
A Study of the Efficacy of Generative Flow Networks for Robotics and
Machine Fault-Adaptation

by

Zahin Sufiyan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Zahin Sufiyan, 2024

Abstract

In 2005, Opportunity, one of NASA’s renowned Mars rovers, faced a dire situation.

It was a moment that could end a mission that had already far outlasted its expected

lifespan. After clambering out of the Victoria crater, the rover started to experience

an abrupt current spike in its right front wheel. As a consequence, the wheel motor

started to malfunction, causing the wheel to stop turning. NASA anticipated that

the $400 million dollars of investment and most importantly invaluable scientific data

regarding the Martian terrain was on the brink of remaining unexplored. With the

immensity of space between Mars and Earth (140 million miles, to be specific), the

engineers at NASA could only detect and diagnose the malfunction; however, human

intervention in the maintenance of Opportunity was an impossibility. Nevertheless,

human ingenuity again succeeded when the engineers at NASA’s Jet Propulsion Lab-

oratory came up with an unconventional workaround. They started to drive the rover

backward and thus by doing so, they were able to redistribute the mechanical load

and reduce the strain on the malfunctioning wheel. The impaired wheel now func-

tioned as a rear wheel, allowing the fully functional wheels to lead and navigate the

harsh and challenging surface of Mars. Due to this innovative approach, Opportunity

continued to explore Mars and gathered some of the most invaluable data about the

red planet for 15 Earth years instead of its initially predicted 90-day lifespan. This

was a testament to human ingenuity, but also a stark reminder of the necessity for

built-in machine fault adaptability in robotic systems.

Our research is a step towards adding hardware fault tolerance and fault adapt-

ability to machines. In this research, our primary focus is to investigate the efficacy

ii

of generative flow networks (GFlowNets/CFlowNets) in robotic environments, par-

ticularly in the domain of machine fault adaptation. Generative Flow Networks is an

emerging algorithm with the potential to be considered as a substitute approach to

the prevalent reinforcement learning methods in continuous exploratory tasks. In our

work, the experimentations were done in a simulated robotic environment (Reacher-

v2). This environment was manipulated and modified to introduce four distinct

fault environments which are reduced range of motion, increased damping, actua-

tor damage, and structural damage. Each fault replicates actual malfunctions that

are generally witnessed in real-world machines/robots that render them inoperative.

The empirical evaluation of this research indicates that continuous generative flow

networks indeed have the capability to add adaptive behaviors in machines under

adversarial conditions in the environment. Furthermore, the comparative analysis of

CFlowNets with state-of-the-art RL algorithms also provides some key insights into

the performance in terms of adaptation speed and sample efficiency. Despite a few

algorithmic shortcomings, our experiments confirm that CFlowNets has the potential

to be deployed in a real-world machine and it can demonstrate adaptability in case of

malfunctions to maintain functionality. The thesis is motivated by the idea of trans-

forming robots into more than just mere tools, making them capable entities which

are capable of autonomously overcoming certain faults and failures, thus sustaining

their operation while delaying the need for maintenance. Through experimentation

in simulated robotic environments, the comparative study aims to contribute to the

ongoing discourse on enhancing the adaptive capacities of automated systems and

machines.

iii

Preface

A major part of this thesis will be submitted as an extended paper to a journal.

iv

“It is not the strongest of the species that survives, nor the most intelligent, but the

one most adaptable to change.”

-Charles Darwin

v

Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisor Dr.

Osmar Zaiane, for his unwavering support, guidance, and patience throughout this

journey. His encouragement and support always created a nurturing environment

during challenging times, helping me to transform every obstacle into opportunities for

growth. For me, he is not only my mentor but also a source of great inspiration which

helped to push myself beyond my own limits to coordinate my project, especially in

writing this thesis dissertation. I am honored to have embarked on this scholarly

journey under the supervision of Dr. Zaiane.

Furthermore, I would also like to acknowledge, with heartfelt gratitude, the im-

portant role of Sheila Ann Schoepp, who has been like a guiding figure and another

mentor to me during my research. Beyond her technical expertise, her moral support

and friendship have been instrumental at every step of this journey.

I would like to extend my gratitude to Yoshihiro Mitsuka and Shotaro Miwa

from Mitsubishi Electric Co. Their invaluable insights and profound suggestions were

crucial in laying the foundation of this project. I am equally grateful to Mitsubishi

Electric Co. for funding and providing me with the opportunity that empowered me

to realize this research.

To my parents, Noman Sufiyan and Hasna Hena, and in loving memory of my late

brother Tonmoy Sufiyan, I am here today because of your boundless faith in me and

your immeasurable sacrifices.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Objectives . 6

1.3 Manuscript Organization . 9

2 Background on Reinforcement Learning 10

2.1 Reinforcement Learning . 10

2.1.1 Markov Decision Process . 11

2.1.2 Returns, Policies, and Value Functions 12

2.1.3 Policy Gradient Methods . 14

2.1.4 Exploration vs. Exploitation 15

2.1.5 On/Off-Policy Algorithms . 16

2.1.6 Proximal Policy Optimization (PPO) 17

2.1.7 Soft Actor-Critic (SAC) . 18

2.1.8 Deep Deterministic Policy Gradient (DDPG) 20

2.1.9 Twin Delayed DDPG (TD3) 23

3 GFlowNets and its Variants: A Comprehensive Overview 26

3.1 GFlowNets . 26

3.1.1 Definition of GFlowNets . 27

3.1.2 GFlowNets Architecture . 28

3.1.3 GFlowNets Training . 30

3.1.4 GFlowNets vs. RL . 33

3.2 CFlowNets . 34

3.2.1 CFlowNets Definition . 35

3.2.2 Continuous Flow Definitions 36

3.2.3 Training Framework . 37

vii

4 Related Works 43

4.1 Fault diagnosis and Fault-tolerant Strategies 43

4.2 Trial-and-Error with select-test-update 44

4.3 Adaptation using Reinforcement Learning & Meta-RL 45

4.4 GFlowNets for Molecule Generation 47

4.5 CFlowNets for Continous Control Tasks 48

5 Experimental Setup 50

5.1 Hardware and Software . 50

5.2 Environment . 51

5.2.1 Reacher-v2 . 52

5.3 Faults . 56

5.3.1 Reduced Range of Motion . 58

5.3.2 Increased Damping . 59

5.3.3 Actuator Damage . 60

5.3.4 Structural Damage . 60

5.4 Experimental Settings . 63

5.4.1 CFlowNets . 64

5.4.2 RL Algorithms (DDPG, TD3, PPO & SAC) 68

6 Results and Discussion 74

6.1 Initial Insights: Testing CFlowNets’ Viability in Robotic Simulation

Environment . 74

6.2 Initial Insights: Execution time of 1 Million Timesteps 76

6.3 Adaptation Performance . 78

6.4 Adaptation Speed and Sample Efficiency 88

6.5 CFlowNets’ Compute Efficiency Analysis: GPU Memory Usage . . . 90

6.6 CFlowNets: A Transfer Learning Analysis 92

7 Conclusion & Future Work 97

7.1 Conclusion . 97

7.2 Future Work . 100

Bibliography 103

viii

List of Tables

5.1 Python version and added libraries of virtual environment 51

5.2 Action Space of Reacher-v2 Environment [31] 53

5.3 Observation Space of Reacher-v2 Environment [31] 55

5.4 Best Performing Hyperparameters in the CFlowNets training. 67

5.5 Hyperparameters used in the TD3 and DDPG training for the Reacher-

v2 task. 70

5.6 Hyperparameters used in the SAC training for the Reacher-v2 task. . 71

5.7 Hyperparameters used in the PPO training for the Reacher-v2 task. . 72

ix

List of Figures

3.1 Flow Network DAG Illustration [20] 29

3.2 GFlowNets Architecture [20] . 30

3.3 CFlowNets Training Framework [7]. The leftmost part represents the

action selection procedure. The middle part is the flow-matching ap-

proximation visualization and the rightmost section shows the Contin-

uous Flow-Matching Loss, which is utilized for training. 38

5.1 Reacher-v2 Environment [31] . 52

5.2 Reacher-v2 XML . 57

5.3 Original Robotic Arm . 63

5.4 Bent Robotic Arm . 63

6.1 Average Return in Normal Reacher-v2 Environment. The shaded areas

correspond to a 95% confidence interval. The dashed line represents

the asymptotic performance. 75

6.2 Execution Time in Normal Reacher-v2 Environment (1 million timestep). 77

6.3 The early performance in Motion Impairment Fault environments is

depicted through learning curves for all five algorithms. The dashed

line represents the asymptotic performance, 80

6.4 The early performance in Structural and Mechanical Faults fault en-

vironments is depicted through learning curves for all five algorithms.

The dashed line represents the asymptotic performance, 82

6.5 Adaptation Speed and Sample Efficiency in the four fault Reacher-

v2 Environments (10 million timesteps). Execution time to achieve

asymptotic performance is indicated on top of each algorithm’s bar in

an Hour-Minute format. 89

6.6 Bar chart illustrating the average GPU memory usage of various al-

gorithms: CFlowNets, PPO, DDPG, SAC, and TD3 for Reacher-v2

(Normal Environment) . 91

x

6.7 Early Performance of CFlowNets in Reacher-v2 fault environments.

Comparison of performance is done between the CFlownets model with

no prior learning and the CFlowNets model with retaining pre-trained

model and replay buffer (data collected from the normal Reacher-v2

environment). 93

xi

Abbreviations

AI Artificial Intelligence.

CFlowNets Continuous Flow Networks.

DDPG Deep Deterministic Policy Gradient.

DRL Deep Reinforcement Learning.

GAE Generalized Advantage Estimator.

GB Gigabyte.

GFlowNets Generative Flow Networks.

MARS Markov Molecular Sampling.

MB Megabyte.

MCMC Markov Chain Monte Carlo.

MDP Markov Decision Process.

MSE Mean Squared Error.

NN Neural Network.

PPO Proximal Policy Optimization.

ReLu Rectified Linear Unit.

RL Reinforcement Learning.

ROM Range of motion.

SAC Soft Actor-Critic.

xii

TD3 Twin Delayed Deep Deterministic Policy Gradient.

XML Extensible Markup Language.

xiii

Chapter 1

Introduction

Robotic technology has brought about substantial economic changes in several in-

dustries, particularly in manufacturing, and has immense potential to offer numerous

benefits to society. A wide range of applications has been implemented using it. These

include search and rescue operations, manufacturing, disaster response, healthcare,

and transportation. Furthermore, they are indispensable tools for scientific research,

enabling the exploration of remote areas such as planets and oceans. However, a

significant hurdle to their widespread implementation in more diverse environments

is their vulnerability, particularly for complex machines.

Robots, like any other machine, are susceptible to damage and failure, particularly

when operating in a real-world environment. In outdoor or unstructured environ-

ments, these machines can be exposed to various sources of damage, including rough

terrain, collisions with obstacles, and exposure to harsh weather conditions. Further-

more, machines can suffer from component wear and tear, battery depletion, software

bugs, and other faults that reduce their performance and reliability or even cause

them to fail altogether. It is also possible that damage to a robot or machine may

pose a safety risk to humans in the area. Additionally, as a result of these failures,

quick maintenance is essential to ensure continued operations. However, maintenance

is not always readily available like in remote areas. To minimize the risk of damage,

downtime and ensure the longevity of robots, it is essential to develop strategies for

1

fault diagnosis, fault detection, identification, and adaptation.

Imagine a warehouse where an advanced fleet of robots and manufacturing ma-

chines all work together to assemble products from one assembly line to another. The

robots are equipped with an extensive network of sensors and devices that enable

them to detect and diagnose faults in real-time. If a robot experiences a malfunction,

such as a broken arm or reduced range of motion, a supervisory artificial intelligence

(AI) algorithm is able to detect and respond to the detected malfunction. The AI

algorithm temporarily adjusts the movement of the affected robot and alerts other

robots in the network about the fault that has occurred. At the same time, the al-

gorithm processes the fault data gathered from the malfunctioning robot and adapts

its task performance, such as using alternative routes or modifying its joint and limb

movements to work around the fault. Once the robot has successfully adapted, the

supervisory AI control system is notified, and the robot returns to its normal du-

ties. A fault adaptation system such as the above example enables the fleet of robots

to continue working efficiently and effectively, even when one of them experiences a

fault or failure through the process named fault adaptation. With the ability to de-

tect and recover from faults autonomously, robots can continue to operate effectively

in challenging environments and achieve their intended tasks with minimal disrup-

tion. Consequently, developing robust fault adaptation techniques is a critical area of

research for the continued advancement and deployment of robotics in the real world.

In summary, the benefits of machines and robots that can adapt when a fault occurs

are numerous and far-reaching. From increased productivity and reduced mainte-

nance costs to improved safety and product quality, fault adaptation technology has

the potential to revolutionize many industries. Furthermore, continued innovation in

this field can lead to even more advancements and opportunities in the future.

2

1.1 Motivation

Across a wide range of industries, from manufacturing to transportation to energy,

there is a growing trend toward automation and interconnectivity. These systems

rely on a variety of technologies, including artificial intelligence, machine learning,

reinforcement learning, and the Internet of Things (IoT), to create a seamless and

highly efficient network of machines and devices.

As these machines and robots become more autonomous and move out of the

controlled settings of factories and into the more dynamic and unpredictable envi-

ronments of the natural world, it is inevitable that they will encounter situations

that result in damage or other faults. Even inside controlled environments such as

manufacturing industries, factory machines/robots may face adversarial conditions

that can hinder their operations. These types of disruptions and machine faults may

hamper these industries’ manufacturing processes by causing downtime. In modern

digital manufacturing, mechanical failures cause 79.6% of machine tool downtime.

[1].

It might also be difficult for a maintenance team to repair a machine when a

fault occurs in remote locations for research and exploration purposes. An example

would be deep-sea exploration using autonomous underwater vehicles (AUVs) to map

the seafloor, conduct surveys, and collect data on marine life. These vehicles can

withstand the extreme pressures and temperatures of the deep oceans and can operate

for weeks or even months at a time without human intervention. Such situations call

for a highly automated, interconnected system that is capable of adapting to changing

conditions whenever a fault occurs without the need for any manual intervention.

By detecting and adapting to changing conditions, including machine faults, these

systems can help prevent downtime, reduce waste, and improve overall performance.

The growing trend of fully automated and interconnective systems enables the uti-

lization of a wide range of sensors and monitoring systems that collect data on the

3

performance of the machine, which in turn helps with the identification of deviation

from normal operating conditions or the detection of anomalies such as hardware

failure. These techniques are commonly referred to as fault detection and fault di-

agnosis [2]. Detection and diagnosis mechanisms of this type are only concerned

with detecting faults as soon as they arise but do not address the issue of post-fault

detection.

As machines become increasingly complex and autonomous, it is becoming more

important than ever for them to have the capability of some sort of tolerance and

adaptability of their behavior in response to faults and errors. The first step to-

wards such an approach to adding fault tolerance in machines is through hardware

redundancy. Hardware redundancy refers to the duplication of essential machine com-

ponents in order to replace similar broken components whenever a fault occurs [3].

However, even though the process of hardware redundancy has been quite an estab-

lished method of fault tolerance, it does come with its own disadvantages. For in-

stance, the duplication of components increases the size, weight, power consumption,

and financial cost of the machine. Additionally, retrofitting redundant components

into existing machines can also be challenging since the original blueprint of the ma-

chine may not allow such modification. Using more materials to build machines with

redundant components also has a negative impact on the environment. As a result,

researchers are exploring new approaches to fault tolerance that can address these

issues and provide more efficient and sustainable solutions. Some of these approaches

include software redundancy, self-healing systems, fault prediction and adaptation.

These methods can be less costly and easier to implement than hardware redundancy

while still providing the necessary level of fault tolerance to maintain machine safety

and reliability.

An approach to making machines fault-tolerant that has received considerable at-

tention in recent times is to add the capability of adaptability. One of the best sources

of inspiration for creating adaptable machines is nature itself. Compared to natural

4

animals, robots still lack the ability to create compensatory behaviors following an

injury, limiting their capabilities. Like living organisms, machines require the ability

to adapt to unexpected changes in their environment, whether that means adjusting

to damage or finding a new way to complete a task. For instance, it is common for

birds to change their normal behaviour in response to injuries [4]. If a bird has an

injury to its wing, it may compensate by changing the way it flaps its wings or by

altering the angles of its wings during flight. This enables the bird to maintain its

balance and continue to fly. Despite its injuries, as a result of this adaptive behavior,

the bird has modified its pattern to be able to function. This sort of adaptability

may enable the bird to learn new flight patterns that are more efficient and effective

for its altered physical condition. Machines can also take inspiration from nature by

adopting a fault-tolerant approach, similar to how some animals and plants are able

to survive and thrive in hostile environments. In fact, many researchers and engi-

neers are now turning to biomimicry, the process of imitating nature’s designs and

processes, to create machines that are better able to handle unexpected challenges [5].

The approach entails building machines that are capable of recognizing and adjusting

to variations in the environment, including the presence of faults, to ensure continued

operation.

During the past few years, deep learning has gone from being a means of predict-

ing machine faults to being a primary focus of the field. Rather than just predicting

or diagnosing faults, the industry is now focusing more on post-fault phases. Re-

cently, a number of research projects have already been conducted in the context of

fault tolerance/fault adaptation using reinforcement learning. However, since fault

adaptation tasks require diverse exploration and reinforcement learning has the issue

of balancing exploration and exploitation for large-scale problems, new frontiers of

research have been explored that can become an alternative method for standard re-

inforcement learning algorithms. This is where the emerging technology Generative

Flow Networks (GFlowNets) provide a solution to this problem by compensating for

5

the shortcomings of reinforcement learning in exploratory tasks. Through the gen-

eration of a distribution proportional to rewards over terminating states, generative

flow networks enhance exploration capabilities [6]. One of the key differences between

GFlowNets and reinforcement learning is that GFlowNets generate a distribution over

all possible paths and sample from the most rewarding paths with a higher proba-

bility which makes them more sample-efficient than standard reinforcement learning

algorithms because they tend to stick to the most rewarding path which can be a

local optimum. However, it is worth mentioning that generative flow networks and

RL have different objective functions and they solve different problems. While RL

seeks to maximize the reward, GFlowNets emphasizes on generating outputs in pro-

portion to the reward to produce a diverse set of high-reward solutions. A variant

of GFlowNets that is primarily being investigated in this research is tokenized as

CFlowNets, or Continuous Flow Networks. CFlowNets can be considered as an up-

dated extension of the theoretical formulations of GFlowNets which is able to adapt

to continuous control task that has a continuous state-action space [7]. In this study,

GFlowNets and CFlowNets are mainly investigated for their possible implementation

in robotics as well as to determine whether the generative flow networks demonstrate

adaptive behavior in exploratory tasks. To the best of our knowledge, no research has

yet implemented and evaluated the efficacy of generative flow networks in machine

fault adaptation.

1.2 Thesis Objectives

The primary objective of this thesis is to test a hypothesis that addresses the question

of whether GFlowNets/CFlowNets can be considered as a potential algorithm to

generate candidate high-return solutions in the context of continuous exploratory

tasks primarily concerned with exploration. Additionally, the thesis seeks to assess the

performance of generative flow networks in comparison to RL. This will be achieved by

conducting a comparative study of reinforcement learning algorithms and generative

6

flow networks. Additionally, the implementation of generative flow networks provides

a new perspective toward autonomous systems capable of self-adaptation without the

need for human intervention. The ability of machines and robots to adapt to faults

can be very beneficial to a variety of industries. By detecting and diagnosing faults

in real-time, these machines can adapt to unexpected failures and malfunction which

will result in increased productivity, reduced downtime, and ultimately, increased

profits. Furthermore, machines can extend their lifespan and reduce maintenance

costs by adapting to faults. It also reduces the need for expensive repairs, delays the

need for repair/maintenance and maximizes resource efficiency.

GFlowNets/CFlowNets framework offers a potential solution for developing ma-

chines and robots that can adapt to hardware failures autonomously. This thesis

involves a thorough evaluation of Generative Flow Networks (GFlowNets) and Gen-

erative Continuous Flow Networks (CFlowNets), in terms of their ability to enable

adaptation to failures. Unlike previous research that focused on detecting malfunc-

tion [2], [8] and diagnosing malfunctions [9], [10], [11] in machines, this thesis assumes

that the system already has fault detection and diagnosis capabilities where the sys-

tem knows about the fault along with its specific limitations. This means that the

focus is on how the system can adapt to the fault, instead of detecting it.

The primary objective of this thesis is to investigate the possibility and feasibility

of using GFlowNets/CFlowNets in machine fault adaptation. The purpose of this

study is to seek answers to the following questions:

• Can Generative Flow Networks be utilized in robotic applications?

• Is it possible to develop a Continuous GFlowNets Learning approach for ma-

chines well suited for continual interaction with environments? In other words,

Can GFlowNets or CFlowNets theoretical formulations work with continuous

action and state space?

• Can Generative Flow Networks adapt when a fault is introduced in the robotic

7

environment? In other words, can it be utilized for fault adaptation tasks?

– If yes, how does it compare to reinforcement learning methods (PPO, SAC,

TD3, and DDPG) in terms of adaptation speed and sample efficiency?

• How does the computational resource consumption of flow networks compare

to standard RL algorithms?

• Does incorporating the transfer of task knowledge and storage content enhance

performance efficiency for Generative Flow Networks?

The thesis will begin with a comprehensive review of relevant literature on fault

adaptation in machines and the recent application of reinforcement learning algo-

rithms for fault tolerance and adaptation. This will provide the tools to identify

gaps and opportunities for further research, laying a theoretical foundation for the

study. Using data collected from fault detection and diagnosis, flow network models

will be developed and trained, and their performance will be tested as they adapt to

hardware failures.

In order to assess the performance of flow networks, we perform experiments on a

continuous control problem. We run our experiments in a simulated robotic environ-

ment Reacher-v2 in MuJoCo [12] OpenAI Gym [13]. For our empirical comparative

analysis, we examine four reinforcement learning algorithms which are DDPG (Deep

Deterministic Policy Gradient) [14], TD3 (Twin-delayed DDPG) [15], Proximal Policy

Optimization (PPO) [16] and Soft-Actor-Critic (SAC) [17] and evaluate their ability

to add fault tolerance compared to the flow networks. As part of the ongoing research

on developing more efficient and reliable industrial systems, the study provides insight

into the potential of the generative flow networks as novel frameworks for machine

fault adaptation.

8

1.3 Manuscript Organization

The introduction chapter has explained fault tolerance, adaptation, and the motiva-

tion and objective for this research study. The remaining chapters are organized as

follows: The second chapter focuses exclusively on providing the background knowl-

edge on reinforcement learning. Chapter 3 delves into foundational information about

GFlowNets and its variant, CFlowNets. Chapter 4 discusses related work, including

prior research outcomes related to the field of machine fault adaptations. Chapter 5

extensively describes the design of the experimental setup and the fault environment

details and also elaborates on the robot simulator that has been used to conduct our

experiments. Chapter 6 reports our findings based on our multiple segments of exper-

iments and discusses the interpretations of the results. Chapter 7 concludes with a

summary of our thesis research, including strengths and limitations, as well as future

research directions.

9

Chapter 2

Background on Reinforcement
Learning

In this chapter, we provide background information on the contributions of this the-

sis. Since this study works as a comparative analysis of Reinforcement learning

and Generative Flow Networks, we begin by discussing the fundamental concepts

of reinforcement learning in this chapter. As a follow-up to discussing reinforcement

learning’s conceptual foundations, we review different types of reinforcement learn-

ing algorithms. Afterward, we describe four state-of-the-art reinforcement learning

algorithms that are used in our comparative analysis.

2.1 Reinforcement Learning

In reinforcement learning [18], agents are trained to make sequential decisions in a

given environment. The process can be compared to the process of training a dog to

do something specific, like fetch a ball, for example. Reinforcement learning can be

viewed as an interaction between the dog which can be considered an agent and its

environment, which is the area where the dog can move around and interact with real-

world objects. The reward signal in this example could be seen as the dog receiving a

treat for fetching the ball successfully. Initially, the dog is not able to understand the

right set of actions it has to do to perform the task. However, after a series of trials

and errors, for instance, chasing the ball or barking at it, when it finally successfully

10

retrieves the ball, it receives a treat. This treat is a reward the dog receives from

the environment which helps reinforce the behavior and encourages similar efforts in

the future. In this example, positive reinforcement which came in the form of a treat

and the method of trial and error is used to teach the agent (dog) how to select the

correct course of action to perform a desired task. In a similar manner, reinforcement

learning involves an agent being given a set of allowed actions that they use in order

to interact with the world and get positive or negative feedback depending on the

selected action. In order to maximize rewards, agents learn to map aspects of the

world to particular actions through a process of trial and error.

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework that is generally

used to describe the settings and environment of reinforcement learning (RL). It is

used to model sequential decision-making problems in dynamic environments. The

MDP framework consists of two entities which are the agent and the environment.

The agent in this scenario works both as a learner and a decision-maker while the

environment consists of everything that the agent interacts with. The environment

is completely external to the agent. In a series of discrete time steps, t ≥ 0, the

interaction between the agent and the environment occurs. At every discrete set of

time steps, the agent receives information about its current state provided by the

environment. This current state is denoted by St ∈ S, where S is a finite set of all

possible states. The agent has the option of choosing an action At ∈ A(s) from the

current state, where A(s) is the finite set of all possible actions that can be taken from

that state. After the agent selects and executes the selected action, the environment

updates its state St+1 ∈ S, and the agent gets a computed discrete numerical reward

Rt+1 ∈ R, where R is a subset of real-valued numbers which is based on the agent’s

chosen action and current state.

The state and reward at the next time step (St+1, Rt+1) after the execution of an

11

action are determined by the MDP dynamics probability function P , where P is the

probability operator:

P(s′, r|s, a) = Pr(St+1 = s′, Rt+1 = r|St = s, At = a) (2.1)

The Markov property of the MDP framework is considered one of its most important

features. The Markov property states that whenever an agent takes an action given a

state, the probability of the resultant reward and state depends only on the previous

state and action. In other words, it does not depend on the entire history of all

the states and actions that preceded it. At a given time-step, as the future state

is determined solely based on the present state and action the Markov property is

sometimes also referred to as “Memoryless property”.

An agent’s interaction with the environment leads to a series of states, actions,

and rewards at each time step. This is known as a trajectory:

S1, A1, R2, S2, A2, R3, ... (2.2)

Every trajectory begins with an initial state which is problem-specific or randomly

selected. At the end of the trajectory, the final state transitions to zero rewards with

a probability of one. This final state is also known as the terminal state. An episodic

task is one that triggers a zero probability when it reaches a terminal state or a

fixed number of timesteps or episodes. However, sometimes the trajectory continues

indefinitely and the agent interacts with the environment without a fixed endpoint.

Tasks of this nature are referred to as continuing tasks.

2.1.2 Returns, Policies, and Value Functions

The primary objective of any reinforcement learning method is to maximize the ex-

pected sum of rewards across a trajectory. The goal of an agent is to execute those

set of actions for which the expected sum rewards are maximized which is referred to

as expected returns. Return is denoted as Gt which is all the rewards combined in a

12

trajectory:

Gt = Rt+1 +Rt+2 +Rt+3 + . . .+RT =
∞∑︂
k=0

Rt+1+k (2.3)

Since there are two types of tasks related to reinforcement learning trajectory: episodic

tasks and continuing tasks, the returns corresponding to these two types of tasks are

also different. In episodic tasks, where the agent interacts with the environment for

a fixed number of timesteps and it contains a terminating state T, the return is de-

fined as shown in Equation 2.3. On the other hand, for continuing tasks, the agent

interacts with the environment indefinitely and as a result, the sum of rewards can be

unbounded because there are no terminal states. In this scenario, the conventional

return would not work because of the absence of terminal states. Rather we need to

consider discounted return:

Gt =
∞∑︂
k=0

γkRt+k+1 (2.4)

This type of discounted return takes into account the time value of the rewards.

The rewards that are received by the agent during a trajectory at each time step

are multiplied by γ which is referred to as the discount factor. Discount factors are

usually raised to the power of the time step and are in the interval [0, 1] which specifies

the amount of weight given to rewards in the distant future relative to those in the

immediate future. If the discount factor γ is set to zero the agent does not consider

the future rewards and puts more weight on immediate rewards which means the

agent’s decision-making is entirely dependent on immediate feedback. Conversely,

γ = 1 signifies that the agent values the future reward as much as the immediate

rewards which makes the agent’s decision-making inclined towards maximizing the

total sum of rewards over time.

One of the two critical concepts of reinforcement learning is policy and value func-

tion. In essence, the policy is a mapping of states to actions. Given a state, the

policy determines the action to take by the agent. There are two types of policies in

reinforcement learning. A deterministic policy maps each state to a particular action.

13

In other words, whenever an agent transits into a particular state, the same action is

executed according to a deterministic policy. For instance, if a machine encounters a

certain type of specific malfunction, such as facing an obstacle, it may have a deter-

ministic policy to turn away given that particular state. The deterministic policy is

represented as:

π(s) = a (2.5)

In contrast, a stochastic policy is a mapping from states to a probability distribution

over all allowed actions from that state. The stochastic policy is represented as:

π(a|s) = P (At = a|St = s) (2.6)

Value functions are a tool to assess the goodness of a state. It is a function that

measures how good it is for an agent to be present in a state after following a policy

π. By following a policy π, we define the state-value function that results from the

policy as follows:

Vπ(s) = Eπ[Gt|St = s] = Eπ
[︂ ∞∑︂
k=0

γkRt+k+1|St = s
]︂

(2.7)

Similarly, we can define the action-value function which is the value function with

respect to state-action pairs as:

Qπ(s, a) = Eπ[Gt|St = s, At = a] (2.8)

2.1.3 Policy Gradient Methods

Policy gradient methods are a set of reinforcement learning methods that are different

from the standard conceptual reinforcement learning methods. Whereas in the usual

case, reinforcement learning methods model a policy by measuring the goodness of a

current state, in other words by using value function, policy gradient methods learn

a policy directly without utilizing value function as an intermediate step. Policy

gradient methods are specifically advantageous for continuous action space. In this

method, the policy is directly optimized, so an action-value function is not necessary.

14

The objective of policy gradient methods is to maximize the expected sum of

rewards by optimizing a parametrized policy. The parametrized function:

πθ(a|s, θ) = Pr(At = a|St = s, θ) (2.9)

One way to maximize the expected reward is by using gradient ascent. Gradient

ascent generally updates the weights/policy parameters θ in the direction that maxi-

mizes the expected return which in turn increases high reward action probability and

minimizes the action probabilities that result in low rewards.

There are several well-known policy gradient methods used in reinforcement learn-

ing, including REINFORCE, Trust Region Policy Optimization (TRPO), and Actor-

Critic. However, the Actor-Critic method is a bit different because it combines el-

ements of both policy-based and value-based methods. As policy gradient methods

have evolved, various improvements have been made. For example, the Actor-Critic

architecture has introduced a critic to reduce gradient estimate variances. By in-

corporating a value-based method (critic) along with a policy-based method (actor),

learning stability and efficiency have been enhanced.

2.1.4 Exploration vs. Exploitation

As mentioned in the background section, the primary goal of a reinforcement learning

algorithm is to maximize the expected sum of rewards across a trajectory over a period

of timesteps. To achieve a higher expected return, it is necessary for an RL agent

to learn to execute a series of actions that yield higher rewards. However, this task

may prove challenging, as the agent has to strike a balance between exploration and

exploitation.

The term exploitation refers to the RL agent’s tendency to exploit the current

knowledge by greedily choosing the greedy policy to get a high reward. It means

exploiting the current information that the agent received from the environment and

selecting actions that are already expected to produce the highest rewards based on

15

prior knowledge. For instance, if you enjoy the movie genre sci-fi which never fails

to entertain you, and then you decide to watch a movie which is only of the genre

sci-fi then you are taking advantage of your prior movie experiences by exploiting

your current knowledge. If an agent only exploits the environment, it may always

get stuck in a suboptimal policy while better trajectories with higher rewards may

remain hidden during the learning phase.

On the other hand, exploration refers to the scenario where the agent tries to

improve its knowledge by taking random actions that are not guaranteed to yield high

rewards. In other words, during exploration, the agent executes actions that are not

yet well understood in the hopes of gaining new information about the environment

and potentially discovering new action paths that may even produce trajectories with

greater rewards. If you decide to watch a rom-com movie instead of always watching

sci-fi, you might like it even more. That is why exploration is important because it

may lead to better policy. However, since the agent is venturing toward uncharted

territories during exploration, it may yield much lower rewards initially, but in the

long run, it may generate more optimal policies.

2.1.5 On/Off-Policy Algorithms

Reinforcement learning methods can generally be categorized into two types: On-

policy and Off-policy. The key difference between on-policy and off-policy lies in how

these methods use data to update the policy. On-policy algorithms refer to the set

of RL algorithms that update their policy by using the data that is collected under

the current policy. In other words, this algorithm tries to improve and evaluate the

same policy that is being used for the action selection procedure which means the

behavior policy is the same as the target policy. Behavior policy means the policy that

the agent uses to select an action given a current state, and the target policy is the

policy that the agent is trying to learn to approximate and improve. Some commonly

used on-policy algorithms are Proximal Policy Optimization (PPO), Sarsa, Advantage

16

Actor-critic (A2C), Vanilla Policy Gradient (VPG), etc.

On the other hand, off-policy algorithms make an update to their policy using

data generated under different policies. A behavioral policy is used in the off-policy

method to explore the environment and collect samples, which generates the agent

behavior, and a second policy is learned, called the target policy. Q-learning is an

off-policy method most commonly used. Some other examples of off-policy RL al-

gorithms include Deep Deterministic Policy Gradient (DDPG), Twin Delayed Deep

Deterministic Policy Gradient (TD3), Soft Actor-critic (SAC), etc.

2.1.6 Proximal Policy Optimization (PPO)

Proximal Policy Optimation (PPO) [16] is one of the state-of-the-art reinforcement

learning algorithms to date. It was first introduced in 2017 in an effort to train deep

reinforcement learning agents with improved stability by avoiding too-large policy

updates. Since then, it has been widely utilized because of its stability and faster

convergence compared to other policy gradient algorithms in large-scale DRL tasks.

PPO is an on-policy algorithm where an update to the policy is made using data

collected by the current policy.

One of the key drawbacks of traditional policy gradient algorithms is that during

their large policy updates the policy parameters are used to deviate too much from

previous values. The policy update is regulated by the learning rate and whenever

the learning rate is too small, it results in slow convergence, while if the learning rate

is set too high, it leads to a large policy update. Large policy updates can cause the

agent to transit into a bad policy and sort of fall off the cliff. In some cases, it may

cause catastrophic forgetting and will be difficult or even impossible to return to a

state of optimal policy once again. As a means of improving training stability and

restricting large policy updates, PPO utilizes something called the surrogate objective

function. With a clipped surrogate object LCLIP or enabling the constrained size of

the update, this algorithm approximates the policy gradient update. The clipped

17

surrogate objective is defined as:

LCLIP (θ) = Êt

[︄
min

(︂ πθ(at|st)
πθold(at|st)

At, clip
(︂ πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ
)︂
At

)︂]︄
(2.10)

where the probability ratio πθ(at|st)
πθold (at|st)

is the ratio of selecting an action given a state

under a new policy to selecting an action under the old policy. This ratio is clipped

from a specific range which is [1 - ϵ, 1 + ϵ], where ϵ regulates the size of the clipping.

If the ratio is outside this range, it signifies that the updated policy is deviating too

much and as a result, the update is clipped to maintain stability. At is the advantage

function. The advantage function is a measuring tool for assessing the goodness of

an action compared to the average action defined by the policy π and determines

whether a policy change is necessary. The advantage function At is represented as:

A(st, at) = Q̂(st, at)− V (st) (2.11)

The PPO policy parameters θ are updated by applying gradient ascent on the surro-

gate objective function:

θnew = argmax
θ′

LCLIP(θ′) (2.12)

2.1.7 Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) [17] is another one of the most popular state-of-the-art rein-

forcement learning algorithms that have been recently considered to be one of the most

efficient algorithms for robotics applications. It is a model-free off-policy reinforce-

ment learning algorithm that makes an update to their policy using data generated

under different policies. This algorithm uses a maximum entropy RL with the objec-

tive of finding the optimal policy that maximizes long-term entropy and long-term

reward. SAC seeks to maximize the expected return plus the entropy of the policy.

Initially, the first term of the objective function can be considered as the expected

value of the sum of rewards that the agent receives given a state and action. The

18

objective function can be represented as:

J(π) = E[
∞∑︂
t=0

γtr(st, at)] (2.13)

Where r(st, at) is the reward received by an agent after executing an action from

state st. γ is the discount factor. The second term deals with the entropy bonus.

As per the principle of maximum entropy, we aim to find the distribution with the

maximum entropy. In many RL algorithms, there is a possibility that an agent may

converge to a local optimal state. A maximum entropy objective function enables

the agent to search for distributions with maximum entropy by adding the maximum

entropy to the objective function. By incorporating the maximum entropy princi-

ple, the system has to search for the entropy as well, it enables more exploration

by discouraging the policy from becoming too deterministic, and chances to avoid

converging to local optima are higher. The SAC objective function with maximum

entropy is:

J(π) = E

[︄
∞∑︂
t=0

γtr(st, at) + αH(π(.|st))

]︄
(2.14)

Where α is the hyperparameter known as temperature which controls the relative

importance of the entropy. H(π(.|st)) is the entropy of the policy. To optimize the

objective function the SAC algorithm utilized three different networks:

In a value network, the state value function V , which is parameterized by ψ, is

trained by minimizing the following error:

JV (ψ) = Est∼D,at∼πϕ

[︃
1

2

(︁
Vψ(st)−Qθ(st, at)− α log πϕ(at|st)

)︁2]︃
(2.15)

where Vψ is the value function, Q is the state-action value function, α is the tem-

perature parameter, πθ is the policy function, and D is the replay buffer.

In a Q network, the following objective function is minimized:

JQ(θ) = E(st,at,rt,st+1)∼D

[︃
1

2

(︁
Qθ(st, at)− (r(st, at)) + γVψ̄(st+1)

)︁2]︃
(2.16)

19

For all state-action pairs in the replay buffer, the objective function of a Q Network

minimizes the squared difference between the Q function prediction and the sum of

the immediate reward and the discounted expected value of the next state.

In a Policy network π, training is done by minimizing the following error:

Jπ(ϕ) = Est∼D
[︃
DKL

(︃
πϕ(.|st)

⃓⃓⃓⃓⃓⃓⃓⃓
exp(Qθ(st, .))

Zθ(st)

)︃]︃
(2.17)

Where the DKL is the. Kullback-Leibler Divergence. To put it simply, we want

our Policy function distribution to resemble the exponentiation distribution of our Q

function normalized by another function Z.

The policy network, parameterized by ϕ, is trained using the objective function:

Jπ(ϕ) = Est∼D[Eat∼πϕ [α log(πϕ(at|st))−Qθ(st, at)]] (2.18)

at is sampled by implementing the re-parametrization trick to make sure that

sampling from the policy is a differentiable process:

at = fϕ(ϵt; st) (2.19)

The final objective function yeilds to:

Jπ(ϕ) = Est∼D,ϵt∼N [α log(πϕ(fϕ(ϵt; st|st)))−Qθ(st, fϕ(ϵt; st))] (2.20)

2.1.8 Deep Deterministic Policy Gradient (DDPG)

The deep deterministic policy gradient is another one of the most widely used rein-

forcement learning algorithms that are specifically optimized for its applications in

control systems and robotics because of its robust performance while dealing with

environments with continuous state and action space. It is an off-policy, online,

and model-free algorithm that has an actor-critic reinforcement learning agent that

searches for an optimal poly that maximizes the expected cumulative long-term re-

ward [14].

20

As DDPG is an actor-critic method, it generally utilizes two neural networks to

implement the actor-critic architecture and makes use of experience replay and target

experience replay and target networks to stabilize training. The first neural network

deals with the policy/actor-network. This network takes the states of the environment

as input and simply generates a specific action given the states. The actor in this

case is deterministic and aims to approximate the optimal policy deterministically as

a function that maps states to action. Given a state s, the actor networks generate

an output of action a:

a = µ(s|θµ) (2.21)

where µ is the policy function and θµ is the actor-network parameter.

The second neural network is the critic network with weights θQ which approxi-

mates the action-value function. In other words, the critic network takes a state-action

pair as an input and outputs a Q-value which evaluates the quality of action taken

by an agent given a state s, by following a policy µ:

Q(s, a|θQ) (2.22)

where, Q is the Q-value and θQ is the critic network parameters.

During the training phase of DDPG, the actor-network (policy) and and the critic

network (value) are updated at each timestep. The critic update involves minimizing

the loss between the Q-target values and the predicted Q-values. The target Q-values

are computed using the following Bellman equation:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

) (2.23)

where ri is the reward, γ is the discount factor, Q′ is the target critic network, µ′

is the target actor-network, θQ
′
, and θµ

′
are the target network parameters. After

21

that, the goal is to minimize the mean-squared loss between the target Q-value and

the predicted Q-value:

L =
1

N

∑︂
i

(yi −Q(si, ai|θQ))2. (2.24)

Gradient ascent is performed on the expected Q-values to update the actor-network.

The goal is to maximize the expected Q value by updating the actor parameters using

the following policy gradient:

∇θµJ ≈
1

N

∑︂
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si (2.25)

where J is the objective function, N is the batchsize, ∇aQ is the Q-value gra-

dient with respect to action, and ∇θµµ is the gradient of policy with respect to its

parameters.

Similar to other many RL algorithms, to stabilize training DDPG also utilizes

an experience replay. This replay buffer is used to store experiences to update NN

parameters. During each trajectory roll-out, all the transition tuples which include

current state, current action, next state, and reward (s, a, s′, r) are stored in a finite-

sized replay buffer from where mini-batches of experiences are sampled to update the

policy and value networks.

Additionally, DDPG also uses soft target updates for both its policy and value

networks where the target networks are updated by slowly tracking the learned net-

works:

θ′ ← τθ + (1− τ)θ′ (2.26)

Where θ′, θ are the target network parameters and learned network parameters

respectively and τ is the soft update factor.

In the context of reinforcement learning with discrete action spaces, exploration

is typically facilitated through the probabilistic choice of random actions, utilizing

22

mechanisms like epsilon-greedy or Boltzmann exploration strategies. However, it is

not the same case while dealing with continuous state-action space. In the envi-

ronments where state and action spaces are continuous in nature, the exploration is

achieved by adding noise of the action itself which serves as a means to explore more

diverse actions. There are various processes to introduce noises to the action space

however, the authors in the DDPG paper have employed the Ornstein-Uhlenbeck

Process to integrate noise (N) into the action output, thus enhancing the model’s

exploration ability.

at = µ(st|θµ) +N (2.27)

2.1.9 Twin Delayed DDPG (TD3)

The deep deterministic policy gradient (DDPG) approach displayed very good results

with tasks involving continuous state and action spaces and has been applied in the

field of robotics and control systems. However, DDPG has a major drawback of

unstable training phases and to produce robust performance, it relies heavily on

finding out the correct and optimal hyperparameters. The algorithm has a tendency

to cause function approximation errors and overestimation bias of the Q-values of

the critic network which in turn causes the agent to get stuck into a local optima.

TD3 (Twin Delayed Deep Deterministic Policy Gradient) [15] algorithm is considered

as the successor of the DDPG algorithm primarily because it addresses the issue of

function approximation errors and overestimation bias of DDPG by introducing three

new key features:

1. Clipped Double-Q Learning: TD3 algorithm’s first major change from

DDPG is that it employs two critic networks instead of one. During the critic

update, TD3 uses this clipped double Q learning method to take the smallest

value estimation between the two critic network predictions. By adding this fea-

ture, TD3 ensures a more stable function approximation by the underestimation

23

of Q-values. It results in underestimation bias, but this is not a problem since

low values do not propagate through the algorithm, as opposed to overestimated

values.

For each critic network:

yi = ri + γ min
j=1,2

Q′
j(si+1, µ

′(si+1|θµ
′
))|θQ′

j) (2.28)

where yi is the target Q-value, Q′
j is the j-th target critic network, µ′ is the

target actor network, θµ
′
and θQ

′
j are the target networks parameters.

The loss function of each critic is as follows:

Lj =
1

N

∑︂
i

(yi −Qj(si, ai|θQj))2 for j = 1, 2 (2.29)

2. Delayed Updates: The second feature that is introduced in TD3 is the delayed

updates of the actor-network. In an actor-critic architecture, sometimes the

policy overfits to the noise in value estimation. This happens when the value

network (critic) is not stable enough and is used to update the policy network,

thereby causing the agent’s policy to continuously get worse since it is updating

on states with a lot of errors. To solve this issue TD3 updates the policy network

(actor) less frequently than the value function network (critic). This helps the

value network to become more stable by reducing value estimation variance

with every time step and then after a fixed number of steps for instance, after

d steps, it is used to update the policy network.

3. Target Policy Smoothing: It is common for deterministic policy methods to

produce target values with a high variance while updating the critic. TD3 em-

ploys a noise regularisation strategy which is called the target policy smoothing

to address this issue. By adding noise to the target policy, and then averaging

over mini-batches, the smoothing method reduces variances. This results in

higher values for actions that are more robust. The target action is perturbed

24

by a clipped noise:

ã = µ′(si+1|θµ
′
) + clip(ϵ,−c, c) (2.30)

where ϵ ∼ N (0, σ2), c is a clip value.

The Q-value targets are then computed with this noise:

yi = ri + γ min
j=1,2

Q′
j(si+1, ã|θQ

′
j) (2.31)

Similar to DDPG, the actor-network is updated to maximize the expected Q-

value but for TD3, with the minimum value of the two critic networks:

∇θµJ ≈
1

N

∑︂
i

∇a min
j=1,2

Qj(s, a|θQj)|s=si,a=µ(si)∇θµµ(s|θµ)|si (2.32)

In summary, this chapter establishes foundational knowledge about some of the

essential core concepts and methodologies for reinforcement learning that serve as a

crucial backdrop for the upcoming chapters. The idea behind the balance between

exploration and exploitation, along with a brief review of on/off-policy methods lays

out a framework to explain some insights and findings about the results for comparing

these traditional RL methods with generative flow networks that are discussed in the

later chapters.

25

Chapter 3

GFlowNets and its Variants: A
Comprehensive Overview

As a follow-up to the overview of reinforcement learning in Chapter 2, this chapter

delves into the detailed background analysis of GFlowNets and one of its latest vari-

ants named CFlowNets. Furthermore, this chapter also contains a concise overview

highlighting the difference between GFlowNets and Reinforcement Learning.

3.1 GFlowNets

Generative flow networks, or GFlowNets [6], is the next step in exploratory control

tasks and have the potential to be used as a substitute for Reinforcement Learning. In

its most basic form, it is a trained stochastic policy or generative model. GFlowNets

forward sampling policy aims to generate distribution and sample different candidate

objects through a sequence of constructive steps with probability proportional to

rewards over terminal states. The reason why it is called a stochastic policy is that

for each state in the environment, the agent does not have a precisely well-defined

action to take from a given state; instead, the agent has a probability distribution to

take from that given state. GFlowNets is an emerging technique for active learning

diverse candidate sampling.

To illustrate how GFlowNets works in lay terms, Bengio et al. [6] compare it to

constructing an object such as a Lego boat. While constructing a Lego boat, we go

26

through a sequence of steps by adding each block to its proper place to finally get the

final object. Let us compare it with the GFlowNets setting. The state of GFlowNets

signifies the objects’ current state (partially constructed object), and the trajecto-

ries define how the objects could have been built in many different ways. There are

two kinds of sampling policies in GFlowNets, which are the forward-sampling policy

and the backward-sampling policy. Adding Lego blocks one by one can be consid-

ered GFlowNet’s forward-sampling policy for this example. On the other hand, a

backward-sampling policy of GFlowNets removes one Lego block at a time, correct-

ing our attempt to build a Lego boat. Finally, when the Lego object is done being

constructed, in other words, when the terminal states of the trajectories have been

reached, we will get a reward. The reward is high if the terminal object resembles

the boat and lower if it does not. By utilizing GFlowNet’s forward-sampling policy,

we can generate an exponentially large number of boat-looking objects from different

trajectories that can be sampled.

3.1.1 Definition of GFlowNets

The formal definition of GFlowNets is that it is a stochastic policy or generative

model. The term “Flow” refers to the distribution of unnormalized probabilities

across different states and state transitions of the network as it constructs objects.

The terminology is derived from the concept of flow networks where water particles

enter into the network through some initial state s0 and exit through terminal nodes

x ∈ X . To clearly define GFlowNets, including its policy parameters and output,

[19] outlines how the idea of GFlowNets can be specialized. It is a learning algorithm

that contains the following features:

• A forward-sampling policy that provides the forward action distribution PF (−|s),

where s is any state that is not terminal (s < sn).

• A backward-sampling policy PB(−|s) that provides the backward action distri-

27

bution using which one can sample backward from any given state s.

• The initial state flow estimator Z = F (s0) =
∑︁

xR(x), where s0 is the initial

state and
∑︁

xR(x) is the sum of all the rewards i.e. the sum of all the terminal

flows at the terminal states.

• The edge flow function F (s→s′), which estimates the flow of the edge between

two states i.e. the transition between states s to s′.

• F (s) which is the state flow function that estimates the flow through any par-

ticular state.

• A self-conditional flow function F (s|s′) estimates flow through s if trajectories

only pass through s′ < s.

• A training objective function such as Flow-matching objective, Detailed balance

objective, and Trajectory balance objective, etc.

3.1.2 GFlowNets Architecture

Directed acyclic graphs (DAGs) are used to represent trajectory state transitions in

GFlowNets shown in the Figure 3.1. In the DAG, there are both state spaces S and

action spaces A. The nodes in the graph structure denote the different states st ∈ S,

and the edge that connects different states refers to the actions at ∈ A. Typically,

a neural network samples the forward-going constructive actions while construct-

ing any sample candidate objects. The sequence of different actions (a0, a1, a3, . . .)

taken by the agent creates a trajectory τ , which is essentially a sequence of states

(s0, s1, s3, . . .). Each executed action given a state s in the trajectories transits to a

next state s′ with transition probability s→s′ which represents the the probability

that a water particle going through the state s will reach the next state s′. Every

trajectory begins with an initial state s0 (presented with a triangle shape in Figure

3.1) and ends with a terminal state sn (if the object in question has n number of

28

elements). A state can have multiple parents; in other words, there could be different

trajectories τ that lead to the same state. As an example, you can combine Lego

blocks in many different ways to achieve the same result. The ending nodes in a

generated trajectory is called the terminal states sn. When a sample object is con-

structed, it initiates an “exit” action T (red transition in Figure 3.1), which leads it

to the terminal state, after which we can get a reward R(x), and GFlowNets sample

the terminal object with probability proportional to this reward. A basic difference

between typical generative models and GFlowNets is that generative models have an

objective of fitting finite datasets, while GFlowNets have an objective of matching

reward functions where the flow has to be constrained at each terminal state x to be

equal to R(x).

Figure 3.1: Flow Network DAG Illustration [20]

To represent the architecture of GFlowNets in terms of Neural Networks, we can

look into Figure 3.2. A GFlowNet consists of a neural network that has the capability

of outputting a stochastic policy π(at|st), where st ∈ S is the current state of the

object and at ∈ A is the set of allowed action from state st. Choosing the possible

action from the state st leads to the next state, which is st+1. In other words, the

policy will result in a forward transition probability PF (st+1|st). In every step, the

same neural network is utilized again and it produces a stochastic output at, from

29

Figure 3.2: GFlowNets Architecture [20]

which the next state st+1 = T (st, at) is derived. In Figure 3.2, we can see that

according to the policy, after choosing action at of adding a new node, given st, we

get the forward transitional probability of the next state which is adding a new node

4 to the pre-existing node 2.

3.1.3 GFlowNets Training

As previously mentioned, the GFlowNets training objective involves matching a re-

ward function R(x) (to construct objects with a probability proportional to R(x))

rather than fitting a finite dataset like standard generative models. There is no

target distribution for the GFlowNet’s policy, and we only have access to the unnor-

malized probabilities R(x), which is the reward function itself. Therefore, we must

adjust the flow into the terminal state x to match the value of R(x). If the flows are

fixed/matched in the terminal states, then we should have the state flow estimator

as Z = F (s0) =
∑︁

xR(x), i.e., the terminal node flows should equal the initial flow

at the root s0 which is also called the “Flow matching constraint”. In this case, the

GFlowNets can be trained by estimating the state flow function F (s) and edge flow

30

function F (s→s′) to satisfy the flow matching constraint given that we need to fix

the desired flow in the terminal states, and then sampling with GFlowNets will gen-

erate terminal states x with probability R(x)∑︁′
x R(x′)

. We can sample the trajectories by

utilizing the forward policy to achieve the forward transition probabilities:

π(a|s) = π(s→s′ = T (s, a)|s) = PF (s
′|s) = F (s→s′)∑︁

s′′ F (s→s′′)
(3.1)

In a similar manner, the backward trajectories are represented as:

PB(s|s′) =
F (s→s′)∑︁
s′′ F (s

′′→s′)
(3.2)

The GFlowNets Foundation paper [6] proposed several training objectives for the

GFlowNets training framework. Such as:

Flow-matching objective. Based on the convention that if no action turns s→s′,

the edge flow function is F (s→s′) = 0, so we can present the flow matching constraint

into a loss that measures the mismatch between the sum of entering flows through a

state and the sum of outgoing flows from the state:∑︂
s′

F (s′→s) =
∑︂
s”

F (s→s”) (3.3)

The GFlowNets empirical paper also used the following training objective:

(log(
∑︂
s′

F (s′→s))− log(
∑︂
s”

F (s→s”)))2 (3.4)

To avoid neural network numerical issues induced by large state flow functions

and edge flow functions in the earlier portion of the trajectory, log is introduced in

the training objective where rather than matching flows, we match their logarithms

(matching relative probabilities). The final log-scale training objective for GFlowNets:

Lθ,ϵ(τ) =
∑︂

s′∈τ ̸=s0

(︃
log

[︄
ϵ+

∑︂
s,a:T (s,a)=s′

expF log
θ (s, a)

]︃

31

− log

[︃
ϵ+R(s′) +

∑︂
a′∈A(s′)

expF log
θ (s, a)

]︃)︃2

(3.5)

where ϵ is a small positive constant to prevent taking the logarithm of zero. Intro-

ducing the log scale gives balances the different magnitudes of flow values across the

network. As it turns out, matching the logs of the flows equals making the incoming-

to-outgoing flow ratio closer to 1. R(s′) is zero for internal states. Only in terminal

states, does the inclusion of the reward generate samples from a distribution where

the probability of sampling a state is proportional to its associated reward.

Detailed balance objective and backward policy. Another training objective

proposed by Bengio et al. [6] is called the Detailed balance objective and backward

policy. Instead of using a flow-matching constraint, a neural network outputs a soft-

max for all possible actions in each state, which yields in the forward sampling policy

PF (s
′|s). Here s′ = 0 if no action is taken to make a transition to s′. It also enables

a backward sampling policy PB(s|s′), which provides a set of parent states st ∈ S of

the current state s′. Flow matching is indirectly achieved by this objective as well:

F (s)PF (s
′|s) = PB(s|s′)F (s′) (3.6)

Trajectory Balance Objective. The trajectory balance training objective takes

the concept of the detailed balance objective and extends it to entire trajectories

instead of individual state transitions. This training objective states that the forward

probability of an entire trajectory that starts from the initial state s0 and ends at

terminal state sn has to be equal to the backward probability of that trajectory that

starts from sn to s0.

F (s0)
n∏︂
t=1

PF (st|st−1) = R(sn)
n∏︂
t=1

PB(st−1|st). (3.7)

32

where, the probability of trajectory under the forward policy is calculated by

F (s0)
∏︁n

t=1 PF (st|st−1) and the backward probability which starts from the reward

at terminal states is represented by R(sn)
∏︁n

t=1 PB(st−1|st).

3.1.4 GFlowNets vs. RL

In this study, we are trying to make a comparative evaluation between generative

flow networks and RL. GFlowNets and RL differ in that RL policies are designed

to find paths that maximize return, whereas GFlowNets are trained so that they

sample terminal states matching a desired unnormalized probability function from

a distribution of all possible paths. Rather than seeking to maximize this function,

GFlowNets aims to generate outputs in proportion to it, creating a diverse set of

high-reward solutions. The problems they solve are, therefore, different. In addition,

the value function in RL tries to measure the expected cumulative future reward that

an agent can obtain from a particular state or state-action pair. In contrast, the flow

function of GFlowNets estimates the proportion of all future rewards that can be

attributed to passing through a particular state or transition. Through the network,

it quantifies how much ’reward mass’ should pass through a particular point.

Generally, standard return maximization techniques lead to a single sequence that

maximizes returns. However, in some cases, we may want to sample a diverse set of

high-return solutions. Typically, an RL agent aims to find a policy that maximizes

the expected sum of rewards by maximizing the value function. As a result, because

of this inclination towards higher rewards, RL sometimes tends to learn policies that

exploit the known rewarding paths instead of exploring better and unknown paths.

GFlowNets, on the other hand, aims to generate and sample from the entire distribu-

tion of solutions/outcomes in an active learning approach, giving more probability to

high-reward paths while still maintaining diversity in the solutions. A reinforcement

learning agent seeks out the most rewarding path from a set of possibilities. The

question arises, however, if the path found by the agent is a local optima. One of

33

the important problems in RL is getting stuck in locally optimal points due to the

objective function (sum of cumulative reward). Let us consider the soft actor-critic

algorithm, which is a fast DRL algorithm being applied to robotics. This algorithm

takes advantage of entropy regularization in its policy, which helps trade-offs between

exploration and exploitation. Nevertheless, when dealing with large-scale problems,

we have to deal with balancing exploration strategies with exploitation so that the

agent’s policy does not become too deterministic. The idea of GFlowNets, as claimed

by Bengio et al. [6], is to solve the problem of exploration in RL. GFlowNets generate

a distribution over all possible paths and sample from the most rewarding paths with

a higher probability which could make them more sample efficient than RL, while RL

sticks to the most rewarding path which can be a local optimum. Because GFlowNets

are not solely focused on the highest-reward path but rather on sampling across a

range of high-reward paths, they are inherently more exploratory. This major edge

GFlowNets has over RL could play a vital role in machine adaptability through proper

exploration and could indeed be why GFlowNets may perform better than RL in a

continual learning environment where a machine adapts to changing conditions.

3.2 CFlowNets

A number of new studies have been conducted on flow network-based implementa-

tions since GFlowNets were introduced. A potentially useful extension of GFlowNets

has been tokenized as CFlowNets [7], which stands for generative Continuous Flow

Networks. This paper discusses a shortcoming of GFlowNets in the context of ex-

ploratory continuous control tasks. To calculate the flow-matching loss, GFlowNets

form a DAG and traverse each node’s inflows and outflows. Each node in this DAG

represents a state and the edges between the states represent the set of allowed ac-

tions. A GFlowNet formulation deals with discrete tasks, in which there are a limited

number of state and action pairs, and each edge represents one discrete action. It

is important to note, however, that real environments have continuous states and

34

action spaces for most tasks. Additionally, multimodal reward distributions may be

present in these environments, which entails more exploration of diversity. In the

GFlowNets foundations paper, the authors did not discuss in detail how GFlowNets

theoretical formulation can work in continuous state-action spaces. The only thing

that was mentioned by Bengio et al. [6] related to continuous scenarios is that if the

GFlowNets need to be implemented in continuous tasks, integrals can be used instead

of sums for continuous variables and for deriving training objective function they ad-

vocated using integrable densities and detailed balance criterion. Nevertheless, this

concept has not yet been experimentally tested, and GFlowNets have not yet been

shown to handle continuous tasks in experiments. To solve this issue with CFlowNets,

continuous control tasks can be addressed to create policies that are proportional to

continuous rewards. In other words, Li et al. [7] claimed to have extended the theo-

retical formulation and flow-matching theorem of the GFlowNets foundation to make

it appropriate for continuous scenarios.

3.2.1 CFlowNets Definition

In its most basic form, CFlowNets architecture resembles the architect of GFlowNets

in many aspects. Since the CFlowNets are developed with continuous scenarios (S,A)

in mind:

• CFlowNets state space is a continuous state space denoted as S, and the con-

tinuous action space is represented with A.

• The agent selects an action to make a transition at : st→st+1 ∈ A.

• The continuous execution of actions results in a sequence of sampled elements

of S which forms a trajectory τ = (s1, s2, s3, ..., sf). This trajectory is an acyclic

one.

• The acyclic trajectory τ is as any sampled trajectory starting at s0 and ter-

minating at sf . The initial root state is denoted by s0, and the final state by

35

sf .

• Terminating flow is represented as F (s→sf) and a transition s→sf is defined

as the terminating transition.

• Continuous flow networks are composed of the tuple (S,A,F).

3.2.2 Continuous Flow Definitions

Taking into account that the sampled trajectory τ is acyclic, the authors defined the

parent set P(st) which contains the set of all the parent states of st. By parent state

of st, we mean all the states that can make a transition by selecting an action a ∈ A

to the state st. In a similar manner, the child states C(st) are defined as the set of

resulting next states after taking an action from the state st. Based on the assump-

tion that the flow functions F (s, a) is Lipschitz continuous and given a state pair

(st, st+1), only a unique action at can make that transition i.e., st = g(st+1, at) where

g(st+1, at) is a transition function, Li et al. [7] formulated the following continuous

flow definition:

1. Continuous State Flow: In a continuous state flow, F (s) is the integral of

the trajectory flows that pass through state s:

F (s) =

∫︂
τ :s∈τ

F (τ)dτ (3.8)

2. Continuous Inflows: Given a state st, the continuous state inflows are the

integral of flows originating from its parent states:∫︂
s∈P(st)

F (s→st)ds =
∫︂
s:T (s,a)=st

F (s, a)ds =

∫︂
a:T (s,a)=st

F (s, a)da (3.9)

3. Continuous Outflows: Given a state st, the continuous state outflows are the

integral of flows that pass through st and go outwards towards its child states

after selecting from a set of allowed action a ∈ A:∫︂
s∈C(st)

F (st→s)ds =
∫︂
a∈A

F (st, a)da (3.10)

36

Based on these three definitions, Li et al. [7] defined the forward transition proba-

bility as the ratio of the flow from state st to st+1 denoted as F (st→st+1) to the total

flow through the current state st, denoted as F (st):

PF (st+1|st) := P (st→st+1|st) =
F (st→st+1)

F (st)
(3.11)

This ratio represents how much of the total flow at state st is forwarded towards

the next state st+1. Similarly, the backward transition probability is as:

PB(st|st+1) := P (st→st+1|st+1) =
F (st→st+1)

F (st+1)
(3.12)

In terms of a continuous task S,A, for any sample trajectory τ = (s1, s2, ..., sn)

the forward probability will be the product of each individual forward transitions in

the sequence:

∀τ = (s1, s2, ..., sn), PF (τ) :=
n−1∏︂
t=1

PF (st+1|st) (3.13)

Similarly, the backward trajectory probability PB(τ):

∀τ = (s1, s2, ..., sn), PB(τ) :=
n−1∏︂
t=1

PB(st|st+1) (3.14)

3.2.3 Training Framework

In the case of a non-negative flow function F̂ that accepts a state and action pair

as input, F̂ corresponds to a flow if the conditions for continuous flow matching are

met:

∀s′ > s0, F̂ (s
′) =

∫︂
s∈P(s′)

F̂ (s→s′)ds =
∫︂
s:T (s,a)=s′

F̂ (s, a : s→s′)ds (3.15)

∀s′ > sf , F̂ (s
′) =

∫︂
s”∈C(s′)

F̂ (s′→s”)ds” =

∫︂
a∈A

F̂ (s′, a)da (3.16)

If reward environments are sparse, we can train a flow network that meets the

flow-matching conditions to obtain the target flow. Using this as a basis, we can

derive CFlowNets’ continuous loss function as follows:

37

L(τ) =
sf∑︂

st=s1

(︃∫︂
st−1∈P(st)

F (st−1→st)dst−1 −R(st)−
∫︂
st+1∈C(st)

F (st→st+1)dst+1

)︃2

(3.17)

Nevertheless, CFlowNets implementations cannot directly apply this continuous

loss function. The overall training framework of CFlowNets can be classified into

three parts shown in 3.3. In the first part, an agent interacts with the environment

and how actions are sampled in a continuous action space is discussed. In the second

part, flow sampling is done for each state, and in the third part, the CFlowNets are

trained using the continuous loss function.

Figure 3.3: CFlowNets Training Framework [7]. The leftmost part represents the
action selection procedure. The middle part is the flow-matching approximation
visualization and the rightmost section shows the Continuous Flow-Matching Loss,
which is utilized for training.

1. Action Selection Procedure: The first part of the training framework focuses

on the stage where the agent interacts with the environment. This interaction

phase involves selecting an action from the action probability buffer, and this

process is called the action selection procedure. The goal is to obtain complete

trajectories τ by iteratively sampling actions from the probability distribution

at ∼ π(at|st), with the help of CFlowNets. However, the action space is con-

38

tinuous in this case. As a result, it is challenging to derive the precise action

probability distribution function using the flow network. Therefore, in order to

resolve this issue, the agent first uniformly samples M number of actions from

the action space A at each state st. Then, it generates an action probability

buffer P = [F (st, ai)]
M
i=1, which approximates action probability distributions.

Finally, the agent samples an action from the buffer P based on the probabili-

ties of all the actions. The actions with higher F (st, ai) will be sampled with a

higher probability. As a result, the agent can approximate sample actions from

a continuous distribution based on the probability of each action in the distri-

bution. After an action is selected, the agent interacts with the environment

to update its state. The process is repeated multiple times until the entire tra-

jectory is sampled. Similar to the previous step, the whole process is repeated

multiple times to generate trajectory sets that are stored in the buffer β.

2. Flow Matching Approximation: The second part of the training frame-

work is known as the Flow Matching Approximation. After obtaining a col-

lection of complete trajectories β after the environment interaction phase, to

satisfy the flow matching condition, we need to ensure that the total inflow∫︁
a:T (s,a)=st

F (s, a)da of any node st, is equal to the total outflow
∫︁
a∈A F (st, a)da.

However, calculating the inflows and outflows may pose a challenge since the

inflows and outflows are continuous. As a result, directly calculating these inte-

grals (inflows and outflows) is not feasible due to the infinite number of possible

actions in the continuous action space. Therefore, an approximation method

is utilized by randomly and uniformly sampling K actions from the continuous

action space A and calculating the corresponding F (st, ak) values (for k = 1 to

K) as the outflows. For outflows, the following approximation is used, where

µ(A) indicates the measure of the continuous action space A:

39

∫︂
a∈A

F (st, a)da ≈
µ(A)
K

K∑︂
k=1

F (st, ak) (3.18)

A deep neural network G (named ”retrieval” neural network) is constructed

to sample the inflows which is parametrized by ϕ. This NN G takes a state-

action pair (st+1, at) as the input while it outputs the parent state st. It is

trained based on the trajectory buffer β with the MSE loss. In other words,

the sampled actions together with the current state are fed to G as the input to

estimate the parent states. The network G can be pre-trained and occasionally

updated with new sampled trajectories to maintain accuracy. Based on these,

the inflows of each state are approximately determined by utilizing the following

approximation:

∫︂
a:T (g(st,a),a)=st

F (g(st, a), a)da ≈
µ(A)
K

K∑︂
k=1

F (Gϕ(st, ak), ak) (3.19)

3. Continuous Loss Function: Finally, based on the approximate inflows and

outflows in equation 3.18 and 3.19, we can train CFlowNets based on the con-

tinuous flow matching loss function:

Lθ(τ) =
sf∑︂

st=s1

[︃ K∑︂
k=1

Fθ(Gϕ(st, ak), ak)− λR(st)−
K∑︂
k=1

Fθ(st, ak)

]︃2
(3.20)

λ is the scaling factor used to scale the summation of the sampled flows appro-

priately, considering the size of the continuous action space A. The loss function

3.20 can also be represented in log-scale inspired by GFlowNets log-scale loss

function [21] to avoid numerical problems:

Lθ(τ) =
sf∑︂

st=s1

[︃
log

[︃
ϵ+

K∑︂
k=1

expF log
θ (Gϕ(st, ak), ak)

]︃

40

− log

[︃
ϵ+ λR(st) +

K∑︂
k=1

expF log
θ (st, ak)

]︃]︃2
(3.21)

As a whole, CFlowNets training pseudocode can be seen in the following manner:

Algorithm 1 Generative Continuous Flow Networks (CFlowNets) Algorithm [7]

1: Initialize: Flow network θ; a pretrained retrieval network Gϕ; and empty buffer
D and P

2: repeat
3: Set t = 0, s = s0
4: while s ̸= terminal and t < T do
5: Uniformly sample M actions {ai}Mi=1 from action space A
6: Compute edge flow Fθ(st, ai) for each ai ∈ {ai}Mi=1 to generate P
7: Sample at ∼ P and execute at in the environment to obtain rt+1 and st+1

8: t = t+ 1
9: end while
10: Store episodes {(st, at, rt, st+1)}Tt=1 in replay buffer D
11: [Optional] Fine-tuning retrieval network Gϕ based on D
12: Sample a random minibatch B of episodes from D
13: Uniformly sample K actions {ak}Kk=1 from action space A for each state in B
14: Compute parent states according to {Gϕ(s, ak)}Kk=1 for each state in B
15: Inflows:
16: log

[︂
ϵ+

∑︁K
k=1 expFlog θ(Gϕ(st, ak), ak)

]︂
17: Outflows or reward:
18: log

[︂
ϵ+ λR(st) +

∑︁K
k=1 expFlog θ(st, ak)

]︂
19: Update flow network Fθ according to the Continuous Loss Function.
20: until convergence

To summarize, GFlowNets theoretical formulations only work in discrete tasks

where the agent can only choose from a finite or countably infinite set of possible

actions from a discrete state space. No experiments have verified that it can handle

continuous actions and state space. On the contrary, CFlowNets have extended the

theoretical formulation of previous GFlowNets so that it can adapt to Continuous

control tasks and create policies that are proportional to rewards. It proposes a

novel training framework that includes action selection procedure, flow approximation

algorithm, and the continuous flow matching loss function. Since CFlowNets is more

suitable for continuous control tasks, all the comparative analysis experiments for

41

this thesis will be conducted based on the CFlowNets training framework instead of

GFlowNets for robotic implementation and fault adaptation.

42

Chapter 4

Related Works

4.1 Fault diagnosis and Fault-tolerant Strategies

Gao et al. [9] conducted a comprehensive survey on various fault tolerance and fault

diagnosis techniques and provided adequate explanations on how these techniques

can be used in real-world fault diagnosis. The paper starts with a discussion of what

it means for a system to have the capability of fault diagnosis and fault tolerance

and proceeds to evaluate its importance, specifically in industrial applications. This

survey then focuses on two approaches that are the most commonly used for fault

diagnosis: the model-based approach and the signal-based approach. The model-

based approach builds a mathematical model to represent or mimic the actual system.

A comparison is made between the predicted behavior pattern of the mathematical

model and the actual behavior pattern of the system for fault diagnosis. A fault

is identified if there are any discrepancies between these two. Gao et al. [9] then

provide a detailed explanation of different types of model-based approaches, such as

analytical models, data-driven models, and physical models, all for the purpose of

fault diagnosis.

The survey also discusses signal-based approaches for fault diagnosis. In signal-

based approaches, the signals that are generated from the system are analyzed using

statistical analysis, pattern recognition, etc, to detect any type of mechanical mal-

function. Several signal processing methods are elaborately discussed, such as wavelet

43

transform [22] (a method of decomposing signals into time-frequency components),

Fourier transforms (decomposes a signal into a frequency component), empirical mode

decomposition (decomposes a signal into an intrinsic model function), etc. Addition-

ally, the author identifies three types of faults that are most common in machines,

which are: 1. Sensor faults (e.g. constant/inaccurate value reading) 2. Actuator

faults (e.g., broken/frozen actuator) 3. Plant faults (e.g., disconnection of compo-

nents).

4.2 Trial-and-Error with select-test-update

Cully et al.[23] proposed a novel approach of trial and error to compensate and

adapt for machine faults. This research was inspired by biomimicry, where an injured

animal can adapt to its injury through a process of trial and error to figure out

optimal movement. Similar to this concept, the authors sought to implement a trial-

and-error algorithm in the field of robotics so that a robot could creatively adapt

to malfunctions. For the purpose of guiding the trial-and-error algorithm, a pre-

computed behavior-performance map was developed. The behavior-performance map

consists of around 13,000 different robotic gaits. Using this behavior-performance

map, a robot experiencing any physical malfunction will use a simulated behavior

that is already predicted to be effective. The effectiveness of a behavior is determined

by its predicted performance value that is associated with it. The motivation behind

developing such a pre-computed, automatically generated behavior-performance map

was based on the notion that animals possess good knowledge about their own search

space of possible behaviors when they face an injury. This set of behaviors is developed

from past experience. Similarly, a robot should have knowledge about its search space,

in other words, a set of behaviors with a performance estimate at its disposal, which

will guide its trial-and-error method when a fault occurs.

Whenever a robot faces a malfunction during the action selection procedure, it will

be guided by the behavior-performance map. The robot will select and execute an

44

action that has been assigned a high estimated performance value. After executing

the action in the environment, the selected behavior will get a new performance

rating for that particular task. Throughout a series of tests, the selected behavior’s

performance estimation values will be updated. This process will be reiterated until

the robot identifies a behavior with a performance estimate that exceeds 90% of the

best performance predicted for any behavior in the behavior-performance map [23].

The experimentation was done on a hexapod robot with six different conditions.

Using the proposed Intelligent Trail-and-Error algorithm with a behavior-performance

map, the robot was able to adapt to failure by learning compensatory behavior within

a reasonably fast time.

The reason why the trial and error approach was not chosen to be a part of our com-

parative study is because it takes a fundamentally different approach than CFlowNets

and RL methods. Whereas both CFlowNets and RL share a common algorithmic ap-

proach to learning policies by directly interacting in the environment, the trial and

error approach updates a limited pre-computed behavioural map utility values via a

process of iterative trial and error. We conducted our comparative analysis between

CFlowNets and standard RL because both these approaches are methodologically con-

sistent which allows for a direct comparison in terms of learning efficiency, adaptation

speed, and average reward performance metric. Additionally, the trial-and-error ap-

proach utilizes a behavior-performance map of 13,000 robotic gaits that is computed

and tailored to a specific hexapod robot and lacks generalization over different robotic

simulations. As a result, it is not a good candidate for our comparative study.

4.3 Adaptation using Reinforcement Learning &

Meta-RL

Yang et al. [24] in their research proposed a novel adversarial reinforcement learn-

ing framework in an effort to increase robot robustness through adaptation in joint

malfunction robotic tasks. Instead of focusing on fault recovery on locomotion tasks

45

as in prior studies [23], [25], the primary focus of this study was on joint damage

crisis on manipulation tasks. Manipulation tasks lack redundancy and even a minor

fault in a manipulation task may limit the action space. For instance, in an in-hand

manipulation task, one impaired finger can make the other fingers stuck as well. In

the proposed framework, the authors trained their policy on a predefined q (policy

for different joint states) for a number of episodes. Next, they updated q for the

next policy training iteration based on a search for challenging scenarios (joint states

with poor agent performance) under the updated policy. Yang et al. experimented

with and evaluated the proposed adversarial reinforcement learning framework on

the D’Claw robot and the D’Kitty robot. Their experiment included the following

joint malfunctions: 1. Inability to change joint angles and 2. Joints acting randomly.

The experimental results validated that both real robots have demonstrated increased

resiliency to joint damage.

Another research that introduced model-based meta-reinforcement learning for

fault adaptation tasks was introduced by Clavera et al. [26]. In their meta RL frame-

work, two adaptive learners were utilized for the algorithm. An initial set of parame-

ters for a generalized dynamics model is learned using model-agnostic meta-learning

(MAML) [27]. This algorithm uses a gradient-based adaptive learner (GrBAL) whose

dynamics model is represented using a NN and updated using gradient descent. As

for the second learner, it is a recurrence-based adaptive learner (ReBAL) that uses

an RNN to represent the dynamics model and uses an update rule learned by the

recurrent network to perform updates. In order to demonstrate the sample efficiency

of both GrBAL and ReBAL, Clavera et al. conducted experiments and reported the

average return in differing test environments based on the amount of data used in

meta-training. The results were compared with two model-free methods TRPO and

MAML-RL. Their proposed GrBAL and ReBAL were far superior in terms of sample

efficiency even though the model-free methods (TRPO and MAML-RL) were trained

with 1000 times more data. Additionally, they conducted comparative analysis on

46

a number of continuous control tasks including simulated robots (OpenAI Gym’s

Ant and HalfCheetah) and real-life robots (millirobot), and the results showed faster

adaptation to changing environments.

4.4 GFlowNets for Molecule Generation

Despite not yet being implemented in robotics, GFlowNets has been utilized in

drug discovery, where it exhibits tremendous potential. Bengio et al. [21] in their

GFlowNets empirical paper, conducted experiments on a large-scale domain of small

drug molecule graph generation. The primary objective of this experiment was to

train an agent that will be able to sequentially generate molecules with a high re-

ward.

In this experiment, the environment consists of 1016 states. Given a state, the

agent has to choose from a set of allowed actions ranging from 100 to 2000 actions.

The molecules were generated by sequentially attaching predefined building blocks of

molecules to the stems. The stem is where the new predefined building blocks are

added sequentially, which results in the formation of a junction tree. In total, 72

building blocks are available for the agent to choose from. The blocks were chosen

based on the framework developed by Jin et al. [28] over the ZINC database [29]. In

a nutshell, the agent has an action space that has the resulting product of selecting

which block to choose from the 72 predefined sets of blocks and which stem the chosen

block will be attached to. The Reward is based on a proxy that predicts binding

affinity with target proteins. The proxy is trained on a dataset of 300k randomly

generated molecules.

The results of the experiment were compared in terms of the density of rewards,

with Markov Molecular Sampling (MARS) [30] which is a widely used method of

multi-objective drug discovery. Compared to MARS, GFlowNets found many more

high-reward molecules. The average reward of GFlowNets was also compared with

MARS, PPO, and JT-VAE with Bayesian optimization. Despite the fact that PPO,

47

the state-of-the-art RL algorithm, plateaus after a while, GFlowNet’s average rewards

improve as more molecules are visited. As shown in this experiment, GFlowNets pro-

vide greater exploration ability compared to RL, where RL is satisfied with good

enough trajectories, and GFlowNets was able to generate much more unique trajec-

tories with high average reward. Although our approach to this research does not

directly relate to this work, it provides motivation for it. Since GFlowNets have

demonstrated superior performance compared to state-of-the-art RL algorithms in

molecule generation, they may have the potential to excel in machine fault adapta-

tion as well.

4.5 CFlowNets for Continous Control Tasks

Li et al.[7] in their paper conducted experiments with their proposed CFlowNets

framework on three different simple continuous control tasks which are Point-Robot-

Sparse, Reacher-Goal-Sparse, and Swimmer-Sparse. The rewards associated with

these three tasks were sparse. To make a comparative analysis of the performance,

they further compared the results with state-of-the-art reinforcement learning algo-

rithms such as DDPG [14], TD3 [15], PPO [16], and SAC [17].

In the first task, there are two goals for Point-Robot-Sparse’s agent i.e. the robot

has two different target coordinates. Initially, the agent starts at (0, 0) and aims

for the target coordinates (5, 10), (10, 5) by taking one step at a time. In this

environment, episodes are limited to 12 for this experiment. The agent receives the

reward only when the terminal state has been reached. Agents are rewarded based on

the difference between their current position and the target coordinate. The rewards

are high when the distance is less, and the reward is low when the distance is greater.

The Reacher-Goal-Sparse task uses a robotic arm with two joints called ”Reacher.”.

Agents move the end effector of the robot to reach randomized targets. Swimmer-

Sparse involves suspending the ”swimmer” in a two-dimensional pool. To move in

the pool, the swimmer applies torque to the rotors and uses fluid friction. In this

48

task, the goal is to move right or left as quickly as possible.

Based on the rewards distribution, average rewards, and the number of valid-

distinctive trajectories generated, the results were compared between CFlowNets and

RL algorithms. The findings of the first phase demonstrated that CFlowNets were

highly effective at fitting the real reward distribution. However, other reinforcement

learning algorithms, on the other hand, struggle to fit the actual reward distribution.

Another study generated 10000 trajectories and reported the count of unique, valid-

distinctive trajectories. The authors gathered valid-distinctive trajectories based on

the fact that if two trajectories have high returns, but their MSE is small (defined by

a threshold parameter δMSE), then instead of two trajectories, only one is counted.

The results showed that DDPG, PPO, and TD3 have little to no exploration ability

since they only generated one valid-distinctive trajectory. SAC demonstrated good

exploration behavior at first but then the performance decreased as the training pro-

gressed. On the other hand, CFlowNets showed remarkable exploration capabilities,

generating thousands of unique valid-distinctive trajectories that far exceeded any

other RL algorithm. Furthermore, for Point-Robot-Sparse and Reacher-Goal-Sparse

tasks, CFlowNets achieves a better average return in fewer timesteps than all other

RL algorithms. However, it did not perform well in the Swimmer-Sparse task. The

reason behind such a poor performance, as explained by the authors, was due to

the fact that both the Point-Robot-Sparse and Reacher-Goal-Sparse have evenly dis-

tributed rewards which made them more inclined to explore. In contrast, Swimmer-

Sparse has a steep reward distribution. Therefore, CFlowNets are better suited to

exploration-based tasks, according to the authors.

49

Chapter 5

Experimental Setup

As we embark on Chapter 5, we transition from the theoretical and conceptual ground-

work laid in the preceding chapters to the practical aspects of our research. In this

chapter, the experimental setup is delineated in great detail, so that the hypotheses

and research questions posed earlier can be validated and answered. It is in this

pivotal phase that our hypothesis and theory converge with practice, allowing for an

empirical exploration and examination of the proposed concepts and models.

In this chapter, a comprehensive description of the methodology applied is pro-

vided, including an in-depth description of the robotic environment used in our ex-

periments. Furthermore, we discuss each of the four faults that were introduced in the

simulated robotic environment and how these faults are applied to create four custom

gym environments. Then we talk about the implementation of CFlowNets and all the

RL algorithms that are used for this comparative experimentation including details

on how our proposed models are developed and deployed, experimental designs, and

evaluation metrics outlined to make sure our experiments are reproducible and justify

our experimental results.

5.1 Hardware and Software

Hardware. The experiments are performed on Ubuntu 20.04.6 LTS server running

Linux, equipped with NVIDIA RTX A6000 GPUs.

50

Software. Our hypothesis is tested using a simulated robot called Reacher-v2 adapted

from OpenAI gym, simulated using the MuJoCo physics simulator. At the time of

experimentation, to simulate the robotic environment, MuJoCo version 2.1.2.14 was

used.

Virtual Environment. For our comparative analysis, we have conducted six seg-

ments of experimentation with a total of 5 algorithms including CFlowNets. To

conduct these experiments, we created custom virtual environments (mujoco env).

All the virtual environments are created using Anaconda 3. The following Table 5.1

lists some of the necessary libraries of the virtual environment (mujoco env):

Software Version

Python 3.8.17

Gym 0.21.0

Glew 2.10

Glfw3 3.2.1

Stable-baselines3[extra] 1.8.0

Tensorboard 2.13.0

Numpy 1.24.3

Seaborn 0.12.2

Pandas 2.0.3

Table 5.1: Python version and added libraries of virtual environment

5.2 Environment

A detailed description of the robot’s environment, its action and observation space,

and its environment setup are provided in this section. All the information is gathered

from the Gymnasium documentation.

51

5.2.1 Reacher-v2

The Reacher-v2 robotic environment is one of the most widely used performance

benchmarks in the field of applied reinforcement learning. This robotic simulator is

simulated using the MuJoCo (Multi-Joint Dynamics and Contact) physics simulator.

Mujoco is a physics engine used for research and development in robotics, biomechan-

ics, graphics and animation, machine learning, and other areas. It provides fast and

accurate simulation of articulated structures interacting with their environment [31].

Description. The Reacher-v2 environment is simulated in a 2D plane and consists

of a two-joint robotic arm with an end effector/fingertip at the end of the arm. The

two joints are named joint0 and joint1 in the reacher XML file and these joints are

capable of a wide range of motion. Joint0 fixes the first part of the arm (link0) with

the point of fixture also known as the root and joint1 connects the second part of the

arm (link1) with link0. The robot arm uses actuators/motors to control these joints,

which help provide torque so it can maneuver around the 2D plane. The objective

of the task is to maneuver the end effector or fingertip in a manner that enables

it to reach a specified target location which is defined in the environment. With

each episode, the coordinates of the target change to various locations within the

environment. In Figure 5.1, a depiction of the Reacher-v2 environment is presented.

Figure 5.1: Reacher-v2 Environment [31]

Action Space. The action space is a vector of length 2 and the elements have type

float32 values in the range of [-1.0,1.0]. Action is the application of torques among

52

both hinge joints. Detailed information about each element of action space can be

found in the table 5.2.

Table 5.2: Action Space of Reacher-v2 Environment [31]

Num Action Control Control Name Joint Unit

Min Max

0 Torque applied at -1 1 joint0 hinge Torque

the first hinge (N m)

(connecting the link

to the point

of fixture)

1 Torque applied on -1 1 joint1 hinge Torque

the second hinge (N m)

(connecting the

two links)

Observation Space. The observation space includes the angles of the joints, the

position of the end effector, and the relative position to the target. The observation

is a Box(-Inf, Inf, (11,), float64). Observational data includes the following:

• The cosine values corresponding to the angles of both links.

• The sine values associated with the angles of the two links.

• The coordinates where the target is located.

• The rates of change in the angles of the links, referred to as the angular veloci-

ties.

• A three-dimensional vector illustrating the spatial relationship between the tar-

get and the fingertip of the reacher, with the third dimension having a value of

0.

53

Details about the observation space have been attached to the table 5.3.

Rewards. Rewards are computed by adding two components:

• reward distance: This is the first component of the reward which is the measure

of distance between the end effector/fingertip of the reacher and the target

location. After each episode, the further the distance of the fingertip from

the target location, the more negative value is assigned. It is calculated as

the negative vector norm of (position of the fingertip - position of target), or

-norm(“fingertip” - “target”).

• reward control: The second component of the reward is a negative reward which

penalizes the reacher whenever the agent takes actions that are too large. It

is measured as the negative squared Euclidean norm of the action, i.e., as -

sum(action2).

The total reward is computed as reward = reward distance + reward control

Episode End. The episodes of the Reacher-v2 environment terminate when it sat-

isfies the following two conditions:

• Truncation. By default, each episode of the Reacher-v2 environment consists

of 50 timesteps. If the Reacher fails to reach the target location within these 50

timesteps, the current episode terminates and a new episode begins. Otherwise,

if the reacher’s fingertips reach the target within 50 timesteps, a new target pops

up in a random coordinate.

• Termination. A finite state space value no longer exists.

54

Table 5.3: Observation Space of Reacher-v2 Environment [31]

Num Observation Min Max Name Joint Unit

0 cosine of the angle −∞ ∞ cos(joint0) hinge unitless

of the first arm

1 cosine of the angle −∞ ∞ cos(joint1) hinge unitless

of the second arm

2 sine of the angle −∞ ∞ sin(joint0) hinge unitless

of the first arm

3 sine of the angle −∞ ∞ sin(joint1) hinge unitless

of the second arm

4 x-coordinate of −∞ ∞ targetx slide position(m)

the target

5 y-coordinate of −∞ ∞ targety slide position(m)

the target

6 angular velocity of −∞ ∞ joint0 hinge angular

the first arm velocity

(rad/s)

7 angular velocity of −∞ ∞ joint1 hinge angular

the second arm velocity

(rad/s)

8 x-value of −∞ ∞ NA slide position(m)

position fingertip-

position target

9 y-value of −∞ ∞ NA slide position(m)

position fingertip-

position target

10 z-value of −∞ ∞ NA slide position(m)

position fingertip-

position target

55

5.3 Faults

The primary objective of our experimentation is to investigate whether or not CFlowNets

can adapt when a fault occurs in the environment. To do so, the first step would be

the modification process of the XML file for the Reacher-v2 environment. The XML

file for the Reacher environment is a configuration file used by the MuJoCo (Multi-

Joint Dynamics with Contact) physics engine to create a simulated environment.

This file contains the physical parameters and structure of the Reacher robot and its

environment, so users can simulate the robot’s movement and interaction in a virtual

environment.

At the very top of the hierarchy, the Worldbody component of the XML file contains

all the physical elements and all the body attributes of the environment which includes

the 2D arena, the robotic arm, and the target. The Arena component defines the

boundaries/walls for the environment. The name attribute indicates each of the

geometry of the arena, such as the ground and the four walls, which are sideS, sideN,

sideW, and sideE. The Arm component in the environment represents the structure,

bodies, joints, links, and geometry of the robotic arm of reacher-v2. The attributes of

this component determine various dynamics of the robot such as the height/width of

the links, the joint positions, the range of each joint etc. The last component of the

worldbody is the Target which defines the target that the end effector of the robotic

arm is supposed to reach. This component contains the sliding joints that enable

the target to change its location in X, and Y directions within the arena. There is

also another component outside the worldbody which is called the Actuator. The

Actuator specifies the motors/actuators that are present in each joint of the robot.

These actuators apply torques to the joints which in turn enables the robotic arm to

move in the environment. The Actuator component consists of some attributes that

determine the control range and output power of the gears of actuators. See Figure

5.2 for the XML configuration for the Reacher-v2 normal environment:

56

Figure 5.2: Reacher-v2 XML

57

As part of our efforts to introduce faults into the environment to demonstrate

the adaptation performance of each algorithm, we have chosen four faults to focus

on. Each of these faults represents and mimics some real-world malfunctions that

are encountered by robot arms in a practical environment. We created four different

custom gym environments representing these four faults. Each of these four custom

gym environments contains a constant fault type. Constant fault type implies that

the values of the modified attributes remain constant over time. An attribute search

was conducted to determine the modified values of the attributes. This iterative

testing approach is similar to a hyperparameter search where we test different settings

of attributes and observe the learning trend for a limited number of timesteps. The

severity of the faults was chosen in such a way that the fault introduces more complex

dynamics in the new environment. However, the new dynamics of the environment

were not changed to such an extent that completely derailed the learning process of

the algorithms. In other words, the particular attribute values chosen for simulating

the four fault environments were intended to significantly impact the Reacher-v2’s

performance but still allow for meaningful learning and adaptation. We started with

initial values that were later modified based on preliminary runs to make sure that

the fault produces a substantial amount of challenge for the robotic arm but does

not render the task unsolvable. By performing this iterative attribute search and

fine-tuning the attribute values we were able to create four custom gym environments

to test each of the algorithms’ adaptive performance. In the following parts, we will

discuss each of these faults and how they were simulated in the environment.

5.3.1 Reduced Range of Motion

Robotic arms can experience a reduced range of motion or joint angular displacement

due to a number of factors, including gear wear and tear, mechanical restrictions,

or malfunctioning software. This type of fault prevents a robot from performing

its intended task efficiently because it is unable to move through the full angular

58

range that it was designed for. As a result, this fault will impact the precision and

flexibility of a robot in maneuvering its joints and will lead to decreased task efficiency.

In the context of our environment Reacher-v2, a reduction in its range of motion will

lead to poor performance as the arm will not be able to reach its distant targets

which may require a wide range of motion within the given limited timestep. To

simulate this real-world mechanical fault, we adjusted the < joint > element’s range

attribute within the Reacher-v2’s XML file. The range value of joint1 in the normal

environment was ”-3.0 3.0” radians, but we changed it to ”-1.0 1.0” radians, which

means the joint won’t be able to rotate to its full extents.

Original configuration:

<joint ... range="-3.0 3.0" ... />

Modified configuration:

<joint ... range="-1.0 1.0" ... />

5.3.2 Increased Damping

The term damping refers to the decrease in oscillation amplitude. When there is an

increase in damping in the robot’s joint it indicates that there is an abnormal resistive

force which is impairing the oscillation of the robot’s links. In a practical environment,

this type of malfunction may be caused by outside contaminants affecting the joints

or a mechanical problem that increases friction within the joints. To simulate the

effects of damping, we increase the attribute value of damping in the < joint >

element from ”1” to ”5” for joint1 in the XML configuration of Reacher-v2.

Original configuration:

<joint ... damping="1" ... />

59

Modified configuration:

<joint ... damping="5" ... />

5.3.3 Actuator Damage

Robots have actuators or motors within their joints that provide torque for driving

and maneuvering the joints. Actuator damage can be caused by incorrect software

inputs to the actuators, gear damage, overheating or electrical faults, etc. Due to this

type of fault, the reacher robotic arm may experience incorrect movements, reduced

output force at the joints, and an inability to maintain position. Consequently, the

Reacher’s accuracy, speed, and strength are adversely affected, reducing its effective-

ness and performance. We simulated the actuator damage fault by modifying the

gear attribute of the < motor > element within the XML file. The gear value was

halved from 200.0 to 100.0. This reduction in the gear ratio resulted in a decrease in

actuator power, mimicking a weakened motor.

Original configuration:

<motor ... gear="200.0" ... />

Modified configuration:

<motor ... gear="100.0" ... />

5.3.4 Structural Damage

One of the most common types of fault in real-world application of robotics is the

structural damage of robotic manipulators. Structural damage can occur for various

reasons such as external impacts, corrosive elements, manufacturing defects, or simply

because of deterioration of the materials.

60

To analyze the Reacher-v2 environment performance onset of a structural damage

fault, we decided to bend link1 of the robotic arm. However, in the XML config-

uration, there are no specific attributes that can be directly modified to bend the

body link of the arm. In the XML configuration file, the start and end positional

coordinates of geometric shapes in the 3D space are defined by a < geom > tag. The

fromto attribute has six numbered coordinates where the first three numbers spec-

ify the x, y, z coordinates of the starting position and the last three numbers specify

the x, y, z coordinates of the ending position of the geometric shape. In the original

settings of the Reacher-v2 environment, the link1 element’s fromto attribute in the

< geom > tag was ”0 0 0 0.1 0 0” which means the link starts at the origin (0, 0, 0)

(here origin is relative to the parent body1 and not the global origin) and extends to

(0.1, 0, 0) in the x direction. This represents a straight arm along the x-direction. To

simulate the bend of link1, we first split the link into two equal segments and named

them ”link1a” and ”link1b”. “link1a” starts from “0 0 0” to “0.05 0 0” which is half

the original link1 length in the positive x direction. “link1b” starts where link1a ends

which is “0.05 0 0”. To make a 45-degree bend by maintaining the length of link1b

equal to link1a, we determined the end coordinates of link1b by using sine and cosine

functions. It is worth mentioning that this manual manipulation will not create a new

joint between ”link1a” and ”link1b”, rather it will change the geometric dynamic of

the arm in such a way so that it creates a bend. In other words, in the context of

MuJoCo, if two rigid bodies are connected without a joint, they essentially become a

single rigid body.

x = 0.05 + 0.05× cos(45◦)

y = 0.05× sin(45◦)

Using this trigonometric principle, we determined that “link1b” starts in “0.05 0

0” and extends to “0.08535, 0.03535, 0” which creates a 45−degree angle between the

two links. Due to their orientation, it mimic a bend in link1. A visual representation

61

has been attached in Figure 5.3 and 5.4.

Original configuration:

<body name="body1" pos="0.1 0 0">

<joint axis="0 0 1" limited="true" name="joint1" pos="0 0 0"

range="-3.0 3.0" type="hinge"/>

<geom fromto="0 0 0 0.1 0 0" name="link1" rgba="0.0 0.4 0.6 1"

size=".01" type="capsule"/>

<body name="fingertip" pos="0.05 0.05 0">

<geom contype="0" name="fingertip" pos="0 0 0"

rgba="0.0 0.8 0.6 1" size=".01" type="sphere"/>

</body>

</body>

Modified configuration:

<body name="body1" pos="0.1 0 0">

<joint axis="0 0 1" limited="true" name="joint1" pos="0 0 0"

range="-3.0 3.0" type="hinge"/>

<!-- First part of the original link1 (link1a)-->

<geom fromto="0 0 0 0.05 0 0" name="link1a"

rgba="0.0 0.4 0.6 1" size=".01" type="capsule"/>

<!-- Second part connected at a 45-degree angle (link1b) -->

<geom fromto="0.05 0 0 0.08535 0.03535 0" name="link1b"

rgba="0.0 0.4 0.6 1" size=".01" type="capsule"/>

62

<body name="fingertip" pos="0.05 0.05 0">

<geom contype="0" name="fingertip" pos="0 0 0"

rgba="0.0 0.8 0.6 1" size=".01" type="sphere"/>

</body>

</body>

Figure 5.3: Original Robotic Arm Figure 5.4: Bent Robotic Arm

5.4 Experimental Settings

Algorithms. For our comparative study, we have conducted six segments of experi-

ments. Our results from each of these experiments helped us visualize the performance

of CFlowNets and four different reinforcement learning algorithms on the same task

(Reacher-v2). The implementation of the Continuous Flow Networks (CFlowNets)

algorithm was adopted from the recently published paper [7] where the authors ex-

tended the theoretical formulation and flow-matching theorem of the GFlowNets foun-

dation to make it appropriate for continuous scenarios. To evaluate the performance,

adaptation efficiency, and adaptation speed of CFlowNets, we decided to compare

it with four reinforcement learning algorithms which are: DDPG, TD3, PPO, and

SAC. To implement these four algorithms in our Reacher-v2 task, we used the Stable

Baslines3 library which contains the implementation of various popular reinforcement

learning algorithms.

63

5.4.1 CFlowNets

In accordance with the theoretical formulation of CFlowNets discussed in Chapter

4, a retrieval network is constructed in order to make predictions about the parent

nodes of each state in a sampled trajectory, which is elaborated in the equation

3.19. Since the state transition rules vary across different environments, we must

pre-train the Retrieval network tailored to the Reacher-v2 environment. A custom

RewardShapeWrapper class is utilized to modify the structure of the reward of the

base environment to a sparse form. As a result, non-terminal steps are rewarded with

zero, and terminal steps are rewarded with a reward derived from the distance to the

target. The retrieval network is made of a feed-forward neural network. This NN

consists of four layers. The input layer concatenates the state and action vectors in

the first input layer. In each hidden layer, we have 256 neurons with ReLU activation

functions applied. Tuples of experience are stored and managed in this experience

buffer.

During training, at first, the agent randomly interacts with the environment to

gather experiences and push them into the replay buffer. This approach enables the

agent to randomly explore the environment to get an initial estimate. After a certain

threshold of 500 timesteps, the agent stops this exploration and the policy update

begins. The replay buffer facilitates efficient sampling of mini-batches, ensuring that

the network is trained on a diverse range of experiences that are crucial for enhancing

its generalization capability. The network training is done by sampling mini-batches

from the replay buffer and feeding the next state along with the corresponding action

to the retrieval network. The retrieval network outputs the parent state for the given

state-action pair. Then we iteratively update the model weights to minimize the

MSE loss between the predicted parent state (predicted by the retrieval network)

and actual subsequent states (collected from the mini-batch). Adam optimizer with

a learning rate of 0.0003 is used for network optimization.

64

Subsequently, the Retrieval network is employed to enhance the precision of lo-

cating parent states during flow matching in the implementation that involves the

training of the flow network. To stabilize the training of the flow network, agents ex-

ecuted actions are normalized and clipped to be within the valid action space range.

The architecture of the flow network comprises a feedforward neural network with

three layers. The concatenation vector of state and action is fed from the input layer

through two hidden layers. There are 256 neurons in each hidden layer with the

ReLU activation function applied. As the final layer, the output layer is composed

of a single neuron that outputs the calculated edge flow. Using Softplus activation

functions in the output layer ensures that edge flow values are non-negative since

flows cannot be negative.

At first, the agent iteratively samples actions from the action probability buffer.

This buffer is created by uniformly sampling a huge number of actions (10,000 actions

in our implementation) which is defined by the size of the action replay buffer. These

sampled actions along with the current state are then fed to the flow network which

outputs a non-negative flow value for each sampled action. The agent selects an action

from this buffer according to their flow value (high flow value = high probability of

getting sampled). This sampling approach ensures the exploration and evaluation of

a wide range of possible actions for a given state to determine which action the agent

should take to produce high-return solutions. During training a batch of experiences

are gathered from the replay buffer. At each state, a number of actions are randomly

sampled (defined by the hyperparameter sample flow num). For the inflows, our

implementation included using the retrieval network to predict the parent state, and

then the predicted parent state-action pair is fed to the flow network. The outflows

are calculated by using the same flow network which takes the randomly sampled

actions along with the state as input and outputs the outflow. Adam optimizer with

a learning rate of 0.0003 is used for network optimization.

The introduction of faults in the experiments is done by replacing the source path of

65

the normal XML configuration with the modified XML configuration in the reacher.py

file. The evaluation period of our experiments is 5000 timesteps which means that

at this regular interval, we freeze the learned policy and evaluate it for 10 episodes.

The rewards received in this evaluation period are averaged and recorded for further

analysis.

The implementation involves several configurable hyperparameters, including ac-

tion probability buffer size, number of sample flows, policy noise, noise clip, etc. We

conducted a hyperparameter search for the CFlowNets algorithm to figure out the

best combination of hyperparameters that leads to optimal performance. The search

began with the published CFlowNets hyperparameter settings. Then we compared

different hyperparameter settings by recording the average return in the last 200 eval-

uation for a single run. This process was conducted for a total of 10 runs to account

for the performance variability. The rewards from these 200 evaluation points across

10 runs were then averaged again to get a single performance metric for each set

of hyperparameter settings. This final average return is then used to compare the

performance under different set of hyperparameters. A higher average return signifies

a better hyperparameter setting. Tensorboard was also used for real-time training

monitoring, which aided in fine-tuning hyperparameters. It is worth mentioning that

all the hyperparameter tuning was done for the Reacher-v2 normal environment and

not for the four modified fault environments. This decision was made based on the as-

sumption that in practical scenarios we are optimizing the model only for the normal

environment and not for the fault environments. The list of selected hyperparameters

is shown in the Table 5.4.

One of our experiments involved investigating whether there is a benefit in terms

of CFlowNet’s performance if we save and transfer the learned knowledge from a

normal environment to a faulty environment. In order to utilize this concept of

transfer learning, we saved the model parameters/weights that the flow network has

learned in the normal Reacher-v2 environment. Both the flow network and retrieval

66

Table 5.4: Best Performing Hyperparameters in the CFlowNets training.

CFlowNets Reacher-v2

Total Timesteps 10,000,000

Max Episode Length 50

Eval Frequency 5,000

Learning Rate 0.003

Batchsize 256

Retrieval Network Hidden Layers [256, 256, 256]

Flow Network Hidden Layers [256, 256]

Number of Sample Flows 100

Action Probability Buffer Size 10,000

Replay Buffer Size 100,000

ϵ 1.0

Optimizer Adam

network models were saved using PyTorch’s torch.save() function, which stores the

state dictionary of the model in a file. Using the state dictionary, it maps each

layer of the model to its trainable parameters (weights and biases) which were later

deployed using PyTorch’s load state dict() function while experimenting with the

four custom gym environments. Additionally, we have also transferred the replay

buffer contents that were saved while training in the base normal environment to

the fault environments which can potentially accelerate learning by leveraging prior

experiences. The replay buffer contents which include the state, action, reward, and

next states of each experience, are saved using the Python “Pickle” module which

represents the agent’s interaction in the pre-fault environment. The replay buffer is

then deployed in the fault environment as a starting point. At this stage, the replay

buffer contains experiences from the original pre-fault environment and also new

experiences that the agent gathers in the new environment. This method of retaining

both model and replay buffer was done to investigate if there are any benefits to

67

transfer learning in CFlowNets models to mitigate cold start and make the learning

process more stable in the initial episodes.

5.4.2 RL Algorithms (DDPG, TD3, PPO & SAC)

One of the key factors of our research was not only to investigate CFlowNets’ per-

formance in robotics and adaptation but also to make a comparison with current

state-of-the-art reinforcement learning algorithms on the same task. To make this

comparative analysis, we implemented four reinforcement learning algorithms with

minor modifications to evaluate their performance in the Reacher-v2 environment.

Unlike CFlowNets, for the reinforcement learning algorithms, we did not conduct

an extensive hyperparameter search. We mostly used published hyperparameter set-

tings for the reacher-v2 task with some minor tuning. Our focus was more on tuning

the selective hyperparameters that promote exploration for these four RL algorithms

such as policy noise, noise clip, target policy smoothing, gaussian exploration noise,

temperature for entropy, etc. Additionally, hyperparameters that indirectly affect

exploration (clipping range vf, clipping parameter for PPO) were also considered for

tuning.

The implementation of both DDPG and TD3 in this study was derived from the

introductory paper of these algorithms and the official codebase shared by Fujimoto

et al. [15] in their repository. The TD3 algorithm follows an actor-critic architecture,

and for our implementation, it is comprised of three fully connected layers. The

first two hidden layers contain 256 neurons each and the ReLU activation function

is applied for model non-linearity. The output layer uses the hyperbolic tangent

activation function (tanh) which ensures that the output values are normalized and

scaled to match the environment’s action space. The critic network employs two

critic networks Q1 and Q2 to stabilize function approximation by underestimation of

Q-values. In order to estimate the Q-values, the action and state are used as inputs.

Both Q1 and Q2 networks are made up of three fully connected layers. The hidden

68

layers have 256 neurons each. To prevent the policy from overfitting to the noise in

value estimation, and to ensure a more stable learning procedure, the actor updates

are delayed. The hyperparameter “policy freq” is set to 2 in the implementation

which enables the actor-network policy to be updated after every two iterations. The

table 5.5 reports the remaining hyperparameter settings.

DDPG’s actor-network consists of three fully connected layers as well, but the

first hidden dimension has 400 neurons and the second hidden dimension has 300

neurons. Both hidden layers utilize the ReLU activation function. The output layer

uses a tanh activation function which works similarly to TD3’s actor-network output

layer. In order to fit the environment’s action space constraints, the outputs are

scaled by a max action factor. As DDPG is the predecessor of TD3, instead of

using two critic networks for Q value estimation, it uses one fully connected three-

layered network. The first layer takes state dimensions as input. It has 400 neurons

with ReLU activation function. The second hidden layer takes the output of the

first layer and then concatenates it with the action input. This layer is made up

of 300 neurons, followed by a ReLU activation function. Finally, the single neuron

output layer produces the Q-value estimation. For our implementation, we used the

published hyperparameters for DDPG and TD3 in [14] and [15] respectively, with

minor modifications to the coefficient for soft update (τ) and policy noise. The

hyperparameters are presented in the table 5.5.

Our implementation of Soft-actor-critic (SAC) was adopted from the [32] repo

which contains the PyTorch implementation of the algorithm’s introductory paper

[17]. The policy and value network of this implementation utilized MLP architecture

for function approximation. The actor’s network is a three-layered network with 256

neurons in each of the hidden layers. The hidden layers of the actor-network get

the state observations and it maps to action distributions. The output layer has

two segments. One segment represents the mean, and the other represents the log

standard deviation of the action distributions which are then used to parameterize a

69

Table 5.5: Hyperparameters used in the TD3 and DDPG training for the Reacher-v2
task.

Hyperparameters DDPG TD3

Total Timesteps 10,000,000 10,000,000

Max Episode Length 50 50

Eval Frequency 5,000 5,000

Learning Rate 0.003 0.003

Batchsize 256 128

Policy Network Hidden Layers [400, 300] [256, 256]

Value Network Hidden Layers [400, 300] [256, 256]

Discount Factor (γ) 0.99 0.99

Tau (τ) 0.005 0.005

Gaussian Exploration Noise 0.1

Policy Noise 0.2 0.2

Noise Clip 0.5 0.5

Replay Buffer Size 100,000 100,000

Optimizer Adam Adam

70

squashed Gaussian distribution for action selection. Similar to TD3 and DDPG, the

double Q learning of the critic network is also a three-layered network that outputs

a scalar Q-value estimate. The learning rate of both actor and critic networks is

0.0001. For the entropy term, the initial temperature parameter α is set to 0.1, and

learnable temperature is enabled, allowing the model to optimize temperature during

training. The set of parameters used for our experiments with the SAC algorithm on

Reacher-v2 is outlined in the following Table 5.6.

Table 5.6: Hyperparameters used in the SAC training for the Reacher-v2 task.

Hyperparameters SAC

Total Timesteps 10,000,000

Max Episode Length 50

Eval Frequency 5,000

Learning Rate 0.001

Batchsize 1024

Policy Network Hidden Layers [256, 256]

Value Network Hidden Layers [256, 256]

Discount Factor (γ) 0.99

Temperature (α) 0.1

Replay Buffer Size 100,000

Optimizer Adam

For the sake of reproducibility and integrity in our comparative experiments, we

used the Stable Baselines3 implementation for the target algorithm PPO with some

added minor modifications. In the stable baselines3 version, no explicit evaluation

frequency parameter was included. We added this feature in our implementation to

allow us to stop the training after a specified number of iterations, evaluate the cur-

rent policy for a specified number of steps, and record the performance of the current

policy. The stable baselines3 implementation of PPO comes with multiple types of

policy classes (ActorCriticPolicy, ActorCriticCnnPolicy, MultiInputActorCriticPol-

71

icy) for various types of observation spaces. Since we are dealing with continuous

state-action spaces with low-dimensional vectors (position, velocities, etc.), for our

implementation we utilized the ActorCriticPolicy class for our task. Based on the

original PPO paper [16], the code implements the clipped surrogate objective. The

“clip range” parameter controls the extent to which the policy can be updated in a

single step, providing a form of regularization and ensuring stability in training. The

tuning of the ”clip range” parameter enabled restricting large policy updates and as

a result, improved the overall training stability. We also decided to include the “clip -

range vf” parameter which enables the clipping mechanism to the value function and

further stabilizes the training by restricting large value function updates. For PPO,

we added the feature of linear learning decay options and used the generalized ad-

vantage estimator (GAE) [33], resulting in more stable and effective policy updates

by balancing bias and variance in the advantage estimates. The hyperparameters are

presented in the Table 5.7.

Table 5.7: Hyperparameters used in the PPO training for the Reacher-v2 task.

Hyperparameters PPO

Total Timesteps 10,000,000

Max Episode Length 50

Eval Frequency 5,000

Learning Rate 0.003

Batchsize 64

Policy Network Hidden Layers [64, 64]

Value Network Hidden Layers [64, 64]

Discount Factor (γ) 0.99

GAE lambda (λ) 0.95

clipping parameter 0.2

clip range vf 0.2

Optimizer Adam

72

Timesteps and policy evaluation. All of the algorithms for this comparative

experiment were run for 10 million timesteps to determine where each of them con-

verges to their asymptotic performance. There were 50 timesteps in each episode of

the task. The policy evaluation was performed for all the algorithms after an interval

of 5,000 timesteps.

73

Chapter 6

Results and Discussion

In this chapter, we present our experimental results for our comparative analysis of

CFlowNets and RL algorithms in the field of robotics and fault adaptation. Further-

more, our results are discussed and interpreted based on each experiment in detail.

This chapter aims to bridge a gap between our theoretical hypothesis and empirical

test and also to address the research questions that were posed in Chapter 1. In

order to simplify the understanding, we segment our experiments into six distinct

parts, each focussing on different aspects of our comparative analysis. Throughout

this chapter, each section is devoted to a unique aspect of the experiments, providing

a detailed analysis of the findings in relation to the hypotheses and objectives out-

lined earlier. All the experiments were run for 10 million timesteps, but for the sake

of clarity and readability of performance during the early stages of learning, the plots

are truncated to keep the first 1 million timesteps.

6.1 Initial Insights: Testing CFlowNets’ Viability

in Robotic Simulation Environment

For the first segment of our experiments, we have implemented CFlowNets and the

four RL algorithms in the Reacher-v2 task simulated by the MuJoCo physics simu-

lator. The purpose of this experiment is to answer our first research question, which

was whether or not it is possible to implement CFlowNets in a robotic environment.

74

A recently published paper [7] about CFlowNets’s introductory paper already ad-

dressed that question by applying CFlowNets to robotic tasks with sparse rewards.

We re-constructed the retrieval network based on the theoretical formulation of the

paper and also made some changes to the original flow network, such as modify-

ing the hardcoded hyperparameter settings, making a configuration file to enhance

hyperparameter tuning, and reducing complexity wherever possible. Afterward, we

implemented the CFlowNets algorithm on Reacher-v2 and compared the average re-

turn against RL algorithms shown in Figure 6.1. The experiments were run ten

times, and the shaded regions represent the performance variability across these ten

runs. The dashed lines indicate the asymptotic performance to signify the point of

convergence for each algorithm where the performance improvement or degradation

becomes marginal.

Figure 6.1: Average Return in Normal Reacher-v2 Environment. The shaded areas
correspond to a 95% confidence interval. The dashed line represents the asymptotic
performance.

Figure 6.1 illustrates the comparative performance of five algorithms: CFlowNets,

TD3, DDPG, SAC, and PPO on the Reacher-v2 task. The empirical data collected

in a span of 10 million timesteps for the Reacher-v2 task and a quick analysis of

75

the graphical data reveal that CFlowNets and PPO stand out as the top-performing

models.

Compared to other algorithms, CFlowNets exhibited a rapid rise in average reward

accumulation over time. From the earlier training stages of learning, CFlowNets shows

a commendable consistency in growth, eventually achieving a top-tier reward average.

The quick improvement of CFlowNets is closely tied to its strong ability to explore and

learn effectively with fewer samples. This feature becomes apparent when contrasted

with other RL algorithms like PPO, which faces challenges during the initial learning

phases. The smaller shaded areas on the CFlowNets, PPO and TD3 graphs show

that these algorithms have more stable performance over ten runs. The learning

curve of CFlowNets stabilizes around an average reward of 2.75, making it the top-

tier performer for the Reacher-v2 task in the normal environment because a high point

of convergence suggests that CFlowNets is able to find a more high-return solution

through exploration. The comparison of CFlowNets with the other RL algorithms

will be discussed in more detail in the subsequent segments of experiments, where

we evaluate its performance with faulty Reacher-v2 environments. This initial first

segment of our experiments was just to determine if CFlowNets could function in a

robotic setting, rather than being a comprehensive performance comparison with all

the RL algorithms.

6.2 Initial Insights: Execution time of 1 Million

Timesteps

Figure 6.2 demonstrates a key factor of algorithmic efficiency which is the execution

time. All the algorithms were run for 1 million timesteps and the time it takes for

each algorithm to finish executing in Reacher-v2 was reported. This is also part of our

preliminary experiment to get initial insights into the performance of CFlowNets. It

helps to establish an initial benchmark and is not indicative of the optimal operation

for each algorithm. It should be noted that this comparison might not be considered

76

a fair one since some algorithm reaches convergence significantly earlier before exe-

cuting 1 million timesteps. To provide a foundational understanding of CFlowNets,

we chose to collect 1 million timesteps as a starting point to gather initial data

and performance indicators. These will be refined and nuanced in subsequent, more

tailored experiments. Later in the study, we intend to conduct a more granulated

analysis that takes into account the distinct time of each algorithm when they reach

near-asymptotic performance which will ensure a more fair comparison.

Figure 6.2: Execution Time in Normal Reacher-v2 Environment (1 million timestep).

From Figure 6.2, we can see that CFlowNets takes the longest to execute 1 million

timesteps of the Reacher-v2 environment, with an execution time of 5 hours and 39

minutes. On the contrary, other RL methods necessitate approximately between 1

to 3.5 hours which is much less compared to CFlowNets. This longer execution time

can be due to the fact that CFlowNets generate a distribution over all possible paths,

and samples from the most rewarding paths with a higher probability. Although this

feature enables CFlowNets to showcase good performance in terms of accumulating

rewards, this comes at a computational cost. The continuous normalizing flows,

which empower CFlowNets in modeling complex dynamics, may inherently be more

computationally intensive. It is also worth noting that the reported execution time

77

only accounts for the training of flow networks which already have a pre-trained

Retrieval network. If we take into account the retrieval network execution time (which

is tailored to each specific environment), then that will result in an execution time

that will be much higher than the other RL algorithms.

6.3 Adaptation Performance

In the third segment of our comparative analysis, we evaluate the adaptation per-

formance and sample efficiency of CFlowNets compared to RL algorithms in four

distinct fault environments. To simplify the explanation, we have categorized the

faults into pairs: reduced range of motion and increased damping are labeled as Fault

1 and Fault 2 (Motion Impairment Faults), respectively, while actuator damage and

structural damage are designated as Fault 3 and Fault 4 (Structural and Mechanical

Faults). For each of these four experiments, initially the agent randomly explores

the environment for the first 500 timesteps to gather experience in the buffer. After

this initial random exploration, at 500 timesteps the training begins and the policy

is updated. The first policy evaluation is done during this period to set up an initial

performance benchmark for each of the algorithms which reflects each of the policy’s

exploration capabilities after having some random interaction with the environment

at the start of the training phase. After that, the policy was evaluated at the regular

5000 timestep. All the algorithms start with the same performance at timestep = 0

however, as the first evaluation point (at 500 timesteps) is so close to the origin in

a large-scale plot of 1 million timesteps, visually it may seem like it’s starting from

non-zero. Additionally, each of the algorithms begins with a random initial policy

which leads to variations in initial rewards at the first evaluation point.

Motion Impairment Faults. Figures 6.3 depicts the average return with respect

to the number of real experiences collected (i.e., timesteps) for the environment with

fault 1 and fault 2 (reduced range of motion and increased damping respectively).

78

Both of these faults impact the precision and flexibility of a robot in maneuvering its

joints and lead to decreased task efficiency. By analyzing the graph, we can see that

CFlowNets maintains a relatively consistent performance through the experiment for

both the fault environment. The narrow shaded area corroborates the stability and

minimal fluctuation of the algorithm over the ten trials. Additionally, it surpassed

all the other RL algorithms in terms of average reward, accumulating the highest av-

erage reward compared to all the RL algorithms (TD3, DDPG, PPO, and SAC) for

fault 1, which indicates CFlowNets architecture has the inherent capability to under-

stand and adapt in adversarial conditions while dealing with constrained action space.

For fault 2, Figure 6.7b indicates that while CFlowNets did not top the charts, its

performance remained robust, closely mirroring the PPO’s asymptotic performance.

Based on sample efficiency, CFlowNets provided excellent results because, for both

fault environments, CFlowNets required the least amount of real experience to gain

a near-asymptotic performance.

In both the custom environment, PPO encounters an initial dip in performance

and undergoes a steeper learning curve. However, as the timesteps progressed, the

PPO algorithm was able to stabilize its learning curve after collecting a considerable

number of real experiences. It maintained a high average reward at the end of the

learning period of 10 million timesteps, gained convergence closer to CFlowNets’s

learning curve for fault 1, and outperformed every other algorithm for fault 2. Across

the 10 experimental runs, PPO has a wider shaded region, indicating a variance in

its performance.

TD3 and SAC exhibited similar performance in the environment with the reduced

range of motion. Although SAC outperformed TD3 in terms of average return with

a higher learning curve, TD3 displayed better sample efficiency by achieving asymp-

totic performance with fewer than half the number of experiences compared to SAC.

However, the narrative changed when both TD3 and SAC algorithm was run in the

custom gym environment with increased damping (fault 2). TD3 outperformed SAC

79

(a) Reacher-v2: Reduced Range of Motion (Fault 1)

(b) Reacher-v2: Increased Damping (Fault 2)

Figure 6.3: The early performance in Motion Impairment Fault environments is de-
picted through learning curves for all five algorithms. The dashed line represents the
asymptotic performance,

both in terms of a higher learning curve and better sample efficiency. Although TD3

faced some performance setbacks in its initial learning phase, it quickly recovered

and stabilized within 0.5 million timesteps. Conversely, SAC experienced a decline

in its learning curve and necessitated a significantly greater number of timesteps to

stabilize and converge.

DDPG, the predecessor of TD3, exhibited the poorest performance out of all the

80

algorithms depicted in Figures 6.7a and 6.7b. DDPG showed volatile and fluctuating

performance since the beginning of its learning phase and showed numerous dips in

its performance throughout the 10 million timesteps. This downward and unstable

trend suggests that DDPG found it challenging to modify its policy to overcome

the constraints of reduced range of motion and increased damping, indicating its

unsuitability for adaptive tasks in these particular environments.

Structural and Mechanical Faults. The performance of the CFlowNets and RL

algorithms are showcased in Figure 6.4, in which the algorithms are tested in envi-

ronments with mechanical (actuator damage) and structural (bend damage) faults.

Compared to other fault environments, CFlowNets’s performance for fault 3 envi-

ronment was relatively unstable. During the initial timesteps, noticeable yet minor

fluctuations marked the learning curve before it plateaued post 1.2 million timesteps.

Unlike other fault environments where CFlowNets’s high sample efficiency was able

to achieve near-asymptotic performance within a few hundred thousand timesteps,

the environment with actuator damage is the only environment where CFlowNets’s

learned policy struggled to adapt quickly and required more than a million real expe-

riences before it could attain convergence. Nevertheless, the overall performance of

CFlowNets was still one of the top only falling behind PPO. CFlowNets also showed

minimal performance deviations in its ten runs. In the context of fault 4 environment

with structural damage, CFlowNets surpassed its RL counterparts both in terms

of upward accumulated average reward trajectory and sample efficiency captured in

Figure 6.4b. It required the least amount of experience to reach near-asymptotic per-

formance, and compared to RL algorithms, CFlowNets showed a relatively consistent

and stable learning trend.

PPO, on the other hand, was susceptible to a major performance dip initially and

was subject to a fluctuating learning trajectory throughout the predominant phase of

its learning cycle in both fault 3 and 4 settings. Despite this, PPO showed remarkable

81

(a) Reacher-v2: Actuator Damage (Fault 3)

(b) Reacher-v2: Structural Damage (Fault 4)

Figure 6.4: The early performance in Structural and Mechanical Faults fault envi-
ronments is depicted through learning curves for all five algorithms. The dashed line
represents the asymptotic performance,

adaptability to both adversarial conditions by outperforming every algorithm in the

comparative analysis for the fault 3 environment and placing second in the fault 4

custom environment. The broad shaded area in the graphical representation indicates

a higher degree of variance in PPO’s performance relative to its counterparts in these

specific tasks.

TD3 and SAC demonstrated almost similar adaptive performance, both exhibiting

82

initial fluctuation at the early stages of their learning period for the custom fault

3 environment. Both algorithms quickly stabilized, showing almost identical reward

trends. However, when benchmarked against PPO and CFlowNets, the asymptotic

performance of both TD3 and SAC was observed to be inferior. In a subsequent

analysis conducted within an environment with structural damage, TD3 displayed

an improved performance, peaking around an average reward of -5.6, and exhibited

consistent performance with a significantly reduced sample experience. Conversely,

the SAC’s performance trajectory demonstrated quite the fluctuation, indicating a

lack of stability in the learning process. In the end, convergence was achieved, but it

required a lengthy learning process.

As observed in fault 1 and fault 2, DDPG exhibited suboptimal adaptive perfor-

mance both in terms of average reward trend and algorithmic stability. From Figures

6.4a and b, we can see that the initial learning curve was relatively stable, but as

the timesteps advanced, a stark deviation was noted. For the entirety of the learning

period, DDPG experienced multiple abrupt declines in performance. The algorithm’s

policy proved to be inadequately robust to recover from it, resulting in a poor average

reward gain.

Discussion. In our third segment of comparative analysis, overall, both CFlowNets

and PPO emerge as commendable top-tier performing algorithms for our fault adap-

tion task. Out of the four custom gym environments with four distinct faults,

CFlowNets was able to surpass its reinforcement learning counterparts in two environ-

ments (fault 1 and fault 4), which justifies its robust design for diverse exploration and

adaptation capability. On the other hand, for fault 2 and fault 3, PPO outperformed

CFlowNets in terms of adaptation performance over 10 million timesteps.

To gain a more comprehensive understanding of the performance difference be-

tween these top two algorithms we decided to conduct a statistical analysis for the

four fault environments. In order to achieve this, we used the average reward data

83

across the ten independent runs and calculated the mean of the average reward val-

ues at regular intervals of every 5000 timesteps for both algorithms. We conducted

our statistical analysis by performing independent t-tests at each of the 200 intervals

over the course of 1 million timesteps for both CFlowNets and PPO. We chose to

conduct this analysis for the first million timesteps because during this early training

phase, the learning strategies and efficiencies of these two algorithms become more

apparent whereas later the algorithms converge to approximately the same level of

asymptotic performance. Additionally, since our goal is a fast adaptation we are more

invested in the first initial learning steps of the fault environments. This statistical

approach helps to compare the means of two independent groups. The p-values were

adjusted by using the Bonferroni correction method for multiple comparisons to sub-

stantially reduce the chances of receiving Type I errors (false positives). This method

involves multiplying each calculated p-values by the number of tests to compute the

adjusted p-values. For the first 1 million timesteps, all the adjusted p-values were

below the traditional alpha threshold level of 0.05 which implies that the performance

difference between CFlowNets and PPO is statistically significant. By analyzing the

calculated p-values a common trend is observed across all four fault environments; a

lower adjusted p-value (<0.0039) is reported for the initial timesteps (typically 100k

- 500k) of the experiments. These lower p-values correspond to a high statistically

significant performance disparity in average reward at the early phase of the train-

ing between CFlowNets and PPO. Conversely, as the timestep progressed (usually

after 500k timesteps), the least significant differences were recorded (higher p-values

> 0.008) which indicates that the performance gap between these two algorithms

became less pronounced. The t-test statistical analysis highlights key periods during

training where the sample efficiency of CFlowNets allowed a superior accumulation

of average rewards compared to PPO and helped us to effectively contrast these two

algorithms’ initial strengths and weaknesses at the early training phase.

Performance retention is another criterion we decided to include to further com-

84

pare CFlowNets and PPO. In our context of adaptation, we are trying to determine

which algorithm has the intrinsic ability to adjust its policy in response to adversar-

ial conditions in the environment and still maintain high performance rather than

outputting an equivalent level of performance as in the normal environment. For

instance, if we face an elbow injury, and we change how we move our shoulder to

compensate for this injury. However, that does not guarantee that our performance

will match as pre-injury level. Rather we are trying to cope with these changing

circumstances to maintain our daily activities. Therefore, it is important to deter-

mine what percentage of normal performance CFlowNets and PPO can retain in the

fault environments. To compute this we utilized the point of asymptotic performance

across 10 million timesteps for CFlowNets and PPO and compared them with the

asymptotic performance in the four fault environments. Overall, CFlowNets is able

to retain approximately 68.43% to 94.74% of its normal asymptotic performance in

the environment with faults 1, 2, and 4. However, in the fault 3 environment with the

actuator damage, a substantial reduction of 78.95% is observed because this custom

gym environment introduces a more complex non-linearity in the environment. Con-

versely, for fault 3, PPO also experienced a 59.54% asymptotic performance reduction.

While this decrease is less severe than CFlowNets, it is a considerable reduction. For

the rest of the fault environments, PPO was able to retain 78.05% to 85.37% of its

original performance. This evaluation provides insight into the varied impact of each

fault condition on the two algorithm’s asymptotic performance. CFlowNets demon-

strated a higher degree of resilience under specific fault environments such as fault 4,

whereas PPO maintains a more stable performance retention in others.

A potential reason for CFlowNets’ good performance is that it generates a distribu-

tion over all possible paths and samples from the most rewarding paths with a higher

probability. CFlowNets’s ability to generate a distribution over trajectory means

that it can explore multiple potential paths concurrently. As a result, the possibility

of the algorithm getting stuck in a local optimum reduces and makes it more suit-

85

able to find more globally optimal solutions, which makes them more sample efficient

than standard reinforcement learning algorithms. By prioritizing the most rewarding

paths, CFlowNets’ sampling mechanism continuously fine-tunes its parameters based

on the highest returns. As a result of this prioritization, convergence occurs faster

and results in more optimal performance. Additionally, because of its off-policy na-

ture, it can utilize stored experiences to learn effectively from a limited number of

samples by reusing experiences multiple times. In continuous state and action space,

CFlowNets’ architecture may facilitate more accurate state generalization. In this

way, it is capable of recognizing and acting optimally in unseen but similar states,

which is invaluable in dynamic environments.

On the other hand, for every fault environment, PPO faces a performance dip

initially in its learning curve, and it requires a lot of real experiences (timesteps)

to reach asymptotic performance. The algorithm’s lower sample efficiency can be

attributed to a number of factors inherent to the architecture of PPO. First and

foremost, PPO is an on-policy algorithm. Due to its on-policy nature, PPO’s learning

phase depends on the most recent experiences. However, in the initial stages of

learning, these experiences are based on random or suboptimal policies. This on-

policy feature may be beneficial in the long run, but it requires more timesteps to

collect valid experiences that contribute to optimal policy improvements [34]. Other

than that, the clipping mechanism of PPO can also play a role in the algorithm’s

poor sample efficiency. PPO utilizes a clipping mechanism in its objective function,

which hinders large policy updates. This strategy prevents PPOs from overshooting

policy updates and ensures training stability. Despite this, this clipping mechanism

might be the reason why PPO’s policy updates have a slower rate of improvement

during the early phases of training. Therefore, the algorithm takes a long time to

reach asymptotic performance.

In the context of sample efficiency, TD3 demonstrated similar performance to

CFlowNets in all the fault environments illustrated in Figure 6.3 and Figure 6.4.

86

However, despite its good sample efficiency, the overall average reward trajectory was

lower compared to CFlowNets and PPO. In the preceding chapters, we discussed

how TD3 utilizes a twin-value network to estimate the Q-values and delayed policy

updates to reduce overestimation bias and ensure a more stable training phase re-

spectively. Additionally, TD3 uses target policy smoothing, which adds noise to the

target policy, making the policy more robust and the estimation of Q-values more

conservative. The delayed policy updates and target policy smoothing may result in

efficient learning, but it also creates an obstacle to exploration. As a result, TD3 may

produce lower rewards than other methods, such as CFlowNets and PPO. In addition

to this, TD3 is an off-policy algorithm that learns from a replay buffer. Learning from

stored experiences can lead to better sample efficiency. Nevertheless, it might also

cause the model to be stuck in outdated and suboptimal policies, which may cause a

lower average reward trajectory.

SAC (Soft Actor-Critic) exhibited a stable average reward trajectory for most of

the experiments in the four custom gym environments. However, if we compare the

performance with CFlowNets, PPO, and TD3, its average reward trajectory was

lower. Despite this poor adaptive performance, one notable feature that was evident

was its good exploration ability. In the context of sample efficiency, SAC was able

to quickly achieve convergence for most of the fault environments. SAC is entropy-

regularized, which means it uses an entropy term to encourage more exploration. As a

result, SAC maintains a more stochastic policy and explores more in the environment

which explains its good sample efficiency. Furthermore, due to the off-policy nature,

SAC is more sample-efficient and requires fewer timesteps to achieve near-asymptotic

performance. This may, however, lead to the algorithm being less responsive to recent

changes than on-policy algorithms such as PPO, which might be an underlying reason

behind SAC’s lower accumulation of reward.

Lastly, DDPG (Deep Deterministic Policy Gradients) showed the lowest adaptive

performance over 10 million timesteps, lagging in both sample efficiency and reward

87

accumulation. There was fluctuation in average reward across all four fault environ-

ments, indicating a lack of adaptability. Apart from demonstrating instability, the

results depicted a major abrupt dip in its performance. There could be various po-

tential reasons why DDPG is not suitable for fault adaptation tasks. As discussed

in Chapter 2, the DDPG algorithm has a tendency to cause function approximation

errors and overestimation bias of the Q-values of the critic network. This can cause

the agent to get stuck into a local optimum because of suboptimal policy updates,

which can be a potential reason for DDPG’s performance issues. Apart from this, its

off-policy nature can also negatively affect learning, being less responsive to recent

changes in the environment. Additionally, it has been reported in several studies

[15] [35] that DDPG is highly sensitive to hyperparameters. The fact that we used

the published hyperparameters [14] and did not perform extensive hyperparameter

tuning may have contributed to the performance degradation.

6.4 Adaptation Speed and Sample Efficiency

As we continue our comparative analysis, we reach the fourth segment, which delves

deeper into the adaptation speed and sample efficiency of each algorithm. Utilizing

a grouped bar chart in the Figure 6.5 we gain more insights about each algorithm’s

efficacy in the four custom gym environments. In the graph, we have organized our

collected data from third-segment experiments into four groups, each corresponding

to one of the fault environments (Reduced ROM, Increased damping, Actuator Dam-

age, and Structural Damage). The Y-axis quantifies the timesteps required for each

algorithm to reach asymptotic performance. It is important to note that each of these

five algorithms has a different execution time due to their distinct model architec-

tures. To provide a clearer perspective on adaptation speed, we have incorporated

the real-time duration for each algorithm to achieve convergence in an hour-minute

format.

From Figure 6.5, we can see that CFlowNets demonstrated remarkable perfor-

88

Figure 6.5: Adaptation Speed and Sample Efficiency in the four fault Reacher-v2
Environments (10 million timesteps). Execution time to achieve asymptotic perfor-
mance is indicated on top of each algorithm’s bar in an Hour-Minute format.

mance both in terms of fast adaptation and sample efficiency for most of the fault

environments. The model took between 27 to 51 minutes and approximately only

100k – 200k timesteps to gain asymptotic performance for faults 1, 2 and 4. However,

a noticeable anomaly is exhibited in the fault environment with actuator damage

where CFlowNets policy struggled to adapt, requiring more than a million timesteps

(approx. 1.2 million) with an execution time of 5 hours 34 minutes to converge. Fur-

ther research and optimization are needed to enhance its universal applicability and

performance in light of this anomaly. Nevertheless, the superior sample efficiency of

CFlowNets is evident from this graphical representation.

TD3, on the other hand, had one of the best performances in the context of requir-

ing many fewer real experiences (300k – 700k timesteps) and lower execution time to

adapt. Its performance, although not surpassing CFlowNets in the majority of the

environments, outperformed all the rest of the three reinforcement learning models

with an execution time ranging from 23 minutes to an hour. This result demonstrates

that among the RL algorithms, TD3 is a good candidate algorithm for robotic tasks

that require exploration with a limited number of samples.

89

SAC showed mixed results across the four environments, positioning it as the third

best in this aspect of our comparative study. It excels in the Reduced Range of

Motion and Actuator Damage environments but encounters challenges in Increased

Damping and Structural Damage, taking a relatively greater number of samples before

it converges. Due to the different dynamics and nature of the fault environments, Soft

Actor-critics policies might be adequate to handle certain complexities while being

sensitive to others.

PPO, due to its on-policy nature, experiences significant challenges in terms of

sample efficiency. From the grouped bar chart, it is evident that PPO necessitates

much more real experiences ranging from 3.45 to 4.6 million timesteps and as a

consequence requires a longer execution time before it can adapt to the malfunctions.

This low sample efficiency may undermine its applicability in tasks where sample

efficiency and faster adaptation are paramount considerations.

Finally, in this segment of our comparative analysis, DDPG ranked last, requiring a

large number of timesteps (approximately 5.5 to 6.1 million timesteps) and execution

time running between 9 to 11 hours to plateau in its performance curve. In real-time

applications where rapid adaptation is crucial, its slower convergence speed can be a

significant bottleneck.

6.5 CFlowNets’ Compute Efficiency Analysis: GPU

Memory Usage

The fifth segment of our experiments is dedicated to investigating the compute re-

source usage of CFlownets compared to the four RL algorithms. These algorithms’

operational efficiency, particularly GPU memory consumption during the training

phase, is crucial to their feasibility and applicability in real-world machine fault adap-

tation scenarios. The data collected for this comparison is the GPU memory usage of

each algorithm in a normal Reacher-v2 algorithm. To collect the data we have used

the GPUtil library which is a Python library dedicated to monitoring NVIDIA GPU

90

utilization and memory usage. The GPUtil monitoring setup continuously retrieves

the current GPU memory usage. The current GPU memory usage data was collected

at regular intervals. An average of the collected data for each evaluation timestep

was then calculated and plotted in the bar graph 6.6.

Figure 6.6: Bar chart illustrating the average GPU memory usage of various algo-
rithms: CFlowNets, PPO, DDPG, SAC, and TD3 for Reacher-v2 (Normal Environ-
ment)

Although CFlowNets showed promising results in our previous experimental seg-

ments, when it comes to computing resource utilization, CFlowNets consumed on

average a substantial 17.91 GB of GPU memory during its execution across the

episodes. In contrast, the RL algorithms necessitated less than one-third of the GPU

memory to perform a simple robotic task, Reacher-v2, which ranged from 2.3 to 5.32

GB. Reinforcement learning model-free algorithms such as PPO, SAC, DDPG, and

TD3 learn a policy that directly maps states to action while sticking to the most

rewarding paths. On the other hand, CFlowNets takes a more sample-efficient and

sample-intensive approach. Instead of focusing on the most rewarding path, it gener-

ates a distribution over all possible paths and assigns higher probabilities on the more

rewarding paths. Therefore, it explores the solution space more exhaustively. To ex-

91

ecute this exhaustive and comprehensive approach, CFlowNets is bound to store and

process a significant amount of data corresponding to all the possible paths and their

associated states and actions. As a result, this algorithmic approach requires much

more computation resources than standard reinforcement learning methods which in

turn leads to a high GPU memory usage.

6.6 CFlowNets: A Transfer Learning Analysis

The utilization of transferring pre-trained models and replay buffer contents to a new

training task has been proven to be beneficial in many deep-learning applications.

In our final segment of the comparative evaluation, we implemented the concept of

transfer learning to investigate if CFlowNets’s performance in fault environments

improves or not.

As this study is primarily focused on figuring out the efficacy of CFlowNets in

machine fault adaptation tasks, we decided not to include other RL algorithms for

this experiment. In this experiment, we trained CFlowNets in the original Reacher-

v2 normal environment. The model parameters learned in the normal environment

and the storage contents of the replay buffer were saved and then transferred to the

four fault environments. We evaluated the performance of these models with retained

model and storage contents with the performance of models with no prior learning.

By no prior learning, we mean no knowledge transfer is involved, and the policy is

trained online solely with the data collected in the fault environments.

Figure 6.7a illustrates that transferring the model parameters and the reply buffer

contents of the normal environment did not lead to any massive performance boost;

rather, for the environment with the reduced range of motion, the performance was

worse than the original model. Several factors could play the underlying reason for

the performance degradation in the fault environment with a reduced range of mo-

tion. One of the potential reasons could be the mismatch of experience relevance. The

experiences that were collected in the normal environment may have little relevance

92

(a) Reduced ROM (b) Increased Damping

(c) Actuator Damage (d) Structural Damage

Figure 6.7: Early Performance of CFlowNets in Reacher-v2 fault environments. Com-
parison of performance is done between the CFlownets model with no prior learning
and the CFlowNets model with retaining pre-trained model and replay buffer (data
collected from the normal Reacher-v2 environment).

to the altered environment with a reduced range of motion where the dynamics of

the environment hugely differ from the original environment. As a result, the learned

policies and the past experience, including the action and state transition, may no

longer be valid and counterproductive for the new task, leading to a sub-optimal per-

formance for fault 1. The decline in performance could also be linked to distribution

shift where the distribution of data that the model encounters when learning online

in the fault environments, differs from the distribution of data on which the original

model was trained on offline. This shift can lead to a significant performance drop

because the patterns and parameters that the model learned previously may not be

well suited to the new test data.

93

Conversely, when examining Figures 6.7b, 6.7c, 6.7d, it shows a more stable per-

formance boost at the initial 100k timesteps across the rest of the three fault envi-

ronments. In the fault environment with actuator fault damage illustrated in 6.7c,

when no prior learning was done, there was a significant performance decline at the

outset of CFlowNets’s learning period. Yet, when we retained the model and re-

play buffer from the normal environment, it demonstrated a more stable and robust

performance, circumventing any initial downturn. In our experimental setup, the

process of learning models and collecting the experiences in the storage is akin to

offline learning in the normal environment. In other words, when learning a policy in

a normal environment, it is essentially learned offline. Such models, when deployed in

fault environments, are exposed to online and out-of-distribution experiences. These

new dynamics of the online and out-of-distribution experiences can degrade the per-

formance of the models when no models and storage contents are retained. However,

when we retain the pre-trained models and the storage contents in the post-fault

tasks, the impact of encountering online and out-of-distribution experiences is sub-

stantially reduced in the beginning. That is why, when we transfer knowledge from

the source task to these modified target tasks it initiates a jumpstart in the perfor-

mance for fault environments 2, 3, and 4. The term “Jumpstart” [36] refers to the

initial performance improvement that an agent experiences when it starts learning a

new task using knowledge learned from a previous related task. When we transfer

the pre-trained models along with experiences from the pre-fault normal environment

to the fault environment, it mitigates the cold start because the agent already has

a good estimate for the new environment by utilizing past experiences. Instead of

learning from scratch, the replay buffer enables the agent to exploit good policies

from the start without random exploration; hence, during the initial phase of the

training, there is an improvement in performance compared to the models with no

prior learning. In later timesteps, the model converges to a similar learning curve as

the model with no prior knowledge. The advantage of the replay buffer diminishes

94

because of buffer saturation. As the finite replay buffer is constantly being populated

with new experiences from the current environment, it overwrites the old ones. As

a result, after a certain period of timesteps, as the agent gathers more samples from

faulty environments, the old experiences may become less useful.

Summary. To summarize, each segment of our experiments offers key insights that

help us address the initial five research questions. Throughout the series of exper-

iments, we determine that CFlowNets applicability in continuous control tasks and

its algorithmic structure is well suited for effective adaptation in simple robotic sim-

ulations. Although CFlowNets was outperformed by PPO in two out of four fault

environments in terms of average return, however, due to a limited time budget, if

the task demands fast adaptation requiring the least amount of experience with good

performance, CFlowNets excels. Nevertheless, the significant resource consumption

of the algorithm may pose certain challenges to its application in real-world settings.

It is crucial to mention that in all of the experiments, the reinforcement learning

algorithms did not have any pre-trained components at the beginning of the learning

phase. However, CFlowNets had an added advantage because it had access to a pre-

trained retrieval network which resulted in the agent having a better estimate of the

environment’s state and action space. This pretraining aspect might be a reason why

CFlowNets was able to quickly adapt and gain convergence compared to other RL

algorithms which had to learn from scratch.

However, it is also imperative to acknowledge the fact that CFlowNets operated

in a sparse reward-structured environment whereas the RL algorithms received in-

termediate rewards. As a result, all the RL algorithms had an advantage because

these intermediate rewards at each timestep guided the learning process resulting

in a more efficient policy update. On the other hand, CFlowNets experiments were

done in a sparse reward setting where the agent received a reward only at the terminal

state at the end of an episode. This infrequent feedback from the environment is a

95

huge disadvantage that can hinder the overall adaptation performance of CFlowNets.

Therefore, while CFlowNets’ pre-trained retrieval network offered an initial advan-

tage, the sparse reward setting presented a unique challenge, balancing the overall

comparison with traditional RL algorithms. The next step in this research will be

to train both the retrieval and flow networks simultaneously to make the comparison

more fair.

96

Chapter 7

Conclusion & Future Work

7.1 Conclusion

The purpose of this comparative study was to determine the feasibility of flow net-

works (specifically CFlowNets) in the field of robotic applications. Flow network

implementations have already shown promising results in molecular generation in

drug discovery compared to many reinforcement learning algorithms. However, its

potential in robotics still remains unexplored. This thesis is dedicated to answering

some fundamental questions about CFlowNets:

• Can Generative Flow Networks be utilized in Robotic Applications?

• Is it possible to develop a Continual Generative Flow Network Learning ap-

proach for machines well suited for continual interaction with environments?

In other words, Can GFlowNets or CFlowNets theoretical formulations work

with continuous action and state space?

• Can Generative Flow Networks adapt when a fault is introduced in the robotic

environment? In other words, can it be utilized for fault adaptation tasks?

– If yes, then does it perform better than state-of-the-art reinforcement learn-

ing methods (PPO, SAC, TD3, and DDPG) in terms of adaptation speed

and sample efficiency?

97

• How does the computational resource consumption of flow networks compare to

traditional RL algorithms?

• Does incorporating the transfer of task knowledge enhance performance effi-

ciency for Generative Flow Networks?

Although GFlowNets serves as the foundation of the flow network concepts, its

theoretical formulations are only able to deal with discrete tasks where there are a

limited number of state and action pairs and each edge in the space represents one

discrete action. Real-world robotic application involves environments with continuous

state and action space where multimodal reward distribution may be present. In our

research, we shifted our focus from GFlowNets to a continuous variant of GFlowNets

called CFlowNets, which is capable of utilizing its novel training framework to produce

policies in a continuous state-action space.

We have conducted six segments of experiments in our comparative study. Each

set of experiments offered a key insight into CFlowNets’ performance in a robotic en-

vironment. Overall, from the experimental results, we can conclude that CFlowNets

can not only be employed in a robotic simulated environment, but it is one of the top-

tier algorithms when it comes to incorporating hardware fault adaption to machines

for the Reacher-v2 environment. Across our four custom gym environments with

faults, CFlowNets have exhibited excellent sample efficiency and adaptation required

the least number of timesteps. As a whole, the asymptotic performance of CFlowNets

was also pretty high compared to most standard reinforcement learning algorithms.

Among the RL algorithms, PPO also demonstrated commendable adaptation perfor-

mance. PPO’s average reward trajectory converged higher than CFlowNets in some

fault environments, nevertheless, it required a large number of experiences before

it could stabilize. As a result, the algorithm took longer to adapt in all the fault

environments compared to CFlowNets.

Based on our observations of the experimental results, CFlowNets, especially with

98

retaining model and replay buffer, can be considered a promising option for rapid

adaptation in robots. In practical terms, when a robot encounters malfunctions in the

real world and immediate maintenance is either unavailable or prolonged, CFlowNets

can be considered a good candidate due to its rapid adaptation and exceptional sam-

ple efficiency. PPO also exhibited good adaptation abilities but as it takes longer

to adapt, it might not be suitable for tasks that require immediate adaptation with

a short time delay. From the results, we can also conclude that TD3 has a consis-

tent adaptation performance, although the overall reward trend may not be as high

compared to CFlowNets and PPO. It is worth mentioning that the performance of

CFlowNets may not be superior to that of RL in every scenario, as the nature of

the task may affect the performance. The use of CFlowNets for sampling distri-

butions over complex spaces may indeed be advantageous for tasks that require a

diverse set of solutions through comprehensive exploration. However, for tasks that

are strictly about maximizing cumulative rewards, traditional RL algorithms might

be more suitable. Additionally, one of the limitations of this study was that it was

conducted on a simple simulated robotic task. It would be interesting to investigate

if the performance of CFlowNets remains good as it scales up to more complex and

larger problems.

Algorithms like CFlowNets require substantial GPUmemory which can be resource-

intensive, limiting their applicability in real-world scenarios where resources are con-

strained. In real-world robotic applications, some hardware designs may require min-

imal resources which may not be able to support CFlowNets’s memory-intensive com-

putations. Additionally, high GPU memory requirements with expensive hardware

will also add to computation costs. We have experimented with CFlowNets on a

simple simulated robotic environment but in real-world tasks with more complex en-

vironments, because of its resource-intensive behaviours the algorithm may not be as

scalable and may face deployment issues in embedded systems with limited capacity.

Although CFlowNets’ adaptation performance did show initial improvement for

99

most tasks when we incorporated saved models and replay buffer contents into models

dealing with fault environments, the improvement was not significant. Because of

the changing environment dynamics in fault environments, the retained model and

replay buffer helped mitigate ”cold-start” in the early stages of training. When the

fault occurs in the environment and the models face online and out-of-distribution

experiences, the offline learned model along with the past experiences stored in the

replay buffer, facilitates early adaptation to the fault tasks. According to our results,

it is best to retain the pre-fault task model parameters and replay buffer contents

before deployment.

To conclude, in this thesis, we have investigated the potential and limitations of an

alternative to traditional reinforcement learning algorithms in robotics applications.

We have successfully implemented CFlowNets to add fault tolerance to a simulated

robot. Based on certain performance metrics, we have conducted a comprehensive

evaluation of some key aspects of CFlowNets and compared them with four differ-

ent state-of-the-art reinforcement learning widely popular in their control system and

robotics applications. We believe this study is the first step in utilizing a new supple-

mentary approach to exploration-biased robotic tasks with machine fault adaptation.

We hope that further research in CFlowNets will lead to more reliable and efficient

real-world robots in various fields, making them a common choice for tasks where

exploration and adaptability are key.

7.2 Future Work

We identified some of the future works that can extend our comprehensive analysis and

experiments to enhance and optimize the performance and applicability of CFlowNets

along with the RL algorithms in continuous robotic environments, particularly those

involving machine faults.

100

Hyperparameter Tuning: One of the key limitations of our research was that an

intensive hyperparameter search was not conducted for the implementation of the RL

algorithms. In most cases, published hyperparameters for the same Reacher-v2 task

were used with minor tuning. We did a selective hyperparameter tuning and focused

more on hyperparameters that facilitate exploration. For a more fair comparison, we

should do an intensive hyperparameter search to optimize the RL algorithms in the

normal environment.

Environmental Dynamics: All of the evaluations in this study were done on a

single type of robotic environment. We created four custom gym environments, but at

its core, all of them were different variations of the same Reacher-v2 environment. Fu-

ture experiments of CFlowNets should be done in various robotic environments with

differing environment dynamics and complexities to gather a deeper understanding of

the adaptability of the algorithm. This will help us determine if CFlowNets policies

are suitable for certain types of tasks and potentially unsuitable for others.

Meta RL: One of the most prominent candidates for fault adaptation tasks is the

Meta RL method. Meta RL’s “learning to learn” approach enables a domain adapta-

tion strategy where the agent learns learning strategies that are invariant to a range

of domains. As a result, these algorithms are more suitable to quickly adapt to new

tasks where the environments are non-stationary and the dynamics can change over

time. We plan to conduct future research to compare the adaptation of CFlowNets

with Meta RL algorithms to determine the generalization capability of both these

frameworks across multiple fault scenarios.

Combining CFlowNets with RL: From our findings in this thesis, we conclude

that CFlowNets has excellent exploratory ability and sample efficiency. However, RL

is still the way to go for large-scale tasks where reward maximization is vital. One

of the future extensions of this study could be to harness CFlowNets’s exploratory

101

ability and combine it with RL methods to maximize rewards.

Gradual Hardware Faults: In our study, we have simulated fault environments

by changing attribute variables in the XML file of our robotic environment. Each of

these attributes defines certain aspects of the robot. However, all of the four-fault

environments had constant fault types where the values of the modified attributes

remained the same over time. In real-world scenarios, a robot typically faces gradual

malfunction over time where the severity of faults generally increases; for instance, the

joint becomes more and more restrictive because of gradual wear and tear. Instead of

sudden and abrupt malfunction to the environment, for future experiments, the fault

could be simulated in such a way that the values of the attributes gradually change

as the timestep progresses. As the dynamics of the environment change bit by bit, it

would be interesting to investigate if CFlowNets can demonstrate better adaptability

in this sort of progressive learning setting.

Real-world Robotic Implementation: All of our experiments were done in a

simulated robotic environment (Reacher-v2). We intend to deploy our work into

real-world robots to validate and optimize the performance.

102

Bibliography

[1] R. Teti, K. Jemielniak, G. O’Donnell, and D. Dornfeld, “Advanced monitoring
of machining operations,” CIRP annals, vol. 59, no. 2, pp. 717–739, 2010.

[2] M. Riazi, O. Zaiane, T. Takeuchi, A. Maltais, J. Günther, and M. Lipsett,
“Detecting the onset of machine failure using anomaly detection methods,” in
Big Data Analytics and Knowledge Discovery: 21st International Conference,
DaWaK 2019, Linz, Austria, August 26–29, 2019, Proceedings 21, Springer,
2019, pp. 3–12.

[3] J. Guiochet, M. Machin, and H. Waeselynck, “Safety-critical advanced robots:
A survey,” Robotics and Autonomous Systems, vol. 94, pp. 43–52, 2017.

[4] California Wildlife Center, Helping birds get their ”wings” back, https://cawildlife.
org/helping-birds-get-their-wings-back/, Accessed: 2024-01-15.

[5] The Engineer, “Forces of nature: Biomimicry in robotics,” The Engineer, Ac-
cessed: 2024-01-15. [Online]. Available: https : / / www . theengineer . co . uk /
content/features/forces-of-nature-biomimicry-in-robotics.

[6] Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio, “Gflownet
foundations,” Journal of Machine Learning Research, vol. 24, no. 210, pp. 1–55,
2023.

[7] Y. Li, S. Luo, H. Wang, and J. Hao, “Cflownets: Continuous control with gen-
erative flow networks,” International Conference on Learning Representations,
2023.

[8] R. Isermann, “Supervision, fault-detection and fault-diagnosis methods—an in-
troduction,” Control engineering practice, vol. 5, no. 5, pp. 639–652, 1997.

[9] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-
tolerant techniques—part i: Fault diagnosis with model-based and signal-based
approaches,” IEEE transactions on industrial electronics, vol. 62, no. 6, pp. 3757–
3767, 2015.

[10] R. Isermann, Fault-diagnosis systems: an introduction from fault detection to
fault tolerance. Springer Science & Business Media, 2005.

[11] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A new deep learning model
for fault diagnosis with good anti-noise and domain adaptation ability on raw
vibration signals,” Sensors, vol. 17, no. 2, p. 425, 2017.

103

https://cawildlife.org/helping-birds-get-their-wings-back/
https://cawildlife.org/helping-birds-get-their-wings-back/
https://www.theengineer.co.uk/content/features/forces-of-nature-biomimicry-in-robotics
https://www.theengineer.co.uk/content/features/forces-of-nature-biomimicry-in-robotics

[12] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in IEEE/RSJ international conference on intelligent robots and sys-
tems, IEEE, 2012, pp. 5026–5033.

[13] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[14] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,”
4th International Conference on Learning Representations, ICLR, San Juan,
Puerto Rico, May 2-4, Conference Track Proceedings, 2016.

[15] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation er-
ror in actor-critic methods,” in International conference on machine learning,
PMLR, 2018, pp. 1587–1596.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, 2017.

[17] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” CoRR, 2018.
[Online]. Available: http://arxiv.org/abs/1812.05905.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[19] N. Malkin, M. Jain, E. Bengio, C. Sun, and Y. Bengio, “Trajectory balance:
Improved credit assignment in gflownets,” CoRR, vol. abs/2201.13259, 2022.
arXiv: 2201.13259. [Online]. Available: https://arxiv.org/abs/2201.13259.

[20] Y. Bengio, K. Malkin, and M. Jain, The gflownet tutorial, 2022. [Online]. Avail-
able: https://tinyurl.com/gflownet-tutorial.

[21] E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio, “Flow network
based generative models for non-iterative diverse candidate generation,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 27 381–27 394,
2021.

[22] C.-S. Huang, S.-L. Hung, C. Lin, and W. Su, “A wavelet-based approach to
identifying structural modal parameters from seismic response and free vibra-
tion data,” Computer-Aided Civil and Infrastructure Engineering, vol. 20, no. 6,
pp. 408–423, 2005.

[23] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like
animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[24] F. Yang, C. Yang, D. Guo, H. Liu, and F. Sun, “Fault-aware robust control via
adversarial reinforcement learning,” in IEEE 11th Annual International Confer-
ence on CYBER Technology in Automation, Control, and Intelligent Systems,
2021, pp. 109–115.

[25] K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret, “Reset-free trial-and-
error learning for robot damage recovery,” Robotics and Autonomous Systems,
vol. 100, pp. 236–250, 2018.

[26] I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn,
“Learning to adapt: Meta-learning for model-based control,” arXiv preprint
arXiv:1803.11347, vol. 3, p. 3, 2018.

104

http://arxiv.org/abs/1812.05905
https://arxiv.org/abs/2201.13259
https://arxiv.org/abs/2201.13259
https://tinyurl.com/gflownet-tutorial

[27] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International conference on machine learn-
ing, PMLR, 2017, pp. 1126–1135.

[28] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational autoencoder for
molecular graph generation,” in International conference on machine learning,
PMLR, 2018, pp. 2323–2332.

[29] T. Sterling and J. J. Irwin, “Zinc 15–ligand discovery for everyone,” Journal of
chemical information and modeling, vol. 55, no. 11, pp. 2324–2337, 2015.

[30] Y. Xie et al., “Mars: Markov molecular sampling for multi-objective drug discov-
ery,” 9th International Conference on Learning Representations, ICLR, Virtual
Event, Austria, May 3-7, 2021.

[31] G. Brockman et al., Openai gym, 2016. eprint: arXiv:1606.01540.

[32] D. Yarats and I. Kostrikov, Soft actor-critic (sac) implementation in pytorch,
https://github.com/denisyarats/pytorch sac, 2020.

[33] V. Mnih et al., Asynchronous methods for deep reinforcement learning, 2016.
arXiv: 1602.01783 [cs.LG].

[34] J. Queeney, I. C. Paschalidis, and C. G. Cassandras, “Generalized Proximal Pol-
icy Optimization with Sample Reuse,” Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS, December 6-14, virtual, 2021.

[35] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, pp. 3207–3214, 2018.

[36] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning
Domains: A Survey,” Journal of Machine Learning Research, vol. 10, no. 1,
pp. 1633–1685, 2009.

105

arXiv:1606.01540
https://github.com/denisyarats/pytorch_sac
https://arxiv.org/abs/1602.01783

	Introduction
	Motivation
	Thesis Objectives
	Manuscript Organization

	Background on Reinforcement Learning
	Reinforcement Learning
	Markov Decision Process
	Returns, Policies, and Value Functions
	Policy Gradient Methods
	Exploration vs. Exploitation
	On/Off-Policy Algorithms
	Proximal Policy Optimization (PPO)
	Soft Actor-Critic (SAC)
	Deep Deterministic Policy Gradient (DDPG)
	Twin Delayed DDPG (TD3)

	 GFlowNets and its Variants: A Comprehensive Overview
	GFlowNets
	Definition of GFlowNets
	GFlowNets Architecture
	GFlowNets Training
	GFlowNets vs. RL

	CFlowNets
	CFlowNets Definition
	Continuous Flow Definitions
	Training Framework

	Related Works
	Fault diagnosis and Fault-tolerant Strategies
	Trial-and-Error with select-test-update
	Adaptation using Reinforcement Learning & Meta-RL
	GFlowNets for Molecule Generation
	CFlowNets for Continous Control Tasks

	Experimental Setup
	Hardware and Software
	Environment
	Reacher-v2

	Faults
	Reduced Range of Motion
	Increased Damping
	Actuator Damage
	Structural Damage

	Experimental Settings
	CFlowNets
	RL Algorithms (DDPG, TD3, PPO & SAC)

	Results and Discussion
	Initial Insights: Testing CFlowNets' Viability in Robotic Simulation Environment
	Initial Insights: Execution time of 1 Million Timesteps
	Adaptation Performance
	Adaptation Speed and Sample Efficiency
	CFlowNets' Compute Efficiency Analysis: GPU Memory Usage
	CFlowNets: A Transfer Learning Analysis

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

