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a b s t r a c t

In this paper, we give a direct derivation of the Duncan–Mortensen–Zakai filtering
equation, without assuming right continuity of the signal, nor its filtration, andwithout the
usual finite energy condition. As a consequence, the Fujisaki–Kallianpur–Kunita equation
is also derived. Our results can be applied to filtering problems in which the signal process
has α-stable (α > 1) components, and the sensor function is linear.
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1. Introduction

Classical continuous-time filtering theory requires that the signal process satisfies the finite energy condition given
below in (1). However, some signals like the α-stable processes, or stochastic processes satisfying a large class of stochastic
differential equations (SDEs) driven by α-stable processes, will no longer satisfy the moment condition (e.g. the second
moment of an α-stable random variable does not exist when 1 < α < 2). In this paper, we generalize the classical filtering
equations, by weakening the finite energy condition. Our new results can be applied to parameter estimation, and filtering
for the geophysical models discussed in e.g. Ditlevsen (1999a,b). In these models, climate change is related to an SDE driven
by an α-stable process (with α ≈ 1.75), and inference is done through massive ice core samples corrupted by such things
as dating error, ice shifting and melting and refreezing.
Let {Xt , t ≥ 0} be a measurable Markov process, taking values in a complete separable metric space S, and living on a

complete probability space (Ω,F , P). The classical filtering problem is to describe the conditional distribution of signal Xt ,
given the collection {Ys, 0 ≤ s ≤ t} of distorted, corrupted, partial observations

Yt =
∫ t

0
h(Xs)ds+Wt ,

where h : S → Rd is measurable and W is a standard Brownian motion independent of X . A common goal is to derive a
stochastic differential equation (SDE) for the conditional distribution. Under the finite energy condition∫ T

0
E[|h(Xt)|2]dt <∞, (1)

with | · | denoting the Euclidean distance, Fujisaki et al. (1972) obtained a SDE for the conditional expectations
E[f (Xt)|Ys, 0 ≤ s ≤ t] with f belonging to the domain of the generator of X . We shall refer to this equation as the FKK
equation, but it is equally well known as the Kushner-Stratonovich equation. An equivalent, yet simpler, equation is the
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Duncan–Mortensen–Zakai (DMZ) equation for the unnormalized conditional expectation (see Zakai (1969)). There are two
methods to derive the DMZ equation. The first one is to use the Kallianpur–Striebel formula, the FKK equation and Ito’s rule
(e.g., Szpirglas (1978) and Davis and Marcus (1980)). The second method is to derive the DMZ equation directly under (1)
as done by Ocone (1984) (see also references therein).
The finite energy condition (1) has previously been imposed in the derivation of the FKK and DMZ equations. Yet, these

equations (see (6) and (7) in Section 2) are well defined only under the condition E
∫ T
0 |h(Xs)|ds < ∞. Indeed, it follows

from Section 3, that a martingale formulation of the filtering problem holds under the condition
∫ T
0 |h(Xs)|

2ds < ∞ a.s.
Therefore, it is natural to ponder (see Remark 3 of Kurtz and Ocone (1988)), whether solutions to these filtering equations
exist under conditions weaker than (1). In this paper, we answer this question in the affirmative.
Herein, we derive the DMZ equation without assuming right continuity or the standard finite energy condition. In

Section 2, we provide our notation and main results. In Section 3, we consider a martingale problem related to the
unnormalized filter and prove Theorem 1. In Section 4, we derive the DMZ equation and FKK equation (Theorem 2). The
Appendix contains some technical results used in previous Sections.

2. Notation and main results

We let X and Y be as in the introduction, and define F X
t = σ {Xs, 0 ≤ s ≤ t}, F

X
t = σ {F X

t ,N }, F
X
t+ = ∩ε>0 F

X
t+ε ,

F W
t = σ {Ws, 0 ≤ s ≤ t}, F Y

t = σ {σ {Ys, s ≤ t},N }, where N is the collection of P-null sets. Let B(S) be the class
of R-valued bounded measurable function on S and P(t, x,Γ ) (t ≥ 0, x ∈ S,Γ ∈ B(S)) be the transition function for
X . Its transition semigroup Tt , defined by Tt f (x) =

∫
S f (y)P(t, x, dy) for f ∈ B(S), is generally only measurable. We let

J0 = {f ∈ B(S) : bp − limt↘0 Tt f = f }, where bp-lim stands for bounded pointwise limit, and assume that (Tt f )(x) is a
jointly measurable function of (t, x) for all f ∈ J0. Then, J0 would contain the continuous bounded functions if X were right
continuous, which we do not assume. We define

D =

{
f ∈ J0 : there exists g f ∈ J0 such that (Tt f )(x) = f (x)+

∫ t

0
(Tsg f )(x)ds, ∀x ∈ S

}
g f is uniquely determined so we let Lf = g f for f ∈ D . L is called the weak generator of {Xt , t ≥ 0} and D is its domain
(e.g. Dynkin (1965)). It follows from Kallianpur and Karandikar (1985) thatD is measure-determining class if J0 is bp-dense
in B(S).
To calculate the conditional expectations πt(f ) = E[f (Xt)|F Y

t ], f ∈ B(S), we fix T > 0 and use the conditions on h∫ T

0
|h(Xt)|2dt <∞ a.s. and (2)∫ T

0
E|h(Xt)|dt <∞. (3)

Comparedwith the finite energy condition (1), our new conditions (2) and (3) aremore general, allowing for instance h(x) =
x and Xt to be an α-stable process with α > 1. We set F

X,Y
t

.
= σ {F X

t ,F
Y
t }, F

X,Y
t+ = ∩ε>0 F X,Y

t+ε , Yt =
⋂
ε>0 σ {F

Y
t+ε,F

X
∞
},

and

Mt(f ) = f (Xt)− f (X0)−
∫ t

0
Lf (Xs)ds, ∀f ∈ D. (4)

It follows by Lemma 6 in the Appendix that
∫ t
0 Lf (Xs)ds ∈ F

X
t and {Mt(f ), t ≥ 0} is an {F

X
t }-martingale under P . We define

the innovation process νt = Yt −
∫ t
0 πs(h)ds. Then, by Lemma 2.2 and Remark 2.1 of Fujisaki et al. (1972), we know that

(νt ,F
Y
t , P) is a d-dimensional martingale with a continuous version under the condition (3). Now, we define

At = exp
{∫ t

0
〈h(Xs), dYs〉 −

1
2

∫ t

0
|h(Xs)|2ds

}
(5)

and find that {A−1t , t ∈ [0, T ]} is a
{
Yt
}
-martingale and

{
(Wt ,Yt), t ≥ 0

}
is a d-dimensional Brownian motion on

(Ω,F , P). These results are standard in filtering theory, and can be easily derived by using the independence ofW and X .
Now, we define a new probability measure via Girsanov’s theorem

dP|Yt
dP|Yt

= A−1t = E
[
A−1T |Y

t] .
Then, P ◦ (X, Y )−1 = P ◦ (X,W )−1, {(At ,Yt), t ∈ [0, T ]} is a martingale under P , and {Yt} is a standard Brownian motion
independent of {Xt} under P . Moreover, one has the Kallianpur–Striebel formula

πt(f ) = E[f (Xt)|F Y
t ] =

E[f (Xt)At |F Y
t ]

E[At |F Y
t ]

=
p̄Yt (f )
p̄Yt (1)

,
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where p̄Yt (f )
.
= E[f (Xt)At |F Y

t ] for all f ∈ D . Hence, the conditional statistics of Xt given F Y
t , in terms of P , can be calculated

from those for the new measure P . Now, we state our main results.

Theorem 1. Suppose that h satisfies (2). Then, p̄Yt (f )− p̄
Y
0 (f )−

∫ t
0 p̄
Y
s (Lf )ds is an {F

Y
t }-martingale under P for each f ∈ D .

Theorem 2. Suppose h satisfies (2) and (3). Then, the DMZ and FKK equations

p̄Yt (f ) = p̄
Y
0 (f )+

∫ t

0
p̄Ys (Lf )ds+

∫ t

0
〈p̄Ys (hf ), dYs〉 a.s. (6)

πt(f ) = π0(f )+
∫ t

0
πs(Lf )ds+

∫ t

0
〈πs(hf )− πs(h)πs(f ), dνs〉 a.s. (7)

hold for all t ∈ [0, T ], f ∈ D .

Remark 1. In Eqs. (6) and (7) as well as their proofs we take {p̄Yt (hf ), t ≥ 0} and {πt(hf ), t ≥ 0} to be the optional
projections of {Ē[f (Xt)h(Xt)At |F Y

t ], t ≥ 0} and {E[f (Xt)h(Xt)|F
Y
t ], t ≥ 0}, respectively.

Remark 2. When Kurtz and Ocone (1988) considered the uniqueness of solutions to (6) and (7) (in the case S is locally
compact), they used the condition (3) and

∫ T
0 |πs(h)|

2ds < ∞ a.s. which is similar to our condition (2). In Theorem 2, we
provide existence of solutions to (6) and (7) under conditions (2) and (3), which complements the results in Kurtz and Ocone
(1988).

3. Proof of Theorem 1

We give some preliminary results before proving Theorem 1. Note that the augmented filtration {F X,Y
t }t≥0 need not be

right continuous. By Lemma 7 in the Appendix, {At , t ≥ 0} is indistinguishable from an almost surely continuous {F
X,Y
t }-

progressively measurable process. In the sequel, {At , t ≥ 0} is taken to be this progressively measurable process.
Note that Mt(f ) = f (Xt) − f (X0) −

∫ t
0 Lf (Xs)ds is an {F

X
t }-martingale but not necessarily to be cadlag, and {F

X
t } is not

necessarily right continuous. We define

M+t (f ) = lims↘t
Ms(f ),

which makes sense by upcrossing inequality. Then, M+t (f ) is actually a cadlag {F
X
t+}-martingale (see Meyer (1966)). Let

Zt(f ) = f (X0)+
∫ t
0 Lf (Xs)ds+M

+

t (f ). We first prove the following result:

Lemma 3. p̄Yt (f ) = E[f (Xt)At |F
Y
t ] = E[Zt(f )At |F

Y
t ].

Proof. We need only show E[M+t (f )At |F Y
t ] = E[Mt(f )At |F

Y
t ]. However, one has that

E[(Mt+s(f )−Mt(f ))At |F Y
t ] = E[E[(Mt+s(f )−Mt(f ))At |F

X,Y
t ]|F

Y
t ]

= E[AtE[(Mt+s(f )−Mt(f ))|F
X,Y
t ]|F

Y
t ]

= 0.

Using dominated convergence theorem and letting s→ 0, one has E[M+t (f )At |F Y
t ] = E[Mt(f )At |F

Y
t ]. �

Lemma 4. t → AtM+t (f ) is an
{
F X,Y
t+

}
-martingale under P.

Proof. For τ < t , we have that

E
[
AtM+t (f ) | F

X,Y
τ+

]
= E

[
E [At | Yτ ]M+t (f )|F

X,Y
τ+

]
= AτE

[
M+t (f ) | F

X,Y
τ+

]
= AτM+τ (f ) a.s. �

We define

Mt(f )
.
= Zt(f )At − f (X0)−

∫ t

0
AsLf (Xs)ds, ∀f ∈ D. (8)

Lemma 5. {Mt(f ), t ≥ 0} is an {F
X,Y
t+ }-martingale under P.
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Proof. By integration by parts, we have

Zt(f )At = M+t (f )At + f (X0)At +
∫ t

0
Lf (Xs)ds · At

= M+t (f )At + f (X0)At +
∫ t

0
AsLf (Xs)ds+

∫ t

0

∫ u

0
Lf (Xs)dsdAu.

This implies thatMt(f ) is an {F
X,Y
t+ }-local martingale. Moreover, by (8), we find

|Mt(f )| ≤
∣∣∣∣(f (X0)+ ∫ t

0
Lf (Xs)ds+M+t (f )

)
At

∣∣∣∣+ |f (X0)| + ∣∣∣∣∫ t

0
AsLf (Xs)ds

∣∣∣∣
≤

(
sup
x∈S
|f (x)| + t sup

x∈S
|Lf (x)|

)
At + |M+t (f )At | + sup

x∈S
|f (x)| + sup

x∈S
|Lf (x)|

∫ t

0
Asds.

So,Mt(f ) is of class DL, hence an {F
X,Y
t+ }-martingale, by the fact that At andM

+

t (f )At are both {F
X,Y
t+ }-martingales, hence of

class DL. �

Proof of Theorem 1. We take conditional expectations on (8), and use Fubini’s theorem as well as independent increments
to find

E[Zt(f )At | F Y
t ] = E[f (X0)] +

∫ t

0
E[AsLf (Xs) | F Y

s ]ds+Mt(f ) a.s.,

whereMt(f )
.
= E

[
Mt(f ) | F Y

t

]
is an

{
F Y
t

}
-martingale by Lemma 5. Hence, by Lemma 3, p̄Yt (f ) − p̄

Y
0 (f ) −

∫ t
0 p̄
Y
s (Lf )ds is a

zero mean {F Y
t }-martingale. �

4. Proof of Theorem 2

To derive the DMZ equation, we identify Mt(f ) as the desired stochastic integral. By martingale representation
(e.g., Problem 3.4.16 of Karatzas and Shreve (1988)), we know thatMt(f ) is continuous, and there exists Rd-valued {F Y

t }-
progressively measurable process {αft , t ≥ 0} such that Mt(f ) =

∫ t
0 〈α

f
s , dYs〉 and

∫ T
0 |α

f
t |
2dt < ∞ a.s. Also, Mt(f ) is

the unique F Y
t -measurable random variable with E [Mt(f )ξt ] = E [Mt(f )ξt ] for all bounded ξt ∈ F Y

t . Without loss of
generality, we can take ξt = E

[
ξT | F

Y
t

]
with ξT ∈ F Y

T . Since
{
F Y
t

}
t≥0 is continuous, we have that t → E

[
ξT | F

Y
t

]
has a

continuousmodification (see II.2.9 of Revuz and Yor (1991)), and by almost suremonotonicity of conditional expectation,we
canmake this modification bounded. Thus,Mt(f ) =

∫ t
0 〈α

f
s , dYs〉 is theF Y

t -measurable random variable with E [Mt(f )ξt ] =
E [Mt(f )ξt ] for all continuous {F Y

t }-martingales ξt =
∫ t
0 〈Φs, dYs〉withΦ progressively measurable and

cξ
.
= sup

ω,t
|ξt(ω)| <∞.

We can also takeΦs bounded by Lemma 8 in the Appendix.
Now, in order to calculate E [Mt(f )ξt ], we define the stopping times

σN
.
= inf

{
t > 0 :

∣∣∣∣∫ t

0
〈αfs , dYs〉

∣∣∣∣ > N} .
Then,

∫ t
0 E
[
|α
f
s |
21s≤σN

]
ds <∞ so that |αfs |1s≤σN ∈ L2(P) almost everywhere.

Proof of Theorem 2. Since the FKK equation can be easily derived by using Ito’s formula, integration by parts and the DMZ
equation, we just derive the DMZ equation here. From the proof of Theorem 1, we know that

p̄Yt (f )− p̄
Y
0 (f )−

∫ t

0
p̄Ys (Lf )ds =Mt(f ), (9)

where Mt(f )
.
= E

[
Mt(f ) | F Y

t

]
=
∫ t
0 〈α

f
s , dYs〉 is an

{
F Y
t

}
-martingale. To derive the DMZ equation, it suffices to prove

that αft = p̄Yt (hf ) a.s.. We set ξt =
∫ t
0 〈Φs, dYs〉, let {τ

m
0 , τ

m
1 , . . . , τ

m
m } be a refining partition of [0, T ] and define operator

∆mi At = At∧τmi − At∧τmi−1 . By Doob’s optional sampling theorem, we have

Mt∧σN (f ) = E
[
E
[
Mt(f )|F Y

t

]
|F Y
t∧σN

]
= E

[
Mt(f )|F Y

t∧σN

]
a.s.

It follows that

E[Mt∧σN (f )ξt∧σN ] = E
[
Mt(f )ξt∧σN

]
. (10)
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By martingale difference technique, the {Yt}-martingale property of ξt∧σN and Lemma 5, we find that

E
[
Mt(f )ξt∧σN

]
=

m∑
i=1

E
[
∆mi (Mt(f )ξt∧σN )

]
=

m∑
i=1

E[∆mi Mt(f ) · ξt∧σN∧τmi−1 ] +
m∑
i=1

E[Mt∧τmi−1
(f ) ·∆mi ξt∧σN ] +

m∑
i=1

E[∆mi Mt(f )∆mi ξt∧σN ]

=

m∑
i=1

E[∆mi Mt(f )∆mi ξt∧σN ]. (11)

Then, using (8), we have for some constant C1 > 0∣∣∣∣∣ m∑
i=1

E
[
∆mi Mt(f )∆mi ξt∧σN

]
−

m∑
i=1

E
[
∆mi (Zt(f )At)∆

m
i ξt∧σN

]∣∣∣∣∣ =
∣∣∣∣∣ m∑
i=1

E
∫ t∧τmi

t∧τmi−1

AsLf (Xs)∆mi ξt∧σNds

∣∣∣∣∣
≤ C1E

[∫ t

0
Asds ·max

j≤m
|∆mj ξt∧σN |

]
, (12)

which tends to zero whenm→∞ by dominated convergence theorem. Therefore, E
[
Mt(f )ξt∧σN

]
is the limit of

m∑
i=1

E[∆mi At∆
m
i ξt∧σN Zt∧τmi (f )] +

m∑
i=1

E[At∧τmi−1∆
m
i ξt∧σN∆

m
i Zt(f )] (13)

as m → ∞. By the
{
Yt
}
-martingale property of ξt∧σN , it follows that E[H∆

m
i ξt∧σN ] = 0,∀H ∈ L1

(
Ω,Yt∧τ

m
i−1 , P

)
so the

second term in (13) is zero. For the first term in (13), one uses integration by parts to find that

∆mi At∆
m
i ξt∧σN −

∫ t∧τmi

t∧τmi−1

1s≤σN 〈h(Xs)As,Φs〉ds =
∫ t∧τmi ∧σN

t∧τmi−1∧σN
〈AsΦs, dYs〉 +

∫ t∧τmi

t∧τmi−1

〈h(Xs)Asξs∧σN , dYs〉 (14)

and notes that the right hand side of (14) is a {Yt}-local martingale difference by Proposition 3.2.24 of Karatzas and Shreve
(1988) (h(X.) is Yt-progressive). Moreover, there is some constant C2 > 0 such that∣∣∣∣∣∆mi At∆mi ξt∧σN −

∫ t∧τmi

t∧τmi−1

1s≤σN 〈h(Xs)As,Φs〉ds

∣∣∣∣∣ ≤ C2
(
|∆mi At | +

∫ t

0
As|h(Xs)|ds

)
.

Thus, if we define

ρk
.
= inf

{
t > 0 :

∣∣∣∣∫ t

0
〈AsΦs, dYs〉

∣∣∣∣ ∨ ∣∣∣∣∫ t

0
〈h(Xs)Asξs∧σN , dYs〉

∣∣∣∣ > k} ∧ T ,
then

{
∆mi At∧ρk∆

m
i ξt∧ρk∧σN −

∫ t∧ρk∧τmi
t∧ρk∧τmi−1

1s≤σNAs〈h(Xs),Φs〉ds
}∞
k=1
is uniformly integrable by condition (3) and the fact that

{At , t ≥ 0} is a {Yt}-martingale under P , hence of class DL. Therefore, by (14), Lemma 9 in the Appendix and the fact that
Zt∧τmi (f ) is bounded and Yt∧τ

m
i−1-measurable, we have

E[∆mi At∆
m
i ξt∧σN Zt∧τmi (f )] −

∫ t∧τmi

t∧τmi−1

E[1s≤σNAs〈h(Xs),Φs〉Zt∧τmi (f )]ds

= lim
k→∞

E

[
∆mi At∧ρk∆

m
i ξt∧ρk∧σN Zt∧τmi (f )−

∫ t∧ρk∧τmi

t∧ρk∧τmi−1

1s≤σNAs〈h(Xs),Φs〉Zt∧τmi (f )ds

]

= lim
k→∞

E

[
Zt∧τmi (f )

(∫ t∧τmi ∧σN∧ρk

t∧τmi−1∧σN∧ρk
〈AsΦs, dYs〉 +

∫ t∧τmi ∧ρk

t∧τmi−1∧ρk
〈h(Xs)Asξs∧σN , dYs〉

)]

= lim
k→∞

E

[
Zt∧τmi (f )E

[(∫ t∧τmi ∧σN∧ρk

t∧τmi−1∧σN∧ρk
〈AsΦs, dYs〉 +

∫ t∧τmi ∧ρk

t∧τmi−1∧ρk
〈h(Xs)Asξs∧σN , dYs〉

)∣∣∣∣∣Yt∧τmi−1
]]

= 0. (15)
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By condition (3) and the fact that 1s≤σNAs〈h(Xs),Φs〉 ∈ σ {F
X
s ,F

Y
∞
}, we find that

E
[
1s≤σNAs〈h(Xs),Φs〉(M

+

t∧τmi
(f )−Ms(f ))

]
= E

[
1s≤σNAs〈h(Xs),Φs〉(M

+

t∧τmi
(f )−M+s (f ))

]
+ E

[
1s≤σNAs〈h(Xs),Φs〉(M

+

s (f )−Ms(f ))
]

= 0 a.e. (16)

For any s ∈ [t ∧ τmi−1, t ∧ τ
m
i ], we have by (4)

Zt∧τmi (f ) = f (X0)+
∫ s

0
Lf (Xu)du+

∫ t∧τmi

s
Lf (Xu)du+M+t∧τmi

(f )

= f (Xs)+M+t∧τmi
(f )−Ms(f )+

∫ t∧τmi

s
Lf (Xu)du.

Consequently, by (16), the boundedness of Lf ,Φ as well as condition (3), we have

lim
m→∞

m∑
i=1

∫ t∧τmi

t∧τmi−1

E[1s≤σNAs〈h(Xs),Φs〉Zt∧τmi (f )]ds = lim
m→∞

m∑
i=1

∫ t∧τmi

t∧τmi−1

{
E
[
1s≤σNAs〈h(Xs),Φs〉f (Xs)

]
+ E

[
1s≤σNAs〈h(Xs),Φs〉(M

+

t∧τmi
(f )−Ms(f ))

]
+

∫ t∧τmi

s
E[1s≤σNAs〈h(Xs),Φs〉Lf (Xu)]du

}
ds

=

∫ t

0
E[1s≤σNAs〈h(Xs),Φs〉f (Xs)]ds. (17)

Therefore, by (10)–(17), it follows that

E
[
Mt∧σN (f )ξt∧σN

]
=

∫ t

0
E[1s≤σNAs〈h(Xs),Φs〉f (Xs)]ds. (18)

Now, by Ito’s isometry property, we note that

E
[
Mt∧σN (f )ξt∧σN

]
=

∫ t

0
E[1s≤σN 〈α

f
s ,Φs〉]ds. (19)

Combining (18) and (19), we get

d
dt
E
[
Mt∧σN (f )ξt∧σN

]
= E

[
1t≤σN 〈α

f
t ,Φt〉

]
= E

[
1t≤σN 〈h(Xt)f (Xt)At ,Φt〉

]
.

By (3), it follows that Ē[h(Xt)f (Xt)At |F Y
t ] exists for a.e. t ∈ (0, T ] and

α
f
t = lim

N→∞
1t≤σNα

f
t = lim

N→∞
E
[
1t≤σN h(Xt)f (Xt)At |F

Y
t

]
= lim
N→∞

1t≤σN E
[
h(Xt)f (Xt)At |F Y

t

]
= E

[
h(Xt)f (Xt)At |F Y

t

]
, (20)

a.s. for a.e. t ∈ (0, T ] since 1t≤σN is F
Y
t -measurable. Thus, we find that α

f
t = p̄Yt (hf ) a.s. for a.e. t ∈ (0, T ]. Hence, by Fubini’s

theorem, we have that∫ T

0

∣∣∣αft − p̄Yt (hf )∣∣∣2 dt = 0
a.s. for all T > 0 and

p̄Yt (f ) = p̄
Y
0 (f )+

∫ t

0
p̄Ys (Lf )ds+

∫ t

0
〈p̄Ys (hf ), dYs〉 a.s.

This completes the proof. �
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Appendix

In this Appendix, we provide some technical results which have been used previously.

Lemma 6.
∫ t
0 Lf (Xs)ds ∈ F

X
t and {Mt(f ), t ≥ 0} is an {F

X
t }-martingale.

Proof. It follows as in Remark 3.2.11 of Karatzas and Shreve (1988) that
∫ .
0 Lf (Xs)ds is indistinguishable from an {F

X
t }-

progressively measurable process and consequently we can redefine
∫ t
0 Lf (Xs)ds such that

∫ t
0 Lf (Xs)ds ∈ F

X
t for all t ≥ 0.

Then, it follows from Ethier and Kurtz (1986) p. 162 that

E
[
(Mτ (f )−Mt(f ))|F X

t

]
= 0 a.s., τ ≥ t.

The lemma follows by noting G
.
=

{
G ∈ F

X
t : E [(Mτ (f )−Mt(f ))1G] = 0

}
is a monotone class. �

Lemma 7. {At , t ≥ 0} is indistinguishable from an almost surely continuous {F X,Y
t }-progressively measurable process.

Proof. There exist Rd-valued {F X
t }-simple processes {U

n
} with non-random times {tnj } satisfying 0 = tn0 < tn1 <

· · · , limj→∞ tnj = ∞ such that

sup
t≤T

∣∣∣∣∣∣
∑
j:tnj ≤t

〈Untnj−1 , Yt
n
j
− Ytnj−1〉 −

∫ t

0
〈h(Xs), dYs〉

∣∣∣∣∣∣ −→ 0

in probability (e.g. Proposition 3.2.26, Remark 3.2.11, the development on p. 146, and the development of Proposition 3.2.6
of Karatzas and Shreve (1988)). Now, we define the {Yt}-cadlag martingales

Ant = exp

∑
j:tnj ≤t

[
〈Untnj−1 , Yt

n
j
− Ytnj−1〉 −

1
2
|Untnj−1 |

2(tnj − t
n
j−1)

] .
By Doob’s inequality, we have for any given ε > 0

P
(
sup
t≤T
|Ant − At | ≥ ε

)
≤ E

∣∣AnT − AT ∣∣ /ε.
Now, by Lemma 9 (to follow), AnT → AT in probability and E|AnT | = E|AT | = 1 imply that E|A

n
T − AT | → 0 as n → ∞.

Therefore,

lim
n→∞

P
(
sup
t≤T
|Ant − At | ≥ ε

)
= 0, ∀ε > 0.

Thus, there is a subsequence nm such that supt≤T
∣∣Anmt − At ∣∣ −→ 0 a.s. Moreover, {Anmt , t ≥ 0} is {F

X,Y
t }-progressively

measurable. Now, we redefine At = lim supm→∞ A
nm
t , {At , t ≥ 0} is continuous a.s. and {F X,Y

t }-progressively
measurable. �

LetL∞M = { continuous {F
Y
t } -martingalesM on [0, T ]with supt,ω |Mt(ω)| <∞} and

L̄∞M =

{∫ .

0
〈βs, dYs〉 : βis {F Y

t } -progressively measurable and sup
t≤T ,ω

(
|βt(ω)| ∨

∣∣∣∣∫ t

0
〈βs, dYs〉(ω)

∣∣∣∣) <∞} .
Lemma 8. L̄∞M isL

2-dense inL∞M .

Proof. We letMt =
∫ t
0 〈βs, dYs〉 be inL∞M and define β

n
s
.
= βs1|βs|≤n. By dominated convergence, we find

E
∣∣∣∣∫ T

0
〈βs − β

n
s , dYs〉

∣∣∣∣2 = E ∫ T

0
|βs − β

n
s |
2ds→ 0.

Now, we define λn,m .
= inf

{
t > 0 :

∣∣∣∫ t0 〈βns , dYs〉∣∣∣ > m} ∧ T and find that λn,m ↗ T asm→∞ by continuity. Then,
Mn,mt

.
=

∫ t∧λn,m

0
〈βns , dYs〉 ∈ L̄∞M

and there is a sequenceMn,mnT that converges toMT inL2. �



3202 M.A. Kouritzin, H. Long / Statistics and Probability Letters 78 (2008) 3195–3202

For the reader’s convenience, we state the following basic result (see Theorem 4.5.4 of Chung (1974)) that we have relied
upon heavily.

Lemma 9. Let 0 < r <∞, Vn ∈ Lr and Vn → V in probability. Then the following three properties are equivalent:

(i) {|Vn|r} is uniformly integrable;
(ii) Vn → V in Lr ;
(iii) E(|Vn|r)→ E(|V |r).
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