
University o f A lberta

H e u r i s t i c s f o r I n t e g e r P r o g r a m s

by

Shubhashis Ghosh

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree o f D octor o f Philosophy.

Department o f Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-29682-0
Our file Notre reference
ISBN: 978-0-494-29682-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Many real world optimization problems can be formulated as mixed integer programs. In general,

finding optimal, or even feasible, solutions to such problems is computationally intractable. For this

reason, there is interest in developing heuristic algorithms for these problems.

In this thesis we present three new mixed integer program heuristic algorithms.

The first, P IV O T A N D G O M O R Y C U T (P G C) , is a feasibility heuristic, namely one that tries only

to find a feasible solution. P G C integrates Gomory cuts into the bounded variable revised simplex

pivoting framework similar to that used in the classic P IV O T A ND C O M P L E M E N T heuristic of Balas

and Martin.

The second, DISTANCE INDUCED NEIGHBOURHOOD SEARCH (D IN S), is an improvement

heuristic, namely one that starts with a feasible solution and tries to improve it as much as possible.

D IN S performs neighbourhood search at different nodes o f the mixed integer program search tree

where the mixed integer program search tree is the tree generated by either a branch-and-bound or

a branch-and-cut solver. D IN S defines the neighbourhoods by modeling a distance metric between

the current mixed integer feasible solution and the relaxation solution at the node o f the mixed

integer program search tree.

The third, NEIGHBOURHOOD P ivot AND GOMORY CUT (NPGC), is a ‘find-and-improve’

heuristic. Such a heuristic tries to find the best possible feasible solution. NPG C, an extention

o f PGC, uses Gomory cuts to define neighbourhoods, searches the neighbourhoods for feasible

solutions, and improves any found feasible solutions by applying the LOCAL BRANCHING heuristic

ofFischetti and Lodi.

We also present a new class of hard 0-1 integer programs for which instances are easy to gen

erate pseudo-randomly. These pseudo-randomly generated instances are useful in comparing the

performance of different heuristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

Getting admission to the graduate school of University of Alberta is one of the greatest rewards and

honours of my life. About five years ago I start this difficult but rewarding journey, and today I hope

that I will be able to remember everyone who have helped me smoothen this difficult journey.

First and foremost, I thank my supervisor, Ryan B. Hayward, for taking me as his student, show

ing optimism in my research, and introducing me to some exciting problems in graph theory and

combinatorial optimization. He has been an ideal supervisor in every respect, in terms of provid

ing valuable technical inputs in my research and in terms of granting enough financial support that

helped me to maintain my family. It is he who has taught me how a scientist should think of a prob

lem and its possible solutions. His tireless editorial effort has undoubtedly improved the quality o f

this thesis. Working with him has become an enlightening experience and, in a nutshell, this thesis

would be impossible without his help and co-operation.

I thank Professor Joe Culberson, Professor Loma Stewart, Professor Rene Poliquin, and Pro

fessor Michael Buro for helping me to select interesting research directions to explore. I also want

to thank many well known researchers who have provided useful information and advice at various

stages of my research, including, but not limited to: Bill Cook, Gerard Cornuejols, Andrea Lodi,

Emilie Danna, Mikhail Nediak, Ed Rothberg, and Fadi Aloul. I also thank Neil Burch for helping

me use ILOG Cplex, and all other support staff o f the Computing Science Department at University

of Alberta for their various contributions throughout my doctoral journey.

I like to express my endless gratitude to my parents for encouraging me over the years o f my

studies since childhood. I would also like to thank all o f my relatives and friends who have worked

as a support network over the time.

Finally, I thank my wife, Lovely, for her companionship and endless mental support toward my

research, and for taking care of our daughter Sreoshi during this difficult time that I will cherish over

the years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

2 Background 4

2.1 Integer P ro g ra m s ... 4

2.1.1 The Linear Programming Relaxation.. 5

2.1.2 The Simplex M e th o d .. 5

2.1.3 Integer Programming C o m p lex ity ... 7

2.1.4 Approximation A lgorithm s.. 8

2.1.5 Exact Solvers for Integer Programs .. 9

2.1.6 Gomory C u t s .. 12

2.1.7 Pseudo-Boolean S o lv e r s ... 14

2.2 Heuristics for Integer Program s.. 15

2.2.1 Feasibility H eu ris tics .. 15

2.2.2 Pivot and Complement and Its S uccesso rs.. 15

2.2.3 Octahedral Neighbourhood E n u m e ra tio n .. 17

2.2.4 Pivot, Cut, and D i v e .. 18

2.2.5 Convexity Cut .. 20

2.2.6 Vertex Cut ... 20

2.2.7 Tabu Search in Solving Integer P ro g ra m s .. 20

2.2.8 Heuristics Based on Interior Path ... 21

2.2.9 Feasibility P u m p ... 22

2.2.10 Improvement H e u r is t ic s ... 22

2.2.11 Local B ra n c h in g ... 23

2.2.12 Relaxation Induced Neighbourhood S e a r c h .. 24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Benchmark Integer Program In s ta n c e s ... 25

2.3.1 Existing Library of Integer Program Instances... 25

2.3.2 Generation o f Hard Integer Program Instances .. 26

3 Pivot and Gomory Cut 29

3.1 Pivot and C o m p le m e n t.. 29

3.2 Pivot and Gomory C u t ... 34

3.3 Heuristic Performance E v a lu a tio n .. 45

3.4 PGC Performance Evaluation .. 46

3.4.1 P G C o versus P G C i versus P C ... 46

3.4.2 P G C i versus Feasibility P u m p ... 48

3.4.3 PG C i versus ILOGCplex 9.13 .. 49

3.4.4 PGC versus a Pseudo-Boolean S o lv e r .. 51

3.4.5 Performance on Randomly Generated In stances.. 51

3.4.6 Weakness of P G C ... 54

3.5 Complexity o f P G C .. 54

4 Distance Induced Neighbourhood Search 56

4.1 Distance Induced Neighbourhood Search ... 57

4.2 DINS Performance E valu a tio n ... 62

4.2.1 DINS Performance Evaluation from the Presumably Poor Solutions 63

4.2.2 D IN S Performance Evaluation from the Presumably Good Solutions . . . 6 6

4.2.3 D IN S Neighbourhoods versus RIN S N eighbourhoods........................ 73

4.2.4 Verification o f Intuitions used in D I N S ... 74

4.2.5 Performance on Randomly Generated Instances.. 75

5 Neighbourhood Pivot and Gomory Cut 79

5.1 Neighbourhood Pivot and Gomory C u t ... 80

5.2 NPGC Performance E v a lu a tio n ... 82

6 Generating Hard Integer Program Instances 88

6.1 Cornuejols-Dawande Feasibility-Hard In stan ces ... 8 8

6.2 Constrained W illiams’s Market-Sharing P ro b lem s... 91

6.2.1 The Expected Number of S o lu t io n s .. 93

6.2.2 Probability of Generating Infeasible Instances... 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Solver Performance on Constrained Market-Sharing In s ta n c e s 97

7 Conclusions 101

Bibliography 105

Index 109

A Appendix: Pseudo-Code of PGC 110

B Appendix: Experim ental Results 118

B .l Benchmark In s ta n c e s .. 118

B.2 PGC Experimental R e s u lts .. 123

B.3 DINS Experimental R e s u l t s ... 140

B.4 NPGC Experimental R e su lts ... 152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3 .1 P C versus P G C o on benchmark in s ta n c e s ... 4 7

3.2 PC versus PG Ci on benchmark in s ta n c e s ... 47

3.3 P G C o versus P G C i on benchmark instances .. 48

3.4 FP versus PG C i on benchmark in s ta n c e s ... 49

3.5 Cplex-D versus PG C i on benchmark in s ta n c e s ... 50

3.6 Cplex-F versus PG C i on benchmark instances ... 50

3.7 PBS4 versus PG Ci on benchmark in stan ces... 51

3.8 Probability measures for the Cornuejols-Dawande feasibility-hard instances 52

4.1 Cplex-D versus DINS on benchmark instances from poor solutions 64

4.2 LB versus DINS on benchmark instances from poor s o lu tio n s 65

4.3 RINS versus DINS on benchmark instances from poor so lu tions............................... 65

4.4 The average and the standard deviation of percentage of gaps obtained by Cplex-D,

LB, R IN S, and DINS on benchmark instances from poor s o lu t io n s 65

4.5 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, RINS, and DINS on benchmark instances from poor solutions . . . 6 6

4.6 Cplex-D versus DINS on benchmark instances from good s o lu t io n s 69

4.7 LB versus DINS on benchmark instances from good so lu tio n s 69

4.8 RINS versus DINS on benchmark instances from good solutions 69

4.9 The average and the standard deviation of percentage of gaps obtained by Cplex-D,

LB, R IN S, and DINS on benchmark instances from good s o lu tio n s 70

4.10 The average and the standard deviation o f percentage of improvements obtained by

Cplex-D, LB, RINS, and DINS on benchmark instances from good solutions . . . 70

4.11 Cplex-D versus DINS on Cornuejols-Dawande optimality-hard in s ta n c e s 75

4.12 LB versus DINS on Cornuejols-Dawande optimality-hard in s ta n c e s 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.13 RINS versus DINS on Cornuejols-Dawande optimality-hard instances.................... 76

4.14 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, R IN S, and DINS on Cornuejols-Dawande optimality-hard instances 76

4.15 Cplex-D versus DINS on constrained market-sharing instances................................. 77

4.16 LB versus DINS on constrained market-sharing instances .. 78

4.17 RINS versus DINS on constrained market-sharing in s ta n c e s 78

4.18 The average and the standard deviation of percentage of improvements obtained by

Cplex-D, LB, RIN S, and DINS on constrained market-sharing in s ta n c e s 78

5.1 Cplex-D versus NPGC on benchmark in s tan ces .. 85

5.2 LB versus NPGC on benchmark instances.. 8 6

5.3 RINS versus NPGC on benchmark in s ta n c e s ... 8 6

5.4 The average and the standard deviation of percentage o f gaps obtained by Cplex-D,

LB, RINS, and NPGC on benchmark in stances.. 8 6

6.1 Probability measures for the Cornuejols-Dawande feasibility-hard instances 89

6.2 Probability measures for the constrained market-sharing in s ta n c e s 95

6.3 Different solvers on constrained market-sharing instances in finding a feasible solution 98

B .l All mixed integer program instances from MIPLIB 2003 ... 118

B.2 All mixed integer program instances from DEIS operations research library 121

B.3 15 new 0-1 mixed integer program instances used in [2 9] ... 1 2 2

B.4 PC, PGCo, and PG C i on benchmark in s tan ces .. 123

B.5 FP and PG C i on benchmark in s ta n c e s ... 126

B . 6 GLPK 4.0 versus Cplex 9.13 linear programming so lv e rs ... 129

B.7 Cplex-D, Cplex-F, and PG C i on benchmark in s ta n c e s .. 131

B . 8 PBS4 and PG C i on benchmark in s tan ces ... 134

B.9 Different solvers on Cornuejols-Dawande feasibility model in s ta n c e s 134

B.10 Different solvers on constrained market-sharing instances generated with k = 2.0 . 135

B .l 1 Different solvers on constrained market-sharing instances generated with k = 1.5 . 137

B.12 Different solvers on constrained market-sharing instances generated with k = 1.3 . 139

B.13 Percentage of gaps obtained by Cplex-D, LB, RINS and DINS in one CPU-hour

on benchmark instances from poor so lu tions.. 140

B.14 Cplex-D, LB, RIN S, and DINS on Cornuejols-Dawande optimality-hard instances 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.15 Cplex-D, LB, RIN S, and D IN S on pseudo-randomly generated constrained market-

sharing instances with k = 2 . 0 ... 146

B .l 6 Cplex-D, LB, RIN S, and D IN S on pseudo-randomly generated constrained market-

sharing instances with k — 1 . 5 ... 147

B.17 Cplex-D, LB, R IN S, andD IN S on pseudo-randomly generated constrained market-

sharing instances with k = 1 . 3 ... 149

B.18 RINS neighbourhoods versus DINS neighbourhoods.. 150

B.19 Percentage of gaps obtained by Cplex-D, LB , R IN S, and NPGC in one CPU-hour

on benchmark instances... 152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 A linear program instance.. 6

2.2 A simplex ta b le a u ... 6

2.3 A dictionary representation ... 7

2.4 Algorithm branch-and-bound.. 10

2.5 Algorithm branch-and-cut ... 11

2.6 Illustration of K and K * in two-dimension ... 17

2.7 A lg o rtih m L B .. 24

2.8 Algorithm R I N S ... 25

3.1 Algorithms P G C o and P G C i .. 37

3.2 Illustration of PG C i on a small ex am p le .. 43

4.1 Algorithm D I N S ... 61

4.2 Average percentage of gap on the small spread instances from poor solutions . . . 67

4.3 Average percentage of gap on the medium spread instances from poor solutions . . 67

4.4 Average percentage of gap on the large spread instances from poor solutions 6 8

4.5 Average percentage of gap on the small spread instances from good solutions . . . 71

4.6 Average percentage of gap on the medium spread instances from good solutions . . 72

4.7 Average percentage of gap on the large spread instances from good solutions 72

5.1 Algorithm N P G C ... 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Many real world optimization problems can be formulated as integer programs. Some such problems

include airline crew scheduling, vehicle routing, and production planning. Consider for example the

airline crew scheduling problem described by Hoffman and Padberg [44],

In airline crew scheduling, the problem is to determine the schedules for the crews from the

given schedules of flights. In finding a feasible schedule, one has to confirm all the regulations and

requirements set by the aviation administration, the union, and the company. Satisfying these re

quirements a feasible rotation for a flight is identified as the sequence o f flight segments starting and

stopping at particular base locations. For each o f the feasible rotations, there is an associated cost.

Hoffman and Padberg [44] showed that given a set o f feasible rotations, the problem of minimizing

the cost while finding a collection o f rotations that cover each flight segment by exactly one rotation

can be formulated as the following integer programming problem:

min £ " = i cj x j

S t. s y , dijXj = 1 i — 1, ...,77l,

ary e {0 , 1 } j — 1 , ...,n ,

where n is the number o f considered feasible rotations, m is the number of flight segments, atj is

one if flight segment i is covered by rotation j and zero otherwise, Cj is the cost associated with

rotation j , and Xj is a binary variable which is one if rotation j is selected and zero otherwise.

Observing the practical importance o f integer programs, scientists have developed many solution

methods for these problems. Exact methods are devised to find an optimal solution, possibly with

a certificate of optimality. Heuristic methods are devised to find the best possible solution that can

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be found with some reasonable amount of time. Heuristic methods give no guarantee of finding a

feasible solution, and there is no guarantee that any found feasible solution will be optimal.

Practitioners may not be interested in exact methods mainly for two reasons. First, the known

exact methods may be computationally inadequate within the available computation time for the

given size of problems. Second, finding an optimal solution may not deserve the effort required to

find it. In such cases, practitioners look for heuristic methods.

Roughly the existing heuristics for integer programs can be categorized into two classes. Fea

sibility heuristics try only to find a feasible solution. Improvement heuristics try to find improved

feasible solutions from a known feasible solution.

This thesis focuses on designing heuristic methods for integer programs and on generating hard

integer program instances that can be used as benchmarks for evaluating the performance of integer

program heuristics. This thesis has four major contributions.

The first contribution is a new feasibility heuristic P i v o t a n d G o m o r y C u t (PGC). This

heuristic integrates Gomory cuts [41] into a bounded variable revised simplex pivoting framework

similar to that used in P i v o t a n d C o m p l e m e n t (PC) heuristic o f Balas and Martin [13].

The second contribution is a new improvement heuristic DISTANCE INDUCED NEIGHBOUR

HOOD SEARCH (D IN S). This heuristic performs neighbourhood search at different nodes o f the

mixed integer program search tree where the mixed integer program search tree is the tree generated

by either a branch-and-bound or a branch-and-cut solver. D IN S defines neighbourhoods by model

ing a distance metric between the current mixed integer feasible solution and the relaxation solution

at the node o f the mixed integer program search tree.

The third contribution is a new ‘find-and-improve’ type heuristic N E IG H B O U R H O O D P IV O T

a n d G o m o r y C u t (NPGC). This heuristic, which is an extension of PGC, repeatedly seeks a fea

sible solution and tries to improve it by incorporating neighbourhood search. NPGC uses Gomory

cuts to define the neighbourhoods, searches the neighbourhoods for feasible solutions employing an

exact solver, and improves any found feasible solution b y a p p ly in g the L O C A L B R A N C H IN G (LB)

heuristic of Fischetti and Lodi [35].

The fourth contribution is a new class of 0-1 integer program instances for which finding even a

feasible solution is hard. This class o f instances originates from a modified form of Williams’s [73]

market-sharing problem.

As a final remark, Gomory cuts, although regarded since their introduction as theoretically sig-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nificant, were not recognized for their practical importance until the 1990s, when Balas, Ceria,

Comuejols and Natraj used Gomory cuts to strengthen branch-and-bound solvers [11, 26]. By in

troducing new successful mixed integer programming heuristics PGC and NPGC, this thesis show

that Gomory cuts can also be used to design effective integer programming heuristics.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Integer Programs

An integer program is a problem of the form

min{cx | x € X } such that X = {x | A x > b ,x € Z " },

where Z " is the set of n-dimensional vectors o f nonnegative integers. In this definition, c is a row

vector o f dimension n , x is a column vector of n variables, A is an m x n matrix, and b is a column

vector o f dimension m . Usually cx is called the objective function or cost function and A x > b is

called the set o f constraints.

A 0-1 integer program is an integer program where all the variables are constrained to be either

zero or one. A mixed integer program is an integer program where for some variables, the constraint

that the variable is integer is relaxed to allow the variable to be real. A 0-1 mixed integer program is

a mixed integer program where all the integer variables are constrained to be either zero or one.

In this chapter, we review the relevant background material on integer programming. For more

on integer programming, see the book ‘Integer and Combinatorial Optimization’ by Nemhauser

and Wolsey [62], ‘Theory o f Linear and Integer Programming’ by Schrijver [67], ‘Combinatorial

Optimization’ by Cook, Cunningham, Pulleyblank, and Schrijver [25], ‘Integer Programming’ by

Wolsey [74].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 The Linear Programming Relaxation

The linear programming relaxation o f a given integer program is a program where for the variables,

the constraint that the variable can only take integer values in a given interval is relaxed to allow the

variable to take real values in that interval.

The linear programming relaxation of the integer program

min{cx | x G X } such that X = {x | A x > 6 , x G Z " }

is the problem

m injcx | x 6 X } such th a tX = {x | A x > 6 , x G R " } ,

where Z " and R ” are the sets o f n-dimensional vectors o f nonnegative integers and nonnegative

real numbers respectively.

Similarly, the linear programming relaxation of the 0-1 integer program

min{cx | x G X } such that X = {x \ A x > 6 , x G {0,1}"}

is the problem

min{cx | x G X } such that X = {x | A x > 6 ,0 < x < 1}.

Mixed integer programs also have corresponding linear programming relaxations.

The solution space o f an integer program is a subset o f the solution space o f its linear program

ming relaxation. Therefore, the usual starting point to solve an integer program is to solve its linear

programming relaxation. In the best case, the optimal solution of the linear programming relaxation

is integer and so an optimal solution to the integer program.

2.1.2 The Simplex Method

The simplex method, due to Dantzig [30], is a popular method for solving linear programming

problems.

In its first step, the simplex method introduces the so-called surplus variables to convert the

given constraints in the inequality form to the form of equations. For example, the simplex method

introduces a surplus variable t/j for each constraint A{X > bi in the problem

min{cx | x G X } such that X = {x | AiX > bi Vi G {1 • • -m }, x € R " }.

The modified problem has the form

min{cx | x G X } such that X = {x | A{X — y, = 6 j Vi G {1 ■ • m }, x G R " , j/i > 0}.

If the given problem in inequality form has n variables and m constraints, the modified problem

has n + m variables. The basic variables are the m variables corresponding to any chosen m

linearly independent columns. The nonbasic variables are the remaining n variables. A basis is

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the submatrix in the constraint matrix o f the modified problem considering the coefficient of basic

variables. The solution comprising the value of basic variables, evaluated by setting the nonbasic

variables to zero1, is a basic solution. If a basic solution is feasible for the given linear program, it

is called a basic feasible solution.

After introducing the surplus variables, the simplex method finds a basic feasible solution to start

with. It then generates successive basic feasible solutions by the so-called pivoting operation until

it finds a basic feasible solution with the optimal objective value. Pivoting is an operation where a

nonbasic variable becomes a basic variable and vice versa. At each step, the simplex method chooses

the pivoting nonbasic and basic variables with the aim of improving the objective value. For each

basic feasible solution, a simplex tableau is used to represent the information necessary to carry out

the next pivoting operation. For example, for the linear program instance shown in Figure 2.1,

min x \ + x 2

such that
x i + 2x2 + x 3 = 4
3xi - 2 x 2 —£ 4 = 9
X\jX2yX3jX4 ^ 9

Figure 2.1: A linear program instance

a corresponding simplex tableau is shown in Figure 2.2.

x\ x2 xz X4

1 1 0 0 0
1 2 1 0 4

-3 2 0 1 - 9

Figure 2.2: A simplex tableau considering X3 and X4 as the basic variables. The variables x i , X2 , X3 ,
X4 index the columns. The top row corresponds to the objective function; the remaining rows show
the coefficients o f the variables in the constraint matrix where the coefficients of basic variables
form an identity matrix. The rightmost column represents the value of the basic variables and the
corresponding objective value.

People also use the so-called dictionary to represent the information of a simplex tableau. Figure 2.3

shows a dictionary representation of the simplex tableau shown in Figure 2.2.

The simplex method, when implemented so that the entire tableau is updated after each pivoting

operation, is known as the standard simplex method. Generating successive basic feasible solutions

1 Nonbasic variables are set to either at its lower bound or at its upper bound. In both cases we can substitute the variables
with new variables in such way that the new variables have value zero. If a nonbasic variable Xi is set to its nonzero lower
bound If, then we can replace Xj by U + x ' and thus x ' is set to zero. Similarly, if a nonbasic variable x , is set to its finite
upper bound ti ,, then we can replace x, by U{ — x'{ and thus x ' is set to zero.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actually requires only a small part o f the simplex tableau. The simplex method, when implemented

so that this small part of the tableau required for pivoting is generated from the original data, is

known as the revised simplex method. The revised simplex method, when implemented to handle

variables with explicit bounds instead of only nonnegative variables, is known as the bounded vari

able revised simplex method. For a detailed description of these three methods, see the book ‘Linear

Programming’ by Chvatal [23].

x i + x 2 = C
4 - x i - 2x2 = X3

—9 + 3xi — 2x2 = X4

Figure 2.3: A dictionary considering £ 3 and £ 4 as the basic variables. C denotes the objective
function.

The simplex method, for the existing pivot rules, takes an exponential number o f pivot steps, in

terms of number of variables, in some instances. Klee and Minty [51] showed this for Dantzig’s

pivot rule; Avis and Chvatal [6] showed for Bland’s pivot rule; Jeroslow [46] showed for the best

improvement pivot rule; Goldfarb and Sit [39] showed for the steepest edge rule. In spite o f this

negative behaviour, it is the simplicity and practical success o f the simplex method that have estab

lished it as a popular method for linear programming. Khachiyan’s ellipsoid method [49, 50] is the

first method introduced to solve linear programs in polynomial time. But it is Karmarkar’s interior

point method [47] that provides the practical success with the polynomial complexity. This practical

success has come far later from the time it was introduced by Karmarkar and mostly due to Mehrotra

[59]. At present commercial optimization software such as Cplex and Xpress come with both the

simplex method and the interior point method for solving linear programs.

2.1.3 Integer Programming Complexity

Following Karp’s [48] reduction from a satisfiability problem to an integer program, in this section,

we see that integer programs are NP-hard in general. It is immediate if we see that the decision

problem corresponding to an integer program lies in the class of NP-complete problems.

The decision problem corresponding to an integer program is as follows:

Instance: A set o f n integer variables x = { x i , x 2 a set of m linear inequalities A x > b,

an objective function cx and an integer v.

Query : Is there a feasible solution for which the objective value is at most v l

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The satisfiability problem is NP-complete [36], and it has the following form.

Instance : A set of n boolean variables { x i, a:2, - - -, x n) and a set of m clauses

{C i, C 2 , ■ ■ ■, Cm} composed of boolean variables.

Query : Is there a truth assignment, a set o f values for the variables, that satisfies all the clauses?

The decision version o f integer program is in the class of NP. Karp [48], in 1972, shows that

there is a polynomial time reduction from any satisfiability instance to a decision version of integer

program instance. The reduction goes as follows. For each variable Xi in the satisfiability instance,

there is a corresponding variable Xi in the decision version of integer program instance. The decision

version of integer program instance has the following set o f linear constraints.

(i) X{ S {0 , 1 } for i = 1 . . . n.

(ii) For each clause C j o f the satisfiability instance, suppose Oj and X j are the set o f original

and complemented variables respectively. Then the corresponding constraint in the decision version

of integer program is

x i + ~ x i) — 1-

The objective function can be an arbitrary function of the variables, for example, 5Z"=i x «-

And v has to be set considering the objective function so that any truth assignment satisfying the

satisfiability problem provides a corresponding solution for the reduced decision version o f integer

program and vice versa. For example, v can be set to n for the objective function Xj.

Therefore, following the existence in the class o f NP and the reduction shown by Karp, the

decision problem corresponding to an integer program is NP-complete.

The integer program instances obtained from satisfiability instances are 0-1 integer programs,

which constitute a small subset of all possible integer programming instances. But, as we have seen

that some of the integer programs are NP-complete, we can say that integer programs are NP-hard

to solve in general.

2.1.4 Approximation Algorithms

An approximation algorithm finds a near-optimal solution of an optimization problem within a guar

anteed factor of optimal solution in polynomial time where the polynomial is bounded by the size

of input instance and a fixed error.

Whenever an optimization problem occurs for which finding an optimal solution is NP-hard,

one may consider looking for an approximation algorithm. However, not every NP-hard problem

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has an approximation algorithm. Some o f these problems such as the knapsack problem, the vertex

cover problem have approximation algorithms, while some such as the general traveling salesman

problem, not restricted to maintain triangular inequality property, cannot have an approximation

algorithm [6 8]. Interestingly, we can model problems of both categories as integer programs.

Therefore, in general, integer programs cannot have an approximation algorithm unless P=NP

since otherwise the general traveling salesman problem would have an approximation algorithm.

And if the general traveling salesman problem has an approximation algorithm, then there will be

a polynomial time algorithm for finding a Hamiltonian cycle of a graph [6 8], which is known to be

NP-complete [36].

2.1.5 Exact Solvers for Integer Programs

A complete enumeration o f the solution space is a straightforward way to find the optimal solu

tion of an integer program, but it is computationally impractical even for a moderate size problem.

For example, an integer program with 100 variables, where each variable has two possible integer

values, has an enumeration space o f size 2100. For such problems some bound information on the

objective function can be useful in the process of enumeration. For an integer program where an

objective function has to be minimized, a feasible solution provides an upper bound for the ob

jective function, and the optimal solution of a relaxation of the integer program provides a lower

bound for the objective function. Branch-and-bound algorithms use this bound information to prune

some branches o f the enumeration tree without exploration. In 1960 Land and Doig [52] presented

a branch-and-bound algorithm for integer programming. Figure 2.4 gives a description o f a stan

dard branch-and-bound algorithm based on the linear programming relaxation o f integer program.

This pseudo-code replicates the flowchart given by Wolsey [74] describing a branch-and-bound al

gorithm.

In the pseudo-code, S l denotes the i-th node of the branch-and-bound tree, and V 1 denotes

the formulation of the integer program at S l . Therefore, <S° denotes the root node o f the branch-

and-bound tree, and V ° denotes the initial formulation of the given integer program P . The only

difference between P ° and V 1 is that the lower and upper bounds for some o f the variables in V 1

are different from that in P °. A node list C stores the nodes S . Z u and Z\ denote the current upper

bound and current lower bound o f the objective function respectively. The variable Xip represents

the best feasible solution obtained so far.

Preprocessing the given problem, applying effective heuristics at different nodes o f the tree,

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

choosing different nodes to explore at Step 3, and choosing different variables to branch at Step 12

affect the efficiency of this standard branch-and-bound algorithm.

Algorithm branch-and-bound
IN P U T : an integer program P with formulation V °
O u t p u t : an optimal solution Xjp of P if exists, else null.

1 . create node S ° with formulation V ° and put it in £ ; Z u < -oo; Xip <— null.
2. while (£ ^ <j>)
3. choose a node S 1 from the list £ and delete the node from £ .
4. formulate the linear programming relaxation £{J>t) of V x■
5. solve £ { V {).
6 . if (£ { V Z) has a solution)
7. x* <- the solution of £ { V l)\ Zi <- objective value corresponding to x* .
8 . if (Zu > Z t)
9. if (x * is a feasible solution for P)
10. Z u i— Zl \ Xip ^— X*.
1 1 . else
1 2 . choose a variable i which has fractional value in x* .
13. create two new nodes by formulating two subproblems

corresponding to Xj < |x*J andx j > [x?].
14. add the two new nodes to the list £.
15. return Xjp.

Figure 2.4: Algorithm branch-and-bound, a pseudo-code version of the algorithm presented by
Wolsey [74].

Branch-and-bound works better if the description of the underlying feasible region correspond

ing to the linear programming relaxation of integer program is made tighter. The concept o f generat

ing cutting planes comes from this viewpoint. A cutting plane is an inequality that is satisfied by all

the feasible solutions of the integer program but cuts off some region of the underlying feasible re

gion corresponding to the linear programming relaxation of integer program. If a branch-and-bound

algorithm generates cutting planes at the nodes o f a branch-and-bound tree, then it is known as a

branch-and-cut algorithm. In 1983 Crowder, Johnson, and Padberg [28] presented a branch-and-cut

algorithm for solving 0 - 1 integer programs.

Adding a different number of cuts at a node and selecting different nodes to generate cuts give

different implementations o f a branch-and-cut algorithm. Using the notations used in the branch-

and-bound pseudo-code, Figure 2.5 shows a possible way o f implementing the branch-and-cut algo

rithm. This pseudo-code replicates the flowchart given by Wolsey [74] describing a branch-and-cut

algorithm.

There are many ways to generate cutting planes for integer programs. In this thesis, we use the

mixed integer cuts o f Gomory [41] since we can generate these cuts easily from the simplex tableau.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We see a brief description of Gomory mixed integer cuts in the next section. There are many other

cuts that have been studied in the context o f solving integer programs, such as the fractional cuts

of Gomory [41], the Chvatal-Gomory cuts of Chvatal [21], the convexity cuts of Balas [7], the

disjunctive cuts o f Balas [8], and the lift-and-project cuts o f Balas, Ceria, and Comuejols [9,10].

Algorithm branch-and-cut
I n p u t : an integer program P with formulation V °
O u t p u t : an optimal solution x ,p o f P if exists, else null.

1. create node <S° with formulation V ° and put it in £ ; Z u «- oo; x ip <— null.
2 . while (C / <f>)
3. choose a node S l from the list £ and delete the node from £ .
4. formulate the linear programming relaxation £ (P ‘) of V '.
5. isFeasibleLP«— true; generateCut<— true.
6 . repeat
7. solve £ (P ’).
8 . if (£ (P *) has a feasible solution)
9. x* <— the solution o f £ (V x).
1 0 . try to generate a cut that cut off x*.
1 1 . if(a cut is found)
12. add this cut to £ (P *) and consider the modified C(V') as £ (V') .
13. else generateCut -t— false.
14. else isFeasibleLP <— false.
15. until (not generateCut or not isFeasibleLP)
16. if (isFeasibleLP)
17. Zi <— the objective value corresponding to x*.
18. if (Zu > Zi)
19. if (x* is a feasible solution for P)
20. Z u Zi\ Xip x*.
2 1 . else
2 2 . choose a variable i which has fractional value in x* .
23. create two new nodes by formulating two subproblems

corresponding to Xj < [x*J an d x j > |"x*"|.
24. add the two new nodes to the list £ .
25. return Xip.

Figure 2.5: Algorithm branch-and-cut, a pseudo-code version o f the algorithm presented by Wolsey

Other than branch-and-bound and branch-and-cut algorithms, there are other common tech

niques such as Lagrangian relaxation, column generation [74] that make solving integer programs

with some particular structure easier. Generalized basis reduction, proposed by Lovasz and Scarf

[53], is another method for solving integer programs. Cook, Rutherford, Scarf, and Shallcross [24],

Wang [70], and Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1] have successfully applied this

method on the problems with less than 100 variables. The integral basis method is an exact algorithm

introduced by Haus, Koppe, and Weismantel [42] that requires an integer program feasible solution

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to start with. It has not received much attention in practice because o f its limited experimental

analysis.

2.1.6 Gomory Cuts

In 1960 Gomory introduced mixed integer cuts [41], now commonly referred to as Gomory cuts.

To write the formula for generating Gomory cuts, we define some notation. Let x* be a basic

feasible solution o f the linear programming relaxation C(P) of a given mixed integer program P.

Also assume that a;* is not a feasible solution for P. Let B and N B be the respective indices of

basic and non-basic variables of x* and let j be the index of a basic integer-constrained variable

which has a non-integer value in x*. Let the row corresponding to Xj in the simplex tableau have

the form x * = X j + Y L k e N B a j k X k . Let f k - ajk - [aj kJ, f j = x* - |_z‘ J, and let N ^ N c be

the indices of the respective integer-constrained non-basic and continuous non-basic variables of x*.

Then the Gomory cut for x j with respect to P and the given tableau is the inequality

E /«+ E 4̂ *.+ E E a />•
k e a t /a k e N j A k e n c a J i k e n c a
fk < f j f k > f j ajk < 0 ajk > 0

We now give Gomory’s proof that this cutting plane is a valid inequality for P and cuts off the

basic feasible solution x* .

The selected row x*j = x j + Yl keNB ajkXk corresponding to the integer-constrained variable

Xj is equivalent to Xj — Xj + J2k^NB a j k (~ x k). Since Xj is integer-constrained,

0 — x j + Sfcgjvs a j k (~ x k) (jnod 1).

Since x* is not an integer, we can reduce it to its smallest possible positive fractional value f j

by adding the congruence relation 0 = — |_a^J (m od 1) to the previous congruence relation. Thus,

0 = f j + £ fc6jvB aj k (~ x k) (m od 1).

Alternatively,

£ fc 6 ATB a j k x k = f j (m od 1).

The rest o f the proof refers to this congruence relation. If the left-hand side o f the congruence

relation is positive then the left-hand side differs from f j by an integer amount and so is equal to

f j + t for some nonnegative integer t. Thus,

£ * e N B a j k X k > f j -

Since all the variables x k are constrained to be nonnegative,

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SfcgiVB+ aj k x k > f j ,

where N B + = {fc|aj* > 0, Vfc}. On the other hand, if the left-hand side of the congruence relation

is negative, then the left-hand side is equal to —t + f j for some positive integer t . Thus,

£*€iVB aj kx k < — 1 + f j -

Since all the variables X* are constrained to be nonnegative,

S fceN B - aj kx k < — 1 + f j ,

where N B ~ = {A:|ajfc < 0, V/c}. Multiplying the above inequality by the negative number

/> / (—! + f j) we get

SfceiVB- (- l +f j)aj kx k > f j -

Since f j / 0, the left-hand side of the congruence relation is either positive or negative. There

fore, between the two inequalities obtained by considering the left-hand side of the congruence

relation as positive and negative, one has to be valid. Since, in any feasible solution the left-hand

side of both the inequalities is nonnegative, we have

S*€JVB+ aj kx k + J2 k£NB~ (- l +f j)aj k x k > f j -

Thus this inequality is satisfied by every P-feasible solution. And at the same time, it cuts off the

current basic feasible solution x* o f C{P) , since, at x*, the left-hand side evaluates to zero which is

smaller than f j .

Though this is a valid cut, we can strengthen it by reducing the coefficients o f variables in the

inequality. Gomory does this for the coefficients of integer-constrained variables. Adding or sub

tracting an integer multiple o f an integer-constrained variable to the left-hand side o f the congruence

relation yields another valid relation. Therefore, there is the option of choosing which integer-

constrained variable indices should be put in the set N B + and which in the set N B ~ . If we put k

in the set N B +, the smallest possible coefficient in the cut for x* is fk- On the contrary, if we put it

in the set N B ~ , the smallest possible coefficient for x* is (— 1 + f k) . Therefore, k is put

in N B + if

f k < (= & j r) (- l + fk)

equivalent to,

f k (l - f j) < f j { 1 - fk)

equivalent to,

f k < f j -

This choice of putting integer-constrained variables in the set N B + and N B ~ yields the Go

mory mixed integer cut mentioned at the beginning of this section.

A cutting plane algorithm tries to find the optimal solution of a given mixed integer program.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It does so by repeatedly solving the linear programming relaxation after the addition of each new

cutting plane. Gomory [41] presented an appealing theoretical result by showing that the cutting

plane algorithm, using his mixed integer cuts, can find an optimal solution in a finite number of

steps if the objective function is integer valued. It still remains open whether this also holds for a

real valued objective function [74].

Gomory cuts, although regarded since their introduction as theoretically significant, were not

successful in practice until the 1990s [73,63, 65,64]. In 1996, Balas, Ceria, Cornuejols, and Natraj

showed the effectiveness of Gomory cuts as a computational tool by using them in a branch-and-cut

framework. Many researchers have also tried to strengthen Gomory cuts so that comparing to the

Gomory cut, the obtained new cut is further away from the basic feasible solution x* of £ (P) , and

thus cuts off more region from C(P) along with x *. Anderson, Cornuejols, and Li [5] and Balas and

Perregaard [15] recently show two different ways of strengthening Gomory cuts.

2.1.7 Pseudo-Boolean Solvers

Integer programs, especially 0-1 integer programs, have received significant attention of the SAT

community in last decade. This is mostly because of the introduction o f some powerful SAT solvers

[75, 57, 72, 60] and the existence o f a reduction from a satisfiability instance to an equivalent 0-1

integer program. A 0-1 inequality is often referred as a pseudo-boolean constraint, and so a 0-

1 integer program as a pseudo-boolean problem. Researchers have tried to use the powerful SAT

solvers to solve the pseudo-boolean problems. Though a CNF clause is equivalent to a single pseudo-

boolean constraint, a pseudo-boolean constraint may in some cases correspond to an exponential

number o f CNF clauses [71,4]. Therefore, researchers have tried to implement the SAT solvers to

handle pseudo-boolean constraints directly. This gives rise to a number o f pseudo-boolean solvers

[69, 3 ,1 7 ,4 ,2 0 ,6 6] for 0-1 integer programs. As a representative o f state-of-the-art pseudo boolean

solvers, we choose PBS Version 4.0 implemented by Aloul and Al-Rawi [2] to compare against

other 0-1 integer program solvers. PBS 4.0 has become one o f the best pseudo-boolean solver in

the SAT solver competition held in SAT-2005, the eighth international conference on theory and

applications o f satisfiability testing. PBS4 is based on Zchaff2004 [56], an implementation of Chaff

algorithm [60] for satisfiability instances, and the original PBS solver [3].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Heuristics for Integer Programs

Recall from Chapter 1 that we can categorize heuristics into two classes, namely feasibility heuris

tics and improvement heuristics. We review the main concepts and features o f previously known

heuristics in the next several sections.

2.2.1 Feasibility Heuristics

We consider the previously known heuristics, designed to find a feasible solution in their first phase,

as the feasibility heuristics. Some o f these heuristics have a second phase, namely improvement

phase, which tries to improve the solution found in the first phase. We review existing feasibility

heuristics in the next several sections.

2.2.2 Pivot and Complement and Its Successors

In 1980, Balas and Martin proposed the P IV O T A N D C O M P L E M E N T (PC) [13] heuristic for 0-1

integer programs.

PC consists o f two subroutines. The feasibility subroutine tries to find a feasible solution for the

problem instance. The improvement subroutine applies a local search to improve the objective value

o f the solution found in the feasibility subroutine.

The feasibility subroutine is based on the fact that a feasible simplex tableau with all the 0-1

variables out o f the basis gives a feasible solution for the integer program, since a 0 - 1 nonbasic

variable has value 0 or value 1. With the aim of obtaining such a feasible simplex tableau, the

heuristic starts with the optimal simplex tableau for the linear programming relaxation o f the given

0 - 1 integer program and then performs a sequence of pivoting operations to make the 0 - 1 variables

nonbasic. The feasibility subroutine consists o f two phases. The search phase tries to minimize the

measure of integer infeasibility by using two type o f pivots. If this phase fails to find a feasible 0-1

solution, we say that the heuristic has reached a local minima. The restart phase tries to escape the

local minima by using a third type o f pivot and complementing one or more nonbasic 0 - 1 variables,

where complementing a 0-1 variable means switching the value of the variable from v to 1 — v. If

the restart phase escapes the local minima, execution returns to the search phase.

The improvement subroutine tries to find a solution that yields a better objective value by com

plementing one or more 0 - 1 variables.

In 1986, Balas and Martin generalized PC to allow it to solve mixed integer programs. They

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

named this heuristic P ivot AND SHIFT (PS) [14]. In PS, the major difference from PC is a re

placement of the operation o f complementing a 0 - 1 variable by the operation of shifting an integer-

constrained variable by plus or minus one from the current value. In the corresponding new pivoting

rule, integer-constrained variables replace 0-1 variables. The major drawback of both PC and PS is

that they fail to produce a feasible solution for a large number of instances.

In 1994, Lpkketangen, Jomsten, and Storpy [55] applied a tabu search mechanism in the PC

framework. They do not use the third type of pivot o f PC when the search reaches a local min

ima; rather they use some tabu conditions to escape the local minima. This strategy can also search

beyond the first feasible solution found with the motive of finding improved feasible solution. In

the improvement phase, they consider complementing only one variable at a time by incorporating

some tabu conditions to escape the local minima. Lpkketangen et al. [55] showed that this tabu

search based method performed better than PC. However, they tested their algorithm only on small

multidimensional knapsack problems; as such it is not clear whether they will achieve similar per

formance on other classes of 0 - 1 integer programs.

In 2004, Balas, Schmieta, and Wallace [16] developed a new implementation of PIVOT AND

S h i f t (P S [2 0 0 4]) using the commercial linear programming and mixed integer programming

solver Xpress Version-14.2. This heuristic starts with a sequence of pivoting with the same aims

o f the pivot operations o f PC. When reaching a local minima or exceeding the time limit for the

pivots, the heuristic defines a neighbourhood around the local minima and applies the Xpress mixed

integer programming solver on the problem defining the neighbourhood. To define the aforemen

tioned neighbourhood, they add the following constraints to the current problem.

^->Xj£SXj ~ 1 ^ J2 Xje S Xi - S x

where S = { i , € x% | m in {x* — [x jj , [x*] — x*} < a } , x* is the current basic solution of

simplex tableau, and a is a small value, namely a = 0 .2 . x* denotes the nearest integer value o f Xj

and x% denotes the set of variables constrained to be integer in the given integer program.

If either the sequence of pivoting or the exploration of the aforementioned neighbourhood pro

duces a solution x*, execution switches to the improvement phase; otherwise, the heuristic calls

the Xpress mixed integer programming solver to find a feasible solution and swithces to the im

provement phase if Xpress finds a solution. If Xpress fails to find a solution, the heuristic aborts

its execution. The improvement phase first tries to improve the found solution by a sequence of

shifting on the nonbasic variables. When the alloted time for shifting elapses, the heuristic defines

an improvement neighborhood and applies the Xpress mixed integer programming solver on the

improvement neighbourhood. To define the improvement neighbourhood, they add the following

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constraints to the current problem.

^ X j € x s Xj ^ — Y l Xj€ x z Xj - S

where k > 1 .

Balas et al. compared this heuristic against the Xpress mixed integer programming solver and

showed that the heuristic performed better comparing to Xpress on the benchmark instances. They

did not show any comparison of the heuristic against the other existing heuristics.

2.2.3 Octahedral Neighbourhood Enumeration

In 2001, Balas et al. [12] presented the heuristic Octahedral Neighborhood Enumeration (OCTANE)

for solving 0-1 integer programs. This heuristic defines an integer neighborhood of the fractional

solution to the linear programming relaxation of the integer program and searches that neighborhood

in a particular direction. A unit hypercube K centered at the origin defines this integer neighborhood,

where K is expressed by {a: € R " | - e / 2 < x t < e /2 , e = (1 , 1 , . . . , 1)}. Balas et al. define an

octahedron K* circumscribing K by {x G R " | Sx < n /2 , VJ € {±1}"}. Figure 2.6 shows K and

K* in two-dimensional space. For each facet S of (K* + e /2), there is a corresponding vertex x o f

(K + e /2) defined by x = S/2 + e /2 .

Figure 2.6: Illustration of K and K* in two-dimension. The thin and thick edges represent the edges
of K and K* respectively.

The basic steps o f the heuristic are the following.

Step 1: Construct a directional ray, specified by a direction vector, originating from an linear

programming relaxation optimal solution.

Step 2: Determine the first k intersections o f the directional ray with the facets of octahedron

(K * -I- e /2). Determine the 0-1 points on the hypercube (K + e /2) corresponding to the first

k intersected facets of (K* + e /2).

c

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 3: Consider each 0-1 solution as the candidate solution and determine the feasible ones for

the 0 - 1 integer program.

The heuristic presents a systematic technique to enumerate the first k facets o f (K * + e /2)

intersected by the directional ray. Checking all k candidate solutions for feasibility in Step 3 is

computationally inefficient when the size of the given problem is large. To eliminate this drawback,

the heuristic shows a modified technique that tries to avoid enumerating facets that correspond to

infeasible 0-1 points. For this purpose, it uses canonical inequalities which have the form zq < sx <

so where s is in {0, ± 1 } " and so and z0 are integers. The modified technique then enumerates those

facets which intersect the directional ray and whose corresponding 0 - 1 points are satisfied by the

canonical inequality.

Balas et al. applied this heuristic at different nodes o f the branch-and-cut framework so that the

directional ray of search could originate from different points. They also tried a variety of direc

tions for enumeration. The average ray (the average of the extreme rays of the cone at the current

linear programming optimal solution) and the objective ray (the normal vector of the objective ray

directed inward) were two such chosen directions. The empirical results reported in [12] suggest

that OCTANE is a competitive alternative of P S .

2.2.4 Pivot, Cut, and Dive

In 2001, Nediak and Eckstein [61] presented P ivot , C u t, a n d D ive (PCD), a 0-1 mixed integer

program heuristic. As in PC, the main idea of this heuristic is to perform a sequence of simplex

tableau pivots to find a feasible solution for the 0-1 mixed integer program. But unlike in PC, a

concave merit function determines the pivoting nonbasic variable. The merit function is designed

in such a way that it evaluates to zero at all integer feasible points and to some positive value for

integer infeasible points. It thus gives a measure o f integer infeasibility of the current solution. The

merit function used is

V'(z) = 5 Z
XiGioi

where xqi is the set o f variables constrained to be 0 or 1 , and

4>{xi) = l - <
(^) 2, < a

(^) 2, X i > a

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where a € (0 , 1).

The heuristic first defines the following two pivot selection rules based on an approximation of

the merit function defined by the local gradient of the merit function.

Type 1 : A pivot that improves the approximation o f the merit function maximum and does not

make the objective value worse.

Type 2: A pivot that improves the approximation of the merit function with the minimum wors

ening of the objective value.

If no pivot o f Type 1 or 2 is found, the heuristic checks all possible pivoting options and looks

for one that improves the original merit function with an allowable limit of worsening the objective

value. This is the Type 3 pivot, called a probing pivot.

If at any step of pivoting the heuristic does not find a pivot o f Type 1, 2 or 3, it considers to

include a convexity cut or to branch using a vertex cut.

If a x > j i is a cutting plane, its distance from the current solution x" is

The convexity cut only cuts off the current fractional solution; it does not cut off any integer

feasible solution. If the convexity cut has a distance greater than the vertex cut from the current

fractional solution, then the convexity cut is added to the problem. The resulting problem is re

optimized, namely its linear programming relaxation is solved, and execution returns to the pivoting

phase.

The vertex cut cuts off the current fractional solution as well as a set o f possible 0-1 feasible

solutions with Xi — 0 , Vx* € Qo and x; = 1 , Vx* G Q i; we will see the definition of Qo and Q i in

§ 2.2.6. Therefore, if the vertex cut has a distance greater than the convexity cut from the current

fractional solution, then the heuristic generates two subproblems. First subproblem is the one that

includes x , = 0,Vxj € Qo and x , = 1 , Vx* € Q i , and the second subproblem is the one that

includes the vertex cut. Then the heuristic branches to the first subproblem. If the first branch has

no feasible solution, then the heuristic branches to the second subproblem.

After branching to the new subproblem, the heuristic re-optimizes the subproblem and again

transfers execution to the pivoting phase with that subproblem.

Nediak and Eckstein experimented with this heuristic on the 49 0-1 mixed integer program

instances of MIPLIB 3.0. Out o f the 49 instances, they excluded 7 instances because the linear

program solver they used could not handle those instances. Out o f the 42 instances, PCD failed

in 10 instances. They did not compare their heuristic with any other heuristics or the commercial

solvers.

Following the descriptions of the convexity cut and the vertex cut by Nediak and Eckstein in

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PCD [61], we present brief descriptions o f convexity cut and vertex cut in § 2.2.5 and § 2.2.6.

2.2.5 Convexity Cut

In [7] Balas introduced the convexity cut in integer programming. Let x* be the current fractional

solution to the linear programming relaxation of a given integer program. The edges x (i) = x* —

CiVi for Vi > 0 , Vxj € £jv define the polyhedral cone formed at this vertex, where Ci is the current

column in the simplex tableau for the nonbasic variable Xi, and Vi is a parameter illustrating how

much change has been made to the value of x i from its current lower or upper bound value at x* . The

simplex tableau only provides the values C y o f the vector Ci corresponding to the basic variables

Xj. All other values of C y are 0 except for the value o f Cu. The value of Cu is plus or minus one

depending on the value of Xi at its upper bound or lower bound.

Assume that v* is the value of t>j for each Xj in x ^ that makes ip(x(i)) = 0. Then the hyperplane

passing through the point identified by v* is ^ x,6 lw (^r)wj = 1. Therefore, the equation o f the

cutting plane is

where Vi is x» (or Ui — Xj) if Xj is at its lower (upper) bound in x*. u t represents the upper bound of

the variable Xj.

These cuts have the form J2XieQo Xi + Sx.-eQi ^ — *») - where Qo is a subset o f Vo, and Qi

is a subset of V \ , with Vo and V\ being the sets of the binary variables whose current value’s nearest

integers are 0 and 1 respectively. Choosing different set for Qo and Q i, one can find different vertex

cuts having different distances from the current solution. In PCD, Nediak and Eckstein generated

vertex cuts so that that each cut’s distance from the current fractional solution was bounded.

2.2.7 Tabu Search in Solving Integer Programs

Recall that in 1994, Lpkketangen, Jomsten, and Storpy [55] incorporated a tabu search mechanism

into the PC framework. In 1998, Lpkketangen and Glover [54] gave a more general application of

tabu search for solving 0 - 1 mixed integer programs.

2.2.6 Vertex Cut

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since an extreme point o f the underlying feasible region corresponding to a linear programming

relaxation may be the feasible solution o f a 0-1 mixed integer program, Lpkketangen and Glover

apply tabu search with the aim of visiting such extreme points.

Lpkketangen and Glover select moves, namely pivots, for the search from a possible set of moves

based on the measure of integer infeasibility and objective value. A main feature of tabu search is

to set up some condition to make a set of moves prohibited or tabu. In this particular heuristic, a

variable becomes tabu whenever it becomes nonbasic from basic and remains tabu for a specified

time. Another feature o f tabu search is to set up an aspiration condition, a condition that makes

a tabu move acceptable if it is satisfied. The aspiration condition to accept a tabu move in [54] is

to have a new basic feasible solution of the linear programming relaxation that has the measure of

integer infeasibility within a certain limit.

Lpkketangen and Glover also experimented with a probabilistic approach to select a move in

stead of relying on tabu conditions. They tested their algorithms only on small multidimensional

knapsack problems; as such it is not clear whether they will achieve similar performance on other

classes of integer programs.

2.2.8 Heuristics Based on Interior Path

In 1969, Hillier [43] proposed a heuristic for solving general integer programs using the so-called

interior paths. The idea is to select two points. One is the linear programming relaxation optimal

solution x \ , an extreme point o f the linear programming relaxation feasible region. The other is a

point £ 2 such that the path from x \ to £ 2 goes through the interior of the feasible region. Hillier

showed two ways to select a point X2 - The method then moves from x i to X2 using a parameter and

checks whether the rounding of the points in this path gives an integer feasible solution. If they do

not, it searches the neighborhood of those points by shifting the values of integer variables by plus

or minus one. The interior path is defined by x = x i + a (x 2 — £ 1), where a is the parameter to

move along the path.

In 1974, Ibaraki, Ohashi, and Mine [45] and in 1979, Faaland and Hillier [33] proposed similar

heuristics for solving general mixed integer programs. One difference in their method from that

o f Hillier [43] is to construct the interior path as a set o f piecewise linear segments. This method

determines a set o f points { x i , x 2, ■ ■ ■ ,Xk} where £ 1 is the optimal solution to the linear program

ming relaxation o f the integer program, and {£2 , . . . ,£ * } lie in the interior o f polyhedron. Then

{ x i x 2, x 2Xk, ■ -. , Xk - \ Xk } is the set of line segments. The method starts searching feasible so-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lutions for the mixed integer program from x i . During the traversal the method checks whether

rounding at a non-integer point gives a solution; if not, it searches the neighborhood of that point by

shifting the values of integer variables by plus or minus one.

All these methods go through an improvement phase to improve the found feasible solution by

shifting the values of integer variables by plus or minus one.

2.2.9 Feasibility Pump

In 2005, Fischetti, Glover, and Lodi [34] introduce F e a sib il it y P um p (FP), a mixed integer pro

gramming heuristic. This is the most recent among all the existing feasibility heuristics.

FP starts with the linear programming relaxation solution and, as long as it does not find a solu

tion, continues to solve a sequence of linear programs guided by the rounding of the previous step’s

linear programming relaxation solution; random perturbations are introduced in case of cycling.

More explicitly, suppose the integer program P given by m in {cT x \ A x > b, Xj G { 0 ,1} Vj G

1} is the input to the FP. Further assume that x* is an optimal solution to the linear programming

relaxation £ (P) o f P , and x is the rounding of x*. FP defines a distance function

A (x ,x) :=] T X j + (1 - X j) .
j e l Aafj-=0 j € I A x j = l

If A (x* ,x) = 0, x* is a feasible solution of P . If not, FP solves the linear program,

m in (A (x ,x) | A x > b, 0 < x j < 1 Vj G /} , which gives the closest point x*eu, o f x on

the polyhedra associated with £ (P) . FP considers x*new as the x* o f the next iteration and continues

as mentioned earlier. FP perturbs x in some random way if a cycle is detected in last three iterations

and after certain number of iterations.

Fischetti et al. implemented FP using the commercial linear programming solver Cplex. They

compared FP against the commercial mixed integer programming solver Cplex Version 8.1 and

showed that FP performed better comparing to the Cplex on the benchmark instances. They did not

show any comparison of FP against the other existing heuristics.

2.2.10 Improvement Heuristics

We consider the previously known heuristics, designed only to find improved solutions from a known

solution, as the improvement heuristics. The existing such heuristics apply themselves at different

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes of the mixed integer program search tree generated by either a branch-and-bound or a branch-

and-cut solver. We review them in § 2.2.11 and § 2.2.12.

2.2.11 Local Branching

LB, designed by Fischetti and Lodi [35], is the first strategy that introduces the idea of explor

ing a promising neighbourhood around a known mixed integer program solution by defining the

neighbourhood as another mixed integer program instance and exploring it using a black-box mixed

integer program solver, namely either a branch-and-bound or a branch-and-cut solver.

LB defines the neighbourhood of a feasible solution x* by limiting at some integer p the number

of 0-1 variables currently at 0 or 1 that can switch their bounds. This is often called soft fixing.

LB achieves this by adding to the instance the inequality D (x , x*) < p , where

D {x ,x *) := x i + ^ 2 (x ~ x j)>
je v 0 je v i

with Vo and Vi being the index sets of the 0 - 1 variables that are at 0 and 1 respectively in x*.

We find two different implementations o f LB. Originally, Fischetti and Lodi [35] implemented

LB as an heuristic as well as an external branching framework, which creates branches in the search

tree by D (x , x*) < p and D (x , x*) > p + 1 as opposed to the standard branching on the variables

in the branch-and-bound framework. They obtained the diversification, which switches the search

in a different region of the MIP feasible space, by defining the neighbourhoods with a change in

the value o f the parameter p. Later, Danna, Rothberg, and Pape [29] implemented LB solely as

a heuristic, and obtained the diversification by defining the neighbourhoods on the new solutions

found during the mixed integer program search tree exploration. Danna et.al. also showed that their

implementation o f LB outperformed the original.

Figure 2.7 describes the operation sequence of LB at a particular node of the mixed integer

program search tree. At the termination o f the procedure, the algorithm resumes the exploration

of the mixed integer program search tree, and if the procedure finds a new mixed integer program

solution, the algorithm updates the mixed integer program solution at the mixed integer program

search tree. The algorithm first calls the LB procedure at the node where the mixed integer program

search tree finds its first mixed integer program solution, and then, as a process o f diversification,

every time the mixed integer program search tree finds a new mixed integer program solution.

Fischetti and Lodi [35] showed that it is possible to define D(x , x *) to handle general integer

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variables, but doing so requires the introduction of a new set o f variables. D (x , x*) used in both

[35] and [29] is defined only on 0-1 variables.

Procedure LB_at.tree jiode
INPUT: a 0-1 mixed integer problem P , a current MIP solution x*a,

parameter p, and a node limit nl.
OUTPUT: A new MIP solution x* (x* in case o f failure in finding a new solution).

1. x* 4- x*0,p current <-p, exploredAndNoSolution <—false
2 . repeat
3. compute the LB inequality D(x , x*) < p CUrrent
4. construct P + from P by adding the LB inequality
5. Apply black-box MIP solver to P + with node limit n l and

an objective cutoff equal to the objective value provided by x*
6 . if (a new solution x new is obtained) then
7. X i X n e w . P c u r r e n t ̂ P
8 . else if (node limit reached without having a new solution) then
9. P curren t P c u r r e n t^
10. else exploredAndNoSolution t—true
11. until (Pcurrent < 5 or exploredAndNoSolution)
1 2 . return x*

Figure 2.7: A pseudo-code version of the algortihm LB due to Danna et al. [29].

2.2.12 Relaxation Induced Neighbourhood Search

During the exploration of the mixed integer program search tree, the relaxation solutions at those

successive nodes that are not pruned always provide a better objective value than that of the current

mixed integer program solution. Using this idea, Danna, Rothberg, and Pape [29] introduce RINS

using the intuition that, in improved mixed integer program solutions, it is more likely for those vari

ables, that agree in the current mixed integer program solution and current node relaxation solution,

to stay at the same values. Thus RINS defines the promising neighbourhood by fixing all variables

whose values at the current mixed integer program solution are equal to their respective values at

the current node relaxation solution. This is often called hard fixing.

Figure 2.8 describes the operation sequence of RINS at a particular node of the mixed integer

program search tree. At the termination o f the procedure, the algorithm resumes the exploration of

the mixed integer program search tree. If the procedure finds a new mixed integer program solution,

the algorithm updates the mixed integer program solution at the mixed integer program search tree.

As noted in [29], consecutive nodes o f the mixed integer program search tree provide almost

identical relaxation solutions. Therefore, the algorithm calls RINS procedure at every / nodes for

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

some reasonably large / .

Danna et al. compared RINS against the commercial mixed integer programming solver Cplex

and the heuristic LB. They showed that RINS performed better than both the Cplex and the LB.

Procedure RINS_at Jree_node
INPUT: a 0-1 mixed integer problem P , the current MIP solution x*,

the current node relaxation solution x no<ie, and a node limit nl.
OUTPUT: A new MIP solution x* (x* in case of failure in finding a new solution).

1 . x* <- x*
2. construct P + from P by fixing the variables that agree in x* and x node
3. Apply black-box MIP solver to P + with node limit n l and

an objective cutoff equal to the objective value provided by x*
4. if (a new solution x new is obtained) then
5. X t % new
6 . return x*

Figure 2.8: A pseudo-code version of the algorithm RINS presented by Danna et al. [29])

2.3 Benchmark Integer Program Instances

2.3.1 Existing Library of Integer Program Instances

To measure the performance of mixed integer program solvers, it is useful to have a set o f test in

stances from different areas of optimization. Prior to 1998, mixed integer program solvers were

usually experimented on using randomly generated multidimensional knapsack instances. In 1992,

Bixby, Boyd and Indovina [18] created MIPLIB, the first electronic library of real world mixed in

teger programs, to meet the requirements of researcher. In 1998, Bixby, Ceria, McZeal and Savels-

bergh [19] updated the MIPLIB. Since then, MIPLIB has become a standard test suite used to com

pare the performance of mixed integer program solvers. In 2003, the latest update is made to the

MIPLIB by Martin, Achterberg and Koch [58]. Table B .l o f Appendix B describes all the mixed

integer program instances of MIPLIB 2003.

In addition to the instances available from MIPLIB, recent research [29,34,35] on heuristics for

mixed integer program uses the mixed integer program instances available from DEIS operations

research group electronic library [31]. Table B.2 of Appendix B describes all the mixed integer

program instances from DEIS electronic library.

Recent heuristics [34,29] on mixed integer programs also use five job-shop scheduling instances

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with earliness and tardiness costs. The heuristic in [29] uses eleven network design and multi

commodity routing instances. Table B.3 of Appendix B describes these sixteen instances.

In our experiments, we used all the mixed integer program instances noted above. This set of

instances represents the current hard mixed integer program instances available from the community

and acts as the benchmarks in recent heuristic research for mixed integer programs.

2.3.2 Generation of Hard Integer Program Instances

Most of the integer program instances in the benchmark test suite come either from the instances

generated randomly for various optimization problems using their most common integer program

model or from the real-world instances of different optimization problems; they are hard to solve by

the existing solvers.

The market-sharing problem introduced by Williams [73] is one such optimization problem. The

problem as described in [73] is as follows:

A large company has two divisions D \ and D i- The company supplies retailers with

several products. The goal is to allocate each retailer to either division D \ or division

D i so that D \ controls 40% o f the company’s market fo r each product and D 2 the

remaining 60% or, i f such a perfect 40/60 split is not possible fo r all the products, to

minimize the sum o f percentage deviations from the 40/60 split.

A natural integer program formulation for this problem is given by Cornuejols and Dawande [27].

min E ,” 1 N

s.t. Y?j= 1 ai jx j +S i = b i i — 1 ,..., m

I j e { 0 , l} j = l , . . . , n

Si f r e e i = l , . . . , m ,

where n , m, aij are the number of retailers, the number of products, and the demand of retailer j for

product i respectively. One can determine b{ from the desired market split between the two divisions

D 1 and £>2 -

Cornuejols and Dawande [27] showed that choosing each integer aij uniformly between 0 and

99, setting n = 10(m — 1), and asking for a 50/50 split yields a class of optimality-hard 0-1

program instances for the existing integer program solvers, where by ’optimality-hard’ we mean

finding the optimal solution with the certificate o f optimality is hard. For the 50/50 split, b, is

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

equal to [0.5 x Y^j=i ai jJ for 1 < i < m. We refer to this formulation of the Williams’s market-

sharing problem defined by these choices as the Cornuejols-Dawande optimality model, and the

instances generated following this model as the Cornuejols-Dawande optimality-hard instances. In

[27] Cornuejols and Dawande pointed that their optimality-hard instances are related to the knap

sack instances considered by Chvatal [22], since their optimality-hard instances are similar to the in

stances of multi-dimensional knapsack problems. Chvatal considered the following knapsack prob

lem,

max £ " = i OjXj

s.t. ^ 2 j - i o.jXj < L5Zj=i a i / 2 j

X j G { 0 , 1 } j = 1 , ...,n ,

and showed that choosing each integer Oj uniformly between 1 and 1 0 ^ yields a class of hard

knapsack instances for branch-and-bound solvers.

Notice that the Cornuejols-Dawande optimality model is not suitable for generating feasibility-

hard instances, since any choice of x satisfying Xj e {0 , 1 } for all j yields a feasible solution

for instances of this model. However, Cornuejols and Dawande showed the following feasibility

formulation corresponding to their optimality model.

x

s.t. S j = i ° i j x j = bi i — 1 , ...,m

x j € {0 , 1 } j = l , . . . , n

Notice that the constraints o f the optimality model drop their slack/surplus variables to become

the constraints o f this feasibility formulation. This feasibility problem is NP-complete [27], and

a feasible solution to an instance of this formulation exists only if the optimal objective value of

the corresponding optimality-hard instance is zero. We refer to this feasibility formulation o f the

Williams’s market-sharing problem as the Cornuejols-Dawande feasibility model, and the instances

generated following this model as the Cornuejols-Dawande feasibility-hard instances.

The pseudo-randomly generated Cornuejols-Dawande optimality-hard instances have the opti

mal objective value larger than zero for most o f the instances. Therefore, the Cornuejols-Dawande

feasibility-hard instances corresponding to these generated optimality-hard instances have no feasi

ble solution. Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1] analyzed the expected number of

solutions for the Cornuejols-Dawande feasibility-hard instances with different n and m . Following

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their analysis, it is possible to choose n and m for which the pseudo-randomly generated Cornuejols-

Dawande feasibility-hard instances are with high probability feasible. We pseudo-randomly gener

ated some Cornuejols-Dawande feasibility-hard instances to experiment with different feasibility

heuristics, and some Cornuejols-Dawande optimality-hard instances to experiment with different

improvement heuristics.

In this thesis, we also present a new class of hard 0-1 program instances based on a modified

form of Williams’s market-sharing problem. We refer the instances generated according to the mod

ified form o f Williams’s market-sharing problem as the constrained market-sharing instances. We

pseudo-randomly generated some constrained market-sharing instances to experiment with different

heuristics.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Pivot and Gomory Cut

In this chapter we present P ivot a n d G o m ory C u t (PGC), a new mixed integer programming

feasibility heuristic. Since PGC uses pivoting rules from PC, and since w e implemented a version

o f PC to test against PGC, w e begin our description o f PGC by first discussing PC.

3.1 Pivot and Complement

In 1980, Balas and Martin introduced PC. Although introduced originally as a 0-1 integer program

ming heuristic, the pivoting rules of PC generalize naturally to the mixed integer programming

setting, as mentioned in [14]. Since recent feasibility heuristics have been presented for 0-1 mixed

integer programs, rather than just 0 - 1 integer programs, we implemented a 0 - 1 mixed integer version

o f PC. We now describe our implementation of this version of PC.

In § 2.1 we gave the formulation of an integer program. We now give the analogous formulation

of a 0-1 mixed integer program. We assume that the input program P has the form shown below,

where c, x , b, A have dimensions n , n , m , m x n respectively, N = { 1 , . . . , n} is the set of variable

indices of P , I is the subset of N indexing the binary variables o f P, and, for each index j for which

Xj is a non-binary variable, lj and Uj denote the respective lower and upper bounds for Xj .

PC transforms P into the equivalent program P + by adding the m-dimensional vector y. The

scalar elements of x and y are the decision variables and surplus variables respectively. The non

binary decision variables and the surplus variables are the continuous variables. C { P +) is the linear

program obtained from P + by relaxing the integrality constraints on the binary decision variables.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus we have

P : m in { cx \ A x > b , X i € {0,1} Vi G I , lj < x j < Uj Vj G N — 1}

P + : m in { cx \ A x — y = b, Xi G {0,1} Vi G I , lj < Xj < U j V j £ N - I , y > 0 }

£ (P +) : m in { cx \ A x — y = b, 0 < Xj < 1 Vi G / , lj < Xj < U j V j G iV — J, y > 0 } .

PC is based on a sequence o f pivot operations that exchange a nonbasic variable with a basic

variable in a simplex tableau associated with £ (P +). The first step is to use the bounded variable

revised simplex algorithm to look for an optimal solution to C{ P+). If C (P +) has no such solution,

then PC reports that P has no feasible solution; otherwise, execution transfers to the feasibility

subroutine with an £ (P +)-optimal basic feasible solution x*.

The PC feasibility subroutine has two phases, search and restart. In the search phase, PC tries

to decrease the extent to which x* is P-infeasible by repeated tableau pivoting, as follows. Each

binary decision variable of x* which is not in the basis will have its value equal to either its upper

or lower bound and therefore be integral. Thus, the primary P-infeasibility measure is the number

o f basic binary decision variables of x*, and the search phase applies the following pivot whenever

possible.

PC Type 1 Pivot: The pivot that exchanges a basic binary decision variable with a non

basic continuous variable, maintains £ (P +)-feasibility, and, among all such pivots,

minimizes the objective functions.

Once no more such pivots are available, PC considers a secondary P-infeasibility measure defined

by Ip(x*) = £ i 6 /im n { a :* ,l _ £ * } .

PC Type 2 Pivot: The first pivot found that exchanges a basic continuous variable with a

nonbasic continuous variable, or a basic binary decision variable with a nonbasic binary

decision variable, maintains £ (P +)-feasibility, and reduces Ip(x*) .

Pivoting continues until either PC finds a P-feasible solution or reaches a dead end, namely there

are no available Type 1 or Type 2 pivots. When PC encounters such a dead end, it checks whether

rounding or truncating the binary decision variables o f x* yields a P-feasible solution. If so, then

PC terminates successfully. Otherwise, the restart phase begins.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the restart phase, PC perturbs the dead end by a third kind of pivot into an £ (P +)-

infeasible solution. The measure of infeasibility used is I l(x *) = m ax{0> ~ x *jix *j ~ 1} +

T ,je N - i m&x{0 ’l3 ~ x *j’x j _ t l ;} + E m g y m a x R - l t f } -

PC Type 3 Pivot: The pivot that exchanges a basic binary decision variable with a

non-basic continuous variable and leaves the entering continuous variable positive, and,

among all such pivots, minimizes

After such a pivot, x* is a basic infeasible solution of £ (P +). The restart phase next attempts to

bring /z,(x*) to zero by repeatedly complementing one or two nonbasic binary decision variables,

namely by changing their values from one bound to the other. If PC finds an £ (P +) -feasible solution

by this complementation process, it first rounds and then truncates the binary decision variables

of x * . If either process yields a P-feasible solution, then PC terminates successfully; otherwise,

execution transfers back to the search phase. If PC does not find an £ (P +)-feasible solution by the

repeated complementation of any single or pair of nonbasic binary decision variables, it aborts.

This completes the description of our implementation o f PC. The original versions o f PC [13,

14] also have a complementation-based improvement subroutine to improve a P-feasible solution

found by the feasibility subroutine. We omit any further discussion of this subroutine here, as we do

not include it in PG C, where our goal is only to find a feasible solution.

We now give a step-by-step example that illustrates the execution of PC. Consider the following

as the given integer program P .

min 5xi + 6 x 2 + 9 x 3 — 5 x 4 — 3xs

s.t. 7xi + 9 x 2 + 9 x 3 + X4 + 5 x 5 > 15

3xi + 6 x 2 + 7x3 + 3 x 5 > 9

5xi + X2 + X3 + 6 x 4 + 5 x 5 < 9

8 x 2 -I- 6 x 3 4- 6 x 5 < 10

X l , X2 , X3 , X4 , X5 £ {0 , 1 }.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First, PC transforms P to P + by adding the slack/surplus variables as follows.

m in 5 x 4 4- 6 x 2 + 9 x 3 — 5 x 4 — 3 x s

s.t. 7 x i 4- 9 x 2 4- 9 x 3 + X 4 + 5 x 5 — X 6 = 15

3 x i 4- 6 x 2 4- 7 x 3 4- 3 x 5 - X7 = 9

5 x i + x 2 + x 3 + 6 x 4 + 5 x 5 4- x 8 = 9

8 x 2 4- 6 x 3 4- 6 x 5 4- x 9 = 1 0

X 1 ,X 2 ,X 3 ,X 4 ,X 5 € { 0 , 1 } ,X 6 ,X 7 ,X 8 ,X 9 > 0 .

Next, PC solves the linear programming relaxation C (P +) of P + using the bounded variable revised

simplex algorithm. This gives the following optimal simplex tableau. In the tableau, C denotes

the objective row, x i ,x 3 ,X 4 , and X5 are the basic variables and the remaining are the non-basic

variables.

5 + X 6 + X7 + x 8 + x 9 = C

1.1978 — 1.0989x2 4- 0.2812x6 - 0.5781x7 4- 0.0468x8 - 0.2604x9 = X5

—0.1666 4- 1.0833x2 — 0.5x6 + 0 .7 5 x 7 — 0.25x8 4- 0.1666x9 = X4

0.7083 — 0 . 3 5 4 1 x 2 4- 0.375x6 — 0 .4 3 7 5 x 7 4 - 0.0625x8 4 - 0.0416x9 = x 4

0.4687 - 0.2343x2 - 0.2812x6 4- 0.5781x7 - 0.0468xg 4- 0.0937x9 = x 3

Since the solution (x i,X 2 ,x 3 ,X4 ,X5) = (0.3541,1.0,0.2344,0.9167,0.0989) is not P-feasible, PC

enters the search phase of feasibility subroutine with this optimal simplex tableau. There, it finds

a desired Type 1 pivot, namely exchanging X7 and X4 . Performing this pivot yields the following

tableau with x i , x3, X5 , and X7 as the basic variables.

5.2222 - 1 .4 4 4 4 x 2 4- 1.6666x6 4- 1.3333x4 4- 1.3333x8 4- 0.7777x9 = C

1.0693 - 0.2638x2 - 0.1041x6 - 0.7708x4 - 0.1458xs - 0.1319x9 = x 5

0.2222 - 1 .4 4 4 4 x 2 4- 0.6666x6 4- 1.3333x4 4- 0.3333x8 - 0.2222x9 = x 7

0.6112 4- 0.2777x2 4- 0.0833x6 - 0.5833x4 - 0.0833x8 4- 0.1388x9 = x 4

0.5972 - 1.0694x2 4- 0.1041x6 4 - 0.7708x4 4- 0.1458x8 - 0.0347x9 = x 3

Since the solution (x4, • • •, X5) = (0.3055, 1.0, 0.2986, 1.0, 0.0347) is not yet P-feasible, it again

looks for a Type 1 pivot, and finds one between x 9 and X5 . Performing this pivot yields the following

tableau with x \ , x3, X7 , and x 9 as the basic variables.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11.5262 - 3x 2 + 1.0526x6 - 3.2105x4 + 0.4736x8 - 5.8947x5 = C

8.1053 - 2x 2 - 0.7894x6 - 5.8421x4 - 1.1052x8 - 7.5789x5 = x 9

—1.5789 — X2 + 0.8421x6 + 2.6315x4 + 0.5789x8 + 1.6842x5 = x 7

1.7368 - 0.0263x6 - 1.3947x4 - 0.2368x8 - 1.0526xs = x x

0.3158 — X2 + 0.1315x6 + 0.9736x4 + 0.1842x8 + 0.2631xs = X3

Since the solution (xx, • • •, x 5) = (0.3421,1 .0 ,0 .2894,1 .0 ,0 .0) is not yet P-feasible, it again looks

for a Type 1 pivot. This time there is no such pivot, so it next looks for a Type 2 pivot. It finds one

between x 8 and X9 . Performing this pivot yields the following tableau with x x, X3 , X7 , and x 8 as the

basic variables.

14.9998 - 3.8571x2 + 0.7142x6 - 5.7142x4 - 0.4285x9 - 9.1428x5 = C

7.3337 - 1.8095x2 - 0.7142x6 - 5.2857x4 - 0.9047x9 - 6.8571x5 = x 8

2.6666 — 2.0476x2 + 0.4285x6 — 0.4285x4 — 0.5238x9 — 2.2857xs = X7

0.4285x2 + 0.1428x6 — 0.1428x4 -I- 0.2142x9 -I- 0.5714xs = x x

1.6666 — 1 .3 3 3 3 x 2 — 0.1666x9 — X5 = x3

The solution (xx, • • •, X5) = (0 .2857,1.0,0.3333,1.0,0.0) reduces Ip{x*) from 0.3421 + 0 + 0.2894

+ 0 + 0 = 0.6315 to 0.2857+0+0.3333+0+0= 0.6190, but is not yet P-feasible. PC again looks for a

Type 1 pivot. No such pivot is found, so it next looks for a Type 2 pivot. It finds one between X2 and

x 3. Performing this pivot yields the following tableau with x x, x2, x7, and x 8 as the basic variables.

10.1785 + 2.8928x3 + 0.7142x6 - 5.7142x4 + 0.0535x9 - 6.25xs = C

5.0718 + 1.3571x3 - 0.7142x6 - 5.2857x4 - 0.6785x9 - 5.5xs = x 8

0.107 + 1 .5 3 5 7 x 3 + 0.4285x6 - 0.4285x4 - 0.2678x9 - 0.75xs = x 7

0.5356 - 0.3214x3 + 0.1428x6 - 0.1428x4 + 0.1607x9 + 0.25x5 = x x

1.25 — 0 .7 5 x 3 — 0.125x9 — 0 .7 5 x 5 = X2

The solution (xx, • • • , X5) = (0.0714,0.5, 1.0, 1.0, 0.0) reduces the / p(x*) to 0.0714+0.5+0+0+0 =

0.5714, but is not yet P-feasible. PC again looks for a Type 1 pivot. No such pivot is found, so it

next looks for a Type 2 pivot. Since there is no Type 2 pivot, it checks whether either rounding or

truncating of solution gives P-feasible solution. Since it does not, PC is at a dead end and so next

enters the restart phase. There it performs a Type 3 pivot between x 9 and X2 . The resulting tableau

is as follows.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.7142 + 2.5714x3 + 0.7142x6 - 5.7142x4 - 0.4285x2 - 6.5714x5 = C

-1 .7142 + 5.4285x3 - 0.7142x6 - 5.2857x4 + 5.4285x2 - 1.4285xs = z 8

-2 .5715 + 3.1428x3 + 0.4285x6 - 0.4285x4 + 2.1428x2 + 0.8571x5 = x 7

2.1427 - 1.2857x3 + 0.1428x6 - 0.1428x4 - 1.2857x2 - 0.7142x5 = x 4

12 — 6 X3 - 8x 2 — 6 X5 = Xg

The C (P +) solution (x 4, • • • , X5) = (0.7142, 0.0, 1.0, 1.0, 0.0) is primal infeasible, which means

some basic variables violate their bound constraints. Here x 8 = — 1.5714, thus violates the constraint

that it is nonnegative. This provides I I (x*) = 1.5714. PC now checks whether complementing any

single non-basic binary decision variables reduces / l (x *) . It finds that complementing x 4 reduces

7 l(x*) to zero. The tableau does not change, but the solution (x 4, • • • , x 5) = (0.8571, 0.0, 1.0,

0.0, 0.0) is primal feasible. The solution is not P-feasible yet. At this point, PC again checks

whether rounding or truncating of current solution gives a P-feasible solution. Rounding of the

solution provides a P-feasible solution (x 4, • • • , x 5) = (1.0, 0.0, 1.0, 0.0, 0.0), and PC terminates

successfully.

3.2 Pivot and Gomory Cut

As in PC, the initial goal of PGC is to find a P-feasible solution by bringing all the binary variables

out of the simplex tableau basis. To do this, PGC uses pivoting rules similar to those o f PC. The

major difference between PGC and PC is that PGC uses Gomory cuts in this pivoting framework

in the hope of finding a P-feasible solution as early as possible. PGC uses Gomory cuts for several

purposes, namely to select pivots, to avoid cycling, and to replace the complementation based PC

restart phase

We spent a long time searching for a good feasibility heuristic before arriving at PGC. Our

search started with the implementation of PC. While experimenting with PC, we found that the

restart phase often fails to bring execution back to the search phase. This led us to find a better

way of moving to the £ (P +) feasible space from the dead end, namely by using a cutting plane.

We selected Gomory cuts as our cutting plane because the PC pivoting framework uses a simplex

tableau, and so generating Gomory cuts requires almost no extra cost. Later, we came up with the

idea of also using Gomory cuts to guide the pivoting.

Here is how PGC works. It begins in the same manner as PC, namely by solving jC (P+) using

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the bounded variable revised simplex method. If the optimal solution x* of £ (P +) is not P-feasible

and neither rounding nor truncating the fractional binary variables provides a P-feasible solution,

PGC calls its feasibility subroutine, which, as in PC, consists of a search phase and restart phase.

Once execution reaches the search phase, PGC finds a Gomory cut separating x* from the P -

polytope. PGC then tries to decrease the extent to which x* is P-infeasible by repeated tableau

pivoting. During pivoting, whenever the current basic feasible solution x* of £ (P +) satisfies the

Gomory cut, PGC adds the cut to the formulation of £ (P +) to avoid cycling, and generates a new

Gomory cut separating x* from the P-polytope.

This generation and occasional addition o f Gomory cuts to £ (P +) continues until the search

phase either finds a P-feasible solution or reaches a dead end. In the latter case, PGC checks

whether rounding or truncating the fractional binary variables yields a P-feasible solution. If not,

execution transfers to the restart phase together with the most recently unsatisfied Gomory cut.

The goal o f the restart phase is to find a basic feasible solution of £ (P +) that satisfies the

Gomory cut and stays close to it. The intuition here is that, at the end of the search phase, the

current basic feasible solution might be close to a P-feasible solution which in turn might be close

to the Gomory cut. To find such a basic feasible solution, PGC replaces the objective function with

the temporary objective function max a x , where a x > /3 describes the cut. The bounded variable

revised simplex algorithm continues until either the value of the temporary objective function is

at least (3 or the nonbasic x n chosen as the entering pivot variable has max a x unbounded or the

algorithm fails to choose a nonbasic variable. In the last case, execution halts and declares that

P is infeasible. In the other two cases, a x > f3 is added as a constraint to £ (P +), and so the

surplus variable corresponding to this constraint becomes a basic variable x t . In the case where

the nonbasic x n chosen as the entering pivot variable has m ax a x unbounded, the simplex tableau

becomes primal infeasible, so a pivot between x n and is performed to correct this. PGC then

restores the original objective function and transfers execution to the search phase.

When P has a feasible solution, unlike the PC restart phase, which may not bring the execution

back to the search phase, the PGC restart phase is guaranteed to bring the execution back to the

search phase, although possibly at a cost of increasing primary P-infeasibility measure.

To generate Gomory cuts, considering x* is the current basic feasible solution of £ (P +), PGC

chooses the row of the simplex tableau corresponding to the most integer-infeasible binary vari

able xj , where Xj is the basic binary variable for which the integer-infeasibility, measured by

mi n { X j , 1 — Xj } , is maximum. PGC then generates Gomory cuts from the chosen row follow

ing the construction shown in § 2 . 1 .6 .

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since we introduced a new criteria for choosing pivots, namely based on Gomory cuts, we

implemented two variations of the PGC search phase in our experiments. One variation, PGCo,

uses the two pivot rules of the PC search phase. The other variation, P G C i, uses two new pivot

rules based on the distance between x* and the Gomory cut.

In the rules given below, a x > /3 refers to the current cut, x*ur refers to the current basic feasible

solution, and x*next refers to the basic feasible solution resulting from a pivot under consideration.

A P-feasible solution is always somewhere across the current Gomory cut. PG C i uses this fact

to define its pivoting rules. The goal o f the Type 1 pivot is to decrease the primary P-infeasibility

measure, the number of basic binary variables, and cross the cut.

PG C i Type 1 Pivot: The first pivot found that exchanges a basic binary decision vari

able with a non-basic continuous variable, maintains £ (P +)-feasibility, and goes some

distance towards the cut, namely (3 — ax*next < f) — ax*CUT.

Once there are no more such pivots, the goal becomes to keep the primary P-infeasibility measure

unchanged and cross the cut.

PG C i Type 2 Pivot: The pivot that exchanges a basic continuous variable with a non

basic continuous variable, or a basic binary decision variable with a nonbasic binary

decision variable, maintains £ (P +)-feasibility, and, among the first (at most) [log n j

such pivots, the one which either crosses the cut by the smallest amount or, if no pivot

crosses the cut, the one which is closest to the cut. Thus, if (3 — a x * M(> 0.0 for

all the [log n j pivots, then select the pivot for which (3 — o.x*next is minimum; other

wise, select the pivot for which (3 — ax*next is maximum over the choices for which

P ~ a x n e x t < 0-0-

In the selection o f PG Ci Type 2 pivot, we sample a relatively small number of pivots because

experimental results showed the first eligible pivot, that keeps the primary P-infeasibility measure

unchanged and goes some distance towards the cut, might not lead far towards the cut, whereas

considering all (possibly n) eligible pivots might take too long.

Figure 3.1 shows a description of PGC algorithm. A more detailed version o f the algorithm

appears in Appendix A.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm PGCo/PGCi
In p u t: a 0-1 mixed integer problem P and a time limit T.
O u tp u t: a P-feasible solution x* (null in case o f failure).

1. x* 4- null; elapsedTime <- 0.
2. construct £ (P +) from P .
3. find optimal solution x* of £ (P +) using bounded variable revised simplex algorithm.
4. if(there is no solution to £ (P +)) then
5. return null with the the message that P is infeasible.
6 . if (x* or rounding of x* or truncation o f x* is P-feasible) then
7. return the P-feasible solution.
8 . repeat

BEGIN SEARCH PHASE
9. construct the Gomory Cut a x > p

from the row corresponding to the most integer-infeasible binary variable.
10. atDeadEnd 4— false.
1 1 . repeat
12. while (a Type 1 Pivot o f PGCo/PGCi exists)
13. perform the Type 1 Pivot; x * <— resulting £ (P +)-feasible solution.
14. if (x* satisfies a x > /3) then
15. if (x* is P-feasible) then return x*.
16. else
17. add a x > P in £ (P +).
18. construct the new Gomory Cut a x > p from the row

corresponding to the most integer-infeasible binary variable.
19. if (a Type 2 Pivot o f PG Co/PGCi exists) then
20. perform the Type 2 Pivot; x* 4- resulting £ (P +)-feasible solution.
21. if (x* satisfies a x > P) then
22. if (x* is P-feasible) then return x*.
23. else
24. add a x > p in £ (P +).
25. construct the new Gomory Cut a x > p from the row

corresponding to the most integer-infeasible binary variable.
26. else atDeadEnd t— true.
27. until atDeadEnd

END SEARCH PHASE
28. if (rounding or truncating binary variables gives P-feasible x*) then return x* .

BEGIN RESTART PHASE
29. replace the objective function “min cx” of £ (P +) with “max a x ” .
30. apply bounded variable revised simplex algorithm until

the objective value is at least p.
31. if (bounded variable revised simplex algorithm fails

to find a solution whose objective value is at least p) then
32. return null with the message that P is infeasible.
33. re-establish the objective function to “min cx” and include a x > P in £ (P +).

END RESTART PHASE
34. until (elapsedTime> T)
35. return x*.

Figure 3.1: A pseudo-code description o f the algorithms PGC0 and PG C i •

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we illustrate the execution of PGC 0 on the same example on which we illustrated the

execution of PC. As in PC, PGCo first finds the following optimal simplex tableau.

5 + x 6 + x 7 4- x$ + ar9 = C

1.1978 - 1.0989x2 + 0.2812x6 - 0.5781x7 + 0.0468x8 - 0.2604x9 = x 5

—0.1666 + 1.0833x2 - 0.5x 6 4- 0.75x 7 - 0.25x8 4- 0.1666x9 = X4

0.7083 - 0.3541x2 4- 0.375x 6 - 0.4375x 7 4- 0.0625x8 + 0.0416x9 = x x

0.4687 - 0.2343x2 - 0.2812x6 4- 0.5781x7 - 0.0468x8 + 0.0937x9 = x 3

The current solution (x i,X 2 ,X3 ,X4 ,X5) = (0.3541, 1.0, 0.2343, 0.9166, 0.0989) is not P-feasible,

and neither rounding nor truncating this solution yields a P-feasible solution. Therefore, PG C 0

enters the search phase of feasibility subroutine. There, since the measure of integer infeasibility for

the variables x i,X 2 , x 3 ,X4 , and X5 are 0.3541, 0 , 0.2343, 0.0833, and 0.0989 respectively, PGCo

generates a Gomory cut from the row corresponding to the most integer-infeasible binary variable,

x i . The generated Gomory cut has the following form.

0.1942x2 + 0.2056x6 + 0.4375x7 + 0.0342x8 + 0.0228x9 > 0.3541.

PGCo performs the same pivots that PC did until this Gomory cut is crossed. As illustrated in the

previous section, performing a Type 1 pivot between x 7 and x4, a Type 1 pivot between x 9 and x 5, a

Type 2 pivot between x 8 and x9, and a Type 2 pivot between x 2 and x 3 bring PG C 0 to the following

simplex tableau.

1 0 .1 7 8 5 4- 2 .8 9 2 8 x 3 + 0 . 7 1 4 2 x 6 - 5 .7 1 4 2 x 4 4- 0 . 0 5 3 5 x 9 - 6 .2 5 x 5 = C

5 .0 7 1 8 + 1 .3 5 7 1 x 3 — 0 .7 1 4 2 x 6 — 5 .2 8 5 7 x 4 — 0 . 6 7 8 5 x 9 — 5 .5 x s = x 8

0 .1 0 7 4- 1 .5 3 5 7 x 3 4- 0 .4 2 8 5 x 6 - 0 .4 2 8 5 x 4 - 0 .2 6 7 8 x 9 - 0 .7 5 x s = x 7

0 .5 3 5 6 — 0 .3 2 1 4 x 3 4- 0 .1 4 2 8 x 6 — 0 .1 4 2 8 x 4 4- 0 .1 6 0 7 x 9 + 0 .2 5 x s = x i

1.25 — 0.75x 3 - 0.125x9 - 0.75x 5 = X2

At this point, although the current solution (x i, • • • ,x 5) = (0.0714, 0.5, 1.0, 1.0, 0.0) is not yet

P-feasible, it has crossed the Gomory cut. Therefore, PGCo adds the Gomory cut to the simplex

tableau. This yields the following tableau, where xio is the new surplus variable corresponding to

the Gomory cut.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.1785 + 2.8928x3 + 0.7142x6 - 5.7142x4 + 0.0535x9 - 6.25xs = C

5.0718 + 1.3571x3 - 0.7142x6 - 5.2857x4 - 0.6785x9 - 5.5xs = x 8

0.107 + 1 .5 3 5 7 x 3 + 0.4285x6 - 0.4285x4 - 0.2678x9 - 0.75x 5 = x 7

0.5356 — 0.3214x3 + 0.1428x6 — 0.1428x4 + 0.1607x9 + 0.25xs = x 4

1.25 — 0 .7 5 x 3 “ 0 .1 2 5 x 9 — 0.75x 5 = x 2

—0.182 + 0.864x3 + 0.3686x6 — 0.3686x4 — 0.0933x9 — 0.3709xs = £io

Next, since the measure of integer infeasibility for the variables x 4, x 2, x 3, x4, and x 5 are 0.0714,

0.5, 0, 0, and 0 respectively, PGCo constructs the following new Gomory cut from the row corre

sponding to the most integer-infeasible binary variable, x 2.

0.25x3 + 0.125x9 + 0.25x5 > 0.5.

As there is no Type 1 or Type 2 pivot from this tableau, PGCo checks whether rounding or truncating

the current solution yields a P-feasible solution. Since neither process yields a P-feasible solution,

PGCo enters the restart phase. There, it replaces the current objective function with max 0.25x3 +

0 .1 2 5 x 9 + 0 .2 5 x 5 . It applies the bounded variable revised simplex algorithm until the cut is crossed,

namely until the objective value is at least 0 .5 . PGCo, then restores the previous objective function

and adds the crossed Gomory cut to the tableau. This yields the following simplex tableau, where

x n is the new surplus variable corresponding to the added Gomory cut.

1.2143 + 6.7857xi - 1.5x2 + 4x 4 + 1.5x 8 + 2.2142xi0 = C

—0.4881 + 0.9881x! + 1.25x2 — 0.5x 4 — 0.25x8 -I- 1.8452xio = X6

0 .8 0 9 5 - 0 .8 0 9 5 x 1 + 1 .4 7 6 1 x i 0 = x 7

- 4 . 1 0 7 1 + 6 .6 0 7 1 x 1 - 2 .7 5 x 2 + 4 . 5 x 4 + 0 . 7 5 x 8 - 1 . 1 0 7 1 x i O = x 9

- 0 . 5 2 + 0 . 6 1 3 8 x i - 0 . 1 4 0 6 x 2 + 0 .0 9 3 7 x 4 + 0 . 0 1 5 6 x 8 - 0 . 2 0 7 5 x i 0 = x a

0 .6 8 8 9 - 0 .1 2 6 4 X J - 0 . 8 4 3 7 x 2 + 0 .5 6 2 5 x 4 -I- 0 . 0 9 3 7 x 8 + 0 .2 3 0 6 x i O = x 3

1 .6 6 2 2 - 0 .9 7 4 7 x i - 0 . 0 3 1 2 x 2 - 1 .3 1 2 5 x 4 - 0 . 2 1 8 7 x 8 - 0 .0 4 6 1 x i O = x 5

The search phase then resumes. The solution (x i , • • ■, x 5) = (1.0,0.0,0.5625,0.0,0.6875) is not yet

P-feasible, and since the measure of integer infeasibility for the variables x i , x 2, X3 , x4, and X5 are

0 , 0, 0.4375, 0 , and 0.3125 respectively, PGCo generates the following Gomory cut from the row

corresponding to the most integer-infeasible binary variable, X3 .

0.1626xi + 0.2008x2 + 0.4375x4 + 0.1205x8 + 0.2965xi0 > 0.5625

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is no available Type 1 pivot, so PGC 0 performs a Type 2 pivot between xg and xe- This yields

the following simplex tableau.

—1.7142 + 12.7142xi -I- 6 x 2 4" X4 — 6 x§ -H 13.2857xio — C

—1.9524 + 3.9523xi + 5x 2 — 2 x 4 - 4x6 + 7.3809xio = x 8

0.8095 — 0.8095xi + 1.4761xi0 = X7

—5.5714 + 9.5714xi + x 2 -F 3 x 4 — 3x6 + 4.4285xio = xg

-0 .5 5 0 5 + 0.6755xi - 0.0625x2 + 0.0625x4 - 0.0625x6 - 0.0922xiO = i n

0.506 + 0.2440xi — 0.375x2 4- 0 .3 7 5 x 4 — 0.375x6 + 0.9226xiO = X3

2.0892 — 1.8392xi — 1.125x2 — 0.875x4 + 0.875x6 — 1.6607xio = X5

The solution (x i , • • •, X5) = (1 . 0 , 0 . 0 , 0 . 7 5 , 0 . 0 , 0 . 2 5) is not yet P-feasible, and has not yet crossed

the cut. PGCo finds a Type 1 pivot between xio and x 5. Performing the pivot yields the following

simplex tableau.

1 5 — 2 x i — 3x2 — 6 x 4 + X6 — 8 x 5 = C

7 .3 3 3 3 - 4 .2 2 2 2 x i - 5 .8 8 8 8 x 4 - 0 . 1 1 1 1 x 6 - 4 . 4 4 4 4 x 5 = x 8

2 .6 6 6 6 - 2 .4 4 4 4 x i - x 2 - 0 .7 7 7 7 x 4 + 0 . 7 7 7 7 x 6 - 0 . 8 8 8 8 x 5 = x 7

4 .6 6 6 6 x i - 2x2 + 0 .6 6 6 6 x 4 - 0 .6 6 6 6 x 6 - 2 .6 6 6 6 x 5 = x g

- 0 . 6 6 6 6 + 0 .7 7 7 7 x i + 0 . 1 1 1 1 x 4 - 0 .1 1 1 1 x 6 + 0 . 0 5 5 5 x s = x n

1 .6 6 6 6 - 0 . 7 7 7 7 x 1 - x 2 - 0 .1 1 1 1 x 4 + 0 .1 1 1 1 x 6 - 0 .5 5 5 5 x 5 = x 3

1 .2 5 8 1 - 1 .1 0 7 5 x i - 0 . 6 7 7 4 x 2 - 0 .5 2 6 8 x 4 + 0 .5 2 6 8 x 6 - 0 . 6 0 2 1 x 5 = x i 0

The solution (x i, • • ■ ,Xs) = (1 . 0 , 0 . 0 , 0 . 8 8 8 8 , 0 . 0 , 0 . 0) is not yet P-feasible, and has not yet crossed

the cut. PGCo again finds a Type 1 pivot between x 6 and X3 . Performing the pivot yields the

following simplex tableau.

4 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5:ri + 6 x 2 — 5x4 + 9^3 — 3x5 = C

9 — 5 x i — X2 — 6 x 4 — X 3 — 5 x 5 — ^ 8

- 9 + 3 x ! + 6 x 2 + 7x3 -p 3x5 = x 7

1 0 — 8 x 2 — 6 x 3 - 6 x 5 — X9

1 - x 2 - x 3 - 0 .5x5 = Xu

—15 + 7xi + 9 X2 + X4 + 9 X3 + 5 X5 = ^ 6

-6 .6451 + 2.5806X! + 4.0645x2 + 4.7419x3 + 2.0322x5 = x i 0

Finally, the solution (x i, • • • ,x s) = (1 .0 ,0 .0 ,1 .0 ,0 .0 ,0 .0) is P-feasible. Therefore, PGCo terminates

successfully.

Now we illustrate the execution of P G C i, where the pivoting rules are different from PG C 0, on

the same example. PG C i starts in the same way as PGCo by finding the optimal simplex tableau

and entering the search phase where it finds a Gomory cut from the row corresponding to the most

integer-infeasible binary variable, xi- Then it looks for a PG C i Type 1 pivot, and it finds one

between X6 and x 3. Performing this pivot yields the following tableau.

6 . 6 6 6 6 — 0.8333x2 — 3.5555x3 + 3.0555x7 + 0.8333xg + 1 .3 3 3 3 x 9 = C

1.6666 — 1 .3 3 3 3 x 2 — x 3 - O . I 6 6 6 X 9 = X 5

— 1 -1- 1 .5 x 2 + 1-7777x3 — 0 .2777x7 — 0.1666x8 = X4

1.3333 — 0 .6 6 6 6 x 2 — 1.3333x3 + 0.3333x7 + 0 .1 6 6 6 x 9 = x i

1.6666 — 0.8333x2 — 3.5555x3 4 - 2.0555x7 — 0.1666xs -I- 0.3333xg = X6

The solution (x i , • • -, X5) = (0 .6666,1.0,0.0,0.5,0.3333) is not yet P-feasible, and has not crossed

the cut. PG C i finds a Type 1 pivot between x 9 and x 5. Performing the pivot yields the following

simplex tableau.

20 — 1 1 .5 x 2 — 1 1 .5 5 5 5 x 3 4- 3.0555x7 + 0.8333xs — 8 x 5 = C

10 — 8x2 — 6x3 — 6x5 = X9

— 1 4- 1 .5 x 2 + 1 .7 7 7 7 x 3 — 0.2777x7 — 0.1666xs = X4

3 — 2 x 2 — 2 .3 3 3 3 x 3 + 0.3333x7 — x 5 = x i

5 — 3 .5 x 2 — 5 .5 5 5 5 x 3 + 2.0555x7 — 0.1666xs — 2 x 5 = X6

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The solution (x i, ■ ■ ■ ,x 5) = (1.0, 1.0, 0.0, 0.5, 0.0) is not yet P-feasible but has crossed the cut.

Therefore, PG C i adds the crossed cut to the simplex tableau. This yields the following tableau,

where Xio is the new surplus variable corresponding to the Gomory cut.

20 — 11.5x2 — 1 1 .5 5 5 5 x 3 + 3.0555x7 + 0.8333x8 — 8 x 5 = C

1 0 — 8 x 2 ~ 6 x 3 - 6 x 5 = x 9

- 1 + 1.5x2 + 1 .7 7 7 7 x 3 - 0.2777x7 - 0.1666x8 = x 4

3 — 2 x 2 — 2 .3 3 3 3 x 3 + 0 .3 3 3 3 x 7 — X5 = x i

5 — 3 .5 x 2 — 5 .5 5 5 5 x 3 + 2.0555x7 — 0.1666x8 — 2 x 5 = X6

1.0967 — 1.0967x2 — 1.2795x3 + 0.8602x7 — 0.5483xs = xio

Since the measure of integer infeasibility for the variables x i , x 2, X3 , x4, and x 5 are 0 ,0 ,0 ,0 .5 , and

0 respectively, PG C i constructs the following Gomory cut from the row corresponding to the most

integer-infeasible binary variable, x4.

0 .5 x 2 + 0 .2 2 2 2 x 3 + 0.2777x7 + 0.1666x8 > 0.5.

PG Ci again looks for a Type 1 pivot, and it finds one between x 8 and x4. Performing this pivot

yields the following tableau.

15 — 4 x 2 ~ 2 .6 6 6 6 x 3 + 1 .6 6 6 6 x 7 — 5x 4 - 8 x 5 = C

1 0 — 8 x 2 — 6 x 3 — 6 x 5 ' x 9

— 6 + 9 x 2 + IO.6 6 6 6 X3 — 1 .6 6 6 6 x 7 — 6 x 4 = x 8

3 — 2 x 2 — 2 .3 3 3 3 x 3 -I- 0 .3 3 3 3 x 7 — X5 = xi

6 — 5x 2 — 7 .3 3 3 3 x 3 + 2 .3 3 3 3 x 7 + z 4 — 2x 5 = x 6

1.0967 — 1.0967x2 — 1.2795x3 -I- 0.8602x7 — 0.5483x5 = xio

Finally, the solution (x i , ■ • -, x 5) = (1 .0 ,1 .0 ,0 .0 ,0 .0 ,0 .0) is P-feasible. Therefore, PG Ci terminates

successfully.

Although we have described PGC as a 0-1 mixed integer programming heuristic, it is easily

modified to be a heuristic for general mixed integer programs. It suffices to replace in our description

o f PGC the term ‘binary’ with the term ‘integer’. To illustrate, we show the execution of PG Ci on

the following simple general mixed integer program P .

min { x i -f x 2 | 6 x 1 + 4x 2 > 9, 3xi - 4 x 2 < 3, 3xi + 4x 2 < 18, x i ,X 2 € T?+) .

First, PG C i adds slack/surplus variables to create the following P + .

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m in { C = x i + X 2 \ 6 x 1 + 4 x 2 - = 9 , 3xi - 4 x 2 + x i = 3,

3xi + 4 x 2 + x 5 = 18, x i , x 2 € Tj\ , x 3 , x 4,xs € H +}.

m in X j + x 2

s .t . x j x 2 > 0 a n d in te g e r

3x i - 4x-y<= 3

6x j+ 4x') > = 9

3x j+ 4 x ? < = 18

Figure 3.2: Illustration o f PG C i on a small example. Thin lines show the original constraints. Bold
lines show the integer polytope. Dashed lines show the Gomory cuts PGC uses.

Next, PG C i finds the optimal solution ei = (| , j) o f the C (P +) shown in Figure 3.2. The

simplex tableau corresponding to ei has the following form, where x 3, x 4 are the nonbasic variables,

and x i , X2 , and X5 are the basic variables.

I f + h x * + n X4 “ C

f + | z 3 - | x 4 = Xi

\ + T2X3 + 6X4 = X2

13 - | x 3 - | x 4 = x 5

Since neither e 4 nor a rounding or truncating o f ei is P-feasible, PG C i selects the tableau row,

corresponding to the most integer-infeasible integer-constrained variable at e i , to generate a Gomory

cut. Since the measure o f integer infeasibility for the variables x i and X2 are | and | respectively,

4 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PGCi generates the Gomory cut jgXs + | x 4 > | from the tableau row corresponding to 21. This

Gomory cut is equivalent to 22 > 4 in the space of variables xi and 22. Figure 3.2 shows this cut

as G\. PGCi then looks for a Type 1 pivot and finds one between 21 and 24. Performing this pivot

brings PGCi to e2 = (0 , |) . Since PGCi has crossed the Gomory cut G\ and e2 is not P-feasible,

PGCi adds the crossed cut G\ as a new row, introducing a new surplus variable x&, in the simplex

tableau. The simplex tableau now has the following form, where 21,23 are the nonbasic variables,

and 22,24,25, and 26 are the basic variables.

f - | 2 i + \ x 3 = C

| - § Z l + \ x 3 - 2 2

12 — 92 i + £3 = 24

9 + 32i - 23 = 25

1 - an + §23 = 26

Since e2 is not P-feasible and PGCi has no Gomory cut in hand that is violated by e2, PGCi

generates a new Gomory cut from the tableau row corresponding to the most integer-infeasible

integer-constrained variable. Since the measure of integer infeasibility for the variables 21 and 22

are 0 and | respectively, PGCi generates the Gomory cut ^2i + ^23 > \ from the tableau row

corresponding to 22. This Gomory cut is equivalent to 221 +22 > 3 in the space of variables 21

and 22. Figure 3.2 shows this cut as G3- PGCi then looks for a Type 1 pivot, and as there is no

such pivot available, it looks for a Type 2 pivot. There exists only one Type 2 pivot between 25 and

23. Performing this pivot brings PGCi to e3 = (0 , §). Since PGCi has crossed the Gomory cut G2

and e3 is not P-feasible, PGCi adds the cut G2 as a new row, introducing a new surplus variable

27, in the simplex tableau. The simplex tableau now has the following form, where 21,25 are the

nonbasic variables, and 22,23,24,26, and 27 are the basic variables.

1 + 1 * 1 “ \ x s = C

9 3 1
2 4 ^ 1 4 ***5 — 2-2

9 + 321 — 25 = 23

21 — 621 — 25 = 24

I - 1*1 - 1*5 = *6

I + - n 3* = x 7

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since e-s is not P-feasible and PGCi has no Gomory cut in hand that is violated by e3, PGCi

generates new Gomory cut from the tableau row corresponding to the most integer-infeasible integer-

constrained variable. Since the measure of integer infeasibility for the variables Xi and x 2 are 0 and

| respectively, PGCi generates the Gomory cut \ x i + ^25 > \ from the tableau row corresponding

to x 2. This Gomory cut is equivalent to X\ + 2 x 2 > 8 in the space of variables 21 and x 2. Figure 3.2

shows this cut as G3. PGCi then looks for a Type 1 pivot, and as there is no such pivot available,

it looks for a Type 2 pivot. There exists only one Type 2 pivot between 27 and 25. Performing this

pivot brings PGCi to e4 = (0 , 3). Since PGCi has crossed the Gomory cut G3 and e4 is P-feasible,

PGCi terminates successfully returning e4 as a P-feasible solution.

In the previous example, PGCi does not reach a dead end. But in instances with a higher

number of integer-constrained variables, PGCi is more likely to reach a dead end. When it does, it

overcomes that situation by crossing the cut as described in the restart phase.

In this section, we have seen the details of PGC. In the next sections, we see how PGC performs.

3.3 Heuristic Performance Evaluation

Recent heuristics evaluate their performance on a set of benchmark instances, namely instances from

the libraries MIPLIB and DEISLIB. These libraries contain one or two instances of many different

kinds of optimization problems. For testing purposes, it is of interest to be able to generate more

instances of these kinds of problems. In this thesis, we compared our heuristics on the available

benchmark instances as well as on two classes of pseudo-randomly generated hard 0-1 integer pro

gram instances. One class of instances is from our introduced constrained market-sharing problem

described in Chapter 6. The other is from Cornuejols-Dawande feasibility and optimality model of

the market-sharing problem described in § 2 .3 .2 .

Recent feasibility heuristics such as FP, the new implementation of PS, evaluated their per

formance only against commercial solvers such as Cplex and Xpress, rather than against each

other. Similarly, recent improvement heuristics (with the exception of RINS, which compared itself

against both the commercial solver Cplex as well as the heuristic LB) evaluated their performance

only against the commercial solvers.

In this thesis, we have evaluated the performance of our new heuristics both against some com

mercial solver and some comparable recent non-commercial heuristics as well as any previous

heuristic on which our new heuristic is based.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 PGC Performance Evaluation

To evaluate the performance of PGC, we compared it against three solvers: FP, the recent feasibility

heuristic, PC, the heuristic on which PGC is based, and Cplex Version 9.13, a commercial mixed

integer programming solver. We also compared PGC against PBS Version 4.0, a state of the art

pseudo-boolean solver, on the 0-1 integer program instances.

From the benchmark suite shown in Table B .l- B.3 of Appendix B, we chose all 77 0-1 mixed

integer program instances with the exception of instance lstp3d’. We omitted this instance because

the GLPK linear programming solver cannot handle this instance, and a feasible solution for this

instance is yet unknown. We also chose some pseudo-randomly generated instances of two different

kinds of problems. One class is from the constrained market-sharing problem defined in Chapter 6.

The other is from the Cornuejols-Dawande feasibility model of market-sharing problem described

in § 2.3.2.

We ran all experiments on a 2403 MHz AMD Athlon processor with 128 MByte of memory

under Redhat Linux 9.0. We implemented PC, both versions of PGC, and FP in the C programming

language on top of version 4.0 of the open source GLPK. We alloted one CPU-hour to each solver

for finding a feasible solution o f a particular instance.

In the following sections, we see the comparison of PGC against the considered solvers.

3.4.1 PGC0 versus PGCi versus PC

Since we consider PC as the predecessor of PGC, we first compare both versions o f PGC against

our implementation of PC.

Table 3.1 and 3.2 summarize the performance of PGCo and PG C i against PC. For detailed

experimental results o f PC, PGCo, and P G C i, see Table B.4 in Appendix B.

From Table 3.1 and 3.2, we see that both PGCo and PG C i are much more successful than PC

in finding some feasible solution. Among the instances in which PC succeeds, PG C i is faster to

find a solution more often than PC, whereas PC finds a better solution more often. Since our prime

objective is to find a feasible solution as soon as possible, PG Ci outperforms PC on the chosen

benchmark instances with respect to both success rate and time.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: PC versus PGCo on 77 benchmark instances. Entries indicate

number of instances.

PC PG C0

successful 29 62

among the 29 instances in which PC succeeds

takes lesser amount o f time in 9 9

takes equal amount of time in 11

finds better solution in 15 6

finds same solution in 8

Table 3.2: PC versus PG C i on 77 benchmark instances. Entries indicate

number o f instances.

PC PG C i

successful 29 62

among the 29 instances in which PC succeeds

takes lesser amount of time in 5 17

takes equal amount of time in 7

finds better solution in 24 4

finds same solution in 1

This experiment also shows the advantage of PGC restart phase in the way that PGC restart

phase always brings execution back to the search phase, whereas PC restart phase failed to bring

execution back to the search phase in 35 of the 77 instances. PGC restart phase is guaranteed to

bring the execution back to the search phase since the simplex method applied at the search phase

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is guaranteed to cross the cut, whereas the complementation of one or two nonbasic variables in PC

may fail to bring the execution back to the search phase.

P G C o and P G C i succeed on the same 6 2 instances. Table 3 .3 summarizes the performance

o f only P G C o and P G C i • This table supports our belief that the Gomory cut guided pivot rules

of PG C i are more effective in finding feasible solutions quickly than the PC-pivot rules of PG C 0,

which are focused on good objective value.

Table 3.3: PGCo versus PG C i on the 62 instances in which both suc

ceed. Entries indicate number of instances.

PGCo PG Ci

takes lesser amount of time in 11 33

takes equal amount of time in 18

finds better solution in 27 16

finds same solution in 19

Since PG C i outperforms PGCo with respect to finding a feasible solution quickly, we pick

PG C i as the version of PGC to compare against other solvers.

3.4.2 PGCi versus Feasibility Pump

Table 3.4 summarizes the performance of FP and PG C i • For detailed results on FP and P G C i, see

Table B.5 in Appendix B. Results shown in Table 3.4 suggest that PG Ci is a competitive alternative

o f FP in finding a feasible solution as quickly as possible.

4 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.4: FP versus PG C i on 77 benchmark instances. Entries indicate

number of instances.

FP PGCi

successful 63 62

among the 66 instances in which at least one succeeds

takes lesser amount of time in 26 29

takes equal amount o f time in 11

among the 59 instances in which both succeed

finds better solution in 28 17

finds same solution in 14

3.4.3 PGCi versus ILOG Cplex 9.13

In order to show how PG C i compares against state-of-the-art mixed integer program solvers, we

used ILOG Cplex 9.13 mixed integer program solver in its default setup, called Cplex-D, as well as

the setup with the emphasis for finding feasible solutions as early as possible, called Cplex-F.

Before showing the comparison against Cplex 9.13 mixed integer program solver, it is to be

noted that the Cplex mixed integer program solver uses the Cplex linear programming solver, which

is considerably faster than the GLPK linear programming solver on which we implemented PGC and

FP. Table B.6 in Appendix B shows the comparison o f the Cplex linear programming solver against

the GLPK linear programming solver. We used GLPK linear programming solver since we had the

access to the entire code of GLPK; this allowed us to implement PGC using the data structures

o f GLPK. For example, we had access to the GLPK allocated data structures to access the simplex

tableau; we had direct access to the parameters of basic solutions. In contrast, we did not have access

to the Cplex code, and we would need to re-allocate memory for the data structures and would need

to make function calls for the necessary parameters o f basic solutions. Since implementing PGC

requires accessing the simplex tableau and other parameters of the given integer program frequently,

we did not choose Cplex to implement PGC using the functions available to the Cplex users. The

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overhead associated with the function calls and the re-allocation of the data structures would not

reflect the true performance of PGC.

Table 3.5: Cplex-D versus PG C i on 77 benchmark instances. Entries

indicate number of instances.

Cplex-D PG C i

successful 71 62

among the 71 instances in which either one succeeds

takes lesser amount of time in 45 15

takes equal amount of time in 11

among the 62 instances in which both succeed

finds better solution in 49 8

finds same solution in 5

Table 3.6: Cplex-F versus PG C i on 77 benchmark instances. Entries

indicate number of instances.

Cplex-F PG C i

successful 73 62

among the 73 instances in which either one succeeds

takes lesser amount o f time in 47 17

takes equal amount of time in 9

among the 62 instances in which both succeed

finds better solution in 46 12

finds same solution in 4

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.5 and Table 3.6 summarizes the performance of PG C i against Cplex-D and Cplex-F

respectively. For detailed results, see Table B.7 in Appendix B.

In spite of using GLPK linear programming solver, PG C i takes equal or less amount o f time to

find a feasible solution comparing to the Cplex in about one third instances of the benchmark suite.

3.4.4 PGC versus a Pseudo-Boolean Solver

In our chosen 77 0-1 mixed integer program benchmark instances, there are 10 instances that are 0-1

integer programs. We compare PG C i against pseudo-boolean solver PBS4 on these 10 instances.

Table 3.7 summarizes the performance of PG C i against PBS4. For detailed result, see Table B.8 in

Appendix B.

Table 3.7: PBS4 versus PG C i on 10 0-1 integer programming bench

mark instances. Entries indicate number of instances.

PBS4 PG Ci

successful 8 8

among the 10 instances in which either one succeeds

takes lesser amount of time in 5 5

among the 6 instances in which both succeed

finds better solution in 0 6

The results shown in Table 3.7 suggest that, in finding feasible solutions quickly, PG C i is com

petitive to PBS4 on this set of instances.

3.4.5 Performance on Randomly Generated Instances

We now show the performance of different solvers on a set of pseudo-randomly generated

Comuejols-Dawande feasibility-hard instances described in § 2.3.2.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For instances with n variables and m constraints, Comuejols and Dawande showed that picking

the relation n — 10(m — 1) yielded the hardest instances for their optimality model of market-

sharing problem. Later, Aardal et al. showed that the Cornuejols-Dawande feasibility-hard instances

generated with n = 10(m — 1) are with high probability infeasible. However, it follows easily from

their analysis that choosing different values for n and m yields Cornuejols-Dawande feasibility-hard

instances that are with high probability feasible.

Table 3.8 shows the probability measures, namely the probability of a generated instance being

infeasible and the expected number of solutions o f a generated instance, of Cornuejols-Dawande

feasibility-hard instances for some n and m.

Table 3.8: Probability measures for the Cornuejols-Dawande feasibility-

hard instances generated with different n and m. The values are obtained

using the analysis of Aardal et al. [1].

Problem size Probability of

being infeasible

Expected number

o f solutionsn m

10 2 0.971 0.029

15 2 0.535 0.624

20 2 2.89e-07 15.056

20 3 0.925 0.077

25 3 0.169 1.778

30 3 1.39e-19 43.414

30 4 0.826 0.191

35 4 0.011 4.509

40 4 8.407e-49 110.69

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since our objective is to evaluate the performance of feasibility heuristics, the generated in

stances should have at least one feasible solution and finding any such solution should be hard.

Therefore, based on the values shown in Table 3.8, we chose n = 10m to generate Cornuejols-

Dawande feasibility-hard instances. Notice that for this choice of n and m the probability of a

generated instance being infeasible is close to zero. Also, to indicate that these instances are fea

sibility hard, the expected number of solutions for the generated instance is found to be very low

compared to 2", the total size of the enumeration space.

Using n = 10m, we pseudo-randomly generated five Cornuejols-Dawande feasibility-hard in

stances with 10 to 50 variables each. The experimental results presented in Table B.9 of Appendix B

show that both Cplex-D and Cplex-F perform better than other considered solvers on this set o f in

stances. PBS4 performs well for smaller instances but becomes worse as the instance size grows.

Between FP and P G C j, there is no clear winner on this set of instances.

While PG C i is much worse than Cplex in the Cornuejols-Dawande feasibility-hard instances,

we now show a set o f instances where PG C i is much stronger than Cplex. We do not know the

reason for this difference in PG C ’s performances. In Chapter 6, we suggest some possible explana

tions.

We show that PG C i is much stronger than Cplex in a set o f pseudo-randomly generated con

strained market-sharing instances presented in Chapter 6. We generated instances from three groups.

A parameter k differentiates these groups, where k is introduced to relate the number o f variables n

and the number o f constraints m of instances. The relation between n and m is defined by m = .

In the first group we set k = 2.0 and generated five pseudo-random instances of the problem

with 50 to 400 variables each. Table B. 10 of Appendix B shows the performance of different solvers

on this set o f pseudo-randomly generated instances.

In the second group we set k = 1.5 and generated five pseudo-random instances o f the problem

with 50 to 200 variables each. Table B. 11 of Appendix B shows the performance o f different solvers

on this set of pseudo-randomly generated instances.

In the third group we set A: = 1.3 and generated five pseudo-random instances of the problem

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with 50 to 150 variables each. Table B. 12 of Appendix B shows the performance of different solvers

on this set of pseudo-randomly generated instances.

Results shown in Table B.10- B.12 of Appendix B suggest that PG Ci outperforms all the con

sidered solvers on this set of instances within the time limit o f one CPU-hour. In Chapter 6, where

we introduce this set of instances as a new class of hard 0-1 integer program instances, we present

results of a large-scale experiment. In the large-scale experiment, we generated 100 instances of

each size instead of generating only 5 instances. However, the performance o f different solvers

remained similar in the instances of the large-scale experiment.

3.4.6 Weakness of PGC

Our experiments revealed some weaknesses in the PGC search phase. It often reaches a dead end

without having improved feasibility, namely without finding many pivots of Type 1 or Type 2. This

happened in instances such as lOteams, ds, netl2 , protfold, tl7171, swath. Also, execution some

times terminated without reaching a dead end, namely finding too many pivots of Type 1 and Type 2.

This happened in instances such as dano3mip, momentum 1, nsr8k, rail4284c, rail4872c, and sienal.

Possible remedies o f these flaws include the termination o f the search phase after a certain num

ber of pivots and the application o f a neighbourhood search around the extreme point at that stage.

We incorporated these ideas in another new ‘find and improve’ type heuristic NPGC, which we

describe in Chapter 5.

3.5 Complexity of PGC

To show that PGC successfully terminates in a finite number of steps, we need to show that PGC

performs a finite number of different pivots and uses a finite number of Gomory cuts. The number

o f Type 1 pivots in a search phase is bounded by the number of binary decision variables. However,

the number o f Type 2 pivots is not bounded by a finite number as long as the number of Gomory

cuts added in PGC is not shown to be finite. Though Gomory, in his cutting plane algorithm [40],

showed that there is a way of adding Gomory cuts that lead to an optimal solution in a finite number

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of steps if the objective function is integer valued, we are unable to show that the way Gomory cuts

are added in PGC ensures finding a feasible solution in a finite number of steps.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Distance Induced Neighbourhood

Search

In this chapter we present D IS T A N C E IN D U C E D N E IG H B O U R H O O D S E A R C H (DINS), a new mixed

integer programming improvement heuristic. D IN S is based on neighbourhood search. It defines

a promising search neighbourhood around a known feasible solution at different nodes of a mixed

integer program search tree generated by either a branch-and-bound or a branch-and-cut solver, and

searches that neighbourhood with either a branch-and-bound or a branch-and-cut solver.

Recall that the L ocal B ran c h in g [35] and R ela x a t io n In d u c e d N eig h b o u r h o o d

SEARCH [29] heuristics described in § 2.2.11 and § 2.2.12 define such search neighbourhoods in

two different ways, namely by respectively soft fixing and hard fixing integer-constrained variables.

DINS defines its search neighbourhood by using a metric that measures at a node of a mixed integer

program search tree the distance between the current mixed integer program solution and the node’s

associated relaxation solution.

As in the implementation of LB and RINS by Danna et al. we use the commercial solver Cplex

both to generate the mixed integer program search tree and to search the neighbourhoods.

In the next sections, we see the details o f DINS.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Distance Induced Neighbourhood Search

In § 2.1 and § 3.1 we gave the formulation of an integer program and a 0-1 mixed integer program

respectively. We now give the analogous formulation of a general mixed integer program. We as

sume that the input program P is a mixed integer program of the form shown below, where c ,x ,b , A

have dimensions n , n , m , m x n respectively, N = { 1 , . . . , n} is the set o f variable indices of P

which is partitioned into (B , Q, C) with B, Q, and C denoting the indices of binary, general integer,

and continuous variables respectively, and, for each index j for which x j is a non-binary variable, lj

and U j denote the respective lower and upper bounds for X j . An integer-constrained variable is any

variable in B U Q.

P: min { cx \ A x > b, X{ e {0,1} Vi G B,

Xj G TL and lj < Xj < Uj Vj G G, lj < Xj < Uj Vj G C}.

In contrast to RIN S, which performs only hard fixing of arbitrary variables, and LB, which

performs only soft fixing o f integer-constrained variables, DINS incorporates some hard fixing,

some soft fixing, and some rebounding of integer-constrained variables. Furthermore, in DINS all

fixings are based on a distance metric between the known mixed integer program solution and a

relaxation solution. Rebounding o f a variable means imposing new lower and upper bounds on the

variable by changing its current bounds.

In [29], Danna et al. tried two hybrid strategies of RINS and LB and concluded that the resulting

performances were not better than that of RINS alone. In this thesis, we show that DINS outper

forms both RINS and LB on a benchmark test suite that includes all the instances from Danna et al.

[29] as well as many other instances.

Like RINS, DINS also relies on the fact that, during the mixed integer program search tree ex

ploration, the relaxation solutions at those nodes that are not pruned always provide a better objective

value than that o f the current mixed integer program solution.

But unlike in RIN S, the intuition in DIN S is that the improved mixed integer program solutions

are more likely to be close to the current relaxation solution. An exact modeling o f this intuition

would require the inclusion of the following quadratic inequality,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— x j(node)) ^ Y l j e N ^ Xj{ m iP) ~~ x j{node)) >

where xmjp and x„0de denote the current mixed integer program solution and the current relaxation

solution, and for a variable Xj, Xj(mip) and Xj(node) denote the values of Xj in x m ip and x node

respectively.

Unfortunately, this quadratic inequality cannot be expressed as a linear programming constraint.

DINS relaxes the intuition by considering that the improved solutions are close to x node only with

respect to the integer-constrained variables, as measured by the following inequality based on the

absolute differences.

Sj'gBUp IX1 ~ x j(node) \ — XyjgBUS Ix j(m ip) ~ x j(node) |-

DINS then partially captures this inequality, the chosen distance metric, by defining a neighbour

hood with some rebounding, some hard fixing, and some soft fixing of the integer-constrained vari

ables.

The details o f its neighbourhood definition are as follows.

Notice that if an integer-constrained variable, for which the absolute difference between a j(mtp)

and Xj^node) is less than half, takes a different value than Xj(mip) in an improved solution, the

absolute difference increases. For example, assume that the lower and upper bound o f an integer-

constrained variable x j are 0 and 3 respectively. Also assume that Xj(mip) = 2 and x j (node) = 1.7.

Then the absolute difference is 0.3 which is less than half. Now if x j takes any integer values

from [0, 3] other than 2, the absolute difference will be greater than 0.3. On the other hand, if

an integer-constrained variable, for which the absolute difference between Xj(mip) and Xj(node) is

greater or equal to half, takes a different value than x j (miP) >n an improved solution, the absolute

difference may not increase. For example, assume that for the same variable x j , x j(miP) — 2 and

x j(node) — 1-3- Then the absolute difference is 0.7 which is greater than half. Now if x j takes the

value 1, the absolute difference decreases; if it takes value 0 or 3, the absolute difference increases.

DINS changes the lower and upper bounds of an integer-constrained variable Xj, for which

the absolute difference between its value in x mjp and x node is greater or equal to half, so that at

an improved solution this absolute difference does not increase. Considering l?ld and u°ld as the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing lower and upper bounds o f Xj, D IN S computes the new lower and upper bound l™ew and

u new respectively in the following way.

if (Xj(jnip) ^ Kjinode)) then

lj , [a^j(node) (•*'j(mip) ^j{node))])> Uj ̂ Xj(rnip)

elsif (Xj(mip) <C ^j(node)) then

l ^CŴ ~x j(mip)y Uj ■<—min(Uj- , [_Xj(nod(') "b (x j(node) ~ •^j(mip))\)•

We call this process rebounding. Rebounding does not change existing bounds for all the integer-

constrained variables Xj for which — Xj(node) | > 0.5. For example, no binary variable, for

which |Xj(mip) - Xj(node) \ > 0.5, changes its bounds.

Now, if all the integer-constrained variables, for which |xy(miP) - Xj(node) I < 0.5, are fixed

to Xj (mip) , then any solution found from the neighbourhood obtained by rebounding is obviously a

closer one to x node in terms of the chosen distance metric.

But, the sum of absolute differences can also decrease, if the total decrease d in the sum of

absolute differences caused by the integer-constrained variables for which |Xj(mtp) — x j(node) I >

0.5 is greater than the total increase d! in the sum of absolute differences caused by the integer-

constrained variables for which |x j(mip) — Xj(node) | < 0.5. The expression of d and d! are as

follows.

d — ^ ' \x j(mip) ^j(node) I ^ •^j(node)\i
j e B U Qh j e B U QA

Ix j (m i p) x j (node) \ 0 -^ \x j (m i p) x j (node) \ ^

and

d — ^ ̂ I X j x j (n o d e) I ^ ^ \x j (7nip) 2 - j (n o d e) | -
j e B u q a j e B u s a

\Xj (mip) *r j (n o d c) l 0 .5 \x j (m i p) ^ (n o d e) ! 0 .5

DINS partially captures this observation by allowing the integer-constrained variables Xj, for which

\xj(mip) — Xj(node) I < 0-5, to change their values in x mip so that d! is not larger than a chosen small

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number p . It does this by performing some soft fixing and some hard fixing of these variables. It

performs soft fixing through the LB inequality, and as noted in § 2.2.11, the LB inequality requires

inclusion of new variables when general integer variables are considered. As in [35] and [29],

DINS constructs the LB inequality using only 0-1 variables. Therefore, it fixes all the general

integer variables x j with | i j (mtp) — £ j(node)| < 0.5 at Xj(mipy Such fixing is known as hard fixing

o f variables.

Among the binary variables, for which \xj(mip) — x y node) | < 0.5, DINS performs some hard

fixing like RIN S, but incorporates some more intuitions in this process. Like R IN S, DINS chooses

the same set o f variables, that agree in both x m iP and x n o d e , as the primary candidates for hard

fixing. However, we think that all the variables in this primary candidate set are not equally likely

to stay in their current values at x m iP . Notice that the objective value corresponding to the root

relaxation solution, x r o o t , o f the search tree provides a lower bound on the objective value of mixed

integer program optimal solution at the beginning o f search tree, and the previously encountered

mixed integer program solutions at a point o f execution are the known feasible solutions. Since the

objective o f DINS is to find improved feasible solutions, from the improvement point o f view it uses

x r0 o t , and from the feasibility point of view it uses the encountered mixed integer program solutions

in guiding the hard fixing of binary variables. For this purpose, DINS applies a filtering step to the

primary candidate set using two pieces o f information. The first o f these comes from the intuition

that a variable in the primary candidate set, that takes the same value in x root and x n o d e , is more

likely to take the same value in improved solutions. The second comes from the intuition that a

variable in the primary candidate set, that takes the same value in the previously encountered mixed

integer program solutions, is more likely to take the same value in improved solutions. DINS uses

an array o f flags to keep track of the variables that take different values in the previously encountered

mixed integer program solutions. Thus, more explicitly, DINS performs the hard fixing of binary

variables in the following way. Let A be an array where A[j] is set if x j takes different values in

previously encountered mixed integer program solutions. Then, DINS fixes a binary variable Xj at

value Xj(mip} i f Xj^rn.ip) x j (node) Xj (roof) and A[j] is clear.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let J- and T~L denote the set o f variables for which rebounding and hard fixing have been per

formed respectively. Now assume 7Z is the set of variables where 1Z = (BUQ) — P — P . According

to our construction 7Z contains only binary variables. DIN S performs soft fixing on the variables in

7Z by adding the following LB inequality.

S j e r c a xj(m ip)= o x i + S j e w a x H m i p) = i C1 ~ x i) ^ P -

DINS generates its search neighbourhood taking small values for p . Therefore, a solution found by

searching this neighbourhood can have a sum of absolute differences increased by at most p .

The definition o f DINS search neighbourhood ends here.

Procedure DINS_at_tree_node
INPUT: a 0-1 mixed integer problem P , the current mixed integer program solution x m iP ,

the current node relaxation solution x no d e> the root relaxation solution x r o o t , parameter p ,

node limit nl, and the flag array A.
OUTPUT: if successful, return a new mixed integer program solution x * , otherwise return x m ip .

1. if (x mip is a new mixed integer program solution compared to the solution
at the termination of last call o f this procedure)

update the array A accordingly.
2. x* «— x m ip ; p cu rren t —̂P\ exploredAndNoSolution -(—false.
3. repeat
4. construct P + from P as follows:

(i) perform rebounding of the variables x j for which \x* — Xj(node) | > 0.5,
(ii) perform hard fixing of the general integer variables Xj

for which \x* - X j(n o d e) | < 0.5,
(iii) perform hard fixing of the binary variables Xj for which

X* = x j(node) = x j(root) and A[j] is clear,
(iv) let 1Z be the set of remaining binary variables.

if (|7£| > Pcurrent) perform soft fixing by adding the inequality
S j g T C A i t = 0 X j S j e T J A x t = l (l — x j) ^ P c u r r e n t -

5 . Apply a branch-and-bound or branch-and-cut like exact solver to P + with node limit
nl and an objective cutoff equal to the objective value provided by x * .

6. if (a new solution x new is obtained) then
7. x * < - x n e w ; Pcurrent ̂ P* update the array A.
8. else if (node limit reached without having a new solution) then
9. if (|7?.| = 4>) Pcurrent*-------1-
10. else Pcurren t ^ Pcurrent b.
11. else exploredA ndN oSolu tion true.
12. until (Pcurrent < 0 or exploredAndNoSolution)
13. return x*.

Figure 4.1: A pseudo-code description of DINS.

Now, whenever we apply DINS procedure at a particular node of the mixed integer program

search tree, it creates the described neighbourhood with the initial chosen value of p and explores

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it using either a branch-and-bound or a branch-and-cut solver with a specified node limit nl. If the

exploration reaches the node limit without finding a new solution, as a step to intensify the search,

DINS reduces p by 5 to reduce the size of neighbourhood and explores the new neighbourhood.

This continues until p < 0, or the neighbourhood exploration finds a new solution, or DINS ex

plores the neighbourhood completely without finding a new solution. Whenever the neighbourhood

exploration finds a new solution, DINS resets p to its initial chosen value and continues in the same

fashion. Figure 4.1 shows the operation sequence of DINS at a particular node of the mixed integer

program search tree. At the termination of the procedure, execution returns to the exploration of the

mixed integer program search tree. If the procedure finds a new mixed integer program solution, the

algorithm updates the mixed integer program solution at the mixed integer program search tree.

Like R IN S, we call the DINS procedure first at the node at which the mixed integer program

search tree finds the first feasible solution. Thereafter, we call the DINS procedure at every / nodes

of mixed integer program search tree for some reasonably large / .

4.2 DINS Performance Evaluation

To evaluate the performance o f DINS, we compared it against three solvers: R IN S, the recent

improvement heuristic, LB, the heuristic from which PGC uses some ideas, and Cplex Version

9.13, a commercial mixed integer programming solver, in its default setup called Cplex-D.

From the benchmark suite shown in Table B. 1- B.3 o f Appendix B, we chose all 64 mixed integer

program instances with the exception of those instances for which Cplex-D either gives the proof

of optimality or fails to find a solution in one CPU-hour. We also chose some pseudo-randomly

generated instances o f two different class o f problems. One class is from the constrained market-

sharing problem defined in Chapter 6. The other is from the Cornuejols-Dawande optimality model

of market-sharing problem described in § 2.3.2.

We ran all experiments on a 2403 MHz AMD Athlon processor with 128 MByte of memory

under Redhat Linux 9.0. We implemented LB, RIN S, and DINS in the C programming language

with the mixed integer program search tree generated by Cplex-D. We alloted one CPU-hour to each

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solver, and it seemed to be sufficient to distinguish the effectiveness of all the solvers.

The three solvers namely LB, RIN S, and DINS have a set o f parameters which needed to be

set. As in [29], for LB we set p = 10 and nl — 1000, and for RINS we used Cplex 9.13 with the

parameter IloCplex::MIPEmphasis set to 4, where according to [29] / = 100 and nl — 1000. For

DINS we set p = 5, different from LB to allow the neighbourhood to voilate the chosen distance

metric little and to keep the neighbourhood small, / = 100, and nl = 1000 as in RINS.

There is no exact way to distinguish a good and a poor mixed integer program solution without

knowing the optimal solution. However, following Danna et al. [29] we presume that first mixed

integer program solution found by Cplex-D represents a poor solution, and the mixed integer pro

gram solution found by Cplex-D in one CPU-hour represents a good solution. In our experiment,

we attempted to see how DINS compare against RIN S, LB, and Cplex-D starting from both the

presumed poor and good initial solution on the chosen benchmark instances.

4.2.1 DINS Performance Evaluation from the Presumably Poor Solutions

We first invoked the Cplex-D to find the first solution and then invoked different solvers with the

found solution as a known solution at the root node of the mixed integer program search tree. This

provided all four solvers the same starting solution.

In order to capture the quality o f obtained solution by each solver, we use the measure percentage

o f gap defined by 100* | (objective value of obtained solution — objective value of the best known

solutionj/objective value of the best known solution |.

Table B.13 of Appendix B shows the percentage of gap obtained at the end of one CPU-hour

by all the four solvers, where the bold face identifies the best solver for the corresponding instance;

multiple bold faces appear for an instance if there are multiple solvers obtaining the same solution.

Following Danna et al. [29], we group the instances into three different sets so that the effec

tiveness o f different solvers in different groups becomes visible. According to [29], an instance is

in group ‘small spread’, ‘medium spread’, and ‘large spread’, if the gap between its worst solution,

among the found solutions by four solvers, and its best known solution is less than 10%, between

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10% and 100%, and larger than 100% respectively. The percentage of gaps shown in Table B.13 are

used to group the instances.

We use three measures to evaluate the performance of different solvers.

Our first measure is the number of instances for which a solver finds a better solution than the

solution obtained by other solvers.

Our second measure is the percentage o f gap. We calculate the average and the standard devia

tion of percentage of gaps obtained on a group of instances.

Our third measure is the percentage o f improvement defined by 100* | (objective value of the

initial solution — objective value o f the obtained solution) /objective value o f the initial solution].

We calculate the average and the standard deviation of percentage of improvements obtained on a

group of instances.

Table 4.1- 4.3 summarize the performance of DINS, with respect to the first measure, against

Cplex-D, LB, and RINS respectively. Table 4.4 and 4.5 show the average and the standard deviation

o f other two measures respectively for different solvers.

Table 4.1: Cplex-D versus DINS starting from a presumably poor so

lution on 64 benchmark instances. Cplex-D better: the number of in

stances at which Cplex-D finds better solution than DINS. DINS better:

the number o f instances at which DINS finds better solution than Cplex-

D. Tied: the number o f instances at which both Cplex-D and DINS find

the same improved solution. Entries indicate number of instances.

Cplex-D better DINS better Tied

10 44 10

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: LB versus DINS starting from a presumably poor solution on

64 benchmark instances. Entries indicate number of instances.

LB better DINS better Tied

8 49 7

Table 4.3: RINS versus DIN S starting from a presumably poor solution

on 64 benchmark instances. Entries indicate number of instances.

RINS better DINS better Tied

20 32 12

Table 4.4: The average (x) and the standard deviation (5) o f percentage

of gaps obtained by Cplex-D, LB, RIN S, and DINS starting from a

presumably poor solution on 64 benchmark instances.

Cplex-D LB RINS D IN S

X 5 X 6 i <5 X S

On all 64 instances 44.22 191.29 51.19 188.84 41.33 253.77 39.73 232.19

On 45 small spread instances 1.86 2.35 1.81 2.44 1.05 1.99 0.97 1.72

On 13 medium spread instances 15.41 12.74 17.72 17.25 10.35 13.94 9.74 12.64

On 6 large spread instances 424.28 518.63 494.07 433.95 410.51 793.91 395.38 715.03

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.5: The average (x) and the standard deviation (8) of percentage

of improvements obtained by Cplex-D, LB, RIN S, and DINS starting

from a presumably poor solution on 64 benchmark instances.

Cplex-D LB RIN S D IN S

X <5 X S X & X 5

On all 64 instances 36.19 35.08 35.49 34.01 38.01 35.49 38.05 35.43

On 45 small spread instances 23.41 29.17 23.61 29.02 23.90 29.22 23.92 29.14

On 13 medium spread instances 60.43 27.93 60.25 27.34 62.05 25.61 62.29 25.44

On 6 large spread instances 80.78 28.96 70.90 31.60 91.64 6.31 91.66 6.22

The results shown in Table 4.1- 4.5 suggest that starting from the presumably poor solutions, DINS

is better than the other three solvers with respect to all three measures.

Now, for different group of instances, Figure 4.2- 4.4 show how solution quality, the average

percentage of gap, changes over time for different solvers. Analyzing these figures, we find the

following differences among the solvers in these three group o f instances. For all three group of

instances, DINS is worse than RINS at the initial level o f computation, but it becomes better as the

computation progresses, and once it becomes better, it maintains its lead over RINS for the remain

ing part o f the computation. For small and large spread instances, DINS obtains the lead over RINS

earlier than in medium spread instances. Similarly in medium and large spread instances, DINS is

worse than Cplex-D at the initial level o f computation, but it becomes better as the computation

progresses. LB is always worse than RINS and DINS where, at the end o f time limit, LB has an

edge over Cplex-D only in small spread instances.

4.2.2 DINS Performance Evaluation from the Presumably Good Solutions

We first invoked the Cplex-D for one CPU-hour and then invoked different solvers with the found

solution from the Cplex-D as a known solution at the root node o f the mixed integer program search

tree. This provided all four solvers the same presumably good starting solution.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cplex-D -1-
LB <— *■■

RINS
DINS t-e-

10

8

6

4

2

0
0 10 20 30 40 50 60

Time (in CPU-minutes)

Figure 4.2: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the small spread instances starting from presumably poor solution. Vertical lines show
the standard deviation from the average.

100
Cplex-D

LB
RINS
DINS

80

60

Cl
(0
05

o»

a
05

0 10 20 30 40 50 60
Time (in CPU-minutes)

Figure 4.3: Curves in horizontal direction show the change in average percentage o f gap by different
solvers on the medium spread instances starting from presumably poor solution. Vertical lines show
the standard deviation from the average.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2000
Cplex-D

LB >- -x—
RINS
DINS t - a -

n 1000

20 30 40
Time (in CPU-m inutes)

Figure 4.4: Curves in horizontal direction show the change in average percentage o f gap by different
solvers on the large spread instances starting from presumably poor solution. Vertical lines show the
standard deviation from the average.

Table 4.6- 4.8 summarize the performance of DINS, with respect to the first measure, against

Cplex-D, LB, and RINS respectively. Table 4.9 and 4.10 show the average and the standard devia

tion of other two measures respectively for different solvers.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.6: Cplex-D versus DINS starting from a presumably good so

lution on 64 benchmark instances. Cplex-D better: the number of in

stances at which Cplex-D finds better solution than DINS. DINS better:

the number of instances at which DINS finds better solution than Cplex-

D. Tied: the number o f instances at which both Cplex-D and DINS find

the same improved solution. No new solution: the number of instances

at which both Cplex-D and DINS fail to find a new solution. Entries

indicate number of instances.

Cplex-D better DINS better Tied No new solution

7 43 2 12

Table 4.7: LB versus DINS starting from a presumably good solution

on 64 benchmark instances. Entries indicate number of instances.

LB better DINS better Tied No new solution

9 35 9 11

Table 4.8: RIN S versus DINS starting from a presumably good solution

on 64 benchmark instances. Entries indicate number of instances.

RINS better DINS better Tied No new solution

11 30 12 11

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.9: The average (x) and the standard deviation (6) of percentage

of gaps obtained by Cplex-D, LB, RIN S, and DINS starting from a

presumably good solution on 64 benchmark instances.

Cplex-D LB RIN S DIN S

X 5 X 6 X <5 X S

On all 64 instances 32.43 172.67 31.67 172.77 31.21 172.82 29.14 161.29

On 45 small spread instances 1.41 1.92 1.07 1.79 0.56 0.92 0.54 1.17

On 13 medium spread instances 13.57 14.67 10.63 13.45 10.46 13.00 8.59 11.48

On 6 large spread instances 305.92 525.17 306.77 524.64 306.06 525.07 288.17 488.36

Table 4.10: The average (x) and the standard deviation ((5) o f percentage

of improvements obtained by Cplex-D, LB, RIN S, and DINS starting

from a presumably good solution on 64 benchmark instances.

Cplex-D LB RINS D IN S

X <5 X 6 X S X 5

On all 64 instances 2.35 11.28 3.04 11.31 3.45 11.23 3.96 11.38

O n 45 small spread instances 0.45 0.98 0.78 1.26 1.26 1.97 1.29 1.88

On 13 medium spread instances 2.50 4.43 4.91 5.23 5.10 3.50 6.57 4.73

On 6 large spread instances 16.31 35.78 15.96 35.76 16.27 35.76 18.47 34.82

The results shown in Table 4.6- 4.10 suggest that DINS is better than the other three solvers with

respect to all three measures starting from the presumably good solutions. Only with respect to

standard deviation, DINS seems to be little bit worse than RINS in small spread instances.

Now, for different group of instances, Figure 4.5- 4.7 show how solution quality, the average

percentage of gap, changes over time for different solvers starting from the presumably good solu

tions. Analyzing these figures, we find the following differences among the solvers in these three

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

group of instances. For small spread instances, DINS is worse than RINS at the initial level of

computation and it gets better as computation progresses. For medium spread instances, DINS is

better than the other three solvers throughout the computation. For large spread instances, DINS

becomes better than RINS as computation progresses. Both Cplex-D and LB are worse comparing

to DINS throughout the computation in all three group of instances.

5
Cplex-D i- - h— '

LB
RINS t
DINS t- - e ~ !

4

3

2

1

0
20 300 10 40 50 60

Tim e (in CPU -m inutes)

Figure 4.5: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the small spread instances starting from presumably good solution. Vertical lines show
the standard deviation from the average.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40
Cplex-D 1— +-—*

LB •— ><— •
RINS
DINSco

TJ
<9

*D

5 25w
£I
« 20
□9

O
®a
Sc
®a

©

5

0 10 20 30 40 50 60
Tim e (Hi C PU -m inutes)

Figure 4.6: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the medium spread instances starting from presumably good solution. Vertical lines show
the standard deviation from the average.

Cplex-D 1— •*— ■■
LB

RINS i-
DINS

1000

co
>

T T

®T> 800*o
(0

• oc
8to

6005
Q.coo>
o
®CB<0

400c
®o

O)
CO
® 200

0 10 20 30 40 50 60
Time (in C PU -m inutes)

Figure 4.7: Curves in horizontal direction show the change in average percentage of gap by different
solvers on the large spread instances starting from presumably good solution. Vertical lines show
the standard deviation from the average.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3 DINS Neighbourhoods versus RINS Neighbourhoods

The experiments suggest that on the benchmark instances, it is more effective to explore the neigh

bourhoods defined by DINS than that of RINS. Although size of a mixed integer program instance

does not reflect the true hardness to solve it, in an attempt to compare the neighbourhoods defined

by DINS and RIN S, we tried to estimate the enumeration size of both neighbourhoods.

For simplicity, we restricted this analysis only to 0-1 mixed integer program instances.

In R IN S , let k denotes the number of neighbourhoods explored in one CPU-hour for a particular

instance with tib binary variables, and fc, 1 < i < k, denotes the number of free binary variables,

which may take either value 0 or value 1, at the i-th neighbourhood. Then we define average

enumeration ratio for RINS as follows:

(E-=rlog2*)/* (E*=i /«) /*
E R : = ---------- — ----------------= --------------------------- ,

log2"B tib

where 2"B is the size of the enumeration space when all the binary variables are allowed to take

either value 0 or value 1, and 2^ is the size of the enumeration space when /* binary variables are

allowed to take either value 0 or value 1 keeping the remaining binary variables fixed at some values.

We apply logarithm on the size of the enumeration space to express the enumeration ratio as the ratio

of number of free binary variables.

Similarly in DIN S, let k 5 and ko denote the number of neighbourhoods, with soft fixing param

eter p set to 5 and 0 respectively, explored in one CPU-hour for a particular instance with tib binary

variables. Also let f i and s ,, 1 < i < &5, respectively denote the number of free binary variables

and the number of binary variables pertained to soft fixing inequality at the i-th neighbourhood with

p = 5, and let U,1 < i < ko, denotes the number of free binary variables at the i-th neighbourhood

with p = 0. Then we define average enumeration ratio for DINS as follows:

(E - = r log2<*+*> + E i = i l°g2 '<) / (h + ko) (E - i i (f i + Vi) + E ?= ! h) /(*5 + k0)
E R : = ----------------------------------- ;— --= --

log2”B tib

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where we approximate the enumeration size Ylt= o() ° f s°ft fixing inequality by the parameter

r , such that 2 r - _ 1 < J2 t=o(**') < 2 r i .

Table B.18 of Appendix B shows the number of explored neighbourhoods and the average enu

meration ratio for both RINS and DINS starting from presumably poor solutions. In most of the

instances, DINS had a lesser average enumeration ratio than RINS. And in most of the instances

for which DINS had a lesser average enumeration ratio than RINS, DINS explored more neigh

bourhoods than RINS. This observation leads us to conjecture that, in the case where heuristics

are applied for a long time, exploring useful small neighbourhoods is better than exploring useful

large neighbourhoods, where neighbourhoods are considered useful if a node-limited search on the

neighbourhoods can yield improved solutions.

4.2.4 Verification of Intuitions used in DINS

In an attempt to see how good were the intuitions on which we designed DINS, we provide some

statistical measures from our experimental results. We found that, the number of times neighbour

hood exploration found a new solution in all the instances, the chosen distance metric was satisfied

in 80.89% occurrences and the quadratic distance metric was satisfied in 80.5% occurrences. These

experimental results support our intuition that improved solutions are more likely to be close to the

node relaxation solutions, and also support our choice of distance metric. Moreover, relaxing the

chosen distance metric a little bit using the parameter p perhaps gives DINS the extra power of

finding those improved solutions which do not satisfy the chosen distance metric at the found node,

but probably would satisfy the chosen distance metric at some deeper nodes of the MIP search tree.

Unlike RIN S, DINS uses the root relaxation solution and the encountered mixed integer pro

gram solutions in guiding the hard fixing of binary variables. Experiments showed that this had

an effect in finding the good mixed integer program solutions. We implemented a modified DINS

where we performed the hard fixing o f binary variables according to the hard fixing suggested in

RINS. In an experiment on the 64 benchmark instances starting from the presumably poor solu-

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions, between D IN S and modified D IN S, DINS found equal or better solution in 45 instances,

whereas the modified one found equal or better solution in 34 instances.

4.2.5 Performance on Randomly Generated Instances

We first show the performance of different solvers on a set o f pseudo-randomly generated

Comuejols-Dawande optimality-hard instances described in § 2.3.2.

For instances with n variables and m constraints, Comuejols and Dawande showed that picking

the relation n = 1 0 (m — 1) yielded the hardest instances for their optimality model of market-

sharing problem. Using n = 10 (m — 1), we pseudo-randomly generated 10 Comuejols-Dawande

optimality-hard instances with 40 to 100 variables each. We used the first solution found by Cplex-D

as the starting solution for all four solvers, namely Cplex-D, LB, RIN S, and D IN S. We alloted one

CPU-hour to each solver.

In the experiments with pseudo-randomly generated instances, we do not use the average per

centage o f gap as a measure, since we have no better information about the best known solutions for

this set of instances than the information obtained from our experiments. Table 4.11-4.14 summa

rize the performance o f DINS against Cplex-D, LB, and RINS respectively on this set o f instances.

For detailed result, see Table B.14 o f Appendix B.

Table 4.11: Cplex-D versus DINS on 70 pseudo-randomly generated

Comuejols-Dawande optimality-hard instances of different sizes. Entries

indicate number of instances.

Cplex-D better DINS better Tied

34 24 1 2

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.12: LB versus DINS on 70 pseudo-randomly generated

Comuejols-Dawande optimality-hard instances of different sizes. En

tries indicate number of instances.

LB better DINS better Tied

40 2 1 9

Table 4.13: RINS versus DINS on 70 pseudo-randomly generated

Comuejols-Dawande optimality-hard instances of different sizes. En

tries indicate number of instances.

RINS better DINS better Tied

33 2 1 16

Table 4.14: The average and the standard deviation of percentage of im

provements obtained by Cplex-D, LB, RINS, and DINS on 70 pseudo-

randomly generated Comuejols-Dawande optimality-hard instances.

Cplex-D LB RINS DINS

average of percentage of improvements 99.17 99.18 99.15 99.12

standard deviation of percentage of improvements 0.40 0.41 0.41 0.39

The results shown on Table 4.11- 4.14 suggest that DINS is not better than other solvers on these

set of instances. However, the performance of DINS is very close to that of other solvers.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Next, we show the performance of different solvers on a set o f pseudo-randomly generated

constrained market-sharing instances described in Chapter 6 .

As in § 3.4.5, we generated instances from three groups. A parameter k differentiates these

groups, where k is introduced to relate the number of variables n and the number of constraints m

o f instances. The relation between n and m is defined by m = J . For the first group with k = 2.0,

the instances generated are of 50, 100, and 150 variables, and for the groups with k = 1.5 and 1.3,

the instances are of 50 ,75 , and 100 variables.

Improvement heuristics require a feasible solution to start with. Since PG C i performed better

on these set o f instances, we picked first 1 0 generated instances o f each problem size for which

PG C i found a feasible solution. We gave the feasible solutions obtained by PG C i as the starting

feasible solutions to all solvers.

In this experiment, the first measure to evaluate the performance of a solver is the number of

instances for which a solver finds a new solution. We do not use this measure in the earlier experi

ments since the solvers do not show much difference with respect to this measure. Table 4.15- 4.18

summarize the performance o f DIN S against Cplex-D, LB, and RINS respectively on this set o f

instances. For detailed result, see Table B.15- B.17 o f Appendix B.

Table 4.15: Cplex-D versus DINS on 90 pseudo-randomly generated

constrained market-sharing instances o f different sizes. Entries indicate

number of instances.

Cplex-D better DINS better No new solution

0 44 46

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.16: LB versus DINS on 90 pseudo-randomly generated con

strained market-sharing instances of different sizes. Entries indicate

number of instances.

LB better DINS better Tied No new solution

0 43 1 46

Table 4.17: RINS versus DINS on 90 pseudo-randomly generated con

strained market-sharing instances of different sizes. Entries indicate

number of instances.

RINS better D IN S better Tied No new solution

5 38 1 46

Table 4.18: The average and the standard deviation of percentage o f im

provements obtained by Cplex-D, LB, RINS, and DINS on 90 pseudo-

randomly generated constrained market-sharing instances.

Cplex-D LB RINS DINS

average o f percentage o f improvements 0 . 0 0 0.99 8 . 0 1 13.43

standard deviation of percentage of improvements 0 . 0 0 4.92 17.11 17.93

The results shown on Table 4.15- 4.18 suggest that DINS performs better than other solvers

these pseudo-randomly generated constrained market-sharing instances.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Neighbourhood Pivot and Gomory

Cut

In this chapter we present N e i g h b o u r h o o d P i v o t a n d G o m o r y C u t (NPGC), a new ‘find-

and-improve’ type mixed integer programming heuristic.

NPGC is similar in approach to the Dana et al.’s implementation of LB heuristic. Recall from

§ 2.2.11 that in Danna et al.’s implementation o f LB, the main procedure calls the LB procedure

when the search tree, generated by either a branch-and-bound or a branch-and-cut solver, finds the

first feasible solution. Thereafter, as a process of diversification, the main procedure calls the LB

procedure whenever the search tree obtains a new feasible solution.

NPGC, essentially an extension o f PGC, defines a Gomory Cut based search neighbourhood

and explores it using either a branch-and-bound or a branch-and-cut solver with a node limit. If the

exploration o f a search neighbourhood provides a feasible solution, NPGC calls the LB procedure

with the feasible solution. Otherwise, NPGC defines a new search neighbourhood and continues

accordingly. NPGC calls the LB procedure each time NPGC finds a new feasible solution. No

tice that NPGC actually replaces the search tree used by Danna et al. by its Gomory cut based

neighbourhood search.

NPGC is also similar to the PS[2004] o f Balas et al. [16], As noted in § 2.2.2, as is the case

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with NPGC, PS[2004] also performs a neighbourhood search around the dead-end reached after a

sequence of pivoting. There are two major differences between NPGC and PS [2004], First, NPGC

defines the neighbourhood using Gomory cuts, whereas PS [2004] defines its neighbourhood using

inequalities based on values of integer variables at the dead-end. Second, in NPGC execution be

gins on a new search neighbourhood whenever exploration o f the current search neighbourhood fails

to find a solution or whenever the improvement procedure terminates; by contrast, PS[2004] calls

the Xpress mixed integer program solver whenever exploration o f the current search neighbourhood

fails. As reported in [16], an initial implementation o f PS [2004] was weaker in performance than

the final implementation, which ran on the commercial mixed integer program solver Xpress Ver

sion 14.2. Furthermore, the final implementation used some platform-dependent time settings. In

particular, within the initial search phase, a total of 5 seconds was alloted for pivoting; within each

improvement, a total of 30 seconds was alloted for shifting. In light of the fact that NPGC turned

out to be less effective than the recent heuristic RIN S, the significance of determining the relative

strength o f NPGC versus PS [2004] is somewhat moot.

In the next section we see the details o f NPGC.

5.1 Neighbourhood Pivot and Gomory Cut

Recall from § 3.4.6 that for some benchmark instances, the initial search phase of PGC runs out of

time before finding a feasible solution or even reaching a dead end. This motivates the addition of

a neighbourhood search to the PGC framework. We use the same notation that we have defined in

PGC.

NPGC applies the search phase of PGC constituting only Type 1 pivots, since it ensures the

termination o f the search phase after a finite number of steps. At the end of the PGC search phase,

if the current basic feasible solution, x*, of C {P +) is P-feasible, NPGC puts an upper bound on

the objective value by adding cx < c x* to P and calls the LB procedure LB.at.tree_node shown

in Figure 2.7 to improve the obtained P-feasible solution. Otherwise, using the intuition that a

P-feasible solution will be somewhere around x *, NPGC defines a search neighbourhood around

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x* using Gomory cuts and explores that by either a branch-and-bound or a branch-and-cut mixed

integer program solver.

To define the aforementioned search neighbourhood, NPGC generates a Gomory cut from the

tableau row corresponding to the most integer-infeasible binary variable and expresses it as a x > fi

in terms of the decision variables. NPGC defines the neighbourhood by adding to P the Gomory

cut a x > fi and another inequality a x < fi + d representing a parallel hyperplane to the Gomory

cut. The parameter d is chosen so that the orthogonal distance between a x — fi and a x = fi + d

is where k is an execution parameter, and n c is the number of variables in the cut a x > fi.

Notice that, for 0-1 programs, since the largest diagonal length of 0-1 polytope in the space of n c

variables is yfn^, choosing k < 1 causes the search neighbourhood polytope to include the complete

feasible region of the P-polytope.

NPGC applies either a branch-and-bound or a branch-and-cut mixed integer program solver

on the search neighbourhood with a specified node limit n ls . When the solver terminates from a

neighrbourhood search, it removes the inequalities fi < a x < fi + d from P and then modifies

P based on the termination statuses in the following way. If the solver completely explores the

neighbourhood, namely if the solver finds an optimal solution or it proves the neighbourhood to

be integer infeasible, then NPGC adds the inequality a x > fi + d to P . If the solver reaches

the node limit n ls during the search, NPGC adds only the cut a x > fi to P . And, whenever the

mixed integer program solver returns a P-feasible solution x*eu), NPGC puts an upper bound on

the objective value by adding cx < cx*new to P .

If the solver terminates from the search neighbourhood with a P-feasible solution, NPGC calls

the LB procedure LB_at.tree_node shown in Figure 2.7. Whenever LB obtains a new P-feasible

solution x*new, NPGC puts an upper bound on the objective value by adding cx < cx*eu, to P .

Either the mixed integer program solver terminates from the search neighbourhood without a

P-feasible solution or LB terminates from its call, assuming P denotes the modified P , NPGC

transforms P to P + , re-optimizes the resulting £ (P +), and restarts execution at the initial PGC

search phase.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1 shows the algorithm NPGC.

We designed NPGC as a heuristic. However, it can be implemented as an exact solver. If we

set the node limit n ls of the solver applied on search neighbourhood to oo, the solver explores every

search neighbourhood completely. Since n c > 1, every search neighbourhood contains a certain por

tion of the P-polytope for a certain value o f k. Considering P as a bounded and finite dimensional

polytope, we can show that the P-polytope constitutes o f a finite number of search neighbourhood,

and thus the complete exploration of all the search neighbourhoods makes the complete exploration

of the P-polytope. We limit our analysis for the 0-1 integer programs. The analysis takes the same

course for arbitrary integer programs. For a 0-1 program with n variables, we establish a upper-

bound k n on the number of search neighbourhoods. For any a x , a x < includes a small

n-dimensional hypercube with an edge of length at least £ in each direction from the current basic

feasible solution x *. Since the big n-dimensional 0-1 hypercube, namely the hypercube with an edge

of unit distance in each direction from the origin, holds any given 0 - 1 polytope and constitutes o f k n

small n-dimensional hypercube mentioned earlier, the maximum number of search neighbourhood

for 0-1 program is A;".

5.2 NPGC Performance Evaluation

To evaluate the performance of NPGC, we compared it against three solvers: R IN S, the recent

improvement heuristic, LB, the heuristic which NPGC uses, and Cplex Version 9.13, a commerical

mixed integer programming solver, in its default setup referenced as Cplex-D.

From the benchmark suite shown in Table B .l- B.3, we chose all 53 0-1 mixed integer program

instances with the exception of those instances for which Cplex-D gives the proof of optimality in

one CPU-hour.

We ran all experiments on a 2403 MHz AMD Athlon processor with 128 MByte o f memory

under Redhat Linux 9.0. We implemented NPGC in the C programming language where the PGC

search phase was designed on top of the version 4.7 o f the open source GLPK, and the search

neighbourhoods were explored by the Cplex-D. Similarly we implemented LB and RINS in the C

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm NPGC
INPUT: a 0-1 mixed integer problem P , a search node limit n ls , the parameter p and n l for

procedure LB_at.tree_node, a global time limit T and the parameter k.
O u t p u t : A P-feasible solution S m i p (null in case of failure).

1- S m i p «—null; elapsedTime t— 0 .
2 . repeat
3. construct £ (P +) from P .
4. solve £ (P +) using the bounded variable revised simplex algorithm.
5. if (£ (P +) is infeasible) then return S m i p -
6 . else S l p ■<— the optimal solution found by solving £ (P +).
7. isFeas «- (S l p is P-feasible).
8 . if (not isFeas) then
9. construct the Gomory Cut a x > f3

from the row corresponding to the most integer-infeasible binary variable.
10. while (not isFeas and a PG C i Type 1 pivot exists)
11. perform P G C i Type 1 Pivot; S l p resulting £ (P +)-feasible solution.
1 2 . if (S l p satisfies a x > /?) then
13. isFeas <— (S l p is P-feasible).
14. if(not isFeas) then
15. add a x > fi in £ (P +).
16 construct the resulting new Gomory Cut a x > /? from the row

corresponding to the most integer-infeasible binary variable.
17. if (not isFeas) then
18. construct the Gomory cut a x > /? based on the current £ (P +)

from the row corresponding to the most integer-infeasible binary variable.
19. determine the parameter d using k.
20. construct a search neighbourhood by adding a x > (f and a x < f3 + d to P .
2 1 . apply either a branch-and-bound or a branch-and-cut mixed integer program

solver on the search neighbourhood with node limit n ls .
22. modify P and n ls based on the termination statuses of the MIP-solver.
23. if (feasible solution found by the MIP-solver) then
24. isFeas -i—true.
25. if(isFeas)
26. update S m i p and add the objective cutoff to P .
27. apply procedure LB_at.tree_node with parameter p and nl.
28. if (the procedure LB_at_tree_node finds a new P-feasible solution)
29. update S m i p and add the objective cutoff to P .
30. until (elapsedTime> T)
31. return S m i p -

Figure 5.1: A pseudo-code description o f NPGC.

8 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programming language with the mixed integer program search tree generated by Cplex-D. Notice

that within the implementation o f LB, we had to implement Procedure LB.at_tree_node which we

used in NPGC as an improvement procedure. Also notice that LB and RINS are improvement

heuristics, and so require an initial solution to start with. Since LB and RINS were implemented

within the search tree generated by Cplex-D, they started working when Cplex-D found a solution.

The three methods namely LB, RIN S, and NPGC have a set of parameters which needed to be

set. As in [29], for LB we set p = 10 and n l = 1000, and for RINS we used Cplex 9.13 with the

parameter IloCplex::MIPEmphasis set to 4, where according to [29] f = 100 and nl = 1000.

Since, in NPGC, it is better to obtain the feasible solution as early as possible, we ran an exper

iment on choosing parameter k. For that experiment, as is the case with LB and RINS, we set node

limit n ls = 1000 in NPGC. Then we ran NPGC for one CPU-hour on the 53 benchmark instances

with k = 1 ,10,100, and 1000. NPGC failed to find solutions for 13,13, 8 , and 18 instances with

k = 1 ,10,100, and 1000 respectively. It suggests that if the size o f neighbourhood is too large,

as in k= 1 or 10, the solver is not able to find a solution earlier. On the other hand, if the size of

neighbourhood is too small, as in k=1000, the neighbourhood may not include a solution. Following

this experimental results, we set k = 100. Since our goal was to design NPGC as a heuristic rather

than an exact solver, we set n ls = 1 0 0 0 instead of oo, and whenever the solver became unsuccessful

in finding a feasible solution within the node limit, in an attempt to explore the next neighbourhoods

more intensely, we doubled the n ls. We alloted one CPU-hour to each solver.

We use the measure ‘percentage of gap’ as defined in § 4.2.1 to capture the quality of obtained

solutions. Table B.19 of Appendix B shows the percentage of gap obtained at the end o f one CPU-

hour by all the four solvers, where the bold face identifies the best solver for the corresponding

instance; multiple bold faces appear for an instance if there are multiple solvers obtaining the same

solution.

From the results shown on Table B.19 of Appendix B, we see that all the solvers find solutions

in 47 out of 53 benchmark instances. Notice that, NPGC fails to find a solution for two instances,

namely ‘ne tl2 ’ and ‘d e ll’, for which Cplex-D finds solutions. On the other hand, Cplex-D fails to

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

find a solution for two instances, namely ‘protfold’ and ‘rd-rplusc-21’, for which NPGC finds solu

tions. Since LB and RINS start working when Cplex-D finds the first solution, they are successful

in the same number of instances as Cplex-D.

Following the criteria shown in § 4.2.1 we group the 45 instances, for which all the solvers find

a solution, into three different sets namely ‘small spread’, ‘medium spread’, and ‘large spread’. The

percentage of gaps shown in Table B.19 of Appendix B are used to group the instances.

We use two measures to evaluate the performance of different solvers.

Our first measure is the number of instances for which a solver finds a better solution than the

solutions obtained by other solvers.

Our second measure is the percentage of gap as defined in § 4.2.1. We calculate the average

and the standard deviation of percentage of gaps over a group of instances. Here, we do not use the

percentage o f improvement as a measure since the solvers do not start with the same initial solution.

Table 5.1- 5.3 summarize the performance of N PG C, with respect to the first measure, against

Cplex-D, LB , and RINS. Table 5.4 shows the average and the standard deviation of percentage of

gaps obtained by different solvers.

Table 5.1: Cplex-D versus NPGC on 45 benchmark instances for which

both find solutions. Cplex-D better: the number of instances at which

Cplex-D finds better solution than NPGC. NPGC better: the number of

instances at which NPGC finds better solution than Cplex-D. Tied: the

number o f instances at which both Cplex-D and NPGC find the same

improved solution. Entries indicate number of instances.

Cplex-D better NPGC better Tied

17 23 5

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: LB versus NPGC on 45 benchmark instances for which both

find solutions. Entries indicate number of instances.

LB better NPGC better Tied

18 2 1 6

Table 5.3: RINS versus NPGC on 45 benchmark instances for which

both find solutions. Entries indicate number of instances.

RINS better NPGC better Tied

28 1 1 6

Table 5.4: The average (x) and the standard deviation (S) o f percentage

of gaps obtained by Cplex-D, LB, RINS, and NPGC on 45 benchmark

instances for which each solver finds a solution.

Cplex-D LB RINS N PG C

X <5 X <5 X S X 6

On all 45 instances 63.45 235.51 73.37 231.73 71.61 315.00 153.82 712.71

On 32 small spread instances 1.50 2.01 1.41 1.99 0.77 1.32 1.29 1.86

On 7 medium spread instances 20.02 19.73 20.97 22.73 12.51 19.25 24.31 22.24

On 6 large spread instances 444.53 534.92 518.35 444.17 518.40 772.10 1117.82 1783.76

Analyzing the results shown on Table 5.1- 5.4, we find that on the chosen benchmark instances,

NPGC is slightly better than Cplex-D and LB in small spread instances, is competitive with Cplex-

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D and LB in medium spread instances, but worse than Cplex-D and LB in large spread instances.

Unfortuantely, NPGC is worse than RIN S on these benchmark instances.

8 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Generating Hard Integer Program

Instances

While there exists an established set of benchmark instances on which different heuristics can be

compared, for example as mentioned in § 2.3.1, it is of interest to find new hard instances that might

be added to the benchmark suite. In particular, due to the recent development o f new feasibility

heuristics, it is o f interest to find new feasibility-hard instances. In 1998, Cornuejols and Dawande

showed how to pseudo-randomly generate both optimality-hard and feasibility-hard instances from

different variations o f Williams’s market-sharing problem. In this chapter, we show how to pseudo-

randomly generate a related class of instances that are both feasibility-hard and optimality-hard.

Before presenting our new class of instances, we review the Comuejols-Dawande feasibility-

hard instances.

6.1 Cornuejols-Dawande Feasibility-Hard Instances

Recall from § 2.3.2 that, for instances with n variables and m constraints, Comuejols-Dawande

chose n = 10(m — 1) for generating their optimality-hard instances. Also recall from § 2.3.2 that

dropping the slack/surplus variables from the constraints, every Cornuejols-Dawande optimality-

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hard instance gives rise to a Comudjols-Dawande feasibility-hard instance.

Using probability measures, namely the probability that a generated instance is infeasible and the

expected number of solutions of a generated instance, Aardal et al. [1] showed that the Cornuejols-

Dawande feasibility-hard instances generated with n = 10(m - 1) are with high probability infea

sible.

Since our objective is to generate instances for the purpose of evaluating heuristics, the generated

instances should have at least one feasible solution, and finding any such solution should be hard.

Therefore, the relation n — 10(m - 1) is not suitable for us.

Following the analysis o f Aardal et al. Table 6.1 shows the probability measures for some n and

m . We present a short form of this table in § 3.4.5.

Table 6.1: Probability measures for the Cornuejols-Dawande feasibility-

hard instances generated with different n and m . The values are obtained

using the analysis o f Aardal et al. [1].

Problem size Probability of

being infeasible

Expected number

o f solutionsn m

1 0 1 0 . 0 1 4.44

1 0 2 0.97 0.03

1 0 3 0.99 2.1e-4

2 0 1 0 . 0 0 3.24e+3

2 0 2 2.8e-7 15.05

2 0 3 0.93 0.08

2 0 4 0.99 4.1e-4

30 1 0 . 0 0 2.7e+6

Continued on next page

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1 - Continued from previous page

Problem size Probability of Expected number

n m being infeasible of solutions

30 2 0 . 0 0 1.0e+4

30 3 1.4e-19 43.41

30 4 0.83 0.19

30 5 0.99 8.6e-4

40 1 0 . 0 0 2.4e+9

40 2 0 . 0 0 7.9e+6

40 3 0 . 0 0 2.8e+4

40 4 8.4e-49 110.69

40 5 0.647 0.434

40 6 0.998 1.73e-3

In order to generate feasibility-hard instances with at least one feasible solution, it appears from

this table that a good choice for the relation between n and m is to pick n = 1 0 m , since for

this choice, the probability of a generated instance being infeasible is close to zero, and the ex

pected number o f solutions is small as well as larger than one. In § 3.4.5 we presented experimental

results comparing feasibility heuristics on some pseudo-randomly generated Comuejols-Dawande

feasibility-hard instances using n = 10m. However, we found in experiments that with this choice

of n = 10m, many pseudo-randomly generated instances were infeasible. Assume that one wants

to generate feasibility-hard instances with 30 variables. Then following the probability measures,

there are only three options for choosing m. It can be either 3 or 2 or 1, and we see that the expected

number o f solutions increases quite rapidly as m changes from 3 to 2 to 1. This rapid increase in

expected number of solutions may rapidly reduce the difficulty of solving instances.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This observation led us to introduce a constrained version of the Williams’s market-sharing prob

lem for which we have more options in choosing m for a particular n , and for which the expected

number of solutions changes much more smoothly as m changes. In the next section we introduce

this constrained problem and a way to pseudo-randomly generate instances from the problem. Then

we will show that the new class o f instances has the aforementioned properties.

6.2 Constrained Williams’s Market-Sharing Problems

We use the following constrained version of Williams’s market-sharing problem to pseudo-randomly

generate our new class of instances. The difference between this problem and the original version

o f Williams’s market-sharing problem are indicated by italics.

A large company has two divisions D \ and D 2. The company supplies retailers with

several products. The goal is to allocate each retailer to either division D \ or divi

sion £ > 2 so that D i controls y% o f the company’s market for each product and D 2 the

remaining (1 0 0 -y)% or, if such a perfect y / (1 0 0 — y) split is not possible for all the

products, the goal is to minimize the sum of percentage deviations from the desired

split with the new imposed constraints that D \ has a specific choice to control less than

y% o f company’s market fo r some (say m i) products and a specific choice to control

greater than y% o f company’s market fo r remaining (m — m i) products.

We model this problem as the following integer program,

min Efcl

S.t.) —| O i j X j -f Sj — hi % — 1,

2 " = 1 a i i x i - S i = b i i - (mi + 1) , . . . , m

X j £ { 0 , 1 } j = 1 , . . . ,n

Si > 0 i = 1 , ...,m

where n , m , are the number of retailers, the number of products, and the demand of retailer j for

product i respectively. For the desired y /(100 - y) split, bi = [/ x a ^ J , where / =

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With respect to the desired split, the first m i constraints specify the condition on the products for

which D i has a choice to under-produce, and the remaining constraints specify the condition on the

products for which D \ has a choice to over-produce. The motivation of our construction comes from

the observation that most o f the 2 n possibilities for vector x which satisfies the first m i constraints

violates the remaining constraints and vice versa; therefore, the instances of this construction are

feasible only for a few choice over x. Since these inequality constraints are less stringent than the

equality constraints of Comuejols-Dawande feasibility-hard instances, our intuition was that there

might be more options for choosing m for a particular n. As a result, the expected number of

solutions o f a generated instance might change smoothly as m changes. We will show later that the

computed probability measures support our intuition.

As with the Comuejols-Dawande feasibility-hard instances, for constrained market-sharing

feasibility-hard instances, we choose a split of 50/50 and each integer uniformly between 0

and (ri — 1), where d = 100. A 50/50 split makes / equal to 1/2. We set m i = [pm } when

0 < p < 0.5 or m i = [pm j when 0.5 < p < 1. Notice that, for some p ', using p = p ' or p — 1 — p'

generates similar hard instances, since the value o f m \ with p = p ' becomes the value of (m — m i)

with p = 1 - p' and vice versa. We will show later what value should be chosen for p.

The complexity of finding a feasible solution for an instance of the proposed problem class

is equivalent to the complexity of answering the yes/no question “Is there a solution satisfying the

constraints mentioned in the above formulation?” ; we can show this to be NP-complete when m = 2.

When m = 2, for any p with 0 < p < 1, an instance of the proposed problem class contains the two

constraints Y^j= i ° i j x j + s i = h and]C j= i a 2 j x j ~ s 2 = &2 - In the case where a \j = a,2j for

all j , the instance is equivalent to finding a solution to YTj=i ai j x j = &i which is the subset sum

problem, which is NP-complete [36].

Recall that our objective is to generate instances that have feasible solutions with high probabil

ity but for which finding any such solutions is hard. Therefore, following the probability analysis

of Aardal et.al. [1], for a generated instance of our proposed constrained market-sharing problem

we compute the probability of being infeasible and the expected number of solutions. Our anal-

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ysis, which is similar to the analysis o f Aardal et al. for the Comuejols-Dawande feasibility-hard

instances, is described in the next sections.

6.2.1 The Expected Number of Solutions

As in [1], we consider that are uniformly distributed integers from the set {0, • • •, d — 1}, and

Consider each possible solution x of an instance as a subset S C {1,2, • • •, n} where Xj = 1 if

j € S , and Xj = 0 otherwise.

In order to determine the probability that a vector x satisfies row i of a generated instance,

consider a random variable Zi{S) = Ejgs aij ~ L/E”=i«d representing the difference between

variable s*. The probability that x satisfies a row o f type Ej=i aijx j + st = h is denoted by

P r [z i (S) < 0], and that x satisfies a row of type Ej=i U i j X j — Si = b, is denoted by P r [z i (S) > 0].

Following Aardal et al. assume that the random variable y i { S) — E j e s ao ~ / E ? = i « y . and

the random variable Uj = / E " = i a >j ~ I f E j = i a«jJ- Thus, ^ (5) = y i { S) + u,-. For any rational

number / = g /h , where g and h are relatively prime positive natural numbers, yl (5) = £ for some

integer k , and M; = ^- for some integer k ' between 0 and (h — 1). Therefore, we have

f>i = L/E7=ia«iJ-

the values of the both sides of row i, which is equivalent to the absolute value of the slack/surplus

00 r in
P r [z i (S) < 0} = P r [y i (S) < - U i] = P r y i (S) = - ~ ,

and

Aardal et al. derived the probability generating function of y ,(S) as the following.

G* (5)0*0 =
n - | S |

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which has the expansion of the form Y ^ jci x ^ h ' where Cj — P r [y i (S) = £]. For / = | , the

probability generating function becomes the following.

n (\ 1 1 (x<il2 ~
GVi(s)(x) = xid- i){n-\s\)/2 (xi/2 _ i J ■

We use the following lemma to find the Taylor expansion of the factors in the above expression.

Lem m a 6.2.1 (Aardal, Bixby, Hurkens, Lenstra, and Smeltink [1])

« y - i)/(y - i))n = ££L 0 ajVj >where

m i n { n \ j / d\}

ai =
k=0

/ \

\ k I

(- 1)*

(\
j — dk + n — 1

j - dk

Also, notice that a j = 0 fo r j > (d — l)n .

Since Cj depends on d, n , and the size o f S , we denote P r[z{(S) < 0] by qi (n, d, |S |) , where

j (d -l)(n-|S |)
gx(n,d,|5|) = — a*>

k= 0

and P r [z i (S) > 0] by q2 (n, d, |S |) , where

(d-l)n
q2(n ,d ,\S \) = — Ok-

Now, the probability that a vector x constitutes a feasible solution for a generated instance is

qi (n, d ,\S \) rniq2(n, d, |5 |) m _m i. Therefore, the expected number o f solutions,

£[num ber of solutions] = £ s c { i , - ,n } 9i (n > l^l)"*19 2 (n, d, |5 |) m_mi

= £ " = o aq1(n ,d ,s) m iq2(n ,d ,s)m- m i,

where s = |S | and a = (1}).

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.2 Probability of Generating Infeasible Instances

For simplicity we assume that each distinct subset S is independent. Thus the probability of gener

ating infeasible instances becomes,

Pr[num ber of solution is zero] = P r [5 yields no solution, VS C { 1 ,2 ,- - - , n}]

~ n sc{1,...,„} P r[S yields no solution]

= I l s c o , . . . , , . } ! 1 ~ Q i(n,d, |S |)m ig2 (M , |S |)m- m i)

= n "= o ((! _ 9i (” > d , s)mi 92 (n, d, s)m- m i))“ ,

where s = |S | and < * = (”).

Following the above computation, Table 6.2 shows the probability measures for constrained

market-sharing instances. Since we want to show these measures as the relation of ^ changes, we

introduce a new variable k and define m to be]_^J.

Table 6.2: Probability measures for the constrained market-sharing in

stances. PI: the probability of a generated instance being infeasible, ES:

the expected number o f solutions, n ,p : the parameters described in the

problem formulation, k: a variable used to define m .

p = 0.9

n = 1 0 n = 2 0 n = 30

k PI ES PI ES PI ES

0.55 0.540 0.613 0.352 1.042 0.348 3.356

0 . 6 0.297 1.209 0.054 2.918 3.4e-8 17.18

0.65 0.181 1.701 2.7e-4 8.196 l . l e - 2 0 45.90

0.7 0.090 2.396 7.8e-8 16.35 5.8e-75 170.9

0.75 0.033 3.383 6.2e-15 32.69 2.7e-144 330.54

0 . 8 0.008 4.787 3.4e-29 65.53 0 . 0 0 0 891.8

Continued on next page

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2 - Continued from previous page

n = 10 n = 20 n = 30

k PI ES PI ES PI ES

0.85 0.001 6.794 4.6e-41 92.86 0.000 1.7e+3

0.9 0.001 6.794 6.3e-58 131.6 0.000 3.3e+3

0.95 5.3e-5 9.681 6.6e-82 186.8 0.000 6.6e+3

1.0 5.3e-5 9.681 5.1e-116 265.3 0.000 9.2e+3

P = 0.5

1.1 0.567 0.566 0.431 0.839 0.243 1.414

1.2 0.314 1.152 0.032 3.412 1.0e-5 11.46

1.3 0.092 2.371 0.001 6.903 9 .5e-ll 23.07

1.4 0.092 2.371 8.2e-7 14.01 1.6e-41 93.92

1.5 0.007 4.943 4.0e-13 28.54 3.1e-83 189.9

1.6 0.007 4.943 4.3e-26 58.38 4.5e-340 781.3

1.7 2.4e-5 10.49 7.3e-53 120.0 0.000 1.5e+3

1.8 2.4e-5 10.49 7.3e-53 120.0 0.000 3.2e+3

1.9 2.4e-5 10.49 1.7e-108 248.0 0.000 6.6e+3

2.0 2.4e-5 10.49 1.7e-108 248.0 0.000 6.6e+3

The values shown in Table 6.2 suggest that, for a fixed value of p, since the expected number

of solutions increases as k increases, the hardness of finding a feasible solution should decrease.

Experiments with various solvers support this claim.

The information in Table 6.2 also suggests that the smallest hard instances, in terms of n m , of

this class occurs when p = 0.5, since for a fixed n, almost similar expected number of solutions are

obtained at larger value o f k for p = 0.5 than for p > 0.5. For example, the expected number of

solutions of the instances generated with p = 0.9, n = 30, k = 0.7 is close to the expected number

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of solutions o f the instances generated with fo rp = 0.5, n = 30, k = 1.5. However, the size of

instances in terms of n m is 30 x = 1260 for the setting with p = 0.9, whereas the size of

instances in terms of n m is 30 x [~ J = 600 for the setting with p = 0.5.

Comparing the probability measures for Comuejols-Dawande feasibility-hard instances and our

constrained market sharing instances, notice that for a fixed n , the expected number of solutions

changes more smoothly in the constrained market sharing instances as m changes. For example,

considering p = 0.5, to generate constrained market-sharing instances with 30 variables, m can be

any number from 1 to = 27. By contrast, m can be only between 1 and 3 for Cornuejols-

Dawande feasibility-hard instances.

In the next section, we present the performance of different solvers on some pseudo-randomly

generated constrained market-sharing instances.

6.3 Solver Performance on Constrained Market-Sharing In

stances

Based on the probability measures shown in Table 6.2, we chose k — 2, k = 1.5, and k — 1.3 with

p = 0.5 to generate instances. We did not decrease k further since even with k = 1.3, experiments

showed that many instances generated were infeasible.

For generating pseudo-random numbers a y with uniform distribution, we used the ‘rand()’ func

tion from the C programming language. The rand() function gives an integer in the [0, M], where M

is compiler dependent. For example, M was 2147483647 in the compiler we used. The rand() func

tion uses the linear congruential generator algorithm [32], one of the best known pseudo-random

number generators. The expression gives a pseudo-random floating point number in the in

terval [0 ,1). For generating integers in the interval [0 ,99], we used the integer part of 100 * ■

Setting k = 1.3 and p — 0.5, we generated 100 pseudo-random instances with 50, 75, and 100

variables each; setting k ~ 1.5 and p = 0.5, we generated 100 pseudo-random instances with 50,

75, and 100 variables each; setting k = 2 and p = 0.5, we generated 100 pseudo-random instances

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with 50,100, and 150 variables each.

On these generated instances, we applied each of the five solvers, namely Cplex-D, Cplex-F,

PBS4, FP, and PG C, with one CPU-hour time limit to find an initial feasible solution. We ran all

the experiments on an 2403 MHz AMD Athlon processor with 128 MByte of memory under Redhat

Linux 9.0.

Table 6.3 summarizes the performance of FP, Cplex-D, Cplex-F, PBS4, and P G C i.

Table 6.3: The performance summary of different solvers to find a feasi

ble solution on pseudo-randomly generated constrained market-sharing

instances. The measure ‘successful’ indicates the number of instances

for which a solver finds a feasible solution. The measure ‘takes least

amount of time in’ indicates the number of instances for which a solver

takes the least amount of time among the five solvers.

Problem size FP Cplex-D Cplex-F PBS4 PG C i

n k m

successful 100 0 100 64 100

50 2.0 25 among the 100 instances at which at least one solver succeeds

takes least amount of time in 1 0 0 0 99

successful 96 0 95 0 100

100 2.0 50 among the 100 instances at which at least one solver succeeds

takes least amount o f time in 1 0 0 0 99

successful 55 0 0 0 100

150 2.0 75 among the 100 instances at which at least one solver succeeds

takes least amount of time in 0 0 0 0 100

Continued on next page

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.3 - Continued from previous page

Problem size FP Cplex-D Cplex-F PBS4 PG C i

n k m

successful 94 0 97 1 97

50 1.5 33 among the 97 instances at which at least one solver succeeds

takes least amount of time in 2 0 10 0 88

successful 54 0 73 0 90

75 1.5 50 among the 90 instances at which at least one solver succeeds

takes least amount of time in 2 0 3 0 85

successful 15 0 10 0 83

100 1.5 66 among the 83 instances at which at least one solver succeeds

takes least amount of time in 0 0 0 0 83

successful 63 0 67 0 67

50 1.3 38 among the 67 instances at which at least one solver succeeds

takes least amount of time in 1 0 14 0 52

successful 17 0 32 0 50

75 1.3 57 among the 50 instances at which at least one solver succeeds

takes least amount of time in 2 0 2 0 48

successful 1 0 0 0 31

100 1.3 76 among the 31 instances at which at least one solver succeeds

takes least amount of time in 0 0 0 0 31

In the alloted one CPU-hour, Cplex-D found 3 and 33 infeasible instances among the 100 in

stances generated with n = 50, k = 1.5 and n = 50, A; = 1.3 respectively. Therefore, from the

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experiments, it seems that some instances generated with k — 1.5 and k — 1.3 may have no feasi

ble solution. For this reason, Table 6.3 shows the comparison only on the number of instances for

which at least one solver finds a feasible solution within the alloted time. The results shown on this

table suggest that, it is difficult for the solvers to find a solution for the constrained market-sharing

instances as the number of variable goes beyond roughly 150 when k = 2 .0,100 when k = 1.5, and

75 when k — 1.3.

Notice that, we can also use the constrained market-sharing instances as optimality-hard in

stances without changing the model, whereas we need to change the model to obtain optimality-hard

instances from Cornuejols-Dawande feasibility-hard instances. In § 4.2.5, we have seen that it is also

difficult to find an optimal solution for the constrained market-sharing instances.

Our new feasibility heuristic PGC shows much stronger performance than other solvers on con

strained market-sharing instances, but shows much worse performance than Cplex on Comuejols-

Dawande feasibility-hard instances. We do not know the reason for this difference in P G C ’s perfor

mance. However, we point out the following differences between these two class of instances which

might have a role in PG C ’s performance.

One difference is that the feasible region corresponding to the linear programming relaxation

of a Comuejols-Dawande feasibility-hard instance is a hyperplane generated by the intersection

of several hyperplanes, whereas that o f a constrained market-sharing instance is a region bounded

by several hyperplanes. PGC might handle those instances better for which the feasible region is

bounded by hyperplanes rather than intersection of hyperplanes.

Another difference is that the Comuejols-Dawande feasibility-hard instances have no

slack/surplus variables in the initial formulation, whereas constrained market-sharing instances have

many slack/surplus variables in the initial formulation. PGC introduces new surplus variables only

when they add Gomory cuts. Therefore, PGC, at the beginning, fails to find Type 1 pivots in the

Comuejols-Dawande feasibility-hard instances; it performs only Type 2 pivots which does not bring

integer variables out of the basis. In contrast, PGC, at the beginning, may perform Type 1 pivots in

the constrained market-sharing instances.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

It is of interest to develop heuristics that will be effective for any given mixed integer program

irrespective of its underlying form. If we consider a particular optimization problem such as the set

cover problem, then all the inequalities have the same form, that is]C"=1 atjXj > 1; the set packing

problem, then all the inequalities have the form a ijx j < 1; the set partition problem, then

all the inequalities have the form i aijx j = 1- However, most real world problems come with

inequalities having different forms. In this thesis, we have presented three heuristics for general

mixed integer programs.

We have introduced a new feasibility heuristic, PGC. It uses the simplex tableau pivoting frame

work of PC. PGC replaces the PC restart phase, which fails in a large number of instances, with a

Gomory cut based restart phase, which is guaranteed to succeed. PGC also replaces the PC pivot

rules, focused on finding solutions with better objective value, with a set o f Gomory cut based pivot

rules, focused on finding feasible solutions as quickly as possible. We have chosen Gomory cuts as

the cutting planes to use in PGC since they are easy to derive from a simplex tableau. Experimental

results suggest that PGC is a competitive alternative to the recent heuristic FP. Besides this, on a

set o f pseudo-randomly generated hard 0-1 instances, PGC outperforms all the considered solvers,

namely PBS4, FP, and the commercial solver Cplex. We were not able to show that PGC terminates

in a finite number of steps. However, we hope that, like the recent heuristic FP which has no finite

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

convergence property but practically works well, the introduced PGC has the merit to stand as a

competitive heuristic in practice. The introduction of PGC raises several open questions that would

be interesting to answer. Is the number of Gomory cuts added in PGC finite? Would generating

Gomory cuts from the rows corresponding to other integer-infeasible integer-constrained variables,

than the row corresponding to the most integer-infeasible integer-constrained variable, give a better

variant o f PGC? Would incorporating some other cuts such as lift-and-project cuts, those are not

obtained in a straight-forward way from the simplex tableau, in place of Gomory cuts, result a better

heuristic? Would incorporating PG C in different nodes of branch-and-bound or branch-and-cut like

exact solvers be beneficial?

We have also introduced a new improvement heuristic, DINS. It defines neighbourhoods, based

on a distance metric, using ideas from the LB and RINS as well as some new ideas. These ideas

include changing the bounds of the integer-constrained variables and using the history of integer-

constrained variables in the mixed integer program search tree. Experimental results suggest that

DINS performs better than existing comparable heuristics. Experimental results also suggest that

exploring useful small neighbourhoods as in DINS is better in the long run than exploring use

ful large neighbourhoods as in RINS, but worse at the initial level o f computation. Future works

could include establishing a hybrid strategy of small neighbourhood search and large neighbourhood

search that might come out as a better option than using only one type o f neighbourhood search. It

would be also interesting to know if there is any better way to model the distance metric used in

DINS.

We have also introduced NPGC, a ‘find-and-improve’ heuristic. NPGC is extention of PGC

that is similar in approach to the implementation of LB incorporated in a mixed integer program

search tree. In such an implementation, LB is applied whenever the mixed integer program search

tree, which is generated by branch-and-bound or branch-and-cut like exact solver, finds a new fea

sible solution. NPGC replaces the mixed integer program search tree by its Gomory cut based

neighbourhood search. In other words, in NPGC, LB is applied whenever the Gomory cut based

neighbourhood search finds a new feasible solution. Though NPGC is not better than the compara-

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ble heuristic R IN S, it is a natural extension of PGC that finds feasible solutions for some instances

in a period of time in which the commercial solver Cplex fails to find such solutions.

We have also presented a new class of hard 0-1 instances, namely constrained market-

sharing instances, obtained by modifying Williams’s Market-sharing problem and using the idea of

Comuejols-Dawande optimality-hard instances. PGC appears significantly stronger than any other

heuristics when tested on these constrained market-sharing instances. It would be interesting to see

a mathematical reasoning behind this performance, which might help us to categorize the class of

instances for which PGC works well.

As a final remark, we hope that this thesis has increased the state-of-the-art for mixed integer

program heuristics by introducing three new heuristics, and showing several new directions for

further research.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] K. Aardal, R.E. Bixby, C .A J. Hurkens, A.K. Lenstra, and J.W. Smeltink. Market split and
basis reduction: Towards a solution o f the Comuejols-Dawande instances. INFORMS Journal
on Computing, 12(3): 192—202,2000.

[2] F. Aloul and B. Al-Rawi. Pseudo-boolean solver version 4. 2005.
http://www.eecs.umich.edu/faloul/Tools/pbs4.

[3] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo-boolean
solver. Symposium on the Theory and Applications o f Satisfiability Testing (SAT), 2002.

[4] F.A. Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Generic ILP versus Specialized 0-1
ILP: An update. International Conference on Computer Aided Design, pages 450-457,2002.

[5] K. Anderson, G. Comuejols, and Y. Li. Reduce-and-split cuts: Improving the performance of
mixed integer Gomory cuts. Management Science, 51:1720-1732,2005.

[6] D. Avis and V. Chvatal. Notes on Bland’s pivoting rule. Mathematical Programming Study,
8:24-34,1978.

[7] E. Balas. Intersection cuts - a new type of cutting planes for integer programming. Operations
Research, 19:19-39,1971.

[8] E. Balas. Disjunctive programming. Annals o f Discrete Mathematics, 5:3-51,1979.

[9] E. Balas, S. Ceria, and G. Comuejols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming, 58:295-324,1993.

[10] E. Balas, S. Ceria, and G. Comuejols. Mixed 0-1 programming by lift-and-project in a branch-
and-cut framework. Management Science, 42(9): 1229-1246,1996.

[11] E. Balas, S. Ceria, G. Comuejols, and N. Natraj. Gomory cuts revisited. Operations Research
Letters, 19:1-9, 1996.

[12] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. Octane: a new heuristic for pure
0-1 programs. Operations Research, 49(2):207-225,2001.

[13] E. Balas and C.H. Martin. Pivot and complement - a heuristic for 0-1 programming. Manage
ment Science, 2 6 (l) :8 6 -9 6 ,1980.

[14] E. Balas and C.H. Martin. Pivot and shift - a heuristic for mixed integer programming. Tech
nical report, GSIA, Carnegie Mellon University, 1986.

[15] E. Balas and M. Perregaard. A precise correspondence between lift-and-project cuts, simple
disjunctive cuts and mixed integer Gomory cuts for 0-1 programming. Mathematical Program
ming B, 94:221-245,2003.

[16] E. Balas, S. Schmieta, and C. Wallace. Pivot and shift - a mixed integer programming heuristic.
Discrete Optimization, 1:3-12,2004.

[17] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-boolean optimiza
tion. Technical report, Max-Plank-Institut Fur Informatik, 1995.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.umich.edu/faloul/Tools/pbs4

[18] R.E. Bixby, E.A. Boyd, and R.R. Indovina. MIPLIB: A test set of mixed integer programming
problems. SIAM News, 25(20): 16, March 1992.

[19] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.R Savelsberg. An updated mixed integer pro
gramming library. MIPLIB 3.0, 1998. Department of Computational and Applied Mathemat
ics, Rice University, Web address: http://www.caam.rice.edu/bixby/miplib/miplib.html.

[20] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. Procedure o f the 40th
Design Automation Conference, pages 830-835,2003.

[21] V. Chvatal. Edmonds polytopes and a hierarchy o f combinatorial problems. Discrete Mathe
matics, 4:305-337,1973.

[22] V. Chvatal. Hard knapsack problems. Operations Research, 28:1402-1411,1980.

[23] V. Chvatal. Linear Programming. W.H. Freeman and Company, New York, 1983.

[24] W. Cook, T. Rutherford, H.E. Scarf, and D. Shallcross. An implementation of the generalized
basis reduction algorithm for integer programming. ORSA Journal on Computing, 5(2):206-
212,1993.

[25] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial Optimiza
tion. John Wiley & Sons, 1998.

[26] G. Comuejols. Revival o f the gomory cuts in the 1990’s, to be appeared on State of the Art
and Recenet Advances in Integer Programming.

[27] G. Comuejols and M. Dawande. A class of hard small 0-1 programs. 6th IPCO, Lecture Notes
in Computer Science, 1412:284—293,1998.

[28] H. Crowder, E.L. Johnson, and M. Padberg. Solving large-scale zero-one linear programming
problems. Operations Research, 31(5):803-834,1983.

[29] E. Danna, E. Rothberg, and C.L. Pape. Exploring relaxation induced neighborhhods to improve
mip solutions. Mathematical Programming, 102:71-90,2005.

[30] G.B. Dantzig. Maximization o f a linear function o f variables subject to linear inequalities.
In Tj. C. Koopmans, editor, Activity Analysis o f Production and Allocation, pages 339-347.
Wiley, New York, 1951.

[31] DEIS. Library of instances. http://www.or.deis.unibo.it/research.pages/ORinstances/
MIPs.html.

[32] D.E.Knuth. The Art o f Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, 1997.

[33] B.H. Faaland and F.S. Hillier. Interior path methods for heuristic integer programming proce
dures. Operations Research, 27(6):1069-1087,1979.

[34] M. Fischetti, F. Glover, and A. Lodi. The feasibilty pump, to be appeared on Mathematical
Programming.

[35] M. Fischetti and A. Lodi. Local branching. Mathematical Programming B, 98:23—49,2003.

[36] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory ofN P -
Completeness. Freeman, San Francisco, 1979.

[37] S. Ghosh. Distance induced neighbourhood search - a mixed integer programming heuristic.
2006. In preparation.

[38] S. Ghosh and R. Hayward. Pivot and Gomory cut: a mixed integer programming heuristic.
2006. In preparation.

[39] D. Goldfarb and W.Y. Sit. Worst case behavior of the steepest edge simplex method. 1:277-
285,1979.

[40] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin o f the
AMS, 64:275-278,1958.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.caam.rice.edu/bixby/miplib/miplib.html
http://www.or.deis.unibo.it/research.pages/ORinstances/

[41] R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597, The
Rand Corporation, Santa Monica, CA, 1960.

[42] U.-U. Haus, M. Koppe, and R. Weismantel. The integral basis method for integer program
ming. Mathematical Methods o f Operations Research, 53:353-361,2001.

[43] F.S. Hillier. Efficient heuristic procedures for integer linear programming with an interior.
Operations Research, 17(4):60Q-637,1969.

[44] K.L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-and cut.
Management Science, 39(6):657-682,1993.

[45] T. Ibaraki, T. Ohashi, and H. Mine. A heuristic algorithm for mixed integer programming
problems. Mathematical Programming Study, 2:115-136,1974.

[46] R.G. Jerslow. The simplex algorithm with the pivot rule of maximizing criterion improvement.
4:367-377,1973.

[47] N. Karmarker. A new polynomial-time algorithm for linear programming. In Proceedings
o f the Sixteenth Annual ACM Symposium on Theory o f Computing (Washington, 1984), pages
302-311. The Association of Computing Machinery, New York, 1984. [also: Combinatorica
4 (1984) pp.373-395].

[48] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity o f Computer Computations, pages 85-103. Plenum Press, New York, 1972.

[49] L.G. Khachiyan. A polynomial algorithm in linear programming (in russian). Doklady
Academi Naulc SSSR, 244:1093-1096, 1979. [English translation: Soviet Mathematics Dok
lady 20 (1979) pp. 191-194],

[50] L.G. Khachiyan. Polynomial algorithms in linear programming (in russian). Zhum al Vychis-
litel’noi Matematiki i Matematicheskoi Fiziki, 20:51-68,1980. [English translation: U.S.S.R.
Computational Mathematics and Mathematical physics 20 (1980) pp. 53-72].

[51] V. Klee and G.J. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities
III, pages 159-175. Academic Press, New York, 1972.

[52] A.H. Land and A.G. Doig. An automatic method for solving discrete programming problems.
Econometrica, 28(3):497-520,1960.

[53] L.Lovasz and H.E. Scarf. The generalized basis reduction algorithm. Mathematics o f Opera
tions Research, 17:751-764,1992.

[54] A. L 0 kketangen and F. Glover. Solving zero/one mixed integer programming problems using
tabu search. European Journal o f Operational Research, 106:624—658,1998.

[55] A. L 0 kketangen, K. Jornsten, and S. Stor0 y. Tabu search within a pivot and complement
framework. International Transactions in Operational Research, 1(3):305-317,1994.

[56] Y.S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An efficient SAT solver. In selected papers
from SAT 2004, Lecture notes in Computer Science, 3542:360-375,2005.

[57] J.P. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfiabil
ity. IEEE Transaction on Computers, 48:506-521, 1999.

[58] A. Martin, T. Achterberg, and T. Koch. Miplib 2003. http://miplib.zib.de.

[59] S. Mehrotra. On the implementation of a Primal-Dual interior point method. SIAM Jom al o f
Optimization, 2:575-601,1992.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. Procedure o f Design Automation Conference, 2001.

[61] M. Nediak and J. Eckstein. Pivot, cut, and dive: A heuristic for mixed 0-1 integer program
ming. RUTCOR Research Report, RRR 53-2001,2001.

[62] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://miplib.zib.de

[63] G.L. Nemhauser and L.A. Wolsey. Integer programming. In G.L. Nemhauser, A.H.G. Rin-
nooy, and M J. Todd, editors, Handbooks in OPerations Research and Management Science 1:
Optimization, pages 447-527. North-Holland, Amsterdam, 1989.

[64] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale sym
metric traveling salesman problems. SIAM Rev., 33:60-100,1991.

[65] R.G. Parker and R.L. Rardin. Discrete Optimization. Academic Press, New York, 1988.

[6 6] S.D. Prestwich. Randomised backtracking for linear pseudo-boolean constraint problems.
Fourth International Workshop on Integration o f A l and OR techniques in Constraint Pro
gramming fo r Combinatorial Optimisation Problems, pages 7-20,2002.

[67] A. Schrijver. Theory o f Linear and Integer Programming. John Wiley & Sons, 1986.

[6 8] V.V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

[69] J.P. Walser. Solving linear pseudo-boolean constraints with local search. Proceedings o f the
Eleventh Conference on Artificial Intelligence, pages 269-274,1997.

[70] X. Wang. A new implementation o f the generalized basis reduction algorithm fo r convex integer
programming. PhD Thesis, Yale University, 1997.

[71] J.P. Warners. A linear-time transformation of linear inequalities into conjunctive normal form.
Information Processing Letters, 68:63-69,1998.

[72] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability engine.
Procedure o f the Design Automation Conference, 2001.

[73] H.P. Williams. Model Building in Mathematical Programming. Wiley, 1978.

[74] L.A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[75] H. Zhang. SATO: An efficient propositional proven International Conference on Automated
Deduction, 1997.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

Approximation Algorithms, 8

Benchmark Instances, 25
Branch-and-Bound, 9 ,1 0
Branch-and-Cut, 11

Constrained Market-sharing Problem, 91
Convexity Cut, 20

Distance Induced Neighbourhood Search, 57

Feasibility Pump, 22

Gomory Cuts, 12

Integer Program, 4
Complexity, 7
Solution Methods, 2

Exact, 2, 9
Heuristic, 2 ,15

Interior Path Method, 21

Linear Programming Relaxation, 5
Local Branching, 23

Market-sharing Problem, 26

Neighbourhood Pivot and Gomory Cut, 80

Octane, 17

Pivot and Complement, 15,29
Pivot and Gomory Cut, 34
Pivot, Cut, and Dive, 18
Pivot-and-Shift, 16

Relaxation Induced Neighbourhood Search,
24

SAT Problem, 8

Simplex Method, 5
Simplex Tableau, 6

Tabu Search, 20

Vertex Cut, 20

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Pseudo-Code of PGC

Here we give a more detailed pseudo-code description of our heuristic algorithms PGCo and P G C i •

These two algorithms are composed o f the following procedures.

Procedure Check_P_Feasible

Procedure Round-Truncate

Procedure Generate_Gomory_Cut

Procedure Add_Gomory_Cut

Procedure PG Co-Typel-Pivot

Procedure PGCo-Type2JPivot

Procedure P G C i -Typel -Pivot

Procedure P G C i -Ty pe2_Pivot

Checks whether the current C (P +) solution is P-feasible.

Checks whether rounding or truncating the current

C {P +) solution yields a P-feasible solution.

Generates a cut from the tableau row corresponding to

the most integer-infeasible integer-constrained variable.

Adds a Gomory cut to the simplex tableau.

Searches for a PC Type 1 pivot and, if one is found,

performs the pivot.

Searches for a PC Type 2 pivot and, if one is found,

performs the pivot.

Searches for a PG Ci Type 1 pivot and, if one is found,

performs the pivot.

Searches for a PG C i Type 2 pivot and, if one is found,

performs the pivot.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure Restart Tries to cross the cut. If P has a feasible solution,

it is guaranteed to be successful.

Procedure PGCq The main PG C q procedure.

Procedure PGCi The main PG C i procedure.

Procedure Check_P .Feasible
INPUT: the linear programming relaxation C (P +) of P with the current basis,

and the current basic feasible solution x *.
O u t pu t : return true if x* is P-feasible, else return false.

1 . for each basic variables Xi do
2 . if (the type of x , restricts it to be integer and x* is not integer) then
3. return false.
4. return true.

Procedure Round-Truncate
INPUT: the linear programming relaxation C (P +) o f P with the current basis,

and the current basic feasible solution x * .

O u t p u t : if successful, return a P-feasible solution x mip, else return null.

1 - x mip null.
2 . store the information of current basis o f C (P +).
3. store the existing bound information of integer-constrained variables in £ (P +).

CHECK ROUNDING
4. set new fixed bound for each o f the integer constrained variables in C {P +)

to the nearest integer value of the respective value in x * .

5. solve the C {P +) using the bounded variable revised simplex algorithm.
6 . if (a solution x mip to £ (P +) is found) then
7. return x mip.

CHECK TRUNCATING
8 . set new fixed bound for each of the integer constrained variables in £ (P +)

to the largest integer value that is not larger than the respective value in x*.
9. solve the £ (P +) using the bounded variable revised simplex algorithm.
10. if (a solution x m jp to £ (P +) is found) then
1 1 . return x m ip .

12. restore the actual bound information of integer-constrained variables in C (P +).
13. restore the current basis o f C (P +).
14. return x m jp .

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure Generate.Gomory.Cut
INPUT: the linear programming relaxation C (P +) o f P with the current basis,

and the current basic feasible solution x* .
OUTPUT: return a Gomory cut constructed from the row corresponding to

the most integer-infeasible integer constrained variable.

1. variab leJndex 4- 0; in fe a s ib i l i ty 4 - 0.
2. for each basic variable x< do
3. if (the type o f Xi restricts it to be integer and

the difference o f x* from its nearest integer is larger than in fe a s ib ility) then
4. va ria b leJn d ex 4—i.

in fe a s ib il i ty 4- the difference o f x* from its nearest integer.
5. extract the row o f the current simplex tableau corresponding to va r ia b l e Jn d ex .
6. generate the Gomory cut from that row.
7. return the Gomory cut.

Procedure Add_Gomory_Cut
I n p u t : the linear programming relaxation C (P +) o f P with the current basis,

and the current Gomory cut a x > /?.
OUTPUT: new formulation of C {P +) with one extra row for the added Gomory cut

keeping the current basic solution unchanged.

1. express the Gomory cut a x > /? in terms of the current nonbasic variables.
2. consider a 'x ' > /?' is the Gomory cut in terms of the current nonbasic variables.
3. introduce a slack variable, say x„+m+ i , to make the cut a 'x ' - xn+m+i = /?'.
4. add xn+m+i = —/?' + a 'x ' as a new row to the C (P +).
5. return C (P +).

Procedure PGCo-Typel _Pivot
INPUT: the linear programming relaxation C (P +) o f P with the current basis,

the current basic feasible solution x*.
OUTPUT: return true if it finds a PC Type 1 pivot, else return false.

1. p f - 0; q 4— 0; e x is tP l 4- 0.
2 . for each nonbasic variable Xj do
3. if (the type o f Xj does not restrict it to be integer) then
4. maintaining primal feasibility, find the basic variable x;

which should leave the basis if x j enters into the basis.
5. if (the type o f Xj restricts it to be integer) then
6 . evaluate the new basic feasible solution x * ew if this pivot

between X{ and Xj is performed.
7. new O bjective 4- objective value at the solution x * eul.

8 . if (e x is tP l = 0) then
9. p 4- i ; q 4- j; objective 4- newObjective; exis tPl 4- 1 .
1 0 . elsif (new O bjective < objective) then
11. p 4—i; q 4- j ; objective 4—new O bjective.
12. if (e x is tP l f- 0) then
13. perform the pivot between x p and x q.
14. return true.
15. return false.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure PGCo-Type2JPivot
In p u t : the linear programming relaxation C (P +) o f P with the current basis,

the current basic feasible solution x* .
OUTPUT: return true if it finds a PC Type 2 pivot, else return false.

1. c u rre n tln te g e r In fe a s ib i l i ty sum o f the measure of integer infeasibility
at the current solution x* .

2 . for each nonbasic variable x j do
3. maintaining primal feasibility, find the basic variable X{

which should leave the basis if x j enters into the basis.
4. if (the types of Xi and Xj both restrict them to be integer or

both do not restrict them to be integer) then
5. evaluate the new basic feasible solution x*new if this pivot

between Xj and Xj is performed.
6 . n e w ln te g e r ln fe a s ib il i ty sum o f the measure of integer infeasibility

at the solution x*new.
7. if (n e w ln te g e r ln fe a s ib il i ty < c u rre n tln te g e r I n fe a s ib ility) then
8 . perform the pivot between x; and X j.
9. return true.
1 0 . return false.

Procedure PGCi_Typel_Pivot
In p u t : the linear programming relaxation C (P +) of P with the current basis,

the current basic feasible solution x*, the current Gomory cut a x > j3.
OUTPUT: return true if it finds a PG C i Type 1 pivot, else return false.

1. cu rren t Jhs t— a x evaluated at the current solution x*.
2. for each nonbasic variable Xj do
3. if (the type o f Xj does not restrict it to be integer) then
4. maintaining primal feasibility, find the basic variable Xi

which should leave the basis if Xj enters into the basis.
5. if (the type o f x , restricts it to be integer) then
6. evaluate the new basic feasible solution x* ew if this pivot

between Xi and x j is performed.
7. new Jhs «—a x evaluated at the new solution x*eK,.
8 . if (()3 — new Jhs) < (0 — cu rren t J h s)) then
9. perform the pivot between Xj and X j .
1 0 . return true.
11. return false.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure PGCi-Type2_Pivot
In p u t : the linear programming relaxation C (P +) o f P with the current basis,

the current basic feasible solution x * , the current Gomory cut a x > /?.
OUTPUT: return true if it finds a PG C i Type 2 pivot, else return false.

1. c u r r e n tD if fe re n c e t— /? — (a x evaluated at the current solution x *) .

2. p 4 - 0; q i - 0; coun tE lig ib leP 2 <— 0.
3. for each nonbasic variable x j do
4. maintaining primal feasibility, find the basic variable Xj

which should leave the basis if Xj enters into the basis.
5. if (the types o f Xi and Xj both restrict them to be integer or

both do not restrict them to be integer) then
6. evaluate the new basic feasible solution x * ew if this pivot

between Xj and x j is performed.
7. n e w D if fe re n c e 4- 0 — (a x evaluated at the solution x * eu,) .

8. if (n e w D if fe re n c e < cu rren tD i f fe ren ce) then
9. coun tE lig ib leP 2 4— coun tE lig ib leP 2 + 1.
10. if (countE lig ib leP 2 < [log n j) then
11. if (countE lig ib leP 2 = 1) then
12. p i —i', q 4— i ; d i f fe re n c e «— n e w D if fe ren ce .
13. elsif ((n e w D if fe re n c e < di f fe ren ce) or

(n e w D if fe re n c e < 0 and n e w D if fe ren ce > d i f f e r e n c e)) then
14. p i —i', q j ; d i f fe re n c e 4—n e w D if fe ren ce .
15. else exit from the for loop.
16. if (coun tE lig ib leP 2 f 0) then
17. perform the pivot between x p and x q.
18. return true.
19. return false.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure Restart
INPUT: the linear programming relaxation C {P +) of P with the current basis,

and the current Gomory cut a x > ft.
O u t p u t : if successful return true, else return false.

1. sta tus «— false.
2. express the Gomory cut a x > p in terms o f the current nonbasic variables.
3. consider a 'x ' > /?' is the Gomory cut in terms of the current nonbasic variables.
4. replace the objective function “min cx” of C (P +) with “max a 'x '”.
5. repeat
6 . choose a nonbasic variable Xj according to the bounded variable simplex method.
7. if (there is no nonbasic variable which should enter the basis) then
8 . return false.
9. using the bounded variable simplex method, find a basic variable Xi

which should leave the basis if X j enters into the basis.
1 0 . if (there is no basic variable Xi which should leave the basis) then
11. introduce a slack variable, say x„+m+i, to make the cut a 'x ' — x n+m+i = P'.
12. add x n+m+i = —/?' + a 'x ' as a new row to the £ (P +).
13. perform a pivot between x j and x n+m+i to make the basic solution feasible.
14. re-establish the objective function of C (P +) to “min cx”.
15. sta tus <-true.
16. else
17. perform pivot between x* and X j .

18. if (a x evaluated at new solution is greater or equal to /?) then
19. introduce a slack variable, say x„+ m+i , to make the cut a 'x ' — x n+m+i = P' ■
20. add x n+m+i = — /?' + a 'x ' as a new row to the C (P +).
21. re-establish the objective function of C (P +) to “min cx”.
22 . sta tus <-true.
23. until status
24. return sta tu s.

115

with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm PG C 0

INPUT: a 0-1 mixed integer problem P and a time limit T .
OUTPUT: a P-feasible solution x* (null in case of failure).

1. x* +- null, elapsedTime <— 0
2 . construct C {P +) from P
3. find optimal solution x* of C {P +) using bounded variable revised simplex algorithm
4. if (Check_P-Feasible) then return x* .
5. elsif (Round-Truncate is not null) then

return the P-feasible solution obtained from the procedure Round-Truncate.
6 . repeat

BEGIN SEARCH PHASE
7. Generate_Gomory-Cut.
8 . atDeadEnd <— false
9. repeat
10. while (PGCo -Type 1 -Pivot)
11. x* 4- resulting £ (P +)-feasible solution
1 2 . if (x* satisfies a x > (3) then
13. if (Check_P-Feasible)) then return x*
14. else
15. Add_Gomory_Cut.
16. Generate_Gomory-Cut.
17. if (PGCo _Type2-Pivot) then
18. x* <- resulting £ (P +)-feasible solution
19. if (x* satisfies a x > (3) then
20. if (Check-P-Feasible) then return x*
2 1 . else
22. Add.Gomory.Cut.
23. Generate-Gomory_Cut.
24. else atDeadEnd «— true
25. until atDeadEnd

END SEARCH PHASE
26. if (Round-Truncate is not null) then

return the P-feasible solution obtained from the procedure Round-Truncate.
BEGIN RESTART PHASE

27. if (not Restart) then return null.
END RESTART PHASE

28. until (elapsedTime> T)
29. return x*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm PGCi
INPUT: a 0-1 mixed integer problem P and a time limit T .
OUTPUT: a P-feasible solution x* (null in case of failure).

1. x* <— null, elapsedTime <— 0
2. construct £ (P +) from P
3. find optimal solution x* o f £ (P +) using bounded variable revised simplex algorithm
4. if (Check_P-Feasible) then return x* .
5. elsif (Round-Truncate is not null) then

return the P-feasible solution obtained from the procedure Round-Truncate.
6 . repeat

BEGIN SEARCH PHASE
7. Generate-Gomory_Cut.
8 . atDeadEnd <- false
9. repeat
10. while (PGCi_Typel-Pivot)
11. x* <— resulting £ (P +)-feasible solution
1 2 . if (x* satisfies a x > p) then
13. if (Check_P_Feasible)) then return x*
14. else
15. Add_Gomory_Cut.
16. Generate-Gomory.Cut.
17. if (PGCi _Type2_Pivot) then
18. x* <— resulting £ (P +)-feasible solution
19. if (x* satisfies a x > P) then
20. if (Check_P_Feasible) then return x*
2 1 . else
22. Add_Gomory.Cut.
23. Generate_Gomory_Cut.
24. else atD eadEnd«— true
25. until atDeadEnd

END SEARCH PHASE
26. if (Round-Truncate is not null) then

return the P-feasible solution obtained from the procedure Round-Truncate.
BEGIN RESTART PHASE

27. if (not Restart) then return null.
END RESTART PHASE

28. until (elapsedTime> T)
29. return x *

1 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Experimental Results

B.l Benchmark Instances

We present the description of the benchmark instances in the following tables.

Table B .l: All mixed integer program instances from MIPLIB 2003.

Name Constraints Variables

Binary

variables

Integer

variables

Objective value o f

Optimal/Best known*

solution

lOteams 230 2025 1800 0 924

a lc l s l 3312 3648 192 0 11505.43*

aflow30a 479 842 421 0 1158

aflow40b 1442 2728 1364 0 1168

air04 823 8904 8904 0 56137

aiK)5 426 7195 7195 0 26374

arkiOOl 1048 1388 415 123 7580813.04*

atlanta-ip 21732 48738 46667 106 95.009*

cap6000 2176 6000 6000 0 -2 4 5 1 3 7 7

dano3mip 3202 13873 552 0 688.26*

danoint 664 521 56 0 65.6667

Continued on next page

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B. 1 - Continued from previous page

Name Constraints Variables

Binary

variables

Integer

variables

Objective value of

Optimal/Best known*

solution

ds 656 67732 67732 0 413.78*

disctom 399 10000 10000 0 -5 0 0 0

fast0507 507 63009 63009 0 174

fiber 363 1298 1254 0 405935

fixnet6 478 878 378 0 3983

gesa2 1392 1224 240 168 2.57e+07

gesa2-o 1248 1224 384 336 2.57e+07

glass4 396 322 302 0 1460013800.0*

harp2 112 2993 2993 0 -7 3 8 9 9 7 9 8

liu 2178 1156 1089 0 1212*

manna81 6480 3321 18 3303 -1 3 1 6 4

marksharel 6 62 50 0 1

markshare2 7 74 60 0 1

mas74 13 151 150 0 11801.2

mas76 12 151 150 0 40005.1

misc07 212 260 259 0 2810

mkc 3411 5325 5323 0 -5 6 3 .8 4 6

modOll 4480 10958 96 0 —5.4558e+07

modglob 291 422 98 0 2.07405e+07

momentum 1 42680 5174 2249 0 346535*

momentum2 24237 3732 1808 1 15216.987*

momentum3 56882 13532 6598 1 370177.036*

msc98-ip 15850 21143 20237 53 2.327e+07*

m zzv ll 9499 10240 9989 251 -2 1 7 1 8

mzzv42z 10460 11717 11482 235 -2 0 5 4 0

net 12 14021 14115 1603 0 214

noswot 182 128 75 25 - 4 1

nsrand-ipx 735 6621 6620 0 51200

Continued on next page

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B .l - Continued from previous page

Name Constraints Variables

Binary

variables

Integer

variables

Objective value o f

Optimal/Best known*

solution

nw04 36 87842 87842 0 16862

optl217 64 769 768 0 - 1 6

p2756 755 2756 2756 0 3124

pkl 45 86 55 0 11

pp08a 136 240 64 0 7350

pp08aCUTS 246 240 64 0 7350

protfold 2112 1835 1835 0 -30*

qiu 1192 840 48 0 -1 3 2 .8 7 3

rd-rplusc-21 125899 622 457 0 167297.61*

rolBOOO 2295 1166 246 492 12890*

rout 291 556 300 15 1077.56

setlch 492 712 240 0 54537.8

seymor 4945 1372 1372 0 423

sp97ar 1761 14101 14101 0 661778926.6*

stp3d 159488 204880 204880 0 No solution known

swath 884 6805 6724 0 471.03*

tl717 551 73885 73885 0 216557*

timtabl 171 397 64 107 764772

timtab2 294 675 113 181 1096557*

trl2 -30 750 1080 360 0 130596

vpm2 234 378 168 0 13.75

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.2: All mixed integer program instances from DEIS operations

research library.

Name Constraints Variables

Binary

variables

Integer

variables

Objective value of

Optimal/Best known*

solution

a lc ls l 3312 3648 192 0 11505.43*

a 2 c ls l 3312 3648 192 0 10889.14*

b lc l s l 3904 3872 288 0 24544.25*

b 2 c ls l 3904 3872 288 0 25740.15*

biellal 1203 7328 6110 0 3065084.57*

nsr8k 6284 38356 32040 0 2.0301e+07*

rail507 509 63019 63009 0 174*

rai!2536c 2539 15293 15284 0 689*

rail2586c 2589 13226 13215 0 953*

rail4284c 4287 21714 21705 0 1071*

rail4872c 4875 24656 24645 0 1550*

sp97ar 1761 14101 14101 0 661778926.6*

sp97ic 1034 12497 12497 0 428079014.2*

sp98ar 1436 15085 15085 0 529814784.7*

sp98ic 826 10894 10894 0 449144758.4*

bg512142 1307 792 240 0 189183.16*

dg012142 6310 2080 640 0 2706923.5*

d e le 1649 10039 8380 0 1843531.06*

d e ll 1653 37297 35638 0 1813853.08*

dolom l 1803 11612 9720 0 20560415.03*

siena 1 2220 13741 11775 0 13360676.13*

trentol 1265 7687 6415 0 5190144*

CM S750.4 16381 11697 71% 0 253*

berlin_5.8.0 1532 1083 794 0 62*

railway .8 -1 .0 2527 1796 1177 0 400*

usAbbrv.8.25.70 3291 2312 1681 0 121*

Continued on next page

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.2 - Continued from previous page

Name Constraints Variables

Binary

variables

Integer

variables

Objective value o f

Optimal/Best known*

solution

blp-ic97 923 9845 9753 0 4048.35*

blp-ic98 717 13640 13550 0 4494.68*

blp-ar98 1128 16021 15806 0 6211.45*

blp-ir98 486 6097 6031 0 2342.31*

umts 4465 2947 2802 72 30121483*

Table B.3: 15 new 0-1 mixed integer program instances used in [29].

Name Constraints Variables

Binary

variables

Integer

variables

Objective value of

Optimal/Best known*

solution

ljb2 1482 771 681 0 0.5077*

ljb7 8133 4163 3920 0 0.1145*

ljb9 9231 4721 4460 0 0.739*

ljblO 10742 5496 5196 0 0.508*

ljb l2 . 9596 4913 4633 0 0.399*

rococoB10-011000 1667 4456 4320 136 19449*

rococoB 10-011001 1677 4456 4320 136 21265*

rococoB 11-010000 3792 12376 12210 166 32246*

rococoBl 1-110001 8148 12431 12265 166 42444*

ro c o c o B 1 2 - ll l l l l 8978 9109 8778 331 39831*

rococoC 10-001000 1293 3117 2993 124 11460*

rococoC 10-100001 7596 5864 5740 124 16664*

rococoCl 1-010100 4010 12321 12155 166 20889*

rococoCl 1-011100 2367 6491 6325 166 20889*

rococoC 12-100000 21550 17299 17112 187 35512*

rococoC12-111100 10842 8619 8432 187 35909*

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 PGC Experimental Results

We present the details of experimental results related to PGC in the following tables.

Table B.4: Experimental results of PC, PG C 0, and PG C i on 77 bench

mark instances. 4 - : a time limit of 1 CPU-hour exceeded. — : heuristic

reported failure. Solution: objective value o f found solution. Time: sec

onds to find a solution or to report failure excluding the time to solve the

initial LP. R: the number o f times restarted.

Name PC PG Co P G C i

Solution Time R Solution Time R Solution Time R

lOteams - 1.2 1 - + 379 - + 197

a lc ls l - 95.1 1 20439.08 231.4 9 21987.69 92.4 2

aflow30a - 0.6 1 2136 0.6 1 1930 0.2 0

aflow40b - 7.1 1 2177 15.6 5 2719 5.5 3

airi)4 - + 1 56913 41.1 0 57974 32.3 3

air05 - 12.9 1 34442 88.3 13 30174 16.3 3

cap6000 -2407434 4.7 0 -2442801 0.1 0 -2 4 4 2 8 0 1 0.1 0

dano3mip - + 0 - + 0 - + 0

danoint - 9.2 1 66.5 17.0 0 66.5 170.4 0

ds - 88.1 1 - + 35 - + 41

disctom - 26.9 1 -5 0 0 0 437.9 41 -5 0 0 0 927.8 47

fast0507 250 32.1 0 239 36.0 0 282 52.4 3

fiber 2131825.48 1.4 0 2131825.48 1.4 0 2323978.76 0.6 0

fixnet6 59044 6.4 0 63144 6.5 0 92308 0.8 0

glass4 - 0.2 1 12000171916 0.7 17 3000029600 3.1 11

harp2 - 0.4 1 -61991165 3.4 42 -6 2 7 4 7 7 5 8 1.8 17

liu 3998 22.1 0 6450 0.1 0 6450 0.1 0

marksharel 340 0.0 0 923 0.0 0 923 0.0 0

Continued on next page

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.4 - Continued from previous page

Name PC PGCo P G C i

Solution Time R Solution Time R Solution Time R

markshare2 558 0.0 0 558 0.0 0 558 0.0 0

mas74 19197.46 0.0 0 56379.25 0.0 0 56379.25 0.0 0

mas76 44839.82 0.0 0 80297.61 0.0 0 80297.61 0.0 0

misc07 - 0.2 1 4815 6.0 148 4445 1.2 36

mkc -2.05 18.4 0 -2.05 18.7 0 335.15 0.2 0

modOll -4 2 7 8 3 9 8 6 78.6 0 0.0 0.1 0 0.0 0.1 0

modglob 20808306.8 0.3 0 35147088.8 0.0 0 35147088.8 0.0 0

momentum 1 - + 0 - + 0 - + 0

netl2 - 2266.3 1 - + 4 - + 79

nsrand-ipx 237600 0.4 0 237600 0.7 0 336000 0.4 3

nw04 19882 1.8 0 19882 4.1 0 17516 2.1 0

optl217 - 1 6 0.0 0 - 1 4 0.0 0 - 1 4 0.0 0

p2756 - 1.8 1 119888 4.1 24 111375 3.3 1

p k l 35 0.0 0 48 0.0 0 48 0.0 0

pp08a 11270 0.1 0 11180 0.1 0 17700 0.0 2

pp08aCUTS 9950 0.2 0 9950 0.2 0 13670 0.1 0

protfold - 219.7 1 - + 255 - + 99

qiu - 1.1 1 2728.93 185.2 44 706.34 118.8 27

rd-rplusc-21 - 554.5 1 - + 4 - + 4

setlch 101342 3.4 0 101342 3.4 0 170306 1.0 0

seymor 616 134.3 0 617 133.9 0 644 37.8 7

sp97ar 847665971 9.9 0 847665971.4 9.9 0 885031424.4 12.4 0

swath - 3.5 1 - + 259 - + 243

t l 7 17 - 323.3 1 - + 9 - + 4

trl2-30 - 11.0 1 147784 12.2 6 225057 10.6 0

vpm2 - 0.1 0 19.25 0.1 3 21.25 0.1 4

a 2 c ls l - 86.8 1 19435.61 125.0 7 21550.91 123.7 4

b lc ls l - 171.7 1 72509.89 328.4 22 83070.85 545.7 7

b 2 c ls l - 228.8 1 65868.57 1203 8 66650.90 386.0 2

Continued on next page

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.4 - Continued from previous page

Name PC PGCo P G C i

Solution Time R Solution Time R Solution Time R

biellal - 154.1 1 115610810.1 204.7 2 25976128.6 117.6 8

nsr8k - + 0 - + 0 - + 0

rail507 248 52.3 0 241 54.8 0 278 29.8 0

rail2536c 975 320.3 0 788 320.4 0 942 43.0 2

rail2S86c 1491 1008.7 0 1531 996.4 0 1617 469.6 3

rail4284c - + 0 - + 0 - + 0

rail4872c - + 0 - + 0 - + 0

sp97ic 660936153 1.4 0 678371143.0 1.7 0 604080493.7 2.0 0

sp98ar - 16.9 1 737228733.6 7.7 0 785793816.3 6.6 0

sp98ic 614965469 1.1 0 550312567.3 1.5 0 641234440.3 2.4 1

bg512142 8774550 30.7 0 120738665 0.0 0 120738665 0.0 0

dg012142 34067266 923.2 0 153406945.5 0.1 0 153406945.5 0.1 0

d e le - 481.3 1 178531140.7 446.0 1 9999999999.9 272.3 8

d e ll - 1633.8 1 150135254.2 1038 0 162070107.1 1127 3

doloml - + 0 - + 0 - + 11

sienal - + 0 - + 0 - + 0

trentol - 374.5 1 437090154.0 432.9 0 10000000000 131.8 2

cms750-4 - + 0 - + 0 - + 0

berlin-5-8-0 - 25.5 1 80 35.4 20 79 22.0 20

railway-8-1-0 - 90.1 1 441 125.3 50 440 77.6 21

usabbrv-8-25-70 - 272.9 1 165 361.4 52 160 180.9 34

blp-ic97 - 6.6 1 6791.58 11.0 6 5953.77 17.7 9

blp-ic98 - 10.8 1 10089.33 25.4 15 7983.30 20.8 6

blp-ar98 - 25.5 1 11472.17 28.6 5 10670.70 49.7 7

blp-ii98 - 4.4 1 2930.49 5.6 8 3688.45 4.1 4

ljb2 0.976 22.5 0 7.23 0.1 0 7.23 0.1 0

ljb7 - + 0 8.61 1.9 0 8.61 1.9 0

ljb9 - + 0 9.47 2.3 0 9.47 2.3 0

ljblO - + 0 7.31 2.7 0 7.31 2.7 0

Continued on next page

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.4 - Continued from previous page

Name PC PGCo P G C i

Solution Time R Solution Time R Solution Time R

ljbl 2 - + 0 6.19 1.9 0 6.19 1.9 0

Table B.5: Experimental results of FP and PG C i on 77 benchmark in

stances. -I-: a time limit o f 1 CPU-hour exceeded. — : heuristic reported

failure. Solution: objective value of found solution. Time: seconds to

find a solution or to report failure excluding the time to solve the initial

LP. N: the number o f iterations.

Name FP P G C i

Solution Time N . Solution Time

lOteams 1024 13.9 49 - +

a lc l s l 19280.05 15.6 6 21987.69 92.4

aflow30a 4351 0.3 5 1930 0.2

aflow40b 6035 0.7 4 2719 5.5

air04 60175 333.4 10 57974 32.3

aii05 31988 12.1 2 30174 16.3

cap6000 -2322939 0.8 7 -2 4 4 2 8 0 1 0.1

dano3mip 813.105 201.0 3 - +

danoint 76.33 2.1 12 66.5 170.4

ds - + 24 - +

disctom -5000 56.1 3 - 5 0 0 0 927.8

fast0507 204 282.8 3 282 52.4

fiber 2270781.03 0.5 5 2323978.76 0.6

lixnet6 14665 0.1 5 92308 0.8

glass4 13200143054 39.0 3108 3000029600 3.1

harp2 -39771742 2.4 116 -6 2 7 4 7 7 5 8 1.8

liu 6022 0.5 0 6450 0.1

Continued on next page

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.5 - Continued from previous page

Name FP P G C i

Solution Time N Solution Time

m arksharel 1329 0.0 5 923 0.0

markshare2 558 0.0 2 558 0.0

mas74 14372.87 0.0 2 56379.25 0.0

mas76 43774.25 0.0 2 80297.61 0.0

misc07 3945 1.7 56 4445 1.2

mkc -85.85 0.6 3 335.15 0.2

m odO ll 0.0 0.1 0 0.0 0.1

modglob 35147088.88 0.0 0 35147088.88 0.0

momentum 1 - + 20 - +

netl2 - + 81 - +

nsrand-ipx 357920 1.0 3 336000 0.4

nw04 19792 3.2 1 17516 2.1

optl217 0 0.0 0 - 1 4 0.0

p2756 - + 12993 111375 3.3

pkl 48 0.0 0 48 0.0

pp08a 13190 0.0 4 17700 0.0

pp08aCUTS 12280 0.1 3 13670 0.1

protfold - + 34 - +

qiu 2416.85 0.6 3 706.34 118.8

rd-rplusc-21 - + 14 - +

setlch 149959 0.1 11 170306 1.0

seymor 481 35.4 4 644 37.8

sp97ar 1561625924 27.5 4 885031424 12.4

swath 30965.35 10.3 57 - +

tl717 - + 13 - +

trl2-30 271121 3.0 21 225057 10.6

vpm2 31.5 0.1 6 21.25 0.1

a2 c ls l 24016.87 121.0 48 21550.91 123.7

b lc l s l 68768.09 29.0 9 83070.85 545.7

Continued on next page

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.5 - Continued from previous page

Name FP PG C i

Solution Time N Solution Time

b 2 c ls l 67760.77 36.5 9 66650.90 386.0

biellal 9999999999 29.5 4 25976128.64 117.6

nsr8k - + 2 - +

rail507 181 249.5 3 278 29.8

rail2536c - + 6 942 43.0

rail2586c 10000000000 1321 3 1617 469.6

rail4284c - + 4 - +

rail4872c - + 3 - +

sp97ic 723692147 10.3 4 604080493 2.0

sp98ar 966779165 42.5 6 785793816 6.6

sp98ic 1200994883 7.0 4 641234440 2.4

bg512142 120738665 0.2 0 120738665 0.0

dg012142 153406945.5 1.4 0 153406945.5 0.1

dele 9999999999 222.5 6 9999999999 272.3

de ll 26899359.89 1195 6 162070107.1 1127

dolom l 10000000000 637.0 6 - +

sienal - + 3 - +

trentol 10000000000 145.1 2 10000000000 131.8

cms750-4 - + 33 - +

berlin-5-8-0 80 4.0 15 79 22.0

railway-8-1-0 441 11.7 13 440 77.6

usabbrv-8-25-70 172 96.8 80 160 180.9

blp-ic97 8504.96 4.4 10 5953.77 17.7

blp-ic98 13973.87 4.0 7 77983.30 20.8

blp-ar98 - + 1648 10670.70 49.7

blp-ir98 6866.19 1.4 7 3688.45 4.1

ljb2 7.23 0.5 0 7.23 0.1

ljb7 8.61 13.4 0 8.61 1.9

ljb9 9.47 18.3 0 9.47 2.3

Continued on next page

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.5 - Continued from previous page

Name FP P G C i

Solution Time N Solution Time

ljblO 7.31 28.1 0 7.31 2.7

ljb l2 6.19 19.1 0 6.19 1.9

Table B.6: Time to solve the initial linear programming relaxation of 77

benchmark instances by GLPK 4.0 and Cplex 9.13.

Name LP solution

time (secs)

Name LP solution

time (secs)

GLPK Cplex GLPK Cplex

lOteams 0.18 0.09 sp97ar 8.70 1.93

a lc l s l 1.21 0.01 swath 0.09 0.08

aflow30a 0.03 0.03 tl717 84.09 8.57

aflow40b 0.29 0.09 trl2-30 0.12 0.00

air04 14.42 2.55 vpm2 0.01 0.00

air05 2.48 0.44 a2 c ls l 1.16 0.04

cap6000 0.43 0.09 b lc ls l 1.96 0.04

dano3mip 55.14 52.97 b 2 c ls l 2.04 0.05

danoint 0.15 0.06 biellal 8.54 4.56

ds 83.97 44.07 nsr8k 2903.14 962.27

disctom 15.63 4.05 rail507 46.78 23.32

fast0507 48.01 21.53 rail2536c 101.57 9.50

fiber 0.02 0.00 rail2586c 116.91 37.81

fixnet6 0.02 0.00 rail4284c 496.63 135.97

glass4 0.00 0.00 rail4872c 527.94 167.22

harp2 0.04 0.03 sp97ic 3.31 1.37

liu 0.21 0.02 sp98ar 7.98 2.49

marksharel 0.00 0.00 sp98ic 2.99 1.24

Continued on next page

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.6 - Continued from previous page

Name LP solution

time (secs)

Name LP solution

time (secs)

GLPK Cplex GLPK Cplex

marksbare2 0.00 0.00 bg512142 0.23 0.09

mas74 0.00 0.00 dg012142 1.63 0.35

mas76 0.00 0.00 d e le 21.00 10.30

misc07 0.02 0.00 d e ll 145.78 52.02

mkc 0.24 0.10 dolom l 39.88 18.38

modOll 0.96 0.13 siena 1 129.09 49.18

modglob 0.01 0.00 trentol 32.18 11.31

momentum 1 49.43 1.36 cms750-4 57.16 0.89

netl2 4.69 6.35 berlin-5-8-0 0.27 0.02

nsrand-ipx 0.29 0.28 railway-8-1-0 0.93 0.06

nw04 3.17 2.16 usabbrv-8-25-70 1.49 0.10

optl217 0.01 0.01 blp-ic97 0.45 0.29

p2756 0.01 0.00 blp-ic98 0.66 0.45

pkl 0.00 0.00 blp-ar98 1.41 0.54

pp08a 0.01 0.00 blp-ir98 0.18 0.15

pp08aCUTS 0.01 0.01 ljb2 0.21 0.02

protfold 3.08 1.10 ljb7 9.09 0.57

qiu 0.26 0.09 ljb9 12.80 0.74

rd-rplusc-21 136.26 2.09 ljblO 17.05 1.01

setlch 0.01 0.01 ljb l2 13.30 0.76

seymor 5.21 1.70

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.7: Experimental results of Cplex-D, Cplex-F, and PG C i on 77

benchmark instances. + : a time limit of 1 CPU-hour exceeded. — :

heuristic reported failure. Solution: objective value of found solution.

Time: seconds to find a solution or to report failure excluding the time to

solve the initial LP. Nd: the number of nodes o f the search tree.

Name Cplex-D Cplex-F PG C i

Solution Time Nd Solution Time Nd Solution Time

lOteams 952 3.4 0 924 6.1 385 - +

a lc ls l 14595.12 4.9 0 13174.27 2.7 140 21987.69 92.4

aflow30a 1307 0.1 0 1307 0.1 0 1930 0.2

aflow40b 1489 12.3 550 1635 26.5 3480 2719 5.5

air04 57306 2.0 0 59734 4.7 43 57974 32.3

ait05 26861 0.9 0 31189 2.4 90 30174 16.3

cap6000 -2 4 4 5 3 4 4 0.2 0 -2 4 4 5 3 4 4 0.2 0 -2 4 4 2 8 0 1 0.1

dano3mip 768.375 8.5 0 768.375 8.4 0 - +

danoint 66.5 0.6 0 69.5 1.2 51 66.5 170.4

ds 5418.56 3.4 0 5418.56 1.5 0 - +

disctom -5000 208.8 61 - 5 0 0 0 83.6 4843 - 5 0 0 0 927.8

fast0507 201 1.6 0 201 1.6 0 282 52.4

fiber 422169.4 0.1 0 422169.4 0.1 0 2323978.76 0.6

fixnet6 4505 0.0 0 4505 0.0 0 92308 0.8

glass4 2.900e+09 0.2 171 3.8167e+09 1.2 5660 3000029600 3.1

harp2 -7.2977e+07 0.1 0 -7.2977e+07 0.1 0 -6 2 7 4 7 7 5 8 1.8

liu 6450 0.1 0 6450 0.1 0 6450 0.1

marks h a rd 1095 0.0 0 1095 0.0 0 923 0.0

markshare2 944 0.0 0 944 0.0 0 558 0.0

mas74 19197.46 0.0 0 19197.46 0.0 0 56379.25 0.0

mas76 44877.42 0.0 0 44877.42 0.0 0 80297.61 0.0

misc07 3615 0.3 10 3870 0.1 30 4445 1.2

mkc -496.46 0.2 0 -496.46 0.2 0 335.15 0.2

Continued on next page

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.7 - Continued from previous page

Name Cplex-D Cplex-F P G C i

Solution Time Nd Solution Time Nd Solution Time

modOll -4 2 9 0 2 3 1 4 0.2 0 -4 2 9 0 2 3 1 4 0.1 0 0.0 0.1

modglob 20786787.0 0.0 0 20786787.0 0.0 0 35147088.8 0.0

momentum 1 - + 100 - + 500 - +

netl2 214 838.0 130 255 411.1 185 - +

nsrand-ipx 57600 0.5 0 57600 0.5 0 336000 0.4

nw04 18228 6.0 0 18228 5.9 0 17516 2.1

optl217 - 1 0.0 0 - 1 2 0.1 0 - 1 4 0.0

p2756 3378 0.1 0 3378 0.1 0 111375 3.3

pk l 57 0.0 0 57 0.0 0 48 0.0

pp08a 15300 0.0 0 15300 0.0 0 17700 0.0

pp08aCUTS 13490 0.0 0 13490 0.0 0 13670 0.1

protfold - + 3200 - 1 4 506.7 260 - +

qiu 1805.17 0.1 0 1805.17 0.1 0 706.34 118.8

rd-rplusc-21 - + 33800 - + 35800 - +

setlch 107267 0.0 0 107267 0.0 0 170306 1.0

seymor 457 0.4 0 457 0.4 0 644 37.8

sp97ar 697232594.6 0.9 0 697232594.6 0.9 0 885031424 12.4

swath 1405.57 0.2 0 1405.57 0.2 0 - +

tl717 233768 480.1 720 342258 261.8 890 - +

trl2-30 146513 0.8 0 141874 0.6 90 225057 10.6

vpm2 16 0.0 0 16.75 0.0 0 21.25 0.1

a2 c ls l 20865.33 0.1 0 20865.33 0.1 0 21550.91 123.7

b lc ls l 69933.52 0.1 0 69933.52 0.1 0 83070.85 545.7

b2clsl 70575.52 0.1 0 70575.52 0.1 0 66650.90 386.0

biellal 3154183.34 447.2 240 3377565.2 67.5 570 25976128.6 117.6

nsr8k - + 0 - + 0 - +

rai!507 198 2.0 0 198 2.0 0 278 29.8

rail2536c 762 0.7 0 762 0.6 0 942 43.0

rail2586c 1073 1.0 0 1073 0.9 0 1617 469.6

Continued on next page

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.7 - Continued from previous page

Name Cplex-D Cplex-F P G C i

Solution Time Nd Solution Time Nd Solution Time

rail4284c 1213 1.9 0 1213 1.9 0 - +

rail4872c 1723 2.8 0 1723 2.8 0 - +

sp97ic 470971128.6 1.0 0 470971128.6 0.9 0 604080493 2.0

sp98ar 566534466.7 1.3 0 566534466.7 1.2 0 785793816 6.6

sp98ic 513738135 0.9 0 513738135 0.9 0 641234440 2.4

bg512142 120670203.5 0.1 0 120670203.5 0.1 0 120738665 0.0

dg012142 153397324 0.3 0 153397324 0.3 0 153406945.5 0.1

d e le 19026816.89 2717.9 9459 6044895.95 256.7 4572 9999999999 272.3

d e ll 751870828.7 1.8 0 751870828.7 1.8 0 162070107.1 1127

dolom l - + 6900 44243931.13 226.0 315 - +

sienal - + 2100 74142275.93 861.0 590 - +

trentol 46015409 32.9 0 9076504.046 141.6 210 10000000000 131.8

cms750-4 296 498.9 920 342 18.8 940 - +

berlin-5-8-0 64 1.5 1470 73 0.3 155 79 22.0

railway-8-1-0 406 2.3 0 418 0.9 326 440 77.6

usabbrv-8-25-70 130 156.7 42290 - + 80 160 180.9

blp-ic97 4149.34 27.0 360 4295.57 19.0 2200 5953.77 17.7

blp-ic98 4695.86 51.7 1000 4777.00 26.7 1910 77983.30 20.8

blp-ar98 6554.69 112.7 2640 6636.40 50.0 3880 10670.70 49.7

blp-ii98 2364.10 3.1 70 2775.23 2.4 410 3688.45 4.1

ljb2 1.726 0.3 0 1.457 0.2 30 7.23 0.1

ljb7 8.61 2.1 0 0.732 2.3 100 8.61 1.9

ljb9 9.47 3.6 0 2.026 4.4 180 9.47 2.3

ljblO 1.916 2.7 0 1.13 3.3 90 7.31 2.7

ljb 12 3.375 0.8 0 1.40 3.4 110 6.19 1.9

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.8: Experimental results of PBS4 and PG C i on 10 benchmark

0-1 integer program instances. —: no solution found. + : a time limit

of 1 CPU-hour exceeded. Solution: objective value of found solution.

Time: seconds to find a solution.

Name PBS4 PGC l Name PBS4 PG C i

Solution Time Solution Time Solution Time Solution Time

air04 - + 57974 46.7 nw04 62498 5.8 17516 5.3

air05 41859 6.03 30174 18.8 p2756 267435 0.03 111375 3.3

cap6000 -222820 223.95 -2442801 0.6 protfold -20 0.01 - +

disctom - + -5000 943.4 seymor 1308 0.01 644 43.1

fast0507 122425 73.99 282 63.4 tl717 406325 359.49 - +

Table B.9: Time taken to find a feasible solution on the Comuejols-

Dawande feasibility model instances generated with n = 10m. + : A

time limit o f 1 CPU-hour exceeded. CD-Feasxx-y: name of the instance,

where xx and y represent n and the number o f the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CD-Feasl0-1 0.00 0.00 0.01 0.01 0.00

CD-FeaslO-2 0.01 0.01 0.00 0.00 0.01

CD-Feasl0-3 0.01 0.01 0.00 0.00 0.00

CD-FeaslO-4 0.01 0.00 0.00 0.04 0.00

CD-Feasl0-5 0.00 0.00 0.00 0.02 0.00

CD-Feas20-1 0.04 0.09 0.01 2.83 0.41

CD-Feas20-2 0.01 0.02 0.01 1.39 10.66

CD-Feas20-3 0.01 0.00 0.00 0.46 1.39

CD-Feas20-4 0.01 0.01 0.00 1.75 0.14

CD-Feas20-5 0.00 0.00 0.01 1.68 0.04

Continued on next page

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.9 - Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CD-Feas30-1 3.60 2.93 5.54 71.26 10.69

CD-Feas30-2 1.61 1.31 218.74 77.52 38.64

CD-Feas30-3 2.03 6.63 254.63 413.96 787.97

CD-Feas30-4 2.66 2.42 9.42 1609.58 2981.63

CD-Feas30-5 9.79 7.50 51.36 743.55 1298.91

CD-Feas40-1 88.48 21.21 + + +

CD-Feas40-2 406.21 150.84 + + +

CD-Feas40-3 24.05 14.71 + + +

CD-Feas40-4 429.71 255.77 + + +

CD-Feas40-5 446.87 446.42 + + +

CD-Feas50-1 + + + + +

CD-Feas50-2 + + + + +

CD-Feas50-3 + + + + +

CD-Feas50-4 + + + + +

CD-Feas50-5 + + + + +

Table B.10: Time taken to find a feasible solution on constrained market-

sharing instances generated with k = 2.0. + : a time limit of 1 CPU-hour

exceeded. CMSxxx-y: name o f the instance, where xxx and y represent

n and the number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CMS50-1 + 2.95 3.01 0.90 0.11

CMS50-2 + 1.65 5.13 0.24 0.02

CMS50-3 + 4.34 3.12 3.41 0.05

CMS50-4 + 7.00 + 5.55 0.12

Continued on next page

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B .1 0 - Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP PG C i

CMS50-5 + 4.42 7.96 2.30 0.10

CMS100-1 + 1217.24 + 1628.33 1.54

CMS 100-2 + 228.87 + 161.31 0.36

CMS 100-3 + 776.17 + 25.06 0.87

CMS 100-4 + 197.40 + 377.64 5.00

CMS100-5 + 826.36 + 24.73 2.51

CMS150-1 + + + + 11.68

CMS 150-2 + + + 259.79 104.37

CMS 150-3 + + + 139.23 1.49

CMS 150-4 + + + 1088.52 10.23

CMS 150-5 + + + + 11.93

CMS200-1 + + + + 399.07

CM S200-2 + + + + 180.00

CMS200-3 + + + + 226.12

CMS200-4 + + + + 44.30

CMS200-5 + + + + 88.78

CMS250-1 + + + + 638.70

CMS250-2 + + + + +

CMS250-3 + + + + +

CMS250-4 + + + + 1159.38

CMS250-5 + + + + 466.62

CMS300-1 + + + + 2788.31

CMS300-2 + + + + 2542.34

CMS300-3 + + + + +

CMS300-4 + + + + 2334.55

CMS300-5 + + + + 1050.26

CMS350-1 + + + + 1684.35

CMS350-2 + + + + +

CMS350-3 + + + + +

CMS350-4 + + + + +

Continued on next page

1 3 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B. 1 0 - Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CMS350-5 + + + + 2540.84

CMS400-1 + + + + +

CMS400-2 + + + + +

CMS400-3 + + + + +

CM S400-4 + + + + +

CMS400-5 + + + + +

Table B. 11: Time taken to find a feasible solution on constrained market-

sharing instances generated with k = 1.5. + : a time limit of 1 CPU-hour

exceeded. CMSxxx-y: name of the instance, where xxx and y represent

n and the number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CMS50-1 + 43.08 + 523.33 77.89

CMS50-2 + 3.57 + 5.31 0.18

CMS50-3 + 5.56 + 11.62 0.03

CMS50-4 + 15.90 + 68.11 0.12

CMS50-5 + 40.96 + 25.30 23.52

CMS75-1 + 1811.92 + + 834.04

CMS75-2 + 1582.52 + 832.26 41.27

CMS75-3 + 344.70 + 3329.37 6.66

CMS75-4 + 2094.63 + 2320.46 19.75

CMS75-5 + 124.88 + 541.85 2.32

CMS 100-1 + 1198.96 + + 11.97

CMS100-2 + + + + 282.44

CMS 100-3 + + + + 164.05

Continued on next page

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B .l 1 - Continued from previous page

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CMS100-4 + 3470.68 + + 29.36

CMS 100-5 + + + + 1182.79

CMS 125-1 + + + + 746.46

CMS 125-2 + + + + +

CMS 125-3 + + + + 388.88

CMS 125-4 + + + + 513.99

CMS 125-5 + + + + 300.03

CMS 150-1 + + + + +

CMS 150-2 + + + + 336.80

CMS150-3 + + + + +

CMS 150-4 + + + + +

CMS 150-5 + + + + 1202.67

CMS175-1 + + + + +

CMS175-2 + + + + +

CMS175-3 + + + + +

CMS175-4 + + + + +

CMS 175-5 + + + + 1875.09

CMS200-1 + + + + +

CMS200-2 + + + + +

CMS200-3 + + + + +

CMS200-4 + + + + +

CMS200-5 + + + + 4-

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B. 12: Time taken to find a feasible solution for constrained market-

sharing instances with k = 1.3. + : a time limit of 1 CPU-hour exceeded.

CMSxxx-y: name of the instance, where xxx and y represent n and the

number of the instance respectively.

Instance Time taken (seconds)

Cplex-D Cplex-F PBS4 FP P G C i

CMS50-1 + 78.75 + 299.60 30.72

CMS50-2 + 36.62 + 1692.57 1.79

CMS50-3 + 54.38 + 125.35 125.41

CMS50-4 + 80.20 + 1403.09 14.75

CMS50-5 + 13.50 + 160.87 0.35

CMS75-1 + + + + +

CMS75-2 + + + + +

CMS75-3 + 1841.53 + + 62.28

CMS75-4 + + + + 436.24

CMS75-5 + + + + 238.98

CMS 100-1 + + + + +

CMS 100-2 + + + + 237.64

CMS 100-3 + + + + +

CMS 100-4 + + + + +

CMS 100-5 + + + + 1938.22

CMS 125-1 + + + + 598.22

CMS 125-2 + + + + +

CMS125-3 + + + + +

CMS125-4 + + + + +

CMS 125-5 + + + + +

CMS150-1 + + + + +

CMS 150-2 + + + + +

CMS 150-3 + + + + +

CMS 150-4 + + + + +

CMS 150-5 + + + + +

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.3 DINS Experimental Results

We present the details of experimental results related to DINS in the following tables.

Table B.13: Percentage of gap o f the solutions obtained by different

solvers in one CPU-hour starting from the presumably poor solutions

on 64 benchmark instances. Bold face identifies the best solver for the

corresponding instance.

problem Percentage o f Gap

Cplex-D LB RINS DINS

Small spread instances

a lc l s l 2.347 0.250 0.000 0.079

a 2 c ls l 2.978 1.889 0.000 0.024

b lc l s l 5.977 1.786 0.933 4.444

b 2 c ls l 4.240 2.701 0.559 1.010

biellal 0.309 0.806 0.426 0.739

danoint 0.000 0.000 0.000 0.000

mkc 0.180 0.049 0.043 0.021

net 12 0.000 0.000 0.000 0.000

nsrand-ipx 0.625 0.625 0.313 0.000

rail507 0.000 0.000 0.000 0.000

rail2586c 2.518 2.204 1.994 1.574

rail4284c 1.774 1.867 1.027 1.027

rail4872c 1.742 1.290 1.097 1.032

Seymour 0.473 0.473 0.000 0.236

sp97ar 0.428 0.513 0.335 0.000

sp97ic 0.793 0.642 0.551 0.000

sp98ar 0.184 0.106 0.177 0.228

Continued on next page

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.13 - Continued from previous page

problem Percentage o f Gap

Cplex-D LB RINS DINS

sp98ic 0.270 0.146 0.204 0.072

trl2-30 0.000 0.024 0.000 0.000

arkiOOl 0.003 0.003 0.004 0.002

roll3000 0.543 0.303 0.070 0.070

umts 0.013 0.049 0.022 0.002

berlin-5-8-0 0.000 0.000 0.000 0.000

bg512142 7.257 5.192 0.161 0.000

blp-ic97 0.779 0.653 0.358 0.000

blp-ic98 0.961 1.056 0.746 0.515

blp-ar98 0.655 0.060 0.461 0.000

cms750-4 2.372 0.791 1.186 0.791

d e ll 2.018 8.166 6.994 1.572

railway-8-1-0 0.250 0.000 0.250 0.250

usabbrv-8-25-70 3.306 2.479 0.000 1.653

aflow40b 0.257 1.455 0.000 0.000

dano3mip 2.602 3.595 4.724 2.230

fast0507 0.000 0.575 0.575 0.000

harp2 0.001 0.001 0.023 0.000

tl717 7.948 1.939 5.979 7.948

noswot 0.000 0.000 0.000 0.000

tim tabl 7.469 7.779 0.000 0.000

ljb2 0.256 3.329 1.576 3.329

rococoB10-011000 0.802 2.848 0.437 0.437

rococoBl 1-010000 5.039 5.839 1.768 2.196

ro c o c o B 1 2 - ll l l l l 5.204 4.489 3.738 2.541

rococoC 10-001000 0.044 0.113 0.044 0.000

rococoCl 1-011100 6.018 9.991 9.244 5.879

rococoC12-111100 5.188 5.188 1.298 4.016

Medium spread instances

Continued on next page

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.13 - Continued from previous page

problem Percentage o f Gap

Cplex-D LB RINS DINS

glass4 13.014 7.534 2.740 4.794

swath 18.067 5.679 8.089 4.622

dg012142 17.457 25.984 4.963 3.943

liu 2.475 10.066 3.465 5.281

timtab2 16.373 18.484 3.188 0.912

ljb7 7.424 21.834 4.367 8.908

ljb9 50.717 70.866 55.074 50.690

ljblO 0.807 13.929 13.693 8.578

rococoB 10-011001 7.660 5.309 5.220 10.082

rococoBl 1-110001 9.994 19.558 4.267 6.894

rococoC10-100001 16.041 7.387 13.316 10.070

rococoCl 1-010100 27.431 13.615 10.546 9.029

rococoC12-100000 12.928 10.090 5.623 2.799

Large spread instances

marksharel 500.000 400.00 400.00 500.00

markshare2 1300.000 1100.000 2000.000 1800.000

de le 695.213 2.353 0.296 0.773

trentol 0.000 193.118 1.912 0.402

ds 11.226 945.745 11.226 6.119

ljb l2 39.273 323.183 49.599 64.987

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.14: Experimental results of Cplex-D, LB, RINS, and DINS

on Comuejols-Dawande optimality-hard instances. CD-Optxxx-y: name

of the instance, where xxx and y represent n and the number o f the in

stance respectively. Initial solution: the first solution obtained by Cplex-

D, which is used as the starting solution. Entries indicate objective value

of found solutions. Bold face identifies the solver which obtains the new

best solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CD-Opt40-1 587 1 1 3 3

CD-Opt40-2 512 1 1 2 2

CD-Opt40-3 642 1 2 1 2

CD-Opt40-4 982 1 1 1 0

CD-Opt40-5 555 2 1 1 2

CD-Opt40-6 848 1 0 1 0

CD-Opt40-7 780 1 1 1 1

CD-Opt40-8 528 2 2 2 1

CD-Opt40-9 507 1 1 1 2

CD-Opt40-10 653 1 1 0 3

CD-Opt50-1 926 5 3 4 4

CD-Opt50-2 815 6 5 5 6

CD-Opt50-3 667 4 3 3 5

CD-Opt50-4 790 5 5 4 5

CD-Opt50-5 946 3 6 5 5

CD-Opt50-6 1155 5 4 3 5

CD-Opt50-7 842 4 5 3 4

CD-Opt50-8 916 5 4 4 5

CD-Opt50-9 692 4 5 5 5

CD-Opt50-10 906 4 4 3 2

Continued on next page

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.14 - Continued from previous page

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CD-Opt60-1 1267 9 8 10 8

CD-Opt60-2 1301 8 8 7 11

CD-Opt60-3 952 5 9 9 5

CD-Opt60-4 822 9 9 9 9

CD-Opt60-5 1528 7 8 9 7

CD-Opt60-6 1348 10 8 8 9

CD-Opt60-7 1080 7 7 10 10

CD-Opt60-8 1289 8 7 6 11

CD-Opt60-9 722 10 8 7 10

CD-Opt60-10 1012 9 6 9 9

CD-Opt70-1 1727 13 11 16 15

CD-Opt70-2 1929 16 14 16 17

CD-Opt70-3 1713 11 12 14 14

CD-Opt70-4 1883 15 11 15 10

CD-Opt70-5 1576 14 12 17 16

CD-Opt70-6 1902 13 14 16 17

CD-Opt70-7 1734 13 13 11 18

CD-Opt70-8 1522 12 10 13 18

CD-Opt70-9 1580 16 11 14 15

CD-Opt70-10 1442 10 13 15 15

CD-Opt80-1 2081 19 20 23 23

CD-Opt80-2 2496 23 27 14 22

CD-Opt80-3 1602 21 18 21 23

CD-Opt80-4 2230 19 24 21 24

CD-Opt80-5 1904 19 19 20 23

CD-Opt80-6 1686 13 23 21 24

Continued on next page

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.14 - Continued from previous page

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CD-Opt80-7 2196 19 18 21 21

CD-Opt80-8 1492 20 18 24 24

CD-Opt80-9 1798 20 15 23 23

CD-Opt80-10 2143 22 17 25 26

CD-Opt90-1 2467 27 33 30 30

CD-Opt90-2 3287 34 31 30 33

CD-Opt90-3 2183 32 29 34 30

CD-Opt90-4 2177 24 25 26 33

CD-Opt90-5 2494 33 25 28 26

CD-Opt90-6 2531 17 29 33 35

CD-Opt90-7 3335 35 34 29 30

CD-Opt90-8 1796 20 27 28 17

CD-Opt90-9 2547 37 30 34 29

CD-Opt90-10 1919 26 23 28 23

CD-OptlOO-l 3210 39 55 31 35

CD-OptlOO-2 3605 40 44 38 35

CD-OptlOO-3 3461 40 48 46 42

CD-OptlOO-4 3522 33 48 34 40

CD-OptlOO-5 2575 48 43 40 42

CD-OptlOO-6 4122 46 47 43 40

CD-OptlOO-7 3085 41 41 41 42

CD-OptlOO-8 3173 45 43 46 42

CD-OptlOO-9 3473 47 46 40 27

CD -O ptl00-10 3157 50 42 40 43

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.15: Experimental results o f Cplex-D, LB, RINS, and DINS on

constrained market-sharing instances with k = 2.0. CMSxxx-y: name of

the instance, where xxx and y represent n and the number of the instance

respectively. Initial solution: the first solution obtained by P G C i, which

is used as the starting solution. Entries indicate objective value o f found

solutions. Bold face identifies the solver which obtains the new best

solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CMS50-1 1381 1381 1381 830 768

CMS50-2 1890 1890 1890 803 803

CMS50-3 1798 1798 1798 918 870

CMS50-4 1996 1996 1996 856 904

CMS50-5 1638 1638 1638 661 820

CMS50-6 1681 1681 1111 923 874

CMS50-7 1960 1960 1960 898 841

CMS50-8 2127 2127 2127 880 838

CMS50-9 1481 1481 1285 1005 873

CMS50-10 1421 1421 1421 701 729

CMS100-1 4747 4747 4747 4747 4747

CMS 100-2 5667 5667 5667 5667 4075

CMS100-3 4303 4303 4303 4303 4303

CMS 100-4 4846 4846 4846 4846 4846

CMS 100-5 5047 5047 5047 5047 5047

CMS 100-6 5483 5483 5483 5483 5483

CMS 100-7 4814 4814 4814 4814 4814

CMS 100-8 5462 5462 5462 5462 3381

CMS 100-9 4625 4625 4625 4625 4625

CMS100-10 5374 5374 5374 5374 5374

Continued on next page

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.15 - Continued from previous page

Name Initial solution Cplex-D LB RINS DINS

CMS150-1 10611 10611 10611 10611 10611

CMS150-2 9618 9618 9618 9618 9618

CMS 150-3 9416 9416 9416 9416 9416

CMS 150-4 8186 8186 8186 8186 8186

CMS 150-5 9652 9652 9652 9652 9652

CMS 150-6 8613 8613 8613 8613 8613

CMS 150-7 9188 9188 9188 9188 9188

CMS 150-8 8995 8995 8995 8995 8995

CMS 150-9 9174 9174 9174 9174 9174

CMS150-10 9290 9290 9290 9290 9290

Table B.16: Experimental results o f Cplex-D, LB, RINS, and DINS on

constrained market-sharing instances with k = 1.5. CMSxxx-y: name of

the instance, where xxx and y represent n and the number of the instance

respectively. Initial solution: the first solution obtained by P G C i, which

is used as the starting solution. Entries indicate objective value o f found

solutions. Bold face identifies the solver which obtains the new best

solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CMS50-1 2079 2079 2079 1845 1804

CMS50-2 2530 2530 2530 2057 1716

CMS50-3 2296 2296 2296 2197 1413

CMS50-4 2424 2424 2424 2424 1715

CMS50-5 1880 1880 1880 1880 1769

Continued on next page

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.16 - Continued from previous page

Name Initial solution Cplex-D LB RINS DINS

CMS50-6 2374 2374 2374 1848 1877

CMS50-7 2507 2507 2507 1917 1533

CMS50-8 2499 2499 2499 1727 1710

CMS50-9 2778 2778 2778 1562 1991

CMS50-10 2170 2170 2170 1731 1649

CMS75-1 4886 4886 4886 4886 3999

CMS75-2 4233 4233 4233 4233 2993

CMS75-3 4095 4095 4095 4095 3531

CMS75-4 4313 4313 4313 4313 3263

CMS75-5 5096 5096 5096 5096 3564

CMS75-6 4489 4489 4489 4489 3701

CMS75-7 3855 3855 3855 3855 3247

CMS75-8 4342 4342 4342 4342 3336

CMS75-9 4556 4556 4556 4556 3963

CMS75-10 4284 4284 4284 4284 4284

CMS 100-1 6742 6742 6742 6742 6742

CMS 100-2 7311 7311 7311 7311 7311

CMS100-3 6571 6571 6571 6571 6571

CMS 100-4 6030 6030 6030 6030 6030

CMS 100-5 6465 6465 6465 6465 5334

CMS 100-6 6073 6073 6073 6073 6073

CMS 100-7 7921 7921 7921 7921 7921

CMS100-8 6433 6433 6433 6433 6433

CMS 100-9 7368 7368 7368 7368 7368

CMS100-10 6023 6023 6023 6023 6023

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.17: Experimental results o f Cplex-D, LB, RINS, and DINS

on constrained market-sharing instances with k = 1.3. Entries indi

cate objective value of found solutions. Initial solution: the first solution

obtained by P G C i, which is used as the starting solution. CMSxxx-y:

name of the instance, where xxx and y represent n and the number of the

instance respectively. Bold face identifies the solver which obtains the

new best solution.

Instance Objective value

Initial solution Cplex-D LB RINS DINS

CMS50-1 3197 3197 3197 3197 2226

CMS50-2 2283 2283 2283 2283 2283

CMS50-3 2924 2924 2924 2924 2216

CMS50-4 2896 2896 2788 2896 2149

CMS50-5 2495 2495 2495 2495 2495

CMS50-6 3138 3138 2253 2261 2253

CMS50-7 2785 2785 2785 2785 2704

CMS50-8 2439 2439 2439 2439 2151

CMS50-9 2590 2590 2590 2590 2496

CMS50-10 2427 2427 2169 2169 2074

CMS75-1 4639 4639 4639 4639 4639

CMS75-2 5900 5900 5900 5900 5116

CMS75-3 4850. 4850 4850 4850 4546

CMS75-4 4684 4684 4684 4684 4669

CMS75-5 5267 5267 5267 5267 5267

CMS75-6 4858 4858 4858 4858 4858

CMS75-7 4668 4668 4668 4668 4668

CMS75-8 4792 4792 4792 4792 4661

CMS75-9 5263 5263 5263 5263 5263

CMS75-10 4426 4426 4426 4426 4426

Continued on next page

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.17 - Continued from previous page

Name Initial solution Cplex-D LB RINS DINS

CMS 100-1 8687 8687 8687 8687 8687

CMS 100-2 7218 7218 7218 7218 7218

CMS 100-3 7463 7463 7463 7463 7463

CMS 100-4 8344 8344 8344 8344 8344

CMS 100-5 7884 7884 7884 7884 7884

CMS 100-6 7861 7861 7861 7861 7861

CMS100-7 8448 8448 8448 8448 8448

CMS100-8 6969 6969 6969 6969 6969

CMS 100-9 8029 8029 8029 8029 8029

CMS100-10 7585 7585 7585 7585 7585

Table B.18: RINS neighbourhoods versus DINS neighbourhoods. NN:

the number of explored neighbourhoods, ER: the average enumeration

ratio.

problem R IN S D IN S problem RINS D IN S

NN ER NN ER NN ER NN ER

a lc l s l 219 0.571 252 0.276 bg512142 266 0.633 473 0.390

a2 c ls l 204 0.593 216 0.294 blp-ic97 1038 0.010 1432 0.005

b lc l s l 86 0.598 101 0.243 blp-ic98 911 0.006 1477 0.003

b 2 c ls l 63 0.636 84 0.269 blp-ar98 756 0.011 1163 0.006

biellal 134 0.084 240 0.030 cms750-4 627 0.156 476 0.110

danoint 321 0.652 343 0.471 dele 56 0.063 89 0.028

glass4 27595 0.223 13237 0.206 d e ll 29 0.015 56 0.005

marksharel 50956 0.490 47290 0.642 dg012142 137 0.449 222 0.187

markshare2 45069 0.452 43875 0.535 railway-8-1-0 5029 0.248 4071 0.173

mkc 429 0.048 819 0.027 trentol 77 0.074 225 0.022

Continued on next page

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.18 - Continued from previous page

problem R IN S D IN S problem RIN S D IN S

NN ER NN ER NN ER NN ER

netl2 14 0.449 28 0.195 usabbrv-8-25-70 3792 0.315 4216 0.241

nsrand-ipx 1293 0.017 934 0.012 aflow40b 3400 0.042 2561 0.041

rail507 77 0.004 78 0.002 dano3mip 3 0.243 7 0.064

rail2586c 22 0.099 47 0.025 ds 37 0.014 55 0.003

rail4284c 17 0.072 52 0.021 fast0507 24 0.005 76 0.002

rail4872c 11 0.083 57 0.022 harp2 17010 0.029 21697 0.026

seymour 82 0.328 134 0.109 liu 1503 0.330 431 0.273

sp97ar 436 0.013 667 0.007 tl717 168 0.008 198 0.002

sp97ic 1521 0.006 2131 0.004 ljb2 2239 0.091 1832 0.069

sp98ar 766 0.010 1087 0.006 ljb7 297 0.048 160 0.035

sp98ic 1029 0.007 1817 0.004 ljb9 250 0.061 73 0.044

swath 5864 0.010 5510 0.008 ljblO 174 0.080 126 0.045

trl2-30 4035 0.217 1618 0.168 ljb l2 195 0.086 101 0.047

berlin-5-8-0 1605 0.267 3605 0.233

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.4 NPGC Experimental Results

We present the details of experimental results related to NPGC in the following table.

Table B.19: Percentage of gap of the solutions obtained by different

solvers in one CPU-hour on 53 0-1 mixed integer program benchmark

instances. Bold face identifies the best method for the corresponding

instance. -I-: a time limit of 1 CPU-hour exceeded.

problem Cplex-D LB R IN S N PG C

Small spread instances

a lc l s l 2.057 0.077 0.017 0.768

a2 c ls l 2.978 1.889 0.000 0.746

b lc l s l 5.977 7.305 0.933 3.242

b 2 c ls l 4.240 2.701 0.559 6 ’017

biellal 0.368 0.272 0.005 0.232

danoint 0.000 0.000 0.000 0.000

mkc 0.344 0.148 0.000 2.518

nsrand-ipx 0.313 0.625 0.313 0.313

rail507 0.000 0.575 0.000 0.000

rail2586c 2.518 1.154 1.994 2.099

rail4284c 1.774 2.334 1.027 1.587

rail4872c 1.613 0.581 1.355 1.161

seymour 0.473 0.236 0.000 0.236

sp97ar 0.544 0.109 0.260 0.580

sp97ic 0.793 0.642 0.551 1.120

sp98ar 0.218 0.023 0.177 0.091

sp98ic 0.222 0.172 0.090 0.366

trl2 -30 0.009 0.047 0.000 0.080

berlin-5-8-0 0.000 0.000 0.000 0.000

bg512142 7.939 5.192 0.502 0.580

blp-ic97 1.203 0.152 0.640 1.879

Continued on next page

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.19 - Continued from previous page

problem Cplex-D LB RINS N PG C

blp-ic98 0.823 1.259 1.492 4.901

blp-ar98 0.407 0.343 0.593 0.197

cms750-4 1.581 1.186 0.395 0.791

railway-8-1-0 0.000 0.000 0.000 0.000

usabbrv-8-25-70 0.826 4.132 0.826 0.000

aflow40b 0.257 0.000 1.455 0.000

dano3mip 1.220 3.595 4.724 3.214

fast0507 0.000 0.575 0.575 0.575

harp2 0.002 0.001 0.010 0.000

tl717 5.979 6.449 5.979 0.427

ljb2 3.329 3.329 0.039 7.564

Medium spread instances

glass4 13.014 8.733 2.740 7.306

swath 18.067 5.679 8.089 17.305

dg012142 16.611 10.904 1.596 6.449

liu 3.300 10.066 1.980 0.000

ljb7 23.581 21.834 4.367 44.192

ljb9 61.529 70.866 55.074 58.701

ljblO 4.013 18.690 13.693 36.238

Large spread instances

marksharel 500.000 400.000 400.000 2400.000

markshare2 1300.000 1100.000 2000.000 4200.000

d e le 821.785 2.353 656.689 1.467

trentol 3.800 193.094 0.008 3.792

ds 11.226 1016.086 11.226 29.168

ljb l2 30.426 398.596 42.506 72.531

netl2 0.000 0.000 0.000 +

d ell 2.018 8.776 969.933 +

momentuml + + + +

protfold + + + 70.000

Continued on next page

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.19 - Continued from previous page

problem Cplex-D LB RINS N PG C

rd-rplusc-21 + + + 0.000

nsr8k + + + +

dolom l + + + +

sienal + + + +

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

