) represents sensor selection at a given operating point.
The model-based plant optimum x;, will change however, depending on the values of
the measurable variables z:. So, the model optimum is drawn from a space S of all
possible optima. There is a frequency function ¢ (2, v) associated with the optima in S,

which describes the occurrence rate of a particular plant optimum. The total uncaptured
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model-based profit for a particular sensor system, for all possible disturbances, is:

cr= [ {E[P ol - [P@) 7 -3, Qx-)d‘I’}c(z;,v)dS (D.26)

where P and ¢ are both integrable on S. The maximum theoretically attainable model-

based plant profit is:
Pr= / P(x5)< (2, v)dS (D.27)
So Equation (D.26) can be re-written as:
Cr=Pr- //P(é) f(X -98,Q,.)¢(z;,v)d¥dS (D.28)

The goal is to minimize the total loss in profit by selecting the appropriate sensor system

from the set of choices s. This is equivalent to:

min — / / P(8) f (X - 8,Q,)s (25, v) d¥dS (D.29)

It is unlikely that < (z7,v) would be known, thus the minimization of Problem (D.29)
will have to be approximated by a sum over an expected set of values for z..
In RTO, as the process changes from one steady state to the next, the measurements

appear to occur as steps. Therefore Problem (D.29) can be expressed as:
m}ﬂZ [“/P(") f(x" -6,Q,.) d‘I'} s (z7) (D.30)

The objective in Problem (D.30) is to minimize the weighted sum of the solutions to
the point-wise SSDC Problem (D.25), for the set of possible measurement values. Then
using the developments for the point-wise design cost problem, the total SSDC problem
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min ) - [ll(x7 — )3 + 5 [ Qe ] < (=) (D.31)

The solution to Problem (D.31) provides the minimum SSDC for the expected set of mea-
surable variable values. The RTO designer can then compare sensor system alternatives

for the complete range of operations, rather than one point at a time.

D.1 Weighting

The profit surface will have some topology. Thus, variance and bias may be more costly
in certain directions. It may be desirable to weight the SSDC minimization in order
that bias in more costly directions is penalized, and variance in more costly directions is

penalized. These goals are met by solving the point-wise Problem (D.20) as:

+|wT [-V?PoQ,.] w| (D.32)

min |(x;, = &)7 (=V2P |;,) (35, = %)
or the problem over the complete range of operations as:

+ W' [-V2Po Qe w|] < (z) (D33)

min 3 [[ 6 — )7 (-2 L) 5~ %)

The first term in each problem is the weighted T-optimal criterion from Problem
(3.19). The upper limit on the second term is simply a multiple of the upper limit of the
weighted D-optimal criterion. Recall the weighted D-optimal criterion:

min |RQ,.R7| (D.34)
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where
-ViP=R"R (D.35)

is the Cholesky decomposition of the negative reduced Hessian of the profit function.
The upper bound on the determinant of RQ,.R7 is:

IRQ-R"| < IR, 1Qx-Il; [RT], = [[ = V2P Iz, ||, Q- Il (D.36)
while the upper bound on the second term of Equations (D.32) and (D.33) is:
|WwT [-V7P o Qu.] W| < s||-V2P s, |, 1Qx- Il (D.37)

Therefore the weighted SSDC aims to minimize the sum of the weighted T-optimal cri-
terion and the worst case weighted D-optimal criterion. That is, it aims to minimize the

lost dollars caused by both setpoint variance and bias.

111



Appendix E

Case Study Data for Chapter 4

This appendix provides the variance/covariance data for measurement noise, as well
as the sensitivity matrices and parameter covariance matrices for each sensor system

alternative.

E.1 Measurement Noise Data

All flows and temperature measurements were considered to be independent. The flow
variances are given in Table E.1, where flows are expressed in Ib/hr and values have been
scaled by 10~°. Temperature variances are equal for all temperature measurements, at
2.78 x 1078 R, where temperatures are expressed in R and values have been scaled by
10-3. The temperature measurements are all process streams, plus inlet and outlet utility
temperatures for the reaction cooler water, condenser water, and reboiler steam. The

covariance matrix for component weight fractions in streams L and P:

[ 6.14x 1075 —1.03x 104 0 0
~1.03x 10~* 3.51 x 10~ 0 —2.63 x 10-5
Q= 0 0 3.92 x 10~ 0
_ 0 ~2.63 x 10~ 0 403x 107 |

112



Fy feed component A 5.84 x 107
Fg feed component B 2.41 x 10-
Fp fuel product, purge flow from column bottoms | 3.54 x 10-°
Fg top flow from decanter 3.00 x 104
Fg flow of heavy product G from decanter 3.35 x 10~7
F recycle flow to reactor 1.12 x 10~
Fp light product flow, top of column 6.3 x 10-7
Fg reactor exit flow 3.20 x 1077
Fg flow from column bottoms 2.73 x 1074
Fy flow from reaction cooler 3.20 x 101
FUxw | utility flow, reaction cooler water 7.93 x 10~%
FUpw | utility flow, condenser cooling water 0.00762
FUps | utility flow, reboiler steam 0.0224
Table E.1: Flow variances, Williams-Otto plant study.
[ 1.67 x 1077 —2.79 x 107 0 0
-2.79x 1077 9.53 x 10~7 0 ~1.14 x 107°
Qr =
0 0 1.06 x 1076 0
0 —1.14 x 1073 0 2.78 x 10~

where the rows and columns correspond to components A, B, E and P, respectively. The

covariance matrix for stream R is:

-

526 x 107> —8.81 x 10~3 0
—-8.81 x 10~ 3.01 x 10~* 0
Qr= 0 0 3.35 x 104
0 0 0
I 0 —-4.81 x 10~° 0

where the rows and columns correspond to components A, B, E, G and P, respectively.

113

0
0
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2.62 x 1076
0

0
—4.81 x 107°
0
0
1.57 x 1073
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E.2 Sensitivity Data

This section provides the sensitivity data for the matrices Qag and %. All values were
found by central difference approximation about the nominal values for z and 3, for
each of the two sensor system alternatives. The size of perturbations were about +0.3%
for flows, +1.5% for temperatures, +0.2% for compositions, +0.5% for the frequency
factors, £0.2% for the reaction cooler heat transfer coefficient, and +0.5% for the relative
volatility. Exceptions are pointed out in the following subsections. It was important that
the size of perturbation be large compared to the level of accuracy in the solver, but still

represent a small change with respect to the perturbed variable.

E.2.1 Sensitivities of Parameters to Measurements

The following tables give the sensitivity data for matrices 1'(5- Since the data are different

depending on the sensor system, this section is split into two parts.
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Sensor system #1

Process Flows | A, A; U o

F, -126.0 -0.6881 | 0 -0.2890
Fp 75.41 19.87 0 -2.169
Fp 0 0 0 0

Fg 0.0009631 | -0.3531 | O -0.05008
Fq 28.53 3889 |0 6.361
Fy -116.3 2633 |0 0.8364
Fp 127.6 -1394 | 0 16.72
Fp 120.0 -8.032 | 0.1635 | 0.1335
Fg -59.35 -58.74 10 -0.4033
Fy 48.78 4939 |0 -0.1255
FUxw 0 0 -0.04153 | 0
FUpw -0.3394 -0.3018 | 0 -0.1055
FUps 0.1985 0.1765 | 0 0.02338
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Process Temperatures | A, A; Ure o
Th -10.93 | -6.018 | O 0.005031
Tg -22.21 [ -12.23 | O 0.009434
Tp 0 0 0 0
Tg 0 0 0 0
Te 0 0 0 0
Ty -47.76 | -26.29 | O 0.020238
Tp -205.8 | -183.1 | 0 -64.015
Tr -2030 | -621.5 | 0.2351 | -0.03459
Ts -15.48 | -13.77 | O -1.824
Tx 0 0 -6.071 | O
TUinxw 0 0 -5.375 |0
TUinpw 53.81 | 4786 |0 16.76
TUinps 96.94 | 50.28 | 0 6.66
TUoutxw 0 0 11.20 {0
TUout pw 179.6 | 159.7 |0 55.82
TUoutpg 24.17 12149 | O 2.845
Stream L Components | A; As U | a
Xa -325.3 | -85.36 | 0 | 1.107
X -339.9 | -40.84 | 0 | 1.806
Xe 108.6 | -15.60 | 0 | 7.917
Xp 522 |-1553|0 |-88.01
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Stream P Components | A, As Ue | @

XA -32.63 | -13.53 [0 | -2.750

Xs -50.27 | -11.36 | O -3.179

XEg 48.5 -10.28 { 0 -2.854

Xp 4.193 |-1569 {0 |-0.7795
Sensor system #2

Process Flows | A, A, Ure a

F, 82.37 3570 |0 1.752

Fg 167.3 25.75 0 11.45

Fp 0 0 0 0

Fg -0.05955 | 0.1263 | 0 -0.1692

Fe 0 0 0 0

F 5.505 25.59 |0 -4.590

Fp 55.13 -31.98 | 0 104.4

Fg -1.985 | -13.50 | 0.1635 | -0.5637

Fs -1.811 -1466 |0 1.441

Fx -0.7370 | 14.92 0 -5.382

FUxw 0 0 -0.04153 | O

FUpw 0.1142 | 0.1985 | 0 -0.2972

FUps -0.06562 | -0.1141 | 0 0.1317
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Process Temperatures | A, A; Ure a

Ty -3.037 | -1.894 | 0 -0.1780
Tg -6.172 | -3.848 | 0 -0.3623
Tp 0 0 0 0

Te 0 0 0 0

Te 0 0 0 0
T -13.27 | -8.275 | 0 -0.7786
Tp 69.14 | 120.2 | 0 -180.3
Tr -2163 | -675.1 | 0.2351 | 1.318
Ts 5.115 | 8.885 |0 -10.25
Tx 0 0 -6.071 | 0
TUinxw 0 0 -5.375 | 0
TUinpw -18.12 | -3149 [ 0 47.15
TUinps -18.68 | -32.48 | 0 37.51
TUoutxw 0 0 11.20 | 0
TUoutpw -60.36 | -104.9 | O 158.4
TUoutps -8.030 | -13.96 | 0 16.10
Stream P Components | A, A, Uel

Xa 2.781 [ 3.000 {0 |-5.281

Xsg 4.718 | 3.359 {0 | -7.346

Xe -7.378 {2451 | 0 | -6.280

Xp 2431 {22320 |-0.007778
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Stream R Components | A, A; U |

X4 -464.2 | -118.5 [0 | 2.340
X -426.7 | -54.64 [ 0 | -1.308
X 65.51 | -9.495 | 0 32.52
X -67.48  404.5 | O -37.80
Xp 33.65 |-2120|0 |-214.2

E.2.2 Sensitivities of Setpoints to Parameters

This section is again split into two parts, because the nominal parameter values are

different for each sensor system and the perturbations are about the nominal values.

Sensor System #1

Sensor System #2

Clearly the parameter U, has no effect on the setpoint variables. It seems this was a

Fp Tr
A, | -0.002356 | -0.0003106
A, | 0.006279 | -0.0005802
U | 0 0
a | -0.005127 | -0.0009550
Fg Tr
A, | -0.002236 | -0.0002952
Az | 0.005948 | -0.0005741
Uec |0 0
a | -0.004067 | -0.0007841

poor choice of a parameter to update on-line.
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E.3 Parameter Covariance Matrices

The parameter covariance matrices were found by approximation using Equation (C.5),

and by simulation.

E.3.1 Covariance Matrices by Approximation

Sensor System #1

[ 38.06 1.289 0.006265 -0.6127
1.289 2.114 —0.004243 —0.08297
0.006265 —0.004243 1.524 x 10~> 6.987 x 10~

i —-0.6127 -0.08297 6.987 x 107 0.06583

Q=

Sensor System #2

[ 34.94 —1.242 —0.0001180 —3.594 ]
—1.242 0.8475 -0.0007106 -0.04100
Q= —0.0001180 —0.0007106 1.524 x 10~ —2.948 x 103
I -3.594 -0.04100 -2.948 x 107 1.078 ]

E.3.2 Covariance Matrices by Simulation

Sensor System #1

( 39.75 2.025 0.007342 —0.6040
2.025 2.204 —0.0001080 —0.1368
0.007342 —0.0001080 1.541 x 10> 1.376 x 10~3

-0.6040 —0.1368 1.376 x 10~ 0.08013
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Sensor System #2

[ 3243 ~1.825  —0.0002672 —0.9486 |
~1825 08261  —0.0005874  0.03734
—0.0002672 —0.0005874 1.580 x 10~5 4.302 x 10~
~0.9486  0.03734 4302 x 10-5  0.1158

o

For both systems, the approximated matrices are very similar to the simulated results.
There is some deviation for the relative volatility in the case of the second sensor system.

The second sensor system has a smaller variance for both of the frequency factors.
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