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Abstract 

Background: Animal movement modelling provides unique insight about how animals perceive their landscape 
and how this perception may influence space use. When coupled with data describing an animal’s environment, 
ecologists can fit statistical models to location data to describe how spatial memory informs movement.

Methods: We performed such an analysis on a population of brown bears (Ursus arctos) in the Canadian Arctic using 
a model incorporating time-dependent spatial memory patterns. Brown bear populations in the Arctic lie on the 
periphery of the species’ range, and as a result endure harsh environmental conditions. In this kind of environment, 
effective use of memory to inform movement strategies could spell the difference between survival and mortality.

Results: The model we fit tests four alternate hypotheses (some incorporating memory; some not) against each 
other, and we found a high degree of individual variation in how brown bears used memory. We found that 71% (15 
of 21) of the bears used complex, time-dependent spatial memory to inform their movement decisions.

Conclusions: These results, coupled with existing knowledge on individual variation in the population, highlight the 
diversity of foraging strategies for Arctic brown bears while also displaying the inference that can be drawn from this 
innovative movement model.

Keywords: Spatial memory, Brown bear, Ursus arctos, Animal movement, Mackenzie River Delta, Cognitive map, Step 
selection function
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Introduction
Ecologists have used animal movement data to answer 
many important ecological questions in recent years [1, 
2]. Models have been developed to explore the qualities 
of an animal’s home range [3–6], large-scale movements 
such as migration [7, 8], and species-habitat relationships 
(i.e., habitat selection; [9–11]). Habitat selection analy-
ses, in particular, have advanced due to the increasing 
availability of remote sensing data, which can describe 
large-scale environmental patterns, as well as animal 
movement data itself [12]. These analyses provide solu-
tions to difficult problems concerning how animals 

interact with their environment [13, 14]. Understanding 
these interactions, however, is limited without incor-
porating how animals perceive their environments cog-
nitively [15]. This realization in movement ecology has 
inspired the growth of memory-informed movement 
modelling.

By including spatial memory, we can quantitatively 
model animal cognition using movement data. Animals 
use spatial memory to encode, store, and retrieve infor-
mation about the location of landmarks in an animal’s 
environment [16]. Ecologists have included memory into 
habitat selection models by hypothesizing that animals 
will select for areas they have visited more frequently 
[17, 18], assuming animals will select against areas they 
have just visited [19], or modifying habitat selection 
models such that animals will not be attracted to high-
quality patches unless they can perceive this quality [20, 

Open Access

*Correspondence:  pt1@ualberta.ca
1 Department of Biological Sciences, University of Alberta, Edmonton, AB, 
Canada
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7590-8473
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40462-022-00319-4&domain=pdf


Page 2 of 15Thompson et al. Movement Ecology           (2022) 10:18 

21]. Most of these models lack attention to temporal 
memory, where animals remember not just where they 
have visited but how long ago they were there. While the 
“time since last visit” construct incorporated by Schlägel 
and Lewis [19] is a noteworthy exception, they assumed 
patches become increasingly attractive to the animal as 
time passes, which is not realistic in seasonally variable 
environments. For animals with seasonally varying home 
ranges, the energetic value of visiting a food patch may 
vary periodically or seasonally. Animals that live in such 
environments may change the size and shape of their 
home range seasonally, implying that they only visit spe-
cific parts of their home range at specific times of year 
[22]. On a smaller timescale, spatiotemporal memory 
allows animals to capitalize on ripe fruit, which loses its 
energetic return if visited too late [23]. Despite the occur-
rence of such patterns, which may be either ephemeral 
or seasonal, animal movement models rarely incorpo-
rate a time-dependent spatial memory mechanism that 
accounts for them.

The brown bear (Ursus arctos) is a widespread, omniv-
orous mammal found in the Northern Hemisphere [24], 
and populations in seasonal regions of the species’ range 
are likely to benefit from remembering the timing of food 
resources. The Canadian Arctic is an example of such an 
environment, and brown bears that live here are espe-
cially opportunistic, taking advantage of a wide variety 
of food resources [25]. Most brown bear food resources 
here are only available for a fraction of the bears’ active 
season [25–27], resulting in seasonal variation in their 
habitat selection [28]. Brown bears in the Arctic also 
display individual dietary variation due to sexual size 
dimorphism as well as the reproductive constraints of 
adult females [29]. Theoretical studies have displayed the 
utility of memory-informed movement in environments 
with predictable temporal variation [30]. Evidence of 
memory-informed movement in other brown bear popu-
lations includes oriented movement towards previously 
visited kill sites [31], scent marking to identify territorial 
boundaries [32], fidelity to the same salmon-rich stream 
each year [33], and repeated use of the same denning area 
each year [34, 35]. These studies demonstrate the cogni-
tive and perceptual capabilities of the species, suggesting 
that brown bears in the Canadian Arctic may incorporate 
time-dependent spatial memory into their movement 
patterns.

We applied a new animal movement model that incor-
porates a unique form of complex, time-dependent spa-
tial memory [36] to global positioning system (GPS) 
data for brown bears from the Mackenzie Delta region 
of the Canadian Arctic. Thompson et  al. [36] designed 
a model with four special cases, each concerning its 
own hypothesis about cognition and movement: a null 

hypothesis; a resource-only hypothesis assuming simple 
resource selection; a memory-only hypothesis assum-
ing resource-less seasonal revisitation patterns within an 
animal’s home range; and a resource-memory hypoth-
esis assuming animals are simultaneously influenced by 
local resources and spatial memory. Fitting each of these 
four models to animal location data provides inference 
on the likelihood of each hypothesis being true, and the 
parameters in each model describe explicit components 
of the animal’s foraging behaviour. We obtained param-
eter estimates and performed model selection analysis 
for 21 individual bears, allowing us to explicitly exam-
ine variation at the individual level. We found that amid 
high individual variation within the population, move-
ment patterns from a majority of the bears supported the 
resource-memory hypothesis. These results represent 
the first application of a novel model to a population of 
opportunistic and potentially sensitive omnivores.

Materials and methods
We applied the model described in Thompson et al. [36] 
to global positioning system (GPS) location data from a 
population of brown bears in the Canadian Arctic. We 
used the model to test four alternate hypotheses stated 
above about animal movement and cognition (Fig.  1). 
We drew inference from maximum likelihood estimates 
for the model parameters to quantify characteristics of 
the bears’ behaviour (Table 1). We describe the biological 
function of the model here, noting that it is described in 
full detail in Thompson et al. [36].

Study area
The Mackenzie River empties into the Arctic Ocean in 
the northern Northwest Territories, in NW Canada. Our 
study area, the Mackenzie Delta region, spans 23,000 km2 
of wet Arctic tundra, interspersed with many lakes and 
smaller streams [37]. The Mackenzie Delta region is a 
harsh environment for brown bears, with minimal food 
availability that results in short active seasons [38]. There 
are two human settlements in the region, Inuvik and Tuk-
toyaktuk, in addition to some remote and rarely inhab-
ited industrial camps.

Our landscape data provide information on the spa-
tial heterogeneity in vegetation and topography. We 
used three 30 x 30 m raster layers to describe the study 
area: a digital elevation model (DEM) measuring eleva-
tion (ranging from 0 m to 1676 m), a vegetation class 
raster describing dominant vegetation in each portion of 
the landscape, and a raster approximating the density of 
Arctic ground squirrels (Urocitellus parryii), which are 
a common brown bear prey species [39, 40]. The vegeta-
tion class raster classified each 30 x 30 m grid cell into 
one of 46 vegetation classes, describing the age, size, and/
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or dominant plant species present in each area ([41]; but 
also see the Appendix). The ground squirrel raster is a 
product of a resource selection function from an exist-
ing study, so it quantifies the likelihood (based on envi-
ronmental conditions) for any spatial region to support 
ground squirrels [42].

We manipulated our landscape data to produce six 
resource covariates. Berries (including but not limited 
to Empetrum nigrum, Shepherdia canadensis, Vaccinium 
uliginosum, and V. vitis-idaea) are an important dietary 
item for most individuals [25, 29]. In the Canadian Arc-
tic, berries are generally found in dwarf shrub areas 
[43–45], but they can also occur beneath the canopy of 

northern woodlands [46]. We do not have an explicit 
berry density survey, so we used the vegetation class data 
along with knowledge of common berry species to infer 
the probability of berries occurring at each spatial grid 
cell (Additional file 1: Table S1).

We included a covariate representing the Euclidean 
distance from turbid water to gauge the extent to which 
brown bears select for riparian areas. These regions sup-
port food resources such as horsetails (Equisetum spp.) 
and wetland sedges (Carex spp.) that are important in the 
early summer [25]. Brown bears in the Mackenzie Delta 
region also fish broad whitefish (Coregonus nasus) beside 
streams and rivers when the fish migrate [47].

Fig. 1 Simulated animal movement tracks (300 steps per track) on a randomly generated landscape displaying behaviours consistent with each 
hypothesis (and model). The colour of each point on this simulated movement track represents the hypothetical time in the animal’s memory 
“cycle”, which is here set to 100 time units (points at t = 75 have the same colour as t = 175 ). The null model implies completely random 
movement, while the resource-only model implies that the animal will locate nearby resources and select for those areas. The memory-only 
model implies that the animal relocates itself to areas it visited 100 time units before. The resource-memory model combines mechanisms in the 
resource-only and memory-only models
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We also included covariates representing the pos-
sible presence of Arctic ground squirrels and alpine 
sweetvetch (Hedysarum alpinum), two common dietary 
resources in the area [25]. We used the ground squir-
rel RSF from Barker and Derocher [42] as a covariate 
for squirrel selection. Sweetvetch occurs in dry, shrubby 
uplands [44], so we used an interaction between slope 
(from our DEM) and dwarf shrub vegetation classes to 
quantify sweetvetch density.

Brown bears are affected by the presence of humans in 
many ways [48–50], so we included covariates measuring 
the Euclidean distance from various human settlements 
or dwellings. The first covariate measured the distance 
from the nearest human settlement in the Mackenzie 
Delta region (either Inuvik or Tuktoyaktuk). Brown bears 
that come near human settlements are often deterred 
by the residents or wildlife officials in a forceful manner 
[51], so we expected bears whose home ranges overlap 
one of the settlements to avoid them. Some more remote 
industrial buildings are occasionally inhabited but often 
lack the constant human presence brown bears face near 
Inuvik or Tuktoyaktuk. As opportunistic omnivores, 
brown bears commonly use anthropogenic food sources 
[52] and may visit these buildings. Our second anthro-
pogenic covariate measured the Euclidean distance from 
the closest of the 6 cabins in the region.

Brown bear data
Between 2003, and 2006, 31 brown bears (24 female, 
7 male) were captured and equipped with GPS collars 
(Telconics Inc., Mesa, AZ, USA) that provided the bear’s 

spatial location every four hours. The collars used long 
temporal sequences without movement to identify den-
ning periods, and did not record any signals until the 
bear began to move again in the spring. The collars were 
removed and/or stopped recording bear locations after 
one to four years. The University of Alberta Animal Care 
and Use Committee for Biosciences approved all animal 
capture and handling procedures, which were in accord-
ance with the Canadian Council on Animal Care. Cap-
ture was conducted under permit from the Government 
of the Northwest Territories. A subset of these data were 
analyzed in Thompson et al. [36] as a preliminary analysis 
of the model.

Model design
We fit a discrete-time hidden Markov model (HMM) that 
assesses the nature of complex time-dependent spatial 
memory mechanisms in Arctic brown bears. The model 
has two movement states: one representing resting or 
not moving (stationary), and one representing move-
ment (non-stationary). In a HMM, the state is not explic-
itly known but can be inferred from observed data (e.g., 
if consecutive GPS locations are only 1 m apart, we can 
infer that the bear is likely in the stationary state), which 
is mathematically expressed with conditional likelihood 
functions [53]. Like other HMMs, the bear’s movement 
state at any point in time depends only on the previous 
state as well as fixed state-switching probabilities. For a 
two-state HMM, only two probabilities are necessary to 
explain the entire system: � , the probability of remaining 
in the stationary state, and γ , the probability of remaining 

Table 1 Description of model parameters, including units (N/A implies that the parameter is unitless) and models (N = null; R = 
resource-only; M = memory-only; RM = resource-memory) in which the parameters are estimated. Adapted from Thompson et al. [36]

Units Description N R M RM

ρns km/h Mean movement speed in non-stationary state X X X X

κ N/A Degree of directional autocorrelation X X X X

β0 N/A Probability of revisitation X

β1 N/A Selection coefficient for berries X X

β2 1
km

Selection coefficient for riparian habitats X X

β3 N/A Selection coefficient for squirrels X X

β4 N/A Selection coefficient for sweetvetch X X

β5 1
km

Selection coefficient for human settlements X X

β6 1
km

Selection coefficient for cabins X X

βd N/A Strength of selection for memorized areas X X

µ days Mean time lag between revisitations X X

σ days Standard deviation in time between revisitations X X

α log(km) Degree of perceptual resolution X X

� N/A Probability of staying in stationary state X X X X

γ N/A Probability of staying in non-stationary state X X X X
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in the non-stationary state. We fit both of these values as 
model parameters [36].

When the bear is in the non-stationary state, the prob-
ability distribution of its steps, which we denote fns , 
resembles a step selection function [10] but allows for 
enhanced flexibility to account for complex cognitive 
processes such as memory. Each step consists of two 
consecutive locations (e.g., xt−1 to xt ), but we must also 
consider the heading on which the animal arrived at xt−1 , 
φt−1 . The function fns is a normalized product of two 
components: k, the resource-independent movement 
kernel, and W, the environmental (or cognitive) weight-
ing function:

Here k depends on the animal’s previous location, its 
previous heading, and �1 , a set of model parameters cor-
responding to resource-independent movement. The 
functional form of k, which resembles a correlated ran-
dom walk, is the same in each model [36]. The parameter 
vector �2 contains all parameters concerning cognition 
or habitat selection, and because �2 contains differ-
ent parameters in each model, we introduce �2,N , �2,R , 
�2,M , and �2,RM for the null, resource-only, memory-
only, and resource-memory models, respectively (we 
also introduce WN , WR , WM , and WRM for the same rea-
sons). The weighting function W also depends on Zt−1 , 
the animal’s cognitive map at time t − 1 , which quantifies 
and spatially organizes the animal’s past experiences and 
memories.

In practice, we approximated the denominator of Eq. 1 
with a sum, as is standard with step selection functions 
[10, 11], by simulating a set of “available steps” from k 
and calculating W at those steps [36]. A form of W that 
maximizes the ratio of weightings (W) between used and 
available steps suggests strongly that animals select for 
high values of W [9].

We fit a half-Gaussian step-length distribution to all 
bear steps in the stationary movement state. This distri-
bution is more platykurtic than the exponential distribu-
tion, restricting the probability of long steps. We fixed 
this distribution such that the mean step length would be 
equal to 30 m, the cell size for all our environmental data 
(see the Appendix for additional detail).

Null model
In the null model, we assume that the bear moves ran-
domly, so the only parameters of concern are those dic-
tating movement speed ( ρns ), directionality ( κ ), and 
state-switching ( � and γ ; Table 1). If the 95% confidence 

(1)

fns(xt ,φt |xt−1,φt−1,Zt−1,�1,�2)

=
k(xt |xt−1,φt−1,�1)W (xt |Zt−1,�2)

∫

�
k(x′|xt−1,φt−1,�1)W (x′|Zt−1,�2)dx′

.

interval for κ excludes 0, we can conclude that there exists 
significant directional autocorrelation in the bear’s move-
ments. The weighting function WN (xt |Zt−1,�2,N ) = 1 
for all xt in space (note that �2 is just an empty vector 
here), making fns equal to k in the null model.

Resource‑only model
The resource-only model tests the hypothesis that bears 
select for nearby locations with high habitat quality. WR 
resembles a step selection function and �2,R contains a 
vector of selection coefficients ( β1,β2, ...,βP ) for each 
resource covariate (which we denote r1(x), r2(x), ..., rP(x) ) 
in the model (here, P = 6 ). We define WR as follows:

If the 95% confidence interval for any of these parameters 
excludes 0, we can conclude that the animal significantly 
selected for (or against) that variable.

To ensure that the seasonal revisitation patterns we 
observed were a result of spatial memory, we tested an 
alternate version of the model where resource covariates 
were restricted to seasons of availability. In the origi-
nal versions of the resource-only and resource-memory 
model, each resource covariate ri(x) retains the same 
value throughout the year. This follows the assumption 
that our covariates measure the habitat conditions nec-
essary to support seasonally available resources, not the 
resources themselves. For example, r2(x) , the distance 
from x to the nearest riparian area, does not change 
seasonally, but the likelihood of obtaining valuable food 
resources from that region does vary seasonally. That 
being said, identifying memory based solely on move-
ment patterns requires rigorously eliminating any other 
mechanisms that could cause those patterns [16], so 
we designed an alternate model where resources were 
explicitly seasonal.

We identified temporal intervals in which each resource 
would be treated as present on the landscape, and assumed 
that ri(x) would be equal to 0 outside of these intervals. 
Berries are available in smaller portions year-round [25], 
but the primary period of occurrence lasts from approxi-
mately August 1 until the end of the active season, which 
we considered to be November 30, when bears had entered 
dens and GPS collars turned off [40, 54]. The food avail-
able in riparian habitats (including whitefish, which gener-
ally migrate in early October; [47]) is most prominent from 
May 10 to October 16 [55] when the ice has melted from 
the Mackenzie River. Arctic ground squirrels are always 
present, but they are easier for brown bears to hunt when 
they are hibernating [39], so we used an interval from Sep-
tember 11 to November 30 to approximate when most 

(2)WR(xt |Zt−1,�2,R) = exp

[ P
∑

p=1

βprp(xt)

]

.
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squirrels would be dormant [56]. Sweetvetch is also avail-
able year-round, but provides the highest nutritional return 
in the early spring, so we used an interval from April 1 (the 
beginning of the active season) to June 15 [40]. We left r5 
and r6 , the covariates relating to presence of humans, tem-
porally constant.

Memory‑only model
The memory-only model quantifies the hypothesis that 
brown bears remember the spatial location of areas they 
have visited previously, with the intent to return there after 
a consistently scheduled time lag [36]. The cognitive map 
associated with this model builds on the idea of time since 
last visit proposed by Schlägel and Lewis [19], where previ-
ously visited locations become increasingly more attractive 
to the animal as time increases. We model this structure 
with a discrete-space cognitive map Zt where the animal 
keeps track of all its previous locations. For any spatial grid 
cell z on the map, Zt(z) contains a linked list of time since 
previous visits to z. This structure allows the memory of 
multiple visits to the same location (Fig. 2).

We formulate WM as follows:

The memory-only model follows the hypothesis that 
there is some “peak” in attractiveness that represents the 
periodicity of habitat quality in the environment. We fit 
the timing of this peak µ , as well as the degree of con-
centration and variation around this peak σ , as model 
parameters. Higher values of σ indicate that bears are 
less precise in their revisitation patterns, and may also be 

(3)

indicative of lower temporal predictability in the environ-
ment. Specifically, WM is a weighted average of distances 
from previously visited locations on the bear’s track, 
where the weights correspond to Gaussian distribution 
values with parameters µ and σ . For each time lag τ we 
can use Zt to identify where the bear was at time t − τ 
(let us denote this location zt−τ ). Then, the weight for 
each point is equal to ϕ(τ |µ, σ) , where ϕ is the Gaussian 
probability density function.

Each distance is transformed using an exponential 
decay function with parameter α , which quantifies how 
quickly the importance of previously visited locations is 
discounted spatially. As α decreases, the mathematical 
difference between a step 1 km away and a step 2 km 
away is amplified, suggesting that the animal under-
stands these differences in space on a wider scale. We 
propose log10(ρns) as an important cutoff point for this 
parameter, as the decay term for these distances is 
equal to ρns , the animal’s mean step length (Eq.  3, 
Table  1). The memory-only model includes one last 
parameter βd ( β̃d = log( βd

1−βd
) ), representing the proba-

bility of moving in a way that incorporates Z, relative to 

moving randomly or selecting for present-time 
resources. As βd approaches 1, the animal will approach 
oriented movement towards previously visited loca-
tions, and if the 95% confidence interval for this param-
eter excludes 0.5, we can conclude that the animal is 
displaying significant selection for memorized areas.

Fig. 2 Example movement path for an animal over a landscape that has been partitioned to a 16-cell square grid. The animal’s cognitive map Zt 
is displayed over time for each cell in small text in the bottom left. Note that at locations the animal has visited twice, Zt(t) is a linked list with two 
elements. Adapted from Thompson et al. [36]
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Resource‑memory model
The resource-memory model combines the principles of 
the resource-only and memory-only models [36]. Bears 
moving according to this model consider present-time 
resources in nearby locations as well as previously vis-
ited locations. We additionally hypothesize that bears 
will only be attracted to previously visited locations that 
had food, and will not revisit previously visited loca-
tions with low resource quality. This mechanism is medi-
ated by “threshold” parameter β0 , which approximates 
the probability of returning to a previously visited loca-
tion. If β0 = 1 then the animal perceives all previously 
visited locations as “attractive” for revisitation, regard-
less of habitat quality, and if β0 = 0 then the opposite is 
true. We can infer about the habitat quality necessary to 
influence revisitations from a bear if the 95% confidence 
interval for β0 overlaps 0.5, which would imply no selec-
tion for these areas.

The weighting function for the resource-memory 
model includes two terms, one representing present-
time resource selection and one representing memorized 
information:

where β̃d = log( βd
1−βd

) and β̃0 = log( β0
1−β0

).

Fitting the model to data
We used maximum likelihood estimation to fit the four 
models to each individual, comparing each model using 
the Bayesian Information Criterion (BIC). Thompson 
et  al. [36] found that BIC was more accurate than AIC 
in terms of selecting the most parsimonious model for 
simulated data, suggesting that BIC makes more sense 
for this modelling framework. BIC allowed us to iden-
tify the “best model”, or the model associated with the 
hypothesis that is most accurate for each bear. A differ-
ence in information criteria greater than 2 between the 
best and second-best models indicates greater support 
for the best model [57]. We used maximum likelihood 
estimates (MLEs) along with 95% confidence intervals 
for each parameter in the best model to obtain further 
information on the bears’ movement behaviours. We 
removed the first year of GPS data from model fitting 

(4)

for every bear because we could not determine enough 
about the bear’s previous movement experience to iden-
tify memory. We refer to this first year as “training data”, 
and removed bears with only one year of GPS data from 
the analysis. The models are computationally complex, so 
we used advanced automatic differentiation techniques 
to obtain MLEs [58–60] and likelihood profiling to obtain 
confidence intervals [61]. See Thompson et al. [36] as well 
as the Appendix for additional details on model fitting.

We fit all four models to each bear under the assump-
tion of temporally constant resources, then fit the 
resource-only and resource-memory models with 
the explicit inclusion of seasonal resource variation. 
Resources are not included in the null or memory-only 
models so they are mathematically equal in both cases.

Results
Of the 31 bears for which we had GPS data, 21 (18 
females, 3 males) bears had enough data (at least one year 
excluding the first year of training) for model fitting. We 
fit all four models to each bear and used BIC to identify 
which associated hypothesis was most heavily supported 

by the data. Once we identified the best model for each 
bear, we calculated MLEs and 95% confidence intervals 
for all parameters in that model. We found that despite 
a large degree of individual variation, bears generally 
exhibit movement informed by resources as well as mem-
ory, with a revisitation scale close to 365 days. We also 
confirmed that memory, not the seasonality of resources, 
was the primary mechanism causing brown bears to 
return to previously visited food patches in a periodic 
fashion.

Model selection
The Mackenzie Delta brown bear population displayed a 
variety of movement behaviours, although the resource-
memory model was most frequently selected as the 
most parsimonious explanation of the bears’ movement 
patterns (Table  2). It was identified as the “best model” 
(using BIC) for 8 of the 21 bears. The resource-only and 
memory-only models also received some support within 
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the population; these models were the best model for 
4 and 7 bears, respectively. For 2 of 21 bears, the null 
model was the most parsimonious explanation of bear 
movement patterns. There were only three cases where 
the difference in BIC between the two best models was 
< 2 (Table 2).

Seasonal resource modelling
When we revised our resource covariates by adding time 
dependence, the memory-only model was a much more 
parsimonious explanation of the data (Table  3). It was 
the “best model” for 14 of the 21 bears when resource 
covariates were restricted to our prescribed seasons. The 
resource-only model was the best model for three bears, 
and the null and resource-memory model were the best 
for two bears each. There were three cases where the 
difference in BIC between the best model and the other 
models was < 2 (Table 3).

Parameter estimation
Most of the results below concern the “traditional” 
model, where we did not explicitly set the seasonality for 

the resource parameters. See Additional file  1: Table  S3 
in the Appendix for parameter estimates when resources 
were explicitly seasonal.

Movement parameters
Brown bears varied in their movement speed and direc-
tional autocorrelation (Table  4). Mean movement 
speed in the non-stationary state ( ρns ) varied from 0.22 
(GF1086) to 0.65 (GF1005) km/h. Parameter estimates 
for κ varied from 0 (GF1092) to 0.7306 (GF1143), and 
19 of the 21 bears exhibited some significant directional 
autocorrelation (i.e., the 95% confidence interval for κ 
excluded 0).

Every bear spent more time in the non-stationary state 
than the stationary state, with estimates for � (the prob-
ability of remaining in the stationary state given the bear 
was already in it; Table 1) being significantly lower than 
γ . The 95% confidence intervals for γ , the probability of 
remaining in the non-stationary state, were entirely above 
0.5 for every member of the Mackenzie Delta population, 
implying that all bears were significantly more likely to 
stay in the non-stationary state than leave it at any given 

Table 2 dBIC (difference in BIC from the “best model”) values 
for each model and bear, with resource covariates set to be 
temporally constant.

Cells bold represent the model that best explains the movement patterns of 
each bear (dBIC = 0), and cells italic represent models < 2 BIC above the best 
model. Bears are sorted in descending order by number of data points (i.e., bears 
with more data at the top of the table)

Bear ID Null Resource-only Memory-only Resource-
memory

GF1004 70.8 51.7 76.3 0.0
GM1046 148.3 42.3 98.9 0.0
GF1008 49.2 0.0 19.1 33.2

GF1086 99.1 19.4 100.6 0.0
GF1016 22.3 11.8 0.0 30.5

GF1041 100.9 0.0 109.6 34.3

GF1107 228.7 0.0 237.9 2.4

GF1130 0.0 28.4 18.6 42.6

GF1005 65.3 0.0 52.0 16.5

GF1096 60.9 0.8 58.5 0.0
GF1167 16.6 21.0 0.0 4.8

GF1079 121.6 5.0 123.1 0.0
GF1089 8.0 16.1 0.0 20.2

GF1141 0.3 24.3 0.0 24.9

GM1133 85.2 85.5 0.0 4.4

GF1087 32.6 43.2 8.0 0.0
GF1108 0.0 9.4 0.1 15.6

GF1143 19.5 10.2 12.3 0.0
GM1147 1041.4 1021.3 0.0 960.1

GF1092 39.4 9.1 30.5 0.0
GF1146 2.0 19.6 0.0 7.8

Table 3 dBIC (difference in BIC from the “best model”) values 
for each model and bear, with resource covariates set to be 
temporally variable.

Cells bold represent the model that best explains the movement patterns of 
each bear (dBIC = 0), and cells italic represent models < 2 BIC above the best 
model. Bears are sorted in descending order by number of data points (i.e., bears 
with more data at the top of the table)

Bear ID Null Resource-only Memory-only Resource-
memory

GF1004 3.5 11.4 9.0 0.0
GM1046 49.4 43.0 0.0 19.7

GF1008 30.1 51.8 0.0 21.3

GF1086 39.8 0.0 41.3 16.8

GF1016 22.3 41.3 0.0 33.4

GF1041 0.0 4.3 8.7 23.5

GF1107 17.1 25.2 0.0 15.2

GF1130 16.7 41.4 30.9 0.0
GF1005 14.9 41.9 0.0 33.8

GF1096 2.4 16.8 0.0 27.9

GF1167 16.6 28.4 0.0 47.6

GF1079 39.1 0.0 40.6 17.7

GF1089 9.4 0.0 1.3 1.9

GF1141 0.3 29.2 0.0 38.3

GM1133 85.2 90.2 0.0 106.3

GF1087 24.6 43.8 0.0 25.9

GF1108 0.0 31.5 0.1 36.6

GF1143 7.2 30.9 0.0 26.8

GM1147 1041.4 977.4 0.0 953.8

GF1092 8.9 34.5 0.0 32.9

GF1146 2.0 57.2 0.0 22.9
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time. Conversely, 10 of the 21 bears had 95% confidence 
intervals for � that were entirely below 0.5, and only two 
bears (GF1016 and GF1041) had a confidence interval 
for � that was entirely above 0.5. Dividing � and γ each 
by �+ γ estimates the percentage of time each bear spent 
in the stationary and non-stationary states, respectively, 
and we found that most bears spent between 30 and 40% 
of their time in the stationary state.

Resource selection parameters
Of the 21 bears in the population, 12 (8 resource-mem-
ory + 4 resource-only) had resource selection in their 
“best model”. Some resource covariates displayed more 
within-population variation than others (Table  4). Only 
one (GF1143) of the 12 bears did not display significant 
selection for areas likely to contain berries (i.e., the 95% 
confidence interval for β1 was entirely above 0). The 
parameter estimate for GF1143 was positive but the 
lower confidence bound for β1 overlapped 0 (Additional 
file 1: Table S2). 6 of the 12 bears selected for areas closer 
to turbid water, suggesting attraction to riparian areas. 
None of the bears selected against this covariate. 11 of 
the 12 bears selected for areas indicative of high Arctic 
ground squirrel density, with GF1087 displaying neu-
tral selection for this covariate. Curiously, parameter 
estimates for β4 , the selection coefficient for sweetvetch 
habitat, were negative for all 12 “resource-informed” 
bears. 8 of the 12 bears displayed significant selection 
against these areas. Bears generally displayed minimal 
responses to anthropogenic dwellings in the region. Only 
one (GF1087) bear displayed any significant pattern in 
relation to human settlements (selecting closer to them), 
and only three displayed such behaviours with respect to 
industrial cabins (GF1087 avoided them while GF1008 
and GF1086 selected for areas closer to them).

Memory parameters
15 of the 21 bears had memory incorporated in their “best 
model”, and most of these “memory-informed bears” 
returned to previously visited locations between 300 and 
365 days after their last visit (Table 4). These trends were 
similar when resources were explicitly assumed to be sea-
sonal (Additional file  1: Table  S3), where the memory-
only model provided the best explanation of most of the 
bears’ movements. Estimates of βd were often close to 1, 
suggesting that memory played a part in movement for 
all of the memory-informed bears. 9 of the 15 bears had 
estimates for µ that were close to one year (>10 months 
or 300 days), implying that the majority of the population 
used a revisitation schedule of approximately one year. 
The median estimate value for σ was 8.2 days. For 8 of the 
15 bears, the confidence interval for σ excluded 3 days 
(the lower optimization bound for σ ; see the Appendix 

for more information), implying significant variation 
in the bears’ revisitation schedules. Estimates for α also 
varied between bears, ranging from -2.91 (GF1086) to 
0.11 (GF1016). Based on the confidence intervals for this 
parameter, we found that 4 (GF1079, GF1086, GF1087, 
GM1147) of the 15 bears exhibited significantly hetero-
geneous perception of their landscapes, while 3 (GF1016, 
GF1089, GF1096) exhibited the opposite.

Of the 8 bears whose movements were best explained 
by the resource-memory model, 5 displayed especially 
selective revisitations to locations along their track 
(based on whether the 95% confidence interval for β0 was 
below 0.5). There was some individual variation in the 
estimates for β0 themselves, ranging from approximately 
0 (GF1079) to approximately 1 (GF1096) (Table 4). How-
ever, the confidence interval for β0 was large for the lat-
ter. Figure 3 depicts an example of one of these 9 bears, 
GM1046, highlighted by clear navigations to previously 
visited locations approximately a year later.

Discussion
We used brown bear movement data from the Mackenzie 
Delta region to analyze the viability of a new model [36] 
for an opportunistic omnivore living in a harsh and sea-
sonal environment. This model incorporates a complex 
time-dependent spatial memory mechanism that allowed 
us to identify how long brown bears wait before returning 
to previously visited locations. We found a great deal of 
variation between individual bears, but this did not hin-
der our ability to observe population-level trends in the 
bears’ movement patterns. We also showed that repre-
senting resources as temporally constant was more effec-
tive in explaining the movement patterns of the brown 
bears than explicitly defining seasons for these resources.

The most common pattern observed in the popula-
tion was a 365-day “circannual memory”, implying that 
many bears returned to portions of their home range 
that they visited roughly a year before (Fig. 3). While the 
model does account for bears potentially avoiding previ-
ously visited areas through β0 , this behavior was seldom 
observed in our population. Previous work on this pop-
ulation identified a pattern of annual home range shift 
for Mackenzie Delta brown bears [5]. Potentially, brown 
bears maintain fidelity to portions of their home range, 
visiting those portions of the environment at the same 
time each year, and displaying less annual fidelity to other 
portions of their home range. Our GPS data display the 
bears’ movements as discrete-time “steps”, but recent 
modelling advances have allowed for continuous-time 
modelling of animal location data [62]. With more data, 
it may be more feasible to estimate these “steps” more 
explicitly and incorporate them into Z, the animal’s cog-
nitive map.
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Some of the resource selection patterns observed in the 
“resource-informed” subset of the bear population could 
be explained by the nature of our landscape data. The 
lack of response to areas suggestive of sweetvetch pres-
ence was surprising, as almost every bear in the popula-
tion displayed significant avoidance from such habitats. 
We based our estimate of sweetvetch presence on Porsild 
and Cody [44], but other citations (e.g., Aiken et al. [63]) 
indicate that they may appear closer to bodies of water, in 
sandy areas, or even in tundra (in fact, this could explain 
selection for areas closer to turbid water bodies such as 
rivers and coastlines).

Most bears did not display selection for or against 
anthropogenic structures, and when they did, the result-
ing behaviour was not always what we predicted. Bears 

are typically most affected by human presence when they 
have had a previous negative encounter with humans 
[64], suggesting that this lack of significant selection 
could be explained by a lack of human-bear encounters. 
Many of the bears did not even go near Inuvik or Tuk-
toyaktuk while they were collared, suggesting a lack of 
encounters with humans.

When we adjusted our resource covariates such 
that they were explicitly assumed to only appear dur-
ing a prescribed temporal interval, we found that the 
resource-only and resource-memory models were a sig-
nificantly worse explanation of brown bear movement 
patterns. In fact, the number of bears that had resource 
selection included in their “best model” decreased 
from 12 with temporally constant resources to only 5 

Fig. 3 Movement track for bear ID GM1046 for the years 2003 (left) and 2004 (right). Each point on the animal’s track is colored according to the 
day of the year. Note the extended visitation of the southwestern part of the bear’s home range in 2003, followed by a directed navigation towards 
that same area at the same time in 2004. The movement patterns of GM1046 were best explained by the resource-memory model (Table 2)
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with explicitly seasonal resources. When resources 
were seasonally bounded, the memory-only model 
was much more effective than it was when resources 
were temporally constant. Recalling that the memory-
only model is constructed independently of resources, 
this yields a clear ordering in the effectiveness of each 
model type for the entire population: resource-memory 
with constant resources > memory-only > resource-
only with seasonal resources. We do not dispute that 
these resources are indeed seasonal, but instead sug-
gest that the landscape data we included in the model 
represent more than just the seasonal resources we 
included them for. For example, it may be possible that 
brown bears select for (and remember the location of ) 
shrubby, berry-rich habitats outside of berry season, 
when they may provide other foraging benefits. Brown 
bears are opportunistic omnivores, and even when one 
food resource is widely available, they still maintain a 
balanced diet with multiple food sources [65]. When 
we restricted our resource availability to seasonal inter-
vals, we nearly limited brown bear habitat selection to 
one resource covariate at a time, which may have been 
unrealistic. The correction we attempted in this model 
may not have worked for this population of bears, but 

in other systems (e.g., specialist herbivores in Kenyan 
savannas; [66]), it may be more appropriate.

The high inter-individual variation in the brown bear 
population is both interesting and unsurprising given 
what we know about the species and population. Brown 
bears undoubtedly possess the cognitive capability to 
remember the location of previously visited areas [31–
34], and the Arctic’s seasonal and spatial dynamics sug-
gest that the spatio-temporal memory we tested here 
would be useful for optimal foraging [16]. It is then some-
what surprising that only 15 of the 21 bears in the popu-
lation exhibited memory-informed movement according 
to our model selection process. One potential explana-
tion is that if the temporal variation in the landscape is 
unpredictable, then periodic memory-informed move-
ment may not improve foraging success [30]. Vegetation 
in the Mackenzie Delta region is somewhat unpredictable 
from year to year [37], and while some resources may be 
available at the same place and time each year, memoriz-
ing the location of a patch that may not support resources 
in the future could be detrimental to foraging. It is also 
possible that bears remember the locations of previously 
visited areas, but take a different (possibly more effi-
cient) route to these areas. This is just one example of a 

Table 4 Parameter estimates for the “best model” (as identified by BIC) for each bear.

Bears are listed in ascending order by number of GPS fixes. Note that the second letter of the bear ID indicates the sex of the individual. Bold text in the table indicates 
a parameter value that was fixed and not estimated for that model, and Bold “N/A” values indicate parameters that are not influential in the “best model” for that 
bear. Parameter estimates for β0 and βd that are very close to but not exactly 0 or 1 are indicated as such with a “ ∼ ”. See Additional file 1: Tables S2a and S2b for 95% 
confidence intervals for each bear and each parameter

ID Model ρns κ β1 β2 β3 β4 β5 β6 β0 βd µ σ � γ α

GF1004 RM 0.382 0.502 0.182 0.240 1.270 −0.008 0.017 −0.034 0.1764 ∼1 353.6 10.9 0.509 0.759 −0.015

GM1046 RM 0.427 0.517 0.477 −0.797 1.310 −0.015 0.049 −0.010 0.3412 ∼1 358.4 11.8 0.391 0.772 −0.100

GF1008 R 0.443 0.525 0.173 −0.440 2.049 −0.027 −0.056 −0.082 N/A 0 N/A N/A 0.527 0.852 N/A
GF1086 RM 0.219 0.229 0.405 −0.897 3.855 −0.102 0.095 −0.203 0.0006 ∼1 0.8 3.0 0.404 0.770 −2.910

GF1016 M 0.301 0.220 0 0 0 0 0 0 0.7311 0.9783 3.0 3.0 0.601 0.758 0.112

GF1041 R 0.404 0.575 0.236 −0.885 3.177 −0.017 −0.109 −0.102 N/A 0 N/A N/A 0.399 0.785 N/A
GF1107 R 0.256 0.259 0.338 0.049 2.848 −0.009 −0.092 −0.020 N/A 0 N/A N/A 0.452 0.751 N/A
GF1130 N 0.429 0.528 0 0 0 0 0 0 N/A 0 N/A N/A 0.487 0.767 N/A
GF1005 R 0.653 0.332 0.245 −0.240 4.646 −0.032 −0.085 −0.067 N/A 0 N/A N/A 0.472 0.758 N/A
GF1096 RM 0.399 0.401 0.306 −1.400 2.793 −0.020 −0.040 −0.092 ∼1 0.5010 350.7 26.6 0.406 0.794 −0.079

GF1167 M 0.463 0.574 0 0 0 0 0 0 0.7311 ∼1 364.8 6.3 0.387 0.761 −0.126

GF1079 RM 0.377 0.731 0.259 −1.737 3.603 −0.002 0.029 −0.054 ∼0 0.7604 0.8 3.0 0.171 0.786 −1.729

GF1089 M 0.297 0.186 0 0 0 0 0 0 0.7311 0.9852 2.6 3.0 0.377 0.739 0.068

GF1141 M 0.419 0.270 0 0 0 0 0 0 0.7311 ∼1 365.0 11.9 0.606 0.754 −0.023

GM1133 M 0.374 0.080 0 0 0 0 0 0 0.7311 ∼1 54.5 26.7 0.595 0.768 −0.212

GF1087 RM 0.399 0.296 1.205 −0.536 −2.837 −5.431 −0.467 0.743 0.9996 ∼1 356.0 8.2 0.393 0.742 −0.728

GF1108 N 0.376 0.211 0 0 0 0 0 0 N/A 0 N/A N/A 0.273 0.880 N/A
GF1143 RM 0.387 0.722 0.147 −0.742 4.983 −0.035 0.037 −0.027 0.1159 0.9997 352.2 14.5 0.179 0.848 −0.119

GM1147 M 0.556 0.115 0 0 0 0 0 0 0.7311 ∼1 260.9 3.0 0.204 0.742 −0.477

GF1092 RM 0.296 0.000 0.512 1.259 2.934 −0.054 0.125 0.161 0.8500 ∼1 361.9 42.0 0.463 0.708 0.106

GF1146 M 0.411 0.549 0 0 0 0 0 0 0.7311 0.9998 350.0 3.0 0.286 0.819 −0.162
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memory-informed movement that may not be identified 
by our memory-only or resource-memory models, as our 
models and hypotheses are concerned only with a spe-
cific kind of memory-informed movement. Our model 
also does not account for social dominance hierarchies 
that are often present in brown bear populations [67]. 
Including the paths of nearby conspecifics would be dif-
ficult given our data restrictions (e.g., many bears in the 
population were not tracked) but would connect to inno-
vative theoretical work (e.g., [68]) to answer important 
questions about animal cognition and sociality.

The model used here may not reliably be able to iden-
tify the correct signal when fit to only one year of bear 
GPS data [36], forcing us to question our results for bears 
with this much data. Although the simulation analyses 
performed with the model were effective for small data 
sizes, when Thompson et  al. [36] fit the model to indi-
vidual years of data for the same bear, the “best model” 
often changed from year to year. A finer temporal resolu-
tion for our GPS data could also solve this problem, since 
processes such as movement autocorrelation are more 
difficult to identify with temporally sparse data. With the 
data we have, though, we can only postulate that either 
the bears are changing the way they move from one year 
to another, or that the model is unreliable in detecting a 
spatio-temporal memory signal without enough data. 
The former could arise as a result of reproductive activ-
ity in the population. When female bears have cubs, 
their movement strategies change as preventing infan-
ticide and supporting their offspring become priorities 
[25]. Male bears display much less behavioural plastic-
ity with regard to reproduction, and all three of the male 
bears included in our analysis were best explained by the 
resource-memory model. Year-to-year variability in the 
landscape could also influence this behaviour; for exam-
ple, if a bear finds food somewhere in one year, revisits 
that area 365 days later, and does not find food, it may 
use its cognitive map differently in subsequent years. 
Conversely, if a bear finds a new food source it may aban-
don its cognitive map and spend time at the newly found 
patch instead. We acknowledge that we cannot sup-
port or refute these hypotheses about within-individual 
variation without a longer temporal scale of data per 
individual.

One bear, GF1079, yielded noticeably different 
parameter estimates from the resource-memory model 
as its “best model”. This bear had a β0 value close to 0 
and its estimate for µ was less than 1 day, which implies 
that it was consistently moving away from locations 
it had visited very recently. This would be expected 
from an animal performing correlated random walk 
behaviour (its estimate for κ was 0.731, the largest in 

the population), but in our model, we control for this 
behaviour by comparing observed steps to random 
steps simulated from a correlated random walk (as is 
done in traditional step selection analysis). This com-
bination of parameter estimates only occurred with 
GF1079, which had only one year of location data 
(excluding the first year used for model training), sug-
gesting that this occurrence is rare and may be allevi-
ated with more data. Another bear, GM1147, exhibited 
movement patterns that were explained much better 
by the memory-only model than any other model we 
fit (Tables 2 and 3). A dBIC value of nearly 1000 from 
these data is difficult to explain, although once again, 
the infrequency of this situation implies that it may dis-
appear if more data are included.

Our modelling framework focuses on behaviours 
that are observed in many other taxa, with potential for 
application in wildlife management. Boreal woodland 
caribou (Rangifer tarandus caribou) display site fidelity 
patterns that vary by season, displaying greater fidelity 
at different parts of the year [69]. Applying our frame-
work to location data for woodland caribou, poten-
tially breaking data up into seasonal partitions, would 
provide valuable inference about the extent of these 
patterns. The individual variation in brown bear move-
ment behaviour was a key conclusion that we identified, 
which suggests that our modelling framework may be 
applicable to other ecological systems with high indi-
vidual variation. As an example, black-legged kitti-
wakes (Rissa tridactyla) display individual differences 
in site fidelity when foraging near nesting colonies [70]. 
These birds may not only exhibit different degrees of 
support for the resource-memory model, but the rate at 
which previous foraging paths are revisited ( µ ) may dif-
fer between individuals. Our approach may also be use-
ful when resources do not vary temporally, but other 
factors (such as prey vigilance or depletion-recovery 
dynamics) necessitate the use of spatio-temporal 
memory in animals (e.g., [19]). Identifying the degree 
to which animals rely on memory is also important 
for translocation and reintroduction protocols. These 
protocols are often applied to animals that pose a high 
risk of coming into conflict with humans, transporting 
these animals to an environment they are unfamiliar 
with. Translocated animals that rely heavily on memory 
struggle to forage effectively in their new environments 
[71]. Brown bears are frequently translocated, and 
these costly and time-consuming protocols significantly 
increase mortality risk if not executed properly [72]. 
These important and necessary decisions can be made 
more effectively with knowledge of how memory and 
familiarity impacts the movements of problem animals.
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Conclusions
Animal movement is one of ecology’s most complex pro-
cesses, with many potential drivers that undoubtedly vary 
between individuals and species alike. Brown bears in the 
Arctic display this complexity due to the heterogeneity of 
their environment and the high dietary variation between 
individuals. We applied a newly derived modelling frame-
work to a subset of the Mackenzie Delta brown bear popu-
lation and amid high variation between individuals, we 
found the most frequent movement strategy to be a circan-
nual pattern of revisitation to resource-rich food patches, 
which our model suggests is driven by time-dependent 
spatial memory. These results highlight the ability of this 
modelling framework to identify complex cognitive pro-
cesses from discrete-time animal location data.
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