
Characterizing Discrete Representations for Reinforcement
Learning

by

Edan Meyer

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Edan Meyer, 2023

Abstract

In reinforcement learning (RL), agents learn to maximize a reward signal using nothing but

observations from the environment as input to their decision making processes. Whether

the agent is simple, consisting of only a policy that maps observations to actions, or

complex, containing auxiliary components like value functions and world models, the

agent’s sole dependence on observations remains invariant. With this fact in mind, the

importance of representation becomes clear: changes to the representation of observations

affect every part of an agent. Good representations can help an agent learn better policies

faster, and bad representations can have the opposite effect.

In this work, we advocate for the use of a form a discrete representations in RL.

Through a series of three distinct problem settings in pixel-based Minigrid environments,

we incrementally build up to the continual RL setting, where an agent must continually

adapt in order to change to best maximize reward. We compare models learned over dis-

crete representation spaces to those learned over continuous representation spaces in each

setting, identifying different benefits of discrete representations in each. When learning a

model of the world, discrete representations enable more accurate modeling of the world.

In episodic RL, policies learned over discrete representations learn faster. And in contin-

ual RL, agents learning from discrete representations are quicker to adapt to changes in

the environment. In summary, we find that discrete representations enable learning faster

and learning better solutions.

ii

Acknowledgements

This thesis was written with tremendous support from Marlos C. Machado and Adam

White. Beyond the plentiful amount of feedback and suggestions they offered, their

teachings greatly shaped the direction and structure of this research for the better. Their

mentorship has been an invaluable asset, and their influence will undoubtedly continue

to shape my future research. I am also grateful to Levi Lelis for his participation as

a member of my defense committee and for his well-thought-out suggestions on how to

improve the work.

Being part of the RLAI community at the University of Alberta as a whole has been

a rewarding (pun intended) experience beyond what words can express. I credit this

community mainly because the passion and the vision—especially the vision—of people

in this community never fails to inspire me. I also credit the community as a whole in part

because I received so many comments and so much feedback from so many people that I

do not remember all of the conversations. Subhojeet Pramanik, Khurram Javed, and Alex

Lewandowski all provided great feedback on multiple occasions, but this is far from an

exhaustive list of those that provided feedback. I owe Rich Sutton, in particular, gratitude

for showing me RL through a new lens, shifting my view of research, and teaching me

how to think big by first thinking small.

My time at as a Master’s student at the University of Alberta, and as part of the

RLAI community has been, and always will be, unforgettable.

iii

Contents

Abstract ii

Acknowledgements iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Thesis Statement . 4

1.2 Approach . 4

2 Background 6

2.1 Reinforcement Learning . 6

2.2 Policy Gradient . 7

2.3 Representation Learning . 9

2.4 Autoencoders . 10

2.5 Fuzzy Tiling Activations . 12

2.6 World Models . 14

2.6.1 Learning a Stochastic World Model 15

3 World Model Learning with Discrete Representations 17

3.1 Experimental Design . 17

iv

3.1.1 Environments . 18

3.1.2 Training . 19

3.1.3 Autoencoder Architecture . 22

3.1.4 Evaluation . 23

3.2 Results . 25

3.2.1 Model Rollouts . 25

3.2.2 Scaling the World Model . 28

3.2.3 Representation Matters . 29

3.3 Discussion . 31

4 Policy Learning with Discrete Representations 32

4.1 Experimental Design . 32

4.2 Experiments . 33

4.2.1 Episodic RL . 33

4.2.2 Continual RL . 35

4.3 Baseline Comparison . 38

4.4 Discussion . 40

5 Conclusion & Future Work 41

5.1 A Common Thread . 41

5.2 Future Work . 42

5.3 Conclusion . 43

References 44

A Extra Results & Hyperparameters 50

A.1 Experiment Details . 50

A.2 Supplemental Continual RL Figures . 51

v

List of Tables

3.1 Specifications for all Minigrid environments. 19

A.1 Hyperparameters for all sample-based world models that account for stochas-

ticity using the same method as Antonoglou et al. [4]. Bin count is the

number of discrete classes into which outcomes can be discretrized. The

projection hyperparameters give the sizes of the hidden layers used to dis-

cretize states and predict the next discrete state. ReLUs are used between

all hidden layers. 50

A.2 Hyperparameters for all RL training procedures used in Chapter 4. Hy-

perparameters for both PPO and other training details are included. Hy-

perparameters for PPO are referred to by the same naming convention as

in Schulman et al. [46]. 50

vi

List of Figures

2.1 Depiction of a vanilla autoencoder with a continuous latent space. The

input x is encoded with fθ to produce a latent state z, which is decoded

by gϕ to produce the reconstruction x̂. The model is trained to minimize

the distance between the input and reconstruction with the reconstruction

loss Lae. 10

2.2 Depiction of the VQ-VAE architecture. The input x is encoded with en-

coder fθ to produce latent vectors {z1, z2, . . . , zk} ∈ Rd. In the first green

circle, each latent vector is compared to every embedding vector to produce

codebook c, a vector of indices indicating the most similar embedding vec-

tors (example values are depicted). In the second green circle, the indices

are transformed into their corresponding embedding vectors to produce

quantized vectors {z′1, z′2, . . . , z′k} ∈ Rd. The quantized vectors are then

decoded by gϕ to produce the reconstruction x̂. Our work uses one-hot

encodings of the codebook c as discrete representations. 11

3.1 Minigrid environments used in our experiments. The agent receives lower-

resolution RGB arrays representing pixels as observations. We refer to

these as the (a) empty, (b) crossing, and (c) door key environments. 18

vii

3.2 Depiction of a continuous world model training with n steps of hallucinated

replay. After encoding the initial observation xt into latent state zt, the

world model rolls out a trajectory of predicted latent states, ẑt+1, ẑt+2, . . . , ẑt+n.

Actions from a real trajectory are used in the training process, but are ex-

cluded in the depiction to avoid clutter. The loss at each time step is

calculated by comparing the hallucinated latent state ẑt+i to the ground-

truth, zt+i. This method is called hallucinated replay because the entire

trajectory after the first latent state is hallucinated by the world model. . . 20

3.3 Depiction of a single step of discrete world model training and the sub-

sequent discretization of the latent state. The observation xt is encoded

to produce latent state zt, which is passed to the world model to sample

the logits ẑt+1 for a following state. The predicted next state logits ẑt+1

are compared to the ground truth state zt+1, which is constructed from

the corresponding ground-truth observation: zt+1 = fθ(xt+1). Before the

world model can be reapplied, the latent state logits must be discretized

with an argmax operator and converted to the one-hot format. 21

3.4 The KL divergence between the ground-truth state distribution and the

world model induced state distribution. Lower values are better, indicating

a closer imitation of the real environment dynamics. Each line depicts the

evaluation of an individual run, which includes training an autoencoder

and a world model. Between 16 and 30 runs are plotted per method. . . . 25

3.5 Comparison of rollouts predicted by different world models in the crossing

environment. Each row visualizes the state distributions throughout roll-

outs predicted by different world models, with the x-axis giving the step in

the rollout. The ground-truth row depicts the state distribution over roll-

outs as a policy that explores the right side of the environment is enacted

in the true environment. Predicted observations are averaged over 10,000

rollouts. Being closer to the ground-truth indicates a higher accuracy. . . . 27

viii

3.6 Comparison of rollouts predicted by different world models in the door

key environment. Each row visualizes the state distributions throughout

rollouts predicted by different world models, with the x-axis giving the

step in the rollout. The ground-truth row depicts the state distribution

over rollouts as a policy that navigates to the goal state is enacted in the

true environment. Predicted observations are averaged over 10,000 rollouts.

Being closer to the ground-truth indicates a higher accuracy. 27

3.7 The KL divergence between the ground-truth state distribution and the

world model induced state distribution, averaged over 30 steps. Lower

values are better, indicating a closer imitation of the real environment

dynamics. The x-axis gives the number of hidden units per layer for all

three layers of the world model. Each point shows the mean KL divergence

and 95% confidence interval of 14 to 20 runs. 28

3.8 The KL divergence between the ground truth state distribution and the

world model induced state distribution. Lower values are better, indicating

a closer imitation of the real environment dynamics. Both methods use the

same VQ-VAE architecture, but represent the information in different ways.

The one-hot method is the same as the previously used discrete method,

and the quantized representations are continuous vectors with the same

semantic meaning. Each line depicts the evaluation of an individual run,

with 30 runs per method. 30

4.1 Episode length binned into 100 buckets and averaged over 30 runs with a

95% confidence interval. Both methods are trained with PPO; only the

type of autoencoder differs [46]. Shorter episode lengths are better, as they

indicate the agent is finding the goal faster. 34

4.2 Reconstruction loss of the autoencoder binned into 100 buckets for each

of the 30 runs per method. The autoencoder is trained on observations

randomly sampled from a buffer that grows as the RL training progresses.

Lower is better, indicating a better reconstruction of the input observation 34

ix

4.3 Episode length binned into 100 buckets and averaged over 30 runs with a

95% confidence interval. Both methods are trained with PPO; only the

type of autoencoder differs [46]. Only the autoencoder is trained up to the

dotted, black line, at which point PPO updates also begin. Shorter episode

lengths are better, as they indicate the agent is finding the goal faster. . . 35

4.4 The top row depicts random initializations of the crossing environment, and

the bottom that of the door key environment. Each time the environment

changes, the positions of all internal walls and objects are randomized,

with the exception of the agent position in the crossing environment and

the goal in both environments. 36

4.5 Episode length averaged over 30 runs with a 95% confidence interval. The

average episode length is plotted every 2,500 steps in the crossing environ-

ment and every 10,000 steps in the door key environment. Black, dotted

lines indicate a change to the environment. Both methods are trained with

PPO after an initial delay, which allows the autoencoder to get a head

start on learning representations. Only the type of autoencoder differs be-

tween methods. The plot only depicts the performance starting from the

first PPO update. Refer to Figure A.1 for the full figure. A faster drop

in episode length is better, indicating faster adaptation to the changed

environment. 37

4.6 Reconstruction loss of both encoders averaged over 30 runs with a 95%

confidence interval. The average reconstruction loss is plotted every 2,500

steps in the crossing environment and every 10,000 steps in the door key

environment. An autoencoder and policy are trained in tandem for each

run. Lower peaks mean the representation generalizes better, and a quicker

decrease means the autoencoder is learning faster. Overall, a lower average

reconstruction loss is better. 38

x

4.7 Episode length averaged over 30 runs with a 95% confidence interval. The

average episode length is plotted every 2,500 steps in the crossing environ-

ment and every 10,000 steps in the door key environment. Black, dotted

lines indicate a change to the environment. All methods are trained with

PPO after an initial delay, which allows the autoencoder to get a head

start on learning representations on methods other than RL Only. Only

the type of autoencoder differs, except for RL Only, which has no recon-

struction loss. The plot only depicts the performance starting from the

first PPO update. Refer to Figure A.2 for the full figure. A faster drop

in episode length is better, indicating faster adaptation to the changed

environment. 39

A.1 Episode length averaged over 30 runs with a 95% confidence interval. The

average episode length is plotted every 2,500 steps in the crossing environ-

ment and every 10,000 steps in the door key environment. Black, dotted

lines indicate a change to the environment. Both methods are trained with

PPO after an initial delay, which allows the autoencoder to get a head start

on learning representations. The PPO updates start after 200K steps in the

crossing environment, and after 500K steps in the door key environment.

A faster drop in episode length is better, indicating faster adaptation to

the changed environment. 51

A.2 Episode length averaged over 30 runs with a 95% confidence interval. The

average episode length is plotted every 2,500 steps in the crossing environ-

ment and every 10,000 steps in the door key environment. Black, dotted

lines indicate a change to the environment. All methods are trained with

PPO after an initial delay, which allows the autoencoder to get a head

start on learning representations on methods other than RL Only. The

PPO updates start after 200K steps in the crossing environment, and after

500K steps in the door key environment. Only the type of autoencoder dif-

fers, except for RL Only, which has no reconstruction loss. A faster drop

in episode length is better, indicating faster adaptation to the changed

environment. 51

xi

Chapter 1

Introduction

This work is motivated by the long-standing quest to design an autonomous agent that

can learn to achieve goals in its environment without any prior knowledge or human

intervention. With an absence of external assistance, the agent’s only option is to learn

from the world it resides in. This idea is formalized in the field of reinforcement learning

(RL) as an agent that receives an observation from the environment, chooses an action

based on that observation, and then receives a scalar reward from the environment –

the purpose of the agent to maximize the reward [48]. Given that the observation is

the agent’s sole input when choosing an action (unless one counts the history of reward-

influenced policy updates), the representation of the observation plays an indisputably

important role in RL. A good representation can facilitate the learning process, while a

bad one can break it [11].

The idea of agents making decisions based solely on observations is common in multiple

models of autonomous agents. Sutton [47] identifies a common model of intelligent agents

(the Common Model) that is shared, or markedly similar, in the fields of psychology,

artificial-intelligence, economics, control theory, and neuroscience. LeCun [33] proposes

the JEPA model of an autonomous agent that includes many of the same components.

In all of these models, observations are the root input to an agent’s decision making

process, and to nearly every other component that comprises such models. The policy

uses observations to choose actions, the value function estimates how “good” a state is

based on the current observation, and the world model predicts future observations from

the current observation. We point this out not as a novel observation, but to stress the

importance of the representation of observations. Changes to observations are the most

wide-reaching in the sense that they affect every part of the agent. Perhaps for this

1

reason, both the Common Model and JEPA share a “perception” module that transforms

observations before they reach other components of the agent.

In this thesis, we examine the understudied yet highly effective technique of repre-

senting observations as vectors of discrete values (discrete representations) – a method

that stands in stark contrast to the conventional deep learning paradigm that operates on

learning continuous representations. Despite the numerous uses of learned, discrete repre-

sentations, the mechanisms by which they improve performance are not well understood,

and the only clear demonstration of their usefulness in RL comes from a single result from

Hafner et al. [20]. In this work, we dive deeper into the subject and investigate the effects

of discrete representations in RL.

The successes of discrete representations in RL date back to at least as early as tile cod-

ing methods, which map observations to multiple one-hot vectors via a hand-engineered

representation function [48, p. 217-222]. Prior to the proliferation of deep neural networks

(DNNs), tile coding was appealing because it provided a way for models to generalize over

states with similar properties. Even within the current deep learning paradigm, tile coding

seems to improve the learning process by reducing interference between the hidden units

of a neural network [17]. Continuous alternatives exist – notably, radial basis functions

could be viewed as a generalization of tile coding that produce values in the interval [0, 1]

instead of only values of 0 and 1. However, despite the ability of RBFs to represent more

total values, tile coding has been shown to generally perform better when the representa-

tions contain more than two dimensions [3, 32], which is almost always the case for any

complex environment. Discrete representational methods outperforming their continuous

counterparts, or at least performing comparably with simpler models, is a trend that can

be observed throughout a number of works.

A similar comparison can be seen between the work of Mnih et al. [40] and Liang

et al. [35]. Mnih et al. train a DNN to play Atari games, relying on the neural network

to learn its own useful representation, or features, from pixels. In contrast, Liang et al.

construct a function for producing binary feature vectors that represent the presence of

various patterns of pixels, invariant to position and translation. From this representation,

a linear function approximator is able to perform nearly as well as a DNN trained from

pixels.

While hand-coded functions for producing discrete representations often benefit per-

formance, they either require environment-specific engineering, like in the case of tile

coding, or produce many features that may not be useful, like in the representation func-

2

tion constructed by Liang et al. (which produces millions of features). To circumvent this

trade-off, discrete representation-based approaches have recently moved towards learning

representation functions, and are finding success in complex, pixel-based domains. van den

Oord et al. [54], for example, propose the vector quantized variational autoencoder (VQ-

VAE) as a self-supervised method for learning discrete representations. Following the

previous trend, VQ-VAEs perform comparably to their continuous counterparts, varia-

tional autoencoders [29], and do so while representing observations at a fraction of the

size. When applied to DeepMind Lab [8], VQ-VAEs are able to learn representations that

capture the core features of observations, like the placement and structure of walls, with

as little as 27 bits.

Similar representation learning techniques have also been successfully applied in the

domain of RL. Hafner et al. [20] train an agent on Atari, testing both learned, discrete and

continuous representations. They find that agents learning from discrete representations

achieve a higher average reward, and carry on the technique to a follow-up work [21]

where they find success in a wider variety of domains, including the Proprio Control Suite

[53], DeepMind Lab, Crafter [19], and Minecraft [18]. Works like those from Robine et al.

[44] and Micheli et al. [39] further build on these successes, using discrete representations

to learn world models and policies in the RL setting. Work from Wang et al. [57] find

that successful representations are often sparse and orthogonal, suggesting that these

properties may underpin the success of discrete representation.

To understand whether these discrete representations are beneficial, we must first

answer the question: what purpose should these representations fulfill? The answer to

this question itself further depends on the problem setting. We already partially define

the problem setting as that of RL, but we further specify that the agent is in a world

that is vastly larger than itself [30, 51]. In this scenario, the agent cannot hope to

perfectly model the world, or even a sizeable portion of it. From the agent’s perspective,

the world is forever changing, and the agent is forced to continually adapt if it is to

best maximize its reward [49]. An agent that adapts quickly, requiring less interactions

with the environment, will better achieve this goal. Accordingly, we aim to learn

representations that allow for quick adaptation, and themselves adapt quickly.

These are not the only trait of a good representation, but it is the criterion we focus on

in this work.

3

1.1 Thesis Statement

In the setting where an agent learns in a world far larger than itself, it does not have

the modeling capacity to perfectly represent the world. An ideal agent will still learn to

represent as much of the world as possible, but that alone is not enough to succeed. The

agent must also learn to quickly adapt when it encounters new challenges. Throughout

our experiments in pixel-based Minigrid [13] environments, we find that models learned

from discrete representations fit these desiderata. Specifically, we claim that when lim-

ited in training data, model capacity, or computation, models learned over

discrete representations often find better solutions, and do so faster, than

their continuous counterparts.

Depending on the setting and constraints, the exact benefits of discrete representations

manifest in different ways. If our goal is to perfectly model the world, discrete represen-

tations allow us to do so with fewer parameters (in the world model). Or conversely, if

we wish to learn a world model with capacity insufficient to model the full world, we find

that discrete representations allow for more accurately modeling a larger portion of the

world.

Despite the increase in modeling capacity, attempts to perfectly model the full world in

complex environments (like the real world) remain futile. An ideal agent will quickly adapt

to cover its deficiencies with minimal environment interaction and computation. When

learning to maximize reward in a changing environment, we find that agents trained with

discrete representations more quickly adapt to unpredictable changes and achieve higher

reward with less interactions and less policy updates than fully continuous agents. Stated

concisely, agents with discrete representations obtain better results with limited training

data and computation.

1.2 Approach

We aim to understand the benefits of learned, discrete representations in model learning

and RL through a set of experiments conducted in three settings:

1. World model learning.

2. Episodic reinforcement learning.

4

3. Continual reinforcement learning.

In each setting, we compare function approximators learned on top of discrete rep-

resentations to those learned on top of continuous representations. The representation

functions themselves are also learned, using vanilla autoencoders [6] to learn continuous

representation functions and vector-quantized variational autoencoders (VQ-VAEs) [54]

to learn discrete ones.

We first examine the effects of learning a world model over a discrete representation

space in Section 3, opting to keep the problem simple by using a static dataset in this first

set of experiments. We use this setting to confirm that discrete representations increase

the accuracy of world models, and to understand the mechanisms that contribute to that

superior performance. This includes examining the importance of one-hot encoding as a

method of representing discrete information, and understanding the relationship between

the size of the function being learned and the usefulness of discrete representations. Per-

forming these supervised learning experiments in the context of dynamics learning also

hints that increased world model accuracy may be a contributing factor in the success of

Hafner et al. [20].

We transition to reinforcement learning in Section 4, examining whether the previ-

ously observed advantages of discrete representations persist amidst shifting input and

target distributions inherent to the new problem setting. Upon finding success in the

standard RL task, we extend our investigation to continual RL, where the environment

changes over time. We again find that discrete representations prevail over their contin-

uous counterparts. Though the benefits manifest in a new form, we rely on our previous

supervised learning experiments to draw a unified understanding of the results in each of

the settings we explore.

5

Chapter 2

Background

In this chapter, we introduce the reinforcement learning problem in Section 2.1, policy

gradient methods as a solution method in Section 2.2, and the concept of world models

along with their role in reinforcement learning in Section 2.6. We discuss the importance

of representation learning in this problem setting in Section 2.3, and present autoencoders

and FTA as potential solutions in Sections 2.4 and 2.5. Along with a formalization of the

autoencoder framework, we introduce a specific type of autoencoder that produces the

discrete representations we use in the majority of our work.

Throughout this thesis, scalars and functions are indicated by lowercase letters (e.g.,

s, f), random variables by uppercase letters (e.g., S, A), vectors by bold lowercase letters

(e.g., e, θ), matrices by bold uppercase letters (e.g., E, Z), and sets by uppercase letters

with a calligraphic font (e.g., D, S).

2.1 Reinforcement Learning

Reinforcement learning (RL) is a problem setting that formalizes the notion of an agent

attempting to achieve some goal in a sequential decision making process. The sequential

decision making process is further formalized as a Markov decision process (MDP), which

is described by a 5-tuple, (S,A, µ, p, r). The state space of an MDP, S, is the set of all

possible states in the environment, the initial state distribution, µ, is the distribution over

starting states, and the action space, A, is the set of all possible actions that can be taken

from any state. In each episode, the agent starts at state S0 ∼ µ, takes an action At ∈ A,

transitions to a new state St+1 ∈ S, and receives reward Rt+1 ∈ R for each time step

6

t = 0, 1, ..., T . The probability of transitioning between states is given by the transition

function p : S ×A×S → [0, 1], and the reward for each transition by r : S ×A×S → R.
The agent’s goal is to maximize the expectation of the cumulative discounted reward, also

called the return:

Gt
·=

T∑︂
k=0

γkRt+k+1 . (2.1)

γ ∈ [0, 1] is a discount factor that determines the importance of future rewards. The

agent maximizes the return by learning the parameters for a policy π : S × A → [0, 1]

that determines the probability of taking each action.

This work is motivated specifically by the continual RL setting, where an agent must

learn continually in order to maximize reward. This could be because the environment

is changing, or the environment may be static, but changing from the perspective of the

agent who is limited in capacity and cannot learn a model of the full world. In complex,

interesting environments like the real world, this is often the case. The agent must adapt

quickly to be successful in the continual RL setting, and cannot settle for a single solution.

As we continue to cover other background related to RL, we often discuss agents

making decisions based on observations as opposed to states. States are full specifications

of the environment at a given time step, whereas observations are the information the

agent receives about the state at a given time step. In the partially observable setting,

these two items are distinct because the agent may receive observations that only partially

describe the state of the environment. When discussing our own work, we often use them

interchangeably, as we only deal will environments where the observation contains all the

necessary information to best maximize reward.

2.2 Policy Gradient

We use neural networks to learn policies, and train them with policy gradient methods.

This is a category of methods that directly parameterize the policy and backpropagate

the loss through the policy to learn. One of the most common policy gradient objectives

is given by the maximization of

Eπ
[︂
log πθ(At|St)(Gt − vπ(St))

]︂
, (2.2)

7

where θ are the parameters of the policy, and vπ(St) is the value of state St [48, p. 229] .

The value of a state is the expected return from that state when following some policy π,

vπ(s) ·= Eπ[Gt|St = s]. The objective function works by increasing the likelihood of taking

action At when the return is higher than expected (as indicated by the value function),

and decreasing the likelihood when the return is lower than expected. Because the action

itself is sampled from the policy, this objective has the effect of encouraging actions that

lead to higher returns, and discouraging actions that lead to lower returns.

Typically, the above objective is optimized by collecting batches of agent-environment

interactions, performing a gradient update, and then repeating with newly collected data.

The same data cannot be used for multiple updates because the objective is an expecta-

tion over the behavior of the current policy, and performing an update changes the policy,

invalidating the past data. We use proximal policy optimization (PPO) in our experi-

ments, which changes the objective in a way that allows for multiple gradient updates on

the same batch of data, increasing sample efficiency and empirical performance [46].

Through several steps, we can transform the previous policy gradient objective into the

PPO objective. We first recognize that the right-hand term of the given policy gradient

objective is the advantage function

aπ(s, a) ·= Eπ [Gt − vπ(St)|St = s, At = a] , (2.3)

the difference between the value of state s, and the expected return if the agent takes

action a from state s and then behaves according to π. Rewriting the policy gradient

objective with a shorthand for the advantage (not to be confused with an action), we get:

Eπ
[︂
log πθ(At|St)aπt

]︂
. (2.4)

To ameliorate the issue of policy updates invalidating previous training data, PPO

disincentivizes large changes to the policy. The change in policy is estimated with a

ratio between previous and current action probabilities, rt(θ) = πθ(at|st)
πθold (at|st)

. πθold is the

policy before any updates with the current batch of data, and πθ is the most recent

policy. Large changes are disincentivized by clipping the loss for ratios outside of the

range [1− ϵ, 1+ ϵ], where ϵ is a hyperparameter of the method. The full objective is given

by the maximization of

Eπ [min(rt(θ)a
π
t , clip(rt(θ), 1− ϵ, 1 + ϵ)aπt)] . (2.5)

8

The minimum over the clipped ratio removes the incentive for actions to become signifi-

cantly more or less probable.

2.3 Representation Learning

As discussed in the introduction, the representation of observations fed to an agent is

of significant importance. A good representation can expedite the learning process by

facilitating generalization and backpropagation, whereas a bad representation can slow

learning to a halt. While designers of RL systems may directly modify the environment’s

observations, environment-specific modifications do not scale. A more general solution is

for the agent itself to learn a representation function that transforms observations S into

latent states Z: f : S → Z. Rather than learning a policy (or other component, like a

value function or world model) over the observation space, the agent then learns a policy

over the latent space: π : Z ×A → [0, 1].

Fundamentally, deep neural networks learn representations; each layer transforms its

preceding layer’s output into a new representation of the observation. Although each layer

within a policy’s neural network forms its own representation, there can be advantages in

defining a separate representation function f external to the policy network [7, 10, 14, 31].

By decoupling the policy from the representation function, we introduce the option of

training f with an objective distinct from that of the policy (i.e. reward maximization).

Such additional objectives aimed at facilitating the learning of useful representations are

known as auxiliary objectives [16, 36, 57].

Auxiliary objectives have proven to be notably effective in approaches that align closely

with our work. For instance, Hafner et al. [20] propose a successful model-based RL

(MBRL) algorithm for Atari [9, 37] games that incorporates an observation reconstruction

objective. Without this auxiliary objective, the agent fails to learn entirely. Similarly,

Ye et al. [58] enhance an existing MBRL algorithm [45] by introducing an observation

self-consistency objective, thereby significantly improving the method’s sample efficiency

on Atari games.

9

Figure 2.1: Depiction of a vanilla autoencoder with a continuous latent space. The input
x is encoded with fθ to produce a latent state z, which is decoded by gϕ to produce the
reconstruction x̂. The model is trained to minimize the distance between the input and
reconstruction with the reconstruction loss Lae.

2.4 Autoencoders

In this work, we opt to learn representations with autoencoders, neural networks with the

objective of reconstructing their own inputs. Autoencoders can be decomposed into an

encoder, fθ, that projects the input into a latent space, and a decoder, gϕ, that attempts

to reverse the transformation. Where x ∈ Rn is an observation input to the encoder, the

corresponding latent state is given by z = fθ(x) ∈ Rk, and the goal is to learn parameters

θ and ϕ such that gϕ(fθ(x)) = x. We achieve this by minimizing the squared error

between the input and the reconstruction over observations sampled from some dataset,

D:

Lae = Ex∼D

[︂
||x− gϕ(fθ(x))||22

]︂
. (2.6)

Because the latent space of an autoencoder is constrained (generally by size, and some-

times by regularization), the model is encouraged to learn properties of the input distri-

bution that are the most useful for reconstruction. We refer to this type of autoencoder,

where the latent states are represented by vectors of real-valued numbers, as a vanilla

autoencoder. An overview of the model is depicted in Figure 2.1.

To learn discrete representations, we use an autoencoder variant called a vector quan-

tized variational autoencoder (VQ-VAE) [54]. VQ-VAEs also use an encoder, a decoder,

and have the same objective of reconstructing the input, but include an additional quan-

10

Figure 2.2: Depiction of the VQ-VAE architecture. The input x is encoded with encoder
fθ to produce latent vectors {z1, z2, . . . , zk} ∈ Rd. In the first green circle, each latent
vector is compared to every embedding vector to produce codebook c, a vector of in-
dices indicating the most similar embedding vectors (example values are depicted). In
the second green circle, the indices are transformed into their corresponding embedding
vectors to produce quantized vectors {z′1, z′2, . . . , z′k} ∈ Rd. The quantized vectors are
then decoded by gϕ to produce the reconstruction x̂. Our work uses one-hot encodings
of the codebook c as discrete representations.

tization step that is applied to the latent state between the encoder and decoder layers.

After passing the input through the encoder, the resultant latent state z is split into k

latent vectors of dimension d: {z1, z2, . . . , zk} ∈ Rd. Each latent vector is quantized, or

“snapped”, to one of l possible values specified by a set of embedding vectors. The quan-

tization function uses l embedding vectors of dimension d, {e1, e2, . . . , el} ∈ Rd, which

are learned parameters of the VQ-VAE.

The quantization happens in two phases. First, each latent vector is compared to

every embedding vector using the L2 norm, and indices of the most similar embedding

vectors are returned:

ci = argmin
j

∥zi − ej∥2, for all i = 1, 2, ..., k. (2.7)

The resultant vector of integers c is called the codebook, and indicates which embedding

vectors are the most similar to each latent vector. In the second phase, the indices in the

11

codebook are used to retrieve their corresponding embeddings, producing the quantized

latent vectors:

z′i = eci , for all i = 1, 2, ..., k. (2.8)

The quantized vectors {z′1, z′2, . . . , z′k} ∈ Rd are the final output of the quantization

function, and are concatenated before being passed to the decoder. The full architecture

is depicted in Figure 2.2.

Because the quantization process is not differentiable, a commitmen loss is added to

pulls pairs of latent states and their matching embeddings towards each other. If latent

vectors are always near an existing embedding, then there will be minimal difference

between all zi and z′i, and we can use the straight-through gradients trick [12] to pass

gradients directly back from z′ to z with no changes. Combining the reconstruction and

commitment losses, the full objective is given by the minimization of

Lvqvae = Ex∼D

[︄
||x− gϕ(qe(fθ(x)))||22 + β

k∑︂
i=1

∥zi − ezi∥22

]︄
, (2.9)

where qe is the quantization function, β is a hyperparameter that weights the commitment

loss, and ezi is the closest embedding vector to zi. In practice, the speed at which the

encoder weights and embedding vectors change are modified separately by weighting the

gradients of both modules individually.

The discrete representations we use for downstream tasks RL tasks are different from

the quantized vectors that are passed to the decoder. We instead use one-hot encodings

of the values in the codebook:

oij =

⎧⎨⎩1 if j = ci,

0 otherwise
for j = 1, 2, . . . , l. (2.10)

The result is a series of one-hot vectors {o1,o2, . . . ,ok} ∈ Rl that represent a single state,

which we refer to as a discrete representation.

2.5 Fuzzy Tiling Activations

Fuzzy tiling activations (FTA) [42] are a form of activation function for neural networks

that produce sparse outputs. When applied to a hidden layer of an a neural network,

12

the intermediate representations produced by FTA have been shown to help learn better

solutions and encourage generalization in RL [38, 42, 57]. We use FTA representations

as a baseline in part of our work because the outputs they produce are similar to the

one-hot, discrete representations produced by VQ-VAEs, and because of their strong,

empirical performance.

We explain how FTA works by first explaining tiling activations, and then progressing

to FTA. Tiling activations are a simpler version of FTA that convert single scalars into

one-hot vectors. Given lower bound l ∈ R and upper bound u ∈ R on inputs to the

activation function, tiling activations construct a k-dimensional tiling vector that specifies

k bins, each of size δ = (u− l)/k:

c ·= (l, l + δ, l + 2δ, . . . , u− 2δ, u− δ). (2.11)

A tiling activation maps each input to a bin, producing a one-hot vector. The tiling

activation function is given by

ϕ(z) ·= 1− I+(max(c− 1z,0) + max(1(z − δ)− c,0)), (2.12)

where I+ is an indicator function that returns 1 for positive inputs and 0 otherwise, and

1 and 0 are k-dimensional vectors of all ones and zeros. Both the indicator function and

max are applied element-wise and return vectors. When used as the activation function

for the layer of a neural network, the tiling activation is applied element-wise. Note that

the function maps scalars to vectors, so a tiling activation applied to a j-dimensional

hidden layer would produce a (jk)-dimensional output.

Tiling activations offer a way to obtain discrete representations, but come at the cost

of having almost entirely zero-valued gradients. FTA extends the idea of tiling activations,

but mitigates the zero-valued gradient problem by generating sparse, instead of fully one-

hot, vectors. To obtain the new FTA definition, only the indicator in Equation 2.12

function needs to be changed:

Iη,+(x)
·= I+(η − x)x+ I+(x− η). (2.13)

η is a new hyperparameter that controls the level of sparsity (or “fuzziness”) of the

produced representations. This new indicator function outputs x if x < η and 1 otherwise.

When η = 0, the two functions are equivalent and FTA produces one-hot vectors. As the

value of η increases, the surrounding bins also activate. Higher values of η lead to more

13

bins activating, with bins closer to the center taking on higher values.

2.6 World Models

World models (or simply “models”, when unambiguous) are models of an environment’s

dynamics that are often learned and used to facilitate efficiently learning a policy [21, 45,

48]. Depending on the use case, world models may attempt to learn the environment’s

transition dynamics p, the reward function r, the starting state distribution S0, or a

combination of any of these. In model-based RL (MBRL), world models are used to update

the agent’s policy (or perhaps other auxiliary components) is a step called planning.

The simplest example of a planning step with a policy gradient method is perhaps the

application of a gradient update based on transitions sampled from the world model

instead of from the real environment. Being able to sample from a learned model for

updates generally reduces the amount of interaction required in the real environment,

resulting in more sample efficient algorithms [5, 25, 26, 50].

Training world models of deterministic environments is straightforward, as each state-

action pair leads to a single outcome. However, training world models of stochastic

environments is more difficult because multiple outcomes are possible, meaning there is

no single “correct” answer. Models of stochastic environments are broadly categorized

into three classes depending on how they handle stochasticity: expectation models, sample

models, and distribution models.

Expectation models are the simplest and easiest to learn, predicting the probability-

weighted average over all possible outcomes. Under constraints, some types of planning

are possible with expectation models [55], but they lose information about the probability

of different transitions and can produce states that do not truly exist. Sample models

produce outcomes with probability equal to that of outcomes in the environment, essen-

tially making them proxies for the real environment. Distribution models capture the

environment dynamics by learning a probability distribution over all possible outcomes.

Both sample and distribution models are sufficient for most planning based methods, as

both can capture the full dynamics of an environment.

14

2.6.1 Learning a Stochastic World Model

We use a variant of the method proposed by Antonoglou et al. [4] to learn sample models

for stochastic environments. The method works similarly to a distribution model, first

learning a distribution over possible outcomes during training, and then sampling from

that distribution during evaluation. The problem faced by most distribution models is

how to represent a distribution over a complex state space (or latent space in our case).

Antonoglou et al. circumvent this problem by learning an encoder e that discretizes each

state-action pair, mapping it to a single, k-dimensional one-hot vector we call the outcome

vector. Each of the possible k values represents a different outcome of the transition.

The high-level idea is that while directly learning a distribution over full latent states

is intractable, learning a categorical distribution over a limited, discrete set of outcomes

(the outcome distribution) is possible. Whenever we wish to use the world model, we

can sample from the outcome distribution and include the one-hot outcome vector as

an additional input to the world model, indicating which of the k outcomes it should

produce.

The training process for the sample model includes two objectives, which we explain

for the example case of a world model that predicts state-action-state transitions. The

first objective is to learn a function ψ that predicts the outcome distribution of state-

action pairs, which is given by the minimization of the categorical cross-entropy between

the predicted and ground-truth distributions:

E(s,a,s′)∼D

[︄
−

k∑︂
i=1

e(s′)i logψ(s, a)i

]︄
. (2.14)

ψ(s, a) is the predicted outcome distribution and e(s′) is the ground-truth next outcome

vector. The second objective is then predicting the correct, next state with the world

model, which is given by the minimization of

E(s,a,s′)∼D

[︂
l(s′, w(s, a, e(s′)))

]︂
, (2.15)

where w is the world model, and l is a distance function comparing the predicted and

ground-truth states. Both the world model and encoder are trained according to this

latter objective.

We use this method in our work to learn sample models that predict state-action-state

15

transitions w : S ×A → S (the encoder e is encapsulated by w in this notation), learning

a model of the transition function p. We isolate model learning from the greater MBRL

framework, and focus on learning accurate models. We do not make any claims about

the efficacy of our methods for MBRL, as accuracy is only a proxy for downstream RL

performance. As a trade off, however, we are able to more precisely examine how changes

in state representation affect the process of learning a world model.

16

Chapter 3

World Model Learning with Discrete

Representations

In this section, we examine the benefits of using discrete representations in the setting of

learning a world model from a static dataset. We first learn a representation function that

converts pixel-based observations to continuous or discrete representations, which we also

refer to as the latent space. A world model is learned on top of the latent space, predicting

transitions from one latent state to another. Starting on this supervised learning task that

is void of non-stationarities allows us to better isolate the differences between discrete

and continuous representations before introducing the difficulties presented by the full

reinforcement learning problem.

3.1 Experimental Design

We begin by describing the setup for our experiments, including the environment specifi-

cations, world model training process, and evaluation methodology. Both the discrete and

continuous world models are trained in a similar fashion, but the discrete world models

require some extra steps to keep the representations discrete. We perform a hyperparam-

eter sweep for both models, and evaluate the best models by analyzing the accuracy of

their produced trajectories.

17

(a) Empty (b) Crossing (c) Door Key

Figure 3.1: Minigrid environments used in our experiments. The agent receives lower-
resolution RGB arrays representing pixels as observations. We refer to these as the (a)
empty, (b) crossing, and (c) door key environments.

3.1.1 Environments

Throughout this work, we use the empty, crossing, and door key Minigrid [13] environ-

ments, as displayed in Figure 3.1. In each environment, the agent controls a red arrow

that points in the direction the agent is facing. The agent can freely move throughout

the black, tiled area using the left, right, and forward actions. The agent in the door

key environment also has access to pickup and use actions so that it may pickup the key

and use it to unlock the door to traverse to the right side of the room.

The empty environment is deterministic, whereas the crossing and door key environ-

ments are stochastic. Taking an action in a stochastic environment has a 90% chance

to enact the intended action, and a 10% chance to take a random, different action. The

added stochasticity increases the difficulty of learning a world model by increasing the

effective number of transitions that must be learned for each state-action pair. The in-

crease in difficulty widens the performance between different methods, which makes the

results easier to interpret.

The environment is episodic, with episodes terminating when the agent reaches the

green square, or when the episode reaches a maximum length. The former yield a reward

[0.1, 1] depending on the length of the episode (shorter episodes yield higher rewards), and

the latter yields no reward. The formula for the reward upon reaching the green square

is given by 1 − 0.9 t
T
, where t is the current step and T is the maximum episode length

(dependent on the experiment). Observations are provided as arrays of pixels (RGB

values) that are sized according to the dimensions of the environment. The environment

18

Environment
Name

Image
Dimensions

Actions Stochastic
of

Unique
States

Empty 48× 48× 3 left, right, forward no 64
Crossing 54× 54× 3 left, right, forward yes 172

Door Key 64× 64× 3
left, right, forward,

pickup, use
yes 292

Table 3.1: Specifications for all Minigrid environments.

is technically partially observable because the agent does not have access to the time step,

but in theory, this detail should not stop it from learning an optimal policy. The use of

pixels obscures the simple, tabular nature of Minigrid environments, guaranteeing room

for improving the representation. Further environment details are displayed in Table 3.1.

3.1.2 Training

We train autoencoders and world models on a static dataset of episodes collected with

random walks. In each episode, the environment terminates when the agent reaches the

green square or after 10,000 steps, until a total of one million transition tuples (s, a, r, s′)

are collected into dataset D. In our experiments, observations are 3-dimensional RGB

arrays, so we use convolutional and deconvolutional neural networks [34] for both the

encoder and decoder architectures. The details of the architecture are given in Section

3.1.3.

The continuous model uses a vanilla autoencoder trained according to Equation 2.6,

and the discrete model a VQ-VAE trained according to Equation 2.9. The VQ-VAE

embedding gradient updates are weighted by a value of 0.25, as done in the original

work by van den Oord et al. [54]. Both autoencoders are trained with states sampled

from dataset D using the Adam optimizer [28] with hyperparameter values of β1 = 0.9,

β2 = 0.999, and a step size of 2 × 10−4. Training continues until near-convergence, at

which point the model weights are frozen and the world model training phase begins.

World models learned over continuous representations, which we refer to as continuous

world models, take a latent state z, and an action a as input to predict the next latent

state ẑ′ = wψ(z, a) with an MLP wψ. The world model consists of three layers of 64

hidden units (32 in the crossing environment), and rectified linear units (ReLUs) [2] for

activations. In deterministic environments, the loss is given by the squared error between

19

Figure 3.2: Depiction of a continuous world model training with n steps of hallucinated
replay. After encoding the initial observation xt into latent state zt, the world model
rolls out a trajectory of predicted latent states, ẑt+1, ẑt+2, . . . , ẑt+n. Actions from a real
trajectory are used in the training process, but are excluded in the depiction to avoid
clutter. The loss at each time step is calculated by comparing the hallucinated latent
state ẑt+i to the ground-truth, zt+i. This method is called hallucinated replay because
the entire trajectory after the first latent state is hallucinated by the world model.

the predicted next latent state and the ground-truth next latent state:

Lcmodel = Es,a,s′∼D

[︂
||ẑ′ − z′||22

⃓⃓⃓
z′ = fθ(s

′), ẑ′ = wψ(fθ(s), a)
]︂
. (3.1)

Discrete world models use the same architecture, but concatenate the multiple one-

hot vectors produced by VQ-VAEs z1, z2, ..., zK into a single latent state vector z before

applying the world model. The output of the model ẑ′ is split back into multiple latent

vectors ẑ′1, ẑ
′
2, ..., ẑ

′
K , each corresponding to the logits of a one-hot vector. In determin-

istic environments, we use a categorical cross-entropy loss instead of the squared error

because the discrete world model output represents a categorical distribution.1 The loss

is given by the mean of the cross-entropy between each of the predicted next latent vectors

and the ground-truth next latent vectors:

Ldmodel = Es,a,s′∼D

[︄
− 1

K

K∑︂
i=1

L∑︂
j=1

z′ij log ẑ
′
ij

⃓⃓⃓⃓
⃓ z′ = fθ(s

′), ẑ′ = wψ(fθ(s), a)

]︄
. (3.2)

In the above equation, zi refers to the i-th latent vector of the latent state, and zij to the

1We also experimented with a squared error loss for the discrete world model and found it made little
difference in the final world model accuracy.

20

Figure 3.3: Depiction of a single step of discrete world model training and the subsequent
discretization of the latent state. The observation xt is encoded to produce latent state
zt, which is passed to the world model to sample the logits ẑt+1 for a following state.
The predicted next state logits ẑt+1 are compared to the ground truth state zt+1, which
is constructed from the corresponding ground-truth observation: zt+1 = fθ(xt+1). Before
the world model can be reapplied, the latent state logits must be discretized with an
argmax operator and converted to the one-hot format.

j-th element of that vector.

All world models are trained with 4 steps of hallucinated replay as described by Talvitie

[52] and depicted in Figure 3.2. Training continuous world models with hallucinated replay

is as simple as feeding outputs of the model back in as new inputs. Training with the

discrete world model, however, requires an extra step. Because the discrete model takes

one-hot vectors as inputs but outputs vectors of logits, the logits must be converted back

into one-hot vectors before being used. Each vector of logits is converted based on the

index of the maximum value:

oi =

⎧⎨⎩1 if i = argmax(logits)

0 otherwise.
(3.3)

This conversion is applied prior to all recurrent applications of a discrete world model

in both the training and later evaluation protocol. Figure 3.3 depicts a single step of

training a discrete world model and the subsequent latent one-hot conversion.

21

As discussed in Section 2.6.1, training world models in stochastic environments is more

difficult because there is no single “correct” answer for next state predictions. Recogniz-

ing this challenge, we opt to learn sample models in stochastic environments using the

method proposed by Antonoglou et al. [4]. We learn a distribution over possible outcomes

according to Equation 2.14, and both the continuous and discrete world model objective

functions are augmented according to Equation 2.15. Table A.1 provides the relevant

hyperparameters.

3.1.3 Autoencoder Architecture

The vanilla autoencoder and the VQ-VAE use the same encoder and decoder architecture,

only differing in the layer that produces the latent state. The decoder is a mirror of the

encoder, reversing each of the shape transformation, so we describe only the encoder

architecture. The encoder starts with three convolutional layers with square filters of

sizes {8, 6, 4}, channel of sizes {64, 128, 64}, strides of {2, 2, 2} (or {2, 1, 2} for the crossing

environment), and uniform padding of {1, 0, 0}. Each convolutional layer is followed by

a ReLU activation. The downscaling convolutions are followed by an adaptive pooling

layer that transforms features into a shape of (K ×K × 64), and finally a residual block

[22] consisting of a convolutional layer, batch norm [24], ReLU, convolutional layer, and

another batch norm. These general layers are followed by layers specific to the type of

autoencoder.

The vanilla autoencoder flattens the convolutional output and projects it to a latent

space of size D with a linear layer. We use a value of K = 8 and sweep over values of

D = {16, 64, 256, 1024} for each environment. We use D = 64 for the empty environment,

D = 256 for crossing, and D = 1024 for door key, though we note that we do not observe

a statistically significant difference in performance for values of D ≥ 64.

The VQ-VAE directly quantizes the output of the general layers, so the only other

parameters added are the embedding vectors. The number of vectors that make up a

latent state is given by K2, and we let L be the number of embedding vectors, resulting

in discrete representations of shape (K2, L). We sweep over values of K = {3, 6, 9} and

L = {16, 64, 256, 1024} for each environment. We use K = 6 and L = 1024 (for a total

size of 6,144) for all environments except for crossing, which uses a value of K = 9 (for a

total size of 9,216).

When designing the experiments, we considered how to construct a fair comparison

22

between the continuous and discrete methods despite the fact that each have different

ideal sizes of the latent state, which makes one model bigger than the other. This is

a particularly difficult question because it is unclear if we should focus on the size of a

representation in bits, or the size of the representation in the number of values used to

represent it in a deep learning system. A discrete representation is orders of magnitude

smaller than a continuous representation if represented in bits (9× log2 1024 = 90 bits in

the crossing environment), but takes an order of magnitude more values to represent as

one-hot vectors being passed to a neural network (9× 1024 = 9216 values in the crossing

environment). Ultimately, we found that answering this question was unnecessary, as

the performance of both methods was limited no matter how large we made the size of

the representations. In the crossing environment, for example, the performance of the

continuous model would not increase even if we increased the size of the latent state from

256 to 9,216 values to match that of the discrete latent state.

3.1.4 Evaluation

The goal of the evaluation is to measure how the representation of the latent space af-

fects the ability to learn an accurate world model. Unfortunately, this is not as simple

as comparing a predicted latent state to the ground-truth latent state. In stochastic en-

vironments, there may be many correct transitions, and an accurate sample model will

produce each of the possible outcomes with the correct frequency. To account for this,

we look at the state distributions induced over many episodes to measure the accuracy of

world models.

To evaluate representations in a specific environment, we start by choosing a target

policy. One of the major benefits of using a world model instead of replaying past data

is that a world model has the potential to simulate trajectories outside of those normally

experienced by an agent. To reflect this use case, we choose some target policies that

differ from the data collection policy. For the empty environment, we use a random

target policy, for crossing, a target policy that moves to explore the right side of the

environment, and for door key, a target policy that navigates directly to the goal. In each

environment, we simulate the target policy for 10,000 episodes, cutting off each episode

early, or freezing the environment at the terminal state to reach exactly 30 interaction

steps.

We compare the ground-truth distributions at each step with those induced by re-

23

cursively applying a learned world model. An accurate model will induce a distribution

similar to the ground-truth over the state space at each step, while an inaccurate model

will induce a different state distribution. We measure these differences qualitatively by

visualizing the distributions, and quantitatively by measuring a numerical difference be-

tween the ground-truth and predicted distributions. Figure 3.5 contains a visualization

that helps build an intuition of how state distributions may differ, and is discussed further

in the experiments section.

Because we learn world models over the latent space, we cannot directly visualize

their outputs. At each step, we convert the latent state into a real environment state by

passing it through the decoder and matching the output to the closest real environment

state: s = argmins′∈S ∥gϕ(z) − s′∥, where gϕ(z) is the decoder applied to latent state z.

Averaging over the states from 10,000 separate runs at each step yields an image depicting

how the agent is spread throughout the environment.

We measure the quantitative difference between two state distributions with the KL

divergence. Our Minigrid environments all have less than 300 unique states, so we use

the formula for the KL divergence between two categorical distributions:

KL(p ∥ q) ·=
∑︂
x∈X

p(x) log

(︃
p(x)

q(x)

)︃
, (3.4)

where p is the ground-truth state distribution, and q is the state distribution induced by

the world model. Because the KL divergence is a measure of the difference between two

distributions, methods with a lower KL divergence are better.

We also include two additional, simple baselines in our comparisons: the uniform base-

line and the delayed state baseline. The uniform baseline predicts a uniform distribution

over all states. It is strong when the agent’s target policy leads it to spread out, like in

a random walk. The delayed state baseline predicts the ground-truth state distribution

delayed by one step, which is information the other methods do not have access to. It

is a strong baseline because of that, and especially so when agent does not move much,

like when the agent has already reached the goal (because the agent is frozen until the

30-step termination mark).

24

Continuous

Discrete

Delayed State

Uniform

Figure 3.4: The KL divergence between the ground-truth state distribution and the world
model induced state distribution. Lower values are better, indicating a closer imitation
of the real environment dynamics. Each line depicts the evaluation of an individual run,
which includes training an autoencoder and a world model. Between 16 and 30 runs are
plotted per method.

3.2 Results

With our methodology defined, we run a number of experiments aimed at characterizing

the effects of using discrete representations in this model learning setting. We begin with a

straightforward comparison between the accuracy of the continuous and discrete methods,

and then follow up with experiments to better understand the difference in performance.

We change the size of the transition model to test how both methods behave under model

capacity constraints, and run another experiment to confirm the discrete representation

of the latent state is actually responsible for the observed performance increase. We

conclude the section with a discussion of the findings before advancing to the episodic RL

setting.

3.2.1 Model Rollouts

We roll out the trained world models for 30 steps and evaluate their accuracy, plotting the

results in Figure 3.4. In the empty environment, there is virtually no difference between

the performance of the continuous and discrete world models, as both predict transitions

with near-perfect accuracy. As the complexity progressively increases in the crossing and

then in the door key environment, the gap in accuracy widens, with the discrete world

model performing better after just a few steps.

We examine visualizations of trajectories to better understand the patterns observed

in Figure 3.4, showing two visualizations that most clearly represent these patterns in

25

Figures 3.5 and 3.6. The trajectories predicted by the continuous model in the crossing

environment rarely make it across the gap in the wall, which manifests as a steady increase

in the KL divergence starting around step 14. The performance of the continuous model

in the door key environment suffers much earlier as the agent fails to swiftly pickup

the key, and again as the agent struggles to pass through the door. Notably, these two

actions occur infrequently in the training data because the training data is generated with

random walks, and because they can only happen once per episode even when they do

occur. Stated concisely, discrete representations are allowing the world model to more

accurately predict transitions that occur less frequently in the training data.

26

G
ro
u
n
d

T
ru
th

D
is
cr
et
e

C
on

ti
n
u
ou

s

1 5 10 15 20 25 30

Figure 3.5: Comparison of rollouts predicted by different world models in the crossing
environment. Each row visualizes the state distributions throughout rollouts predicted by
different world models, with the x-axis giving the step in the rollout. The ground-truth
row depicts the state distribution over rollouts as a policy that explores the right side of
the environment is enacted in the true environment. Predicted observations are averaged
over 10,000 rollouts. Being closer to the ground-truth indicates a higher accuracy.

G
ro
u
n
d

T
ru
th

D
is
cr
et
e

C
on

ti
n
u
ou

s

1 5 10 15 20 25 30

Figure 3.6: Comparison of rollouts predicted by different world models in the door key
environment. Each row visualizes the state distributions throughout rollouts predicted by
different world models, with the x-axis giving the step in the rollout. The ground-truth
row depicts the state distribution over rollouts as a policy that navigates to the goal
state is enacted in the true environment. Predicted observations are averaged over 10,000
rollouts. Being closer to the ground-truth indicates a higher accuracy.

27

Continuous

Discrete

Delayed State

Uniform

Figure 3.7: The KL divergence between the ground-truth state distribution and the world
model induced state distribution, averaged over 30 steps. Lower values are better, indi-
cating a closer imitation of the real environment dynamics. The x-axis gives the number
of hidden units per layer for all three layers of the world model. Each point shows the
mean KL divergence and 95% confidence interval of 14 to 20 runs.

3.2.2 Scaling the World Model

Despite sweeping over the size of the latent vector for the hyperparameter sweep, we

were unable to find an encoder architecture that enabled the continuous world model to

adequately learn transitions underrepresented in the training data. Either the discrete

representations allow learning something that is not learnable with the con-

tinuous representations, or the fixed size of the world model is limiting the

continuous model’s performance. We vary the size of the world model, rather than

the encoder, to test the latter hypothesis. For each size of the world model, we tune

the size of the latent vectors for both the vanilla autoencoder and the VQ-VAE using the

same sweep process described in Section 3.1.3. We plot the performance of each transition

model in Figure 3.7, averaging the KL divergence over 30-step trajectories. Note that the

naive baselines in the new setup seem much stronger for two reasons: the continuous and

discrete methods suffer from significant error accumulation towards the later half of the

rollouts, and they also contain outliers that significantly affect their average performances.

In contrast, the delayed state baseline is near perfect at the end of trajectories due to

privileged information that only it receives, and neither baseline has outliers given how

they are defined.

In the plot, an interesting pattern emerges: the performance of the continuous and

discrete methods are indistinguishable beyond a certain size for the world model. Only

when the environment dynamics cannot be modeled near-perfectly, due to the limited

28

capacity of the world model, are the discrete representations beneficial. As the size of

the world model shrinks, the performance of the continuous model degrades at a faster

rate, showing that the discrete world model is able to model more of the world with less

capacity. This gap is notable because we are interested in the setting where the world is

much larger than the agent. In this setting, discrete representations are better because

they allow an agent to learn more despite its limited capacity.

3.2.3 Representation Matters

Our experiments have demonstrated a clear advantage of using discrete representations

when the size of the transition model is limited, but is the improvement actually at-

tributable to the one-hot representation of the data? It is possible that the discrete world

model performs better because the VQ-VAE learns more information, or information that

better facilitates world modeling, and not because of the one-hot structure of the latent

states. In our next experiment, that is the question we ask: do the benefits of the

discrete world models originate from the representation of the latent states, or

from the informational content of the latent states? We test this by constructing

informationally equivalent continuous and discrete representations and testing them in

the world model learning setting.

The discrete representations we use are unchanged – we use the same VQ-VAE one-

hot encoding formula. We also use VQ-VAEs to produce continuous representations in

this experiment, but with latent states that are comprised of multiple quantized vectors

instead of one-hot encoded vectors. Referring back to Section 2.4, recall that there are

two different ways of representing the same latent state. Given a single latent vector, its

corresponding one-hot vector gives the index of the closest embedding, and the quantized

vector is that embedding itself; both vectors contain the same semantic content, but have

different representations. If we set the dimensionality of the embedding vectors equal to

the number of embedding vectors, then both one-hot and quantized representations also

take the same shape.

We exploit this representational dichotomy to probe at the importance of the repre-

sentation in the world modeling setting. If the representation of the latent space does

matter, then we would expect these two semantically equivalent representations to per-

form differently. If the representation does not matter, then we would expect them to

perform similarly. To prepare this experiment, we set the number of embedding vectors

29

Quantized

One-Hot

Delayed State

Uniform

Figure 3.8: The KL divergence between the ground truth state distribution and the world
model induced state distribution. Lower values are better, indicating a closer imitation
of the real environment dynamics. Both methods use the same VQ-VAE architecture,
but represent the information in different ways. The one-hot method is the same as the
previously used discrete method, and the quantized representations are continuous vectors
with the same semantic meaning. Each line depicts the evaluation of an individual run,
with 30 runs per method.

and the dimensionality of the embeddings to 64 so that both types of representations take

the same shape for a fair comparison. The world model learned with quantized represen-

tations functions similarly to the discrete world model described in Section 3.1.2, except

the cross-entropy loss is replaced with an MSE loss. All outputs of the world model are

re-quantized using the VQ-VAE’s embedding space. This functionality is equivalent to

how the outputs of discrete world models are “snapped” to the nearest one-hot vectors

with an argmax function.

In Figure 3.8 we compare the accuracy of world models learned on top of one-hot en-

coded vectors to those learned on top of quantized vectors. The quantized representations

perform poorly in both environments, failing nearly entirely at picking up the key in the

door key environment. Despite the semantic equivalence of the representations and nearly

equivalent training procedure, the world model with one-hot encodings is more accurate,

demonstrating the importance of the representation of the latent space.

30

3.3 Discussion

In every experiment in this section, the discrete world model performs at least as well as

its continuous counterpart. Under some conditions, the discrete world model performs

better by more accurately modeling transitions that occur less frequently in the training

data. It performs better in the model rollout experiments as the environment becomes

more complex, and it performs better in the scaling experiment when the size of the world

model is limited. Synthesizing these observations, we see that the discrete world model

is more accurate when the resources of the agent are insufficient to near perfectly model

the environment. Hence, discrete representations enable us to accurately model more of

the world with less resources.

Our motivation for investigating representation learning is to find a representation that

allows an agent to succeed in a world much larger than itself. In this context, the ability

to model more of the world is useful. Modeling parts of the world that were previously

out of reach means that the agent can perform that much better. However, increasing the

agent’s capacity alone is not enough if we assume the world is significantly larger than

the agent. The agent’s model of the world will still be imperfect, so quick adaptation

remains a necessity. We address this concern in the next section as we delve into the full

reinforcement learning setting.

31

Chapter 4

Policy Learning with Discrete

Representations

In the previous chapter, we demonstrated advantages of using discrete representations

when dealing with a stationary, i.i.d. dataset. As we progress to the full reinforcement

learning problem, we face new challenges, like that of learning from non-stationary dis-

tributions. Our first experiments of this section aim to understand the effects of using

discrete representations in the standard, episodic RL setting. Identifying a clear benefit,

we progress to the continual RL setting with continually changing environments [1] as a

proxy for environments that are too big for the agent to perfectly model.

4.1 Experimental Design

We train all RL agents in this section with the clipping version of proximal policy opti-

mization (PPO) [46], and bootstrap returns using the value function if the final state in

a batch is not a terminal state. Instead of observations, the policy and value functions

intake learned representations. Separate networks are used for the policy and value func-

tions, but both share the same architecture – an MLP with two hidden layers of 256 units

and ReLU activations. We perform a grid search over the most sensitive hyperparameters

for the continuous model, sweeping over clipping values ϵ ∈ {0.1, 0.2, 0.3}, and the number

of training epochs per batch n ∈ {10, 20, 30, 40}. We use the same final hyperparameters

for training the discrete model, which are provided in table A.2. We use dimensions for

the latent spaces of both encoders that consistently achieve a low reconstruction loss. The

32

vanilla autoencoder uses a 256-dimensional latent space, and the VQ-VAE uses 36 latent

vectors and 256 embedding vectors (which forms a latent space of shape 36 × 256). All

other autoencoder hyperparameters and architectural details remain unchanged.

The training loop consists of three steps: collecting data, training the actor-critic

model, and training the autoencoder. This setup differs from previous experiments pri-

marily in the manner that data collection and training of all of the models happen in

tandem instead of in separate phases. In each iteration of the loop, the policy is rolled

out to collect 256 transition tuples, which are stored in a first-in, first-out buffer. The pol-

icy and value functions are trained on the most recent 256 transition tuples for 10 epochs

using PPO. The PPO gradient updates only affect the policy and value function weights,

with backpropagation stopping at the encoder outputs. The autoencoder is trained for

eight epochs using the same loss functions as described in Section 3.1.2. For each epoch,

a new, random set of 256 observations is sampled from the transition buffer.

Agents are trained in the crossing and door key environments shown in Figure 3.1,

but with shortened episode lengths. The maximum episode length is set to 400 in the

crossing environment and 1,000 in the door key environment.

4.2 Experiments

In this section, we compare RL agents trained over discrete representations to those

trained over continuous representations. We begin with the episodic RL setting, and

learn that discrete representations can help learn a good policy faster, but only if the

representations are given enough time to learn prior to RL updates. We transition the

continual RL setting, where the environment periodically changes. We find that the

discrete representations help agents quickly adapt to changes in the environment, making

them ideal for continual learning.

4.2.1 Episodic RL

We train RL agents with continuous and discrete representations in the crossing and

door key environments, plotting the results in Figure 4.1. The continuous model is faster

to achieve better performance in the crossing environment, but there is no statistically

significant difference in the door key environment. Though discrete representations ini-

tially seem to convey no benefit in this vanilla RL setting, inspecting the autoencoder

33

Continuous

Discrete

Figure 4.1: Episode length binned into 100 buckets and averaged over 30 runs with a 95%
confidence interval. Both methods are trained with PPO; only the type of autoencoder
differs [46]. Shorter episode lengths are better, as they indicate the agent is finding the
goal faster.

Continuous

Discrete

Figure 4.2: Reconstruction loss of the autoencoder binned into 100 buckets for each of the
30 runs per method. The autoencoder is trained on observations randomly sampled from
a buffer that grows as the RL training progresses. Lower is better, indicating a better
reconstruction of the input observation

learning curves in Figure 4.2 reveals an important detail: the vanilla autoencoder learns

faster than the VQ-VAE. If the speed of the RL learning updates is our primary concern

(whether it actually is will be discussed later), then the learning speed of the autoencoder

is a confounding factor. We can remove this confounding factor by delaying PPO updates

until both autoencoders are trained to around the same loss.

We rerun the same RL experiment, but delay the first PPO update by a fixed number

of steps, until the autoencoders in most runs have converged. We plot the results in

Figure 4.3. Instead of the previously ambiguous results, we now see the discrete model

34

Continuous

Discrete

Figure 4.3: Episode length binned into 100 buckets and averaged over 30 runs with a 95%
confidence interval. Both methods are trained with PPO; only the type of autoencoder
differs [46]. Only the autoencoder is trained up to the dotted, black line, at which point
PPO updates also begin. Shorter episode lengths are better, as they indicate the agent
is finding the goal faster.

decisively outperforming the continuous model. Though the gap between both methods

looks small, the discrete model achieves the same performance as the continuous model

in a fraction of the time.

4.2.2 Continual RL

In the previous section, we showed that an agent was able to more quickly learn to navigate

to the goal when using discrete representations, but this benefit only arose when we

allowed the VQ-VAE extra time to learn, prior to RL training. In a Minigrid environment,

this cost is bearable; the environment is static and simple, making representation learning

a relatively quick and easy process. In the big world setting, where the agent cannot

perfectly model the world, and the world is always changing from the agent’s perspective,

is this approach still beneficial?

To answer this question, we modify the crossing and door key environments from the

previous experimental setup. Every fixed amount of steps, and on the very first step of

each run, the starting state of the environment is randomized. All of the same items and

walls remain, but their positions are randomized, only the positions of the goal and outer

walls staying constant. The crossing environment changes every 40,000 steps, and door

key environment every 100,000 steps. Example environment initializations are shown in

Figure 4.4. By only changing the environment after a long delay, we create specific points

35

Figure 4.4: The top row depicts random initializations of the crossing environment, and
the bottom that of the door key environment. Each time the environment changes, the
positions of all internal walls and objects are randomized, with the exception of the agent
position in the crossing environment and the goal in both environments.

in the learning process where we can clearly observe the difference between how discrete

and continuous methods adapt to change.

We rerun the previous RL experiment (shown in Figure 4.3), using the same training

procedure with the same delay before the first PPO update, but periodically change the

environment. We plot the results in Figure 4.5, where we observe a spike in the episode

length each time the environment changes, indicating that the agents’ previous policies

are no longer sufficient to solve the new environments. Both agents are able to adapt

and improve their policies before the environment changes again, but on average, the

discrete agent adapts faster and achieves better performance 10 out of 10 times in both

the changing crossing and changing door key environments.

While the slower, initial learning speed of the VQ-VAE hinders its ability to max-

imize reward at the beginning of the training process, it does not seem to hinder its

ability to adapt after an initial representation has already been learned. Inspecting the

reconstruction loss of both autoencoders, plotted in Figure 4.6, we see that the VQ-VAE’s

reconstruction loss increases much less when the environment changes. The shorter spikes

suggest that the VQ-VAE representations generalize better, allowing them to adapt faster

when the environment changes.

With these results, we return to the initial question: can discrete representations

be beneficial in RL even if the initial representation is learned slower? We argue in

the affirmative. If we consider continually learning RL agents in the big world setting,

where the goal of the agent is to maximize reward over its lifetime by quickly adapting

36

Continuous

Discrete

Figure 4.5: Episode length averaged over 30 runs with a 95% confidence interval. The
average episode length is plotted every 2,500 steps in the crossing environment and every
10,000 steps in the door key environment. Black, dotted lines indicate a change to the
environment. Both methods are trained with PPO after an initial delay, which allows the
autoencoder to get a head start on learning representations. Only the type of autoencoder
differs between methods. The plot only depicts the performance starting from the first
PPO update. Refer to Figure A.1 for the full figure. A faster drop in episode length is
better, indicating faster adaptation to the changed environment.

to unpredictable scenarios, then the cost of learning an initial representation is easily

amortized by a lifetime of faster adaptation.

37

Continuous

Discrete

Figure 4.6: Reconstruction loss of both encoders averaged over 30 runs with a 95% confi-
dence interval. The average reconstruction loss is plotted every 2,500 steps in the crossing
environment and every 10,000 steps in the door key environment. An autoencoder and
policy are trained in tandem for each run. Lower peaks mean the representation gener-
alizes better, and a quicker decrease means the autoencoder is learning faster. Overall, a
lower average reconstruction loss is better.

4.3 Baseline Comparison

The continual RL agents using representations produced by VQ-VAEs have worked better

than their continuous counterparts in our experiments, but how do our results compare

to those of other methods? In our final experiment, we introduce two new methods to

better understand how our results fit into the bigger picture. We introduce a baseline

that uses only the PPO objective with no autoencoder reconstruction loss, and another

baseline that generates representations with FTA.

We refer to the former as the RL only baseline, as it has no auxiliary reconstruction

objective. It shares the same architecture as the continuous model, with the exception

that is does not have a decoder (because the decoder is only needed to calculate the

reconstruction loss). The RL only baseline trains end-to-end, backpropagating the PPO

gradients through the policy network, value network, and encoder. This is the simplest,

and perhaps the most common way of applying RL.

The FTA baseline is nearly identical to the vanilla AE (previously denoted as the

continuous) method, with the exception that FTA, as described in Section 2.5, is applied

to the representation layer. This creates a sparse representation, but the architecture and

training procedure are otherwise the same. FTA is known to be a strong baseline [38, 42,

38

Vanilla AE

VQ-VAE

FTARL Only

Figure 4.7: Episode length averaged over 30 runs with a 95% confidence interval. The
average episode length is plotted every 2,500 steps in the crossing environment and every
10,000 steps in the door key environment. Black, dotted lines indicate a change to the
environment. All methods are trained with PPO after an initial delay, which allows the
autoencoder to get a head start on learning representations on methods other than RL
Only. Only the type of autoencoder differs, except for RL Only, which has no recon-
struction loss. The plot only depicts the performance starting from the first PPO update.
Refer to Figure A.2 for the full figure. A faster drop in episode length is better, indicating
faster adaptation to the changed environment.

57], and it is similar to the discrete baseline in the way that it generates “fuzzy” one-hot

vectors. For this method, we set the input bounds to [−2, 2], and in each environment,

sweep over the latent dimension (prior to FTA) D ∈ {16, 64, 256, 1024}, the number of

bins k ∈ {8, 16, 32, 64}, and the sparsity hyperparameter η ∈ {0.125, 0.25, 0.5}. The final

hyperparameters in both environments are D = 256, k = 8, and η = 0.5, which sets the

size of each bin to 0.25.

We plot the results in Figure 4.7, which includes both the old and new methods. The

RL only method falls far behind all of the other methods, with a slight improvement

noticeable only towards the end of the crossing environment plot. These results fall in

line with what is expected given previous work [20, 27, 43, 58], that show learning from

autoencoder representations is more efficient than learning from raw pixel observations.

The FTA method produces better results that fall in between the vanilla AE and VQ-

VAE curves. If we measure performance as the cumulative reward (or average episode

length) per randomized environment configuration, we see that the VQ-VAE still performs

the best, having the best performance in nine out of ten configurations in the crossing

environment, and ten out of ten of the configurations in the door key environment. FTA

performs better than the vanilla AE in ten out of ten of the crossing configurations, and

39

seven out of ten of the door key configurations. Though the performance of FTA does

not surpass that of the VQ-VAE, it partially bridges the gap between the vanilla AE and

the VQ-VAE. Given that FTA representations are sparse but not discrete, these results

raise the question of whether “discretness” is truly necessary. Perhaps the sparsity of the

VQ-VAE representations is what makes them so effective.

4.4 Discussion

In this section, we moved to the full RL problem, where the agent must learn in a world

that is no longer static. In this setting, agents learning from discrete representations

were quicker to learn how to navigate to the goal state. When tasked with learning in

a periodically changing environment, faster learning along with the better generalization

exhibited by discrete representations translated to faster adapting agents. In the face of

a large world that the agent cannot hope to fully model, sample efficient adaptation is

key. These experiments demonstrate that discrete representations learned by a VQ-VAE

can facilitate quick adaptation, making them a promising candidate in the search for

alternative ways of representing the current state of an environment.

40

Chapter 5

Conclusion & Future Work

At the start of this work, we claimed that when limited in training data, model capacity, or

computation, models learned over discrete representations often find better solutions, and

do so faster, than their continuous counterparts. With experimental results that support

this claim, we now turn to integrate our findings and discuss an overall interpretation of

the results, the implications of our work, and future directions.

5.1 A Common Thread

In the model learning setting, discrete representations enabled learning more of the world

with a limited capacity. In the continual RL setting, discrete representations enabled

faster learning and adaptation. However, what remains ambiguous is why the application

of discrete representations results in distinct benefits across different contexts. Is there

a deeper understanding that would draw a connection between these distinct results?

Consolidating our findings in the past sections, we hypothesize that all of the improve-

ments observed from discrete representations can be explained via the same underlying

mechanism.

The goal in most machine learning tasks, including the settings in this work, can be

simplified into learning a model that maps a given input distribution to some other out-

put distribution. That is, the model is trying to best approximate the true, underlying

function that maps inputs to outputs, which we refer to as the target function. One way

to judge the difficulty of a learning task is by the size or complexity of the target func-

tion; more complex target functions correspond to more difficult tasks and less complex

41

functions to easier tasks. Though our work lacks a precise tool for measuring this notion

of “complexity”, the idea is analogous to the VC-dimension in PAC learning. A more

complex concept class (space of target functions) will require a hypothesis space (model)

with a higher VC-dimension (capacity) to be sufficiently learned. We hypothesize that

target functions mapping discrete representations to things we tend to care about (like

the next state or the optimal action) are often less complex than those mapping from

raw, continuous inputs, and hence, are easier to learn.

If learning from discrete representations makes the target function less complex when

learning a model of a vast world, we would expect to more accurately model more of

the world. This is what we observe in Figures 3.4 and 3.7. As the difficulty of the

environment increases or the size of the world model shrinks, making perfect modeling

impossible, the discrete world model gets better and better. If the target function is less

complex when learning a policy, then we would expect to learn the policy faster because

learning smaller, less complex functions is an easier task. This is what we observe in

Figures 4.1 and 4.5. Learning a policy from discrete representations is faster, and when

the environment changes, the agent is again faster to learn a new, strong policy.

5.2 Future Work

Our work offers several contributions, but there is still much to be understood about using

discrete representations in RL. Much of potential future work can be categorized as further

understanding why discrete representations are effective. We propose the hypothesis that

target functions mapping from discrete representations are less complex, but is that truly

the case? And if so, why are they less complex? Although we show that the discrete

representation of information can be important in Figure 3.8, it is not clear that the

discreteness of the representations is what matters. It is possible, for example, that the

sparsity of the the VQ-VAE representations is what makes them effective [56]. There

are likely also other ways to learn useful, discrete representations that could be worth

exploring.

Our work also does little to suggest how far these results extend. The use of discrete

representations in models like DreamerV3 [21] and the success of VQ-VAEs in even the

domain of computer vision [15, 23, 41, 54], where inputs are complex, suggest that that

these results will scale up. Without a thorough study, however, we cannot be certain.

Future work could study the effectiveness of discrete representations in environments that

42

are fully continuous, unlike Minigrid, which has a finite number of states and a state space

that is inherently represented (in the code) by a set of discrete values. If the performance

of discrete representation-based method do suffer in fully continuous environments, then

the combination of both continuous and discrete values within a single representation

could be another interesting direction to explore.

5.3 Conclusion

In this work, we explored the effects of learning from discrete representations in three

modules that are commonly found in models of intelligent agents: a world model, a value

function, and a policy. In both settings, the use of discrete representations benefited the

learning process. Discrete world models were able to better model more of the world with

less resources, and discrete agents learned to navigate to the goal and adapt to changes

in the environment faster. Synthesizing these observations, we offered a hypothesis that

explains these results as separate manifestations of a single phenomenon: functions we

tend to care about, like world models and optimal policies, are less complex, and hence,

easier to learn when learned from discrete representations.

Our contributions extend beyond understanding, and implicate discrete representa-

tions learned by VQ-VAEs as a promising candidate for the representation of observa-

tions in continual RL agents. If we care about agents working in worlds much larger than

themselves, we must accept that they will be incapable of perfectly modeling the world.

The agent will see the world as forever changing due to its limited capacity, which is the

case in complex environments like the real world [30, 51]. If we wish to address this issue

in the representation learning space, agents must learn representations that enable quick

adaptation, and are themselves quick to adapt [49]. Discrete representations learned by

VQ-VAEs do exactly that, and provide a path towards ever more efficient, continually

learning RL agents.

43

References

[1] Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado.

Loss of plasticity in continual deep reinforcement learning. In Conference on Lifelong

Learing Agents (CoLLAs), 2023.

[2] Abien Fred Agarap. Deep learning using rectified linear units (ReLU). CoRR,

abs/1803.08375, 2018.

[3] P. C. Edgar An, W. Thomas Miller III, and P. C. Parks. Design improvements in

associative memories for cerebellar model articulation controllers (CMAC). Artificial

Neural Networks, 47:1207–1210, 1991.

[4] Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and

David Silver. Planning in stochastic environments with a learned model. In Inter-

national Conference on Learning Representations (ICLR), 2022.

[5] Christopher G. Atkeson and Juan Carlos Santamaŕıa. A comparison of direct and

model-based reinforcement learning. In International Conference on Robotics and

Automation (ICRA), 1997.

[6] Dana H. Ballard. Modular learning in neural networks. In Association for the Ad-

vancement of Artificial Intelligence (AAAI), 1987.

[7] André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, David Sil-

ver, and Hado van Hasselt. Successor features for transfer in reinforcement learning.

In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[8] Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright,

Heinrich Küttler, Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian

Schrittwieser, Keith Anderson, Sarah York, Max Cant, Adam Cain, Adrian Bolton,

44

Stephen Gaffney, Helen King, Demis Hassabis, Shane Legg, and Stig Petersen. Deep-

mind lab. CoRR, abs/1612.03801, 2016.

[9] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade

Learning Environment: An evaluation platform for general agents. Journal of Arti-

ficial Intelligence Research (JAIR), 47:253–279, 2013.

[10] Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Täıga, Pablo Samuel

Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geo-

metric perspective on optimal representations for reinforcement learning. In Advances

in Neural Information Processing Systems (NeurIPS), 2019.

[11] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning:

A review and new perspectives. Institute of Electrical and Electronics Engineers

(IEEE), 35(8):1798–1828, 2013.

[12] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propa-

gating gradients through stochastic neurons for conditional computation. CoRR,

abs/1308.3432, 2013.

[13] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas

Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Mini-

grid & miniworld: Modular & customizable reinforcement learning environments for

goal-oriented tasks. CoRR, abs/2306.13831, 2023.

[14] Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G.

Bellemare, and David Silver. The value-improvement path: Towards better represen-

tations for reinforcement learning. In Association for the Advancement of Artificial

Intelligence (AAAI), 2021.

[15] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-

resolution image synthesis. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2021.

[16] Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross

Goroshin, Pablo Samuel Castro, and Marc G. Bellemare. Proto-value networks:

Scaling representation learning with auxiliary tasks. In International Conference on

Learning Representations (ICLR), 2023.

45

[17] Sina Ghiassian, Banafsheh Rafiee, Yat Long Lo, and Adam White. Improving per-

formance in reinforcement learning by breaking generalization in neural networks. In

International Conference on Autonomous Agents and Multiagent Systems (AAMAS),

2020.

[18] William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel,

Manuela Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of

minecraft demonstrations. In International Joint Conference on Artificial Intelli-

gence (IJCAI), 2019.

[19] Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International

Conference on Learning Representations (ICLR), 2022.

[20] Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mas-

tering Atari with discrete world models. In International Conference on Learning

Representations (ICLR), 2021.

[21] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering

diverse domains through world models. CoRR, abs/2301.04104, 2023.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Institute of Electrical and Electronics Engineers (IEEE),

2016.

[23] Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Few-shot image generation using

discrete content representation. In International Conference on Multimedia, 2022.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Machine

Learning (ICML), 2015.

[25] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your

model: Model-based policy optimization. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2019.

[26] Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-

learning provably efficient? In Advances in Neural Information Processing Systems

(NeurIPS), 2018.

46

[27] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-

Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a

day. In International Conference on Robotics and Automation (ICRA), 2019.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In International Conference on Learning Representations (ICLR), 2015.

[29] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Interna-

tional Conference on Learning Representations (ICLR), 2014.

[30] Saurabh Kumar, Henrik Marklund, Ashish Rao, Yifan Zhu, Hong Jun Jeon, Yueyang

Liu, and Benjamin Van Roy. Continual learning as computationally constrained

reinforcement learning. CoRR, abs/2307.04345, 2023.

[31] Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G.

Bellemare. On the generalization of representations in reinforcement learning. In

Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, International

Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

[32] S.H. Lane, D.A. Handelman, and J.J. Gelfand. Theory and development of higher-

order cmac neural networks. IEEE Control Systems, 12(2):23–30, 1992.

[33] Yann LeCun. A path towards autonomous machine intelligence. Open Review, 2022.

[34] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.

Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to

handwritten zip code recognition. Neural Comput., 1(4):541–551, 1989.

[35] Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael H. Bowling. State of

the art control of Atari games using shallow reinforcement learning. In International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2016.

[36] Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of

auxiliary tasks on representation dynamics. In International Conference on Artificial

Intelligence and Statistics (AISTATS), 2021.

[37] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J.

Hausknecht, and Michael Bowling. Revisiting the Arcade Learning Environment:

Evaluation protocols and open problems for general agents. Journal of Artificial

Intelligence Research (JAIR), 61:523–562, 2018.

47

[38] Erfan Miahi. Feature generalization in deep reinforcement learning: An investigation

into representation properties, 2022.

[39] Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient

world models. In International Conference on Learning Representations (ICLR),

2023.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, DaanWierstra, Shane Legg, and Demis Hassabis. Human-

level control through deep reinforcement learning. Nature, 518(7540):529–533, Feb

2015.

[41] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W. Battaglia. Generating

images with sparse representations. In International Conference on Machine Learning

(ICML), 2021.

[42] Yangchen Pan, Kirby Banman, and Martha White. Fuzzy tiling activations: A simple

approach to learning sparse representations online. In International Conference on

Learning Representations (ICLR), 2021.

[43] Bharat Prakash, Mark Horton, Nicholas R. Waytowich, William David Hairston,

Tim Oates, and Tinoosh Mohsenin. On the use of deep autoencoders for efficient

embedded reinforcement learning. In Great Lakes Symposium on VLSI (GLSVLSI),

2019.

[44] Jan Robine, Tobias Uelwer, and Stefan Harmeling. Smaller world models for rein-

forcement learning, 2021.

[45] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent

Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Grae-

pel, Timothy P. Lillicrap, and David Silver. Mastering Atari, go, chess and shogi by

planning with a learned model. Nature, 588(7839):604–609, 2020.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[47] Richard S. Sutton. The quest for a common model of the intelligent decision maker.

CoRR, abs/2202.13252, 2022.

48

[48] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, second edition, 2018.

[49] Richard S. Sutton, Anna Koop, and David Silver. On the role of tracking in stationary

environments. In International Conference on Machine Learning (ICML), 2007.

[50] Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael H. Bowling.

Dyna-style planning with linear function approximation and prioritized sweeping. In

Uncertainty in Artificial Intelligence, volume 24, pages 528–536, 2008.

[51] Richard S. Sutton, Michael H. Bowling, and Patrick M. Pilarski. The Alberta plan

for AI research. CoRR, abs/2208.11173, 2022.

[52] Erik Talvitie. Self-correcting models for model-based reinforcement learning. In

Association for the Advancement of Artificial Intelligence (AAAI), 2017.

[53] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,

David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lil-

licrap, and Martin A. Riedmiller. Deepmind control suite. CoRR, abs/1801.00690,

2018.

[54] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete

representation learning. In Advances in Neural Information Processing Systems

(NeurIPS), 2017.

[55] Yi Wan, Muhammad Zaheer, Adam White, Martha White, and Richard S. Sutton.

Planning with expectation models. In International Joint Conference on Artificial

Intelligence (IJCAI), volume 28, pages 3649–3655, 2019.

[56] Han Wang, Erfan Miahi, Martha White, Marlos C. Machado, Zaheer Abbas, Raksha

Kumaraswamy, Vincent Liu, and Adam White. Investigating the properties of neural

network representations in reinforcement learning. CoRR, abs/2203.15955, 2022.

[57] Han Wang, Erfan Miahi, Martha White, Marlos C. Machado, Zaheer Abbas, Raksha

Kumaraswamy, Vincent Liu, and Adam White. Investigating the properties of neural

network representations in reinforcement learning. CoRR, abs/2203.15955, 2023.

[58] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mas-

tering Atari games with limited data. In Advances in Neural Information Processing

Systems (NeurIPS), 2021.

49

Appendix A

Extra Results & Hyperparameters

A.1 Experiment Details

Hyperparameter Value
Bin count 32
Discretization projection 256, 256
Prediction projection 256, 256

Table A.1: Hyperparameters for all sample-based world models that account for stochas-
ticity using the same method as Antonoglou et al. [4]. Bin count is the number of discrete
classes into which outcomes can be discretrized. The projection hyperparameters give the
sizes of the hidden layers used to discretize states and predict the next discrete state.
ReLUs are used between all hidden layers.

Hyperparameter Value
Horizon (T) 256
Adam step size 256
(PPO) Num. epochs 10
(PPO) Minibatch size 64
Discount (γ) 0.99
(Autoencoder) Num. epochs 8

Table A.2: Hyperparameters for all RL training procedures used in Chapter 4. Hyper-
parameters for both PPO and other training details are included. Hyperparameters for
PPO are referred to by the same naming convention as in Schulman et al. [46].

50

A.2 Supplemental Continual RL Figures

Continuous

Discrete

Figure A.1: Episode length averaged over 30 runs with a 95% confidence interval. The
average episode length is plotted every 2,500 steps in the crossing environment and every
10,000 steps in the door key environment. Black, dotted lines indicate a change to the
environment. Both methods are trained with PPO after an initial delay, which allows
the autoencoder to get a head start on learning representations. The PPO updates
start after 200K steps in the crossing environment, and after 500K steps in the door
key environment. A faster drop in episode length is better, indicating faster adaptation
to the changed environment.

Vanilla AE

VQ-VAE
FTA

RL Only

Figure A.2: Episode length averaged over 30 runs with a 95% confidence interval. The
average episode length is plotted every 2,500 steps in the crossing environment and every
10,000 steps in the door key environment. Black, dotted lines indicate a change to the
environment. All methods are trained with PPO after an initial delay, which allows the
autoencoder to get a head start on learning representations on methods other than RL
Only. The PPO updates start after 200K steps in the crossing environment, and after
500K steps in the door key environment. Only the type of autoencoder differs, except
for RL Only, which has no reconstruction loss. A faster drop in episode length is better,
indicating faster adaptation to the changed environment.

51

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Approach

	Background
	Reinforcement Learning
	Policy Gradient
	Representation Learning
	Autoencoders
	Fuzzy Tiling Activations
	World Models
	Learning a Stochastic World Model

	World Model Learning with Discrete Representations
	Experimental Design
	Environments
	Training
	Autoencoder Architecture
	Evaluation

	Results
	Model Rollouts
	Scaling the World Model
	Representation Matters

	Discussion

	Policy Learning with Discrete Representations
	Experimental Design
	Experiments
	Episodic RL
	Continual RL

	Baseline Comparison
	Discussion

	Conclusion & Future Work
	A Common Thread
	Future Work
	Conclusion

	References
	Extra Results & Hyperparameters
	Experiment Details
	Supplemental Continual RL Figures

