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Abstract

Robot-assisted arthroscopic surgery has been receiving growing attention in the field

of orthopedic surgery. Most of the existing robot-assisted surgical systems in ortho-

pedics take more focus on open surgery than minimally invasive surgery (MIS). In

traditional arthroscopic surgery, a specific type of MIS, the surgeon needs to hold an

arthroscope with one hand while performing the surgical operations with the other

hand, which can restrict the dexterity of the surgical performance and increase the

cognitive load. On the other hand, the surgeon heavily relies on the arthroscope view

when conducting the surgery whereas the arthroscope view is a largely localized view

and lacks depth information. This motivates us to develop a two-arm robotic system,

a robot-assisted arthroscope holder, and a robot-assisted surgical tool with haptic

feedback, to assist the surgeon in both scenarios.

In a robot-assisted system for arthroscopic surgery, surgical tools attached to the

robot end-effector (EE) will affect the robot dynamics inevitably, which could un-

dermine the utility and stability of the robotic system if the dynamic uncertainties

(e.g., the mass of the surgical tools) are not identified and compensated for in the

robot control system. To solve this problem, an integrated framework of impedance

control and nonlinear disturbance observer (NDOB) is proposed, where the former

ensures compliant robot behavior and the latter compensates for dynamic uncertain-

ties. By integrating an impedance controller with NDOB, the proposed framework

allows an accurate impedance control and stable system when dynamic model inaccu-

racy and external disturbance exist. However, the NDOB always estimates all of the

uncertainties as a lumped term, and it is not able to separate any of the components.
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In order to separate some specific components from the dynamic uncertainties, we

developed a framework for using a neural network (NN) to learn for some uncertainties

thus separating the other uncertainties. The effectiveness and performance of the

trained NN model are verified in simulations. However, it is not an efficient approach

in practice considering the laborious offline training procedures. Also, the trained

NN model is robot-dependent, which means that all of the training process needs to

go through again when a different robotic system is employed.

Aiming for a more compact, efficient, and general approach, we developed a grav-

ity iterative learning (Git) scheme with a steady-state scaling strategy specially for

gravity compensation. The Git scheme can accurately learn and compensate for grav-

ity when gravity compensation is the main concern. By integrating the Git scheme

with an impedance controller, the robot can keep still at a designated pose even with

a heavy payload attached to the robot EE. Also, it allows the operator to move it

freely via a pedal switch whenever needed.

On the other hand, virtual fixture (VF) has been serving as a vital role in robot-

assisted surgeries, such as protecting a beating heart. In orthopedic surgery, preop-

erative images are often used in the operating room, on which some curves can be

drawn to mark out the boundaries for osteophytes to be removed. These curves can

be used to generate VF to assist in removing osteophytes during the operation. A

challenge is that the hand-drawn curves usually have irregular shapes and cannot be

mathematically represented by equations, thus most of the existing VF approaches

will not work in this scenario. To this end, a point-based VF-generating algorithm

is developed, with which 3D VF can be generated directly from point clouds in any

shape including the hand-drawn curves in a preplanned image.

In the end, a prototype of a two-arm robot-assisted system for arthroscopic surgery

is built and preliminarily evaluated. The left-arm robot is used as a robot-assisted

arthroscope holder, which can hold the arthroscope still at any designated pose, while

also allowing the operator to move it around freely via a pedal switch whenever
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needed. The left-arm robot is implemented with an impedance controller and the

Git scheme, where the former can provide compliant robot behavior thus ensuring a

safe human-robot interaction, while the latter can accurately learn and compensate

for gravity. The right-arm robot is used as a robot-assisted surgical tool providing

VF assistance and haptic feedback during the surgery, and is implemented with the

point-based VF algorithm, which can generate VF directly from point clouds in any

shape, render haptic force feedback, and deliver it to the operator. Furthermore, the

VF, the bone, and the surgical tool with its real-time position are visualized in a 3D

virtual environment as additional visual feedback for the operator.
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Chapter 1

Introduction

In this chapter, literature reviews are first conducted on three topics respectively,

i.e., robotic systems in orthopedics, disturbance estimation approaches, and virtual

fixture (VF) techniques. Then, the motivation and objectives are described. Lastly,

the contributions and structure of this thesis are presented.

1.1 Literature Review

1.1.1 Robotic systems (RS) in orthopedics1

In 1954, Devol invented the first digitally operated and programmable robot (later

known as the Unimate) in the world, which is viewed as the foundation of the mod-

ern robotics industry [31]. Together with Engelberger, they founded the first robotics

company in the world named Unimation. The company developed the first Unimate

robot based on Devol’s patent and sold it to General Motors in 1960 to be used to lift

and stack hot pieces of metal [60]. Since then, robots have continually been improved,

and have spread their applications to the surgical field. In 1985, the first robotic sur-

gical system, Puma 560, was used for neurosurgical biopsies guided by computed

tomography (CT) images [25, 60]. In the early 1990s, Minerva was introduced as the

next-generation neurosurgical robot [82]. In 1988, ROBODOC (Integrated Surgical

1A version of this chapter has been published as: Teng Li, Armin Badre, Farshid Alambeigi,
and Mahdi Tavakoli, “Robotic Systems and Navigation Techniques in Orthopedics: A Historical
Review”, Applied Sciences, Section: Robotics and Automation, Special Issue: Surgical Robotics
Design and Clinical Applications, 2023, 13(17):9768. [MDPI]

1
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Systems, DE, USA) was introduced in orthopedics [82]. In the same year, PROBOT

performed a clinical trial at Imperial College London with the earliest robotic pro-

cedure in urology. In 1993, a robotic arm called AESOP (Automated Endoscopic

System for Optimal Positioning) (Computer Motion, Inc., Santa Barbara, CA, USA)

was developed to assist in holding and positioning a laparoscopic camera. In 1998,

both the ZEUS robotic surgical system (Computer Motion, Inc., Santa Barbara, CA,

USA) and the da Vinci surgical system (Intuitive Surgical, Sunnyvale, CA, USA) were

introduced into the market for use in teleoperated surgery [82], with the latter re-

ceiving the Food and Drug Administration (FDA) approval in 2000 for use in general

laparoscopic surgery, which is considered legendary in the field of surgical robotics.

Thereafter, medical and surgical robotics started to boom in various fields.

Minimally invasive surgery (MIS) allows the surgeon to conduct surgical procedures

through much smaller incisions than traditional open surgery, thus having a faster

recovery rate and shorter rehabilitation time as well as less pain for the patient [143].

Robot-assisted MIS involves a robot to improve the quality and precision of surgical

procedures. Since the da Vinci surgical system was approved by the Food and Drug

Administration (FDA) in 2000, the development and deployment of various robot-

assisted MIS systems have been largely expedited [44, 30].

With the rapid advancement of robotic techniques in recent decades, robotic sys-

tems have been widely used in various medical fields, such as neurological, laparoscopy,

radiosurgery, prosthetics, rehabilitation, orthopedics, ophthalmology, and more [12,

143, 50, 2]: for example, the da Vinci surgical system (Intuitive Surgical, Sunnyvale,

CA, USA) and RAVEN II (University of Washington, and University of California,

Santa Cruz, CA, USA) for use in teleoperated laparoscopic surgery [105, 12, 56], the

CyberKnife System (Accuray Inc., Sunnyvale, CA, USA) for use in radiosurgery [66],

and the JHU Steady-Hand Robot for use in retinal microsurgery [139, 90, 3]. These

robotic systems and techniques are transforming the conventional ways to perform

surgical procedures in a large variety of fields.

2



Through decades of technique evolution and clinical evaluations in orthopedic surg-

eries, plenty of studies have proven that robotic systems and navigation techniques

can be beneficial in improving and enhancing surgical outcomes, such as increasing the

accuracy and precision of bone cutting and component alignment, reducing operative

time, and enhancing patients’ satisfaction [102, 115, 100].

Numerous review papers on reviewing robots or navigation systems in orthopedics

can be found in the literature. Most of them are focused on a meta-analysis or

reviewing clinical outcomes and user studies [60, 100, 127, 134, 36], a specific field

like MIS [143], or a specific feature like haptic feedback [35]. Instead of those, we

conducted a historical review on the robotic systems and navigation techniques that

exist and have ever existed in the field of orthopedics, especially on those systems still

commercially available at present [74]. The primary focus of [74] is on the historical

evolution of the systems as well as the engineering features and techniques from the

perspective of engineering. Correspondingly, it covered two main categories, i.e.,

robotic systems (RS), and computer-aided navigation systems (CANS). The RS is

further divided into autonomous RS, hands-on RS, and teleoperated RS, while the

CANS is broken down into three key technical elements, including 3D modeling,

registration, and navigation.

It is worth noting that in orthopedics, computer-assisted orthopedic surgery (CAOS)

divides the surgical systems into three categories, i.e., autonomous (also known as

active), semi-autonomous (also known as semi-active), and passive [11, 136, 102]. In

our review paper [74], the autonomous systems are equivalent to the autonomous RS,

and the semi-autonomous systems are equivalent to the hands-on RS, while the pas-

sive systems indicate the computer-aided navigation systems (CANS). A hierarchical

flowchart of these categories and their components is illustrated in Figure 1.1.

Common orthopedic surgeries involving RS and/or CANS may include arthro-

plasty, arthroscopy, and surgical interventions related to tissues in joints. Note that

in orthopedics, joint replacement is equivalent to arthroplasty, and similarly, total hip
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CAOS (computer-assisted orthopedic surgery)

RS (robotic systems)

Autonomous Hands-on
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Teleoperated 3D modelling Registration Navigation
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Imageless
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Fluoroscopic
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Figure 1.1: A hierarchical flowchart for the robotic systems and navigation techniques in ortho-
pedics. Note: system names in gray color means either not in use anymore or upgraded with
new names; the equal symbol “=” means “equivalent to”.

replacement (THR) is equivalent to total hip arthroplasty (THA), and total knee re-

placement (TKR) is equivalent to total knee arthroplasty (TKA). A general flowchart

of surgical procedures for orthopedic surgeries is illustrated in Figure 1.2. Both RS

and CANS play an important role in the procedures.
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Figure 1.2: A general flowchart for orthopedic surgeries.

Robotic systems (RS) are divided into three subcategories, i.e., autonomous, hands-

4



on, and teleoperated [35], as illustrated in Figure 1.1. The autonomous RS indicates

that the robot can conduct the surgery completely on its own, while the surgeon can

only interrupt it by using an emergency stop [70]. The hands-on RS is equivalent to

semi-autonomous or semi-active robots in the literature of orthopedic surgeries. It

indicates that the surgeon and robot cooperatively move the surgical instrument in-

stalled on the robot end effector (EE), which means it requires physical human–robot

interaction (pHRI) [35]. The teleoperated RS indicates a standard leader–follower

teleoperation system in which two robots are required. The leader robot is physically

operated by the surgeon, while a follower robot on the remote site (e.g., on the pa-

tient side) is controlled by the leader robot via the internet or Ethernet. Table 1.1

presents a summary list of robotic systems (RS) in orthopedics. For more details on

each system, please refer to [74].

The RS systems in the timeline are illustrated in Figure 1.3. Currently, the time-

honored robotic systems, including TSolution One (formerly ROBODOC; THINK

Surgical, Fremont, CA, USA), MAKO (formerly ACROBOT/RIO; Stryker Corpo-

ration, Kalamazoo, MI, USA), NAVIO (Smith & Nephew plc, London, UK), and

Mazor (Mazor Robotics, Caesarea, Israel), are still available and continue to improve

and thrive in the market. Compared to their relatively large robot body, on the

other hand, MBAR represents an emerging trend of mini bone-attached robots with

potentially more efficiency and lower cost. ROSA and VELYS are newly developed

products in the market. The da Vinci surgical system represents a more versatile

robot that has a large potential to be used in a large variety of surgeries for the

teleoperated systems used in MIS. In general, by reviewing the robotic systems devel-

oped for orthopedics in the past decades, we can see that their functions are mainly

focused on bone cutting, positioning, and alignment; additionally, precision has been

increasing, whereas the variability has been decreasing [60].

For autonomous RS, there is still caution about using it in orthopedic surgery

due to the ethical issues and safety concerns surrounding autonomous operation [70].
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Table 1.1: Robotic systems (RSs) in orthopedics.

RS System Usage Features Pros/Cons (⊕/⊖)

A
u
to
n
o
m
o
u
s

TSolutionOne
(ROBODOC)

TKA;
THA.

⊙ IBM,1980s;
⊙ first patient in 1992;
⊙ pre-CT based;
⊙ 3D preoperative planning
workstation ORTHODOC;

⊙ 5-axis robot;
⊙ bone milling; bone preparing.

⊖ surgeon cannot intervene
but stop the robot;

⊖ recovery process is complex
if robot stopped during surgery.

CASPAR
TKA;
THA.

⊙ pre-CT based;
⊙ bone milling & preparation;
⊙ position guiding.

⊖ problematic in many studies;
⊖ thus not in use already.

H
a
n
d
s-
o
n
(=

se
m
i-
a
u
to
n
o
m
o
u
s)

ACROBOT
TKA;
UKA.

⊙ pre-CT based preop. plan;
⊙ 6DOF robot;
⊙ haptic feedback;
⊙ bone cutting;
⊙ active-constrained control.

⊕ system actively prevents the drill
from deviating the predefined
cutting zone.

RIO
TKA;
THA;
UKA.

⊙ inherited from ACROBOT;
⊙ pre-CT based;
⊙ haptic & audio feedback;
⊙ bone cutting;
⊙ force-controlled tip.

⊕ system actively prevents the tool
from deviating the predefined
cutting zone;

⊕ short learning curve.

MAKO
TKA;
THA;
UKA.

⊙ inherited from RIO;
⊙ pre-CT based;
⊙ bone cutting;
⊙ emergency auto shutdown;
⊙ a computer navigation system.

⊕ emergency auto shutdown;
⊕ haptic & audio feedback;
⊕ VF (virtual fixture).

NAVIO
(NavioPFS)

TKA;
UKA;
uKA.

⊙ image-free system;
⊙ tool tip extend/retract;
⊙ IR optical-based navigation system;
⊙ safety strategy of modulating
burr retraction and speed.

⊕ imageless, thus no pre-CT needed.
⊖ no haptic feedback.

BRIGIT TKA.
⊙ teleoperated mode available;
⊙ compliant control strategy.

⊕ collaborative or teleoperated mode.

MBARS;
HyBAR

TKA.
⊙ small & bone-mounted robot;
⊙ can be autonomous.

⊕ more efficient;
⊕ cost-effective.

iBlock
(Praxiteles)

TKA.

⊙ imageless system;
⊙ bone morphing technique;
⊙ computer station OmniBiotics;
⊙ intraop. anatomic data;
⊙ intraop. planning.

⊕ can see the planned bone cut
before execute.

⊖ no haptic feedback;
⊖ limited kinematic assessment
after implantation.

OMNIBotics TKA.

⊙ upgraded from iBlock;
⊙ image-free system;
⊙ bone morphing technique;
⊙ small & bone-mounted robot;
⊙ robotic tensioning tool (active spacer).

⊕ active spacer can help to
improve surgical outcomes.

ROSA
TKA;
THA;
Spine.

⊙ either imageless or image-based;
⊙ bone resection; bone positioning;
⊙ soft tissue assessment.

⊕ intraop. landmarks data.

VELYS TKA.
⊙ imageless;
⊙ patient-specific TKA technique.

⊕ intraop. data on both anatomy
and soft tissue;

⊕ allow intraop. planning.

Mazor Spine.
⊙ SpineAssist is the 1st robot for spine;
⊙ four evolved system versions.

⊕ accept preop. or intraop. CT
for planning;

⊕ real-time tool tracking.

ExcelsiusGPS Spine.
⊙ surveillance marker;
⊙ shock-absorbing.

⊕ accept preop. or intraop. CT,
or radiographs for planning;

⊕ real-time image guidance.

TiRobot Spine. ⊙ real-time 3D navigation. ⊕ cross-referencing registration.

T
el
eo

p
.

da Vinci MIS. ⊙ applied to various MIS surgeries.
⊕ versatile for various MIS surgeries.
⊖ suitable for manipulating soft tissue
but not rigid bones.

Note: UKA (unicompartmental knee arthroplasty); uKA (unicondylar knee arthroplasty); TKA (total knee
arthroplasty); THA (total hip arthroplasty). pre-CT, preoperative CT image; preop., preoperative; intraop.,
intraoperative; Teleop., teleoperated; IR, infrared; MIS, minimally invasive surgery; DOF, degree of freedom.
System names in gray color mean either not in use anymore or upgraded with new names.
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TSolutionOne
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PiGalileo HyBAR

MAKO
(ACROBOT/RIO)
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ROBODOC
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TiRobot

Figure 1.3: Robotic systems (RS) in the timeline.

Typical issues and concerns include potential muscle/nerve damage and technical

complications. For example, when a procedure stop occurs during bone cutting, re-

registration is required, while, sometimes, frequent registration failures may cause the

surgery to abort [136].

Compared to autonomous RS, hands-on RS may be more acceptable by surgeons

due to the feature of human-in-the-loop [136]. When operating a hands-on RS, the

surgeons have full control of the robot and can stop the surgical operations (e.g., bone

cutting) at any time they want. This can ensure the maximal safety of the patient.

For teleoperated RS, their applications in orthopedics are limited. The main rea-

son is that orthopedic surgeries are more related to manipulation with rigid bone

cutting and implant alignments, which are not suitable for teleoperated RS. How-

ever, for those orthopedic surgeries regarding soft tissues, nerves, and vascular, the
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teleoperated RS could still be applicable and useful.

Computer-aided navigation systems (CANS) can be taken as a parallel category

to RS. The CANS focuses on navigation with the help of computers. It can be either

integrated with an RS or independent from an RS. When integrated together, all

the coordinates of the CANS (e.g., CT image frame, and external camera frame) are

registered into the coordinates of the RS, then for navigation. When independent

from an RS, i.e., no robots appear in surgery, all the coordinates are registered into

the digital patient’s model/image or the camera frame, then for navigation.

In the category of computer-aided navigation systems (CANS), three basic elements

are included, i.e., 3D modeling, registration, and navigation. Strictly, the CANS are

computer-assisted systems rather than robot-assisted systems. However, a robot-

assisted system (here equivalent to RS) usually includes a CANS system implicitly

or explicitly. Implicitly means that an RS itself can be viewed as a special naviga-

tion system since any point in the robot workspace can be tracked based on robot

kinematics [102]. Explicitly means that a CANS can be integrated with a robotic

system to enhance the system’s ability (e.g., tracking and visualization). Therefore,

a CANS can be used either independently or integrated with an RS, which means a

CANS can be an essential part of assisting surgeons in surgery, no matter whether a

robot is involved or not. This also means that the CANS has wider and more general

applications than RS in orthopedics and beyond. For more details on the three basic

elements of CANS as well as typical navigation systems, please refer to [74].

Both CANS and RS have been playing an increasingly critical role in modern or-

thopedic surgeries. According to a review study [24, 102], the ratio of patents to

publications related to CANS and RS in knee arthroplasty increased from around

1:10 in 2004 to around 1:3 in 2014. The benefits brought by RS and CANS include

but are not limited to augmenting the surgical procedures, fine tuning surgical plans

to personalized patient profiles, and proving intraoperative data and real-time visu-

alization to the surgeons for a more accurate and precise surgical outcome [102].
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With decades of evolution, RS and CANS themselves have gone through critical

improvement and upgrading. Without a doubt, RS and CANS will continue to thrive

and play an indispensable role in orthopedics.

A critical unique feature of RS in orthopedics is that they must be capable of

dealing with high forces and stiffness due to the rigid nature of their target object

of bones, while the da Vinci surgical system is more suitable for soft-tissue-related

procedures. The main advantages of RS applied in orthopedics include increased

accuracy and precision of implant positioning, enhanced reproducibility, improved

implant stability, and less resulting pain. On the other hand, the main disadvantages

of RS include potential safety concerns, high economic costs, and potentially longer

operative times.

CANS will continue to develop along two parallel paths. One is to integrate with

robotic systems, another is to be used alone without involving RS. For the latter,

CANS is capable of being used in more versatile surgeries, where robots are not

needed or not yet available. In that case, with the help of CANS, surgeons can

perform conventional surgeries with potentially better and more accurate surgical

outcomes.

From Table 1.1, it can be found that most of the robotic systems are applied for

hip/knee surgeries, some are for spine surgeries, and no specific robotic system is ex-

clusively for elbow/shoulder surgeries. For example, ROSA has robot-assisted systems

for the hip, knee, and spine, respectively, but only has a computer-aided system for

assisting in planning and navigation for the shoulder. RS have been abundantly devel-

oped and frequently used in hip/knee surgeries but not in elbow/shoulder/foot/ankle

surgeries, while the latter seems more favorable for CANS [17]. The possible reason

could be that there are much more cases and higher demand for knee/hip surgery

than elbow/shoulder surgery. The knee is the largest hinge joint in the body, while

the hip is a large ball-and-socket joint. Both the knee and hip joints take a lot of

wear, tear, and stress from daily activities (e.g., walking, running, and jumping) while
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supporting the body weight in horizontal and vertical directions, and they are more

vulnerable to injury and osteoarthritis than the elbow/shoulder or any other joints.

Technically, all joint replacement/arthroplasty surgeries are open surgeries since a

significant incision needs to be made in order to expose the bone for bone cutting

or implant positioning. It is worth noting that in joint replacement/arthroplasty,

minimally invasive approaches/procedures have different definitions, such as shorter

incision length, nondissection of quadriceps tendon, noneversion of the patella, or

nondislocation of the tibiofemoral joint [72]. Therefore, strictly speaking, all joint

replacement/arthroplasty are open surgeries rather than MIS, the latter of which

only requires several trocars to be made in order to insert the surgical instruments

for performing the surgery. In this sense, arthroscopic surgeries belong to the category

of MIS. For arthroscopic surgeries, several portals are made to insert an arthroscope

and surgical tools, and the surgical tools are used to perform the surgery with the

help of the arthroscope. Arthroscopic surgeries can be used for a large variety of

indications. For example, elbow arthroscopy can be used for the management of

stiffness related to degenerative arthritis, loose bodies, lateral epicondylitis, synovitis,

osteochondritis dissecans, symptomatic plica, infection, contracture, instability, and

fracture management [8].

Arthroscopic surgery (e.g., arthroscopic debridement) is an active field that is being

transformed by techniques of RS and CANS, although there is yet no specific robotic

system specially designed for them. One possible reason is that there is high demand

for the accuracy and precision of surgeries for joint replacement/arthroplasty but not

for arthroscopic surgeries. Also, for those arthroscopic surgeries related to soft tissue

manipulation rather than rigid bone cutting, laparoscopic-type robotic systems like

the da Vinci surgical system can be employed [44, 37]. A robotic system can be

helpful in arthroscopic surgeries, such as holding with the arthroscope as a robotic

assistance. On the other hand, a navigation system can also bring benefits, such as

tracking and visualizing the real-time location of the tool tip. Accompanying the wide
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usage of arthroscopic surgeries with the benefits of MIS, RS and CANS are becoming

deeply involved in arthroscopic surgeries [53].

In addition to traditional rigid robots, novel types of robots, instruments, and ap-

proaches have been developed for use in orthopedic surgeries [122]. A curved drilling

approach was developed by integrating curved drilling tools with a continuum dex-

terous manipulator (CDM) for use in core decompression of the femoral head os-

teonecrosis [7]. The curved drilling technique and bendable medical screws have been

examined on cadaveric specimens for minimally invasive interventions in orthope-

dic surgery [6]. A redundant robotic system consisting of a rigid-link robot and a

CDM was proposed for the treatment of pelvic osteolysis and for the autonomous

debridement of osteolytic bone lesions in confined spaces [118, 119]. A miniatur-

ized tendon-driven articulated surgical drill was designed for bone drilling, which can

be used in minimally invasive spine fusion [146]. Hand-held robotic systems have

also been developed for minimally invasive orthopedic surgeries [85, 147]. Recently, a

concentric-tube steerable drilling robot was developed for spinal fixation procedures

and implanting flexible pedicle screws [126, 125]. Although these novel designs have

not yet been applied in the clinical setting, their benefits in orthopedic surgeries can

be expected in the near future.

In parallel to robotic systems, another promising robotic technique is surgical

simulators for training novices, e.g., virtual reality (VR) arthroscopy trainer, Vir-

taMed ArthroS Hip/Knee/Shoulder/Ankle (VirtaMed AG, Zurich, Switzerland), and

insightArthroVR (GMV, Madrid, Spain) [145, 106]. By using surgical simulators, the

surgical skills of the novice can be improved before they start to conduct surgeries on

human patients. This can largely enhance the novice’s confidence and reduce the risk

of surgical mistakes in patients caused by lacking practical experience and unfamiliar

operations on surgical robotic systems.

As a prominent topic in recent years, artificial intelligence (AI) is becoming extraor-

dinarily popular, especially after the breakthrough made by ChatGPT (OpenAI, San
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Francisco, CA, USA), although AI itself is not a novel concept [95]. Some AI-based

features have already been applied in robot-assisted surgeries, for example, the AI

algorithms presented in [34, 69, 95]. Benefiting from the huge amount of patient data

available in literature and hospitals, a series of reliable AI-based techniques can be

expected, such as AI-based diagnosis, AI-based pre- and intra-operative planning, AI-

based intraoperative navigation, AI-based decision making, and AI-based control of

robotic systems [95]. By appropriately incorporating these AI features, the capability

of the robot and navigation systems can be further improved and enhanced.

In summary, it is an unstoppable trend for the RS and CANS to be introduced

into a greater variety of surgical scenarios besides hip/knee surgeries, and it is rapidly

happening. Robotics and navigation techniques have been playing increasingly im-

portant roles in elbow/shoulder, foot/ankle, spine surgeries, arthroscopic surgeries,

and far beyond [64, 17, 88, 53, 36, 135]. With the newly emerging techniques, such

as AI, VR, and soft/flexible robotics, robots and navigation systems in orthopedics

will become more and more intelligent, reliable, and economical.

1.1.2 Disturbance estimation approaches1

In a robot control system, an accurate dynamic model of the robot is fundamentally

important for accurate and stable control [47]. This is true for all kinds of robots, such

as industrial robots, humanoid robots, medical robots, soft robots, and exoskeletons.

However, accurate dynamic models only exist in theory but not in practice, since

various uncertainties can be residing in the dynamic model inevitably. Examples of

such uncertainties are joint friction, inaccurate center of mass location and link weight,

extra payload, and robot-environment interaction [47]. Therefore, it is a fundamental

topic for estimating and compensating for uncertainties in the field of robot control.

Many methods have been developed for estimating dynamic uncertainties thus

1A version of this chapter has been published as: Teng Li, Hongjun Xing, Ehsan Hashemi,
Hamid D. Taghirad, Mahdi Tavakoli, “A Brief Survey of Observers for Disturbance Estimation and
Compensation”, Robotica, 2023, 41(12), 3818–3845. [Robotica]
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eliminating their effects on robot dynamics. Disturbance observer is a main solu-

tion that can observe the dynamic uncertainties in an online manner, thus making

compensation accordingly when necessary.

A variety of observers have been developed [107, 19], but not all of them can be

implemented into a robotic system. Some typical observers are identified according

to the following procedures. First, a bunch of observers is collected based on three

recent review papers [52, 93, 21] and one research paper [57]. Then, the following

two rules are applied, (a) the observer is applicable in practice in a physical robotic

system; and (b) the observer is independent of the controllers, i.e., not relying on a

specific controller. Finally, five typical observers are identified, including generalized

momentum observer (GMO) [52], joint velocity observer (JVOB) [52], extended state

observer (ESO) [117], nonlinear disturbance observer (NDOB) [94], and disturbance

Kalman filter (DKF) method [57, 80].

Generalized momentum observer (GMO), also known as classic first-order momen-

tum observer, is originally proposed for actuator fault detection and isolation, aiming

to avoid joint acceleration measurements and inverse of the robot inertia matrix in

the control system [27, 28]. Note that in practice, measuring accelerations is usually

avoided due to their high price or installation size restrictions. Furthermore, obtain-

ing accelerations via numerical differentiation of velocity or position is not preferred

since it will introduce noise into the system and thus may affect the system’s stability

[52]. The inverse of the robot inertia matrix can increase the computational load on

the system. Besides not requiring the accelerations and inverse of inertia matrix, the

GMO also has the advantage of being simple, compact, and easy to implement [154],

all of which make it one of the most commonly used observers. It is usually used as

a benchmark for comparison when designing new observers [45, 57, 80].

Joint velocity observer (JVOB) is a similar observer to the GMO in terms of the

procedures of derivation and the final expression, but the inversion of the robot inertia

matrix is needed [52]. The JVOB is derived based on the acceleration expressed by
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the robot dynamics, then the integration of the acceleration is taken as an estimate

of the velocity where the true velocity is assumed to be known. Therefore, the JVOB

is a reduced (first-order) observer with a reduced state of dimension n, where n is the

number of the generalized coordinates of the robot.

Extended state observer (ESO) was originally proposed by Han in the 1990s, and it

is considered as the critical part of active disturbance rejection control (ADRC) which

is developed to estimate the lumped uncertainties including both unknown dynamic

uncertainties and external disturbances [54, 55]. For a specific survey on ADRC and

ESO, please refer to [58]. In another historical survey on observers in 2006 [107],

ESO has been viewed as an indicator of an initial shift of design methodology from

modern estimators (e.g., Kalman Filter) to disturbance estimators (e.g., ESO). The

ESO employs a simple canonical form which is considered as a practical design, thus

it receives many applications in different fields, such as power converters, web tension,

and bio-mechanics [107]. In the field of robot control, various variations of ESO have

been developed in different application scenarios such as collision detection [109] and

time-varying interaction force estimation [117].

Nonlinear disturbance observer (NDOB) is originally proposed by Chen, which is

considered to overcome the shortcomings of linear disturbance observer (DOB) that

is designed or analyzed by linear system techniques [18]. Although this version of

NDOB was developed for constant disturbances in theory, it also revealed satisfactory

performance on estimating time-varying disturbances like friction. However, it is

merely used for planar robots with revolute joints. To solve this problem, Mohammadi

et al. [94] proposed a general framework for NDOB by unifying linear and nonlinear

disturbance observers which released the restrictions on the number of degree-of-

freedom (DOF), the types of joints (revolute or prismatic), or the robot configuration.

Kalman filter (KF) is an early approach to be used for disturbance estimation,

which is also one of the first estimators that involve the formulation of disturbances

[107]. Based on the original KF, disturbance Kalman filter (DKF) is developed to
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estimate the dynamic uncertainties in a robot control system [57, 80]. The DKF

reveals optimal disturbance tracking performance, but the implementation complexity

could be a limitation for its wide use [107].

All the five types of observers introduced above estimate a lumped uncertainty

term. While the lumped uncertainties include various components (e.g., model error,

joint friction, external payload, human-exerted force, and beyond), it is not possible

to separate a specific component out of the lumped uncertainties term. Especially in

human-robot interaction scenarios, an operating observer will take the human-exerted

force as a part of uncertainties and thus reject it [75].

In our review paper on disturbance observers [78], we reviewed these five typical

types of disturbance observers, i.e., GMO, JVOB, ESO, NDOB, DKF. For the ESO,

three of its variants are presented, including the original ESO (ESO.orig), a modified

ESO (ESO.modi), and an improved ESO (ESO.impr). Also, (1) we presented the

basic expressions of the five typical observers with which the observers can be quickly

implemented into a robotic system, and (2) we presented the behaviors of different ob-

servers by presenting them in the same specific simulated scenarios. Experiments are

also conducted to demonstrate the effectiveness of the observers in a real application

scenario. For more details on these observers, please refer to [78].

In Table 1.2, some main features of each observer are summarized including whether

the observer works for constant/sinusoidal disturbance, a subjective score on the

complexity of implementation, and whether the acceleration and the inverse of inertia

matrix are needed.

In addition to the disturbance observers, many learning techniques have been also

applied for disturbance estimation and compensation, such as using feedforward neu-

ral network (NN) [98, 144, 80], and nonlinear autoregressive network with exogenous

inputs (NARX) [124].

The interaction force between human-robot or robot-environment is a specific type

of disturbances, and estimating the interaction force is a critical problem in the field
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Table 1.2: A summary of the main features of observers.

Observer Constant Sinusoidal Complexity Acceleration (q̈) Inertia Reference

1 NDOB
√ √

** × M−1 [94]

2 GMO
√ √

* × M [32]

3 JVOB
√ √

* × M−1 [52]

4 DKF
√

depend.1 ***** × M [57, 80]

5.1 ESO.orig
√

NA **** × M−1 [55, 109]

5.2 ESO.modi
√

depend.2 *** × M [109]

5.3 ESO.impr
√ √

*** × M−1 [117]

Note: Constant, means constant disturbances; Sinusoidal, means sinusoidal disturbances; Complexity, means
the subjective complexity of implementing the observers, and the more asterisk (*) means the more complexity of
the implementation. Inertia, means the form of the inertia matrix required.
symbol (

√
), means “yes, applicable”; NA, not applicable; symbol (×), means “no need”;

depend.1, means that it depends on what dynamics model of the disturbances is used. If a constant disturbance
model is used, then it is only valid for constant disturbance, e.g., a constant payload at the end-effector. If a
polynomial disturbance model is used, then it is valid for both constant and time-varying disturbance.
depend.2, means that it depends on parameter tuning. The same set of parameters cannot be valid for both
constant and time-varying disturbances at the same time. The parameters need to be tuned separately in different
disturbance scenarios in order for optimal effect in each.

of human-robot interaction and the field of collision detection [52]. Some methods

have been developed to estimate the robot-environment interaction force by involv-

ing learning techniques. Hu and Xiong [57] developed a method to estimate external

contact force using a semiparametric model and DKF. In their method, the semipara-

metric dynamic model containing a multilayer perceptron (MLP) neural network was

used to provide a more accurate dynamic model, while a DKF was used to estimate

the contact force between the robot and the environment. Similarly, an integrated

framework of neural network (NN) and DKF was developed to estimate external con-

tact force [80]. In the framework, an NN model was used to learn the joint friction,

while a DKF observer was used to estimate the contact force. In another work, NN

was used to approximate the global friction, while a momentum observer was used to

estimate the external force. Additionally, a Kalman filter was employed to filter the

measurement noise for a more accurate force estimation.

Sharifi et al. [124] employed a nonlinear autoregressive network with exogenous

inputs (NARX) to learn and estimate the robot dynamics plus the passive dynamics

of a user who wore an exoskeleton. Then the human-exoskeleton interaction force was
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separated out by subtracting the NARX-learned dynamics from the motor torques

in the scenario of active user dynamics. Note that the movement trajectories of

the exoskeleton is nearly periodic, which helped with training the NARX model to

generate its model predictions.

Learning control has been developed to track repetitive trajectories for both rigid

and non-rigid robots. De Luca and Ulivi presented a simple and efficient iterative

learning algorithm for robots with joint elasticity [29]. In their work, a learning term

was used to learn the necessary modification to the desired trajectory position. They

demonstrated the algorithm’s usefulness by good motion performance of simulations

on a two-link planar robot. Based on a similar design methodology, an iterative

learning scheme for gravity compensation in setpoint regulation problems was initially

proposed by De Luca and Panzieri [26, 84]. The learning scheme completes the

required gravity compensation at the final steady state in setpoint regulation tasks.

It can iteratively learn the constant gravity without the need of introducing an

integral error term or using high-gain feedback.

Based on the same contraction mapping theorem, Basovich et al. developed an

iterative output feedback controller for a 6-degree-of-freedom (DOF) precision po-

sitioning system when only position measurement is available [10]. Their proposed

controller can learn and compensate for the payload uncertainties with bounded error

in setpoint control tasks. Ji et al. used the iterative learning method to auto-calibrate

gravity compensation when the robot has no contact with the environment thus mak-

ing the robot EE weightless [61].

An adaptive controller [130, 59] can also deal with dynamic uncertainties includ-

ing gravity. However, it is a controller rather than an independent approach for

disturbance estimation, and it cannot provide compliant robot behavior for a safe

human-robot interaction like an impedance controller can do.

Impedance control is widely used for human-robot collaboration due to its in-

trinsic property of compliance [133]. By an impedance controller, a robot can be
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controlled to be soft (compliant) or rigid (non-compliant) as necessary, which can

ensure a safe human-robot interaction [129]. Furthermore, the measurement on the

interaction force is not necessary for impedance control. Therefore, the sensor-free

and compliance properties make it popular for surgical robots. One main issue for

implementing an impedance controller is that it requires full knowledge of the robot

dynamics whereas the identified dynamic parameters are usually inaccurate in prac-

tice. On the other hand, admittance control, which can be viewed as a counterpart of

impedance control, does require an external sensor to measure the interaction force

though it does not require full knowledge of the robot dynamics [142].

1.1.3 Virtual fixture techniques

Virtual fixture (VF), also known as active constraint and first proposed in [110], is

usually categorized into two types according to its purpose, that is guidance virtual

fixture (GVF) and forbidden-region virtual fixture (FRVF) [1, 14]. Intuitively, the

GVF serves like a ruler to assist in drawing a straight line, while the FRVF serves like

an armor to prevent tool tip from entering a protected area. Both types play a vital

role during various surgical procedures in robot-assisted surgery, such as suturing [86],

knot tying [150], dissection [121], either assisting to move the surgical tool along a

prescribed trajectory or preventing it from entering a specific area for protecting the

objects (e.g., beating heart or nerve) inside [112, 92].

VF is usually generated based on geometric elements, such as lines, planes, surfaces,

and volumetric primitives [14]. Vector field approach is the most common one to

be used for VF generating, which works for any shape that can be expressed as

mathematical equations [155]. The advantage of the vector field approach is that

it is simple, straightforward, and stable, while the disadvantage is that it requires

an explicit/implicit mathematical representation for the object to be modelled as

VF. For the objects with regular shapes like cube and sphere, their mathematical

representations can be easily established then the VF can be constructed relatively
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easily. However, for objects with irregular shapes like a humerus bone or skull, they

may not be able to expressed by equations, then the vector field approach may not

work for these objects any more.

The vector field approach cannot correctly handle situation of in contact with

multiple objects simultaneously and situation of thin objects. To solve this problem,

Zilles and Salisbury developed a constraint-based god-object algorithm [155]. In their

work, the god-object is a proxy of the haptic interface point (HIP) which is attached

onto the HIP when the HIP is in free motion. Once the HIP encounters VF, a virtual

wall for example, the proxy will always remain on the top of the virtual wall and never

penetrate into it. This is ensured in their algorithm by applying Lagrange multiplier

technique on a set of active constraints to find the position of the proxy in each servo

loop. Meanwhile, the virtual spring and/or damper linkage between the HIP and the

proxy will render a haptic force that tries to pull the HIP back out of the virtual wall.

Kapoor et al. developed a constrained optimization method for generating VF [63],

in which a suitable objective function is required in order to do the optimization. In

the method, five basic geometric constraints are established as VF task primitives

which can be used for assembling customized VF. With similar technique, Marinho et

al. employed a method of vector-field inequalities to generate VF for collision avoid-

ance [87] and guidance in a looping task during suturing [86]. Xia et al. developed

a constrained optimization framework of VF generating for multi-robot collaborative

teleoperation tasks, e.g., knot positioning [150].

There are also some other methods for VF generating for different purposes, such

as potential field method for collision avoidance or guidance [22, 120] and nonenergy

storing method for a more stable robot behavior [65]. Readers is directed to [14] for

a comprehensive review on VF.

In the field of robot-assisted surgery, VF has been widely used due to plenty of ad-

vantages, such as reduce the surgeon’s cognitive load [150], improve surgeon’s surgical

performance [48], make the surgical outcome more accurate and safe. Park et al. [99]
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conducted a preliminary test before applying VF in a coronary artery bypass surgery.

In the test, VF is generated for a blunt dissection task at a position determined from

a preoperative CT scan image, and the VF is a regular plane thus the VF generating

is in a simple case in their work.

Ryden et al. [112] developed a method to generate VF directly from point cloud to

protect the beating heart during surgery. They improved their method in [111, 96],

which established a solid foundation for point-based VF algorithm.

1.2 Motivation and Objectives

Arthroscopic surgery is a typical type of minimally invasive surgery (MIS) and a very

common surgery in orthopedics. For instance, elbow arthroscopy allows the man-

agement of elbow stiffness, arthritis, and fractures in a minimally invasive fashion

[13]. During traditional arthroscopic surgery, the surgeon needs to hold an arthro-

scope with one hand while performing the surgical operations with the other hand,

which can restrict the dexterity of the surgical performance and increase the cognitive

load. According to the literature review on robotic systems in the previous section,

most of the existing robot-assisted surgical systems in orthopedics take more focus on

open surgery than MIS. There is yet no specific robotic system specially designed for

arthroscopic surgeries. This arouses the necessity to develop a robot-assisted system

where the robot can assist the surgeon in performing the arthroscopic surgery.

To build a robot-assisted arthroscopic holder where the robot can hold the arthro-

scope for the surgeon, some requirements need to be satisfied. First, the robot can

hold the arthroscope still at a specified pose while rejecting all possible disturbances

(e.g., external disturbances delivered to the arthroscope via contact with the patient’s

body during surgery). Second, when the surgeon needs to move the arthroscope to a

new pose (e.g., for adjusting the scope view perspective), the robot should allow the

surgeon to move it around freely (i.e., human-robot interaction). Then, when a new

pose is determined by the surgeon, the robot should keep the arthroscope still again
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while rejecting any disturbances. The main problem in building such a robot-assisted

system is the dynamic model uncertainties and external disturbances, which could

largely affect the robot’s task performance accuracy and even stability if they are not

appropriately compensated.

On the other hand, the surgeon heavily relies on the arthroscope view when con-

ducting the surgery whereas the arthroscope view is a largely localized view and lacks

depth information. Also, in orthopedics, a series of preoperative images of a patient

are usually first acquired before the surgery. Some surgical preplans could be made

on the images, for example, drawing some curves to mark out areas to remove osteo-

phytes, or to protect nerves inside. During the surgery, these hand-drawn curves can

be used to generate VF which can assist in removing osteophytes or protecting the

nerves by providing haptic feedback. The main challenge here is that the hand-drawn

curves are usually in irregular shapes which may not be able to be presented math-

ematically by equations that are often required by most of existing VF-generating

algorithms. This motivates us to develop a robot-assisted system that can provide

additional haptic feedback and 3D visualization to the surgeons.

The ultimate objective of this research project is to develop a two-arm robot-

assisted arthroscopic surgical system for assisting surgeons during arthroscopic surgery.

More specifically, the left-arm robot will be a robot-assisted arthroscope holder, while

the right-arm robot will be a robot-assisted surgical tool. The left-arm robot should

be able to keep the arthroscope still while rejecting all disturbances, and also allow the

operator to move it freely if needed. The right-arm robot should be able to provide

the surgeon with haptic feedback assistance from VF where the VF can be generated

for objects in any shape. Also, 3D visualization of the tool position and VF should

be provided to the surgeon as additional visual feedback.

1.3 Contributions

The main contributions of this thesis are summarized as follows,
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(1) An integrated framework consisting of impedance control and NDOB is con-

structed for elbow arthroscopic surgery. The proposed framework is able to

accurately estimate and compensate for dynamic uncertainties, while guaran-

teeing compliant robot behavior via the impedance controller.

(2) A gravity iterative learning (Git) scheme for gravity compensation in Cartesian

space is developed, and the converging properties are theoretically analyzed.

Furthermore, a steady-state scaling strategy is proposed, which enables the

iterative learning update law to be executed in each servo loop, thus extending

the validity of the learning scheme to general trajectory-tracking scenarios in

addition to setpoint regulation scenarios.

(3) A point-based VF algorithm is presented which allows to generate VF directly

from point cloud data no matter what shape it is in. The presented VF algo-

rithm can be applied in various scenarios in image-guided surgery, as long as a

set of point cloud of the target object can be obtained.

(4) A two-arm robot-assisted arthroscopic surgical system is developed. The left-

arm robot is able to keep the arthroscope still while rejecting all disturbances,

and also allows the operator to move it freely if needed. The right-arm robot is

able to provide haptic assistance from point-based VF.

1.4 Structure of This Thesis

The structure of this thesis is illustrated in Figure 1.4. In the current Chapter 1,

literature reviews were conducted on the evolvement of robotic systems in orthope-

dics, disturbance estimation approaches, and virtual fixture techniques, respectively.

Then the development of a two-arm robot-assisted arthroscopic surgical system was

motivated, and the challenges of building such a robotic system were identified. In

Chapter 2, an integrated framework of combining impedance control and nonlinear
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Figure 1.4: Structure of this thesis.

disturbance observer (NDOB) was proposed for arthroscopic surgery. In Chapter 3,

in aiming to separate some specific components in the uncertainties, a framework for

using neural network (NN) to learn dynamic uncertainties is proposed. InChapter 4,

an iterative learning scheme with a steady-state scaling strategy for gravity compen-

sation, i.e., Git (gravity iterative learning) scheme, is developed. In Chapter 5, an

algorithm of point-based virtual fixture (VF) generating method was presented. In

Chapter 6, a prototype of a two-arm robot-assisted arthroscopic surgical system is

presented and evaluated by assembling the work in Chapter 4 and in Chapter 5.

In Chapter 7, conclusions of this thesis and future research directions are presented.

InAppendix A, an EMG-based hybrid impedance-force control system for human-

robot collaboration on ultrasound imaging is introduced. This work shows another

possibility of how we use impedance control in another medical pHRI scenario of

ultrasound imaging. In Appendix B, a dual-mode pHRI-teleHRI control system
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with a hybrid admittance-force controller for ultrasound imaging is presented. This

work shows an example application of admittance control, another compliant control

scheme in parallel to impedance control, in a pHRI scenario of ultrasound imaging.

In Appendix C, the kinematics and dynamics of the 3DOF PHANToM Premium

1.5A robot are presented since this robot was employed frequently in this thesis.
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Chapter 2

Integrating Impedance Control
with Nonlinear Disturbance
Observer1

Compliance and stability are essential features that a surgical robot must have for

safe physical human-robot interaction (pHRI). Surgical tools attached at the robot

end-effector and human-robot interaction will affect the robot dynamics inevitably.

This could undermine the utility and stability of the robotic system if the varying

robot dynamics are not identified and updated in the robot control law. In this Chap-

ter, an integrated framework for robot impedance control and nonlinear disturbance

observer (NDOB)-based compensation of uncertain dynamics is proposed, where the

former ensures compliant robot behavior and the latter compensates for dynamic un-

certainties when necessary. The combination of impedance controller and NDOB is

analyzed theoretically in three scenarios. A complete simulation and experimental

studies involving three common conditions are then conducted to evaluate the theo-

retical analyses. A preliminary pHRI application on arthroscopic surgery is designed

to implement the proposed framework on a robotic surgeon-assist system and evalu-

ate its effectiveness experimentally. By integrating impedance controller with NDOB,

1A version of this chapter has been published as: Teng Li, Armin Badre, Hamid D. Taghirad,
Mahdi Tavakoli, “Integrating Impedance Control and Nonlinear Disturbance Observer for Robot-
Assisted Arthroscope Control in Elbow Arthroscopic Surgery”, 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2022), October 23-27, Kyoto, Japan, 2022. pp.
11172-11179. [IEEE Xplore]
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the proposed framework allows an accurate impedance control when dynamic model

inaccuracy and external disturbance exist.

2.1 Background

Elbow arthroscopy is a novel and complex procedure that allows management of

elbow stiffness, arthritis and fractures in a minimally fashion [13]. Minimally invasive

surgery (MIS) has been gaining popularity due to its potential benefits of faster

recovery time and decreased pain [43]. Recent advancements in surgical robotics are

transforming the traditional orthopaedic surgeries and helping the surgeons generate

more successful and precise surgical outcomes [140, 60, 89]. Furthermore, MIS has

been adopted due to the widely used da Vinci robot system in more and more types

of surgical operations [44, 30].

In robot-assisted elbow arthroscopy, a robot can help to increase surgical accuracy

and precision, e.g., for bone alignment. It can also serve as an auxiliary surgical

support, e.g., to help surgeons reduce fatigue by holding the arthroscope [89]. In

such a robot-assisted surgical support system, the robot dynamics can be dramatically

affected due to the extra surgical tools attached onto the robot end-effector (EE) and

the physical human-robot interaction (pHRI). Here both the mass of the surgical

tools and the interaction force can be viewed as external disturbance. Therefore, an

accurate estimation and compensation for dynamic uncertainties can be a critical step

towards a stable and accurate control system.

Many methods have been proposed for estimating dynamic uncertainties and elim-

inating their effects on robot dynamics. A main solution is to design a linear or

nonlinear disturbance observer (NDOB) which can monitor the dynamic uncertain-

ties in real-time, and make a compensation when necessary. A comprehensive review

on NDOB can be found in [93], and a historical review on versatile observers can be

found in [107].

A classic first-order momentum observer and its variations of sliding mode momen-
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tum observers have been designed to estimate an external disturbance/force [45]. A

disadvantage of these observers is that they require an accurate dynamic model and

negligible/known friction torque for an accurate estimation. This makes sense since

the observer usually estimates a lumped dynamic uncertainty term which includes

both the dynamic model inaccuracy and the external disturbance/force. Therefore,

only when the dynamic model is accurate, the estimation from the observer is of any

accuracy. Additionally, the classic approach can provide exact estimation only when

the external force is constant rather than time-varying.

A model-based extended state observer (ESO) [117] is used for estimating human-

robot interaction force on an impedance-based three degrees-of-freedom (DOF) reha-

bilitation robot when a healthy subject and a post-stroke patient operates the robot

separately. The effectiveness of ESO is demonstrated by simulation. However, as the

authors analyzed, the experiment result on force estimation is not accurate enough

due to the inaccurate dynamic model they used.

A NDOB observer is used to estimate constant external payloads on the robot EE

of a 6-DOF WallMoBot [152]. Only 1-DOF is involved in the experiments for the

sake of simplicity. The effectiveness of the NDOB observer has been demonstrated in

that work.

As mentioned earlier, the output from an observer is a lumped uncertainty term

that incorporates both the dynamic model inaccuracy and the external disturbances.

In order to have an accurate estimation on the external disturbances (e.g., interaction

force), the dynamic model inaccuracy (e.g., friction) is better to be estimated inde-

pendently. Research has focused on this issue by employing an additional observer.

A neural network (NN) is utilized to reconstruct friction dynamics while a general

momentum disturbance observer is used to estimate the external forces in [81]. The

estimation accuracy on the external force is considerably improved since the fric-

tion is separately estimated by the NN. Similar approaches of combing a disturbance

observer and a deep learning technique are also introduced in [57, 80].
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Impedance control is widely used for human-robot collaboration due to its intrinsic

property of compliance [133]. By an impedance controller, a robot can be controlled

to be soft (compliant) or rigid (non-compliant) as necessary, which can ensure a safe

human-robot interaction [129]. Furthermore, the measurement on the interaction

force is not necessary for impedance control. Therefore, the sensor-free and compli-

ance properties make it popular for surgical robots. One main issue for implementing

an impedance controller is that it requires full knowledge of the robot dynamics

whereas the identified dynamic parameters are usually inaccurate in practice. Note

that admittance control, which can be viewed as a counterpart of impedance control,

does require an external sensor to measure the interaction force though it does not

require full knowledge of the robot dynamics [142].

During arthroscopic surgery, knowing the position and orientation of the arthro-

scope is critical for improving the surgeon’s situational awareness by allowing the

surgeon to know the relationship between the current field of view and the surgical

pre-plan [40, 42]. A common way to monitor the position and orientation of the

arthroscope is to employ a tracking system [128]. The drawback of using a tracking

system is that the marker could be easily obstructed by the surgeon’s body or other

objects in the operating room. A robot-assisted surgical system is another promising

solution where the coordinate system of the arthroscope-holding robot can be used

for the tracking. Meanwhile, the robot can help to improve surgical accuracy and

reduce the surgeon’s effort by holding the arthroscope’s weight. Developing such a

robot-assisted surgical system as the physical user interface is meaningful both for

a virtual surgical training simulator and for supporting the surgeon in live surgical

procedures.

In our specific application of elbow arthroscopy MIS, an integrated framework con-

sisting of impedance control and NDOB is constructed as illustrated in Figure 2.1.

In the proposed framework, the impedance control is selected to guarantee compliant

robot behavior without using a force/torque sensor [133], while the NDOB is used to
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estimate dynamic uncertainties and compensate for them when necessary. In sum-

mary, the contributions of this chapter are: (1) A novel framework for integrating

impedance control and NDOB is proposed and the effectiveness is evaluated; (2) The

combined output is analyzed in three scenarios, and evaluated by simulation and

experimental studies.

𝑥𝑑
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controller
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Robot

NDOB
(online)
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Pre-defined 

trajectory 
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Kinematics
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Figure 2.1: Block diagram of the proposed control scheme with integrating impedance controller
and nonlinear disturbance observer (NDOB). Note that the dashed line means a linked switch.
τ disturb is the dynamic model inaccuracy and the external disturbance.

2.2 Methods

2.2.1 Robot dynamics and impedance control

A general dynamic model for an n-degree-of-freedom (DOF) rigid robot [41] can be

given by

M(q)q̈+ S(q, q̇)q̇+ g(q) = τ + JTFext (2.1)

where M ∈ Rn×n denotes the inertia matrix, S ∈ Rn×n denotes a matrix related to

the Coriolis and centrifugal forces, g ∈ Rn represents a gravity-related vector, τ ∈ Rn

is the commanded joint torque vector, Fext ∈ R6 is the external force in Cartesian

space, and J ∈ R6×n is the Jacobian matrix. Note that friction is not included in the

dynamic model (2.1) in this chapter.
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A full impedance model [129, 133] for robot-environment contact can be given by

Fimp = Mm(ẍ− ẍd) +Dm(ẋ− ẋd) +Km(x− xd) (2.2)

where Mm,Dm,Km are user-designed matrices for inertia, damping, and stiffness,

respectively. xd, ẋd, ẍd are the desired position, velocity, and acceleration, respec-

tively in Cartesian space, while x, ẋ, ẍ are the actual robot position, velocity, and

acceleration, respectively. Fimp ∈ R6 is the interacting wrench (force and torque)

between the robot EE and the environment in Cartesian space.

To avoid the requirement for external force measurement, let us set the designed

inertia matrix equal to the inherent inertia matrix of the robot, i.e., Mm = Mx, where

Mx is the inherent inertia of the robot in Cartesian space and Mx = J−TMJ−1 [141].

By substituting (2.2) into (2.1) using Fext = Fimp and setting Mm = Mx, the first

simplified version of impedance control law (V1) can be expressed as

τ imp = MJ−1(ẍd − J̇q̇) + Sq̇+ g+JT[Dm(ẋd − ẋ) +Km(xd − x)] (2.3)

where J−1 will be replaced with the pseudo-inverse of the Jacobian J# = JT(JJT)−1

when J is not a square matrix.

In order to represent a real mechanical system, a Coriolis and centrifugal term can

be included into the impedance model (2.2). Accordingly, the augmented impedance

model is

Fimp = Mx(ẍ− ẍd)+(Sx +Dm)(ẋ− ẋd) +Km(x− xd) (2.4)

where Sx is the Coriolis and centrifugal matrix of the robot in Cartesian space and

Sx = J−TSJ−1 −MxJ̇J
−1. By substituting (2.4) into (2.1) using Fext = Fimp, the

second simplified version of impedance control law (V2) can be expressed as

τ imp = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd + g+JT[Dm(ẋd − ẋ) +Km(xd − x)] (2.5)

Furthermore, for a set-point regulation problem, we set ẍd = ẋd = 0. Then, the

impedance control law V2 (2.5) can be simplified to V3 as expressed by (2.6), which
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is also known as task-space PD controller with gravity compensation.

τ imp = JT[Km(xd − x)−Dmẋ] + g (2.6)

The relationships among the three versions of the impedance control law V1, V2, and

V3 are summarized as follows. All of the three versions avoid measuring external

force by setting Mm = Mx. V1 is based on a general impedance model that is widely

used in robotics control systems. V2 is based on an augmented impedance model

that may represent a real mechanical system by including a Coriolis and centrifugal

term into the model as shown in (2.4). V3 focuses on a specific set-point regulation

problem based on V2. Therefore, V2 can be viewed as a bridge from V1 to V3, while

V2 itself also represents an important simplification. For the subsequent simulations

and experiments, only V2 and V3 are employed such that V2 can perfectly reduce

to V3 when a set-point regulation problem is encountered. V1 was also implemented

for testing but not reported here since no difference was found between V1 and V2

in terms of task performance.

2.2.2 Nonlinear disturbance observer

A nonlinear disturbance observer (NDOB) can be used to estimate all dynamic un-

certainties as a lumped term [94], comprised of two categories. One is the dynamic

model inaccuracy caused by inaccurate dynamic parameters (e.g., friction, center of

mass location, and link weight), while the other is the external disturbance (e.g., ex-

tra payload attached onto the robot body, and robot-environment interaction force).

From an analytical perspective, in the absence of external disturbance, the NDOB

estimates the difference between the real dynamic model and the estimated dynamic

model of the robot, and it can be expressed as

τ NDOB = −[(M− M̂)q̈+ (S− Ŝ)q̇+ (g − ĝ)]

= −∆Mq̈−∆Sq̇−∆g
(2.7)

where M̂, Ŝ, ĝ are the estimations on M, S, g, respectively.
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An adapted NDOB design based on [18, 94, 138] is used in this chapter which can

be expressed as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L = YM̂

−1

p = Yq̇

ż = −Lz+ L(Ŝq̇+ ĝ − τ − p)

τ NDOB = z+ p

(2.8)

where L ∈ Rn×n is the observer gain matrix, Y ∈ Rn×n is a constant invertible matrix

needs to be designed, M̂ is designed to be a symmetric and positive definite matrix

and thus invertible, z is an auxiliary variable, p is an auxiliary vector determined from

Y, τ NDOB is the estimated lumped uncertainties via the NDOB observer. Note that

the disturbance estimation error ∆τ NDOB = τ NDOB − τ̂ NDOB, i.e., the difference between

the real lumped uncertainties and the estimated lumped uncertainties, is globally uni-

formly ultimately bounded for this NDOB design according to [94], and will converge

asymptotically to zero if the rate of change of the lumped uncertainties is negligible.

For simplicity, in this chapter, we assume ∆τ NDOB = 0, i.e., the NDOB can accurately

estimate the exact difference between the real dynamic model and the estimated dy-

namic model. Therefore, we denote the NDOB output as τ NDOB instead of τ̂ NDOB in

(2.8).

In (2.8), the first two equations are the specific user design on the vector p and

matrix L. The third equation is to update the auxiliary variable z. The advantage of

the adapted NDOB design is that it does not require acceleration measurement. Con-

sidering that designing an observer is not the focus in this chapter, only summarized

information about the adapted NDOB is introduced above. For a specific observer

design methodology with detailed procedures, please refer to [94].

It is worth noting that there are some convergence properties in the original NDOB

design in [94], and here we briefly rephrase them as the following,

Theorem 1 The disturbance tracking error ∆τdisturb converges exponentially to zero

if the following conditions hold:
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(1) The matrix Y is invertible.

(2) There exists a positive definite and symmetric matrix Γ, such that

Y +YT −YTṀY ≥ Γ.

(3) The rate of change of the lumped disturbance acting on the manipulator is neg-

ligible (i.e., τ̇disturb ≈ 0), in comparison with the estimation error dynamics.

Theorem 2 The disturbance tracking error ∆τdisturb is globally uniformly ultimately

bounded if:

(1) The first two conditions of the Theorem 1 hold.

(2) The rate of change of the lumped disturbance is bounded.

For the full original statements on the convergence properties of the NDOB (i.e.,

Theorem 1 and Theorem 2), please refer to the original work [94].

2.2.3 Integration of impedance controller and NDOB

In this section, we mathematically explore the outcome of the combination of impedance

controller and NDOB. Three scenarios of the combination are considered according

to the variations of the impedance control law introduced earlier.

In practice, for both the impedance control law and NDOB, the estimations of the

dynamic coefficient matrices, i.e., M̂, Ŝ, ĝ are used, due to the fact that their real

values (M, S, g) are unavailable.

Scenario 1, for impedance control law V1.

Using M̂, Ŝ, ĝ, the combined outcome of the impedance control law V1 (2.3) and

NDOB (2.7) can be given by

τ̂ imp − τ NDOB = MJ−1{ẍd − J̇q̇}+ Sq̇+ g + PD⏞ ⏟⏟ ⏞
τ imp

+∆MJ−1(ẍ− ẍd)⏞ ⏟⏟ ⏞
residual

(2.9)

As shown in (2.9), the combined output is equal to the ideal impedance control law

(i.e., the impedance control law assuming full knowledge of robot dynamics) τ imp in
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(2.3) together with a residual term. This residual term is tending to zero as ẍ→ ẍd,

e.g., it is negligible when Cartesian acceleration tracking performance is accurate

enough.

Scenario 2, for impedance control law V2.

Using M̂, Ŝ, ĝ, the combined output of the impedance control law V2 (2.5) and

NDOB (2.7) is calculated as

τ̂ imp−τ NDOB = MJ−1{ẍd − J̇J−1ẋd}+ SJ−1ẋd + g+PD⏞ ⏟⏟ ⏞
τ imp

+∆M(q̈− q̈d) +∆S(q̇− q̇d)⏞ ⏟⏟ ⏞
residual

(2.10)

As shown in (2.10), the combined output is equal to the ideal impedance control law

τ imp in (2.5) together with two residual terms. The two residual terms are tending

to zero as q̈→ q̈d and q̇→ q̇d, which means that they are negligible when the joint

acceleration and velocity tracking are accurate enough.

Scenario 3, for impedance control law V3.

In this scenario, we assume that a steady state is achieved in set-point regulation,

i.e., q̇ = q̈ = 0. Then using M̂, Ŝ, ĝ, the combined output of the impedance control

law V3 (2.6) and NDOB (2.7) is calculated as

τ̂ imp − τ NDOB = JT[Km(xd − x)−Dmẋ] + ĝ − (−g + ĝ)

= JT[Km(xd − x)−Dmẋ] + g⏞ ⏟⏟ ⏞
τ imp

(2.11)

As shown in (2.11), the combined output is exactly equal to the ideal impedance

control law τ imp in (2.6). This means that the NDOB can accurately compensate for

inaccuracies in the estimation of the gravity term when the steady state is achieved

in set-point regulation.

An integrated framework of impedance control and NDOB is proposed based on

the analyses presented above. The block diagram of the control system is shown in

Figure 2.1 which incorporates the proposed framework.
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Table 2.1: Parameterization for simulation, experiment, and application of pHRI on elbow
arthroscopic surgery simulator.

Parameters Simulation Experiment pHRI Application

Spring Km = 7.5I Km = 0

Damping Dm = 2
√
7.5I Dm = 7.5I

Inertia matrix M̂ = 1.0× 10−3 × I

Observer gain Y = 9.58× 10−3 × I

Note: I ∈ R3×3 denote identity matrix.

2.3 Simulations, Experiments, and Results

2.3.1 Robotic system

A 3-DOF PHANToM Premium 1.5A robot (3D Systems, Inc., Cary, NC, USA) is

used for simulations and experiments in this chapter. For the simulations, we recon-

struct the kinematic model and dynamic model of the PHANToM robot based on [16]

and conduct the simulations using MATLAB/Simulink (version R2017a, MathWorks

Inc., Natick, MA, USA). For the experiments, the physical robot is controlled via

joint torque command, which is sent from MATLAB/Simulink using Quarc real-time

control software (Quanser Inc., Markham, ON, Canada). The control rate of the

robot is 1, 000 Hz. The MATLAB/Simulink and Quarc software run on a computer

with a 3.33 GHz Intel(R) Core(TM) 2 i5 CPU with a Windows 7 Enterprise 64-bit

operating system.

2.3.2 Parameterization

For all simulations and experiments in the remaining part of this chapter, the param-

eter values used in the impedance model and NDOB are listed in Table 2.1. In order

to have a simple but natural movement, a circular and cyclic trajectory is selected

for the simulations and experiments, which can be expressed as a function of time as
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the following ⎧⎪⎨⎪⎩
xd = R sin(2π

t1
t)

yd = R cos(2π
t1
t) +R

zd = 0

(2.12)

where R = 0.02 m is the radius of the circle and t1 = 5 s is the period for generating

a full cycle.

In the following sub-sections, three conditions related to the combination of impedance

controller and NDOB are presented. Both simulation and experimental results are

included for each condition. A video demonstration for the experiments is available

online1.

2.3.3 Condition 1: Constant payload

Simulation

In Condition 1, a constant payload of 22 g is attached onto the robot EE as external

disturbance, and there is no dynamic model inaccuracy involved. A circle tracking

task in free space is employed and the circle trajectory is given by (2.12). This

condition is performed by implementing the impedance control law V2 and NDOB,

i.e., the Scenario 2 given by (2.10). Four cases are designed for this condition:

• Case-00: External disturbance OFF , NDOB OFF ;

• Case-01: External disturbance OFF , NDOB ON ;

• Case-10: External disturbance ON , NDOB OFF ;

• Case-11: External disturbance ON , NDOB ON .

The trajectory tracking results of the simulations are shown in Figure 2.2. Note

that no dynamic model inaccuracy is involved in the simulations, which means that

the only dynamic uncertainty is the external disturbance of the constant payload. As

can be seen in Figure 2.2a, 2.2b, without the disturbance of the constant payload,

1online demo video link: https://youtu.be/f54Iah0yuWk
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Figure 2.2: Simulation results of the four cases of a circle tracking task in free space in Condi-
tion 1.

the tracking results are the same no matter the NDOB is implemented or not. When

the payload is attached as shown in Figure 2.2c, the actual tracking trajectory de-

viates largely from the desired one if the NDOB is not implemented. However, by

implementing a NDOB as shown in Figure 2.2d, the disturbance from the constant

payload can be fully detected and compensated for, thus good tracking performance

is recovered. Note that there is a deviation between the actual trajectory and the de-

sired trajectory at the beginning of the task. The reason is that their initial positions

are not exactly the same. To this point, a low-pass infinite impulse response (IIR)

filter can be implemented as necessary to ensure the smoothness of the movement at

the beginning of the task.

Experiment
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Similar to the simulations, experiments on the four cases are conducted by imple-

menting the impedance controller and NDOB on a 3-DOF PHANToM robot. The

experimental results of the four cases are shown in Figure 2.3.
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Figure 2.3: Experimental results of the four cases of a circle tracking task in free space in
Condition 1.

As can be seen in Case-00 (Figure 2.3a), the circle tracking performance is poor.

The reason is that dynamic model inaccuracies do exist (e.g., joint friction) for the

physical robot. As expected, when a NDOB is implemented in Case-01, this dynamic

model inaccuracy is compensated for, and tracking performance is back to normal

as shown in Figure 2.3b. For Case-10 and Case-11, the experimental results similar

to the corresponding simulation are obtained, i.e., without NDOB, the tracking task

fails due to the external payload as well as the model inaccuracy (Figure 2.3c), while

with NDOB, good tracking performance is recovered (Figure 2.3d). Note that, here
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the NDOB in Case-11 has detected both the dynamic model inaccuracy (e.g., joint

friction) and the external disturbance (i.e., the constant payload).

2.3.4 Condition 2: Time-varying payload

Simulation

In the simulation part of Condition 2, two types of time-varying payload are in-

vestigated. One is sinusoidal payload while another is a suddenly added constant

payload. The former is to simulate a scenario of time-varying contact force during

bone debridement while the latter is to simulate a scenario of sudden contact force

when the tool hits a bone.

The same circle tracking task (2.12) is employed, whereas only Case-10 and Case-

11 are considered. This condition is also performed by implementing the impedance

control law V2 and NDOB, i.e., the Scenario 2 given by (2.10). No dynamic model

inaccuracy is involved in the simulations here.

The sinusoidal payload is applied onto the robot EE as external disturbance which

can be expressed by ⎧⎪⎨⎪⎩
Fxd = a1 sin(

2π
t1
t)

Fyd = a2 sin(
2π
t2
t)

Fzd = a3 cos(
2π
t3
t)

(2.13)

where t1 = 2, t2 = 5, t3 = 2 are cycles of the desired time-varying EE payload for

each axis in units of second, and a1 = 0.01, a2 = 0.2, a3 = 0.01 are the corresponding

amplitudes in units of Newton.

The simulation results of Condition 2 with a sinusoidal payload are shown in Fig-

ure 2.4. As can be seen in Figure 2.4a (Case-10), without NDOB, the tracking perfor-

mance is distorted due to the sinusoidal payload. By implementing NDOB, normal

tracking performance is obtained as shown in Figure 2.4b (Case-11). The tracking

performance with NDOB in Case-11 is shown in Figure 2.4c, and the disturbance

estimation on the external payload from the NDOB is shown in Figure 2.4d.

The simulation results of Condition 2 with a suddenly added payload are shown
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in Figure 2.5. In this simulation, a constant payload of 22 g is attached at the

robot EE throughout the task, while another payload of 23 g is suddenly added

onto the robot EE at 5.5 s and remains there since then. This procedure can be

easily identified in Figure 2.5a where the actual tracking trajectory is deviated due

to the two payloads when NDOB is not activated. When the NDOB is activated, the

tracking performance is well-recovered as shown in Figure 2.5b and Figure 2.5c. And

the NDOB can immediately and accurately estimate the suddenly added payload

as shown in Figure 2.5d. The simulation results in Condition 2 demonstrate that

the NDOB is able to accurately estimate the external time-varying disturbances in

real-time as well.
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Figure 2.4: Simulation results of a circle tracking task with sinusoidal time-varying payload in
Condition 2.

Experiment

For the experiment part of Condition 2, since it is impossible to apply a sinusoidal
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Figure 2.5: Simulation results of a circle tracking task with a suddenly added payload (23 g) in
Condition 2. Note that the 23 g payload is added at 5.5 s and remains there since then.

payload of (2.13) in practice, only an experiment with the suddenly added payload is

performed. In the experiment, an extra magnetic constant payload of 23 g is added

onto the robot EE in the middle of the circle tracking task. Note that a constant

payload of 22 g is always attached at the robot EE in this experiment.

The experimental results of Condition 2 are shown in Figure 2.6. As can be seen in

Figure 2.6a, only a small perturbation is observed immediately after the extra mag-

netic payload is added and good tracking performance is recovered very quickly. In

Figure 2.6b, the estimated force component Fy from NDOB is not piecewise constant

compared with its corresponding simulation in Figure 2.5d. The main reason should

be that the estimation from NDOB in the physical experiment (Figure 2.6b) involves

both dynamic model inaccuracy and external payloads, while in the simulation (Fig-

ure 2.5d) it involves only external payloads.

41



The experimental results in Condition 2 indicate that the NDOB is able to imme-

diately detect and accurately compensate for a time-varying payload, thus protect the

tracking performance from being affected. This verified the corresponding simulation

results.
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Figure 2.6: Experimental results of a circle tracking task with a suddenly added payload (23 g)
in Condition 2. An extra magnetic payload of 23 g is added onto the robot EE at some time
point during 5-6 s (the colored area) in practice, and it remains there since then.

2.3.5 Condition 3: Set-point regulation

Simulation

In Condition 3, a set-point regulation problem is explored. The coordinates of

the initial point and the desired set-point in Cartesian space are [0, 0, 0] m and

[0.01, 0.04, 0] m, respectively. This condition is performed by implementing the impedance

control law V3 and NDOB, i.e., the Scenario 3 given by (2.11). Only Case-10 and

Case-11 are considered. For both simulation and experiment in Condition 3, a con-

stant payload of 22 g is always attached at the robot EE. Additionally, during the

set-point regulation, an external disturbance force in a range of [0, 2] N is applied onto

the robot EE along y+ axis. In the simulation, the external disturbance is designed

by (2.13) with a1=a3=0, a2=t2=2, which means that this time-varying disturbance is

along y-axis and the maximum amplitude is 2 N. The external disturbance is applied

only in the period of 6-7 s in the simulation.

The simulation results of Condition 3 are shown in Figure 2.7. As can be seen in
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Case-10 (Figure 2.7a), without NDOB, the regulation is failed with a large constant

error between the desired (solid red line) and actual (dashed green line) set-point along

y-axis. Here note that, even if with a higher stiffness in the impedance controller

in Case-10, a constant error will still be remained if the gravity term cannot be

appropriately compensated for. With NDOB in Case-11 (Figure 2.7b), the regulation

task achieves good performance.

For the external disturbance during 6-7 s (the colored area in Figure 2.7), without

NDOB, a large deviation as high as 14 cm is observed. But with NDOB, the deviation

is significantly reduced to be less than 0.5 cm. This confirms the NDOB capability

for disturbance rejection. The constant payload and the extra 1s-disturbance can be

appropriately compensated for by using NDOB.
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(a) Case-10 without NDOB
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(b) Case-11 with NDOB

Figure 2.7: Simulation results of a set-point regulation task with a constant payload and 1s-
disturbance in Condition 3. Note that, during the first two seconds, the desired point position
is linearly increased to the final desired point position to ensure a smooth robot behavior at the
moment of startup.

Experiment

For the corresponding experiment in Condition 3, the 1s-disturbance in a range

of [0, 2] N is exerted by a human user. Therefore, it is not exactly occurred during

6-7 s and not strictly lasted for 1 s in practice. The experimental results are shown

in Figure 2.8. As can be seen from the figure, the NDOB is able to minimize the

effect induced by the external 1s-disturbance, which experimentally verified the cor-

responding simulation results. The results of Condition 3 indicate that the NDOB
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is also able to perform external disturbance rejection. From another perspective, the

NDOB might undermine the compliant behavior brought by the impedance controller

to some extent due to the disturbance rejection effect.
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(a) Case-10 without NDOB
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Figure 2.8: Experimental results of a set-point regulation task with a constant payload and
1s-disturbance in Condition 3. Note that the 1s-disturbance here is not exactly occurred during
6-7 s for 1 s since it is controlled by a human user.

2.4 Application on Elbow Arthroscopic Surgery

The simulation and experimental results of the three conditions in the previous section

demonstrate that the NDOB is capable of accurately estimating dynamic uncertain-

ties of both constant (Condition 1) and time-varying (Condition 2) payloads attached

at the robot EE, and performs suitable compensation in the control system as nec-

essary. The NDOB has a intrinsic property to reject external disturbance no matter

the disturbance is expected or not (e.g., the 1s-disturbance in Condition 3). How-

ever, some human-generated disturbance, e.g., human-robot interaction force, may

be expected thus shouldn’t be rejected. To solve this problem, NDOB-online and

NDOB-offline are designed as shown in Figure 2.1. With NDOB-online, a lumped

dynamic uncertainties is estimated and compensated in real time, i.e., all uncertain-

ties will be rejected as disturbance. With NDOB-offline, only an appropriate constant

gravity is compensated for which enables the human-robot interaction. Please note

that this online/offline design is just what we needed since we do not want the robot
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to be compliant to occasional external disturbances when it is holding the tool still.

One limitation here is that rigorous stability analysis has to be conducted in future

work since controller online-switching is involved.

In a specific application on elbow arthroscopic surgery, a robot will hold the arthro-

scope as an auxiliary supporter to reduce the surgeon’s fatigue. More specifically,

when the surgeon moves the arthroscope, the robot should provide compliant be-

havior while complying with the external human-robot interaction force but com-

pensating all other uncertainties. This can be realized via NDOB-offline. On the

other hand, when the arthroscope is left in an unattended state, the robot should

keep it stably stay there and be able to reject any external disturbance. This can

be realized via NDOB-online. This illustrates the integrated framework in our spe-

cific application scenario. To this end, a practical application on the robot-assisted

arthroscopic surgery is developed to assess the framework. In the application, it is ex-

pected that the proposed control system allows the surgeon to move the arthroscope

freely and keeps the arthroscope stay still wherever the surgeon left it. A FAST

simulator, as shown in Figure 2.9a, is employed in the application where FAST is

short for Fundamentals of Arthroscopic Surgery Training which is a commonly used

physical model for training novices with their arthroscopic surgical skills. By imple-

menting the framework, the arthroscope can move freely and stay in the air as shown

in Figure 2.9b.

Although this is a preliminary experiment, it is an important step towards con-

structing a robot-assisted elbow arthroscopic system. The results of this chapter

enable the system to accurately estimate and compensate for the robot dynamic un-

certainties for a stable control system. Also, the robot holds the arthroscope for the

surgeons such that they can focus on other tasks during the surgery. In future work,

the tool pose tracked by the marker-free robot system can be visualized and provided

to the surgeons in real-time. More practically, the robot-assisted system can be used

either for a training simulator by integrating with a virtual/phantom patient body
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Figure 2.9: Setup and free trajectory for implementing the proposed framework. FAST, funda-
mentals of arthroscopic surgery training. The robot and arthroscope are connected via a ball
joint.

via AR/VR techniques, or in real elbow arthroscopic surgery. The system is also

promising to help guide the surgeon to perform tasks precisely and accurately, and

to expand the application of elbow arthroscopy into various elbow conditions.

2.5 Conclusion

Robot-assisted arthroscopic surgery is a thriving field in orthopaedics. To build con-

trol system for a surgeon-assist arthroscope-holding robot, dynamic uncertainty is a

critical point that needs to be estimated and compensated for during pHRI to ensure

the system stability and accuracy. This chapter proposed an integrated framework

of combining impedance control and nonlinear disturbance observer (NDOB). The

combined outcomes were mathematically analyzed. Three common conditions were

presented to evaluate the combined outputs by both simulations and experiments

on a 3-DOF PHANToM robot. A preliminary application of pHRI on elbow arthro-

scopic surgery simulator was realized by implementing the proposed framework, and

its effectiveness was demonstrated. The core contribution of this chapter is that, by

combining impedance control and NDOB, the integrated framework can achieve an

accurate impedance control under condition of that external uncertainties exist while

only roughly estimated dynamic parameters are known.
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The integrated framework is able to provide compliant behavior by the impedance

controller during pHRI while compensating for the robot dynamic uncertainties by

the NDOB. The NDOB used in this chapter estimates a lumped value for model

inaccuracy and external disturbance, and is not able to separate them. In future work,

we will try to separate the interaction force from the lumped term by introducing

additional observers or learning techniques into our system.
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Chapter 3

Neural Network Learning on
Robot Dynamic Uncertainties1

In Chapter 2, we have shown that integrating an impedance controller with a dis-

turbance observer can achieve accurate impedance control. However, it works well

for robots in free motion but not in robot-environment interaction. Although a dis-

turbance observer is able to accurately estimate the dynamic uncertainties, the es-

timation is lumped uncertainties that contain all uncertainty sources including both

the internal and the external disturbances. Without separating these two parts,

the method of combining an impedance controller and an observer will result in the

human-applied force being cancelled instead of interacting with the robot. To solve

this problem in this Chapter, we propose a framework for learning the internal dis-

turbances and separating the external disturbances by integrating three entities: an

impedance controller, a neural network (NN) model, and a disturbance observer. In

the framework, the impedance controller provides compliant robot behavior, while the

observer captures the lumped uncertainties, and the NN learns to separate the exter-

nal disturbances. Simulation results of an application scenario with an obstructive

virtual fixture demonstrate the effectiveness of the proposed framework.

1A version of this chapter has been published as: Teng Li, Armin Badre, Hamid D. Taghirad,
Mahdi Tavakoli, ”Neural Network Learning of Robot Dynamic Uncertainties and Observer-based
External Disturbance Estimation for Impedance Control”, 2023 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (AIM 2023), June 28-30, Seattle, WA, USA, 2023, pp.
591-597. [IEEE Xplore]
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3.1 Background

In the field of robot control, having an accurate dynamic model of a robot is fun-

damental for ensuring an accurate and stable control [47]. This is especially the

case in medical robotic systems where accuracy and safety are overriding concerns.

However, accurate dynamic models only exist in theory but not in practice, which

means that dynamic uncertainties in a robotic system are inevitable. Common dy-

namic uncertainties include joint friction, inaccurate center of mass location and link

weight, and extra payloads attached to the robot body [47]. Therefore, estimation

and compensation of dynamic uncertainties are critical in robot control.

Various observers have been developed to estimate and thus compensate for dy-

namic uncertainties [107, 19, 93, 52]. Typical approaches include generalized momen-

tum observer (GMO) [52], extended state observer (ESO) [117], nonlinear disturbance

observer (NDOB) [94], disturbance Kalman filter (DKF) method [57, 80], as well as

their variations.

GMO, also known as classic first-order momentum observer, is one of the most

commonly used observers due to its advantages of being simple and easy to imple-

ment [154]. It is often used as a reference when designing new observers [45, 57,

80]. ESO was originally proposed by Han in 1995 [54, 55]. Since then, many of its

variations have been developed for different purposes such as collision detection [109]

and interaction force estimation [117]. NDOB is designed specifically by considering

the nonlinearity of the dynamics of robots which enabled it to have an advantage

over the linear ones [18, 94, 152]. DKF is another novel method to estimate the

dynamic uncertainties in the control system [57, 80]. The accuracy of its estimation

is excellent, but the complexity of implementation could be a limitation for it to be

widely used.

All of these observers estimate lumped uncertainties. While the lumped uncertain-

ties do include various components (e.g., joint friction), it is not possible to separate
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that specific component out of the lumped estimate. Especially in human-robot in-

teraction scenarios, the observer will take the human-exerted force as a part of uncer-

tainties and thus reject it [75]. On the other hand, estimating contact force between

human-robot or robot-environment is a critical problem in the field of human-robot

interaction and the field of collision detection [52]. Without separating the human-

applied force out of the lumped estimate, a disturbance observer will cancel the

human-applied force and thus reject human-robot interaction. Finding a solution to

this issue is important for robots with impedance control especially in medical robotic

applications involving human-robot interaction.

Some methods have been developed to estimate the robot-environment interaction

force by involving learning techniques. Hu and Xiong [57] developed a method to esti-

mate external contact force using a semiparametric model and DKF. In their method,

the semiparametric dynamic model containing a multilayer perceptron (MLP) neural

network was used to provide a more accurate dynamic model, while a DKF was used

to estimate the contact force between the robot and the environment. Similarly, an

integrated framework of neural network (NN) and DKF was developed to estimate

external contact force [80]. In the framework, an NN model was used to learn the joint

friction, while a DKF observer was used to estimate the contact force. In another

work, NN was used to approximate the global friction, while a momentum observer

was used to estimate the external force. Additionally, a Kalman filter was employed

to filter the measurement noise for a more accurate force estimation.

Sharifi et al. [124] employed a nonlinear autoregressive network with exogenous

inputs (NARX) to learn and estimate the robot dynamics plus the passive dynamics

of a user who wore an exoskeleton. Then the human-exoskeleton interaction force was

separated out by subtracting the NARX-learned dynamics from the motor torques

in the scenario of active user dynamics. Note that the movement trajectories of

the exoskeleton is nearly periodic, which helped with training the NARX model to

generate its model predictions.
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Inspired by these methods, in this chapter, we propose a framework for training

a NN model to learn the robot dynamic uncertainties so that we can later isolate

the external disturbances. Specifically, the framework involves three entities, i.e.,

an impedance controller, an NDOB, and an NN model, where the impedance con-

troller provides compliance, the NDOB measures dynamic uncertainties plus external

disturbance (i.e., the lumped uncertainties), and the NN estimates the dynamic un-

certainties. Thus, by subtracting the NN output from the NDOB output, the external

disturbance (e.g., human-applied force) can be isolated. A simulation of an applica-

tion scenario is conducted to evaluate the effectiveness of the framework.

3.2 Methods

3.2.1 Robot dynamics and impedance control

A general dynamic model for an n-degree-of-freedom (DOF) rigid robot [41] can be

given by

M(q)⏞ ⏟⏟ ⏞
M̂+∆M

q̈+ S(q, q̇)⏞ ⏟⏟ ⏞
Ŝ+∆S

q̇+ g(q)⏞⏟⏟⏞
ĝ+∆g

+τ fric(q̇) = τ+ τ ext⏞⏟⏟⏞
JTFext

(3.1)

where M ∈ Rn×n denotes the inherent inertia matrix, S ∈ Rn×n denotes a matrix of

the Coriolis and centrifugal forces, g ∈ Rn represents the gravity vector. M̂, Ŝ, ĝ rep-

resent the user’s model estimates, while ∆M, ∆S, ∆g are the corresponding estimate

errors. τ fric ∈ Rn is joint friction, τ ∈ Rn is the commanded joint torque vector,

τ ext ∈ Rn is the torque caused by external force, Fext ∈ R6 is the external force in

Cartesian space, and J ∈ R6×n is the Jacobian matrix.

A desired impedance model [129, 133, 75] for robot-environment contact can be

expressed as

Fimp = Mm(ẍ− ẍd) + (Sx +Dm)(ẋ− ẋd) +Km(x− xd) (3.2)

where Mm,Dm,Km are user-designed matrices for inertia, damping, and stiffness,

respectively. Note that xd, ẋd, ẍd are the desired position, velocity, and acceleration,

respectively in Cartesian space, while x, ẋ, ẍ are the actual ones. Sx is the Coriolis
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and centrifugal matrix of the robot in Cartesian space and Sx = J−TSJ−1 −MxJ̇J
−1,

where Mx = J−TMJ−1 is the inherent inertia of the robot in Cartesian space [141].

To avoid the need for the measurement of external forces, the designed inertia

matrix can be set as Mm = Mx. Then, to reach (3.2) as the closed-loop dynamics

governing the robot-environment interaction (Fext = Fimp) in an ideal scenario of no

model errors and no joint friction, the impedance control law can be given by [75]

τ = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd + g+JT[Dm(ẋd − ẋ) +Km(xd − x)] (3.3)

Note that when implementing the impedance controller (3.3) in practice, the estimates

M̂, Ŝ, ĝ will be used since the accurate model of the robot is usually not accessible.

For robot impedance control around a fixed point in space, i.e., set-point regulation,

it has ẍd = 0, ẋd = 0. Then, the impedance control law (3.3) can be simplified to

(3.4), which is also known as task-space proportional–derivative (PD) controller with

gravity compensation.

τ = JT[Km(xd − x)−Dmẋ] + g (3.4)

3.2.2 Friction model

The joint friction in this chapter is modeled by the Stribeck model [94, 80] as expressed

by (3.5), which is viewed as the most classical nonlinear expression that can include

many characteristics of friction.

τ fric = Fcsgn(q̇) + (Fs − Fc)sgn(q̇)e
−|q̇/νs|σ + Fvq̇ (3.5)

where Fc is the Coulomb friction, Fs is the static friction, Fv is the viscous friction,

q̇ is the joint velocity, νs is the Stribeck parameter, σ is the exponent of the Stribeck

nonlinearity and σ = 2 is employed in this chapter.
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3.2.3 Disturbance observer

In order to organize all the disturbances together, the dynamic model (3.1) of a robot

can be re-written as

M̂q̈+ Ŝq̇+ ĝ = τ+ τ ext − [τ fric + (∆Mq̈+∆Sq̇+∆g)]⏞ ⏟⏟ ⏞
τdist

(3.6)

where τdist denotes the lumped uncertainties that usually include three main as-

pects, i.e., (source-1) the model error (∆Mq̈+∆Sq̇+∆g), (source-2) the joint fric-

tion τ fric, and the external disturbances τ ext which may involve (source-3) constant

disturbance and (source-4) time-varying disturbance. The constant disturbance may

be a constant payload attached to the robot end-effector (EE) or body, while time-

varying disturbance may be robot-environment interaction forces such as human-

applied forces during human-robot interaction. In this chapter, internal disturbances

refer to the summed uncertainties from source-1,2, while external disturbances refer

to the summed uncertainties from source-3,4. Disturbance observer is a commonly

used tool to estimate the lumped uncertainties. Note that any other uncertainties

beyond the four sources will also be included in the lumped uncertainties that are

estimated by the observer.

NDOB is easy to be implemented and has the advantage of estimating the nonlin-

earities [94]. Therefore, NDOB is employed in this chapter to estimate the lumped

uncertainties. An adapted NDOB design based on [94] is used in this chapter which

can be expressed as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L = YM̂

−1

p = Yq̇

ż = −Lz+ L(Ŝq̇+ ĝ − τ − p)

τ NDOB = z+ p

(3.7)

where L ∈ Rn×n is the observer gain matrix, Y ∈ Rn×n is a constant invertible matrix

that needs to be designed, M̂ is designed to be a symmetric and positive definite ma-

trix and thus invertible, z is an auxiliary variable, p is an auxiliary vector determined
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from Y, τ NDOB is the estimated lumped uncertainties via the NDOB observer, i.e.,

τ̂dist = τ NDOB.

3.2.4 Neural network

A promising neural network (NN) structure for modeling nonlinear dynamic systems

is the nonlinear autoregressive network with exogenous inputs (NARX), which is a

recurrent dynamic network with a special feature of feeding its delayed output back

as input. This special feature requires the NARX to be trained by using time-series

data, which means that the training data set needs to be collected from a long period

of one single continuous task, while concatenating datasets collected from a set of

separate short-period tasks is usually not acceptable. This is because the learning

effect will be distorted by the outliers occurring at the concatenating points. A

common feed-forward neural network (fNN) does not have this requirement.

Considering that machine learning usually requires a large amount of data for

training, while a single exciting robot trajectory over a long continuous period of

time may not be easy to generate. Therefore, a fNN model as shown in Figure 3.1

is employed. For the fNN model, the training data can be collected from a set of

separate short-period trajectory tracking tasks. Also, one of its variations, cascade-

forward neural network (cNN), is used to compare the learning performance. The

fNN and cNN have the same structure except that the cNN includes an additional

connection from its input layer to each of the following layers.

w

b
++

b

w

6

12 3

3

Input 

Hidden Output 

Output 

Figure 3.1: The structure of feed-forward neural network (fNN) model.
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3.2.5 Collecting training and testing data

For training the fNN model (Figure 3.1), the robot EE position x and velocity ẋ will

be taken as the inputs, while the estimate of lumped uncertainties from the NDOB

will be taken as the learning targets. Since exciting trajectories are often employed

for robot dynamic identification [47], the training data will be collected in a set of

separate exciting trajectory tracking tasks. In the tasks, the robot is controlled by

an impedance controller (3.3) and NDOB observer (3.7), a simple addition of the two

equations when doing the implementation [75].

First of all, a set of exciting trajectories are generated which include joint position

q, velocity q̇, and acceleration q̈ with a sampling rate of 1, 000 Hz. Each exciting

trajectory is generated from a harmonic function with random parameters and lasts

20 seconds, thus every exciting trajectory is unique. In total, 39 exciting trajectories

are generated among which 38 of them will be used for training while another for

testing.

As mentioned earlier, the lumped uncertainties in this chapter will come from four

sources, which can be categorized as internal disturbances from source-1 (model error)

and source-2 (friction), and external disturbances from source-3 (constant payload)

and source-4 (time-varying payload). Since this chapter focuses on simulations, all

the uncertainties are fully known and can be precisely controlled.

In source-1, dynamic model error is controlled to be at four different levels, i.e.,

0%, 10%, 50%, 100%. The level of model error is tuned by value assignment on

matrix Ŝ and ĝ, while the inertia matrix M̂ is fixed at M̂ = diag(0.001, 0.001, 0.001).

For example, model error 10% means Ŝ = 90%S, ĝ = 90%g, where M̂, Ŝ, ĝ will be

used for the calculation in the impedance controller (3.3) and NDOB observer (3.7).

Model error 100% means Ŝ = 0, ĝ = 0.

In source-2, joint friction is controlled by (3.5). In source-3, a constant payload

of 22 gram is controlled to be attached to the robot EE or not. In source-4, a time-
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varying payload is controlled by a set of Fourier series functions given by⎧⎪⎨⎪⎩
Fx = a1 sin(

2πn1
t1

t) + a2 sin(
2πn2
t1

t− ϕ2) + a3 sin(
2πn3
t1

t− ϕ3)

Fy = a1 cos(
2πn1
t1

t) + a2 cos(
2πn2
t1

t− ϕ2) + a3 cos(
2πn3
t1

t− ϕ3)

Fz = a1 cos(
2πn1
t1

t) + a2 sin(
2πn2
t1

t− ϕ2) + a3 cos(
2πn3
t1

t− ϕ3)

(3.8)

where Fx, Fy, Fz are the time-varying payload expressed in Cartesian space, and t1 =

10, a1 = 0.1, a2 = 0.15, a3 = 0.05, n1 = 1, n2 = 2, n3 = 3, ϕ2 =
1
2
π, ϕ3 = π.

In our previous work [75], it has been shown that by integrating an impedance con-

troller and an observer, an accurate impedance control can be achieved in a trajectory

tracking task when the actual velocity and acceleration converge to the desired ones.

It is noteworthy that the disturbance tracking of the observer works independently

from the trajectory tracking of the controller, which means that the observer esti-

mation accuracy is not affected by the trajectory tracking accuracy. In other words,

even if the trajectory tracking performance is poor (e.g., due to fully or partially

uncompensated disturbances), the observer can still accurately estimate the lumped

uncertainties.

The training data are collected by running a trajectory tracking task on each of

the 38 exciting trajectories with only internal disturbances (from source-1,2) involved.

The testing data are collected by running the trajectory tracking task on a simple

figure-eight trajectory as given by (3.9) and a new exciting trajectory with all of

the internal disturbances (from source-1,2) and external disturbances (from source-

3,4) involved. In the tasks both of collecting training and testing data, the robot

is controlled by an impedance controller (3.3) and NDOB observer (3.7), where the

former is used to accurately track the trajectory while the latter is used to estimate

the lumped uncertainties and compensate them in the controller.⎧⎪⎨⎪⎩
xd = R sin(2π

t1
t) cos(2π

t1
t)

yd = R sin(2π
t1
t) +R

zd = 0

(3.9)

where R = 0.02 m is the amplitude of the figure-eight trajectory, t1 = 5 s is the period

for generating a full cycle.
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The fNN model is first trained on the training dataset and then tested on the

two testing datasets individually. The training goal is that the fNN is expected

to learn to estimate only internal disturbances (from source-1,2), thus the external

disturbances (from source-3,4) can be separated out by subtracting the fNN prediction

outcome from the lumped uncertainties estimated by the NDOB. Note that the NDOB

observer can always be implemented to online estimate the lumped uncertainties but

not necessarily to do the compensation in the controller. The procedures of the

proposed learning framework are illustrated in Figure 3.2.

Uncertainties source
+        +         +

Generate exciting trajectories

collet
training
data

collect
testing
data

Train fNN
Goal: learning         +

Test fNN
Goal: separate         +

Online fNN application

1 2 3 4

Impedance Controller + NDOB

1 2Track exciting trajectories

1 23 4

Uncertainties source
+        

Impedance controller + NDOB

Figure 3.2: The procedures of the proposed framework of training fNN to learn internal distur-
bances and thus separate external disturbances. Uncertainties source-1, model error; source-2,
friction; source-3, constant payload; source-4, time-varying payload.

3.3 Simulations, Validations, and Results

3.3.1 Robotic system

A 3-DOF PHANToM Premium 1.5A robot (3D Systems, Inc., Cary, NC, USA) is

used for simulations in this chapter. To build a virtual model of this robot, the

kinematic model and dynamic model of the PHANToM robot are reconstructed based
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on [16]. All the simulations are conducted by using MATLAB/Simulink (version

R2020a, MathWorks Inc., Natick, MA, USA), which is running on a computer with

a 3.70 GHz Intel(R) Core(TM) i5-9600K CPU and a Windows 10 Education 64-bit

operating system. The control rate of the virtual robot is set as 1, 000 Hz, while the

sampling rate for acquiring training/testing data is 100 Hz. For all the simulations

in this section, the parameter assignments used in the impedance control law, the

NDOB, and the fNN model are summarized in Table 3.1.

Table 3.1: Parameterization for simulations.

Description Parameter Location

Spring stiffness Km = 7.5I Eqn. (3.3)

Damping Dm = 2
√
7.5I Eqn. (3.3)

Inertia matrix M̂ = 1.0× 10−3 × I Eqn. (3.3),(3.7)

Observer gain Y = 9.58× 10−2 × I Eqn. (3.7)

Coulomb friction Fc = [0.0049, 0.0031, 0.001] Eqn. (3.5)

Static friction Fs = [0.0035, 0.0028, 0.00165] Eqn. (3.5)

Viscous friction Fv = [0.06, 0.048, 0.032] Eqn. (3.5)

Stribeck parameter νs = [0.00038, 0.0003, 0.00024] Eqn. (3.5)

Neurons 12 Fig. 3.1

Input of fNN [x1, x2, x3, ẋ1, ẋ2, ẋ3]
′ Fig. 3.1

Output of fNN τ̂dist Fig. 3.1

Training function Bayesian regularization Fig. 3.1

Transfer function Symmetric sigmoid Fig. 3.1

Data division Random Fig. 3.1

Data division ratio trainRatio = 0.8, valRatio = 0.2 Fig. 3.1

Note: I ∈ R3×3 denote identity matrix.

3.3.2 Comparing observers

The disturbance tracking performance among several typical observers, i.e., NDOB

[94], GMO [52], DKF [57, 80], and ESO [117], are qualitatively compared when a
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disturbance of a controlled constant payload (22 gram) along y-axis is tracked. As

shown in Figure 3.3, all of the observers can quickly and accurately estimate the

controlled disturbance, although the ESO needs slightly longer time to track the

disturbance while the other three observers have comparable disturbance tracking

performance among each other.

Considering that NDOB has the advantage of capturing nonlinearities and is easy

to implement, NDOB is selected for all simulations in the remaining part of this

chapter. We also assume that the NDOB can accurately estimate all the lumped

uncertainties (i.e., τdist = τ NDOB), and its outputs will be taken as the target values

during the later training process.
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Figure 3.3: Comparison on disturbance tracking error of various disturbance observers. The
disturbance is a constant payload of 22 gram along the y-axis.

3.3.3 Comparing NN models

The feed-forward neural network (fNN), cascade-forward neural network (cNN), and

NARX model are compared on their estimation accuracy. As introduced earlier, the

fNN and cNN have the same structure except that the cNN includes an additional

connection from its input layer to each of the following layers. Considering that the

learning target in our case is the dynamic model uncertainties rather than the whole
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dynamic model, only one hidden layer is designed.

For fNN and cNN, as shown in Figure 3.1, the input is a 6-by-1 vector of Cartesian

position x and velocity ẋ of the robot EE, and the hidden layer has 12 neurons with

Bayesian regularization training function and symmetric sigmoid transfer function.

The output layer has 3 neurons with a linear transfer function, and the output is a

3-by-1 vector.

The fNN, cNN, and NARX models are trained separately on data collected from

38 exciting trajectories with each trajectory lasting 20 seconds. The three NN models

are trained to learn the uncertainties from source-1,2 by controlling only these two

uncertainties sources to exist in the training data. When it comes to the testing

process, the three NN models are expected to predict uncertainties only from source-

1,2 although uncertainties from all four sources will exist in the testing data. Then,

by subtracting the NN prediction output from the NDOB output, the estimation of

external disturbances (sum of source-3,4) can be obtained.

The estimation accuracy of fNN, cNN, and NARX on the external disturbances

are compared in Figure 3.4. As shown in the figure, there is no significant difference

between the fNN and cNN models, but the NARX has a much worse performance.

This is because the NARX requires time-series data for its training, and if training

data is concatenated from several separate datasets then the training effect will be

distorted. Since the fNN model has a common and more compact structure, it is

selected for the subsequent simulations.

It is worth mentioning that the learning outcomes of fNN and cNN models are

already relatively good when the training data involve 8 exciting trajectories. More

exciting trajectories can further improve the learning effect to some extent but at a

slow speed, which means that when higher prediction accuracy is not demanding, a

relatively small set of training data may meet the requirements.
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Figure 3.4: Compare the estimation performance of the feed-forward neural network (fNN),
cascade-forward neural network (cNN), and NARX model on external disturbances.

3.3.4 The effect of dynamic model error

When building a dynamic model of a robot and identifying its dynamic parameters,

dynamic model error is inevitable. The effect of dynamic model error (i.e., uncertain-

ties source-1) on the fNN prediction accuracy is explored. More specifically, different

levels of model error (0%, 10%, 50%, 100%) are studied. The level of model error is

tuned by value assignment on matrix Ŝ and ĝ as introduced earlier.

The estimation performance of the fNN model on external disturbances under vari-

ous levels of model error when tracking a simple figure-eight curve (3.9) and a complex

exciting trajectory curve is shown in Figure 3.5a and Figure 3.6a, respectively. Cor-

respondingly, the estimation errors are shown in Figure 3.5b and Figure 3.6b. From

the figures, we can see that under all levels of model error except the level of 100%,

there is no significant difference between each other. Even with the level of model

error 100%, the estimation performance can be acceptable (see the dashed black line

in Figure 3.5a and Figure 3.6a). In general, the effect of model error level on the fNN

estimation accuracy is relatively small. The reason could be that for the lightweight

robot used in this chapter, the dynamic model errors are on a relatively small scale.

For other heavy industrial robots with dynamic model errors on a large scale, the

effect of the model error level needs to be re-evaluated.
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Figure 3.5: The effect of dynamic model error on fNN estimation performance when tracking a
simple figure-eight trajectory.
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Figure 3.6: The effect of dynamic model error on fNN estimation performance when tracking a
complex exciting trajectory.

3.3.5 Application on virtual fixture

During a trajectory tracking task, when the robot encounters external disturbances

(e.g., an obstacle in the surrounding environment), the NDOB will estimate and com-

pensate for lumped uncertainties including both internal and external disturbances.

This may escalate the adverse effect caused by external disturbances. On the other

hand, the fNN model can be trained to estimate only internal disturbances, which can

make the robot preserve the compliant behavior provided by the impedance controller

when external disturbances occur.

In the above sections, the fNN model has been proved to be capable of predict-
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ing the total internal disturbances (sum of source-1,2) thus estimating the external

disturbances (sum of source-3,4). Here we further explored a potential application of

the proposed framework of fNN learning on dynamic model uncertainties.

There are two conditions designed in a scenario of a robot encounters a stiff obstacle

of virtual fixture (VF) on its way (i.e., external disturbances) when executing a

trajectory tracking task. Condition 1 is a scenario with implementing NDOB to

estimate and compensate for the lumped uncertainties. Condition 2 is a scenario that

is the same as Condition 2 except that the NDOB is replaced with an fNN model

that was trained to learn the internal uncertainties at a level of model error 10%.

Figure 3.7 shows the trajectory tracking task performance in each of the two con-

ditions. In the figure, the gray area represents the obstacle VF which will exert a

contact force on the robot EE when they are in contact, while the green line repre-

sents the resulting disturbance torque in joint 2 which is obtained by projecting the

Cartesian contact force into the robot joint space. Note that the disturbance torques

in joint 1 and joint 3 are approximately zero due to the specific task setting and thus

ignored.

By comparing Figure 3.7a and Figure 3.7b, we can see that the contact force in

Figure 3.7a is extremely large due to the fact that the NDOB escalated the adverse

effect of the obstacle VF. Note that if Condition 1 happens in a physical experiment,

the robot and/or the obstacle will be badly destroyed once the robot starts to be in

contact with the obstacle, thus Condition 1 should be avoided in physical experiments.

In Condition 2 as shown in Figure 3.7b, the robot is much more compliant with a

smaller contact force than that in Condition 1. This is because the fNN in Condition 2,

as it was trained in the training process, only estimates the internal uncertainties

excluding the external ones caused by the VF. This verified the effectiveness of the

trained fNN model.
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Figure 3.7: Simulation result of an application scenario on an obstacle of the virtual fixture.
Condition 1, NDOB only; Condition 2, fNN only.

3.3.6 Limitations

Compared to prior work [57, 80], an advantage of the proposed learning framework

is that, the fNN model is not restricted to learning only friction model or only model

error which makes it more robust. In fact, it can learn all the uncertainties that exist

in the training data, thus separating the later-coming uncertainties in the testing/ap-

plication scenario. For example, if the fNN model is trained to learn uncertainties

from source-1,2,3, then it is able to separate the uncertainties of source-4 when all

four sources of uncertainties exist in the application scenario.

A limitation is that the trained fNN in this chapter works in trajectory tracking

tasks but not set-point regulation tasks. This is because the fNN is trained by data

collected from exciting trajectory tracking tasks. Therefore, the fNN model will

be capable of working for both trajectory tracking tasks (i.e., tasks with non-zero

velocity) and setpoint regulation tasks (i.e., tasks with zero velocity) if it is trained

by data from both. This will be evaluated in future work.
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3.4 Conclusion

In this chapter, a framework for learning robot dynamic model uncertainties and sep-

arating external disturbances by integrating impedance controller, NDOB observer,

and feed-forward neural network (fNN) model was presented. By accurately control-

ling each of the four uncertainty sources in the simulations, the results show that the

fNN can accurately learn the internal disturbances (source-1,2) thus separating the

external disturbances (source-3,4). A further simulation on an application scenario,

where an external obstacle of virtual fixture (VF) is involved, demonstrated the ef-

fectiveness of the presented learning framework. The fNN model in the framework is

robust to learn all uncertainties that exist in the training process, then estimate all

other newly added uncertainties in the testing process or application scenarios.

In the present work, the fNN model was only validated in scenarios of robots in

free motion and obstructive motion. In future work, we will expand it to set-point

regulation tasks which will enable human-robot interaction by separating the interac-

tion force. Also, physical experiments will be conducted to evaluate the effectiveness

of the proposed framework in real application scenarios.
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Chapter 4

Iterative Learning for Gravity
Compensation1

To build a robot-assisted system, dynamic uncertainties can be a critical issue that

could bring robot performance inaccuracy or even system instability if cannot be

appropriately compensated. In Chapter 2, we developed a framework to integrate

impedance control with a nonlinear disturbance observer (NDOB), and it can achieve

an accurate impedance control when the robot is in free motion. However, the frame-

work will refuse human-robot interaction since the human-applied force will also be

regarded as a disturbance by the observer. In Chapter 3, we employed a neural

network (NN) to learn the dynamic uncertainties thus filtering out certain types of

uncertainties, and the NN works well in simulations after training. However, it re-

quires complex procedures before the NN works, such as collecting training/testing

data and training the model. Iterative learning for gravity compensation can be an-

other promising way to solve this problem when gravity compensation is the main

concern. In this chapter, a gravity iterative learning (Git) scheme in Cartesian space

for gravity compensation, integrating with an impedance controller, is presented. A

steady-state scaling strategy is then proposed which released the updating require-

ments of the learning scheme and also extended its validity to trajectory-tracking

1A version of this chapter has been published as: Teng Li, Amir Zakerimanesh, Yafei Ou, Armin
Badre, and Mahdi Tavakoli, “Iterative Learning for Gravity Compensation in Impedance Control”,
IEEE/ASME Transactions on Mechatronics, 2024.
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scenarios from set-point regulations. The deriving process and convergence proper-

ties of the Git scheme are presented and theoretically analyzed, respectively. A series

of simulations and physical experiments are conducted to evaluate the validity of the

scaling strategy, the learning accuracy of the Git scheme, and the effectiveness of

the learning-based impedance controller. Both simulation and experimental results

demonstrate good performance and properties of the Git scheme and the learning-

based impedance controller.

4.1 Background

Robot-assisted minimally invasive surgery (MIS) has been becoming increasingly pop-

ular across various surgical specialties, such as orthopedics.[43]. MIS can bring the

benefits of a faster recovery rate and decreased pain to patients thus getting more

favor. Robot-assisted surgeries are transforming traditional orthopedic surgeries by

helping surgeons achieve more successful and precise surgical outcomes with the assis-

tance of robots [140, 60, 89]. Elbow arthroscopy is a typical type of MIS in orthopedics

that allows the management of elbow stiffness, arthritis, and fractures in a minimally

invasive fashion [13]. During traditional elbow arthroscopy, the surgeon needs to hold

an arthroscope with one hand while performing the surgical operations with the other

hand, which can restrict the dexterity of the surgical performance and increase the

cognitive load. This arouses the necessity to develop a robot-assisted arthroscope

holder where the robot can hold the arthroscope for the surgeon during the surgery.

To build a robot-assisted system for assisting surgeons in holding with arthroscope

during orthopedic surgery, some requirements need to be satisfied [75]. First, The

robot can hold the arthroscope still at a specified pose (i.e., setpoint regulation)

while rejecting all possible disturbances (e.g., external disturbances delivered to the

arthroscope via contact with the patient’s body during surgery). Second, when the

surgeon needs to move the arthroscope to a new pose (e.g., for adjusting the scope

view perspective), the robot should allow the surgeon to move it around freely (i.e.,
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human-robot interaction). Then, when a new pose is determined by the surgeon, the

robot should keep the arthroscope still again while rejecting any disturbances. The

main problem to build such a robot-assisted system is the dynamic model uncertain-

ties and external disturbances, which could largely affect the robot’s task performance

accuracy and even stability if they are not appropriately compensated. More specifi-

cally, incomplete gravity compensation can be the main issue in this case since heavy

surgical tools with unknown weights will be attached to the robot end-effector (EE).

Disturbance observer is a promising way to estimate and compensate for dynamic

uncertainties. In our previous work [75], we have shown that by integrating impedance

control and nonlinear disturbance observer (NDOB), an accurate impedance control

can be achieved. In that work, the disturbance observer can accurately estimate

and compensate for the lumped uncertainties including incomplete gravity compensa-

tion. However, the nonlinear disturbance observer as well as other types of observers

[78], such as generalized momentum observer (GMO) [52], joint velocity observer

(JVOB) [52], extended state observer (ESO) [117], and disturbance Kalman filter

(DKF) method [57, 80], always estimate a lumped uncertainty term and is not able

to separate out any one component when several uncertainty sources exist. More-

over, the observer will refuse human-robot interaction since human-applied force will

be taken as a part of the lumped disturbances thus being rejected.

Learning control has been developed to track repetitive trajectories for both rigid

and non-rigid robots. De Luca and Ulivi presented a simple and efficient iterative

learning algorithm for robots with joint elasticity [29]. In their work, a learning term

was used to learn the necessary modification to the desired trajectory position. They

demonstrated the algorithm’s usefulness by good motion performance of simulations

on a two-link planar robot. Based on a similar design methodology, an iterative

learning scheme for gravity compensation in setpoint regulation problems was initially

proposed by De Luca and Panzieri [26, 84]. The learning scheme completes the

required gravity compensation at the final steady state in setpoint regulation tasks.
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It can iteratively learn the constant gravity without the need of introducing an integral

error term or using high-gain feedback.

Based on the same contraction mapping theorem, Basovich et al. developed an

iterative output feedback controller for a 6-degree-of-freedom (DOF) precision po-

sitioning system when only position measurement is available [10]. Their proposed

controller can learn and compensate for the payload uncertainties with bounded error

in setpoint control tasks. Ji et al. used the iterative learning method to auto-calibrate

gravity compensation when the robot has no contact with the environment thus mak-

ing the robot EE weightless [61].

Incomplete or absent gravity compensation will cause a constant steady-state error

[26]. For impedance control, making the robot ”stiffer” by tuning up the impedance

gains can reduce the error to some extent, but not eliminate it. Especially when

unknown heavy external payloads are attached to the robot EE, the method of tuning

up impedance gains will be largely limited and be difficult to achieve satisfying results.

In summary, in our target application scenario, i.e., robot-assisted arthroscopic

surgery, gravity compensation and physical human-robot interaction (pHRI) are the

main concerns. There are various disturbance observers available for gravity compen-

sation [78], e.g., NDOB, GMO, etc. However, the output of an observer is a lumped

estimate on all uncertainties including gravity, and it will refuse human-robot inter-

action by taking it as a part of uncertainties [75]. Furthermore, it also requires the

estimated dynamic parameters of the robot dynamics [78]. An adaptive controller

[130, 59] can also deal with dynamic uncertainties including gravity. However, it is

a controller rather than an independent approach for disturbance estimation, and it

cannot provide compliant robot behavior for a safe human-robot interaction like an

impedance controller can do. Therefore, a simple method that can focus on gravity

compensation while enabling pHRI and avoiding the necessity of the robot dynamics

is needed in our scenario.

Inspired by [26], in this chapter, we proposed a gravity iterative learning (Git)
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scheme for gravity compensation in Cartesian space and integrated it with an impedance

controller. The convergence properties of the Git scheme are theoretically analyzed.

The learning performance and effectiveness are then evaluated by a series of sim-

ulations and experiments in both trajectory tracking tasks and setpoint regulation

tasks. Finally, an application experiment in pHRI scenario is presented to show the

effectiveness of the integrated controller. The main contributions in this work can be

described as the following,

• An adapted iterative learning scheme for gravity compensation in Cartesian

space is presented, and the converging properties are theoretically analyzed.

• A steady-state scaling strategy is proposed, which enables the iterative learning

update law to be executed in each servo loop, and more importantly, it extends

the validity of the learning scheme to general trajectory-tracking scenarios.

4.2 Methods

4.2.1 Robot dynamics and disturbances

A general dynamic model for an n-degree-of-freedom (DOF) rigid robot with revolute

joints [41] can be given by

M(q)⏞ ⏟⏟ ⏞
M̂+∆M

q̈+ S(q, q̇)⏞ ⏟⏟ ⏞
Ŝ+∆S

q̇+ G(q)⏞ ⏟⏟ ⏞
Ĝ+∆G

+τ fric(q̇) = τ+ τ ext⏞⏟⏟⏞
JTFext

(4.1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and acceleration, respectively, M ∈

Rn×n denotes the inherent inertia matrix, S ∈ Rn×n denotes a matrix of the Coriolis

and centrifugal forces, G ∈ Rn represents the gravity vector. M̂, Ŝ, Ĝ represent

users’ model estimates, while ∆M, ∆S, ∆G are the corresponding estimate errors.

τ fric ∈ Rn is joint friction, τ ∈ Rn is the commanded joint torque vector, τ ext ∈ Rn

is the torque caused by external force, Fext ∈ R6 is the external force in Cartesian

space, and J ∈ R6×n is the Jacobian matrix.
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By collecting all the disturbances together, the dynamic model (4.1) of a robot can

be re-written as

M̂q̈+ Ŝq̇+ Ĝ = τ+ τ ext − [τ fric + (∆Mq̈+∆Sq̇+∆G)]⏞ ⏟⏟ ⏞
τdist

(4.2)

where τdist denotes the lumped uncertainties containing the model error

(∆Mq̈+∆Sq̇+∆G), the joint friction τ fric, and the external disturbances τ ext.

In this chapter, we will focus on estimating and compensating for the gravity

caused by external constant payloads using an iterative learning method. In order

to clearly reveal the behavior of the iterative learning algorithm to learn the gravity

of the external payloads, in the simulations we assume that, (a) an ideal dynamic

model is available, i.e., M̂ = M, Ŝ = S, Ĝ = G, thus ∆M = 0, ∆S = 0, ∆G = 0;

(b) no joint friction, i.e., τ fric = 0; (c) only constant payloads exists for external

disturbances. By applying these assumptions, the dynamic model (4.2) will become

(4.3).

Mq̈+ Sq̇+G = τ+JTFext⏞ ⏟⏟ ⏞
τdist

(4.3)

The model (4.3) can be expressed in Cartesian space as

Mxẍ+ Sxẋ+Gx = J−Tτ + Fext (4.4)

where Mx,Sx,Gx have

⎧⎪⎨⎪⎩
Mx = J−TMJ−1

Sx = J−TSJ−1 −MxJ̇J
−1

Gx = J−TG

(4.5)

where Mx,Sx,Gx are the M,S,G expressed in Cartesian space, respectively.

4.2.2 Impedance control

A desired impedance model [129, 133, 75] for robot-environment interaction can be

expressed as

Fimp = Mm(ẍ− ẍd)+(Sx +Dm)(ẋ− ẋd) +Km(x− xd) (4.6)
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where Mm,Dm,Km are user-designed matrices for inertia, damping, and stiffness,

respectively. Note that xd, ẋd, ẍd are the desired position, velocity, and accelera-

tion, respectively in Cartesian space, while x, ẋ, ẍ are the actual ones. Fimp is the

interaction force between the robot and the environment.

To avoid the measurement of external forces, the designed inertia matrix will be

set as the inherent inertia matrix of the robot, i.e., Mm = Mx. Then, by substituting

(4.6) into (4.4) with Fext = Fimp, the impedance control law can be given by [75]

τ = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd +G+JT[Dm(ẋd − ẋ) +Km(xd − x)] (4.7)

Note that when implementing the impedance controller (4.7) in practice for physical

experiments, the estimates M̂, Ŝ, Ĝ will be used for the calculation since an accurate

model of a physical robot is usually not available.

For moving robot EE to a fixed point, i.e., set-point regulation, we have ẋd = 0,

ẍd = 0. Then, the impedance control law (4.7) can be simplified and reduced to

(4.8), which is also known as task-space proportional–derivative (PD) controller with

gravity compensation.

τ = JT[Km(xd − x)−Dmẋ] +G (4.8)

4.2.3 Iterative learning for gravity compensation

One straightforward way to reduce the effect of dynamic uncertainties (including

incomplete or absent gravity compensation/cancellation) is to make the robot stiffer

by tuning up the spring gains (Km) in the impedance model. This could be feasible

in simulations where the gains can be set to be very large, but not feasible in practice

where the robot may have chattering due to large gains. Especially when heavy

external payloads are involved, solely tuning the impedance gains may not be able to

obtain a satisfactory result. To solve this problem, we introduce an iterative learning

scheme for gravity compensation in Cartesian space.
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Inspired by [26] where iterative learning was integrated with a PD controller in

joint space, a Cartesian-space impedance control law (at the i-th iteration, i = 1, 2, ...)

integrating with a gravity iterative learning (Git) scheme for gravity compensation is

proposed which can be expressed by

τ i = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd+JT[Dm(ẋd − ẋ) + γKm(xd − x)] + JTui−1

(4.9)

where JTui−1 is an iterative learning term for gravity compensation instead of a

gravity term G. For setpoint regulation, it will be reduced to be

τ i = JT[γKm(xd − x)−Dmẋ] + JTui−1 (4.10)

The update law for the iterative learning ui can be given by

ui = γKm(xd − x) + ui−1 (4.11)

where γ is a positive scalar gain, and setting u0 = 0 for initialization. Also, different

from [26] where one iteration was set as 3 seconds while in this chapter it updates

itself in each sampling loop. This ensures the updated values of the iteration term

are changing continuously and smoothly from one iteration to the next, and also ex-

tends its validity to more general tracking tasks from setpoint regulation. Theoretical

analysis will be introduced in detail later.

To avoid a sudden impulse at the moment of the robot starts up due to a potentially

large initial error between the initial actual position and the initial desired position,

a simple linear interpolating strategy is used which is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xd = x0 + (xd − x0)
t
t1

if t ≤ t1

ẋd = ẋ0 + (ẋd − ẋ0)
t
t1

if t ≤ t1

ẍd = ẍ0 + (ẍd − ẍ0)
t
t1

if t ≤ t1

xd = xd if t > t1

ẋd = ẋd if t > t1

ẍd = ẍd if t > t1

(4.12)

where x0 = constant, ẋ0 = 0, ẍ0 = 0 are the initial actual position, velocity, and

acceleration, t1 is the duration of the transition period defined by the user (in this
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chapter, t1 = 2 seconds). Note that the xd, ẋd, ẍd on the right-hand side of the

equations represent the theoretical values from the predefined trajectory or setpoint,

while those on the left-hand side represent the values used for calculation in the

controller. As shown in (4.12), the desired position, velocity, and acceleration are set

up increasingly from the initial actual ones (x0, ẋ0, ẍ0) (at t = 0) to the desired ones

(xd, ẋd, ẍd) (at t = t1) within the very first t1 seconds. In other words, Eqn. (4.12)

ensures errors increase linearly from zeros (at t = 0) to the actual errors (at t =

t1) when the robot starts up. It should be noted that this smoothing strategy is

independent of the control laws and only valid within the first t1 seconds. The block

diagram of the proposed iterative learning for gravity compensation in impedance

control is illustrated in Figure 4.1.

𝛕 𝐪, ሶ𝐪

𝛕𝐝𝐢𝐬𝐭𝐮𝐫𝐛

Robot

Forward

Kinematics
𝐱, ሶ𝐱

𝐱𝐝
ሶ𝐱𝐝
ሷ𝐱𝐝

𝐱𝐝 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭
ሶ𝐱𝐝 = 𝟎
ሷ𝐱𝐝 = 𝟎

𝐱𝐝 = 𝐱
ሶ𝐱𝐝 = 𝟎
ሷ𝐱𝐝 = 𝟎

𝐱𝐝 = 𝐱∗

ሶ𝐱𝐝 = 𝟎
ሷ𝐱𝐝 = 𝟎

Impedance control with iterative 

learning for gravity compensation

𝛕𝐝𝐢𝐬𝐭𝐮𝐫𝐛 External constant 

payloads.

𝐱∗ The latest set of 

real-time position of 𝐱.

Gravity learning 

term update

Pre-defined 

trajectory

Pre-defined 

setpoint

Interaction 

disabled

Interaction 

enabled

:

:

+
+

Figure 4.1: Control block diagram of an impedance controller with iterative learning scheme for
gravity compensation. When xd = x, the position-dependent terms in the impedance controller
and the Git update law vanish, meaning that the setpoint regulation is released and interaction is
enabled, and now the user can move the robot EE around. When xd = x∗, a setpoint regulation
task is recovered and interaction is disabled. The latest set of position (x∗) ensures seamless
switching between the “interaction enabled” mode and the “interaction disabled” mode, which
can be easily realized by a pedal switch.

4.2.4 Analysis

In this section, the process of designing the iterative learning term and the corre-

sponding update law will be presented in detail. Then, the convergence properties of
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the iterative learning scheme will be theoretically analyzed in a scenario of setpoint

regulation.

At the steady state (q = constant, q̇ = q̈ = 0) of the i-th iteration in the scenario

of setpoint regulation, it has{︄
���Mq̈+��Sq̇+G(q) = τ i

τ i = JT[γKm(xd − x)−���Dmẋ] + JTui−1

(4.13)

Combining the two equations in (4.13) as one equation, yields,

G(qi) = JTγKm(xd − x) + JTui−1 (4.14)

Based on (4.14), the update law of the iterative learning term can be designed as

JTui = JTγKm(xd − x) + JTui−1 (4.15)

Simplify (4.15), we obtain the update law given by (4.11). By designing the update

law in this way and by comparing (4.14) with (4.15), we are actually assuming that

at the steady state, the learning term converged to the gravity term, i.e.,

G(qi) = JTui (4.16)

The subsequent part will analyze and show proof of the convergence capability of

the designed iterative learning scheme. The update law (4.11) can be rewritten as

ui − ui−1 = γKm(xd − xi) (4.17)

Define the position error in Cartesian space as ei = xd − xi, Eqn. (4.17) can be

rewritten as

ui − ui−1 = γKmei (4.18)

Also, the position error in Cartesian space between two adjacent iteration steps

can be expressed as

xi − xi−1 = xi − xd + xd − xi−1 = −ei + ei−1 (4.19)
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Knowing that the derivative of gravity is bounded [26] by

∥∂G(q)

∂q
∥ ≤ α (4.20)

where α is a positive constant. Rewrite (4.20) in the form of finite difference as

∥G(qi)−G(qi−1)

qi − qi−1

∥ ≤ α (4.21)

Also, the relationship between Cartesian velocity and joint velocity is given by

ẋ = Jq̇ (4.22)

Assuming that the Jacobian matrix is invertible, i.e., J−1 exists. Rewrite (4.22) in

the form of finite difference as

qi − qi−1 = J−1(xi − xi−1) (4.23)

From the relationship between gravity term and iterative learning term at steady

state (4.16), it yields

∥ui − ui−1∥ = ∥J−TG(qi)− J−TG(qi−1)∥

≤ ∥J−T∥∥G(qi)−G(qi−1)∥

≤ α∥J−T∥∥qi − qi−1∥ (by (4.21))

≤ α∥J−T∥∥J−1(xi − xi−1)∥ (by (4.23))

≤ α∥J−T∥∥J−1(−ei + ei−1)∥ (by (4.19))

≤ α∥J−T∥∥J−1∥(∥ei∥+ ∥ei−1∥)

(4.24)

Assuming that the minimum eigenvalue of the user-defined matrix Km meets the

condition of λmin(Km) > α, then it can yield the following inequality property

γα∥ei∥ < γλmin(Km)∥ei∥ ≤ ∥γKmei∥ (4.25)

By combining (4.18) (4.24) (4.25), yields

γα∥ei∥ < ∥γKmei∥ ≤ α∥J−T∥∥J−1∥(∥ei∥+ ∥ei−1∥) (4.26)
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By simplifying (4.26), yields

γ∥ei∥ < ∥J−T∥∥J−1∥(∥ei∥+ ∥ei−1∥) (4.27)

Reorganizing (4.27), yields

∥ei∥ <
β

γ − β
∥ei−1∥ (4.28)

where β = ∥J−T∥∥J−1∥. In order for contraction mapping, requires

β

γ − β
≤ 1 (4.29)

Due to β > 0 is always true, yields

γ ≥ 2β

γ ≥ 2∥J−T∥∥J−1∥ ≥ 2∥J−TJ−1∥
(4.30)

Assuming that the Jacobian matrix J is bounded, then J−T and J−1 are both

bounded. Then, set the following boundness

b ≥ ∥J−TJ−1∥ (4.31)

Finally, it can conclude that, on the conditions of (1) Jacobian matrix is invertible

and bounded, and (2) λmin(Km) > α, then, γ ≥ 2b can ensure the iterative learning

term (JTui−1 in (4.10)) being a contraction mapping, in other words, can ensure the

iterative learning term converges to the true gravity at the steady state. Note that the

convergence condition here is only sufficient, which means that even if it is violated

the iterative learning term may still converge. This is consistent with the conclusion

made in [26].

4.2.5 Steady-state scaling strategy

For the iterative learning-based update law (4.11), to explicitly display an learning

rate η (by default η = 1), the update law (4.11) can be rewritten as

ui = γηKm(xd − x) + ui−1 (4.32)
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It is worth noting that an important assumption has been made for the contraction

mapping is ”at steady state”, and the update law (4.32) should be executed at steady

state theoretically. This is consistent with the drawback described in the prior work

[26, 29, 84], where the steady state is set as 3 seconds in their simulations. Executing

the update law only at steady state (e.g., every 3 seconds in [26]) is ok for simple

simulations, but in practice, it would be a significant limitation.

As a further step in this chapter, analog to the concept of finite difference, we scale

the common ”steady-state” period (taking 1 second here as an example) down to the

level of sampling time (0.001 seconds) such that the update law can be executed in

each sampling loop. Since the default learning rate (η = 1) in (4.32) is corresponding

to the common steady-state period (1 second), it also needs to be scaled down to be

η = 0.001 in order to match with the scaled steady-state period (0.001 seconds). This

enables the easy implementation of the update law (4.32) and allows it to be updated

in each sampling loop.

More importantly, the steady-state scaling strategy enables the iterative learning

scheme to be valid also for more general trajectory-tracking scenarios. Since learning-

based impedance control law (4.10) (for setpoint regulation scenario) is reduced from

(4.9) (for the general trajectory-tracking scenario), impedance control law (4.9) and

iterative learning update law (4.32) can be used for iterative learning on the gravity

compensation in trajectory-tracking scenarios. This strategy will be evaluated with

simulations and experiments in the next section.

4.3 Simulations, Experiments, and Results

4.3.1 Robotic system

A 3-DOF PHANToM Premium 1.5A robot (3D Systems, Inc., Cary, NC, USA) is

used for simulations and experiments in this chapter. For the simulations, we recon-

struct the kinematic model and dynamic model of the PHANToM robot based on [16]
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and conduct the simulations using MATLAB/Simulink (version R2020a, MathWorks

Inc., Natick, MA, USA). For the experiments, the physical robot is controlled via

joint torque command, which is sent from MATLAB/Simulink using Quarc real-time

control software (Quanser Inc., Markham, ON, Canada). The control rate of the

robot is 1, 000 Hz. The MATLAB/Simulink and Quarc software run on a computer

with a 3.33 GHz Intel(R) Core(TM) 2 i5 CPU with a Windows 7 Enterprise 64-bit

operating system.

4.3.2 Parameterization

Table 4.1: Parameterization for simulations and experiments.

Parameters Simulations Experiments

Spring Km =38.44I Km =7.29I

Damper Dm =12.40I Dm =5.40I

Spring (increased stiffness) NA Km =200I

Damper (increased stiffness) NA Dm =2I

Learning gain γ 1 1

Learning rate η 1/0.001/0.005/0.025 0.001

Note: I ∈ R3×3 denote identity matrix. NA, not applied. The parameters are determined via
trial and error with a binary search strategy.

For all simulations and experiments in the remaining part of this paper, the pa-

rameter values used in the learning-based impedance controller (4.9) and the iterative

learning update law (4.32) are listed in Table 4.1. In order to involve acute changes

in position and velocity, a concaved-square trajectory is selected for the simulations

and experiments, which can be expressed as a function of time given by⎧⎪⎨⎪⎩
xd = R cos3(t)

yd = R sin3(t) +R

zd = 0

(4.33)

where R = 0.02 m is a parameter of the concaved-square. Note that the described

trajectory is in a vertical plane in the workspace of the 3DOF robot.
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In the following sub-sections, a series of simulations and experiments are conducted

to evaluate the effectiveness of the proposed iterative learning scheme both in free-

motion mode (i.e., trajectory tracking tasks) and in restricted-motion mode (i.e.,

setpoint regulation tasks). A video demonstration for the experiments is available

online1.

It should be noted that the gravity compensation estimated by the iterative learn-

ing scheme may include two main components, i.e., gravity term in the dynamic

model, and (if applicable) all constant payloads attached to the robot EE or robot

body. In order to clearly reveal the converging properties and learning performance of

the learning scheme, in the simulations of this work, we will assume the gravity term

is fully known in such a way the iterative learning term only learns and compensates

for the unknown external payloads.

4.3.3 Simulation to evaluate steady-state scaling strategy

In the original work [26] where the iterative learning scheme was initially proposed

with a PD controller in joint space, a significant drawback of the scheme is that

the iterative update should be executed at steady-state. This is also true for this

work since the same ”steady-state” assumption has been used during the theoretical

analysis of the convergence properties. This drawback can largely limit the learning

scheme to be implemented in practice.

To overcome this drawback, at the end of Section 4.2, we proposed a strategy to

scale down the steady-state period (equivalent to iterative update time for updating

the update law (4.32)) to the same level as the sampling time in order to improve and

generalize the iterative learning scheme. The steady-state scaling strategy requires

the learning rate (η) to be scaled to the same level accordingly. In this section, we

will evaluate this strategy with simulations.

In Figure 4.2, a comparison of with-scaling and without-scaling the iterative update

1online demo video link: https://youtu.be/KH8RxaaRlA4
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time is presented when the robot is in a setpoint regulation task. For the without-

scaling (η = 1) scenario, the gravity learning behavior under various conditions of

iterative update time (Tit = 0.5, 1, 2, 3s) is investigated as shown by the green dash-

dot lines in the figure. Correspondingly, the blue dot lines represent the gravity

learning behavior in the with-scaling scenario, where the iterative update time is

scaled (Tit = 0.001s) to be the same as the sampling time while the learning rate η

is scaled accordingly (η = 0.002, 0.001, 0.001/2, 0.001/3s). The comparison between

the green dash-dot lines and the blue dot lines in Figure 4.2 revealed that the steady-

state scaling strategy is effective and reasonably sound. Especially in Figure 4.2a,

the similarity between the with-scaling scenario and the without-scaling scenario is

clearly revealed.

Figure 4.2: Simulation results of scaling down the iterative update time (Tit, i.e., the steady-
state time) while scaling down the iterative learning rate (η) accordingly. (a) Scaling down Tit

from 0.5s to 0.001s. (b) Scaling down Tit from 1s to 0.001s. (c) Scaling down Tit from 2s to
0.001s. (d) Scaling down Tit from 3s to 0.001s. The reference is an external payload-1 (25g).
The setpoint is set as [0.01, 0.04, 0] m in Cartesian space.
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4.3.4 Simulation on setpoint regulation task

Simulations in four cases are conducted in setpoint regulation tasks (restricted-motion

mode). Different cases are related to different external payloads attached to the robot

EE which can be described below

• Case #0, reference, no external payloads.

• Case #1, payload-1 (25 gram) attached.

• Case #2, payload-2 (125 gram) attached.

• Case #3, payload-3 (250 gram) attached.

A 3DOF robot is implemented with the iterative learning-based control law (4.10)

and learning update law (4.32) as well as the steady-state scaling strategy, where

the iterative learning scheme is used to iteratively learn and compensate the gravity

of the external payloads in different cases. Figure 4.3 shows the simulation results

in a setpoint regulation task with a pure impedance controller (4.8) (or equivalently

controller (4.10) with setting the learning rate η = 0) under an ideal dynamic model

(i.e., the dynamic model matrices M,S,G are fully known). As shown in Figure 4.3a

(Case #0), with the ideal dynamic model and without any external disturbances, the

impedance controller can achieve very good setpoint regulation performance. How-

ever, in Figure 4.3b (Case #1), when an external payload-1 (25g) is attached to the

robot EE, the regulation result made by the same impedance controller shifted down-

ward due to the incomplete gravity compensation. Furthermore, as the weight of the

external payload increases, the shifts get worse as shown in Figure 4.3c (Case #2)

and in Figure 4.3d (Case #3).

When the iterative learning-based controller (4.10) and the update law (4.32) are

implemented, the external payloads can be accurately compensated via iterative learn-

ing thus accurate regulation performance is recovered. Figure 4.4 shows the simu-

lation results in a setpoint regulation task under different iterative learning rates
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Figure 4.3: Simulation results in a setpoint regulation task with a pure impedance controller
under an ideal dynamic model. (a) Case #0, no payloads; (b) Case #1, payload-1 (25g); (c)
Case #2, payload-2 (125g); (d) Case #3, payload-3 (250g). The setpoint is set as [0.01, 0.04, 0]
m in Cartesian space.

(η = 0.001/0.005/0.025). As shown in Figure 4.4a and Figure 4.4b, when an external

payload-1 (25g) is attached to the robot EE (Case #1), the setpoint regulation per-

formance (Figure 4.4a) is recovered to be accurate with the help of iterative learning

on gravity compensation, while different learning rates (η = 0.001/0.005/0.025) may

result in different converging behavior (Figure 4.4b). Specifically, a large learning rate

(η) may result in an oscillate converging behavior while a smaller learning rate (η)

may result in smooth converging behavior. Similar simulation results can be found

when the weight of the payload increases (Figure 4.4c,d for payload-2 (125g), and

Figure 4.4e,f for payload-3 (250g)). The getting worse oscillation behavior as the

learning rate increases also indicates that the learning rate should be matching the

iterative update time, which again verified the reasonability of the proposed steady-

state scaling strategy.

The simulation results in the regulation task demonstrate that the incomplete
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gravity compensation will cause the actual regulated position to shift downward thus

the task performance is destroyed. However, with the steady-state scaling strategy

and implementing the iterative learning scheme to learn for gravity compensation,

the regulation accuracy can be recovered.

Figure 4.4: Simulation results in a setpoint regulation task under different iterative learning
rates for learning gravity compensation. (a) Case #1 with payload-1 (25g); (b) Gravity learning
result in Case #1; (c) Case #2 with payload-2 (125g); (d) Gravity learning result in Case #2;
(e) Case #3 with payload-3 (250g); (f) Gravity learning result in Case #3. Note that the solid
lines converging to zero in subfigure (b,d,f) are the learning results along the non-gravity axes
in Cartesian space and their legends are ignored for clarity purposes.
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4.3.5 Simulation on trajectory tracking task

By using the steady-state scaling strategy, the steady-state period can be scaled

to be on the same level as the robot sampling time. By doing this, the iterative

learning scheme can be extended to trajectory-tracking tasks theoretically. This will

be evaluated by simulations in this section.

Similar to the procedures used in the setpoint regulation task presented in the

previous section, we repeat all the procedures in the trajectory tracking task. The

trajectory of concaved-square (4.33) is employed for the trajectory tracking task. The

same 3DOF robot model is employed and the iterative learning-based impedance

controller (4.9) with the update law (4.32) is implemented.

The simulation results in the trajectory tracking task are similar to that in the

setpoint regulation task. Figure 4.5 shows the simulation results in a trajectory

tracking task with a pure impedance controller (4.7) (or equivalently controller (4.9)

with setting the learning rate η = 0) under an ideal dynamic model where theM,S,G

are fully known. As shown in Figure 4.5a (Case #0), with the ideal dynamic model

and without any external payloads attached, the impedance controller can achieve

accurate trajectory tracking performance. However, in Figure 4.5b (Case #1), when

an external payload-1 (25g) is attached to the robot EE, the actual trajectory made by

the same impedance controller shifted downward. Again, as the weight of the external

payload increases, the shifted displacements get larger as shown in Figure 4.5c (Case

#2) and Figure 4.5d (Case #3).

When the learning-based impedance controller (4.9) is implemented with the steady-

state scaling strategy, the external payloads can be compensated via iterative learning

thus accurate tracking performance can be recovered. Figure 4.6 shows the simulated

tracking performance under different iterative learning rates (η = 0.001/0.005/0.025).

As shown in Figure 4.6a and Figure 4.6b, when an external payload-1 (25g) is at-

tached to the robot EE (Case #1), the trajectory tracking performance (Figure 4.6a)
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Figure 4.5: Simulation results in a trajectory tracking task with a pure impedance controller
under an ideal dynamic model. (a) Case #0, no payloads; (b) Case #1, payload-1 (25g); (c)
Case #2, payload-2 (125g); (d) Case #3, payload-3 (250g).

is recovered to be accurate with the help of iterative learning on gravity compensation,

while different learning rates may have different converging behaviors (Figure 4.6b)

which is affected by the learning rate η. Similar to the observed phenomenons in

the setpoint regulation task, a larger learning rate may have an oscillate converging

behavior while a smaller learning rate may have a slow but smooth converging behav-

ior. Similar simulation results can be found when the weight of the payload increases

(Figure 4.6c,d for payload-2 (125g), and Figure 4.6e,f for payload-3 (250g)).

The simulation results in the trajectory tracking task demonstrate that, by using

the steady-state scaling strategy, the iterative learning scheme for gravity compensa-

tion is also valid when a robot is in a free-motion mode. With an appropriate setting

on the learning rate, the iterative learning term is able to converge to the actual

weight of the external payload.

If we take a comparison on the gravity learning behavior in the trajectory tracking
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Figure 4.6: Simulation results in a trajectory tracking task under different iterative learning
rates for learning gravity compensation. (a) Case #1 with payload-1 (25g); (b) Gravity learning
result in Case #1; (c) Case #2 with payload-2 (125g); (d) Gravity learning result in Case #2;
(e) Case #3 with payload-3 (250g); (f) Gravity learning result in Case #3. Note that the solid
lines converging to zero in subfigure (b,d,f) are the learning results along the non-gravity axes
in Cartesian space and their legends are ignored for clarity purposes.

task (Figure 4.6b,d,f) with that in the setpoint regulation task (Figure 4.4b,d,f), and

put them in a same figure as shown in Figure 4.7, we can clearly found that the

gravity learning behavior is very similar and has almost the same converging process.

Especially in Figure 4.7c, the gravity learning behavior is almost the same in the two

scenarios. The results in Figure 4.7 indicate that by using the steady-state scaling

strategy, the iterative learning scheme for gravity compensation can be used for both

setpoint regulation tasks and trajectory-tracking tasks, while their converging process
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are almost the same. This verified the feasibility of extending the iterative learning

scheme to scenarios of robots in free motions.

Figure 4.7: Simulation results of comparing the gravity learning behavior in a trajectory tracking
task and in a setpoint regulation task under different iterative learning rates. (a) Gravity learning
results in Case #1 with payload-1 (25g); (b) Gravity learning results in Case #2 with payload-2
(125g); (c) Gravity learning results in Case #3 with payload-3 (250g).

4.3.6 Experiment on trajectory tracking task

In contrast to simulations, a series of experiments are conducted to evaluate the

presented iterative learning-based controller by using a 3DOF Phantom Premium

1.5A robot. The trajectory of concaved-square (4.33) is employed.
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The experimental results of trajectory tracking performance in different condi-

tions are shown in Figure 4.8. Figure 4.8a shows the tracking performance when

only an impedance controller (4.7) is implemented with relatively small impedance

gains. Note that inherent uncertainties of the physical robot system, including but

not limited to dynamic model error and unmodeled friction, always exist in all phys-

ical experiments. As shown in Figure 4.8a, the tracking performance is significantly

affected due to the inherent uncertainties.

A straightforward way to overcome the inherent uncertainties is to make the robot

stiffer by tuning the impedance gains. When increasing the robot stiffness (see Ta-

ble 4.1 for increased stiffness by tuning impedance gains), the inherent uncertainties

can be overcome thus accurate tracking can be obtained. However, solely using in-

creased stiffness to overcome the uncertainties is limited when external payloads are

attached to the robot EE, especially for heavy external payloads. As shown in Fig-

ure 4.8c, when payload-1 (25g) is attached, although most of its mass can be overcome

by the increased stiffness, there still have significant shifting-down for the actual tra-

jectory. Especially when two payload-1 (50g in total, all attached since the beginning)

are attached, the shift gets larger as shown in Figure 4.8d. The effect of increasing the

stiffness could be very good in simulations in order to achieve accurate task perfor-

mance, but it is limited in practice since too large stiffness can cause robot chattering

and thus unstable. Therefore, in practice, smaller impedance gains are used at the

cost of task performance accuracy. From Figure 4.8c,d, we can clearly observe that

the inaccuracy part is a shift downward away from the desired trajectory which is

mainly caused by incomplete gravity compensation.

To reduce the effect brought by incomplete gravity compensation, the iterative

learning scheme is employed. By implementing the learning-based impedance con-

troller (4.9), the effect of external payload-1 (25g) can be effectively compensated

(Figure 4.8e, Figure 4.8f). Furthermore, a second payload-1 (25g) can also be effec-

tively compensated (Figure 4.8g, Figure 4.8h). One can notice that in Figure 4.8f and
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Figure 4.8h, the learning term has bounded errors and cannot converge to the exact

weight of the payloads. By comparing with the simulation results on trajectory track-

ing tasks, we can reasonably conclude that the bounded learning errors are caused by

inherent uncertainties in the physical robotic system (e.g., inaccurate dynamic model,

joint friction, etc.). In other words, the iterative learning term estimates gravity plus

a part of the other uncertainties. This is verified with a further experiment where

NDOB is employed to estimate the lumped uncertainties, and the results are shown

in Figure 4.9. In the figure, we can see that with an appropriately high learning rate

(η = 0.001×10), the Git algorithm can accurately estimate the lumped uncertainties

as the same as the NDOB does. While with a low learning rate (η = 0.001 × 1),

the iterative learning algorithm can still accurately estimate the gravity part (Fig-

ure 4.9b), but only a rough estimation for the other uncertainties (Figure 4.9a). Note

that NDOB is a specific type of observer among a variety of disturbance observers,

and it is selected here as a reference due to its high accuracy in estimating the lumped

uncertainties and its ability to estimate the nonlinearities in the dynamics [78].

4.3.7 Experiment on setpoint regulation task

By implementing the iterative learning-based controller (4.10), experiments on set-

point regulation involving physical human-robot interaction (pHRI) are conducted in

two scenarios, i.e., pHRI disabled, and pHRI enabled. Figure 4.10 shows setpoint

regulation performance under the iterative learning-based controller when pHRI is

involved. As shown in Figure 4.10a and Figure 4.10b, when the pHRI is disabled

the robot will reject human-applied force and keep the robot EE remain at a fixed

position. This realizes one expected condition in our application, i.e., the robot holds

with an arthroscope and keeps it still while rejecting all potential disturbances. When

pHRI is enabled (Figure 4.10c, Figure 4.10d), the robot EE can be freely moved by

the human user to wherever the user wanted. This realizes another expected condi-

tion in our application, i.e., the robot allows the surgeon to freely move it to a new
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Figure 4.8: Experimental results of a trajectory tracking task in different scenarios. (a)
Impedance controller only; (b) Impedance controller only, but with increased robot stiffness; (c)
Increased robot stiffness with payload-1 (25g); (d) Increased robot stiffness with two payload-1
(50g in total, both attached since the beginning); (e) Increased robot stiffness with payload-1
and iterative learning; (f) Iterative learning result with payload-1; (g) Increased robot stiffness
with two separate payload-1 (25g+25g) and iterative learning; (h) Iterative learning result with
two separate payload-1. Note, for (g),(h) where two payload-1 appear, the first payload-1 is
attached since the beginning while the second payload-1 is attached at around the 6th second.

position for adjusting the arthroscope view when necessary.

A further evaluation is to implement the controller in an application scenario mim-

icking robot-assisted arthroscopic surgery with a FAST (fundamentals of arthroscopic
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(b) With external payload-1 (25g).

Figure 4.9: Experimental results of disturbance estimation by NDOB and Git in trajectory
tracking tasks. Note that only estimation along the y-axis is displayed for clarity since gravity
is along the y-axis in this work.

Figure 4.10: Experimental results in a setpoint regulation task involving pHRI. (a) Trajectory
when pHRI disabled; (b) Computed torque when pHRI disabled; (c) Trajectory when pHRI
enabled; (d) Actual position when pHRI enabled. Note, the five shaded areas in (d) indicate
five times of interaction during which the user moves the robot EE from one point to another
as shown in (c). The five vertical blue lines in (d) are the time points corresponding to the five
actual endpoints in (c).
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surgery training) simulator as shown in Figure 4.11a. In the application scenario, the

robot EE is expected to hold with an arthroscope still while rejecting all potential

disturbances. And when necessary, the arthroscope can be freely moved to a new

position for adjusting the scope view. The experimental results of this application

scenario are shown in Figure 4.11b. The two shaded gray areas in Figure 4.11b rep-

resent two periods of holding the arthroscope still by the robot with different scope

views. And during these two periods, we can see that the robot EE position is ac-

curately kept constant which verified the effectiveness of the implemented iterative

learning-based controller.

(a) Setup scenario
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(b) Torque and position

Figure 4.11: Robot-assisted arthroscopy with a FAST simulator. Gray areas represent two
periods of holding the arthroscope still by the robot with different scope views.

4.3.8 Comparing with other methods

The presented Git scheme in this work extended the validity of the prior work [26]

into both trajectory tracking tasks and setpoint regulation tasks. The simulation

and experimental results demonstrate the good performance of the Git scheme in

learning and compensating for gravity. The disturbance observers like NDOB can

accurately estimate the lumped uncertainties including gravity, but it is not suit-

able for pHRI scenarios since it will prevent human-robot interaction [78, 75]. An

adaptive controller can also compensate for dynamic uncertainties including gravity
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[130, 59], but it is a controller rather than an independent strategy of disturbance

estimation. Moreover, as a controller, it cannot provide compliant robot behavior

like an impedance controller can do. The main differences among these methods are

summarized in Table 4.2.

In future work, we will further investigate the similarities and differences in the

performance of simulations and experiments by comparing with the methods in the

literature, e.g., NDOB, adaptive controller, and conventional PID controller. Also,

we will use the full impedance model without simplifications which will enable the

inertia term to be tunable.

Table 4.2: Comparing with methods in literature.

Methods Uncertainties Applicability Requirements

Git Gravity 1○, 2○ x,xd,J
T

Git [26] Gravity 1○ q,qd

NDOB [78] All 1○, 2○ q̇,M−1,S,G

Adapt [130, 59] Dynamics 1○, 2○ q, q̇,qd, q̇d, q̈d,Y

Note: 1○ Setpoint regulation tasks; 2○ Trajectory tracking tasks; subscript d means
“desired”; Y is the regressor matrix in a linearized dynamic model which is derived via
sophisticated process based on the general dynamic model, which means that M,S,G
are implicitly required in order to obtain Y.

4.4 Conclusion

In this chapter, we presented a simple and compact gravity iterative learning (Git)

scheme for gravity compensation in Cartesian space. The whole process of develop-

ing the Git scheme is presented in detail, including motivation, theoretical analysis,

simulations, experiments, and application. First, the convergence properties are the-

oretically analyzed. Then, a steady-state scaling strategy is proposed to improve

the Git scheme which also extends its validity to more general trajectory tracking

scenarios. By integrating the Git scheme with an impedance controller, an iterative
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learning-based impedance controller is constructed, where the Git algorithm can ac-

curately learn for gravity compensation while the impedance controller can provide a

robot with compliant behavior thus ensuring a safe human-robot interaction in pHRI

scenario. The learning accuracy of the Git scheme together with the scaling strategy

are verified by simulations on both setpoint regulation tasks and trajectory tracking

tasks. The effectiveness of the learning-based controller is further validated by phys-

ical experiments on both trajectory tracking tasks and setpoint regulation tasks. An

application experiment in a simplified scenario of robot-assisted arthroscopic surgery

also evaluated the effectiveness of the implemented learning-based controller. The

results demonstrated that the integrated controller can achieve good tracking per-

formance and regulation accuracy when heavy external payloads are attached to the

robot EE. Moreover, it allows seamless switching between setpoint regulation and

human-robot interaction.

The major benefits of the presented Git scheme for gravity compensation can

include (1) simple and compact formulation and no need for the robot dynamics, (2)

no need for any information about external payloads, (3) no need for higher impedance

gains for reducing the effects of incomplete gravity compensation, and (4) it is valid

for both setpoint regulation tasks and trajectory tracking tasks.
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Chapter 5

Point-Based 3D Virtual Fixture
Generating Method1

Virtual fixture (VF) has been playing a vital role in robot-assisted surgeries, such

as guiding surgical tools’ movement and protecting a beating heart. In orthopedic

surgery, preplanned images are often used in the operating room, on which planning

curves might be drawn, for instance, to mark out the boundaries for osteophytes to be

removed. These curves can be used to generate VF to assist in removing osteophytes

during the operation. A challenge is that the hand-drawn curves usually have a

random shape and cannot be mathematically represented by equations, thus most of

the existing algorithms will not work in this scenario. In this Chapter, an algorithm

of VF generating based on point clouds is presented, with which VF can be generated

directly from cloud points, for example, point clouds of hand-drawn curves extracted

from an image. The effectiveness of the VF algorithm is evaluated by a series of

simulations and experiments. The VF algorithm is also tested in an image-based

scenario and its effectiveness is demonstrated.

1A version of this chapter has been published as: Teng Li, Armin Badre, Hamid D. Taghi-
rad, Mahdi Tavakoli, “Point-Based 3D Virtual Fixture Generating for Image-Guided and Robot-
Assisted Surgery in Orthopedics”, 2023 IEEE/ASME International Conference on Advanced Intel-
ligent Mechatronics (AIM 2023), June 28-30, Seattle, WA, USA, 2023, pp. 179-186. [IEEE Xplore]
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5.1 Background

Virtual fixture (VF), also known as active constraint and first proposed in [110], is

usually categorized into two types according to its purpose, that is guidance virtual

fixture (GVF) and forbidden-region virtual fixture (FRVF) [1, 14]. Intuitively, the

GVF serves like a ruler to assist in drawing a straight line, while the FRVF serves like

an armor to prevent tool tip from entering a protected area. Both types play a vital

role during various surgical procedures in robot-assisted surgery, such as suturing [86],

knot tying [150], dissection [121], either assisting in moving the surgical tool along

a trajectory or preventing it from entering a specific area for protecting the objects

(e.g., beating heart or nerve) inside [112, 92].

VF is usually generated based on geometric elements, such as lines, planes, surfaces,

and volumetric primitives [14]. The vector field approach is the most common one

to be used for VF generating, which works for any shape that can be expressed as

mathematical equations [155]. The advantage of the vector field approach is that it

is simple, straightforward, and stable, while the disadvantage is that it requires an

explicit/implicit mathematical representation for the object to be modeled as VF. For

objects with regular shapes like cubes and spheres, their mathematical representations

can be easily established then the VF can be constructed relatively easily. However,

for objects with irregular shapes like a humerus bone or skull, they may not be able

to be expressed by equations, then the vector field approach may not work for these

objects anymore.

The vector field approach cannot correctly handle situations of being in con-

tact with multiple objects simultaneously and situations of thin objects. To solve

this problem, Zilles and Salisbury developed a constraint-based god-object algorithm

[155]. In their work, the god-object is a proxy of the haptic interface point (HIP)

which is attached to the HIP when it is in free motion. Once the HIP encounters VF

(e.g., a virtual wall), the proxy will always remain on the top of the virtual wall and
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never penetrate into it. This is ensured in their algorithm by applying the Lagrange

multiplier technique on a set of active constraints to find the position of the proxy in

each servo loop. Meanwhile, the virtual spring and/or damper linkage between the

HIP and the proxy will render a haptic force that tries to pull the HIP back out of

the virtual wall.

Kapoor et al. developed a constrained optimization method for generating VF [63],

in which a suitable objective function is required in order to do the optimization. In

the method, five basic geometric constraints are established as VF task primitives

which can be used for assembling customized VF. With similar techniques, Marinho

et al. employed a method of vector-field inequalities to generate VF for collision avoid-

ance [87] and guidance in a looping task during suturing [86]. Xia et al. developed

a constrained optimization framework of VF generating for multi-robot collaborative

teleoperation tasks, e.g., knot positioning [150].

There are also some other methods for VF generating for different purposes, such

as potential field method for collision avoidance or guidance [22, 120] and nonenergy

storing method for a more stable robot behavior [65]. Readers are directed to [14] for

a comprehensive review of VF.

In the field of robot-assisted surgery, VF has been widely used due to plenty of

advantages, such as reducing surgeons’ cognitive load [150], improving surgical per-

formance [48], making the surgical outcome more accurate and safe. Park et al. [99]

conducted a preliminary test before applying VF in coronary artery bypass surgery.

In the test, VF is generated for a blunt dissection task at a position determined from

a preoperative CT scan image, and the VF is a regular plane thus the VF generating

is relatively easy in their work.

Ryden et al. [112] developed a method to generate VF directly from point cloud to

protect the beating heart during surgery. They improved their method in [111, 96],

which established a solid foundation for point-based VF algorithm.

In orthopedics, a series of preoperative images of a patient are first acquired before
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the surgery. Then, some surgical preplans will be made on the images, for example,

drawing some curves to mark out areas to remove osteophytes, or to protect nerves

inside. During the surgery, these hand-drawn curves can be used to generate VF

which can assist in removing osteophytes or protecting the nerves by providing haptic

feedback. The main challenge here is that the hand-drawn curves are usually in

irregular shapes which may not be able to be presented mathematically by equations

that are often required by most of existing VF-generating algorithms.

Inspired by Ryden’s work and motivated to solve the challenge mentioned above,

in this chapter, an algorithm for VF generating from cloud points is developed and

presented. The effectiveness of the VF algorithm is evaluated by a series of simulations

and experiments on geometric entities with regular or irregular shapes. Lastly, the

algorithm is tested in a specific preplanned image-based scenario which can be further

generalized to image-based surgery.

5.2 Methods

In this section, an algorithm for point cloud based virtual fixture (VF) generation

method is presented, which includes one main algorithm and three embedded proxy

algorithms for the proxy in different states. The major parameters used in the VF

algorithm are summarized in Table 5.1. The general idea of the VF algorithm is

explained as follows. The robot end-effector (EE) position denotes as PHIP while its

virtual proxy denotes as Pproxy. As illustrated in Figure 5.1, taking the proxy point

Pproxy as the center, three spheres with radii (r1 < r2 < r3) are defined as proxy

regions while a contacting region rc is determined by rc = (r1 + r2)/2. When there

is no contact between the robot EE and the point cloud, the Pproxy always coincides

with PHIP, whereas they may be detached from each other in order to generate force

feedback when a contact or penetration occurred. The state of the proxy (stateproxy)

will be determined as −1/0/1/2 based on the relative position relationship between

the proxy regions and the point cloud, i.e., no neighbor (−1), in free motion (0),
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in contact (1), entrenched (2). The last three states may be combined together as

a state of in-neighbor (0/1/2) for some explanations. For each proxy state, a step

vector ŝ will be determined by the proxy algorithms which will be introduced later

in this section. Finally, the determined ŝ will be used to move the proxy point at the

end of each servo loop while ensuring that it is always on the surface of the point

cloud and never penetrates into it.

The general idea described above will be explained in detail in the remaining part

of this section based on one main algorithm (algorithm 1) and three proxy algorithms

(algorithm 2, algorithm 3, algorithm 4). An illustration of the proxy in different

states is shown in Figure 5.1. Note that in this chapter, point cloud refers to a set of

points representing a target object, and virtual fixture refers to all areas defined by

the cloud points and their radius rv.

Table 5.1: Major parameters and description.

Parameters Description

PHIP haptic interface point (= robot EE point)

Pproxy proxy point, the avatar of HIP

Lpcloud point cloud list, the collection of all cloud points

pi a single point in the point cloud

N the number of points in the point cloud

stateproxy proxy state, from {-1,0,1,2}

r{1,2,3,c} proxy regions radii, r1 < rc < r2 < r3, rc =
(r1+r2)

2

rv radius of each cloud point (default as 0)

ŝ step vector for proxy movement in each servo loop

n̂ normal vector of the point cloud

u⃗ a vector pointing from Pproxy to PHIP
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Figure 5.1: Illustration of the proxy in different states.

5.2.1 Main algorithm

The main algorithm for generating VF from point cloud is presented in algorithm 1

including parameterization realized in this chapter. A set of point cloud is acquired

in advance and their 3D coordinates are expressed in the robot base frame.

First of all, all parameters are initialized including the initial position of the HIP

and the proxy. Note that PHIP is initialized as [−1, 0, 0] for the simulations while

[0, 0, 0] for the experiments. The proxy point position is initialized as the same as the

HIP point position (Pproxy = PHIP).

In each servo loop of the VF algorithm, the HIP position (PHIP) will first be updated

as the real-time position of the robot EE. Then, the distance de between the proxy

position (Pproxy) and each point in the cloud will be calculated. Based on the distance

de, each point in the cloud will be categorized into one of four lists, i.e., list of

entrenched (LEntrenched), in contact (LInContact), in free motion (LFreeMotion), and out

neighbor (LOutNeighbor), respectively. Note that the first three lists together composed

a new list of in-neighbor (LInNeighbor), while all the four lists together composed the
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whole point cloud. Then, based on the number of points in each of the four lists,

the proxy state (stateproxy) can be determined as one of the four states, i.e., state of

entrenched (2), state of in contact (1), state of in free motion (0), state of no neighbor

(−1). Note that for high computing efficiency, the point cloud needs to be treated as

a whole matrix when calculating the distance de and doing the categorization.

A normal vector (n̂) needs to be determined when the proxy is in state of in contact

or entrenched (stateproxy = 1/2). The normal vector (n̂) is originated from the proxy

point, normal to the local surface formed by the point cloud, and pointing outwards.

The normal vector (n̂) is determined by all the cloud points that fell in the proxy

neighbor region (LInNeighbor). Let pi, i = 1, 2, ...,M be the points fell in LInNeighbor,

then the normal vector n̂ can be determined by{︄
nk⃗ =

∑︁M
i=1

Pproxy−pi

∥Pproxy−pi∥2ϕ(r)

n̂ = nk⃗

∥nk⃗∥2
(normalization)

(5.1)

where ϕ(r) is a modified version of the Wendland function [149, 111] given by (5.2),

which can provide a smoothly and monotonically decreasing between r1 and r3.

ϕ(r) =

⎧⎪⎨⎪⎩
1 for r ∈ [0, r1]

[1 + 4(r−r1)
r3−r1

](1− r−r1
r3−r1

)4 for r ∈ (r1, r3)

0 for r ∈ [r3,+inf)

(5.2)

where r = ∥Pproxy − pi∥2 − rv is the distance between a cloud point and the proxy

point while the cloud point is considered as a sphere with a radius of rv ≥ 0.

Finally, in each of the four states (stateproxy = −1/0/1/2), a step vector (ŝ) of

the proxy movements will be determined based on proxy algorithms (algorithm 2,

algorithm 3, algorithm 4) that will be introduced subsequently. Once the step vector

(ŝ) is determined, the proxy point position (Pproxy) can be updated correspondingly.

5.2.2 Proxy algorithms

In this subsection, three proxy algorithms are presented and explained in detail in

order to determine the step vector (ŝ) in different proxy states, i.e., algorithm 2 for
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state of in free motion (stateproxy = 0), algorithm 3 for state of in contact (stateproxy =

1), algorithm 4 for state of entrenched and no neighbor (stateproxy = −1/2). Then,

the determined step vector (ŝ) will be used to move the proxy a step in each servo

loop while ensuring the proxy point does not penetrate into the point cloud.

(a) State of in free motion (stateproxy = 0)

The proxy movement algorithm for this state is presented in algorithm 2. When

the proxy is in free motion state (stateproxy = 0) and assuming the HIP is going to

penetrate into the point cloud, the proxy needs to move towards the HIP in aiming

to be in contact with the point cloud. In this scenario, the step vector (ŝ) for the

proxy movement can be determined based on the cloud points fell in LInNeighbor (note

that now LInNeighbor = LFreeMotion) by solving for d0 in (5.3).

rc + rv = ∥pi −Pproxy − d0i
u⃗

∥u⃗∥2
∥2 (5.3)

where u⃗ = PHIP−Pproxy is a vector pointing from Pproxy to PHIP, and pi, i = 1, 2, ...,M

is the cloud point fell in LInNeighbor, and d0i is a scalar step size needs to be solved for

the ith point in LInNeighbor. Therefore, this procedure has to be done M times. After

that, step size d will be determined by the minimum value of d0i, i.e., d = min(d0i).

Then, the step vector (ŝ) will be determined by ŝ = d ∗ u⃗
∥u⃗∥ which means to bring the

proxy point a step towards the HIP point.

Before updating the proxy point position, three special scenarios may need to be

considered:

• If d = 0 and the HIP is inside of the point cloud, then a projection vector u⃗p,

which is obtained by projecting u⃗ onto the normal plane determined by the

normal vector n̂, will be used to determine d (5.5). In this scenario, the step

vector will be determined by ŝ = d ∗ u⃗p

∥u⃗p∥ .

• If the HIP is outside of the point cloud and 1
M

∑︁M
i=1 ∥pi−PHIP∥2 > 1

M

∑︁M
i=1 ∥pi−

Pproxy∥2 (pi ∈ LInNeighbor), i.e., the HIP is moving away from the point cloud,
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then set ŝ = PHIP −Pproxy, which means to detach cloud-proxy and attach

proxy-HIP by setting Pproxy = PHIP.

The normal vector n̂ can solely determine a normal plane that is going through the

proxy point and normal to n̂. The vector u⃗ = PHIP − Pproxy pointing from Pproxy to

PHIP can be projected onto the normal plane, and the projection u⃗p can be obtained

by

u⃗p = u⃗− (n̂ · u⃗)n̂ (5.4)

Based on the projection u⃗p, the step size d can be determined by

d =

{︄
ξ∥u⃗p∥2 for ∥u⃗p∥2 ≤ r1

ξr1 for ∥u⃗p∥2 > r1
(5.5)

where 0 < ξ ≤ 1 is a constant gain used to ensure that one step size is not greater

than the smallest proxy region r1.

(b) State of in contact (stateproxy = 1)

The proxy movement algorithm for this state is presented in algorithm 3. When

the proxy and the point cloud are in contact (stateproxy = 1), the step size d will

be determined by the projection u⃗p via (5.5). Then, the proxy step vector ŝ will be

determined by

ŝ =

{︄
d ∗ u⃗p

∥u⃗p∥2 for HIP is inside of VF

d ∗ u⃗
∥u⃗∥2 for HIP is outside of VF

(5.6)

where d is the step size, u⃗p indicates a direction tangential to the VF, u⃗ indicates

a direction pointing from the proxy to the HIP, while whether the HIP is inside or

outside of VF is determined by the angle between the vector n̂ and u⃗.

(c) State of entrenched (stateproxy = 2)

The proxy algorithm for this state is presented in algorithm 4. When the proxy is

entrenched into the point cloud (stateproxy = 2) occasionally, the proxy needs to be

moved onto the top of the point cloud surface with a single step. The step size d can

be determined by solving for d2i in (5.7).

rc + rv = ∥pi −Pproxy − d2i ∗ n̂∥2 (5.7)
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where pi ∈ LEntrenched, i = 1, 2, ...,M , and d2i is a scalar step size corresponding to

the ith cloud point. Therefore, this procedure has to be done M times. Then, the

step size d will be determined by the maximum value of d2i, i.e., d = max(d2i), which

means that a max step size will be used to bring the proxy point out of the point

cloud along the direction of the normal vector n̂.

(d) State of no neighbor (stateproxy = −1)

When there is no cloud point in the neighbor region of the proxy (stateproxy =

−1), simply set ŝ = PHIP −Pproxy. This means that the proxy point (Pproxy) always

coincides with the HIP point (PHIP).

5.2.3 Virtual force rendering

Once the proxy point Pproxy is determined in each servo loop, the virtual force can

be rendered based on the coordinates of the HIP point (PHIP) and the proxy point

(Pproxy). The force rendering algorithm can be expressed as

Fv = K(Pproxy −PHIP) (5.8)

where K ∈ R3×3 is a diagonal matrix indicating the stiffness of the VF along each

axis and can be tuned as necessary, and Fv is the rendered VF force which will be

delivered to the human user via the robot. Note that friction is not rendered for the

VF in this chapter.

For implementing the VF algorithm onto a robot, in this chapter, the rendered

VF force is directly added into the impedance control law as an independent term

since our robot employs an impedance controller. Note that the VF algorithm is

independent of the controller design and controller implementation, thus they work

independently and do not affect each other in terms of functioning. For robot running

with other controllers, e.g., admittance controller, velocity controller, the rendered

VF force may need first to be converted to a displacement or velocity by differentia-

tion/integration or an appropriate gain.
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5.3 Simulations, Experiments, and Results

In this section, a series of simulations and experiments are conducted to evaluate

the effectiveness of the point-based VF algorithm. The employed point clouds are

with various shapes and dimensionality (ranging from 0D to 3D). The corresponding

results are presented and analyzed. The last experiment is designed to assess the VF

algorithm in a preplanned image scenario which can be generalized to image-guided

surgery in orthopedics.

5.3.1 Apparatus

The simulations are conducted in MATLAB/Simulink (version R2020a, MathWorks

Inc., Natick, MA, USA). The MATLAB/Simulink runs on a computer with a 3.70

GHz Intel(R) Core(TM) i5-9600K CPU and a Windows 10 Education 64-bit operating

system. The HIP point (i.e., the robot EE) in the simulations is represented by the

mouse pointer controlled by a human user, and the 2D position of the pointer is

retrieved at a frequency of about 50 Hz when it moves in a MATLAB figure window.

The experiments are performed on a 7-DOF Franka Emika Panda robot (Franka

Emika GmbH, Munich, Germany). The proposed VF algorithm is implemented on

the Panda robot via an impedance control interface and C++ code. The Panda robot

is controlled on a workstation computer of Intel(R) Core(TM) i5-8400 CPU @ 2.80

GHz × 6 with the Ubuntu 16.04 LTS (Xenial Xerus) 64-bit operating system. The

control rate of the Panda robot is 1000 Hz. MATLAB/Simulink (version R2019a) with

Quarc real-time control software (Quanser Inc., Markham, ON, Canada) is used for

visualizing the real-time position of the robot EE, the point cloud, and the rendered

VF force. The communications between the Robot Operating System (ROS) nodes of

the workstation computer and the MATLAB/Simulink (version R2019a) are realized

via User Datagram Protocol (UDP) at a frequency of 100 Hz. A video demonstration
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for the experiments is available online1.

5.3.2 Simulations

In this section, simulations in four scenarios are conducted separately in aiming to

evaluate the point-based VF algorithm. The four scenarios are regarding to point

clouds with various shapes and dimensions as follows,

1. a 0D single point, (see Figure 5.2a);

2. a 1D line segment, (see Figure 5.2b);

3. a 2D teapot, (see Figure 5.2c);

4. a 2D hand-drawn Ω symbol from image, (see Figure 5.2d).

Note that there is no scenario of a 3D point cloud is considered in the simulations

due to the fact that the mouse pointer representing the HIP point cannot be controlled

to accurately move in a virtual 3D space. The ability of the VF algorithm in 3D space

will be evaluated by experiments.

In each of the four simulated scenarios, as shown in Figure 5.2, the HIP point

represented by the mouse pointer, moves from left to right in a 2D MATLAB figure

window, and during the movement, it will encounter the point cloud. The VF algo-

rithm will calculate the position of the proxy point in real time while the proxy point

is expected to remain on the surface of the point cloud and never penetrate into it.

The HIP point can penetrate into the point cloud and the relative position between

the HIP point and the proxy point will determine the rendered VF force. Note that

the VF force is not considered in the simulations but will be rendered in the physical

experiments.

The simulation results of the four scenarios are presented in Figure 5.2. As can

be seen in the figure, as the HIP point (represented as green point) moves along the

1online demo video link: https://youtu.be/ROSREHC9zU0
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contour of the point cloud from left to right, the proxy point (represented as the

center of the red circle) always stay outside of the point cloud (represented as the

blue cross markers) which is expected. The proxy point with its contacting region rc

are represented by a circle in 2D space whose radius is predefined and can be tuned as

necessary (in this work all rc = 5 mm ). The normal vector n̂ (represented as arrows

in magenta color) should be always orthogonal to the local contour of the point cloud

and be pointing outwards.

The simulation results indicated that the proposed VF algorithm works well for

point cloud not only with regular shapes (e.g., single point, line) but also with free-

style irregular shapes (e.g., teapot, hand-drawn Ω symbol). The effectiveness of

the VF algorithm on geometric entities from 0D to 2D is well demonstrated by the

simulations.

5.3.3 Experiments

Two physical experiments on a 7-DOF robot are designed to evaluate the point-based

VF algorithm. In Experiment 1, a set of point cloud with a regular 2D square shape

in 3D space (Figure 5.3b) is employed, while in Experiment 2 of an image-based

scenario, a set of point cloud with a shape of hand-drawn curve (Figure 5.3d) from

a preplanned 2D image (Figure 5.5) is employed. The point clouds are registered in

the robot base frame as illustrated in Figure 5.3a, 5.3c.

Experiment 1: 2D square

In Experiment 1, a set of point cloud with a 2D square shape is generated in the

area of x = [0.4, 0.5], y = 0.1, z = [0.4, 0.5] m in robot base frame, and the step size

is 0.5 mm (meaning a density of 2.01 points/mm) for x-axis and z-axis. Therefore, a

total of 40401(= 201× 1× 201) points are generated for the 2D square point cloud.

During the experiment, the user moves the robot EE to probe both sides of the VF

(i.e., the 2D square point cloud), and the rendered VF force, as shown in Figure 5.4a,

is delivered to the user via the robot. In the figure, the green-colored area represents

108



(a) A single point (N = 1) (b) A line segment (N = 100)

(c) A 2D teapot (N = 41472) (d) An inverted Ω (N = 2062)

Figure 5.2: Simulation results of implementing the VF algorithm in four different scenarios. The
HIP point is represented by green point, the proxy contacting region is represented by red circle
while the center represents the proxy point, the normal vector n̂ is represented by magenta
arrow. Black arrow represents the vector u⃗ pointing from the proxy to the HIP. The point cloud
of a 2D teapot is obtained from MATLAB via command pcread(‘teapot.ply’), then scaled
in this work. Note that the movement of the green point is controlled by a human user via
mouse, thus the trajectory is irregular and the speed is not constant.

a specific trial. The trajectory of the specific trial is shown in Figure 5.4b, with the

proxy and its contacting region (red circle and its center), and the normal vector n̂

(magenta arrow) are visualized in a frequency of 10 Hz.

Experiment 1 demonstrates that the VF force can be appropriately rendered, and

the robot EE may penetrate into the point cloud but the proxy point should never.

The VF force can be rendered on both sides of the 2D square point cloud (i.e., y < 0.1,

and y > 0.1), which indicates that the VF algorithm is valid in 3D space. The results
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(a) Experiment 1 setup (b) Experiment 1 point cloud

(c) Experiment 2 setup (d) Experiment 2 point cloud

Figure 5.3: Setup and point cloud patterns for Experiment 1 and Experiment 2. Experiment
1 employs a set of point cloud with a 2D square shape (N = 40401 = 201 × 1 × 201), while
Experiment 2 employs a set of point cloud with a hand-drawn curve shape (N = 2204). Note
that the VF in Experiment 2 along z-axis is set as continuous and infinite by ignoring the z-axis
coordinate during VF force rendering.

in Experiment 1 show that the VF algorithm in the physical experiment behaves the

same as that in the simulations.

Experiment 2: Image-based scenario

In Experiment 2, the point-based VF algorithm is implemented and evaluated in a

preplanned image scenario. Before the experiment, some preparation work is needed.

First, a series of 2D CT images are acquired from a patient who has been diagnosed
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Figure 5.4: Experiment 1 of implementing VF on a 2D square point cloud with a size of
N = 40401 = 201 × 1 × 201. The blue cross, green point, and magenta point represent the
point cloud, the robot EE (the HIP), and the proxy, respectively. The proxy contacting region
and the normal vector n̂ are represented by red circle and magenta arrow, respectively.

with osteoarthritis and an elbow arthroscopic debridement surgery is required. Then,

preplans are conducted on one image as shown in Figure 5.5a. In the preplanned

image, a hand-drawn curve in red color is shown for planning to remove osteophytes.

Nine markers (x1-x9) are marked in the image which will be used later for image-

robot registration. Once the preplans are done, the hand-drawn curve is extracted

and the corresponding binary image is shown in Figure 5.5b. Lastly, a set of point

cloud representing the preplans is extracted from the binary image.

Now we start to do image-robot registration. Considering that the main purpose of

this experiment is to evaluate the effectiveness of the VF algorithm, and for simplicity,

a paper-printed 2D bone instead of a 3D physical bone is used in the registration.

The paper-printed 2D bone is fixed on a horizontal desktop in the workspace of the

Panda robot (see Figure 5.3c for illustration). The registration is done by using the

ordinary least-squares (OLS) method [47] based on the nine markers (x1-x9) on both

the paper and the digital image.

The point cloud of the hand-drawn curve extracted from the image consists of 2204

points with a density of 5.3 points/mm. During the experiment, the user moves the

robot EE to probe the point cloud several rounds, and the corresponding VF force
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is rendered and delivered to the human user as shown in Figure 5.6a, in which the

green-colored area indicates one specific trial. The robot EE trajectory in the specific

trial is represented by green dots as shown in Figure 5.6b. In the figure, the proxy and

its contacting region (red circle and its center), and the normal vector n̂ (magenta

arrow) are visualized in a frequency of 10 Hz. Note that the z-axis is ignored when

rendering the VF force, which means that the generated VF along z-axis is continuous

and infinitely long.

Experiment 2 demonstrates that the proposed VF algorithm is valid in the image-

base scenario. The VF can be generated based on a hand-drawn curve from an image

while the VF force can be appropriately rendered in 3D space.

(a) Preplanned image (b) Curve extracting

Figure 5.5: Preplanned 2D image of a patient with osteoarthritis diagnosed and elbow arthro-
scopic debridement surgery required. Preplanned image size 871× 786 (width × height) pixels.
The red curve is hand-drawn for planning to remove osteophytes. The markers x1 to x9 will be
used to do an image-robot registration.

5.4 Discussions

In this chapter, an algorithm for generating virtual fixture (VF) directly from a set

of point cloud data is presented. The effectiveness of the VF algorithm is evaluated

by a series of simulations and experiments.
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Figure 5.6: Experiment 2 of implementing VF on point cloud of a hand-drawn curve with a size
of N = 2204. The blue cross, green point, and magenta point represent the point cloud, the
robot EE (the HIP), and the proxy, respectively. The proxy contacting region and the normal
vector n̂ are represented by red circle and magenta arrow, respectively.

The simulations demonstrated that the VF algorithm works well on point clouds

of various geometric entities, i.e., a single point, a line segment, a 2D teapot, and

a 2D hand-drawn curve. In Experiment 1, the results demonstrated that the VF

algorithm works well in 3D space by employing a set of point cloud in the shape of

a 2D square, while the user can feel the resistant force generated by the VF when

touching either side of the square via robot EE. In Experiment 2, 3D VF is generated

based on a hand-drawn curve extracted from a preplanned image, and the VF force

is appropriately rendered. Both the simulations and the experiments verified the

effectiveness of the VF algorithm. Particularly, the results of Experiment 2 showed

the possibility to implement the VF algorithm in image-guided surgery.

The VF algorithm is used for static VF in this work. It should be noted that the

algorithm is capable of serving for dynamic VF, i.e., generating and updating VF in

an online manner. This can be realized by online updating the point cloud dataset.

This feature could be very useful for some surgical scenarios, such as bone burring

during arthroscopic surgery, in which case the VF can online update itself based on

the real-time shape of the target bone.

One advantage of the point-based VF algorithm is that the VF is generated directly
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from points, the simplest geometric entity. Therefore, there is no need for 2D/3D

surface/volume reconstruction before generating VF which can save a substantial

amount of procedures and computations. More importantly, the point cloud can be

in any shape.

A limitation of the work in this chapter is visualization. In our experiments, only

the point cloud and the robot EE (i.e., the HIP) is visualized on a monitor during

the task. In future work, all key VF features (e.g., proxy point, contacting region,

normal vector) in 3D space will be visualized by using the augmented reality (AR)

technique, which can better help surgeons to utilize the VF.

5.5 Conclusion

Virtual fixture (VF) plays an important role in robot-assisted surgeries. A variety of

algorithms for generating VF have been developed for various surgical applications.

However, generating VF for a free-style curve/surface, e.g., a hand-drawn spline, is

still a challenging problem due to the fact that an accurate mathematical function

cannot always be found for such types of curves and surfaces. In this chapter, a point-

based VF algorithm is presented which allows to generate VF directly from the point

cloud data. The effectiveness of the algorithm is demonstrated by both simulations

and experiments. An experiment in an image-based scenario verified the capability

of the algorithm to generate VF based on a hand-drawn curve in an image.

The point-based VF algorithm is promising to be applied in various surgical sce-

narios in robot-assisted surgery and image-guided surgery, as long as a set of point

cloud of the target object can be obtained. In future work, we will implement the VF

algorithm into a realistic arthroscopic surgery scenario by using 3D physical bones

and develop accurate registration methods for robot-image-bone registration.
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Algorithm 1: Main algorithm
Data: A set of point cloud (Lpcloud) is predefined.
Result: A step vector (ŝ) is calculated in each servo loop according to different states of

the proxy (stateproxy), which can ensure that the proxy point (Pproxy) always
remains outside of the point cloud and never penetrates into it.

%(Initialization) ;
PHIP ← [−1, 0, 0] (for simulations) ;
Pproxy ← PHIP ;
rc ← 5 ∗ 10−3 ;
r1 ← rc − 0.01 ∗ 10−3 ;
r2 ← rc + 0.01 ∗ 10−3 ;
r3 ← 2 ∗ rc ;
rv ← 0 ;
while in a servo loop do

%(Update HIP position) ;
PHIP ← real-time robot EE position ;
%(To categorize point cloud) ;
for each point pi in cloud Lpcloud do

de = ∥pi −Pproxy∥2;
LEntrenched ← who has de < r1 + rv ;
LInContact ← who has r1 + rv ≤ de ≤ r2 + rv ;
LFreeMotion ← who has r2 + rv < de < r3 + rv ;
LOutNeighbor ← who has de ≥ r3 + rv ;

end
Note: Here the for-loop is only for illustration. ;
For efficiency, the point cloud needs to be treated as a whole matrix when doing the
categorization. ;

%(To determine proxy state stateproxy) ;
if LEntrenched ̸= null then

stateproxy = 2 (entrenched) ;
else

if LInContact ̸= null then
stateproxy = 1 (in contact) ;

else
if LFreeMotion ̸= null then

stateproxy = 0 (free motion) ;
else

stateproxy = −1 (no neighbor) ;
end

end

end
%(To determine normal vector n̂) ;
if stateproxy = 0/1/2 then

find the normal vector n̂ via (5.1) and (5.2) ;
end
%(To determine proxy movement step ŝ) ;
if stateproxy = −1/0/1/2 then

To determine ŝ from proxy algorithms (algorithm 2, algorithm 3, algorithm 4) ;
(ŝ determined) ;

end
%(Update proxy position);
Pproxy = Pproxy + ŝ ;

end
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Algorithm 2: Proxy movement step (stateproxy = 0)

Result: To determine step vector ŝ for proxy state of in free motion
(stateproxy = 0).

%(When proxy state is in free motion) ;
if stateproxy = 0 then

if Pproxy = PHIP then
ŝ = [0, 0, 0] ;

else
if Pproxy ̸= PHIP then

d = min(d0i), if min(d0i) < ∥u⃗∥ ;
d = ∥u⃗∥, if min(d0i) ≥ ∥u⃗∥ ;
ŝ = d ∗ u⃗

∥u⃗∥ ;

end
%(To do a special case-1 check on ŝ) ;
if d = 0 & HIP inside VF then

To determine d via projection u⃗p (5.5) ;

ŝ = d ∗ u⃗p

∥u⃗p∥ ;

end
%(To do a special case-2 check on ŝ) ;
if HIP is moving away from point cloud then

ŝ = PHIP −Pproxy ;
end
(ŝ determined) ;

end

end
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Algorithm 3: Proxy movement step (stateproxy = 1)

Result: To determine step vector ŝ for proxy state of in contact
(stateproxy = 1).

%(When proxy state is in contact) ;
if stateproxy = 1 then

HIP inside/outside VF ← angle between n̂ & u⃗ ;
projection vector u⃗p ← from n̂ & u⃗ ;
if ∥u⃗p∥ ≤ r1 then

d = ξ∥u⃗p∥ ;
else

if ∥u⃗p∥ > r1 then
d = ξr1 ;

end

end
(d determined) ;
if HIP inside VF then

ŝ = d ∗ u⃗p

∥u⃗p∥ ;

else
if HIP outside VF then

ŝ = d ∗ u⃗
∥u⃗∥ ;

end

end
(ŝ determined) ;

end

Algorithm 4: Proxy movement step (stateproxy = −1/2)
Result: To determine step vector ŝ for proxy state of entrenched

(stateproxy = 2) and no neighbour (stateproxy = −1).
%(When proxy state is entrenched) ;
if stateproxy = 2 then

d = max(d2i) from (5.7) ;
ŝ = d ∗ n̂ ;
(ŝ determined) ;

end
%(When proxy state is no neighbour) ;
if stateproxy = −1 then

ŝ = PHIP −Pproxy ;
(ŝ determined) ;

end
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Chapter 6

A Prototype of a Two-Arm
Robotic System for Arthroscopic
Surgery

In this chapter, we present a prototype of a two-arm robot-assisted arthroscopic

surgical system by assembling our previous work together. The left-arm robot is

used as a robot-assisted arthroscope holder, and it can hold the arthroscope still at

a fixed pose, while also allowing the operator to move it via a pedal switch whenever

needed. The left-arm robot is implemented with an impedance controller and a

gravity iterative learning (Git) scheme based on Chapter 4, where the former can

provide compliant robot behavior thus ensuring a safe human-robot interaction, while

the latter can accurately learn and compensate for gravity. The right-arm robot is

used as a robot-assisted surgical tool providing VF assistance and haptic feedback

during the surgery. The right-arm robot is implemented with a point-based virtual

fixture (VF) algorithm from Chapter 5, which can generate VF directly from a point

cloud with any shape, render haptic force feedback, and deliver it to the operator.

Furthermore, the VF, the bone, and the surgical bur with its real-time position are

visualized in a 3D digital environment as additional visual feedback for the operator.

A series of experiments are conducted to evaluate the effectiveness of the prototype.

1A version of this chapter has been submitted as: Teng Li, Armin Badre, and Mahdi Tavakoli,
“Robotic Assistance and Haptic Feedback in Arthroscopic Procedures: Design and Preliminary Eval-
uation of a Two-Arm System”, Journal of Medical Robotics Research (JMRR). [Under Review]
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6.1 Background

Robotic systems and techniques for orthopedic surgery have been developed and

evolved for several decades [74]. Nowadays, robot-assisted surgical systems have pre-

dominated over many orthopedic surgeries, such as total hip arthroplasty (THA), to-

tal knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and spine

surgery [74]. On the other hand, robot-assisted minimally invasive surgery (MIS) has

received more and more attention in orthopedics and beyond due to its advantages of

a faster recovery rate and decreased pain [43]. However, most of the existing robotic

systems in orthopedics have more focus on open surgery than MIS like arthroscopic

surgery[74, 43].

Elbow arthroscopy is a common arthroscopic surgery in orthopedics that is com-

monly used for the management of elbow arthritis, stiffness, tendinosis, fractures, and

instability in a minimally invasive fashion [13]. During traditional elbow arthroscopy,

the surgeon needs to hold an arthroscope with one hand while conducting the surgery

with the other hand under the arthroscope view. The arthroscope view may need to

be adjusted many times during the surgery in order to observe the surgical site from

different perspectives or change to another surgical site. Holding the arthroscope still

is important for the surgeon to conduct the surgery smoothly since the arthroscope

view is the main visual feedback the surgeon relies on to visually observe and locate

the surgical site, but this could make the surgeon easy-to-fatigue and high cognitive

load thus have adverse effect on the surgical performance. This arouses the necessity

to develop a robot-assisted system where the robot can hold the arthroscope still for

the surgeon, which can free the surgeon’s hand for other more important tasks, e.g.,

replacing the surgical bur with another one in a different shape.

To build a robotic assistant as an arthroscope holder, some requirements need

to be met [75]. First, The robot can hold the arthroscope still at a fixed position

while rejecting all possible disturbances (e.g., external disturbances delivered to the
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arthroscope via contact with the patient’s body during surgery). This will ensure

the surgeon always receives stable visual feedback even when some occasional distur-

bances are delivered to the arthroscope. Second, when the surgeon needs to move the

arthroscope to adjust the scope view perspective or to a new surgical site, the robot

should enable physical human-robot interaction (pHRI) and allow the arthroscope to

be moved around freely. The main concerns in building such a robot-assisted arthro-

scope holder are the dynamic model uncertainties and external disturbances, which

could largely affect the robot’s performance accuracy and even stability if they are not

appropriately compensated for in the robot dynamics. More specifically, incomplete

gravity compensation can be the main issue since heavy external surgical tools (e.g.,

the arthroscope) will be attached to the robot end-effector (EE).

In the two-arm system proposed in this work, the left-arm robot will be designed

as a robot-assisted arthroscope holder to satisfy the requirements described above. It

will mainly tackle the problem of disturbance estimation and gravity compensation

while ensuring a robust and safe human-robot interaction. To this end, we have

explored different approaches including disturbance observer, neural network (NN),

and gravity iterative learning (Git) scheme in our previous work[75, 76, 79].

Disturbance observer is a promising way to estimate and compensate for dynamic

uncertainties including gravity. In our previous work [75], we have shown that by inte-

grating impedance control and nonlinear disturbance observer, an accurate impedance

control can be achieved. In that work, the disturbance observer can accurately es-

timate and compensate for the lumped uncertainties including incomplete gravity

compensation. However, the problem is that the nonlinear disturbance observer

(NDOB) as well as any other types of observers, such as generalized momentum

observer (GMO), joint velocity observer (JVOB), extended state observer (ESO),

and disturbance Kalman filter (DKF) method, always estimate all the uncertainties

as a lumped term and is not able to separate any one component out [75, 78]. More-

over, the observer will refuse human-robot interaction since human-applied force will
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also be taken as a part of the lumped disturbances thus being rejected [75]. Then,

we tried to use an NN model to learn and separate a specific component from the

uncertainties [76]. Although it works well, it requires tremendous data and time to

train the NN model before use. To solve the problem more efficiently, we developed

a gravity iterative learning (Git) scheme in [79], especially for gravity compensation

since the gravity of the external surgical tools attached to the robot EE is the main

issue in our application scenario. With the Git scheme, the uncompensated gravity

can be accurately learned and compensated for in an online manner.

In the left-arm robot-assisted arthroscope holder, an integrated framework of in-

tegrating an impedance controller and the Git scheme will be implemented. The

impedance controller will ensure compliant robot behavior thus a robust and safe

human-robot interaction. The Git scheme will iteratively learn and compensate for

the gravity in the robot dynamics thus ensuring an accurate and stable robot control

system, and also enable human-robot interaction via a pedal switch when necessary.

On the other hand, it could be helpful for surgeons by providing them with addi-

tional haptic feedback via virtual fixture (VF). In the field of robot-assisted surgery,

VF has been widely used due to many potential benefits, such as reducing the sur-

geon’s cognitive load [150], improving surgeon’s surgical performance [48], and making

the surgical outcome more accurate and safe. Park et al. conducted a preliminary

test on VF in a blunt dissection task [99]. Their results indicated faster and more

precise task performance with the VF-assisted method than the conventional free-

hand method. Ryden et al. developed a method to generate VF directly from point

cloud to protect the beating heart during surgery [112]. They improved their method

further in [111, 96].

The haptic VF has been playing a vital role during various surgical procedures in

robot-assisted surgery, such as suturing [86], knot tying [150], dissection [121], either

assisting in moving the surgical tool along a trajectory or preventing it from entering

a specific area for protecting the objects inside (e.g., beating heart or nerve) [112,
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92]. Many research works have proved that VF with haptic feedback can provide

effective help to improve performance in surgical tasks. Johansson et al. evaluated

the feasibility and repeatability of using haptic VF to guide fibula osteotomies in

mandible reconstruction surgery [62]. As a further step, Cheng et al. proposed a

robotic assistant incorporating augmented reality (AR) visualization and haptic VF

for fibula osteotomies in mandible reconstruction surgery [20]. By comparing several

methods on the same fibula osteotomy task, their results showed that with the help

of AR and VF, the task precision can be improved.

In orthopedics, surgical plans are usually made based on preoperative images of

a patient. For example, determining the location and amount of osteophytes to

be debrided or the location of critical neurovascular structures to be avoided. In

traditional arthroscopic surgery, as mentioned earlier, the surgeon heavily relies on

the visual feedback from the arthroscope view to perform the surgical procedures at

hand. Also, the surgeon may need to mental image the surgical site and conduct the

surgical procedure (e.g., removing the osteophytes) by intuition and experience since

the arthroscope view is largely localized and lacks of depth information. A robot-

assisted surgical tool (e.g., a surgical bur) with haptic assistance can be designed to

relieve this problem, e.g., to help the surgeon reduce the mental load by providing

additional visual feedback and haptic feedback. To this end, some curves can be

drawn in the preoperative images to mark out boundaries of removing osteophytes,

or of protecting nerves inside. Then, with a robotic system, the hand-drawn curves or

the patient’s bone in the preoperative images can be used to generate VF which can

assist in removing osteophytes or protecting the nerves by providing haptic feedback.

However, the hand-drawn curves or the bone are usually in irregular shapes which

may not be able to be presented mathematically by equations that are often required

by most existing VF generating algorithms. To solve this problem, we developed a

point-based VF generation algorithm in [77], which allows us to generate VF directly

from point clouds in any shape.
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Therefore, the right-arm robot in the proposed two-arm system will be designed

to be a robot-assisted surgical tool with haptic feedback from VF, where the VF can

be generated directly from point clouds in any shape, e.g., a hand-drawn curve, or

a patient-specific bone model. Furthermore, augmented 3D visual feedback will be

provided to the surgeon to indicate the generated VF and the real-time location of

the surgical tool in a more global view in addition to the localized arthroscope view.

In summary, by integrating our previous work together [75, 77, 79], a prototype of

a two-arm robot-assisted arthroscopic surgical system is designed and experimentally

evaluated in this chapter. The left-arm robot, a robot-assisted arthroscope holder,

is implemented with an integrated framework of impedance control and Git scheme

developed in [79], which can ensure a safe human-robot interaction while accurately

learning for gravity compensation. The left-arm robot can help to hold the arthro-

scope still at a designated pose and also allow the operator to move it freely via a

pedal switch whenever necessary. The right-arm robot, a robot-assisted surgical tool,

is implemented with a point-based VF generation algorithm developed in [77], which

can provide VF assistance with haptic feedback to assist the operator in performing

surgical operations. Moreover, the VF, the surgical tool, and the force feedback val-

ues are visualized in a 3D digital environment to provide the operator with additional

visual feedback during the surgery. A series of experiments are conducted to eval-

uate the effectiveness of the prototype. The main contributions of this chapter are

described as the following,

• A two-arm robot-assisted system (6DOF + 6DOF) is designed and assembled for

arthroscopic surgery, while the control systems consist of techniques developed

in our previous work.

• The effectiveness of each arm is experimentally evaluated and verified, respec-

tively.

This chapter builds upon our prior work by not only refining the individual tech-
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nologies but also demonstrating their synergistic operation within a dual-arm robotic

system. The integration of a Git scheme for the arthroscope-holding arm and a

point-based VF algorithm for the tool-operating arm presents an advancement that

addresses a gap in arthroscopic surgery: the need for a comprehensive system that

enhances the surgeon’s dexterity and cognitive focus. By unifying these technologies

within a single and cohesive framework, we provide a solution that mitigates the

cognitive load on surgeons, offering both enhanced stability for the arthroscope and

intuitive haptic guidance for the surgical tool.

6.2 Methods

Robot dynamics governs the motion of a robot in response to external forces or

disturbances. Without properly handling the external disturbances (e.g., the mass of

the surgical tool attached to robot EE) in robot dynamics, the robot may perform

inaccurately or even have unstable or dangerous behavior. In this section, we will first

introduce the robot dynamics and disturbances, then we introduce impedance control

which can provide compliant robot behavior, and then we introduce a Git scheme that

can accurately compensate for external disturbances, especially gravity. At the end of

this section, a prototype of the proposed two-arm robot-assisted arthroscopic surgical

system will be presented, as well as the control block diagram.

6.2.1 Left-Arm: Robot dynamics and disturbances

A general dynamic model for an n-degree-of-freedom (DOF) rigid robot with revolute

joints [41] can be given by

M(q)⏞ ⏟⏟ ⏞
M̂+∆M

q̈+ S(q, q̇)⏞ ⏟⏟ ⏞
Ŝ+∆S

q̇+ G(q)⏞ ⏟⏟ ⏞
Ĝ+∆G

+τ fric(q̇) = τ+ τ ext⏞⏟⏟⏞
JTFext

(6.1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and acceleration, respectively, M ∈

Rn×n denotes the inherent inertia matrix, S ∈ Rn×n denotes a matrix of the Coriolis

and centrifugal forces, G ∈ Rn represents the gravity vector. M̂, Ŝ, Ĝ represent
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users’ model estimates, while ∆M, ∆S, ∆G are the corresponding estimate errors.

τ fric ∈ Rn is joint friction, τ ∈ Rn is the commanded joint torque vector, τ ext ∈ Rn

is the torque caused by external force, Fext ∈ R6 is the external force in Cartesian

space, and J ∈ R6×n is the Jacobian matrix.

By collecting all the disturbances together, the dynamic model (6.1) of a robot can

be re-written as

M̂q̈+ Ŝq̇+ Ĝ = τ+ τ ext − [τ fric + (∆Mq̈+∆Sq̇+∆G)]⏞ ⏟⏟ ⏞
τdist

(6.2)

where τdist denotes the lumped uncertainties containing the model error

(∆Mq̈+∆Sq̇+∆G), the joint friction τ fric, and the external disturbances τ ext.

In our target application, i.e., a robot-assisted arthroscopic surgical system, set-

point regulation and physical human-robot interaction (pHRI) are the two main sce-

narios we are considering. In the steady state of setpoint regulation (i.e., q = constant,

q̇ = q̈ = 0), it will have, (a) joint friction disappeared, i.e., τ fric = 0; (b) model error

(∆Mq̈+∆Sq̇+∆G) will be reduced to only gravity compensation error (∆G); (c)

only the gravity of the external constant payloads exists for external disturbances

(e.g., the surgical tools attached to the robot EE). By applying these conditions, the

dynamic model (6.1) will become (6.3).

Mq̈+ Sq̇+ Ĝ = τ+JTFext −∆G⏞ ⏟⏟ ⏞
τdist

(6.3)

The model (6.3) can be expressed in Cartesian space as

Mxẍ+ Sxẋ+Gx = J−Tτ + Fext (6.4)

where Mx,Sx,Gx have

⎧⎪⎨⎪⎩
Mx = J−TMJ−1

Sx = J−TSJ−1 −MxJ̇J
−1

Gx = J−TG

(6.5)

where Mx,Sx,Gx are the M,S,G expressed in Cartesian space, respectively.
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6.2.2 Left-Arm: Impedance control

A desired impedance model [129, 133, 75] for robot-environment interaction can be

expressed as

Fimp = Mm(ẍ− ẍd)+(Sx +Dm)(ẋ− ẋd) +Km(x− xd) (6.6)

where Mm,Dm,Km are user-designed matrices for inertia, damping, and stiffness,

respectively. Note that xd, ẋd, ẍd are the desired position, velocity, and accelera-

tion, respectively in Cartesian space, while x, ẋ, ẍ are the actual ones. Fimp is the

interaction force between the robot and the environment.

To avoid the measurement of external forces, the designed inertia matrix will be

set as the inherent inertia matrix of the robot, i.e., Mm = Mx. Then, by substituting

(6.6) into (6.4) with Fext = Fimp, the impedance control law can be given by [75]

τ = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd +G+JT[Dm(ẋd − ẋ) +Km(xd − x)] (6.7)

For set-point regulation, i.e., let robot EE stay at a fixed point, it will have ẋd = 0,

ẍd = 0. Then, the impedance control law (6.7) will be simplified and reduced to (6.8),

which is also known as task-space proportional–derivative (PD) controller with gravity

compensation.

τ = JT[Km(xd − x)−Dmẋ] +G (6.8)

With an impedance controller, the robot can behave with compliance and robust-

ness. By tuning the parameters in the impedance model (Km and Dm), the robot

can be configured to be “soft” or “stiff”. And with a “soft” robot behavior, a safe

human-robot interaction can be ensured.

6.2.3 Left-Arm: Git scheme

Since gravity compensation is the main problem in our target application, a gravity

iterative learning (Git) scheme is used to solve this problem [26, 79]. In our previous

work [79], we developed a Git scheme that can accurately learn and compensate for

126



gravity. A brief introduction to the Git scheme will be presented in this subsection,

while for more details on the Git scheme please refer to [79]. A Cartesian-space

impedance control law (at the i-th iteration, i = 1, 2, ...) integrating with the Git

scheme for gravity compensation can be expressed by

τ i = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd+JT[Dm(ẋd − ẋ) + γKm(xd − x)] + JTui−1

(6.9)

where JTui−1 is an iterative learning term for gravity compensation instead of a

gravity term G. For setpoint regulation, it will be reduced to be

τ i = JT[γKm(xd − x)−Dmẋ] + JTui−1 (6.10)

The update law for ui can be given by

ui = γηKm(xd − x) + ui−1 (6.11)

where ui is the iterative learning result at the i-th iteration (i = 1, 2, ...), setting

u0 = 0 for initialization, γ is a scalar gain, and η is the learning rate with steady-

state scaling strategy to enable the iterative learning term updates itself in each

sampling loop [79]. The scalar gain γ was mainly used for convergence analysis when

the Git scheme was developed in [79], and it is usually set as γ = 1. According to [79],

the learning rate η will first be scaled down from η = 1 to η = 0.001 by integrating

the steady-state scaling strategy based on the sampling loop (here the sampling loop

in our work is 0.001 s), then fine-tuned accordingly.

It is noteworthy that the dynamic model of the specific robot we employed in this

work is not available, while in our target surgical scenario, only setpoint regulation and

human-robot interaction are needed for the left-arm robot as an arthroscope holder.

Therefore, the impedance controller Eqn. (6.8) is sufficient to meet our requirement

in this work, which can also avoid involving the dynamic parameters (M and S).

Hence, the integrated control law Eqn. (6.10) is implemented in the left-arm robot.
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The major advantages of employing the Git scheme in this work include (1) its

simple and compact formulation, (2) its lack of any need for robot dynamics, and (3)

its lack of any need for a priori knowledge about the external payloads [79]. The Git

scheme will be implemented in the left-arm robot serving as a robot-assisted arthro-

scope holder. It will address the challenge of maintaining steady tool positioning, or

in other words, external disturbances, i.e., uncompensated gravity caused by the mass

of the surgical tool attached to the robot EE. Maintaining steady tool positioning,

i.e., holding the arthroscope still, is a crucial factor in avoiding surgical errors during

delicate arthroscopic procedures, and the Git scheme will help to achieve that.

Moreover, the integrated framework of impedance control and the Git scheme al-

lows human-robot interaction to be enabled via a pedal switch whenever necessary,

thus the arthroscope can be moved around to a new arthroscopic view or a new

surgical site. It is worth noting that, as illustrated in Figure 6.2, the setpoint regula-

tion mode (Interaction Disabled) and the pHRI mode (Interaction Enabled) are two

interchange behaviors rather than simultaneous. The two modes can be seamlessly

switched from one to another in an online manner via a pedal, and the pedal actions

are independent of the impedance gains (Km, Dm), i.e. the impedance gains remain

unchanged in both modes.

6.2.4 Right-Arm: Point-based VF algorithm

To render haptic feedback, a virtual fixture (VF) generation algorithm is required.

Most of the existing VF algorithms can deal with the target object with a regular

shape by finding out the mathematical representation, but it could be a challenge

for the objects with irregular shapes, e.g., a patient-specific bone model, or a hand-

drawn curve/surface in a preplan image. Although it still can be processed with some

approaches like the god-object algorithm by reconstructing a triangle-meshed model

[155], it could be complicated and time-consuming.

In our previous work [77], we developed a point-based VF generation algorithm

128



that allows us to generate VF directly from point clouds in any regular or irregular

shape as long as a set of point clouds of the object can be obtained. The point-

based VF algorithm consists of one main algorithm and three embedded algorithms

for moving the proxy in different conditions. The effectiveness of the VF algorithm

has been evaluated by a series of simulations and experiments. The VF algorithm

has also been evaluated successfully in an image-based scenario where a hand-drawn

curve in an irregular shape was extracted from an image as a set of point clouds.

The VF force is rendered by a simple spring model in the algorithm, and delivered

to the operator by the robot as haptic feedback. The details of the point-based VF

algorithm are available in [77].

Therefore, the point-based VF generation algorithm will be employed in the right-

arm robot. By implementing the point-based VF generation algorithm, VF assistance

can be generated and VF force can be rendered. The VF force can assist the surgeon

in conducting surgical operations. For example, a VF surface can be set at the bottom

of the osteophytes as a boundary, and the surgeon will receive haptic feedback once

the surgical tooltip is in contact with the VF surface. The VF assistance and haptic

feedback allow for natural hand movements while facilitating precise maneuvers in

tight joint spaces.

(a) Schematic (b) Prototype (c) Visualization

Figure 6.1: A schematic diagram of the two-arm system in arthroscopic surgery, a prototype of
the proposed two-arm robot-assisted arthroscopic surgical system and visualization in Unity. A
modified FAST (fundamentals of arthroscopic surgery training) simulator is used as the experi-
mental platform for an arthroscopic surgery mockup.
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6.2.5 Two-Arm System: Prototype and control diagram

A schematic diagram of robot-assisted arthroscopic surgery is illustrated in Fig-

ure 6.1a. The schematic diagram serves as a visual summary of the two-arm robotic

system’s interaction within the surgical environment. Specifically, it illustrates the

spatial relationship between the arthroscope, the surgical tool, and the target anatomy

(e.g., the elbow). A physical prototype of a two-arm robot-assisted system for arthro-

scopic surgery is developed as shown in Figure 6.1b and Figure 6.1c, where Figure 6.1b

shows the hardware of the prototype while Figure 6.1c shows a screenshot of the vi-

sualization in Unity. The control block diagram of the prototype system is illustrated

in Figure 6.2.

𝐱𝐝 = 𝐱
ሶ𝐱𝐝 = 𝟎
ሷ𝐱𝐝 = 𝟎 Gravity iterative learning for compensation.

𝛕

𝐪, ሶ𝐪

𝐱, ሶ𝐱
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ሶ𝐱𝐝 = 𝟎
ሷ𝐱𝐝 = 𝟎

𝐱∗ The latest set of real-time position of 𝐱.:

𝐅𝐯𝐟𝐅𝐠𝐢𝐭
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Controller
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Right-Arm

Robot

Left-Arm

Robot
+
+

Default 

Controller+
+

Forward

Kinematics

𝐽𝑇𝐽𝑇
VF 

Algorithm

Git

Scheme

𝐱𝐝 : Desired position.

Pedal=0, (default)

Regulation Mode.

Physical human-robot interaction.PHRI:

Figure 6.2: Control block diagram for the prototype of the two-arm robot-assisted arthroscopic
surgical system. When the pedal is pressed (xd = x), the position-dependent terms in the
impedance controller and the Git update law vanish, whereas the learned result in the Git update
law will remain valid, meaning that the pHRI mode is activated and interaction is enabled, and
now the user can move the robot EE around. When the pedal is not pressed (xd = x∗, default),
the setpoint regulation mode is recovered and interaction is disabled. Now the Git update law
is resumed, and it will continue to learn based on the previous learned result. The latest set of
position (x∗) ensures seamless switching between the regulation mode and the pHRI mode via
the pedal switch.

In the prototype, the left-arm robot has an arthroscope attached to its end-effector
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(EE), while the right-arm robot has a handheld surgical bur attached to its EE. The

left-arm robot is implemented with an impedance controller and a Git scheme. The

former can provide compliant robot behavior thus ensuring a safe human-robot inter-

action, and the latter can accurately learn and compensate for gravity that is mainly

caused by the attached external arthroscope. The right-arm robot is implemented

with the point-based VF generation algorithm which can generate VF directly from

point clouds with any shape, and rendering and providing VF force feedback to the

operator as haptic clues. Since both the left-arm robot and right-arm robot in our

prototype are haptic devices, the right-arm robot does not require a user-defined

controller when implementing the point-based VF algorithm, and it can also provide

haptic feedback with high fidelity. As shown in Figure 6.1c, the VF, force feedback,

and surgical tools are visualized in Unity to provide additional visual feedback.

As shown in the prototype of Figure 6.1b, some connectors are designed and 3D-

printed for the left-arm robot and the right-arm robot in order to attach the surgical

instruments (e.g., the arthroscope, and the handheld surgical bur) to the robot EEs.

Especially, to attach the handheld bur to the right-arm robot, 3D scanning on the

handheld bur is conducted first, and then the 3D model of the handheld bur having

an ergonomic shape design is used to design the connector. The surgical instruments

(arthroscope and surgical burs) and designed connectors are illustrated in Figure 6.3.

It is worth noting that for the right-arm robot, the surgical tool is rigidly mounted

to the robot EE (a cylindrical handle bar) via the customized 3D-printed connector

and bolts-nuts as shown in Figure 6.3b. The connector is deliberately designed to

connect to the robot EE through an interference fit joint, thus no slippages can occur.

The tool tip is then calibrated to be the new robot EE via the robot kinematics.

The dual-arm configuration of our prototype is designed to mimic the coordination

between a surgeon’s two hands while exercising dexterity and control, which is vital

in navigating the surgical tools in the confined spaces during arthroscopic surgery,

while providing haptic feedback as additional haptic assistance. With the left-arm
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(a) Arthroscope

(b) Surgical burs

Figure 6.3: Connectors and surgical instruments.

robot-assisted arthroscope holder, the surgeon’s hand will be freed to focus on some

other more important tasks, and when necessary the surgeon can easily operate the

arthroscope via a pedal switch. With the right-arm robot-assisted surgical tool with

haptic feedback, surgeons can have a lower cognitive load and higher confidence when

navigating the tool in confined spaces and conducting dexterous operation procedures.

With additional 3D visual feedback, the surgeon can easily figure out where the tooltip

is located in the big picture during the surgery.
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6.3 Experimental Evaluation on the Prototype

In this section, we conducted a series of experimental tests to evaluate the proto-

type of the proposed two-arm system in conditions simulating arthroscopic surgical

environments. Note that we conducted the evaluations on the left-arm robot and

the right-arm robot respectively since the functions and control systems of the two

robots are independent although they work collaboratively in the surgical scenario.

This also ensures the evaluation goals are clear and focused for each robot.

We configure the two-arm system to replicate common surgical tasks, with the

left-arm robot holding an arthroscope and providing an arthroscope view through the

camera-like device, and the right-arm robot manipulating a surgical bur. These tests

are meant to evaluate the system’s precision, responsiveness, and ability to handle

complex maneuvers typical of joint arthroscopic surgeries. The following sections

detail each experiment, outlining the setup, execution, and specific objectives aligned

with our research goals in advancing robotic-assisted arthroscopic surgery.

6.3.1 Robotic system of the prototype

A prototype of a two-arm robot-assisted arthroscopic surgical system is constructed

and illustrated in Figure 6.1. A pair of 6DOF Quanser’s High Definition Haptic De-

vice (HD2) robots (Quanser Inc., Markham, ON, Canada), PY (positive y-axis) robot

and NY (negative y-axis) robot are used as the left-arm robot and the right-arm robot,

respectively, as illustrated in Figure 6.1. Note that the two robots have different def-

initions on the base frame, as shown in the figure. A relevant kinematics analysis of

the HD2 PY robot is available in [71]. The Cartesian workspace of each of the HD2

robots is [x, y, z, roll, pitch, yaw] : [800mm, 250mm, 350mm, 180◦, 180◦, continuous].

The HD2 robot highlights its features on large workspace and very low intervening

dynamics, as well as highly back-drivable joints with negligible friction due to the

parallel mechanism design. For more details on their kinematic features, please refer
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to the system specifications1. It is noteworthy that the large workspace and the kine-

matic design of the robotic arms help to accommodate the range of motion required

in arthroscopic surgery, and it allows the arms to replicate the complex movements

of a surgeon’s hands within the constrained space of an arthroscopic procedure. In

this work, the two robots are controlled via joint torque commands, which are sent

from MATLAB/Simulink (version R2016a, MathWorks Inc., Natick, MA, USA) us-

ing Quarc real-time control software (Quanser Inc., Markham, ON, Canada). The

control rate of the robot is 1, 000 Hz. The MATLAB/Simulink and Quarc software

run on a computer with a 3.20 GHz Intel(R) Core(TM) i5-3470 CPU with a Windows

7 Enterprise 64-bit operating system.

In the prototype, as shown in Figure 6.1, the left-arm robot EE is attached to an

arthroscope (Sawbones®, A Pacific Research Company, Vashon Island, Washington,

USA) via one customized 3D-printed connector, while the right-arm robot EE is

attached to a handheld surgical bur (Ergo™ Shaver Handpiece, CONMED LINVATEC

SHAVER, Linvatec Corporation, Largo, Florida, USA) via another customized 3D-

printed connector. A modified FAST (fundamentals of arthroscopic surgery training)

simulator (Sawbones®, A Pacific Research Company, Vashon Island, Washington,

USA) is used as a platform for an arthroscopic surgery mockup, while a soap block

with a size of 22× 88× 48mm is used to represent the bone.

The two robots work independently but collaboratively in the proposed prototype.

The left-arm robot is used as a robotic arthroscope holder which can hold the arthro-

scope still for the surgeon and prevent external disturbances. Its position can be

adjusted when the surgeon needs to change the arthroscope view perspective. This

is realized by a pedal, i.e., when the pedal is unpressed (default), the arthroscope

will be held still by the robot (interaction disabled in the robot control system), and

when the pedal is pressed, the arthroscope can be moved to a new position (inter-

action enabled in the robot control system). The right-arm robot is attached to a

1Quanser: https://www.quanser.com/products/hd2-high-definition-haptic-device/

134

https://www.quanser.com/products/hd2-high-definition-haptic-device/


surgical instrument at its EE, and the surgeon can conduct the surgery via the hand-

held surgical instrument. During the surgery, the pose (position and rotation) of the

instrument will be tracked in real-time by the robot, and visualized in Unity (version

2022.3.11f1, Unity Technologies, San Francisco, CA, USA). Moreover, a VF generated

from a customized point cloud [77] is also visualized in Unity, and it is designed to

help the surgeon remove the extra bone based on a preoperative plan and provide

haptic feedback to the surgeon.

In the control block diagram of the prototype, as illustrated in Figure 6.2, a Git

scheme is implemented with an impedance controller in the left-arm robot, where the

former can accurately learn and compensate for gravity while the latter can ensure

compliant robot behavior during physical human-robot interaction (pHRI). On the

other hand, an algorithm of a point-based 3D VF-generating method [77] is imple-

mented in the right-arm robot. With the VF algorithm, the operator can receive

force feedback as additional haptic assistance when the surgical instrument is in con-

tact with the VF. The communications between the right-arm robot and Unity are

realized by user datagram protocol (UDP) at a rate of 100 Hz, where the real-time

pose of the right-arm robot EE is sent to Unity for visualization.

6.3.2 Parameterization

For all the experiments in this work, the parameter values used in the controller

and algorithms are listed in Table 6.1. In the following sub-sections, a series of

experiments are conducted to evaluate the effectiveness of the proposed prototype of

a two-arm robot-assisted arthroscopic surgical system. Note that the two robots are

evaluated individually since they work independently despite being collaboratively in

the system. A video demonstration for the experiments is available online2.

2online demo video link: https://youtu.be/ux10fDeb8dY
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Table 6.1: Parameterization for the experiments.

Robot Parameter Assigned Value

L spring gain Km = 400I

L damper gain Dm = 40I

L Git gain γ 1

L learning rate η 0.001

R VF force gain kvf 500

R VF sphere rvf 0.002 m

R VF rc 0.005 m

R VF r1 0.00049 m

R VF r2 0.00501 m

R VF r3 0.010 m

R VF sine wave points N = 30351

R VF sine wave px [−0.3, 0.1] m, step=0.002

R VF sine wave py [−0.5,−0.2] m, step=0.002

R VF sine wave pz pz = 0.03 sin( 2π0.1(py +
0.1
2 ))− 0.2

- bone block points N = 13500

- bone block size x× y × z = 0.022× 0.088× 0.048 m

Note: I ∈ R3×3 denote identity matrix. L, left-arm robot; R, right-arm robot; Git,
gravity iterative learning scheme; VF, virtual fixture. The tunable gains are determined
via trial and error with a binary search strategy. Note that for the left-arm robot, all
four experiments share the same set of impedance gains for a fair comparison across the
experiments.

6.3.3 Left-Arm Evaluation: Holding the arthroscope

The left-arm robot is evaluated by four experiments. The evaluation aim is to show

that, by implementing the impedance controller and Git scheme, the robot can hold

the arthroscope still (interaction disabled), while if needed, the robot allows the

operator to adjust the scope view perspective (interaction enabled) via a pedal switch.

In other words, when the pedal is unpressed (Pedal = 0, in regulation mode, default),

the robot EE keeps the position still while rejecting any disturbances; when the pedal
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is pressed (Pedal = 1, default, in pHRI mode), the robot allows the operator to

move the robot EE freely. The experiment setup for the left-arm robot is shown in

Figure 6.4. Note that when the robot EE keeps the position still in the setpoint

regulation mode, the robot will behave like a stiff spring if any accidental short

disturbance (e.g., user-applied force) is applied onto the robot EE, and the stiffness

level can be tuned via the impedance gains for robustness. This ensures a safe human-

robot interaction (expected or unexpected) through compliant robot behavior.

𝐙
X

(out) in𝐘 𝐘

𝐙
X

Figure 6.4: Left-arm robot experiment setup.

More specifically, Experiment 1 aims to evaluate the control accuracy of only an

impedance controller. Experiment 2 aims to evaluate the control accuracy of only an

impedance controller when a heavy external payload is attached to robot EE. Experi-

ment 3 aims to evaluate the capabilities of the Git scheme to learn and compensate for

the heavy external payload. The objective of Experiment 4 is to evaluate the preci-

sion, stability, and control capabilities of the prototype in mimicking a robot-assisted

arthroscopic holder.

In Experiment 1 of the left-arm robot (L-Exp.1), nothing is attached to the robot

EE. The robot is implemented with only an impedance controller (reduced to a PD
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controller in pHRI scenario). The result of L-Exp.1 is shown in Figure 6.5. As can be

seen in the figure, when the pedal is unpressed (Pedal = 0), the robot EE position

can be accurately regulated, while when the pedal is pressed (Pedal = 1), the robot

EE position is allowed to move freely. Noticed that in the yellow-colored area, when

the pedal is pressed (Pedal = 1) but human-robot interaction is not involved, the

robot EE will drift downward slowly as indicated by the red line due to inaccurate

gravity compensation.

In Experiment 2 of the left-arm robot (L-Exp.2), nothing is attached to the robot

EE at the beginning, and an external payload (515g) is attached to the robot EE

during the task (18∼60s). Same as the L-Exp.1, the robot is implemented with only

an impedance controller. The result of L-Exp.2 is shown in Figure 6.6. Similar to

the result of L-Exp.1, when the pedal is unpressed (Pedal = 0), the robot EE po-

sition can still be effectively regulated even with a heavy payload (515g) attached

(18∼60s), while when the pedal is pressed (Pedal = 1), the robot EE position is al-

lowed to move freely. However, as can be observed in Figure 6.6a, the actual positions

shift downward a bit (along z-axis) compared to the desired ones in regulation mode

(Pedal = 0), revealing a relatively lower regulation accuracy than that in L-Exp.1

due to the uncompensated payload. Moreover, as indicated in the yellow-colored area,

when the pedal is pressed (Pedal = 1) but human-robot interaction is not involved,

the robot EE will drift downward quickly to the ground as indicated by the red line

due to the heavy yet uncompensated payload (515g). The quick-dropping process is

more clearly reflected in Figure 6.6b during which the commanded force is remarkably

affected with a short oscillation occurred.

In Experiment 3 of the left-arm robot (L-Exp.3), the task is similar to that in

L-Exp.2, i.e., nothing is attached to the robot EE at the beginning, and an external

payload (515g) is attached to the robot EE during the task (20∼60s). Different

from L-Exp.1 and L-Exp.2, the robot in L-Exp.3 is implemented with an additional

Git scheme for gravity learning and compensation. The result of L-Exp.3 is shown in

138



Figure 6.7. Similarly, when the pedal is unpressed (Pedal = 0), the robot EE position

can be accurately regulated even with a heavy payload (515g) attached (20∼60s),

while when the pedal is pressed (Pedal = 1), the robot EE position is allowed to

move freely. Interestingly, as indicated in the yellow-colored area, when the pedal is

pressed (Pedal = 1) but human-robot interaction is not involved, the robot EE does

not drift downward anymore due to the Git scheme having accurately learned and

compensated for the gravity (see Figure 6.7b). Note that here the yellow-colored area

involves physical human-robot interaction as well. Additionally, it is worth noting

that the Git scheme revealed a quick and smooth convergence process during 20∼25s

immediately after the heavy payload attached to the robot EE.

In Experiment 4 of the left-arm robot (L-Exp.4), the robot EE is attached with

an arthroscope (713g), and the robot is implemented with a Git scheme for gravity

compensation in addition to an impedance controller, which is the same as that in

L-Exp.3. The result of L-Exp.4 is shown in Figure 6.8. As shown in the figure, when

the pedal is unpressed (Pedal = 0), the robot EE position (i.e., the arthroscope) can

be accurately regulated, while when the pedal is pressed (Pedal = 1), the robot EE

position is allowed to move freely to adjust the arthroscope view perspective. This

evaluated the effectiveness of the left-arm robot for holding with the arthroscope.

It is worth noting that Figure 6.8b revealed another quick and smooth convergence

process during 0∼10s which demonstrated the stability of the Git scheme in the

transient process of converging.

In summary, the results from L-Exp.1 indicate that an impedance controller can

provide robot compliance, but the control accuracy can be potentially affected by

uncompensated gravity. The findings of L-Exp.2 emphasize the results of L-Exp.1

more clearly that an impedance controller alone is not capable of dealing with heavy

external payloads when mimicking a heavy arthroscope attached to the robot EE.

In regulation mode, the uncompensated heavy payload will lower the regulation ac-

curacy, while in pHRI mode, the uncompensated heavy payload will drive the robot
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Figure 6.5: Experiment result of L-Exp.1 in pHRI scenario with only an impedance controller
implemented. Note that the yellow-colored area corresponds to the pHRI mode (Pedal = 1)
but no pHRI occurring.
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Figure 6.6: Experiment result of L-Exp.2 in pHRI scenario with only an impedance controller
implemented, while an extra payload (515g) attached to the robot EE. Note that the yellow-
colored area corresponds to the pHRI mode (Pedal = 1) but no pHRI occurring.

EE to drop toward the ground if there is no human-robot interaction involved. The

outcomes of L-Exp.3 help validate the capability of the Git scheme to compensate

for the heavy payload gravity. In regulation mode, the regulation accuracy can be

recovered to a high level, while in pHRI mode, the robot EE attached with a heavy

payload can stay in the air even if there is no human-robot interaction involved, and

all of those are due to the payload is accurately compensated by the Git scheme. The

results of L-Exp.4 validate and support our primary goal on system accuracy and
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Figure 6.7: Experiment result of L-Exp.3 in pHRI scenario with an impedance controller and Git
scheme implemented, while an extra payload (515g) is attached to the robot EE. Note that the
yellow-colored area corresponds to the pHRI mode (Pedal = 1), and both pHRI and non-pHRI
are involved.

stability of the robot-assisted arthroscope holder.
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Figure 6.8: Experiment result of L-Exp.4 in pHRI scenario with an impedance controller and Git
scheme implemented, while an arthroscope (713g) is attached to the robot EE.

6.3.4 Right-Arm Evaluation: Burring bone with VF

The right-arm robot is implemented with a point-based VF algorithm where the VF

can be generated directly from a point cloud with any shape [77]. Here in this work,

a point cloud of a sinusoidal wave is employed as shown in Figure 6.9a. In the figure,

the brown rectangular area represents a bone block, while the red circle represents
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Figure 6.9: Right-arm robot experiment setup and VF-bone registration.

the surgical bur. The bone above the sine wave needs to be removed during the task.

As shown in Figure 6.9b, a surgical bur is attached to the right-arm robot EE which

is used to remove the extra bone. The detailed parameterization related to the point

cloud is summarized in Table 6.1.

The VF, surgical bur, and bone block are also visualized in Unity in real-time dur-

ing the task as illustrated in Figure 6.1c. The evaluation aim for the right-arm robot

is to show that, by implementing the point-based VF algorithm, the VF can provide

force feedback to the operator during surgery operations (e.g., extra bone removal),

thus assist the operator in bone-removing with both haptic cues and visualization

together. In order to ensure the bone block is burred based on the designed VF as

illustrated in Figure 6.9a, a VF-bone registration needs to be done. The procedures

for VF-bone registration we used are the following, (1) the bone is stably fixed on

an experimental platform (i.e., the FAST simulator shown in Figure 6.9b); (2) the

platform is then stably fixed at an appropriate location within the robot workspace;

(3) the bone position coordinates in the robot workspace can then be retrieved via

the robot EE (i.e., the tool tip); (4) the VF is then registered such that the VF

valley penetrates into the top side of the bone for 3 mm along z-axis as illustrated in

Figure 6.9a. It is worth mentioning that the VF-bone registration method we used

has a main focus on the z-axis registration. However, the actual burring depth by the

bur along the z-axis still will be affected by the user-configured stiffness of the VF,
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e.g., a “soft” VF will allow bigger burring depth while a “stiff” VF will allow smaller

burring depth.

There are two experiments designed for evaluating the right-arm robot. The first

experiment (R-Exp.1) is to conduct a bone-removing task in an open space (mimicking

open surgery) where the cover of the FAST simulator is removed (see Figure 6.10),

while the second experiment (R-Exp.2) is to conduct the same bone-moving task via

a small portal (mimicking MIS) where the cover of the FAST simulator is involved

(see Figure 6.9b).

1

62 3

4 5

Figure 6.10: Probing test result of R-Exp.1 in pHRI scenario with an algorithm of point-based
VF implemented, while a handheld surgical bur (435g) is attached to the robot EE. Scenario 1○,
preparation stage; Scenario 2○, VF probing and force feedback test; Scenario 3○, VF sinusoidal
outline probing test; Scenario 4○ 5○, VF valley probing test; Scenario 6○, ending stage.

A probing test on the right-arm robot is performed first based on R-Exp.1 as shown

in Figure 6.10. Some scenario diagrams for typical procedures are also presented in

the figure. Scenario 1○ is in preparation stage. Scenario 2○ is in a VF probing and

143



force feedback test, where the goal is to test the VF force rendering as well as its

visualization in Unity. Scenario 3○ is in a VF outline probing test, where the goal

is to detect the sinusoidal outline of the VF. Scenario 4○ and 5○ are in a VF valley

probing test, where the goal is to move along the valley of the VF. Scenario 4○ is on

one side of the bone block, and scenario 5○ is on the other side of the bone block.

Scenario 6○ is in an ending stage. The probing test results show that the VF force

can be appropriately rendered and delivered to the operator, and the VF, surgical

bur, and force feedback values are also correctly visualized in Unity.

In traditional MIS elbow arthroscopy, the surgeon removes the osteophytes under

the arthroscope view, and the actual amount of the bone to be removed mainly relies

on the surgeon’s experience and the memorized preplan in the surgeon’s brain. The

right-arm robot can assist the surgeon in removing bone that is bound by surgeon-

defined VF, while providing haptic feedback to the surgeon to indicate where the VF

boundary is. Therefore, the goal of the bone-burring task in this work is to remove

the bone bounded by the VF as illustrated in Figure 6.9a.

The bone-burring task results of R-Exp.1 and R-Exp.2 are shown in Figure 6.11a

and Figure 6.11b, respectively. As can be seen in the figure, both experiments of

R-Exp.1 and R-Exp.2 can generate relatively good bone-burring task performance

with the VF assistance. In other words, the bone-burring task can be effectively con-

ducted with the right-arm robot either in simulated open surgery (Figure 6.11a) or

in simulated MIS surgery (Figure 6.11b), although the former results in a relatively

smooth and a bit wider bone-burring surface than the latter. This is reasonable since

the latter of MIS surgery is performed via a restricted portal. These results evalu-

ated the effectiveness of the right-arm robot including the point-based VF generation

algorithm, VF force rendering, haptic feedback, and visualization in Unity. Note

that for the bone-burring task results, we provide a qualitative result rather than a

quantitative result, this is because the quantitative performance heavily depends on

the parameter configuration when setting the force rendering of the VF, i.e., when
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a “soft” VF is configured, more bone material will be removed than planned since

higher penetration to the VF boundary is allowed, while on the contrary, when a

“stiff” VF is configured, few more bone material will be removed than planned since

low penetration to the VF boundary is allowed.

Point cloud for VF

VF sphere boundary

Surgical bur

(a) R-Exp.1 in open surgery scenario

Point cloud for VF

VF sphere boundary

Surgical bur

(b) R-Exp.2 in MIS surgery scenario

Figure 6.11: Experiment results of R-Exp.1 and R-Exp.2. The bone is represented by a soap
block with a size of 22× 88× 48mm.

6.3.5 Future work

In surgical scenarios, safety is of paramount importance. For the left-arm robot in

the proposed robot-assisted system, a safe and compliant human-robot interaction

can be ensured by the impedance controller, which can guarantee compliant robot

behavior. For the right-arm robot, since VF assistance and haptic feedback are the

main features, the safety of human-robot interaction solely relies on the stability and

reliability of the VF algorithm, which has been systematically verified in our previous

work [77]. On the other hand, system accuracy is another main concern. The Git

scheme implemented in the left-arm robot can guarantee accurate regulation through

accurate gravity estimation and compensation, while the performance accuracy of the

right-arm robot relies on the user-configured stiffness of the VF.

For the bone-burring tasks conducted via the right-arm robot, we provided only

qualitative performance results as introduced earlier. In future work, we will make
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a more deliberate experimental design such that the experimental results can be

evaluated quantitatively. For example, we can reconstruct the 3D digital models

of the bone before and after the surgical operations, and then make a comparison

quantitatively. We can also design an experiment to compare the task performance

with and without VF assistance, to evaluate to what extent the VF assistance and

haptic feedback can help to improve the task performance.

There are some other aspects that can be improved in future work. First, the

two robots work independently despite collaboratively in this work. To visualize the

real-time position of the left-arm robot in Unity, it needs to be registered into the

same coordinate system as the right-arm robot. Second, the bone is represented by a

soap block which could have different stiffness of material properties from the bone.

A real bone would be used in future work. Third, the registration of the bone into the

right-arm robot workspace is only conducted along the vertical z-axis as a simplified

case. In future work, full registration of a real bone should be conducted along all

three Cartesian axes. Additionally, a preplanned image-based surgical scenario can

be also involved. The inclusion of preoperative images would allow for more precise

mapping of the surgical field and enable the robot to navigate and interact with the

patient’s anatomy with a higher degree of fidelity. Last but not least, the experiments

in this work are dry experiments without fluid filling around the bone. In future work,

wet experiments should be designed for more realistic arthroscopic surgeries.

Some other improvements can be made in future work. For example, the minia-

turization of the components of the connectors between robot and surgical tool, en-

hancing the additional 3D visual feedback by introducing augmented reality (AR)

techniques, and designing more realistic and more complex surgical scenarios where

robotic assistance can make a difference.

146



6.4 Conclusion

In this chapter, a prototype of a two-arm robot-assisted arthroscopic surgical system

is presented. The system is composed of a pair of haptic devices. The left-arm robot

is attached to an arthroscope while the right-arm robot is attached to a handheld

surgical bur. The left-arm robot is implemented with an impedance controller and a

Git scheme, where the former ensures a safe human-robot interaction while the latter

accurately learns and compensates for gravity. The right-arm robot is implemented

with a point-based VF generation algorithm, which can generate VF directly from

point clouds with any shape. A series of experiments are conducted to evaluate the

effectiveness of the prototype system. The results show that the left-arm robot can

effectively hold the arthroscope still and allow the operator to move the arthroscope

via a pedal switch whenever needed, and the right-arm robot can render appropriate

VF force feedback from the VF algorithm and deliver it to the operator as haptic

assistance. Also, the VF, the bone, and the surgical bur with its real-time position

are visualized in Unity to provide additional visual feedback to the operator.

Debridement of osteophytes is a specific example surgery we used to evaluate the

prototype in this work, and it is a small arthroscopic surgery that is common in the

elbow and hip. Beyond this, the proposed prototype is promised to be used in a wide

variety of arthroscopic surgeries in orthopedics including (1) soft tissue repair/re-

construction, which is most commonly happened in the shoulder (e.g., rotator cuff

repair, labral repair) and the knee (e.g., anterior cruciate ligament (ACL) repair/re-

construction, meniscal repair), and these are by far the most common applications

of arthroscopy in orthopedics based on the volume of work, but there is also some

interest in elbow recently for ligament augmentation, repair/reconstruction; (2) bony

debridement, which is commonly happened in elbow (osteophytes), hip, and shoulder

(distal clavicle excision); (3) trauma, e.g., fracture reduction/fixation, etc. With the

robotic assistance of the proposed two-arm system, it is expected to help increase the
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surgeon’s accuracy and reliability while reducing invasiveness.

The implications of this work can extend beyond orthopedics, suggesting wider

applicability of such advanced robotic systems in various medical fields. The devel-

opment and successful evaluation of our prototype underline the potential for more

precise, controlled, and ergonomic surgical procedures using similar concepts derived

from impedance control for robot compliance, a Git scheme for gravity compensation,

and a point-based VF generation algorithm for objects in any shape.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

Robot-assisted surgery has received growing attention in the field of orthopedics and

beyond. Most of the existing robot-assisted surgical systems in orthopedics take

more focus on open surgery than minimally invasive surgery (MIS). In this thesis, a

prototype of a two-arm robot-assisted system is developed for arthroscopic surgery.

In Chapter 1, the evolvement of robotic systems and techniques in orthopedics

was reviewed, then the development of a two-arm robot-assisted arthroscopic surgical

system was motivated, and the challenges of building such a system were identified.

In Chapter 2, an integrated framework of combining impedance control and non-

linear disturbance observer (NDOB) was proposed for arthroscopic surgery. The

impedance controller can provide compliant robot behavior for a safe human-robot

interaction while the NDOB can compensate for dynamic uncertainties. By combin-

ing impedance control and NDOB, the integrated framework can achieve accurate

impedance control when dynamic uncertainties exist in the robotic system. However,

the NDOB observer always estimates for lumped uncertainties and cannot separate

any of the components.

In Chapter 3, in aiming to separate some specific components in the uncertain-

ties, a framework for using neural network (NN) to learn dynamic uncertainties is

proposed. The effectiveness and performance of the trained NN model were verified
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by simulations. However, it is not efficient to implement the NN model in practice.

In Chapter 4, an iterative learning scheme with a steady-state scaling strategy

for gravity compensation, i.e., Git (gravity iterative learning), is developed. The Git

scheme can accurately learn for gravity compensation in an iterative and online man-

ner, and it is in a simple and compact form. Moreover, by integrating an impedance

controller and the Git scheme, the robot EE can keep still at any designated pose,

while also allowing the operator to move it freely via a pedal switch whenever needed.

In Chapter 5, an algorithm of point-based virtual fixture (VF) generating method

was presented. The VF algorithm can generate VF directly from point clouds with

any shape. In applications, the VF algorithm can be used to generate VF from

hand-drawn curves with free-style shapes in a preplanned image, by extracting the

hand-drawn curve as a set of point clouds.

In Chapter 6, a prototype of a two-arm robot-assisted system for arthroscopic

surgery is presented and evaluated by assembling the work from Chapter 4 and from

Chapter 5. The left-arm robot is used as a robot-assisted arthroscope holder, and it

can hold the arthroscope still at a designated pose, while also allowing the operator

to move it via a pedal switch whenever needed. The left-arm robot is implemented

with an impedance controller and a gravity iterative learning (Git) scheme, while the

right-arm robot is implemented with a point-based virtual fixture (VF) algorithm.

The right-arm robot is used as a robot-assisted surgical bur providing VF assistance

and haptic feedback during the surgery. Furthermore, the VF, the bone, and the

surgical bur with its real-time position are visualized in a 3D digital environment as

additional visual feedback for the operator.

7.2 Future Research Directions

In future work, in aiming to further improve the prototype and bring it into a real

clinical environment, the following research topics are proposed:
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(1) Registration of robot-image-patient coordinate systems is a critical step before

the operation in surgery. More importantly, it directly determines the accu-

racy of surgical outcomes. An intelligent, accurate, and dynamic registration

strategy will be developed in future work.

(2) A robot-assisted arthroscopic surgical simulator based on the current prototype

can be developed. The simulator can be used to train surgeons and help them

acquire necessary surgical skills before conducting real surgery on patients.

(3) A more realistic surgical environment can be set up for further evaluating and

improving the prototype. For example, using a real physical bone instead of

a mock-up bone, designing a wet experimental environment where the bone is

surrounded by water, making the bone enclosed and only visible via the arthro-

scope, and performing a surgical task by using the two robots collaboratively.

(4) User studies should be conducted by employing arthroscopic surgeons to test

the prototype. Arthroscopic surgeons know best the requirements of the proto-

type for arthroscopic surgery, and their user experience and feedback should be

collected for further improvements of the prototype.

(5) A 3D digital bone can be used for generating VF (virtual fixture) to provide

haptic assistance during surgery. A patient-specific 3D digital bone can be

obtained before the surgery, then the surgeons can conduct a virtual surgery on

the 3D bone using software, e.g., removing osteophytes, and then an expected

3D bone can be obtained. During surgery, the expected 3D bone can be used to

generate VF assistance to assist the surgeon in accurately removing osteophytes.
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Appendix A: EMG-based Hybrid
Impedance-Force Control for
Ultrasound Imaging1

Ultrasound (US) imaging is a common but physically demanding task in the medical

field, and sonographers may need to put in considerable physical effort for producing

high-quality US images. During physical human-robot interaction on US imaging,

robot compliance is a critical feature that can ensure human user safety while auto-

matic force regulation ability can help to improve task performance. However, higher

robot compliance may mean lower force regulation accuracy, and vice versa. Espe-

cially, the contact/non-contact status transition can largely affect the control system

stability. In this work, a novel electromyography (EMG)-based hybrid impedance-

force control system is developed for US imaging task. The proposed control system

incorporates the robot compliance and force regulation ability via a hybrid controller

while the EMG channel enables the user to online modulate the trade-off between

the two features as necessary. Two experiments are conducted to examine the hy-

brid controller and show the necessity of involving an EMG-based modulator. A

proof-of-concept study on US imaging is performed with implementing the proposed

EMG-based control system, and the effectiveness is demonstrated. The proposed con-

trol system is promising to ensure robot’s stability and patient’s safety, thus obtain

high-quality US images, while monitoring and reducing sonographer’s fatigue. Fur-

1A version of this chapter has been published as: Teng Li, Hongjun Xing, Hamid D. Taghirad,
Mahdi Tavakoli, “EMG-based Hybrid Impedance-Force Control for Human-Robot Collaboration on
Ultrasound Imaging”, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2022), October 23-27, Kyoto, Japan, 2022. pp. 670-675. [IEEE Xplore]
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thermore, it can be easily adapted to other physically demanding tasks in the field of

medicine.

A.1 Introduction

During human-human collaboration, e.g., lifting and moving a heavy box together,

one naturally assumes to be the leader, while the other be the follower [83]. Aiming

for good performance on a collaborated task, the follower is required to be able to

shift between “compliant” and “rigid” behaviors whenever necessary according to the

leader’s intention. This is also true for human-robot collaboration when the human

is the leader, in which case the robot is expected to be able to understand the user’s

intention and adapt its compliance level in real-time according to the requirement of

the task.

Ultrasound (US) imaging task is conducted by sonographer in a way that man-

ually holding and moving the US probe on patient’s body or target tissue. This

procedure demands considerable physical effort from the sonographer due to multi-

tasking requirement, e.g., regulating the probe-tissue contact force while moving the

probe along a trajectory. Various robot-assisted US imaging methods [104] have been

developed aiming both to reduce the sonographer’s physical effort and to improve the

task performance, i.e., acquiring high-quality scanning images.

Robot teleoperation has been used for US imaging for a long time. Two decades

ago, Mitsuishi et al. [91] developed a remote US diagnostic system. The distance

between the user interface and teleoperated manipulator holding the US probe was

about 700 km. Conti et al. [23] presented a new teleoperation robotic system assisting

sonographers to conduct US imaging task aiming to reduce physical fatigue and better

interpretation of US imaging data.

Apart from teleoperation systems, physical human-robot interaction (pHRI) for a

collaborative US imaging task is very beneficial to sonographers. Carriere et al. [15]

designed an admittance-controlled semi-autonomous system for US imaging. Their
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system enabled the robot to automatically control the US probe’s orientation and the

probe-tissue contact force, while the user controls the lateral position of the probe on

the patient’s body. In their system, 3D reconstruction technique is used to model the

tissue surface.

To obtain compliant behavior from a robot, an impedance or admittance controller

may be employed [83]. In pHRI applications, the robot can be controlled to be soft

(compliant) or rigid (non-compliant) based on identified human intention and task

requirements [73]. One main advantage of impedance control is its potentially better

compliant robot behavior compared to admittance control. Another advantage is that

the measurement or estimation on human-robot interaction force is not necessary

for impedance control whereas it is indispensable for admittance control. On the

other hand, implementing an impedance controller is usually more complex than an

admittance controller because it usually requires full knowledge of the robot dynamics

and accurately identified dynamic parameters [15].

The stable and appropriate normal contact force between the US probe and the

tissue during scanning is one of the most important factors that can guarantee the

US image quality [23, 15]. Different exam types may need different desired contact

force range [131]. The requirement on accurately regulating the contact force into a

desired range is a major reason that induces the sonographer’s fatigue which could

further affect image quality and even patient’s safety. A force tracking controller

can allow a robot to track or regulate the robot-environment interaction force in an

autonomous manner, which could effectively help the sonographer to do the force

regulation during US image scanning process [15].

Electromyography (EMG) is increasingly incorporated into robot control systems

for better interpreting human intention and enhancing pHRI, because it can be more

easily measured than some other physiological signals like electroencephalography

(EEG) and electrocardiography (ECG). The concept of teleimpedance was first in-

troduced in a work done by Ajoudani et al. [4], where the EMG measured from the
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human arm was used to regulate the robot impedance in real-time. By using EMG

signal, the robot impedance was modified as needed in different phases of a pHRI

task like peg-in-hole insertion. EMG was also used for online monitoring the user’s

fatigue during a pHRI task such that the robot could adapt itself to take over more

physical work and allow the human partner to have some rest [101].

Contact/non-contact status switching is commonly encountered during US imaging

especially at the start/end phase of the task. A critical issue during the status

transition is that it can adversely affect the system stability thus patient’s safety.

Aiming to incorporate robot compliance and force regulation ability together while

ensuring robot’s stability especially during contact/non-contact status transition, in

this work, an EMG-based hybrid impedance-force control system is developed as

shown in Figure A.1. The proposed system incorporates advantages of compliant

robot behavior coming from an impedance controller and accurate force regulation

ability coming from a force controller, while the EMG signal is used as a modulator

which enables the human user to tune the trade-off between robot compliance and

force regulation ability in an online manner. The effectiveness of the proposed control

system is evaluated by a preliminary application on human-robot collaborated US

imaging task.

A.2 Methods

A.2.1 Impedance control and force control

The general dynamic model for an n-degree-of-freedom (DOF) rigid robot [41] may

be expressed as

M(q)q̈+ S(q, q̇)q̇+ g(q) = τ + JTFext (A.1)

whereM ∈ Rn×n denotes the inertia matrix, S ∈ Rn×n denotes a matrix related to the

Coriolis and centrifugal forces, g ∈ Rn represents a vector related to gravity, τ ∈ Rn

is the commanded joint torque vector, Fext ∈ R6 is external force in Cartesian space,
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Figure A.1: Schematic setup of an EMG-based hybrid impedance-force control system for
human-robot collaboration on Ultrasound imaging task.

and J ∈ R6×n is the Jacobian matrix. A full impedance model [151] can be given by

Fimp = Mm(ẍ− ẍd) +Dm(ẋ− ẋd) +Km(x− xd) (A.2)

where Mm,Dm,Km are the user-defined matrices for inertia, damping, and stiffness,

respectively. xd, ẋd, ẍd are the desired position, velocity, and acceleration, respec-

tively in Cartesian space, while x, ẋ, ẍ are the actual position, velocity, and acceler-

ation, respectively. Fimp ∈ R6 is the contact wrench (force and torque) between the

robot end-effector (EE) and the environment in Cartesian space.

To avoid external force measurement, we set the desired inertia matrix equal to the

natural inertia matrix of the robot, i.e., Mm = Mx, where Mx is the natural inertia

of the robot in Cartesian space, and Mx = J−TMJ−1 [141]. In order to represent a

real mechanical system, a Coriolis and centrifugal term should also be included into

the impedance model (A.2). Then, the full impedance model is augmented as

Fimp = Mx(ẍ− ẍd)+(Sx +Dm)(ẋ− ẋd) +Km(x− xd) (A.3)

where Sx is the Coriolis and centrifugal matrix of the robot in Cartesian space and

Sx = J−TSJ−1 −MxJ̇J
−1. For set-point regulation problem, it has ẍd = ẋd = 0.
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Then by substituting (A.3) into (A.1) via Fext = Fimp, a simplified impedance control

law can be obtained as given by (A.4), which is also known as task-space PD controller

with gravity compensation.

τ imp = JT[Km(xd − x)−Dmẋ] + g, (A.4)

A general form of Cartesian-space force tracking controller [116] can be given by

τ f = KpJ
T(F− Fd)+KiJ

T

∫︂ t

0

(F− Fd)dt+KdJ
T(Ḟ− Ḟd) (A.5)

where Kp,Ki,Kd ∈ Rn×n are the gain matrices of P-regulator, I-regulator, and D-

regulator, respectively in the joint space, which need to be designed. Fd,F ∈ R6 are

the desired and actual interaction force between the robot EE and the environment,

respectively. For simplicity, a simplified PI force tracking controller is employed which

is given by

τ f = KpJ
T(F− Fd) +KiJ

T

∫︂ t

0

(F− Fd)dt (A.6)

where F is measured by an external Force/Torque (F/T) sensor, Kp = kpI, Ki = kiI,

and I is an appropriate identity matrix. Theoretically, the P-regulator (Kp) term

can be viewed as a spring which reduces the force error between F and Fd. The I-

regulator (Ki) term acts as a compensator which can compensate the possible steady

state force error.

The block diagram of the proposed EMG-based hybrid impedance-force control

system for human-robot collaboration task is shown in Figure A.2. EMG-related

processing and mapping methods will be introduced subsequently.

A.2.2 EMG signal acquisition and processing

In this work, raw electromyography (EMG) signal from human user’s arm (biceps

brachii) [68] is collected and processed in real-time. A simple moving average (SMA)

algorithm given by (A.7) is employed as the filter.

esma =
1

N

N∑︂
n=1

eraw (A.7)

171



𝑥𝑑

Audio 

feedback

𝐹

𝜏𝑖𝑚𝑝

𝜏𝑐𝑚𝑑

𝑞, ሶ𝑞, 𝐹

𝐸𝑀𝐺 𝜏𝑓

Human

EMG 

sensor

Robot

F/T 

Sensor-1

Impedance 

controller

Force 

controller

Figure A.2: Block diagram for the proposed EMG-based hybrid impedance-force control system.

where esma is the filtered EMG signal, N is the moving window size in units of sample

points, eraw is the raw EMG.

After passing through a filter, the filtered EMG signal esma is normalized into a

range of [0, 1] by enorm = esma/emvc, via a user-specific parameter called maximum

voluntary contraction (MVC). Therefore, the MVC needs to be calibrated for each

user. The calibration procedure [68] is that, the user maximize his/her arm muscle

effort for three times, then the average of the three maximum, denoted by emvc, will

be taken as the MVC of this user.

A.2.3 EMG mapping algorithm

The normalized EMG signal enorm is mapped to the P-regulator (Kp = kpI in (A.6))

in the hybrid impedance-force controller using the following mapping algorithm,

kp =

{︄
(kp,max − kp,min)× (1− enorm) if enorm ≤ σ

kp,min if enorm > σ
(A.8)

where 0 < σ < 1, kp,min and kp,max represent the minimum and maximum force

regulation ability of the robot, respectively. The transition between the two conditions

in (A.8) is realized via a low-pass filter to ensure the smoothness.

The general idea of the mapping algorithm (A.8) is that, when the human user

exerts a larger interaction force on the robot EE (detected by Sensor 2 in Figure A.1),

the robot should become more compliant. When the user exert a large-enough force
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(enorm > σ) on the robot EE, it indicates that the user intends to totally control

the robot, thus the robot should provide the maximum compliance (kp = kp,min).

To the contrary, when the user relaxes his/her arm (enorm ≤ σ), the robot should

assume control of the contact force between the probe and tissue for an accurate

force regulation, such that the user can focus on other tasks.

A.2.4 Desired force and audio feedback design

As introduced in the Introduction, different purposes may require different desired

force range for the contact force between the US probe and the tissue. Empirically,

a desired range of 4.5± 1 N for the contact force is used in this work for pilot tests.

Note that in the force controller, it is possible to set other constant or time-varying

desired force.

Accordingly, audio feedback is provided to the user to indicate which range the

current normal contact force is located in, i.e., lower range [−inf, 3.5] N, ideal range

[3.5, 5.5] N, or upper range [5.5, inf ] N. Continuous beep is provided via Arduino

board to indicate the ideal range, while discontinuous fast beep is provided to indicate

the upper range. Otherwise, no audio feedback is provided.

A.3 Experiments and Results

A.3.1 Apparatus

A 7-DOF Franka Emika Panda robot (Franka Emika GmbH, Munich, Germany) is

employed for developing and evaluating the proposed EMG-based hybrid impedance-

force control system for US imaging task as illustrated in Figure A.1. The hybrid

controller is implemented via libfranka, the C++ implementation of the client side

of the Franka Control Interface (FCI). The libfranka run with ROS control on a

workstation computer of Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz × 6 with the

Ubuntu 16.04 LTS (Xenial Xerus) 64-bit operating system. The control rate of the

robot is 1 kHz.
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A classical Arduino MEGA2560 (R3) board is used to collect the raw EMG signal

from EMG sensor and then transmit it to the control system. Meanwhile, it also

provides audio feedback to the user to indicate the real-time contact status between

the US probe and the soft tissue. The EMG signal sent from Arduino to the robot

controller is at 1 kHz.

In this work, the contact force between the US probe and the soft tissue is measured

by a 6-DOF F/T sensor (Sensor 1 in Figure A.1, Axia80-M20-ZC22, ATI Industrial

Automation, Inc., USA). Meanwhile, a second F/T sensor (Sensor 2 in Figure A.1)

with exactly the same type is used to measure the external interaction force exerted

by the human as an independent measurement to indicate the user effort. Please

note that the data from Sensor 2 is only used for post-analysis and not used in the

control system, and Sensor 2 can be removed in the future in order for a more compact

system.

The main parameters used in the experiments are listed in Table A.1. A video

demonstration for the experiments is available online1.

Table A.1: Parameters for the experiments.

Parameter Location Experiment

Km = diag{10, 10, 10, 0, 0, 0} Eqn. (A.4) Exp.1,2,3

Dm = diag{0, 0, 0, 0, 0, 0} Eqn. (A.4) Exp.1,2,3

Fd = [0, 0, 4.5, 0, 0, 0]T Eqn. (A.6) Exp.1,2,3

kp = 3; ki = 0.5 Eqn. (A.6) Exp.1,3

kp = 0/1/3; ki = 0.5 Eqn. (A.6) Exp.2

kp,min = 0; kp,max = 3; σ = 0.5 Eqn. (A.8) Exp.2,3

Note: Km,Dm ∈ R6×6 are diagonal matrices. The desired contact force Fd is defined
in the frame of Sensor 1, then transformed into the robot base frame. A preliminary
test on ki at three levels (ki = 0/0.2/0.5) was conducted, then ki = 0.5 was determined
based on the optimal results. σ = 0.5 is determined for a balanced level of human user’s
arm muscle contraction.

1online demo video link: https://youtu.be/kgMYiFkA3qk
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A.3.2 Experiment 1: Hybrid impedance-force controller

Experiment 1 is designed to evaluate the hybrid impedance-force controller in two

scenarios. The first scenario is US imaging on a rectangular soft tissue as shown

in Figure A.3a, and the second scenario is on bowl-shaped soft tissue (representing

human breast) as shown in Figure A.3c.

A user performs an US imaging task in the two scenarios separately. In each trial,

the user moves the US probe on the surface of the soft tissue from one side to the

other and then back. Three continuous trials compose as one session, and six sessions

for each scenario. Note that, this experiment does not involve contact/non-contact

status transition.

A typical sample data for each of the two scenarios are shown in Figure A.3b and

Figure A.3d. The detailed results of Experiment 1 are summarized in Table A.2.

These results show that the performance in rectangular scenario has no significant

difference (p = 0.2542) with that in bowl-shaped scenario in terms of normal force

regulation accuracy. However, the rectangular scenario has significantly more stable

force regulation behavior (p = 0.0097) than the bowl-shaped scenario in terms of

standard deviation. This is reasonable considering that the latter scenario involves

more complex rotational movements while the former does not.

The results of Experiment 1 indicate that, the hybrid impedance-force controller

is able to help the user regulate the probe-tissue contact force in both simple (rect-

angular) scenario and complex (bowl-shaped) scenario without significant difference

in terms of average contact force. With the help of the hybrid controller, the robot

will regulate the contact force while the user can focus on other tasks, e.g., moving

the probe on the tissue along a desired trajectory.

A.3.3 Experiment 2: Lifting task

During US imaging, contact/non-contact status transition, e.g., moving the probe

away from or onto the tissue surface, is a major factor that could affect the control
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Figure A.3: Schematic illustration for the two scenarios in Experiment 1 and typical sample
results. Two cyan dash lines indicate the predefined ideal range [3.5, 5.5] N, while the red dash-
dot line denotes the desired force 4.5 N.

Table A.2: Results of Experiment 1 on normal contact force in rectangular and bowl-shaped
tissue scenarios.

Mean (N) std. (N)

Rect. Bowl. Rect. Bowl.

s1 4.426 4.517 0.291 0.461

s2 4.446 4.397 0.245 0.581

s3 4.390 4.473 0.249 0.359

s4 4.304 4.431 0.369 0.458

s5 4.438 4.456 0.167 0.543

s6 4.472 4.432 0.293 0.430

p = 0.2542 p = 0.0097 (*)

Note: s1, means session-1; Rect., means rectangular tissue scenario; Bowl., means bowl-
shaped tissue scenario; std., means standard deviation.
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system stability, thus potentially endanger the patient’s safety. Therefore, it is neces-

sary to examine the system stability and robot compliance when contact/non-contact

status transition is involved. For this purpose, a lifting task is designed in Experiment

2 as illustrated in Figure A.4a. In each trial, the user needs to lift the US probe from

one surface to a predefined height and then move onto another surface. During the

task, the maximum force exerted by the user is measured by the F/T Sensor 2 and

recorded as the user’s effort in each trial. There are three levels for the P-regulator

are tested due to a mapping relationship between the EMG signal and the P-regulator

in the final controller. Six trials for each level are conducted.

The results on the lifting task are shown in Figure A.4b. As can be seen in the

figure, the user’s maximum efforts significantly increase as the increasing of the P-

regulator. This means that with a lower level of kp, the robot can provide better

compliance, thus the user can easily lift and move the US probe. However, with a

higher level of kp, the robot can provide better force regulation accuracy but the user

needs to make more effort to lift the US probe. More importantly, the latter case

could easily trigger an unstable system due to the potentially large external force,

e.g., trigger an automatic emergency stop for the Panda robot.

The results of Experiment 2 indicate that, the P-regulator in the force controller is

able to do a trade-off between the robot compliance and the force regulation ability.

An EMG-based modulator will be introduced into the control system such that the

trade-off can be tuned online by the user.

A.3.4 Experiment 3: Application

In Experiment 3, a proof-of-concept application study on the US imaging is conducted

by implementing the proposed EMG-based hybrid impedance-force controller. The

user’s arm EMG signal is mapped with the P-regulator of the force controller via

the algorithm (A.8). This allows not only the robot to regulate the contact force au-

tonomously, but also the user to modulate the robot compliance in an online manner.
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Figure A.4: Schematic illustration and results for the lifting task in Experiment 2. The maximum
user effort are from three levels of the P-regulator in the PI force controller.

As shown in Figure A.5, a general US imaging task is designed in Experiment 3

to evaluate the effectiveness of the proposed EMG-based hybrid controller. The task

includes a lifting sub-task that involves contact/non-contact status transition, and

an US imaging sub-task on a complex tissue surface geometry which consists of a

horizontal plane and an inclined slope plane. For each trial in the task, the user first

needs to lift the US probe to reach a predefined height (the same height as that in

Experiment 2), then puts it onto the complex tissue surface, and then moves it on

the surface to the end and then back (see the red dash trajectory in the figure). To

assist the user in moving the probe along the trajectory, a vertical virtual wall is set

along the trajectory. Six separate sessions are conducted and each session includes

only one trial. The user effort, i.e., maximum lifting force, and normal contact force

are recorded in each session.

A sample data for a typical session in Experiment 3 is presented in Figure A.6.

As shown in the figure, the first colored area is for the lifting sub-task that involves

contact/non-contact status transition while the second colored area is for the US

imaging sub-task. The area between the two colored areas is a recovery phase in which

the contact force will recovered to the desired level driven by the hybrid controller.
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Figure A.5: Setup for the application in Experiment 3 with implementing the EMG-based hybrid
impedance-force controller.

Figure A.6: Sample data for a typical trial in Experiment 3. The yellow colored area is for the
lifting sub-task while the green colored area is for the US imaging sub-task.

The maximum user effort in the lifting sub-task and the normal contact force in the

US imaging sub-task in each session are summarized in Table A.3. As shown in the

table and Figure A.6, with the help of EMG-based modulator, the robot compliance

can be tuned online as needed, and the user effort for lifting the probe is kept in a

reasonable range, which ensure system stability and patient’s safety.

A comparison is conducted between the results of Experiment 3 and the two sce-

narios in Experiment 1 as show in Figure A.7. As can be seen in Figure A.7a, there
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is no significant difference in terms of the force regulation accuracy between the sce-

nario in Experiment 3 and either of the rectangular and bowl-shaped tissue scenarios

in Experiment 1. This indicates that the performance on force regulation accuracy

in Experiment 3 is as good as that in the rectangular and bowl-shaped tissue sce-

nario in Experiment 1. For the standard deviation as shown in Figure A.7b, however,

there is significant difference (p = 0.002) between Experiment 3 and the rectangular

scenario in Experiment 1 which indicates that the latter had a significantly more

stable force regulation behavior. This is reasonable since the latter scenario has not

involved complex rotations of the robot EE. There is no significant difference on the

standard deviation (p = 0.053) between Experiment 3 and the bowl-shaped scenario

in Experiment 1.

Table A.3: Results of Experiment 3 with the proposed EMG-based hybrid impedance-force
controller.

Normal contact force (N) User effort (N)

mean std. max

s1 4.848 0.663 16.319

s2 4.881 0.479 15.241

s3 4.615 0.764 14.807

s4 4.554 0.575 16.021

s5 4.379 0.725 16.092

s6 4.424 0.898 16.502

Note: s1, means session-1; std., means standard deviation.

One limitation of the proposed EMG-based method is that the EMG acquisition

system needs to be calibrated for each individual in order to obtain the MVC, although

the calibration procedure is simple. In the future work, machine learning algorithms

will be employed to automatically identify the MVC online and on a user-specific

basis. Another limitation is that normal contact force rather than acquired image is

used as the metric to evaluate the proposed system in the present work. Although

the contact force is a main indicator for obtaining high-quality US scanning images,

directly evaluating the quality of the acquired scanning images will be a necessary
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Figure A.7: Comparison between Experiment 3 and the two scenarios (rectangular and bowl-
shaped) in Experiment 1. Note, EXP1.rect and EXP1.bowl mean rectangular scenario and
bowl-shaped scenario in Experiment 1, respectively.

part for evaluating the effectiveness of the proposed system in future work. Also, user

performance study on the proposed system needs to be systematically conducted and

evaluated in the next step by medical experts like sonographers. The EMG acquisition

device with wired connection is cumbersome to some extent for the operator in our

current experiment. In future work, wireless communication will be employed for a

more compact system.

A.4 Conclusion

Contact status transition between contact and non-contact is a main factor that

may cause system instability. Compliant robot behavior can be expected from an

impedance controller during physical human-robot interaction while accurate force

regulation can be expected from a force controller. However, higher compliance

may mean lower force regulation accuracy, and vice versa. In this work, a novel

EMG-based hybrid impedance-force control system for human-robot collaborative

Ultrasound (US) imaging task is developed and evaluated. The proposed control

system incorporates the robot compliance and force regulation ability via a hybrid
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impedance-force controller. EMG signal of the user is mapped with the hybrid con-

troller as a modulator which allows the user to tune the trade-off between robot

compliance and force regulation ability in an online manner. The effectiveness of the

proposed control system is demonstrated by a proof-of-concept application study on

US imaging.

The proposed control system is promising to be used in the US imaging task for

monitoring the sonographer’s fatigue, ensuring the patient’s safety, and improving US

imaging quality. This proposed system can be easily adapted to many other medi-

cal tasks that require strenuous physical human effort like procedures in orthopedic

surgery.
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Appendix B: Dual Mode
pHRI-teleHRI Control System for
Ultrasound Imaging1

The COVID-19 pandemic has brought unprecedented extreme pressure on the med-

ical system due to the physical distance policy, especially for procedures such as

ultrasound (US) imaging, which are usually carried out in person. Tele-operation

systems are a promising way to avoid physical human–robot interaction (pHRI).

However, the system usually requires another robot on the remote doctor side to

provide haptic feedback, which makes it expensive and complex. To reduce the cost

and system complexity, in this work, we present a low-cost, easy-to-use, dual-mode

pHRI-teleHRI control system with a custom-designed hybrid admittance-force con-

troller for US imaging. The proposed system requires only a tracking camera rather

than a sophisticated robot on the remote side. An audio feedback is designed for

replacing haptic feedback on the remote side, and its sufficiency is experimentally

verified. The experimental results indicate that the designed hybrid controller can

significantly improve the task performance in both modes. Furthermore, the proposed

system enables the user to conduct US imaging while complying with the physical

distance policy, and allows them to seamlessly switch modes from one to another in an

online manner. The novel system can be easily adapted to other medical applications

beyond the pandemic, such as tele-healthcare, palpation, and auscultation.

1A version of this chapter has been published as: Teng Li, Xiao Meng, and Mahdi Tavakoli, “Dual
Mode pHRI-teleHRI Control System with a Hybrid Admittance-Force Controller for Ultrasound
Imaging”, Sensors, Section: Sensors and Robotics, Special Issue: Sensors Technology for Medical
Robotics, 2022, 22(11):4025. [MDPI]
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B.1 Introduction

The COVID-19 pandemic has posed a huge challenge to medical systems due to the

physical distance policy [46], especially for medical procedures that usually require

physical contact, such as injections, palpation, and ultrasound (US) imaging. This

has led to a growing interest in robotics in the fields of medicine and healthcare, such

as robot-assisted systems, automated control systems, and tele-operation systems,

which are regarded as promising substitute methods when physical human–robot

interaction (pHRI) is limited or not available [46, 153, 9, 39, 148].

US imaging is widely used in the medical field, even including dentistry, due to

its characteristics of being non-invasive, inexpensive, and radiation-free [123, 108].

Traditionally, US imaging relies on sonographers to physically move the US probe on

the patient’s body. A robotized method is to attach the probe to a robot end-effector

(EE) for assistance [15, 38]. For example, Carriere et al. [15] designed an admittance-

controlled robot-assisted system for US scanning. Their system enabled the robot to

automatically control the probe orientation and the probe–tissue contact force while

the user controlled the lateral position of the US probe. A three-dimensional (3D)

scanner was required to reconstruct the 3D surface of the soft tissue in real time in

their system. Fang et al. [38] developed a cooperatively controlled robotic system to

enable adaptive contact force assistance by involving a dual force sensor setup. Their

system was demonstrated to have the ability to reduce user effort and improve image

stability. Akbari et al. [5] developed an image quality online assessment algorithm

for US scanning systems with which the system can automatically adjust the contact

force. Soleymani et al. [132] designed a 3D-printed US scanning mechanism that

enabled the operator to perform the US imaging task two meters away from the

patient. A survey on robotic US systems in medicine can be found in [104].

In order to respect physical distancing, i.e., to avoid physical interaction, tele-

operation systems could be an alternative, promising solution for US imaging. There
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is a long history in the use of tele-operation systems for US imaging even before the

pandemic [104, 103, 114, 51, 91, 67, 33]. Two decades ago, Mitsuishi et al. [91]

developed a remote US diagnostic system. Their tele-operation system consists of a

6-degree-of-freedom (DOF) leader manipulator attached with a three-axis force sensor

on the doctor side, and a 7-DOF follower manipulator attached with another three-

axis force sensor on the patient side. To ensure safety, their US probe can be retracted

at any time to avoid injuring the patient. Their leader and follower manipulator has

a distance as far as approximately 700 km.

Conti et al. [23] presented a tele-operation robotic system to assist sonographers

in conducting US imaging in aiming to reduce physical fatigue. Their system utilized

a 7-DOF Kuka LWR robot as the follower on the patient side and a 6-DOF haptic

device as the leader on the doctor side. The system allows users to remotely operate

the follower with force feedback, while the contact force remains at a pre-defined level.

Most recently, Duan et al. [33] developed a tele-operated robotic system for remote

US diagnosis. Their system has a set of sophisticated control consoles on the doctor

side, which can be used to remotely control the robot on the patient side to conduct

US imaging.

The traditional tele-operation system is able to provide relatively accurate po-

sition/force control and realistic haptic feedback [91, 23]. However, as introduced

above, it usually requires a second robot and/or a sophisticated control panel to be

deployed on the remote side to establish a leader–follower system, which could make

the system expensive and complicated to install and operate. This is also viewed as a

major factor that hinders the popularity of tele-operation systems in the healthcare

industry [23]. Moreover, many other challenges, such as control algorithm complex-

ity and controller stability, must be dealt with during the development of such a

leader–follower system.

In aiming for a low-cost, easy-to-use system, in this work, a novel dual-mode pHRI-

teleHRI control system with a custom hybrid admittance-force controller is developed,
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Figure B.1: Schematic setup and real scene for the proposed dual-mode pHRI-teleHRI control
system. Note that sensor-1 and sensor-2 are external force/torque sensors of the same type,
and they are stacked and installed by using a specially designed fixture to ensure that the two
sensors work independently without affecting each other. In pHRI mode, the user can directly
apply force on the handle attached at the robot EE in order to move the robot EE. In teleHRI
mode, the user will hold and move the stick in order to move the robot EE while the stick pose
is tracked by a tracking camera in real time.

as illustrated in Figure B.1. The proposed system needs only a tracking camera on the

remote doctor side, which can largely reduce the cost and system complexity. During

the development of such a system, a major challenge is the feedback design, since

haptic feedback is not available on the remote doctor side. To address this issue,

a concise audio feedback is designed to indicate the real-time contact force status,

and its sufficiency for replacing haptic feedback is experimentally verified. Then, the

effectiveness and robustness of the proposed dual-mode system are experimentally

evaluated.

B.2 Methods

This paper describes an experimental study, where we first develop a dual-mode

control system and then evaluate its effectiveness experimentally. In this section,

we introduce the design methodology of the proposed dual-mode system in detail.

First, the robot dynamics are described. Then, the admittance control used in pHRI

mode is elaborated, followed by the mapping algorithm between the robot and the

tracking camera, which will be implemented in teleHRI mode. The force controller
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is then introduced, which will be employed in both modes. Lastly, we introduce

the apparatus and audio feedback design that will be used for subsequent physical

experiments.

B.2.1 Robot dynamics

The general dynamic model for an n-degree-of-freedom (DOF) rigid robot [41] can be

given by

M(q)q̈+ S(q, q̇)q̇+ g(q) = τ+JTFext (B.1)

where M ∈ Rn×n denotes the inertia matrix, S ∈ Rn×n denotes a matrix related to

the Coriolis and centrifugal forces, g ∈ Rn represents a gravity related vector, τ ∈ Rn

is the commanded joint torque vector, Fext ∈ R6 is the external force in Cartesian

space (e.g., robot–human interaction force, robot–environment contact force), and

J ∈ R6×n is the Jacobian matrix.

As shown in (B.1), the robot can directly receive and execute torque command τ

if a torque control interface is available. For some commercial robotic manipulators,

however, interfaces for direct torque control may not be provided by the manufac-

turers due to safety issue considerations or other reasons. Instead, a velocity and/or

position control interface is commonly provided. In this scenario, torque-related con-

trol methods such as impedance control [133] will not be usable. Alternatively, an

admittance controller can be implemented on top of the velocity/position control

interface in order to enable physical human–robot interaction.

B.2.2 Admittance controller for pHRI mode

The general mass–spring–damper model for admittance control in Cartesian space

[97, 133] can be expressed as

Fh = M1ẍad +D1ẋad +K1xad (B.2)

where Fh ∈ R6 is the external force applied on the robot EE (e.g., by the human

user), and M1, D1, K1 ∈ R6×6 are the coefficient matrices of mass, damper, and
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spring, respectively, and need to be designed. xad, ẋad, ẍad are the relative position,

velocity, and acceleration, respectively, in Cartesian space, which are caused by Fh.

For admittance control, the input signal in the mass–spring–damper model (B.2) is

the external force Fh, while the output signal is the relative position displacement xad

(or the relative velocity ẋad when the spring term is removed). Taking the relative

displacement xad as the output and rewriting (B.2), the transfer function from Fh to

xad for an admittance controller can be expressed in the time domain as

xad = K−1
1 [Fh −M1ẍad −D1ẋad] (B.3)

It can be simplified as (B.4) when the spring term K1xad is disabled.

ẋad = D−1
1 [Fh −M1ẍad] (B.4)

In this work, Eqn. (B.4) will be used as the transfer function of the admittance

controller in the pHRI mode. Without involving the spring term in (B.4), the robot

will not recover the initial position after the external human force is removed.

In summary, the procedures of admittance control used in this work are as follows.

As illustrated in Figure B.2, first, an external human force Fh is applied on the robot

EE and measured by a force/torque (F/T) sensor. Then, Fh is converted into a

relative velocity ẋad via the admittance controller (B.4). Then, the output velocity

ẋad from the admittance controller is converted into Cartesian displacement xad by

an integrator. Finally, the displacement xad is added onto the initial desired robot

EE pose xd in a P-controller. Therefore, the pHRI mode is established based on the

admittance controller (B.4).

B.2.3 Mapping algorithm for teleHRI mode

Besides the pHRI mode from the admittance controller, another teleHRI mode is

designed for remote operation. As mentioned earlier, only a tracking camera and a

stick (with a marker attached) are needed on the remote doctor side.
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Figure B.2: Block diagram of the proposed dual-mode pHRI-teleHRI control system with a
custom hybrid admittance-force controller. Fc represents the probe–tissue contact force mea-
sured by sensor-1, Fh represents the external human force measured by sensor-2, Ff represents
the output of the force controller, ẋp represents the generated Cartesian velocity from the P-
controller, x represents the actual pose of the robot EE in Cartesian space, J# represents the
pseudoinverse of the Jacobian matrix, and q̇cmd represents the joint velocity command sent to
the robot.

Assume that the tracking camera frame on the remote doctor side is denoted as

{C} and the robot base frame on the patient side is denoted as {B}. A direct frame

mapping method between the two frames is established by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bx = B
CT

Cx

B
CT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 −1
0 0 0 1 0 0

0 0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.5)

where Bx and Cx are the poses of the stick in the robot base frame {B} and in

the camera frame {C}, respectively. B
CT is the direct transformation matrix from

{C} to {B}. Please note that in (B.5), B
CT can be customized as necessary, and the

main advantage of using the direct frame mapping method here is the robustness

compared with using a 4-by-4 homogeneous transformation matrix, which requires

accurate rotating angles and translations.
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Based on the mapping method (B.5), a relative-displacement-based mapping algo-

rithm between the pose of the stick (on the remote doctor side) and the pose of the

robot EE (on the local patient side) is designed, and it can be expressed as⎧⎪⎨⎪⎩
Bxd = Bxd +∆B

Cx

∆B
Cx = B

CT∆Cx

∆Cx = Cx− Cx0

(B.6)

where Bxd ∈ R6 is the desired pose of the robot EE (attached with US probe) in

the robot base frame {B}, ∆B
Cx ∈ R6 is the relative displacement of the stick in

tracking the camera frame {C} as expressed in the robot base frame {B}, Cx ∈ R6

and Cx0 ∈ R6 are the real-time pose and the initial pose of the stick in the camera

frame {C}, respectively. Note that the first equation in (B.6) describes the updating

rule for the desired robot EE pose (Bxd) based on the real-time relative displacement

of the stick (∆B
Cx).

B.2.4 Force controller

The general form of the Cartesian space force tracking controller [116] can be given

by

Ff = Kp(Fc − Fd) +Ki

∫︂ t

0

(Fc − Fd)dt+Kd(Ḟc − Ḟd) (B.7)

where Kp,Ki,Kd ∈ R6×6 are the designed proportional, integral, and derivative

coefficient matrices, respectively, in Cartesian space, and are typically diagonal.

Fd,Fc ∈ R6 are the desired and actual contact force between the robot EE and

environment, respectively. For simplicity, in this work, a PI force controller is em-

ployed, as given by

Ff = Kp(Fc − Fd) +Ki

∫︂ t

0

(Fc − Fd)dt (B.8)

where the actual contact force Fc is measured by an external F/T sensor.

Combining the admittance controller (B.4) for pHRI mode, the mapping algorithm

(B.6) for teleHRI mode, and the force controller (B.8) together, a hybrid admittance-

force controller for a dual-mode pHRI-teleHRI control system is constructed. The
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block diagram for the proposed dual-mode control system is shown in Figure B.2,

while the corresponding setup is illustrated in Figure B.1a.

B.2.5 Apparatus

A 7-DOF Franka Emika Panda robot (Franka Emika GmbH, Munich, Germany) is

used for developing the proposed dual-mode pHRI-teleHRI control system, as shown

in Figure B.1. The proposed control system is implemented on the Panda robot via a

joint velocity control interface and MATLAB/Simulink (version R2019a, MathWorks

Inc., Natick, MA, USA) code. The Simulink runs on a workstation computer of

Intel(R) Core(TM) i5-8400 CPU @ 2.80 GHz × 6 with the Ubuntu 16.04 LTS (Xenial

Xerus) 64-bit operating system. The control rate of the Panda robot is 1000 Hz.

A commercial MicronTracker with interface library MTC 3.8 (ClaroNav Inc., Toronto,

ON, Canada) is used as the tracking camera on the remote doctor side to track the

pose of the stick in real time with a frequency of 20 Hz. Please note that the commer-

cial MicronTracker can be replaced by a commonly used regular camera for a lower

cost.

In this work, the contact force between the US probe and tissue is measured by

a 6-DOF F/T sensor (sensor-1 in Figure B.1, Axia80-M20-ZC22, ATI Industrial Au-

tomation, Inc., Apex, NC, USA). In the meantime, a second F/T sensor (sensor-2 in

Figure B.1) of the same type is used to measure the external interaction force exerted

on the robot EE handle by the human user, thus indicating user effort. The two

sensors are stacked together as illustrated in Figure B.1a, and an exclusively designed

fixture for mounting the two sensors on the robot EE is used to ensure that the two

sensors work independently.

B.2.6 Audio feedback and haptic feedback

Audio, visual, and haptic feedback are the most commonly used feedback types in

research. As a potential replacement for haptic feedback, audio feedback (AF) is
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selected as a low-cost and simple alternative. Audio feedback is designed to indicate

the real-time contact force status between the US probe and the soft tissue.

The normal contact force between the US probe and the tissue during scanning

is one of the most important indicators since a stably controlled contact force can

guarantee the US image quality [15, 23]. Different clinical examination types usually

involve different desired ranges of contact force—for example, a general range of 5–20

N for cardiac, renal, and abdominal examinations [131, 49], and 6.4 N for carotid ex-

aminations [113]. Empirically, in this work, acceptable image quality can be obtained

when the contact force is around 4.5 N. Therefore, an a priori decision is made to

use a desired range of 4.5 ± 1 N for the normal contact force under the assumption

that it can ensure high-quality scanning images. Note that the force controller in the

proposed system is capable of setting other constant or varying desired forces.

Based on the desired force range, audio feedback is designed to indicate which

range the current normal contact force is located in, i.e., lower range [−inf, 3.5] N,

desired range [3.5, 5.5] N, and upper range [5.5,+inf ] N. Audio feedback is provided

in all experiments via an Arduino board and a buzzer. A continuous beep sound is

used to indicate the desired range, while a discontinuous fast beep is used to indicate

the upper range. Otherwise, no audio feedback is provided. In detail, the audio

feedback signals are generated by supplying 5V DC signals from a classical Arduino

MEGA2560 (R3) board to a passive buzzer (OSOYOO TMB12A05). The designed

audio signals are given by

h(t) =

⎧⎪⎨⎪⎩
0 Fz ∈ (−inf, 3.5)
h1 Fz ∈ [3.5, 5.5]

h1 × a× f(Freq, t) Fz ∈ (5.5,+inf)

(B.9)

where h(t) is the generated time-related audio signal, h1 = 20 is the selected factor

for pulse width modulation (PWM), Fz is the real-time normal contact force between

the US probe and tissue, a×f(Freq, t) is a function of square wave form with respect

to time t with setting Freq = 8, a = 3.

192



6
2

Sensor-2

Sensor-1

150

Unit: mm

Starting point

(ending point)

Soft tissue

100

(a) Horizontal scenario

50°

Starting point

(ending point)

(b) Slope scenario

Figure B.3: Two scenarios of soft tissue surface, i.e., horizontal and inclined slope.

On the other hand, haptic feedback (HF) is presented in pHRI mode. Please note

that haptic feedback in this work refers to the natural haptic feedback when physical

human–robot interaction occurs, rather than specially designed feedback.

B.3 Experiments and Results

B.3.1 Procedures and metrics

There are three experiments designed in this section for developing and evaluating the

proposed dual-mode pHRI-teleHRI control system. In particular, Experiment 2 in-

volves two tissue surface scenarios of horizontal and slope, as shown in Figure B.3. All

experiments employ the same procedure for performing the ultrasound (US) imag-

ing task, i.e., 6 sessions are required in each mode (pHRI or teleHRI) while each

session includes 3 trials. One trial is defined as the US probe moving over the soft

tissue surface, starting at one end, moving to the other end, and then returning to

the starting point. The pHRI mode represents the physical human-robot interaction

method established by an admittance controller, while the teleHRI mode represents

the tele-operation method established by a tracking camera system.

The performance metrics involved in the experiments are listed as follows:
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• Normal contact force, mean and variance (squared standard deviation) between

the US probe and the soft tissue. The former indicates task performance accu-

racy while the latter indicates task performance stability.

• User effort, in units of Newton. It is indicated by the force exerted on the robot

EE by the human user in pHRI mode, and also serves as input signals for the

admittance controller. It is measured by sensor-2, as shown in Figure B.1.

• Time percentage. A percentage for retaining the normal contact force within

the desired range in one trial.

In the admittance controller (B.4), the coefficient matrices M1 and D1 are pa-

rameterized as M11 = 0.01I3×3 and D11 = 14I3×3 for the translational part and

M22 = 0.0001I3×3 and D22 = 1.5I3×3 for the orientational part. For simplicity, the

US probe is assumed to be exactly perpendicular to the tissue surface during the task

(a more sophisticated 3D soft tissue reconstruction method may be required for cases

beyond this assumption [15]); then, the normal contact force can be measured by the

z-axis of the F/T sensor directly in the sensor frame. In the force controller (B.8),

the desired force is set as Fd = [0, 0, 4.5, 0, 0, 0] in the F/T sensor frame and then

transformed into the robot base frame. A t-test is employed for statistical analysis

and a p-value of 0.05 is adopted as the significance level. A video demonstration for

the experiments is available online1.

B.3.2 Experiment 1: AF vs. (AF + HF)

In Experiment 1, audio feedback and haptic feedback (AF + HF) are presented in

pHRI mode while audio-only feedback (AF) is presented in teleHRI mode during the

US imaging task. In this experiment, we investigate how different feedback affects

task performance. No force controller is implemented in this experiment, which means

1online demo video link: https://youtu.be/NkqlawDmJrM
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that both the lateral movement of the US probe and the normal contact force are

controlled by the user.

This experiment requires the user to perform the US imaging task on a horizontal

tissue surface in pHRI mode and teleHRI mode, respectively, with different feedback.

As described earlier, a total of six sessions are required in each mode, while each

session includes 3 trials. During the task, the user needs to manually control the

lateral movement of the US probe and also needs to maintain the normal contact force

between the the probe and the tissue in the desired range. As mentioned earlier, the

task performance accuracy is indicated by the mean normal contact force throughout

this paper, while the task performance stability is indicated by the corresponding

variance.

Statistical analysis on the results (see Table B.1 for details) shows that there is

no significant difference (p = 0.5457) in the mean normal contact force between the

two modes, but there is a significant difference (p = 0.0420) between their variances,

which means that the human user has significantly more stable task performance (i.e.,

smaller variance) with AF in teleHRI mode than with AF + HF in pHRI mode. A

sample of data is presented in Figure B.4. As can be seen in the figure, the normal

contact force cannot stably remain in the desired range in either mode. This is also

reflected by the time percentages for retaining the force in the desired range (see

Table B.2 for details), which are lower than 75% in both modes (58.75% in pHRI

mode and 74.37% in teleHRI mode).

The results from Experiment 1 show that the task performance accuracy in teleHRI

mode with AF is comparable to that in pHRI mode with AF + HF in terms of averaged

normal contact force. The task performance stability in teleHRI mode with AF is

significantly better than that in pHRI mode with AF + HF in terms of their variances.

These results indicate that the audio-only feedback (AF) is as good as audio-haptic

feedback (AF + HF); thus, the audio feedback is able to serve as a replacement for

the haptic feedback in our case.
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Table B.1: Comparing task performance under different feedback in two modes when the pro-
posed hybrid controller is not implemented in Experiment 1.

mean variance (std.2)

AF+HF AF AF+HF AF

(pHRI) (teleHRI) (pHRI) (teleHRI)

F
z
(N

)

s1 4.45 4.59 2.1316 0.9409

s2 4.42 4.46 2.4964 0.6561

s3 4.55 4.31 0.9025 0.8100

s4 4.29 4.35 1.5129 0.8464

s5 4.76 4.69 1.1664 1.0404

s6 4.03 4.45 1.3225 0.7744

p = 0.5457 p = 0.0420 (*)

Note: s1 ∼ s6, represent session 1 ∼ 6, respectively; AF means audio feedback; HF means haptic
feedback; std. means standard deviation; Fz means normal contact force.

Table B.2: Time percentage for remaining force into desired range under different feedback in
two modes when the proposed hybrid controller is not implemented in Experiment 1.

trial 1 trial 2 trial 3 mean ± std.

p
H
R
I
m
o
d
e
(%

)

s1 55.36 51.26 47.48 51.37± 3.94

s2 63.52 64.64 35.83 54.66± 16.32

s3 62.54 72.51 75.54 70.20± 6.80

s4 62.87 63.05 46.68 57.53± 9.40

s5 66.73 50.50 75.56 64.26± 12.71

s6 53.78 59.49 50.15 54.47± 4.71

58.75± 10.73 (mean ± std.)

te
le
H
R
I
m
o
d
e
(%

) s1 73.91 70.40 79.09 74.47± 4.37

s2 75.46 70.79 91.51 79.25± 10.87

s3 63.92 73.29 74.15 70.45± 5.67

s4 64.49 72.29 80.27 72.35± 7.89

s5 78.11 69.44 68.63 72.06± 5.25

s6 76.31 75.85 80.72 77.63± 2.69

74.37± 6.47 (mean ± std.)

Note: s1 ∼ s6, represent session 1 ∼ session 6, respectively; std. means standard deviation.

B.3.3 Experiment 2: (AF + FC) vs. (AF + FC + HF)

In Experiment 2, the hybrid admittance-force controller is implemented. More specif-

ically, an additional force controller (FC) is implemented into the control system in
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Figure B.4: Sample data for US scanning on horizontal tissue surface with different feedback are
provided in two modes in Experiment 1. AF means audio feedback; HF means haptic feedback.
Two horizontal dashed cyan lines define the tolerance area for the desired force.

both pHRI and teleHRI modes based on Experiment 1. This means that the normal

contact force is regulated by the robot FC while the lateral movement is controlled

by the human user in Experiment 2. As a further step based on Experiment 1, this

experiment investigates how the different feedback will affect task performance when

the proposed hybrid controller is implemented. The task procedures are the same as

those described in Experiment 1. In particular, two tissue surface scenarios, namely

the horizontal scenario and slope scenario (Figure B.3), are considered in Experiment

2 in order to test the flexibility of the proposed system.

(1) Experiment 2a: Horizontal scenario

In Experiment 2a, the US imaging task is conducted on a horizontal soft tissue sur-

face. Statistical analysis (see Table B.3 for details) shows that the task performance

accuracy in teleHRI mode with AF + FC is significantly better than in pHRI mode

with AF + FC + HF (p = 2.6999 × 10−4) in terms of mean normal contact force.

Despite this significance, it is worth noting that the max–min magnitude difference

on the normal contact force across all sessions is only 0.17 N, which is close to the

F/T sensor resolution 0.1 N. There is no significant difference between their variances

in the two modes (p = 0.1755), which indicates that the task performance stability

in the two modes is comparable.
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Table B.3: Comparing the task performance on horizontal tissue surface under different feedback
in two modes when the proposed hybrid controller is implemented in Experiment 2a.

mean variance (std.2)

AF+FC+HF AF+FC AF+FC+HF AF+FC

(pHRI) (teleHRI) (pHRI) (teleHRI)

F
z
(N

)

s1 4.43 4.53 0.0064 0.0121

s2 4.41 4.51 0.0036 0.0100

s3 4.41 4.50 0.0144 0.0225

s4 4.42 4.49 0.0100 0.0169

s5 4.36 4.51 0.0100 0.0324

s6 4.39 4.52 0.0324 0.0225

p = 2.6999× 10−4(∗) p = 0.1755

Note: s1 ∼ s6, represent session 1 ∼ 6, respectively; AF means audio feedback; HF means haptic
feedback; FC means force controller; std. means standard deviation; Fz means normal contact
force.

A sample of data for Experiment 2a is shown in Figure B.5. As can be seen from

the figure, user effort in pHRI mode is in the range of [−5, 5] N, which indicates that

the user can easily control the lateral movements of the US probe when an additional

force controller is implemented.

(2) Experiment 2b: Slope scenario

In Experiment 2b, the US imaging task is conducted on an inclined slope soft tissue

surface in pHRI mode and teleHRI mode separately. This slope tissue scenario could

be further generalized to slopes with other angles of inclination or even an inverted

tissue surface, which may be encountered in the clinical setting.

It is worth noting that in teleHRI mode, a regular camera on one side of the slope

for side view is mounted with the same angle of inclination as the slope such that

the inclined tissue surface in the camera view appears as a horizontal tissue surface.

This setting is reasonable since the user is able to use any angle of view for a good

viewpoint in pHRI mode. Moreover, since the pose mapping algorithm between the

robot and the stick is based on relative displacements to their own initial poses, the

motion of the stick on a horizontal surface can be automatically mapped to control
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Figure B.5: Sample data for US scanning on horizontal tissue surface with different feedback
are provided for two modes in Experiment 2a. AF means audio feedback; HF means haptic
feedback; FC means force controller. Two horizontal dashed cyan lines define the tolerance area
for the desired force.

the motion of the US probe on the inclined slope. This operational flexibility can help

the user to obtain a better view and perform comfortable movements on the remote

doctor side in teleHRI mode if needed.

A sample of data from Experiment 2b is shown in Figure B.6. In Figure B.6a, user

effort is represented by the user-exerted force along the movement direction of the

US probe (i.e., along the slope in this experimental scenario). As can be seen from

the figure, user effort in pHRI mode is in the range of [−4, 4] N, which is relatively

small. This means that the human user can easily control the lateral movements of

the probe on the slope when an additional force controller is implemented.

Statistical analysis (see Table B.4 for details) shows that there is no significant

difference (p = 0.1412) between the two modes in the mean normal contact force, and

also no significant difference (p = 0.1504) in their variances.

The results in Experiments 2a and 2b show comparable task performance accuracy

and task performance stability in teleHRI mode (with AF + FC) and in pHRI mode

(with AF + FC + HF), which indicates the potential capability of teleHRI mode to

be taken as an alternative for pHRI mode even without HF. In addition, compared

to Experiment 1, task performance stability in Experiments 2a and 2b is significantly
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Table B.4: Comparing the task performance on slope tissue surface under different feedback in
two modes when the proposed hybrid controller is implemented in Experiment 2b.

mean variance (std.2)

AF+FC+HF AF+FC AF+FC+HF AF+FC

(pHRI) (teleHRI) (pHRI) (teleHRI)

F
z
(N

)

s1 4.49 4.51 0.0289 0.0036

s2 4.43 4.49 0.0144 0.0025

s3 4.49 4.50 0.0144 0.0121

s4 4.49 4.50 0.0121 0.0064

s5 4.49 4.50 0.0361 0.0081

s6 4.50 4.49 0.0081 0.0196

p = 0.1412 p = 0.1504

Note: s1 ∼ s6, represent session 1 ∼ 6, respectively; AF means audio feedback; HF means haptic
feedback; FC means force controller; std. means standard deviation; Fz means normal contact
force.

improved (all ps < 0.002).

The results in Experiment 2 indicate the same conclusion as that obtained in

Experiment 1, i.e., audio feedback can be a good replacement for haptic feedback.

More importantly, the hybrid admittance-force controller implemented in Experiment

2 further relieves the need for haptic feedback in teleHRI mode.

B.3.4 Experiment 3: Dual-mode switching

Experiment 3 is designed to evaluate the overall performance of the proposed dual-

mode pHRI-teleHRI control system when mode switching is involved. This experi-

ment requires the human user to perform the task using a “1-2-1-2” sequence, i.e.,

first to perform the task using the stick (in teleHRI mode) for one session, then per-

form the task using the robot EE handle (in pHRI mode) for another session, then

perform the task in teleHRI mode again for one session, then perform the task in

pHRI mode again. This procedure is repeated another two times in order to generate

six sessions for each mode.

The task procedure in this experiment can be better understood via the sample

data shown in Figure B.7. In the figure, two short bar areas represent the teleHRI
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Figure B.6: Sample data for US scanning on inclined slope tissue surface with different feedback
are provided for two modes in Experiment 2b. AF means audio feedback; HF means haptic
feedback; FC means force controller. Two horizontal dashed cyan lines define the tolerance area
for the desired force.

mode, while two long bar areas represent the pHRI mode. User effort indicates

the user-exerted force on the robot EE handle (in pHRI mode) along the lateral

movement direction of the US probe. As can be seen in the figure, the switching

between the pHRI and teleHRI mode is seamless, smooth, and stable, and it can be

performed whenever necessary, without involving stability issues. This is reasonable

and expected due to the relative-displacement-based mapping method, which will be

discussed in more detail in the next section.

Statistical analysis (see Table B.5 for details) shows that there is no significant

difference in the task performance accuracy between the two modes (p = 0.1747) in

terms of the normal contact force. Although there is a significant difference statis-

tically in their variances (p = 0.0033), it is noticed that all the standard deviation

values are less than 0.1 N (i.e., less than the F/T sensor resolution). Considering this,

it can be safely concluded here that there is no significant difference found between the

two modes in terms of either normal contact force or their variances when switching

is involved, which indicates the robustness of the proposed dual-mode system during

mode switching.
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Table B.5: Comparing the general performance of the proposed dual mode pHRI-teleHRI system
when mode switching is involved in Experiment 3.

mean variance (std.2)

pHRI teleHRI pHRI teleHRI

F
z
(N

)

s1 4.50 4.50 0.0025 0.0016

s2 4.49 4.50 0.0049 0.0016

s3 4.50 4.50 0.0036 0.0025

s4 4.49 4.50 0.0064 0.0036

s5 4.50 4.50 0.0049 0.0016

s6 4.50 4.50 0.0049 0.0016

p = 0.1747 p = 0.0033(∗)

Note: s1 ∼ s6, represent session 1 ∼ 6, respectively; std. means standard deviation; Fz means
normal contact force.

B.3.5 Statistical comparison across experiments

The longitudinal comparison of the task performance accuracy and the task perfor-

mance stability across Experiments 1, 2a, 2b, and 3 is conducted in pHRI mode and

in teleHRI mode separately by using a t-test. Hereafter, for compactness, EX.1, 2a,

2b, and 3 will be used to represent Experiments 1, 2a, 2b, and 3, respectively.

In pHRI mode, there is no significant difference in the normal contact force between

EX.1 and either of the other experiments (see Figure B.8a). However, it should be

noted that the mean values cannot truly reflect the task performance stability, which

mainly depends on their variances. For their variances, there is a significant differ-

ence (all ps < 0.002) between EX.1 and either of the other experiments in pHRI

mode (see Figure B.8b). Similar statistical results are obtained for teleHRI mode

(see Figure B.8c,d). These results indicate that both in pHRI and teleHRI modes,

the task performance is significantly improved in terms of task performance stabil-

ity and reliability by implementing the designed hybrid admittance-force controller

(EX.2a, 2b, 3). The statistical analysis results for the longitudinal comparison across

experiments are summarized in Table B.6.
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Figure B.7: Sample data for dual-mode switching test using a “1-2-1-2” switching sequence in
Experiment 3. Each color bar period represents a trial. Two short color bar areas represent the
teleHRI mode, while two long color bar areas represent the pHRI mode. Two horizontal cyan
lines define the tolerance area for the desired force.

Table B.6: Summary of p-values of t-test results.

EX.2a EX.2b EX.3 EX.2a EX.2b EX.3

mean variance (std.2)

EX.1

F
z
(p
H
R
I) 0.9031 0.5530 0.4600 0.0015∗ 0.0014∗ 0.0014∗

EX.2a - 0.0042∗ 0.0004∗ - 0.4436 0.1035

EX.2b - - 0.1647 - - 0.0276∗

EX.1

F
z
(t
el
eH

R
I)

0.5546 0.7033 0.6876 0.00002∗ 0.00002∗ 0.00002∗
EX.2a - 0.1099 0.1438 - 0.0152∗ 0.0037∗
EX.2b - - 0.6109 - - 0.0529

Note: EX.1,2a,2b,3 mean Experiment 1,2a,2b,3, respectively; Fz means nor-
mal contact force; * for significance level under 5%.

B.4 Discussions

In this work, we propose a dual-mode pHRI-teleHRI control system with a custom-

designed hybrid admittance-force controller for US imaging. The effectiveness of the

proposed system is experimentally evaluated. Experiment 1 is conducted to investi-

gate the possible effects of different feedback types on task performance in two modes,

i.e., audio and haptic feedback (AF + HF) in pHRI mode and audio-only feedback

(AF) in teleHRI mode. Despite the absence of haptic feedback (HF) in teleHRI mode,
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Figure B.8: Bar chart for normal contact force and variance. ‘EX.1’, ‘EX.2a’, ‘EX.2b’, ‘EX.3’
represent Experiments 1, 2a, 2b, and 3, respectively.

the task performance is comparable to that in pHRI mode. In other words, the audio

feedback is capable of being a sufficient replacement for the haptic feedback in our

case.

Experiment 2 is an improved version of Experiment 1 while implementing the hy-

brid admittance-force controller. The results show that, again, the task performance

in the mode without haptic feedback (teleHRI) is as good as that in the mode with

haptic feedback (pHRI). In other words, the audio feedback can be a sufficient alter-

native to the haptic feedback in this work. Additionally, the implementation of the

hybrid admittance-force controller in Experiment 2 significantly improves the task
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performance when compared with Experiment 1.

In Experiment 2b with the teleHRI mode, benefiting from the relative-displacement-

based mapping method, the movement of the stick on a horizontal surface could be

mapped to control the movement of the US probe on an inclined slope surface. In ad-

dition, the rotation angle of the regular camera for side view can be tuned as necessary

such that a slope surface in the physical world can be shown as a horizontal surface in

the camera view. This operational flexibility allows the user to perform comfortable

movements and obtain a good view in teleHRI mode if needed. The optional setting

for aligning the camera with the slope makes the teleHRI mode comparable to the

pHRI mode considering that the human user is able to adjust their view point for a

better perspective in either mode.

Experiment 3 assessed the overall performance of the proposed dual-mode system

when switching mode (i.e., switch pHRI mode to teleHRI mode, or vice versa) is

involved. The proposed system does not require an actual switch “button” since

the two modes are co-existent and coupled via a summation operator to the desired

Cartesian pose (in the P-controller in Figure B.2). Therefore, in order to perform a

switch between the two modes, the user only needs to switch the tool used for the

operation, i.e., the robot EE handle for pHRI mode or the stick for teleHRI mode.

Then, the system will automatically run into the corresponding mode according to

the tool used by the user. Due to the relative-displacement-based mapping method,

the dual-mode switching is seamless and smooth, and does not involve stability issues.

The results also indicated that the dual modes can be switched from one to another

at any time point, which can ensure the robustness and safety of the proposed dual-

mode system in case of emergency cases. A potential advantage of this dual-mode

design is that even during the tele-operation in teleHRI mode, other users (e.g., an

assistant) on the patient side can interfere in the ongoing tele-operation whenever

necessary and manually move the US probe away from the tissue/patient by using

the robot EE handle.
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The overall experimental results indicated that the newly designed tele-operation

method (teleHRI mode) is capable of being used as an alternative to the pHRI method

for US scanning when physical distancing is required or when pHRI is not available.

The capability of allowing seamless switching between the dual modes at any time

enables the robustness of the proposed system.

One potential benefit from the proposed system is the low-cost, easy-to-deploy

device on the remote doctor side compared with the traditional leader–follower tele-

operation systems. High-cost devices has been taken as one main factor inhibiting the

implementation of the traditional tele-operation system in the healthcare field [23].

The remote operation method proposed in this work (teleHRI mode) only needs a

tracking camera rather than a sophisticated, expensive, multi-DOF haptic device on

the doctor side. Additionally, the cost can be further lowered by choosing a cheaper,

regular camera as the tracking device.

Another potential benefit is that it can potentially relieve the strenuous physical

efforts and constraints experienced during physical interaction [23] since the stick used

on the remote side could be made as light as possible. Moreover, it allows the user

to use any available support or any comfortable body posture, thus reducing fatigue.

Especially for US scanning tasks that require a long time to complete, this flexibility

could be beneficial to sonographers.

One limitation of the proposed system is the low accuracy of the registration be-

tween the remote tracking camera frame and the local robot frame. Therefore, the

proposed system is not suitable for high-accuracy-demanding tele-operation scenarios.

B.5 Conclusion

In this work, a dual-mode pHRI-teleHRI control system with a hybrid admittance-

force controller is developed for US imaging. Instead of employing an expensive and

sophisticated robot as a leader on the remote doctor side, a low-cost tracking camera

and a stick attached with a tracking marker are utilized to remotely control the robot
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that is on the patient side. The tele-operation method with only audio feedback (i.e.,

in teleHRI mode) showed comparable task performance to the physical interaction

method with audio and haptic feedback (i.e., in pHRI mode). This verified that

the designed audio feedback can be a sufficient replacement for haptic feedback in

our case, and the teleHRI mode is capable of being used as an alternative method

when physical distancing needs to be respected. Furthermore, experimental results

showed that the pHRI and the teleHRI modes can be switched from one to another

seamlessly at any time point without affecting system stability, which demonstrates

the robustness and stability of the proposed system.

The dual-mode control system and hybrid admittance-force controller can be easily

adapted to other applications where tele-operation is needed beyond the pandemic,

such as needle insertion, auscultation, and palpation. In future work, automatic path

planning and trajectory tracking, as well as virtual fixture guiding, will be introduced

into the system for better task repeatability, which can result in a more intelligent

and autonomous system.
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Appendix C: Kinematics and
Dynamics of the 3DOF PHANToM
Premium 1.5A Robot

C.1 Robotic System

In the thesis, a 3DOF PHANToM Premium 1.5A robot (3D Systems, Inc., Cary, NC,

USA) is frequently used for simulations and experiments. Therefore, its kinematics,

dynamic model, and linearized dynamic model are summarized in this appendix.

C.2 Robot Kinematics1

The Denavit–Hartenberg (DH) table for the 3-DOF PHANToM Premium 1.5A robot

is provided in Table C.1. The corresponding frames’ definitions are illustrated in

Figure C.1. Please note that the base frame of this robot is defined to be coincident

with the initial robot end-effector (EE) position (see the gray pose in Figure C.1).

According to the DH parameters in Table C.1 and the frames determined in Fig-

ure C.1, the homogeneous transformation matrix T from EE frame {5} to base frame

{0} can be obtained as

T =

⎡⎢⎢⎢⎢⎢⎢⎣
c1, −s1s3, c3s1, s1(L1c2 + L2s3)

0, c3, s3, L2 − L2c3 + L1s2

−s1, −c1s3, c1c3, L1c1c2 − L1 + L2c1s3

0, 0, 0, 1

⎤⎥⎥⎥⎥⎥⎥⎦ (C.1)

1This part of the content has been published in: Teng Li, Hongjun Xing, Ehsan Hashemi, Hamid
D. Taghirad, Mahdi Tavakoli, “A Brief Survey of Observers for Disturbance Estimation and Com-
pensation”, Robotica, 2023, 41(12), 3818–3845. [Robotica]
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Table C.1: Denavit–Hartenberg (DH) parameters for the 3DOF Phantom Premium 1.5A robot’s
kinematic chain (for the homogeneous transform in the modified convention).

no. Joint a(m) α(rad) d(m) θ(rad)

1 Joint 01 0 −π
2 L2 −π

2

⊕ 2 Joint 02 −L1 0 0 0

⊕ 3 Joint 1 0 0 0 q1

4 Joint 2 0 π
2 0 q2

5 Joint 3 L1 0 0 q3 − q2 − π
2

⊕ 6 Joint 4 (EE) L2 0 0 0

⊕ 7 Joint 5 (EE) 0 −π
2 0 π

2

Note: EE, end-effector. L1 and L2 are link length. Symbol ⊕ means that the DH parameters
of these two adjacent joints can be directly summed together, respectively, to be as one joint.
Joint 01, 02, and 5 are virtual joints that are only used for transforming one frame to another
desired one via translation and/or rotation.

𝑧0
𝑥0

𝑦0

𝑂

𝐿2𝐿1

𝑞1

𝑞2

𝑞3
𝑞3

𝑞2

𝐿1 𝐿2

𝑧0

𝑥0
𝑦0

𝑂 𝑧5

𝑥5

𝑦5

𝑥01

𝑧01

𝑂

𝑥02

𝑧02

𝑂

𝑥1

𝑧1

𝑧5

𝑦5
𝑂

Figure C.1: Schematic of the 3DOF Phantom Premium 1.5A robot and frame attachment to
each joint. Frame {0} is the base frame while frame {5} is the end-effector (EE) frame. L1, L2

are link lengths. q1, q2, q3 are joint angle variables.

where si, ci represent sin(qi), cos(qi), i = 1, 2, 3, respectively. L1, L2 are link lengths.

The Jacobian matrix J can be expressed by
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(L1c2 + L2s3), −L1s1s2, L2c3s1

0, L1c2, L2s3

−s1(L1c2 + L2s3), −L1c1s2, L2c1c3

0, 0, −c1
1, 0, 0

0, 0, s1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C.2)

Note that the Jacobian matrix here is the space Jacobian which can be calculated

from the body Jacobian used in [16]. In this thesis, we only use the upper 3-by-3

linear part of the Jacobian in Eqn. (C.2), which means that the rotational angles in

Cartesian space are ignored.

C.3 Robot Dynamics

The dynamic model of the 3DOF Phantom Premium 1.5A robot can be expressed in

the form of

M(q)q̈+ S(q, q̇)q̇+ g(q) + τ fric(q̇) = τ (C.3)

where M ∈ R3×3 is the inertia matrix, S ∈ R3×3 is a matrix related to Coriolis

and Centrifugal forces, g ∈ R3 is a vector related to gravity, τ fric ∈ R3 is a vector

related to joint friction, τ ∈ R3 is a vector related to the torques in the joints. Note

that M is a symmetric, positive definite matrix, and always invertible for any joint

configuration q; S is not a symmetric matrix in general; Ṁ− 2S is skew-symmetric

when using Christoffel symbols to define matrix S.

According to [16], for the inertia matrix M of the 3DOF Phantom Premium 1.5A

robot, it can be expressed as

M(q)q̈ = M(q)

⎡⎢⎢⎢⎣
q̈1

q̈2

q̈3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
M11 0 0

0 M22 M23

0 M32 M33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q̈1

q̈2

q̈3

⎤⎥⎥⎥⎦ (C.4)
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For the S matrix related to Coriolis and Centrifugal forces, it can be expressed as

S(q, q̇)q̇ = S(q, q̇)

⎡⎢⎢⎢⎣
q̇1

q̇2

q̇3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
S11 S12 S13

S21 0 S23

S31 S32 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q̇1

q̇2

q̇3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c1

c2

c3

⎤⎥⎥⎥⎦ = c(q, q̇) (C.5)

Note that the Coriolis and Centrifugal related vector is also often represented by

the letter c. It is worth noting that the expression of the S matrix may not be unique

since the term related to Coriolis and Centrifugal forces is in quadratic form with

respect to q̇. In other words, the quadratic term [c1 c2 c3]
T is fixed for a specific

robot but the S matrix can be different, depending on the factorization method.

For the gravity vector g, it can be expressed as

g(q) =

⎡⎢⎢⎢⎣
g1

g2

g3

⎤⎥⎥⎥⎦ (C.6)

For the joint friction vector τ fric, it can be expressed as

τ fric(q̇) =

⎡⎢⎢⎢⎣
τf1

τf2

τf3

⎤⎥⎥⎥⎦ (C.7)

There are two commonly used methods for building the dynamic model and calcu-

lating each of the components, i.e., Newton-Euler (NE) method, and Euler-Lagrange

(EL) method. The NE method is to build the dynamic model by balancing the forces/-

torques, which is an iterative algorithm in numeric/recursive form. This method is

best for implementing control schemes and can be used in real-time. It can also be

used to get a symbolic/closed form of a robot dynamic model theoretically. The EL

method is an energy-based approach, and usually expresses the dynamic equations in

symbolic/closed form. This method is best for the study of dynamic properties and

analysis of control schemes.
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Using the EL method, the analytic expressions of elements in M, S, g, and τ fric

for the 3DOF Phantom Premium 1.5A robot can be found as [16]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M11 = 1
8
(4Iayy + 4Iazz + 8Ibaseyy + 4Ibeyy + 4Ibezz + 4Icyy + 4Iczz + 4Idfyy

+4Idfzz + 4L2
1ma + L2

2ma + L2
1mc + 4L2

3mc)

+1
8
(4Ibeyy − 4Ibezz + 4Icyy − 4Iczz + L2

1(4ma +mc)) cos(2q2)

+1
8
(4Iayy − 4Iazz + 4Idfyy − 4Idfzz − L2

2ma − 4L2
3mc) cos(2q3)

+L1(L2ma + L3mc) cos(q2) sin(q3)

M22 = 1
4
(4(Ibexx + Icxx + L2

1ma) + L2
1mc)

M23 = −1
2
L1(L2ma + L3mc) sin(q2 − q3)

M32 = M23

M33 = 1
4
(4Iaxx + 4Idfxx + L2

2ma + 4L2
3mc)

(C.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S11 = 1
8
(−2 sin(q2)((4Ibeyy − 4Ibezz + 4Icyy − 4Iczz

+4L2
1ma + L2

1mc) cos(q2) + 2L1(L2ma + L3mc) sin(q3))q̇2
+2 cos(q3)(2L1(L2ma + L3mc) cos(q2)

+(−4Iayy + 4Iazz − 4Idfyy + 4Idfzz + L2
2ma + 4L2

3mc) sin(q3))q̇3)

S12 = −1
8
((4Ibeyy − 4Ibezz + 4Icyy − 4Iczz + L2

1(4ma +mc)) sin(2q2)

+4L1(L2ma + L3mc) sin(q2) sin(q3))q̇1
S13 = −1

8
(−4L1(L2ma + L3mc) cos(q2) cos(q3)

−(−4Iayy + 4Iazz − 4Idfyy + 4Idfzz + L2
2ma + 4L2

3mc) sin(2q3))q̇1
S21 = −S12

S23 = 1
2
L1(L2ma + L3mc) cos(q2 − q3)q̇3

S31 = −S13

S32 = 1
2
L1(L2ma + L3mc) cos(q2 − q3)q̇2

(C.9)

⎧⎪⎨⎪⎩
g1 = 0

g2 = 1
2
g(2L1ma + 2L5mbc + L1mc) cos(q2)

g3 = 1
2
g(L2ma + 2L3mc − 2L6mdf ) sin(q3)

(C.10)

The values of the dynamic parameters from [16] are summarized in Table C.2.

C.4 Dynamic Model Linearization

The joint friction can be modeled by the Stribeck model [94, 80] as given by Eqn. (C.11),

which is viewed as the most classical nonlinear expression that can include many char-

acteristics of friction.

τ fric = Fcsgn(q̇) + (Fs − Fc)sgn(q̇)e
−|q̇/νs|σ + Fvq̇ (C.11)
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Table C.2: The values of the dynamic parameters for the 3DOF Phantom Premium 1.5A robot.

Parameters Values

Link-1 length L1 = 0.215

Link-2 length L2 = 0.170

Distance between parallel links L3 = 0.0325

Mass of segment A ma = 0.0202

Inertia of segment A Ia = diag{Iaxx, Iayy, Iazz}
Inertia of segment A Iaxx = 0.4864× 10−4

Inertia of segment A Iayy = 0.001843× 10−4

Inertia of segment A Iazz = 0.4864× 10−4

Mass of segment C mc = 0.0249

Inertia of segment C Ic = diag{Icxx, Icyy, Iczz}
Inertia of segment C Icxx = 0.959× 10−4

Inertia of segment C Icyy = 0.959× 10−4

Inertia of segment C Iczz = 0.0051× 10−4

Mass of segment BE mbe = 0.2359

Inertia of segment BE Ibe = diag{Ibexx, Ibeyy, Ibezz}
Inertia of segment BE Ibexx = 11.09× 10−4

Inertia of segment BE Ibeyy = 10.06× 10−4

Inertia of segment BE Ibezz = 0.591× 10−4

COM location of BE L5 = −0.0368
Mass of segment DF mdf = 0.1906

Inertia of segment DF Idf = diag{Idfxx, Idfyy, Idfzz}
Inertia of segment DF Idfxx = 7.11× 10−4

Inertia of segment DF Idfyy = 0.629× 10−4

Inertia of segment DF Idfzz = 6.246× 10−4

COM location of DF L6 = 0.0527

Inertia of the base Ibaseyy = 11.87× 10−4

Note: COM, center of mass.

where Fc ∈ R3×3 is a diagonal matrix for the Coulomb friction coefficient, Fs ∈ R3×3

is a diagonal matrix for the static friction coefficient, Fv ∈ R3×3 is a diagonal matrix

for the viscous friction coefficient, q̇ is the joint velocity, νs is the Stribeck parameter,

σ is the exponent of the Stribeck nonlinearity and σ = 2 is usually employed.

Instead of the sophisticated Stribeck model Eqn. (C.11), a simple friction model

only involving viscous friction and Coulomb friction is employed for the 3DOF Phan-
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tom Premium 1.5A robot in [137] which is given by

τ fric = Fvq̇+ Fcsgn(q̇) (C.12)

The dynamic model Eqn. (C.3) can be linearized by extracting a minimum set of

dynamic coefficients π [137], and the linearized dynamic model can be given by

Y(q, q̇, q̈)π = τ = Y[3×14]π[14×1] =
[︂
Yd[3×6] Yg[3×2] Yf [3×6]

]︂⎡⎢⎢⎢⎣
πd[6×1]

πg[2×1]

πf [6×1]

⎤⎥⎥⎥⎦
(C.13)

where Y ∈ R3×14 is the regressor matrix (also named observation matrix), Yd ∈ R3×6

is the dynamics-related part, Yg ∈ R3×2 is the gravity-related part, Yf ∈ R3×6 is the

friction-related part, π ∈ R14×1 is the extracted dynamic coefficients vector. Note

that the minimal linear parameterization of robot dynamics, i.e., the minimal set of

dynamic coefficients π, is not unique.

The identified values of the dynamic coefficients in Eqn. (C.18) and Eqn. (C.19) in

the linearized model of the 3DOF Phantom Premium 1.5A robot [137] are summarized

in Table C.3.

Based on the linearization results from [137], the regressor matrix Y (including

Yd, Yg, Yf ) and the extracted dynamic coefficients π are expressed as follows

Yd =

⎡⎢⎢⎢⎣
Yd.11 Yd.12 Yd.13 Yd.14 0 0

0 Yd.22 0 Yd.24 Yd.25 0

0 0 Yd.33 Yd.34 0 Yd.36

⎤⎥⎥⎥⎦ (C.14)
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Table C.3: The identified values of the dynamic coefficients in the linear model of the 3DOF
Phantom Premium 1.5A robot.

Coefficients Calculated values from [16] Identified values from [137]

γ1 γ1 = 0.0076 γ1 = 0.0039

γ2 γ2 = 0.0030 γ2 = 0.0037

γ3 γ3 = −0.0011 γ3 = −0.0011
γ4 γ4 = 0.0025 γ4 = 0.0019

γ5 γ5 = 0.0066 γ5 = 0.0057

γ6 γ6 = 0.0025 γ6 = 0.0026

γ7 (gravity related) γ7 = −0.0445 γ7 = −0.0525
γ8 (gravity related) γ8 = −0.2015 γ8 = −0.3002
γ9(= πfv1) (friction related) NC γ9 = −0.0057
γ10(= πfv2) (friction related) NC γ10 = −0.0035
γ11(= πfv3) (friction related) NC γ11 = −0.0005
γ12(= πfc1) (friction related) NC γ12 = 0.0707

γ13(= πfc2) (friction related) NC γ13 = 0.0251

γ14(= πfc3) (friction related) NC γ14 = 0.0248

Note: NC, not considered.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yd.11 = q̈1
Yd.12 = q̈1 cos(2q2)− 2q̇1q̇2 sin(q2) cos(q2)− q̇1q̇2 sin(2q2)

Yd.13 = q̈1 cos(2q3)− 2q̇1q̇3 sin(q3) cos(q3)− q̇1q̇3 sin(2q3)

Yd.14 = q̈1 cos(q2) sin(q3)− q̇1q̇2 sin(q2) sin(q3) + q̇1q̇3 cos(q2) cos(q3)

Yd.22 = q̇21 sin(2q2)

Yd.24 = −1
2
q̈3 sin(q2 − q3) +

1
2
q̇21 sin(q2) sin(q3) +

1
2
q̇23 cos(q2 − q3)

Yd.25 = q̈2
Yd.33 = q̇21 sin(2q3)

Yd.34 = −1
2
q̈2 sin(q2 − q3)− 1

2
q̇21 cos(q2) cos(q3) +

1
2
q̇22 cos(q2 − q3)

Yd.36 = q̈3

(C.15)

Yg =

⎡⎢⎢⎢⎣
0 0

cos(q2) 0

0 sin(q3)

⎤⎥⎥⎥⎦ (C.16)
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Yf =

⎡⎢⎢⎢⎣
q̇1 0 0 sgn(q̇1) 0 0

0 q̇2 0 0 sgn(q̇2) 0

0 0 q̇3 0 0 sgn(q̇3)

⎤⎥⎥⎥⎦ (C.17)

π =

⎡⎢⎢⎢⎣
πd[6×1]

πg[2×1]

πf [6×1]

⎤⎥⎥⎥⎦ =
[︂
γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12 γ13 γ14

]︂T
(C.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 = 1
8
(4Iayy + 4Iazz + 8Ibaseyy + 4Ibeyy + 4Ibezz + 4Icyy + 4Iczz

+4Idfyy + 4Idfzz + L2
1mc + L2

2ma + 4L2
3mc + 4L2

1ma)

γ2 = 1
8
(4Ibeyy − 4Ibezz + 4Icyy − 4Iczz + 4L2

1ma + L2
1mc)

γ3 = 1
8
(4Iayy − 4Iazz + 4Idfyy − 4Idfzz − L2

2ma − 4L2
3mc)

γ4 = L1(L2ma + L3mc)

γ5 = 1
4
(4Ibexx + 4Icxx + 4L2

1ma + L2
1mc)

γ6 = 1
4
(4Iaxx + 4Idfxx + L2

2ma + 4L2
3mc)

− −−−−−−−−−−−−−−−−−
γ7 = 1

2
g(2L1ma + 2L5mbe + L1mc)

γ8 = 1
2
g(L2ma + 2L3mc − 2L6mdf )

− −−−−−−−−−−−−−−−−−
γ9 = πfv1

γ10 = πfv2

γ11 = πfv3

γ12 = πfc1

γ13 = πfc2

γ14 = πfc3

(C.19)

where πfvi and πfci are the viscous and Coulomb friction coefficients for the i-th joint

(i = 1, 2, 3), respectively.
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